
PROCEEDINGS

SEKE 2007
The 19th International Conference on

Software Engineering &
Knowledge Engineering

Sponsored by
Knowledge Systems Institute Graduate School, USA

Technical Program
July 9-11, 2007

Hyatt Harborside Hotel, Boston, Massachusetts, USA

Organized by
Knowledge Systems Institute Graduate School

Copyright © 2007 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN 1-891706-20-9 (paper)

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:office@ksi.edu
http://www.ksi.edu

Proceedings preparation, editing and printing are sponsored by
Knowledge Systems Institute Graduate School

Printed by Knowledge Systems Institute Graduate School

ii

SEKE 2007 Foreword
PROGRAM CHAIR’S MESSAGE

Welcome to Boston. The International Conference on Software Engineering and
Knowledge Engineering has entered its nineteenth year. For the past eighteen years, the
Conference on Software Engineering and Knowledge Engineering has provided a unique,
centralized, forum for academic and industrial researchers and practitioners to discuss the
application of either software engineering methods in knowledge engineering or
knowledge-based techniques in software engineering. Preference is given to papers that
emphasize the transference of methods between both engineering disciplines; however,
outstanding papers on software engineering or knowledge engineering alone have also
been presented.

This year’s technical program consists of the following four tracks organized by a great
team of Vice Program chairs:

Track: Co-Chairs:
Service-Oriented George Spanoudakis, City University, UK
Data Taghi M. Khoshgoftaar, Florida Atlantic University, USA
Applications Jerry Gao, San Jose State University, USA
Agents Du Zhang, California State University, USA

The SEKE2007 Program Committee selected papers for publication in the proceedings
and presentation at the Conference based upon a rigorous review process of the full
papers. The acceptance rate for full papers is 44% and for short papers is 23%. This
year, authors from 39 countries will present papers at the conference.

I appreciate having had the opportunity to serve as the program chair for this Conference,
and am very grateful for the outstanding efforts provided by the Program Committee Co-
Chairs, who are listed above. The Program Committee members and reviewers provided
excellent support in promptly reviewing the manuscripts. We are grateful to the authors
and sessions chairs for their time and efforts to make SEKE2007 a success. As always,
Dr. S. K. Chang of the Knowledge Systems Institute, USA, provided excellent guidance
throughout the effort. Last but not least, we all owe a debt of gratitude the heroic efforts
of Mr. Daniel Li, of the Knowledge Systems Institute.

Daniel E. Cooke
SEKE2007 Program Chair

iii

The 19th International Conference on
Software Engineering & Knowledge Engineering

(SEKE 2007)

July 9-11, 2007
Hyatt Harborside Hotel, Boston, Massachusetts, USA

Organizers & Committee

Steering Committee

Vic Basili, University of Maryland, USA
Bruce Buchanan, University of Pittsburgh, USA
Shi-Kuo Chang, University of Pittsburgh, USA

C. V. Ramamoorthy, University of California, Berkeley, USA

Conference General Chair

Shi-Kuo Chang, University of Pittsburgh, USA

Program Chair

Daniel Cooke, Texas Tech University

Program Co-Chairs

George Spanoudakis, City University, UK
Taghi M. Khoshgoftaar, Florida Atlantic University, USA

Jerry Gao, San Jose State University, USA
Du Zhang, California State University, USA

iv

Program Committee

Silvia Teresita Acuna, Universidad Autnoma De Madrid, Spain
Juan Carlos Augusto, University of Ulster, UK

Doo-Hwan Bae, Computer Science Dept. KAIST, Korea
Maria Teresa Baldassarre, University of Bari, Italy

Luciano Baresi, Politechnico de Milano, Italy
Sami Beydeda, The Federal Finance Office, Germany

Alessandro Bianchi, University of Bari, Italy
Danilo Caivano, University of Bari, Italy

Gerardo Canfora, University of Sannio, Italy
Joao W. Cangussu, University of Texas at Dallas, USA

Christine W. Chan, University of Regina, Canada
W.K. Chan, City University of Hong Kong, Hong Kong

Ned Chapin, Affiliation InforSci Inc., USA
Shu-Ching Chen, Florida International University, USA

Panos Constantopoulos, Athens University of Economics, Greece
Kendra Cooper, University of Texas at Dallas, USA

Jing Dong, University of Texas at Dallas, USA
Jin Song Dong, National University of Singapore, Singapore

Schahram Dustdar, University of Technology Vienna, Austria
Behrouz Homayoun Far, University of Calgary, Canada
Kehan Gao, Eastern Connecticut State University, USA

Carlo Ghezzi, Politechnico di Milano Technical University, Italy
Holger Giese, Universitaet Paderborn, Germany

Des Greer, Queens University Belfast, UK
Eric Gregoire, Universite dArtois, France

Paul Grunbacher, Johannes Kepler University Linz, Austria
Xudong He, Florida International University, USA

Rattikorn Hewett, Texas Tech University, USA
Mei Hsing, Fu Jen Catholic University, Taiwan

Gabor Karsai, Vanderbilt University, USA
Axel Kupper, Ludwig-Maximilians-University Munich, Germany

Tao Li, Florida International University, USA
Claudia Linnhoff-Popien, Ludwig-Maximilians-University Munich, Germany

Frank Lin, Cisco System, Inc., USA
Xiaodong Liu, Napier University, UK

Yi Liu, Georgia college and State University, USA
Jian Lu, Nanjing University, China

Zhongyu (Joan) Lu, The University of Huddersfield, UK
Antonio Mana, University of Malaga, Spain

Hong Mei, Beijing University, China
Ali Mili, New Jersey Institute of Technology, USA

Rym Mili, University of Texas at Dallas, USA
Ana M. Moreno, Techincal University of Madrid, Spain

v

Elisabetta Di Nitto, Politechnico de Milano, Italy
Mehmet Orgun, Macquarie University, Australia

Massimiliano Di Penta, University of Sannio, Italy
Marek Reformat, University of Alberta, Canada
Robert Reynolds, Wayne State University, USA

George Roussos, University of London, UK
Guenther Ruhe, University of Calgary, Canada

Masoud Sadjadi, Florida International University, USA
Remzi Seker, Arizona State University, USA

Naeem Seliya, University of Michigan at Dearborn, USA
Yidong Shen, Chinese Academy of Science, China

Michael Shin, Texas Tech University, USA
Nenad Stankovic, Univ. of Aizu, Japan

Kurt Stirewalt, Michigan State University, USA
Genny Tortora, University of Salerno, Italy

Michael VanHilst, Florida Atlantic University, USA
Sira Vegas, Universidad Politecnica de Madrid, Spain

Qianxiang Wang, Beijing University, China
Yingxu Wang, University of Calgary, Canada

Victor Winter, University of Nebraska at Omaha, USA
Guido Wirtz, Bamberg University, Germany

Eric Wong, University of Texas at Dallas, USA
Hongji Yang, De Montfort University, UK

Cui Zhang, California State University, USA
Zhi-Hua Zhou, Nanjing University, China
Hong Zhu, Oxford Brookes University, UK

Xingquan Zhu, Florida Atlantic University, USA
Eugenio Zimeo, University of Sannio, Italy

Andrea Zisman, City University, UK

Public Relations

Michael Shin, Texas Tech University, USA

Industry Advisory Committee

Chuck Fredrick, Chief Technology Officer, Douglas County, Denver, USA
J. S. Ke, Senior Fellow, Institute for Information Industry, Taiwan

Steve Mahony, Chief Technology Officer, CEI, USA
Gerry Pompa, Vice President, Compunetix, USA

A. J. Rhem, Senior Partner, A. J. Rhem and Associates Inc., USA
Christoph Wasshuber, Editor, Elsevier, The Netherlands

Gerhard Weiss, Scientific Director, Software Competence Center Hagenberg, Austria

vi

Proceedings Cover Design

Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Conference Secretariat

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Beverly Crockett, Knowledge Systems Institute Graduate School, USA

David Cohen, Knowledge Systems Institute Graduate School, USA
C. C. Huang, Knowledge Systems Institute Graduate School, USA

Daniel Li, Knowledge Systems Institute Graduate School, USA

vii

Table of Contents

Foreword …………………………………………………………………………..…… iii

Conference Organization …………………………………………………………… iv

Keynote

Dr. Joe Urban …………………………………………………………………………...... 1

Software Engineering Methodology

Constructing Self-Adaptive Systems with Polymorphic Software Architecture
Xiaoxing Ma, Yu Zhou, Jian Pan, Ping Yu, Jian Lu …………………………………… 2

Odyssey-MDA: A transformational approach to component models
Natanael E. N. Maia, Ana Paula Terra Bacelo, Claudia M. Werner …………………... 9

An Empirical Exporatory Study on Inferring Developpers' Activities from Low-Level
Data
Irina Coman, Alberto Sillitti (S) …………………………………………………………. 15

TRAP.NET: A Realization of Transparent Shaping in .NET
S. Masoud Sadjadi, Fernando Trigoso …………………………………………………... 19

A Framework for Selecting Agile Practices and Defining Agile Software Processes
Patricia Vilain, Priscila Basto Fagundes, Thiago Leao Machado (S) ………………..... 25

A Proposal to Delegate GUI Implementation using a Source Code based Model
Marco Monteiro, Paula Oliveira, Ramiro Goncalves (S) ……………………………...... 29

Cost-based Analysis of Multiple Counter-Examples
Flavian Vasile, Samik Basu ……………………………………………………………… 33

Common Coupling as a Measure of Reuse Effort in Kernel-Based Software
Liguo Yu, Stephen R. Schach, Kai Chen ………………………………………………… 39

An Approach to Validating Translation Correctness From SAM to Java
Yujian Fu, Zhijiang Dong, Gonzalo Argote-Garcia, Leyuan Shi, Xudong He (S) …...... 45

viii

Software Processes and Engineering Practice

QSEE Project: An Experience in Outsourcing Software Development for Space
Applications
Valdivino Santiago, Fatima Mattiello-Francisco, Ricardo Costa, Wendell Pereira da
Silva, Ana Maria Ambrosio ………………………………………………………………. 51

Broadening the Use of Process Patterns for Modeling Processes
Hanh Nhi Tran, Bernard Coulette, Bich Thuy Dong …………………………………… 57

A Framework for Tailoring Software Process
Lisandra M. Fontoura, Roberto T. Price (S) …………………………………………...... 63

Analyzing Configuration Management Repository Data for Software Process
Improvement
Shihong Huang, Christopher Lo (S) …………………………………………………...... 67

Aspect-Based Software Development

Smooth Quality Oriented Component Integration through Product Line Based Aspect-
Oriented Component Adaptation
Yankui Feng, Xiaodong Liu, Jon Kerridge ……………………………………………… 71

Modular Specification of Aspect-oriented Systems and Aspect Conflicts Detection
Hui Liang, Jing Sun (S) ………………………………………………………………...... 77

Avoiding Bad Smells in Aspect-Oriented Software
Eduardo K. Piveta, Marcelo Hecht, Ana Moreira, Marcelo S. Pimenta, Joao Araujo,
Pedro Guerreiro, R. Tom Price …………………………………………………………... 81

Software Testing and Quality Assurance

Metrics of Credibility and Interaction Quality: Design and Evaluation
Nilda Perez Otero, Marcelo Perez Ibarra, Sandra Mendez, Adelina Garcia, Ma. del
Pilar Galvez Diaz, Viviana E. Quincoces, Hector Liberatori, Beatriz Fiorito, Cecilia
Maria Lasserre ……………………………………………………………………............. 87

Predicting Order of Likelihood of Defective Software Modules
Rattikorn Hewett, Phongphun Kijsanayothin, Alta van der Merwe ……………………. 93

Automated Test Code Generation from UML Protocol State Machines
Dianxiang Xu, Weifeng Xu, W. Eric Wong ……………………………………………... 99

ix

Validating A Layered Decision Framework for Cost-Effective Network Defense
Huaqiang Wei, Jim Alves-Foss, Du Zhang ……………………………………………… 105

Toward Modeling and Analysis for Software Installation Testing
Jerry Gao, Sujana Tirumalasetti, Chien-Pin Hsu, Yip Cheong, Anne Colendich, Todd
Fitch (S) …………………………………………………………………………............... 111

Automatic Test Generation for Database-Driven Applications
Zhenyu Dai, Mei-Hwa Chen ……………………………………………………………... 117

Fault-Based Testing of Data Schemas
Maria Claudia F. P. Emer, Silvia Regina Vergilio, Mario Jino ………………………... 123

NLForSpec: Translating Natural Language Descriptions into Formal Test Case
Specifications
Daniel Leitao, Dante Torres, Flavia Barros ……………………………………………... 129

Enhanced Random Testing for Programs with High Dimensional Input Domains
F.-C. Kuo, K.-Y. Sim, Chang-ai Sun, S.-F. Tang, Zhi Quan Zhou …………………...... 135

On Test Case Distributions of Adaptive Random Testing
Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu (S) ……………………………………...... 141

Reducing the Number of Test Cases for Performance Evaluation of Components
Joao W. Cangussu, Kendra Cooper, Eric Wong ………………………………………… 145

Combining Decorated Classification Trees with RCPS Stochastic Models to Gain New
Valuable Insights into Software Project Management
Antonio Juarez Alencar, Gelson Guedes Rodrigues, Eber Assis Schmitz, Armando
Leite Ferreira ……………………………………………………………………………... 151

Towards a Reference Architecture for Software Testing Tools
Elisa Yumi Nakagawa, Adenilso da Silva Simao, Fabiano Ferrari, Jose Carlos
Maldonado ... 157

Controlling Restricted Random Testing: An Examination of the Exclusion Ratio
Parameter
Kwok Ping Chan, T.Y. Chen, Dave Towey (S) …………………………………………... 163

An Approach to Software Testing of Machine Learning Applications
Christian Murphy, Gail Kaiser, Marta Arias (S) ………………………………………... 167

x

System Requirements Analysis, Modeling and Specification

Agile Methods and Quality Models: Towards an Integration in Requirements
Engineering
Alexandre Lazaretti Zanatta, Patricia Vilain ……………………………………………. 173

A Framework of Hierarchical Requirements Patterns for Specifying Systems of
Interconnected Simulink/Stateflow Modules
Changyan Zhou, Ratnesh Kumar, Devesh Bhatt, Kirk Schloegel, Darren Cofer ……… 179

In the Requirements Lies the Power
Rand Waltzman, Kristina Winbladh, Thomas A. Alspaugh, Debra J. Richardson …...... 185

Data and Process Analyses of Data Warehouse Requirements
Estella Annoni, Franck Ravat, Olivier Teste ……………………………………………. 191

Requirement Analysis Evolution through Patterns
Luca Vetti Tagliati, Roger Johnson, George Roussos (S) ………………………………. 197

Automatic Generation of Use Case Diagrams from English Specifications Document
Nathalie Rose T. Lim, Christobal T. Cayaba, Joseph Astrophel E. Rodil ……………… 203

REM4j - A framework for measuring the reverse engineering capability of UML CASE
tools
Steven Kearney, James F. Power ………………………………………………………… 209

FlexUML: A UML Profile for Flexible Process Modeling
Ricardo Martinho, Dulce Domingos, Joao Varajao …………………………………...... 215

A Formal Specification for Product Configuration in Software Product Lines
Huilin Ye, Yuqing Lin ……………………………………………………………………. 221

Designing a Platform-Independent Use-Case for a Composite Application using a
Reference Architecture
Helge Hofmeister, Guido Wirtz (S) ………………………………………………………. 227

Synchronization of UML Based Refactoring with Graph Transformation
Y. Kosker, A. B. Bener ……………………………………………………………………. 232

Using Formal Composition of Use Cases in Requirements Engineering
Rabeb Mizouni, Aziz Salah, Rachida Dssouli …………………………………………… 238

xi

Web-Based Applications

Real-Time Trust Management in Agent Based Online Auction Systems
Rinkesh Patel, Haiping Xu, Ankit Goel ………………………………………………...... 244

Geometric Thumbnails For Web Searching
Chris Dunn, Beomjin Kim (S) ……………………………………………………………. 251

Web Technology and Web Engineering

ADkwik: Web 2.0 Collaboration System for Architectural Decision Engineering
Nelly Schuster, Olaf Zimmermann, Cesare Pautasso …………………………………… 255

Improving Usability of Web Systems with Similar Business Objectives
Rashid Ahmad, Zhang Li, Farooque Azam ……………………………………………... 261

Processing Manipulations of Context Information on the Web
Roberto De Virgilio ……………………………………………………………………...... 268

A Tag-Level Web-Caching Scheme for Reducing Redundant Data Transfers
Steven E. Cox, Du Zhang, Jinsong Ouyang ……………………………………………... 274

Software Project and Resource Management

Methodology for Reusing Human Resources Management Standards
Asuncion Gomez-Perez, Jaime Ramirez, Boris Villazon-Terrazas ……………………... 280

An Adaptive Resource Management Approach for a Healthcare System
Claudia Raibulet, Luigi Ubezio, Stefano Mussino ………………………………………. 286

Study of the Relationships between Personality, Satisfaction and Product Quality in
Software Development Teams
Marta Gomez, Silvia T. Acuna (S) ……………………………………………………...... 292

Software Reuse and Component Technology

Towards Constructing High-available Decentralized Systems via Self-adaptive
Components
Xi Sun, Li Zhou, Lei Zhuang, Wenpin Jiao, Hong Mei ………………………………… 296

xii

SAFES: A Static Analysis for Field Security in Java Components
Aiwu Shi, Gleb Naumovich ………………………………………………………………. 302

Reuse of Database Access Layer Components in JEE Product Lines: Limitations and a
Possible Solution (Case Study)
Ding Peng, Stan Jarzabek, Damith C. Rajapakse, Hongyu Zhang …………………...... 308

Design of Wrapper for Self-Management of COTS Components
Michael E. Shin, Fernando Paniagua …………………………………………………… 314

QoS-Optimized Integration of Embedded Software Components with Multiple Modes of
Execution
Zonghua Gu, Qingxu Deng ……………………………………………………………… 320

A C++ Framework for Developing Component Based Software Supporting Dynamic
Unanticipated Evolution
Andre Rodrigues, Hyggo Almeida, Angelo Perkusich …………………………………... 326

Representing Design Rationale to support Reuse
Adriana Pereira de Medeiros, Daniel Schwabe (S) ……………………………………... 332

Software System Maintenance

Telling Stories about System Use: Capturing Collective Tacit Knowledge for System
Maintenance
Adriana Cristina de Oliveira, Renata Mendes de Araujo, Marcos R.S. Borges ………... 337

Evolution and Runtime Monitoring of Software Systems
Hui Liang, Jin Song Dong, Jing Sun ……………………………………………………. 343

On Modern Debugging For Rule-Based Systems
Valentin Zacharias, Andreas Abecker …………………………………………………… 349

Truth Eliciting Mechanisms for Trouble Ticket Allocation in Software Maintenance
Services
Karthik Subbian, Y. Narahari ……………………………………………………………. 355

Knowledge Engineering, Natural Language Processing, and AI

Graphical Notation for Natural Language and Knowledge Representation
Magda G. Ilieva …………………………………………………………………………... 361

xiii

A Hybrid Approach for Natural Language Query Translation
Pornpimon Teekayuphun, Ohm Sornil ………………………………………………...... 368

Effective Fault Localization using BP Neural Networks
W. Eric Wong, Lei Zhao, Yu Qi, Kai-Yuan Cai, Jing Dong …………………………...... 374

Temporal Software Change Prediction Using Neural Networks
Mehdi Amoui, Mazeiar Salehie, Ladan Tahvildari ……………………………………... 380

Do Neural-Network Question-Answering Systems Have a Role to Play in the
Deployment of Real World Information Systems?
Antonio Juarez Alencar, Renata Chaomey Wo, Eber Assis Schmitz, Armando Leite
Ferreira …………………………………………………………………………………… 386

Knowledge Conversion in Software Development
Olivier Gendreau, Pierre N. Robillard …………………………………………………… 392

A Language Facilitating Informal Reasoning about Programs
J. Nelson Rushton, Dwayne Towell ……………………………………………………… 396

Plenary Talk

Towards Seamless Business Process and Dialogue Specification
Dr. Dirk Draheim ………………………………………………………………………… 402

Database Retrieval Methods

Evaluating the Efficiency of Retrieval Methods for Component Repositories
Oliver Hummel, Werner Janjic, Colin Atkinson ………………………………………… 404

Benchmarking the RDF(S) Interoperability of Ontology Tools
Raul Garcia-Castro, Asuncion Gomez-Perez, York Sure ……………………………...... 410

A Deep Classification of Temporal Versioned Integrity Constraints for Designing
Database Applications
Robson Leonardo Ferreira Cordeiro, Renata de Matos Galante, Nina Edelweiss,
Clesio Saraiva dos Santos (S) …………………………………………………………...... 416

Generating Linear Temporal Logic Formulas for Pattern-Based Specifications
Salamah Salamah, Vladik Kreinovich, Ann Q. Gates (S) ………………………………. 422

xiv

Ontology Based Classification Generating Method for Browsing-Based Component
Retrieval
Ge Li, Lu Zhang, Bing Xie, Weizhong Shao (S) ………………………………………… 428

Data

A Context-Dependent Semantic Distance Measure
Ahmad El Sayed, Hakim Hacid, Djamel Zighed ………………………………………… 432

A Semantical Change Detection Algorithm for XML
Rodrigo Cordeirodos Santos, Carmem Hara …………………………………………..... 438

XML Schema Evolution by Context Free Grammar Inference
Julio C. T. da Silva, Martin A. Musicante, Aurora T. R. Pozo, Silvia R. Vergilio ……... 444

Software Development and Design Pattern

Software Tradeoff Assistant: An Integrated Framework for Analytical Decision Making
and Tradeoffs in Software Development
Rattikorn Hewett, Vikram Patankar ……………………………………………………... 450

Improving Separation of Concerns in the Development of Scientific Applications
S. M. Sadjadi, J. Martinez, T. Soldo, L. Atencio, R. M. Badia, J. Ejarque (S) …………. 456

Pattern-based J2EE Application Deployment with Cost Analysis
Nuyun Zhang, Gang Huang, Ling Lan, Hong Mei (S) …………………………………. 462

Exploratory Design of Derivation Business Rules Using Query Rewriting
Roman Krenicky, David Willmor, Suzanne M. Embury (S) …………………………...... 467

Classification of Design Pattern Traits
Jing Dong, Yajing Zhao (S) ……………………………………………………………… 473

Data Warehouse

A Proposal for a Conceptual Data Warehouse Quality Model
Manuel Serrano, Rafael Romero, Jose-Norberto Mazon, Juan Trujillo, Mario Piattini 477

Integrating Complex Data into a Data Warehouse
F. Rava, O. Teste, R. Tournier, G. Zurfluh (S) ………………………………………...... 483

xv

Data Mining and Machine Learning

Learning from Software Quality Data with Class Imbalance and Noise
Andres Folleco, Taghi M. Khoshgoftaar, Jason Van Hulse, Chris Seiffert ……………. 487

System and Software Architecture

Architectural Elements Recovery and Quality Evaluation to Assist in Reference
Architectures Specification
Aline Pires Vieira de Vasconcelos, Claudia Maria Lima Werner ………………………. 494

EvoSpaces: 3D Visualization of Software Architecture
Sazzadul Alam, Philippe Dugerdil ……………………………………………………...... 500

Ontobrowse: A Semantic Wiki for Sharing Knowledge about Software Architectures
Hans-Jorg Happel, Stefan Seedorf ………………………………………………………. 506

Applications

Building Business Considerations into Enterprise Application Designs
Rattikorn Hewett, Aashay Thipse ………………………………………………………... 513

Incremental effort prediction models in Agile Development using Radial Basis Functions
Raimund Moser, Witold Pedrycz, Giancarlo Succi (S) ………………………………...... 519

BASS: Business Application Support through Software Services
Mateus B. Costa, Rodolfo F. Resende, Marcelo V. Segatto, Eduardo F. Nakamura,
Nahur Fonseca …………………………………………………………………………… 523

Model-Driven Software Development

Using Model-Driven Pattern Matching to derive functionalities in Models
Ignacio Garcia-Rodriguez de Guzman, Macario Polo, Mario Piattini …………………. 529

A Model-driven Approach to Architecting Secure Software
Ebenezer A. Oladimeji, Sam Supakkul, Lawrence Chung (S) ………………………...... 535

xvi

Agent-Based Technology and Intelligence

An Intelligent Agent of Automatically Notify Services
Shuo-Yan Hsu, William C. Chu ………………………………………………………...... 541

A Proposal for a Decentralized Multi-Agent Architecture for Virtual Enterprises
Andreas Grunert, Sven Kaffille, Guido Wirtz …………………………………………… 546

Traceability for Agent-Oriented Design Models and Code
Gilberto Cysneiros, Andrea Zisman ……………………………………………………… 552

ONTOMADEM: An Ontology-driven Tool for Multi-Agent Domain Engineering
Rosario Girardi, Adriana Leite …………………………………………………………... 559

A Three Level Multi-agent Architecture to Foster Knowledge Exchange
Juan Pablo Soto, Aurora Vizcaino, Javier Portillo-Rodriguez, Mario Piattini (S) …...... 565

An Agent Based System for Search in Distributed Environments
Li Sa, Yong-Sheng Ding (S) ………………………………………………………..…….. 570

DB Access and Query Processing

Tree Hash Under Concurrency Control
Kyosuke Yasuda, Takao Miura ……………………………………………………..….… 574

Query Processing in Paraconsistent Databases in the Presence of Integrity Constraints
Navin Viswanath, Rajshekhar Sunderraman …………………………………..…….…. 580

An Object-Oriented Approach to Storage and Retrieval of RDF/XML Documents
Ching-Ming Chao …………………………………………………………………..…….. 586

CXPath: a Query Language for Conceptual Models of Integrated XML Data
Diego de Vargas Feijo, Claudio Naoto Fuzitaki, A lvaro Moreira, Renata de Matos
Galante, Carlos Alberto Heuser ……………………………………………………..….... 592

Service-Oriented Technology and Web Technology

OWLed: Extending Knowledge for Web Ontology Language
Hichem Zait, Aicha Mokhtari ……………………………………………………..……... 598

Using Ontologies to Represent Software Project Management Antipatterns
Dimitrios Settas, Ioannis Stamelos ………………………………………………..……... 604

xvii

Service Composition Using Planning and Case-Based Reasoning
Kuan-Hsian Huang, Alan Liu ……………………………………………………...……. 610

MDA-based Ontology Development: A Study Case
Eluzai Souza dos Santos, Celia Ghedini Ralha, Hervaldo Sampaio Carvalho ……...….. 616

Towards Domain-Centric Ontology Development and Maintenance Frameworks
Faezeh Ensan, Weichang Du (S) …………………………………………..……………. 622

Service Oriented Architecture Empirical Study
Mohammad Abu-Matar, Jeff Offutt (S) ………………………………………..….…….. 628

Semantic Support to Reformulate Public Services in Terms of Life Events
Luis Alvarez Sabucedo, Luis Anido Rifon (S) ……………………………………..……. 632

A Component-Based Solution and Architecture for Dynamic Service-Based Applications
Alessio Colzi, Tommaso Martini, Paolo Nesi, Davide Rogai (S) …………………..…… 637

System Reliability and Verification

Adequacy of Composite Parametric Software Reliability Models
Lance Fiondella, Swapna S. Gokhale ……………………………………………..……. 643

Evaluation of the OORT Techniques for Inspection of Requirements Specifications in
UML: an empirical study
Tereza G. Kirner, Erik R. da Cruz (S) ……………………………………………..……. 649

Agent Modeling/Methodology

Adjudicator: A Statistical Approach for Learning Ontology Concepts from Peer Agents
Behrouz Far, Abdel-Halim Hafez Elamy, Nora Houari, Mohsen Afsharchi …..……… 654

Agent Applications

DALICA: Intelligent Agents for User Profile Deduction
Stefania Costantini, Leonardo Mostarda, Arianna Tocchio, Panagiota Tsintza (S) ..… 660

xviii

Human Interaction and GUI Development

An Approach to Multimodal Input Interpretation in Human-Computer Interaction
Fernando Ferri, Patrizia Grifoni, Stefano Paolozzi ……………………………..……... 664

Sketch Style Recognition in Human Computer Interaction
Danilo Avola, Fernando Ferri, Patrizia Grifoni …………………………………..……. 670

Human-Computer Interaction for a Novel Arm-wrestling Robot
Chul-goo Kang, Ho-yeon Kim (S) …………………………………………………..…… 676

Service

Managing XML Versions and Replicas in a P2P Context
Deise de Brum Saccol, Nina Edelweiss, Renata de Matos Galante, Carlo Zaniolo ….... 680

Knowledge sharing through a simple release planning method for web application
development
Sven Ziemer, Ilaria Canova Calori ………………………………………………..…….. 686

Distributed BPEL Processes
Luciano Baresi, Andrea Maurino, Stefano Modafferi …………………………..……... 692

SAM: Semantic Advanced Matchmaker
E.S. Ilhan, G.B. Akkus, A. B. Bener ……………………………………………..……… 698

A development platform for distributed user interfaces
Anders Larsson, Magnus Ingmarsson, Bo Sun (S) ……………………………..……… 704

Security

A Dynamical System Approach to Intrusion Detection Using System Call Analysis
Nitin Kanaskar, Remzi Seker, S. Ramaswamy ……………………………………...…… 710

Multi-level Anomaly Detection with Application-Level Data
Swapna S. Gokhale, Jijun Lu ………………………………………………………….... 718

Grid Technology

A Four-layered Semantic Grid Architecture
Celia Ghedini Ralha, Jose Nelson C. Allemand, Alba C. M. Melo …………………..… 724

xix

Software Metrics, Measurement and Evaluation

Performance Analysis of the Active Object Pattern in Middleware
Paul J. Vandal, Swapna S. Gokhale, Aniruddha S. Gokhale …………………………... 730

Analyzing the Applicability of a Theoretical Model in the Evaluation of Functional Size
Measurement Procedures
Nelly Condori-Fernandez, Oscar Pastor (S) …………………………………………..... 736

Software Documents: Comparison and Measurement
Tom Arbuckle, Adam Balaban, Dennis K. Peters, Mark Lawford (S) ………………..... 740

Industrial Workshop

Workflow Management and Service Oriented Architecture
Theodorich Kopetzky, Dirk Draheim …………………………………………………... 749

Implementing Agile Development - More than Changing Methodology
Chuck Fredrick …………………………………………………………………………… 751

Knowledge Modelling using UML
A. J. Rhem ………………………………………………………………………………… 755

Reviewers’ Index ………………………………………………………………………… 758

Authors’ Index …………………………………………………………………………… 760

Note: (S) means short paper.

xx

Keynote: A View on Software Specification
Research and Education Advancement

Joseph E. Urban
National Science Foundation and
Arizona State University, U.S.A.

The impact of software engineering research has been the steady improvement of
approaches to software development and maintenance. Software requirements analysis,
specification, and design methodologies have been formulated to aid in the development
of reliable software. This talk will cover advancing software methodologies through
research in the front-end aspects of software development. Advancement of these
formalisms is necessary for improving software productivity, reliability, and development
team dynamics. For integration with existing approaches, the incorporation of
components with improved software development techniques and tools is needed for use
with new programming languages. Exploring computer languages that are to be effective
in the early stages of development is essential for major improvements in software
systems. A more effective software engineering workforce will be addressed through
upper level undergraduate and graduate education.

About Professor Joseph E. Urban
Dr. Joseph E. Urban currently serves as a program director in the U.S. National Science
Foundation on an Intergovernmental Personnel Act mobility assignment within the
Division of Computing and Communication Foundations of the Directorate for Computer
& Information Science & Engineering. He is a professor of computer science at Arizona
State University. He has worked at the University of Miami, the University of Louisiana
at Lafayette, and part-time at the University of South Carolina while with the U. S. Army
Signal Center.

Professor Joseph E. Urban has published over one hundred conference and journal papers.
He has supervised the development of eight software specification languages. His
research areas include software engineering, executable specification languages,
prototyping software systems, web based software tools, engineering education, computer
languages, data engineering, and distributed computing.

Dr. Joseph E. Urban earned a B.S. degree from the Florida Institute of Technology, an
M.S. degree from the University of Iowa, and a Ph.D. degree from the University of
Louisiana at Lafayette, all in Computer Science. He has received the Computer Society's
Meritorious and Distinguished Service Awards, a Distinguished Professor Award while
at the University of Louisiana at Lafayette, and an Association for Computing Machinery
Doctoral Forum Award for one of the four best Ph.D. dissertations produced during the
1977-1978 academic year.

1

Constructing Self-Adaptive Systems with Polymorphic Software Architecture

Xiaoxing Ma, Yu Zhou, Jian Pan, Ping Yu and Jian Lu

State Key Laboratory for Novel Software Technology, Nanjing University, China

E-mail: xxm@nju.edu.cn

Abstract

Facing changing environment and user requirements,
modern distributed software systems often have to evolve
accordingly. We propose an extended object-oriented pro-
gramming model for dynamically self-adaptive distributed
software systems. With this model every component of a
system is explicitly situated in an active architectural con-
text, which is naturally used to regulate and facilitate poten-
tial runtime reconfiguration. The architecture context is ex-
plicitly implemented with a distributed shared object, whose
state changes and polymorphic substitutions realize the an-
ticipated and unanticipated architectural reconfigurations
respectively. Thus the adaptation behavior specified at the
architectural level can be automatically carried out. A pro-
totypical supporting system is developed for the model.

1 Introduction

In an open, dynamic and uncertain environment such

as the Internet and some pervasive computing settings, the

network links, bandwidth, available resources and services,

etc. are changing constantly. At the same time, applica-

tions working in such an environment are also facing an

open group of users with different preferences, and even the

requirement of the same user can evolve over time. To keep

their service satisfactory, the application systems must be

able to adapt themselves accordingly, at runtime and with-

out significant disturbance to their operation [18].

To develop such self-adaptive systems is difficult [12]. In

classic software development methodologies the support for

system adaptability is limited. To make a system adaptable,

developers have to foresee potential changes and treat these

changes as a part of the requirement, explicitly or implic-

itly. Software development has been essentially regarded as

a transformation from requirement model to implementa-

tion, and only the result of the transformation is finally put
into operation. The decisions and deliberations directing

the transformation process become implicit and dispersed

in the implementation, although they can be documented

somewhere else. This loss of information is a deep reason

why to evolve the implemented system is hard and error-

prone despite of the great flexibility of modern runtime sys-

tem modification techniques such as computational reflec-

tion [17, 7], dynamic library loading and hot component

deployment.

Contrastingly, an self-adaptive software system imple-

mentation itself has to stretch across a long semantic dis-

tance from abstract user-oriented policies up in the problem

domain to concrete functional components down in the so-

lution domain. Thus it is desirable to take a “high-order”

view of software development and system adaptation: A

system implementation put into operation is not only the re-

sult of the transformation process, but also some facilities of

the transformation itself and the vulnerable part of require-
ment/environment specifications. With the built-in trans-

formation facilities, the adaptation of the system is derived

“on-the-fly” from the changes of corresponding part of re-

quirement/evironment settings, which in turn are figured out

at runtime with probed context information, user-specified

adaptation polices, and possible direct human indications.

The problem is how to organize such transformation fa-

cilities. Here we do not mean full automation of software

development, but a reflective computing [17] framework

limited to the scope of required autonomy. Software archi-

tecture, which “involves the description of elements from
which systems are built, interactions among those elements,
patterns that guide their composition, and constraints on
these patterns” [22], is a good candidate for the central ab-
straction of the framework. As the high-level design deci-

sions that bridge the problem domain and the solution do-

main, software architecture embodies some most important

information that should be retained in the implementation

to support and regulate future adaptation and evolution.

To make the system self-adaptive, There must be a mech-

anism that causally connect the software architecture speci-

fication to the running environment – i.e. changes specified

at the architectural level are always realized by the imple-

mentation “on-the-fly” and runtime status of the implemen-

tation (and related context) are always reflected up to the

architectural level. Although substantial research on soft-

2

ware architecture description languages (ADLs) exists [19],

additional work is needed to causally connect software ar-

chitecture to implementation.

In this paper a programming model directly reifying soft-

ware architecture as an explicit object is proposed. An in-

trinsic causal connection between this object and the sys-

tem implementation is established by dynamically reinter-

preting the references between the component objects under

current architectural configurations. Once the architecture

is treated as a first class object, the architectural adaptation

can be naturally expressed as the dynamic behavior of this

object. Further, with such an reification, the software ar-

chitecture becomes polymorphic, i.e., inheritance and poly-

morphism mechanisms can be applied on the architecture

classes and objects. We can extend and refine the architec-

ture class, and dynamically upgrade the software architec-

ture by replacing the architecture object polymorphically.

In the new architecture class, new reconfiguration behav-

ior can be defined, and thus the whole application system

can do some dynamically reconfiguration beyond the antic-

ipation of their original developers. Despite the logically

uniform view of the architecture object, it’s physical imple-

mentation can be distritbuted.

The rest of the paper is organized as follows: Section 2

describes the reification of software architecture as runtime

object and how to use it to support system adaptation. Sec-

tion 3 gives a prototypical supporting system and a demo

application. Related work is briefly discussed in Section 4

before we conclude the paper.

2 Software architecture as runtime object

A considerable amount of research efforts have been

done to bridge the gap between architecture specification

and implementation – architecture refinement [20], auto-

matic generation of implementation from architecture spec-

ification [19], explicit maintaining of dynamic architectures

[9, 15], architecture retrieval from working system [24], to

name a few. However, software architectures were mainly

viewed as design specifications rather than materialized and

operational/functional entities in the final running systems.

Although software architecture specifications can help the

development and management of dynamic system adapta-

tions [14, 16], as the upper part of Figure 1 shows, difficult

and ad-hoc efforts are needed to maintain the consistency

between a software architecture specification and the work-

ing system implementation.

To further ease the understanding, expressing and real-

ization of dynamic adaptation at implementation level, the

software architecture should be directly implemented at this

level. Encoding the architecture specification into a data

structure is not enough – it must be synchronized with the

system’s current configuration. But if this synchronization

was done “by force”, we just repeated the problem. More

intrinsic mechanism is needed to make the reified software

architecture (which is a runtime object) causally connected

to the system implementation.

��
���

�
�
	

���

�

��
�
��

�
���

���
�

�������	
�����

����
���
��������

��
�	

�

	
�
�
��

�

����������
���������

���������	��

������������

��������������

�	������
�������

���������	��
������

Figure 1. Software architecture reification

2.1 An intrinsic approach

Such a mechanism must be deep into the programming

model. As we know, what glue running entities together

in the object-oriented programming model are object refer-

ences and associated method invocations, usually expressed

like “o.m()”. These references and method invocations
are dispersed into the entities (i.e. object) and finally realize

the overall structure and coordination logic of the system.

With dynamic adaptation in mind, we can find following

problems of this paradigm: First, eventually the reference

“o” must refer to some concrete object before any method
invocation “m” can be carried out. During the process of de-
termining the referred object the system coordination struc-

ture is gradually consolidated with a loss of organizational

and architectural information. Consider following scenar-

ios: in a startup company, employees directly report to Bill

the boss (“o” points to Bill). With the growth of the com-
pany, Tom, a project manager, is hired for project devel-

opment affairs. The reference “o” should be redirected to
Tom. But in the original architecture decision the one who

is responsible for hearing report is not Bill, nor Tom, even

not the boss role nor the project manager role, but the cur-
rent role in charge of project development according to the
current organization or architecture of the company. In the
two scenarios the reference is eventually fixed to a spe-

cific value and the underlying architecture information is

lost. Secondly, these references are distributed and hidden

irregularly in the program entities (objects), which hinder

the understanding and reconfiguration of the architecture.

Also, the reusability of the entities is decreased because of

the dispersed references. Software component models [23]

3

and their supporting middleware[5] are helpful here as they

eliminate the direct object references cross components, but

themselves do not directly support the architectural issues at

the implementation level [6].

With these considerations, a dynamic software

architecture-oriented programming model (illustrated

by the lower part of Figure 1) is proposed, which features:

• Built-in runtime software architecture object The soft-
ware architecture concerns are separated from inter-

acting component objects, and expressed explicitly

as a first class object in the final implementation.

The cross-component references are dynamically in-

terpreted according to this architecture object. In other

words, the references are “functions” over the current

software architecture configuration. In this way the

change of the architecture object will immediately af-

fects the interaction between the components. Natu-

rally anticipated dynamic reconfigurations are imple-

mented as the behavior of the architecture object.

• Unanticipated dynamic reconfiguration support Once
the software architecture is reified as an object, inher-

itance and typing mechanisms of object oriented pro-

gramming model can be applied to architectural evo-

lutions of the system. In addition to the planned re-

configuration just mentioned, some unanticipated re-

configuration can be implemented as new behavior of

an architecture object whose class inherits the origi-

nal’s. With the help of dynamic library or class load-

ing, the system’s architecture object can be polymor-

phically replaced with the new one, and then the new

reconfiguration behavior eventually carried out.

• Distributed shared object implementation The above
discussion assumes a centralized architecture object,

which is convenient for the developer to express the

coordination logic structurally. However, the underly-

ing implementation in the open network environment

must be distributed flexibly. We adopt a distributed

shared object mechanism: the dynamic architecture

object is co-implemented with a group of coordinated

sub-objects located at every node involved. Each sub-

object provides a logically unified architectural context

for the local component.

2.2 Application model

In our framework an application consists of a set of func-

tional components, optional connectors, an architecture ob-

ject, and a mapping between the component/connector in-

stances and the internals of the architecture object.

Component objects A component implements some busi-
ness functionality. It serves via its provided interfaces

in condition that it is served via its required interfaces.
Practically it can be a CCM component, an Enterprise

JavaBean (EJB) or a Web Service.

Connector objects Connectors focus on non-functional

aspects such as communication, security, reliability,

logging, etc. They are optional in our framework for its

implementation-oriented nature. Connectors are im-

plemented as interceptors syntactically transparent to

the components and do not affect the business logic of

the application.

Architecture Object The architecture object implements
the application’s structural organization and related be-

havior. It’s this object through which the components

are finally connected together. It’s also the locus where

dynamic adaptation capabilities are realized. We will

discuss how to define an architecture class shortly.

Mapping Component objects must be mapped to the com-
ponent roles in the architecture object to get the nec-

essary architectural context. Each required interface

is fulfilled indirectly by a provided interface or inter-

faces (a multiplexer connector may be employed) of

other components under the management of the archi-

tecture object. In practice the mapping can be defined

with a graphical tool (cf. Figure 3 in Section 3). Syn-

tactical type checking and even behavioral compliance

checking can be included here.

2.3 Architecture class definition

The behavior of an architecture object is defined by its

class. Architecture classes reify the concept of software

architectural styles [22]. All architecture classes must in-

herit form a system class RTArchitecture directly or
indirectly. RTArchitecture provides some basic func-
tions for the development of specific architecture class, in-

cluding: 1) basic architecture topology, which is merely a

canonical programming-level representation of software ar-

chitecture specification in ACME [10]; 2) redirection of the

cross-component reference according to current architec-

ture topology; 3) supports for the distributed implementa-

tion of the architecture object. Here some consistency insur-

ance mechanisms from basic synchronization to two-phase

commit protocol is needed. 4) basic reconfiguration ac-

tivities, including addition/deletion of component roles and

links between them, replacing of the component for a role.

An architecture class library can be provided by the de-

velopment environment to support the reuse of common ar-

chitectural styles. Developers derive their own architecture

class from an existing class to best fit their application on

hand. For example, a class of simple Master/Slave style can

be declared rather straightforwardly as follows:

4

public class MSArch extends RTArchitecture
implements ISlave, IMaster {

//methods declared in ISlave
//for slaves to pull jobs from the master

public Object invokeOnMaster(Method m,
Object[] params)

throws Exception{...};
//methods declared in IMaster -- omitted

... ...
//implementations for dynamic reconfiguration

public void addSlave(SLAVE T){...};
public void removeSlave(SLAVE T){...};
... ...

//Constructors
public MSArch(ArchConfig ac){...};
... ...

}

The architecture class provides an interface for each of

its players. The mapping tool will generate dynamic prox-

ies with the method defined in this interface to fulfil the re-

quired interfaces of the associated component object. In

this example a weakly typed method invokeOnMaster
is provided to redirect calls from slaves to master to the

proper component mapped to the master player. Here we

assume the slaves pull jobs from the master. If the mas-

ter need to push jobs to slaves, then invokeOnSlaves
should be defined for IMaster. And also a multiplexer
connector should be used to resolve the mismatching dur-

ing the mapping process.

Suppose aWeb-based application using this architecture.

The component mapped to the Master is responsible for ac-

cepting user requests and presenting process results but dis-

tributing real work to the components mapped to Slaves.

It’s often required to dynamically add or delete Slaves to

match the current work load. Since the object defines the

architecture, dynamic reconfigurations are treated as the

object’s behavior. They are implemented as modification

methods of the class. In MSArch, insertion and removal
of Slaves are defined with methods addSlave() and

removeSlave(). The implementation of these method
is mainly changing the topology with the facilities provided

in RTArchitecture. Remember the object implemen-
tation can be physically distributed, thus it often has to use

the two-phase commitment support to ensure atomicity.

2.4 Unanticipated reconfigurations

It’s natural to implement dynamic reconfigurations as the

behavior of the architecture object. But these reconfigura-

tions must be foreseen by the original architecture designer.

There are some reconfiguration requirements gradually dis-

covered after the system is put into operation. Common

solutions for these unanticipated reconfigurations require

shutdown of the working system to upgrade it. For certain

applications, the stop of service is unacceptable or too ex-

pensive.

Our approach also provides a reasonable support for

unanticipated dynamic reconfigurations. A new subclass of

the original architecture class will be defined to implement

new reconfiguration behavior. As to the Master/Slave appli-

cation discussed above, with more and more slaves added

in, the master itself is overloaded, which is beyond the an-

ticipation of the original system architect. Now the archi-

tecture should be evolved to a new style of Extend Mas-

ter/Slave which also support multiple Masters. Therefore a

new architecture class EMSArch is defined, in which addi-
tional Masters can be added in, and related interactions are

adjusted accordingly:

public class EMSArch extends MSArch
implements IEMaster {

//New reconfiguration behavior
public void addMaster(MASTER M){...};
public void removeMaster(MASTER M){...};

//Redefined behavior. Some load balancing
//can be implemented here.

public Object invokeOnMaster(Method m,
Object[] params)

throws Exception{...};

//methods defined in IEMaster to support
//coordination among masters -- omitted

......
}

Hence the new behaviors of adding and removing Mas-

ters are defined. At the same time, to make a smooth switch-

ing from the old architecture to the new one, the new archi-

tecture object should be able to act as the old one to un-

touched parts of the working system, but with new seman-

tics of the new architecture. So some behaviors defined in

the old architecture class must also be redefined in the new

class. With this new class, a new architecture object can be

instanced and initialized with the current state of the old ar-

chitecture object. With the polymorphic substitution of the

new architecture object for the old one, the system is dy-

namically upgraded and then new reconfiguration behavior

can be carried out.

2.5 Driving the adaptation

To make the system self-adaptive, two more facilities are

needed. One is a set of sensors deployed to monitor and re-

port the current status of the environment and the system it-

self, such as network bandwidth, response delay, processor

workloads, current user preferences, etc. This information

is called context, which is a topic extensively researched
in the field of context-aware computing [8]. The other is

a decision-making mechanism that drives architectural re-

configuration commands according to the specified polices,

current system settings and gathered context information. It

involves related user requirements, such as an online com-

merce system should be “responsive”, the domain knowl-

5

edge, such as to be “responsive” the user experienced la-

tency should not be more than 2 seconds, the architecture

properties and available reconfiguration behaviors, such as

for a system with the aforementioned Master-Slave archi-

tecture style generally the response time can be reduced

with the addition of new slaves.

In current practices these facilities are often imple-

mented in ad hoc ways. To build a reusable and flexible
framework we are currently using an ontological approach.

A spectrum of OWL [2] ontologies are designed to repre-

sent the low-level context information, architecture config-

urations, behaviors and properties, user requirements, and

related domain knowledge respectively. Then the decision

mechanism is built on the standard and customized reason-

ing on these ontologies. Contrasting to hard-coded decision

components for self-adaptation, this multi-ontology mecha-

nism enables knowledge learned afterward to be naturally

included in at runtime. Together with the unanticipated

architecture reconfigurations discussed earlier, it provides

a reasonable support for online evolution of self-adaptive

systems. For the limited space, a full discussion about this

mechanism is left to a subsequent paper.

2.6 Discussion

It’s worthy to note that the dynamic reconfiguration must

not compromise the consistency of the system. Under our

approach, the consistency constraints that only depend on

architectural states should be regarded as architecture class

invariants and respected in the implementation of adapta-

tion behaviors. In fact a variety of formal models from

graph grammar [16] to process algebra[14, 4] and corre-

sponding model checking techniques can be incorporated

in. The built-in runtime object provide a ready basis for the

checking.

The constraints depended on the states of the compo-

nents are more troublesome and often application specific.

Developers can handle these issues with derived architec-

ture class with specific consistency checking and recovering

mechanisms. we are currently exploring techniques from

code-level dynamic software updating [11] to component-

level blocking/quietening[14, 26] for a solution best fit for

our reified software architecture.

3 A prototypical supporting system

To enable software development and evolution with fore-

said ideas and techniques, a prototypical supporting system

is developed. As shown in Figure 2, the system is built

around the reified software architecture. Integrating sev-

eral well-known open source systems and self-programmed

components, it makes an initial step toward an integrated

environment for the visual development, deployment, mon-

itoring, adaptation of self-adaptable and online evolvable

software systems.

����������		
��
�������	
���	����
������

�������������	��������������������
�������	
��������������
����	�����

������������
�������������

�� ��������
!��
�
���

�
���"�
!��
�
���

������������
!��
�
���

�
�	
�����
��
���#����$���
#���
����%������

��������
�
��&����

������������

Context
Probing

Architecture
Context
Sharing

R
e
a

s
o
n
in

g

Controlling

R
e

u
s
in

g

Monitoring

Figure 2. Conceptual structure of Artemis-
MAC

The system is programmed in Java, and closely inte-

grated with the Eclipse platform. Its main functions include

support for

• a distributed component framework. The component
model used is essentially EJB, but with explicitly spec-

ified required interfaces. Web Services can also be

used. Discovery and binding of EJBs or Web Services

are supported. The component framework are mainly

implemented with some modifications upon the JBoss

AS and the Axis package.

• architecture-centric component composition. Through
the graphical architecture editing tool implemented

with the Graphical Editing Framework(cf. Figure 3),

developers can graphically specify the concrete con-

figuration of the application architecture with a chosen

architecture class, and mapping the EJBs/Services dis-

covered to the players in the architecture. The system

will automatically generate the distributed shared ar-

chitecture object.

• dynamic self-adaptation and online evolution. A Jena
based reasoning engine is used to infer and trigger

proper reconfiguration actions (including architecture

object upgrading) with user-specified rules, context

information and architecture properties expressed in

OWL ontologies. These ontologies are developed with

the OWL editor Protégé [13]. Containers for context

probes and monitors are also provided. The lower part

of Figure 3 shows a visual monitor for response time.

Figure 3 shows a demo application with the Master-

Slaves architecture discussed above running in the support-

6

Figure 3. Artemis-MAC User Interface

ing environment. Suppose there are various independent

ticket-booking services scattered over the network offering

different kinds of tickets, such as plane, train, bus, et al. Be-

cause of the similarity of their business logic, these services

can be abstractly unified and integrated in a comprehen-

sive service – those independent services are mapped to the

slaves and the comprehensive service mapped to the master.

When requests come, they will be handled by the master and

dispatched to the slave services. After processing the results

would be synthesized and returned to users by the master. In

this way, users can find out possible trip routes once for all,

instead of checking out those independent sites one by one.

In developing such an application, it’s easy to predict that

latterly more services could be added in, and sub-optimal

services could be dropped out. So the addition/removal of

slaves are implemented as the behavior of the built-in ar-

chitecture object. But as the comprehensive service become

more and more popular, the master becomes the potential

performance bottleneck. As discussed before, an upgraded

architecture class is derived and corresponding architecture

object is instantiated and initialized with the current object.

Also, associated ontologies are enriched with the knowl-

edge that upgrading the architecture object is needed to add

new masters to further reduce response time. Then later,

with the new object and enriched ontologies, upgrading of

the architecture and addition of a secondary master are trig-

gered when needed. The performance monitor in the lower

part of Figure 3 shows this adaptation restores the response

time to an acceptable level.

4 Related work

To support self-adaptation of software systems, Gar-

lan and others built a runtime software architecture based

framework called Rainbow [9]. Rainbow uses accurate and

up-to-date architectural information to help the monitoring

and adaptation of a running system. However in Rainbow

the runtime architecture representation is alien to the run-

ning application system, and thus the modification to the

architecture representation can not affect the running appli-

cation system itself. Ad-hoc mechanisms must be devel-

oped to causally connect the architecture representation to

the running application system. In our approach the archi-

tecture object is built-in as an integral part of the running

application system, and the causal connection between the

object and the system becomes more intrinsic. In this way

we hope that the architectural concerns can be expressed

more explicitly and systematically with the built-in archi-

tecture object, the coupling between component computa-

tion and architectural coordination can be further decreased,

and dynamic adaptations, esp. unanticipated dynamic evo-

lution can be understood and implemented more naturally.

To bridge the gap between software architecture and sys-

tem implementation, Aldrich designed ArchJava [1], an ex-

tension to Java, that supports direct expressing of architec-

tural structure at programming level. Implementation’s con-

formance to architecture concerns is ensured by the type

system. But ArchJava provides little support for dynamic

software architectures.

The ArchWare European project [21, 3] aims at an inte-

grated set of architecture-centric languages and tools for the

model-driven engineering of evolvable software systems.

An ADL based on high-order typed π-calculus plays a cen-
tral role in their approach. One of its novelty is to separate

functionality and evolution. While such kind of separations

do favor developers at the modeling level, we believe an in-

trinsic connection mechanism as discussed in this paper is

also necessary at the implementation level. The strength of

ArchWare on the formal modeling and reasoning of soft-

ware architecture and architecture adaptation is also attrac-

tive to us that we are exploring the possibility of using it in

our system.

5 Conclusions

There is an increasing need for the self-adaptation and

online evolution of software systems[18, 25]. Ad hoc so-

lutions are not satisfactory to software engineers. In this

paper a polymorphic software architecture based approach

has been presented as a first step toward a systematic and

disciplined software development method for self-adaptive

and online-evolvable software systems. A prototypical sup-

porting system and a demo application have also been de-

veloped.

Our plan for further research includes applying the ap-

proach to a more realistic application, developing a practical

and reusable consistency-keeping mechanism for runtime

system adaptation, and enriching the ontologies for practi-

cal use and optimizing the engines for better runtime rea-

soning.

7

Acknowledgements

The research is co-supported by NSFC

(60403014), JSNSF (BK2006712), China 863 Program

(2006AA01Z159) and 973 Program (2002CB312002).

References

[1] J. Aldrich. Using Types to Enforce Architectural Structure.
PhD thesis, University of Washington, August 2003.

[2] G. Antoniou and F. van Harmelen. Web ontology language:

Owl. In S. Staab and R. Studer, editors, Handbook on On-
tologies, pages 67–92. Springer-Verlag, 2004.

[3] D. Balasubramaniam, R. Morrison, G. Kirby, K. Mickan,

B. Warboys, I. Robertson, B. Snowdon, R. M. Greenwood,

and W. Seet. A software architecture approach for structur-

ing autonomic systems. In DEAS ’05: Proceedings of the
2005 workshop on Design and evolution of autonomic ap-
plication software, pages 1–7, New York, NY, USA, 2005.
ACM Press.

[4] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting

families of software systems with process algebras. ACM
Trans. Softw. Eng. Methodol., 11(4):386–426, 2002.

[5] P. A. Bernstein. Middleware: A model for distributed sys-

tem services. Communications of the ACM, 39(2):86–98,
February 1996.

[6] G. S. Blair, L. Blair, V. Issarny, P. Tuma, and A. Zarras.

The role of software architecture in constraining adapta-

tion incomponent-based middleware platforms. In Mid-
dleware ’00: IFIP/ACM International Conference on Dis-
tributed systems platforms, pages 164–184, Secaucus, NJ,
USA, 2000. Springer-Verlag New York, Inc.

[7] F. Demers and J. Malenfant. Reflection in logic, func-

tional and object-oriented programming: a short compara-

tive study. In Proceedings of the IJCAI’95 Workshop on Re-
flection and Metalevel Architectures and Their Applications
in AI, pages 29–38, 1995.

[8] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual frame-

work and a toolkit for supporting the rapid prototyping of

context-aware applications. Human-Computer Interaction
(HCI) Journal, 16 (2-4):97–166, 2001.

[9] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and

P. Steenkiste. Rainbow: Architecture-based self-adaptation

with reusable infrastructure. Computer, 37(10):46–54,
2004.

[10] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural

description of component-based systems. In G. T. Leav-

ens and M. Sitaraman, editors, Foundations of Component-
Based Systems, pages 47–68. Cambridge University Press,
2000.

[11] M. Hicks and S. Nettles. Dynamic software updating. ACM
Trans. Program. Lang. Syst., 27(6):1049–1096, 2005.

[12] J. O. Kephart. Research challenges of autonomic computing.

In ICSE ’05: Proceedings of the 27th international confer-
ence on Software engineering, pages 15–22, 2005.

[13] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A.

Musen. The protégé owl plugin: An open development en-

vironment for semantic web applications. In ISWC ’04 Pro-
ceedings of the Third International Semantic Web Confer-
ence, volume 3298 of LNCS, pages 229–243, 2004.

[14] J. Krammer and J. Magee. Analysing dynamic change in dis-

tributed software architectures. IEE Proceedings-Software,
145(5), 1998 1998.

[15] L. Lan, G. Huang, L. Ma, M. Wang, H. Mei, L. Zhang, and

Y. Chen. Architecture based deployment of large-scale com-

ponent based systems: the tool and principles. In CBSE
’05: Proceedings of the8th International SIGSOFT Sym-
posium on Component-based Software Engineering, pages
123–138. Springer, 2005.

[16] D. LeMetayer. Describing software architecture styles using

graph grammars. IEEE Transactions on Software Engineer-
ing, 24(7):521–533, July 1998.

[17] P. Maes. Concepts and experiments in compuational reflec-

tion. In Proc. of OOPSLA’87. ACM, Oct. 1987.
[18] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.

Cheng. Composing adaptive software. Computer, 37(7):56–
64, 2004.

[19] N. Medvidovic and R. N. Taylor. A classification and

comparison framework for software architecture descrip-

tion languages. IEEE Transaction on Software Engineering,
26(1):70–93, January 2000.

[20] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct

architecture refinement. IEEE Transactions on Software En-
gineering, 21(4):356–372, April 1995.

[21] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux,

F. Gallo, H. Garavel, and C. Occhipinti. Archware: Archi-

tecting evolvable software. In Proceedings of the 1st Eu-
ropean Workshop on Software Architecture, LNCS, volume
3047, pages 257–271, 2004.

[22] M. Shaw and D. Garlan. Software Architecture: Perspective
on an emerging discipline. Prentice Hall, 1996.

[23] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 2nd edition,

2002.
[24] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen,

and C. Riva. Symphony: view-driven software architecture

reconstruction. In WICSA’04: Proceedings of the Fourth
Working IEEE/IFIP Conference on Software Architecture,
pages 122–132, June 2004.

[25] P. Yu, X. Ma, and J. Lu. Dynamic software architecture

oriented service composition and evolution. In CIT ’05:
Proceedings of the The Fifth International Conference on
Computer and Information Technology, pages 1123–1129,
Washington, DC, USA, 2005. IEEE Computer Society.

[26] J. Zhang and B. H. C. Cheng. Model-based development of

dynamically adaptive software. In ICSE ’06: Proceeding of
the 28th international conference on Software engineering,
pages 371–380, New York, NY, USA, 2006. ACM Press.

[27] Y. Zhou, J. Pan, X. Ma, et al. Applying ontology

in architecture-based self-management applications. In

SAC’07: Proceedings of the 22nd Annual ACM Symposium
on Applied Computing, Seoul, Korea, March 2007. ACM.

8

Odyssey-MDA: A transformational approach to component models

Natanael E. N. Maia 1, Ana Paula Terra Bacelo 1, 2, Cláudia M. Werner1

1COPPE/UFRJ – Programa de Engenharia de Sistemas e Computação
Caixa Postal 68.511 – CEP. 21945-970 – Rio de Janeiro – RJ - Brazil

2Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS-FACIN
Av. Ipiranga, 6681 – Prédio 32 – CEP. 90619-900 – Porto Alegre – RS - Brazil

{ ntmaia, anablois, werner}@cos.ufrj.br

Abstract

This paper presents a MDA based approach to
support the developer in obtaining platform specific
component models. These models are obtained through
the definition and execution of transformations which
can be defined by the composition of small generic
transformations (built-ins) or implemented and
incorporated by an extension mechanism (plug-ins). To
support the use of this approach, a machine for model
transformation execution was implemented. An
example of its use for the EJB platform is presented.

1. Introduction

Software house organizations have recognized the
importance of reuse politics during the systems
development to decrease costs, optimize resources and
increase the productivity and software quality.
Component-based development (CBD) has been
considered a software reuse approach through which it
is possible to obtain such benefits. The CBD area aims
at the building of systems based on reusable software
components [11].

New technologies are continuously being introduced
and some of them become popular. A challenge for
software development teams is to choose technologies
for specific applications. Several software houses adopt
new technologies for different reasons: a) their clients
require the use of new technologies; b) these
technologies may solve problems for these clients, and
c) some technologies become obsolete and a support is
no longer a viable option. As a consequence, the
components of the obsolete technologies need to be
migrated to a new technology or to a new version of the
existent technology [5].

A possible solution to this problem is proposed by

OMG, through the Model Driven Architecture (MDA)
framework [7]. The goal of MDA is to propose an
approach: a) to specify a system independently of the
implementation platform; b) to specify the possible
platforms for the systems that are under development;
c) to choose the platform for a system; and d) to
transform the initial specifications to obtain the system
specification in the chosen platform. Therefore, the
developers invest more time in the requirements
modeling activities and spend less time with their
implementation issues.

This paper describes an approach for the definition
and execution of transformations on component
models. The approach allows independent component
models to be transformed into specific models in a
chosen platform. The transformations may be defined
by the composition of small generic transformations
(built-ins) or implemented and incorporated through
extension mechanisms (plug-ins). The approach allows
the definition and execution of bidirectional
transformations. Besides, it is independent of the
development environment, using XMI format

The paper is organized as follows: Section 2
describes some standards adopted in this work. Section
3 presents the approach for the definition and execution
of transformations on component models - Odyssey-
MDA. Section 4 describes the implementation of the
approach by the Odyssey-MDA transformation
machine. Section 5 presents an example of
transformation using the Enterprise JavaBeans
platform. Section 6 presents related works and lastly,
section 7 concludes the paper and presents the main
contributions of Odyssey-MDA and future works.

2. Adopted Standards

The proposed approach is based on Meta-Object
Facility (MOF) [8], XML Metadata Interchange (XMI)

9

[13] and Java Metadata Interface (JMI) [4] standards.
The goal is to use these standards to create a more
flexible approach to import, transform and export these
models, and to be extended in order to implement and
incorporate new transformations. The MOF standard
specifies abstract languages to describe other languages
and, in this case, it is described as a meta-meta-model
(M3 level). The abstract languages based on MOF are
known as meta-model (M2). An example of these
abstract languages is the UML meta-model, where each
UML model is part of M1 level.

The XMI standard allows the interchange of data
amidst UML based modeling tools with the repository
of the MOF based models into heterogeneous and
distributed environments.

The JMI specification allows the construction of
interfaces in the Java Language for a specific MOF
meta-model (M2), in order to make the manipulation of
the instances of the meta-model possible. For example,
the UML meta-model is described as MOF. Through
JMI it is possible to manipulate the elements of UML
(class, interface, attribute …) as Java objects, by using
the existing interfaces. This method may be adopted
not only by UML, but also by any MOF based meta-
model. MDR [6] is a repository that implements MOF
and JMI standards allowing the conveyance of these
MOF meta-models and the maintenance of the
instances of the meta-models. The instances maintained
into the repository are systematically manipulated,
using the interfaces that were created by the JMI
standard.

3. Odyssey-MDA Approach

The Odyssey-MDA approach allows the developer to
transform models that are independent of a platform
into specific models of a particular platform (e.g. EJB).
The first models are known as PIM (Platform
Independent Models) and the latter as PSM (Platform

Specific Model). Through a PSM it is possible to
obtain the implementation of components in a specific
language (e.g. EJB components implemented in Java).
The transformation process is composed of the
following steps:

a) Definition of the Platforms and Transformations –
The developer defines the necessary platforms and
transformations to create a PSM based on the
transformation of a PIM.

b) The initial modeling of the components – The
components modeling is performed in an
independent way, where these components will be
implemented in the future.

c) Marking the internal components model – The
elements of the internal model (class model) are
prepared with a marking mechanism to guide the
execution of the consecutive transformations.

d) Choice of the platform and execution of
transformations – The developer chooses the
platform previously defined. Transformations are
applied on the model previously marked to obtain
the PSM for the chosen platform.

e) Implementation development – The source-code of
the PSM can be built, using the programming
language of the platform.

Figure 1 shows a typical scenario of the use of the
Odyssey-MDA approach. The developer builds the
initial model in a CASE tool or other modeling
environment. Through a CASE Tool, a modeling
environment or a reuse environment, the developer
must perform the marking of the elements of the
components internal model (class model), using
stereotypes and tagged-values. This is important for the
selection of the most adequate mappings aiming at the
transformation of these elements into other elements of
the output model. The possible set of stereotypes and
tagged-values is defined according to the goal of the
transformation to be executed and it can be based on

Figure 1: Typical Scenario of the Odyssey-MDA Approach

10

some UML profile such as UML Profile For EDOC
[2]. The developer must export the original model
(marked PIM), in XMI format and import it into the
Odyssey-MDA transformation machine. In Odyssey-
MDA, the transformations can be executed on the
original model, resulting in an output model (PSM).
The generated PSM can also be exported in XMI
format for future importation in the initial CASE tool
or transfer to some source code generator.

The Odyssey-MDA approach allows the definition
and execution of bidirectional transformations. In this
case, the developer can build a PSM based on a PIM
(forward transformation), to make refinements and
updates on the PSM and propagate these updates on the
original PIM (reverse transformation). This
propagation is extensive, once the original elements of
the output model are updated by the transformations
and it is not modifiable. Other ways to solve the
conflicts related to the synchronization are not
currently supported by the Odyssey-MDA approach
[3].

Another reverse transformation scenario is the
extraction of platform independent information of a
PSM model, or a source code, for a PIM creation. This
scenario may be useful in cases where a component,
originally modeled and implemented in the specific
technology, needs to be migrated to another
technology.

4. Odyssey-MDA – Prototype

Each defined transformation is composed by a XML
declarative specification and a set of mechanisms. The
declarative specification is responsible for the
definition of the mappings among the input and output
models. These mappings are defined through finders
for the selection of the elements to be transformed and
by the attribution of a mechanism responsible for the
execution of the transformation of these elements.

Finders are responsible for the selection of the
output model elements. The elements may be selected
by name, stereotype and tagged-values. For example,
all Classes that have <<input>> stereotype or all

classes with value “true” in the “persistent” tagged-
value. The mappings are specific for each element to be
mapped. To map subtypes of classified in UML meta-
model (e.g: class, interface), the classifier-map
mapping is proposed. To map subtypes of features (e.g.
attributes and methods) the feature-map sub-mapping is
proposed. To map a classifier into a feature, or vice-
versa, the sub-mapping classifier-feature-map is
proposed.

The Odyssey-MDA transformation machine
proposes an infra-structure of generic mechanisms,
known as built-ins, which executes simple
transformations on UML elements. Table 1 presents the
proposed built-ins and the transformations that are
executed by each one. For example, the Classes of a
PIM model may be mapped into Classes, interfaces,
attributes and methods of the PSM model, as proposed
by 6, 7, 8 and 9 built-ins of Table 1, respectively.

As mentioned before, the built-ins are generic. In
this sense, there must be a way to configure the
manipulated elements for these built-ins and, as a
consequence, to control the behavior of the
transformation. For instance, to transform a class into
an interface (ClassInterface), their attributes, which are
defined in the UML meta-model, need to be informed
for the built-in through a set of properties. Table 2
presents the possible properties for the configuration of
the built-ins.

When some textual transformation about the name
of the elements is necessary, the nameTransformation
property may be used to make such transformations
(updates) using regular expressions. For example, it is
possible to transform the name “attribute” into
“getAttribute” (forward transformation), or the name
“setAttribute” into “attribute” (reverse transformation).
In section 5 an example of these properties is
presented. Each mechanism implements the
Transformation interface to allow the execution of the
bidirectional transformations (PIM<->PSM). The
Transformation interface defines the transformations in
both directions, through the transformationLeftToRight
and transformationRightToLeft operations. For
instance, considering the ClassInterface mechanism,

11

the transformationLeftToRight operation gets a class as
parameter and returns the Interface built from this
class. On the other hand, the reverse operation
transformationRightToLeft gets an Interface and
returns a class.

The built-ins available in the transformation
machine have been enough for the definition of the
transformations among supported types so far.
However, there may be some cases where the
developer needs some transformation which is not
available. In these cases, he may develop his own
mechanism (plug-in) which must implement the
Transformation interface and manipulate the necessary
elements through JMI interfaces.

5. Example

An example of transformation is presented to
illustrate the functionalities of Odyssey-MDA. In this
example, an independent class model of a component
(PIM) is received and a dependent class model (PSM)
that represents the components for the EJB (Enterprise
JavaBeans) platform is built.

Figure 2 presents the result of the transformation
executed on the PIM model received as input. The
Client class was previously marked with <<Entity>>
stereotype and, in accordance to the defined standards
of the EJB platform, the initial class was transformed
into the ClientBean class and the Client and

ClientHome interfaces of the PSM output model. The
updates from the ClientBean class may be propagated,
through the reverse transformation, to the Client class
of the initial PIM. In this case, the
transformationLeftToRight operation of the
Transformation interface must be executed.

Figures 3 and 4 illustrate the declarative area of the
transformation, i.e., a XML document with the
declaration of the mapping among elements, the finders
(Figure 3) and the configuration properties (Figure 4).
The specification of the transformation mapping
(transformation-map) is composed by mappings of the
classifier-map types. Each mapping has finders which
are responsible for selecting the elements into input and
output models, according to the side attribute. Figure 3
presents the specification of a classifier-map (Entity-
EntityBean) that uses the ClassClass generic
mechanism. This mechanism transforms all identified
classifiers by finder, which is responsible for selecting
the marked elements with the <<Entity>> stereotype in
the PIM model. Figure 3 also illustrates other examples
of mappings such as feature-map. This mapping is
responsible for performing the copy of the attributes of
Entity element into the EntityBean and to build the get
and set methods for each attribute of the input element.

Figure 5 shows the graphic interface of the Odyssey-
MDA transformation machine. The tree presented on
the left hand side of the interface shows the PIM
model, initially developed and marked in a CASE Tool
and imported via XMI mechanism. After the choice of
the desired transformation, the user may select the

12

input and output models and the direction of the
transformation (forward or reverse). The
transformation may be executed and the configurations
and the resulting PSM model may be exported in a
XMI format to a source code Tool Generator such as
Odyssey-MDA-codegen [10] or some other CASE
Tool.

6. Related Works

Considering the existing approaches related to the
model transformation, Model Transformation
Framework [9] and UML Model Transformation [12]
are the most relevant for this research.

13

MTF is composed by a set of tools that support the
developer during the comparison, consistency checking
and implementation of transformations among UML
models. The infra-structure of storage and manipulation
of models is performed on EMF (Eclipse Modeling
Framework). Odyssey-MDA is different from MTF
since it manipulates models developed into any CASE
tool or in any developing environment that uses
MOF/JMI/XMI standards. UMT is a tool that
transforms and generates source-code to UML/XMI
models. The transformations in UMT are defined in
XSLT/Java and manipulate models through XMI
simplified representations (XMI Light). Besides, UMT
does not support bi-directional transformation
definitions, as proposed by Odyssey-MDA.

Czarnecki and Helsen [1] propose a classification of
other existing approaches to models transformation,
organized in five groups: direct manipulation,
relational, graph-based transformations, structure
directed and hybrids. Odyssey-MDA can be considered
a hybrid approach because it combines the
characteristics of structure directed and direct
manipulations, by using built-ins and plug-ins,
respectively.

Besides MTF and UMT, other approaches were
analyzed, such as: Atlas Transformation Language
[15], UMLx [16], AndroMDA [17] and OptimalJ [14].

7. Final Considerations

This paper presented the Odyssey-MDA which
allows that components model created independently of
any platform be transformed into specific models for a
platform. The approach is supported by the Odyssey-
MDA transformation machine, developed in Java with
the following characteristics: (1) independent of the
development environment, using XMI format; (2) the
possibility of the execution of bi-directional
transformations; and (3) extension facilities through
generic mechanisms (built-ins) and the possibility of
the definition of new transformations (plug-ins).

Some limitations of Odyssey-MDA include: (1) the
restriction of UML model transformations; (2) the use
of a language which is not totally compatible with QVT
proposed by OMG to define the transformations; (3)
lastly, there is the impossibility to define
transformations of behavior models and, as a
consequence, to create a source-code based on PIM.

Currently, Odyssey-MDA prototype uses UML
models but it might be possible to transform any model
based on MOF. The generated EJB may be used with
other source-code and reverse engineering tools,
representing an agile solution for software

development. A case study to evaluate Odyysey-MDA
in an industrial setting is being planned.

References:

[1] Czarnecki, K., Helsen, S. (2003) “Classification of Model
Transformation Approaches”. Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, USA, 2003.
[2] EDOC (2004) UML Profile For Enterprise Distributed
Object Computing (EDOC) specification, OMG.
[3] Gardner, T., Griffin, C., Koehler, J., Hauser, R. 2003.A
Review of OMG MOF 2.0 Query / Views / Transformations.
OMG Document.
[4] JCP (2006) Java Metadata Interface (JMI) API 1.0
Specification,Available at: http://jcp.org/en/jsr/detail?id=040,
23/09/2006.
[5] Kleppe, A., Warmer, J., Bast, W. (2003) MDA
Explained: The Model Driven Architecture – Practice and
Promise. Boston, MA, Addison-Wesley, 2003.
[6] Matula, M. (2003) NetBeans Metadata Repository,
Available at http://mdr.netbeans.org, 23/09/2005.
[7] MDA (2003) Model Driven Architecture, OMG,
Available at http://www.omg.org/mda, 23/09/2005.
[8] MOF (2002) Meta Object Facility (MOF) specification,
version 1.4, OMG.
[9] MTF (2004) Model Transformation Framework,
Available at http://www.alphaworks.ibm.com/tech/mtf,
23/09/2005.
[10] Odyssey (2007) Available at
http://reuse.cos.ufrj.br/odyssey, 7/03/2007.
[11] Sametinger, J. (1997) Software Engineering with
Reusable Components. Springer, 1997.
[12]UMT (2004) UMT-QVT UML Model Transformation
Tool, Available at http://umtqvt.sourceforge.net, 23/09/2005.
[13] XMI (2002) XML Metadata Interchange (XMI)
specification, v1.2, OMG.
[14] COMPUWARE, 2006, "OptimalJ - Model-driven Java
development tool". Available at:
http://www.compuware.com/products/optimalj/, 20/12/2006.
[15] Jouault, F., Kurtev, I., (2005), "Transforming Models
with ATL". In: Proceedings of the Model Transformations in
Practice Workshop at MoDELS 2005, Montego Bay,
Jamaica, October, 2005.
[16] Eclipse (2006). "UMLX: A graphical transformation
language for MDA". Available at:
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/gmt
home/subprojects/UMLX/index.html, 0/02/2006.
[17] Kozikowski, J. (2005), "A Bird’s Eye view of
AndroMDA". In: http://www.andromda.org/contrib/birds-
eye-view.html, 20/01/2006.

Acknowledgements:
The authors would like to thank CAPES and the

Research Group in CDPe/PQTI of the TA002/2007,
financed by Dell Computers of Brazil Ltd. with
resources of Law 8.248/91, for partially financing this
work.

14

An Empirical Exploratory Study on Inferring Developers’ Activities from
Low-Level Data

Irina Coman, Alberto Sillitti
Free University of Bolzano/Bozen, Italy

{icoman,asillitti}@unibz.it

Abstract

Automated data collection techniques offer
information on low-level activities while approaches
such as PSP require information on higher-level
activities. The mapping between low-level activities
and higher-level ones is still needed. The purpose of
this research is mainly exploratory as a first step
towards the development of a technique of inferring
(semi)automatically the higher-level activities from
low-level data, independently of the particular tools
used by the developers. We present evidence that such
an approach is realistic: there are two types of
application usage that relate to two higher-level
activities of developers. Based on our findings, we
shape a hypothesis for automatically detecting these
types of applications usage.

1. Introduction

Software companies are interested in improving the
software development process, as proved by their
interest in process modeling toolkits, [7]. The Personal
Software Process, (PSP), [4], has been introduced in
1995 as an approach for empirically guided software
process at the level of individual developers. In order
to provide the needed complete and reliable data,
automated and non-invasive techniques of data
collection have been proposed, [8], [10]. However,
automatic tools monitor low-level activities (such as
access of a file) while processes such as the PSP
require the monitoring of higher-level activities (such
as design or coding). Therefore, a mapping between
low-level activities and higher-level ones is essential in
order to make real use of automatically collected data.
We try to address this problem by investigating the
possibilities for automatic inference of high-level
activities from low-level data.

Section 2 of this paper presents a description of
related works. Section 3 and subsections present our

approach in terms of novelty, goals, data, analysis and
results. Finally, section 4 mentions the limitations of
our study and presents the conclusions and the
directions that we are considering for future work.

2. Related work

Researches that relate to ours are mainly in the field
of automated process discovery, modeling and
monitoring, [2], [3], [5], [15]. There are approaches to
map low-level, manually predefined events, into
transitions in the process model enactment, [2], or to
infer a formal model of the behavior of the process
from low-level event streams, assuming a finite state
machine model, [3], [5]. More focused approaches aim
at automatically assessing whether developers are
indeed following a TDD (Test Driven Development)
process, [15], analyzing data collected automatically
from specific development tools, [8].

Other researches relating to ours are investigating
the general time structure of the activities of
developers, [1], [11], the developers’ working habits in
terms of preferred ways of action, favorite tools and
practices, [6], [16], software development tools usage
and cognitive aspects, [9], and the strategies of solving
particular development tasks, [12], [13], [14]. The data
in these cases is not collected automatically.

3. Our approach

The main purpose of this study is to explore
whether information regarding the tasks performed can
be inferred from low-level, fully automatically
collected data, and to shape hypothesis regarding ways
of automated inference of such information.

By contrast to other approaches, we focus on the
software process of developers rather than on the
software process of a company, [2], [3], [5]. We
explore possibilities as they emerge from the data,
rather than assuming a specific model of the behavioral

15

patterns of the process (such as the finite state machine
in [3]). We only make use of automatically collected
data, without relying on predefined patterns of events,
[2]. We take into account all of the active time spent
by the developer at her computer, rather than just the
commit information, [5], or just the interaction with a
specific development environment (such as Eclipse in
[15]).

Higher-level studies regarding developers’
behavior, such as [14], have offered a description of
maintenance tasks as an interleaving of several
activities. Our main hypothesis is that these activities
have different time structures that are reflected at the
low-level of automatically collected data. The time
structure could be used in order to automatically infer
these activities as they take place. Therefore we
investigate the time structure of the usage of
applications that correspond to these activities and we
shape a hypothesis for automatic detection of the
activities.

Our long-term goal is to automatically infer the
chain of activities and to infer the task themselves
using their structure with respect to activities. This
would be useful for instance in order to ascertain the
real time spent on each task and to identify complex
tasks that might call for special attention. Moreover, by
looking at the files involved during the time spent on
the task, it would also be possible to have an always
up-to-date map of the project, which relates the tasks
to the physical artifacts, making thus valuable
knowledge easily accessible to new developers.

3.1. Data

Given that we want to explore the possibilities of
“what is” rather than to test the effect of something, we
consider that real-world data is a must for our purpose.
Although real-world data is harder to get and
companies are less available than students, we prefer a
smaller sample of real-world data rather than a bigger
sample of laboratory-student data. As other studies
have remarked, “data on real users, even if the sample
is small, is revealing”, [1].

We collect data by means of the PROM tool, [10],
in a fully automated, non-invasive way. We considered
only data that has been collected in a general manner,
regardless of the specific software application that the
developer was using.

We collected data over a 52 working days period,
corresponding to almost 3 months, from 3 developers
working in a software company. Out of the 52 working
days, the three developers worked for 52, 51 and,
respectively 46 days. The developers worked only on
one web-application project, developed in Java. They

worked only on bug-fixing and new feature tasks.
They worked in one-week iterations. The software
tools mainly used were Eclipse, Internet Explorer,
Mozilla Firefox, Explorer, Notepad, HomeSite5,
TopStyle Lite 2.1, IBExpert, SQL Server Enterprise
Manager, Putty, WinSCP, AcrobatReader, and
Microsoft Office. The project evolved, from 29316
LOC at the beginning of our study, to 57174 LOC at
the end of our study.
Table 1. The format of the data: an event's
structure.

Event
User 2
Date 09.09.06
Start time 10:45:20
End time 10:46:32
File OnClick.java
Package Pack1.subpack1
Path C:\project1\
Application Eclipse
Duration (s) 72

The data is in the form of events of uninterrupted
working time (staying on focus of the corresponding
window) with a file (fine grained level) or with a
software application (coarse grained level). We use the
generic term of file to denote also a location in the case
of applications that work with locations rather than
files (e.g. Explorer). The time granularity of our data is
of 1 second. In what follows, we call the uninterrupted
working time with a file a file event and the
uninterrupted working time with a software application
an application event. An example of an event is given
in Table 1.

3.2. Analysis

The main hypothesis, on which the assumption that
higher-level information can be automatically inferred
from low-level data is based, is that the time structure
of the various higher-level activities involved in
solving maintenance tasks is different, and that this
time structure is reflected in the low-level data.
Therefore, we look for differences in the time structure
of various higher-level activities that are occurring
during maintenance tasks, as reflected in the low-level
data.

There are three activities occurring during
maintenance tasks: “searching for task-relevant
information, understanding the relations between
information and editing, duplicating or otherwise
referencing the necessary code” ([14]). Because
understanding is more a cognitive activity than a
concrete one, we consider it together with the
searching in an activity that we call exploration. We
consider the broader activity of implementation as

16

consisting of “editing, duplicating or otherwise
referencing the necessary code” or any other text
needed. Therefore, we focus on two activities:
exploration and implementation.

By their nature, there are applications that
correspond mainly to exploration (like Internet
browsers), mainly to implementation (like document
editors or viewers) and those that can be used in both
ways (like integrated development environments).
Therefore, we investigate the time structure of these
applications’ usage in an attempt to identify possible
differences among exploration and implementation.
For this, we take into consideration, from our data,
three categories of the most used applications: Internet
related (as exploratory), document related (as
implementation oriented) and development
environments (as both exploratory and implementation
oriented). The Internet related applications are IE and
Firefox. The document-oriented applications are
Acrobat Reader (depicted as acrord32), Notepad, Excel
and Word (depicted as winword). The development
environments are Eclipse and Homesite5.

As shown in Figure 1 and Figure 2, the Internet
related applications exhibit frequent switches among
several files during an application event (IE and
Firefox), while the document oriented applications
exhibit application events with only one file that is
accessed for a longer period of time (Acrobat Reader,
Excel). This can be explained by the fact that during
exploration, the developers are searching for
information and therefore spend relatively little time
on a file, while browsing through several files. The
document editors on the other hand are usually used
for viewing or editing specific files rather than
exploring through different files. In this case, the
developers know already, possibly from previous
explorations, what and where they want to view or
change and they simply access the file or files needed.

There are also exceptions among the document
related applications. Notepad exhibits the other
document related applications’ behavior regarding the
number of files during an application event, but the
time spent on a file is much smaller. This can be
attributed to the fact that Notepad is a very simple text
editor and therefore probably used only for simple
viewing or editing tasks that don’t take much time.
Word, although a document application, is situated
between the two classes of applications, rather than
clearly belonging to one of them. This might be due to
the fact that the developers were both consulting and
editing requirements documents in Word.

The development environments are situated, both
regarding the number of files and the average file
event, between the Internet related and document
oriented applications. This was expected given that
they are intended both for exploration and editing. This
represents further evidence that the average file event
and the number of files are potentially good measures
for identifying exploration and implementation.

The two main characteristics of the exploration are
the usage of many distinct files, and the short time
spent on each file. On the other hand, the main
characteristics of the implementation are the usage of a
small number of files and a relatively longer time spent
on each file. Considering the fact that the
implementation occurs naturally after the exploration
and using the information gained through exploration,
it seems as a reasonable supposition to consider that
most of the files accessed during implementation, have
been visited at least once during exploration.

Based on the previous observations, we propose, as
hypothesis to be tested, that the two activities could be
inferred from the evolution of the cumulative number
of distinct files that are accessed over time by a
developer, combined with the average time spent on

Figure 1. Average number of files during
an application event for user 1.

Figure 2. Average file event for user 1 and
various applications.

17

one file. If our hypotheses are correct, the cumulative
number of total distinct files should increase fast
during exploration and remain constant or increase
much slower during implementation. On the other
hand, the average time spent per file should be low
during exploration periods and should be bigger during
implementations.

4. Conclusions and future work

The purpose of this study has been to investigate the
possibility of automatic inference of high-level
information from low-level, automatically collected
data. The main hypothesis has been that the time
structure of the various high-level activities involved
in solving maintenance tasks is different, and that this
time structure is reflected in the low-level data. We
have found differences between the time structures of
the usage of exploration and implementation related
applications. Based on our results, we have shaped a
hypothesis for automatic inference of exploration and
implementation and we consider its proper testing as
our next step.

A mapping is possible between the previously
identified types of usage and the developers’ activities
during maintenance tasks that have been identified in
[14]. Therefore, the automated inference of these types
of usage could lead to the automated inference of
higher-level tasks. This would be beneficial in order to
properly map the low-level data to higher-level
activities, which would, in turn, lead to benefits such
as account of time spent per task, files that are
concerned by various tasks and the possibility of real-
time reconstruction of the software process as it
actually happens.

Our results have to be considered keeping in mind
the limitations of our study: the small size of our
sample, the specificity of the project and development
methodology investigated, the specificity of the tasks
and the limitations of the tool which collected data
only from the developers’ computers, without being
able to discern for short interruptions from the working
environment.

5. References

[1]D. E. Perry, N. A. Staudenmayer, L. G. Votta, “People,
Organizations and Process Improvement”, IEEE Software,
Vol. 11, No. 4, pp. 36 – 45, 1994

[2]N. S. Barghouti, B. Krishnamurthy, “Using Event Context
and Matching Constraints to Monitor Software Processes”,
Proc. 17th Intl. Conference on Software Engineering, 1995

[3]J.E. Cook, A. L. Wolf, “Automatic Process Discovery
through Event-Data Analysis”, Proc. 17th Intl. Conference on
Software Engineering, 1995

[4]W. S. Humphrey, “A Discipline for Software
Engineering”, Addison-Wesley, New York, 1995

[5]J.E. Cook, “Process Discovery and Validation through
Event-Data Analysis”, Ph.D. Thesis, Technical Report CU-
CS-817-96, University of Colorado, September 1996

[6] J. Singer, T. Lethbridge, N. Vinson, N. Anquetil, “An
Examination of Software Engineering Work Practices”,
Proc. CASCON ’97, 209 – 223, 1997

[7]L. Benedicenti, G. Succi, T. Vernazza, “Improving
Engineering”, ACM Applied Computing Review, ACM Press

[8]P. M. Johnson et all, “Beyond the Personal Software
Process : Metrics Collection and Analysis for the Differently
Disciplined”, http://csdl.ics.hawaii.edu/techreports/02-07/02-
07.pdf, July 2002

[9] R. Naghshin, A. Seffah, R, Kleine, “Cognitive
Walkthrough + Personae = An Empirical Infrastructure for
Modeling Software Developers”, Proc. IEEE Symposium on
Human Centric Computing Languages and Environments,
2003.

[10] A. Sillitti, A. Janes, G. Succi, T. Vernazza, “Collecting,
Integrating and Analyzing Software Metrics and Personal
Software Process Data”, EUROMICRO 2003, Turkey 2003

[11] V. M. Gonzalez, G. Mark, “Constant, Constant, Multi-
tasking Craziness”: Managing Multiple Working Spheres,
Proc. of the CHI, 2004

[12] M. P. Robillard, W. Coelho, G. C. Murphy, “How
Effective Developers Investigate Source Code: An
Exploratory Study”, IEEE Transactions on Software
Engineering, Vol. 30, No. 12, December 2004

[13] C. Murphy, M. Kersten, M. P. Robillard, D. Cubranic,
“The Emergent Structure of Development Tasks”, Proc. of
ECOOP, 2005

[14] A. J. Ko, B. A. Myers, M. J. Coblenz, H. H. Aung, “An
Exploratory Study of How Developers Seek, Relate and
Collect Relevant Information during Software Maintenance
Tasks”, IEEE Transactions on Software Engineering,
December 2006

[15] H. Kou, P. Johnson, “Automated Recognition of Low-
Level Process: A Pilot Validation Study of Zorro for Test-
Driven Development”, Proc. of the Intl. Workshop on
Software Process, May 2006

[16] T. D. LaToza, G. Venolia, R. DeLine, “Maintaining
Mental Models: A Study of Developer Work Habits”, ICSE
2006, May 2006

18

TRAP.NET: A Realization of Transparent Shaping in .NET

S. Masoud Sadjadi and Fernando Trigoso
School of Computing and Information Sciences

Florida International University, Miami, FL, U.S.A
{sadjadi, ftrig001}@cs.fiu.edu

Abstract
We define adaptability as the capacity of software in ad-
justing its behavior in response to changing conditions.
To list just a few examples, adaptability is important in
pervasive computing, where software in mobile devices
need to adapt to dynamic changes in wireless networks;
autonomic computing, where software in critical systems
are required to be self-manageable; and grid computing,
where software for long running scientific applications
need to be resilient to hardware crashes and network out-
ages. In this paper, we provide a realization of the trans-
parent shaping programming model, called TRAP.NET,
which enables transparent adaptation in existing .NET
applications as a response to the changes in the applica-
tion requirements and/or to the changes in their execution
environment. Using TRAP.NET, we can adapt an applica-
tion dynamically, at run time, or statically, at load time,
without the need to manually modify the application
original functionality-hence transparent.

1. INTRODUCTION

The goal of our ongoing research is to improve software
adaptability. Imagine a world where software systems do
not have to stop every time there was a need for adapting
the software to the new changes in its requirements or in
its execution environment. For example, as a wireless user
moves from one wireless cell to another, the applications
available to the user must adapt to different environments
and resources with minimal interruption in their service.
Critical systems such as financial networks or power sys-
tems cannot afford to shut down due to the need to adapt
to new conditions or security attacks. A hurricane predic-
tion application running for hours cannot be restarted just
because a few resources are out of service.

Adaptable software presents itself as a possible solu-
tion to the above problems. An application is said to be
adaptable if it can change its behavior dynamically at
runtime, which may be due to changes in its environment
or due to new functional or non-functional requirements
[1]. Unfortunately, developing adaptable software is non-
trivial. An adaptable application involves both functional
code and adaptive code. Functional code implements the

business logic of the application while adaptive code im-
plements the adaptation logic which enables the applica-
tion to be adaptive. Usually, these two types of code are
blended into one source code making its maintenance and
adaptation difficult.

The transparent shaping programming model poses a
solution to solve the difficulty of developing adaptable
applications [1]. This model allows the design and devel-
opment of adaptable applications without the need to
modify their source code.

Transparent shaping produces adaptable programs in
two steps. In the first step, usually executed at compile
time, an existing program is transformed so its behavior
can be adapted at runtime. And in the second step, exe-
cuted at runtime, these transformations receive the new
behavior so the program can be adapted.

The first step of transparent shaping generates an
adapt-ready program. An adapt-ready program is a pro-
gram whose behavior is initially equivalent to the original
program except for the fact that it can be adapted at
startup and/or run time.

Applying transparent shaping to object-oriented pro-
grams yields a new programming model called Transpar-
ent Reflective Aspect Programming (TRAP) [1]. In this
paper, we provide a realization of transparent shaping
following the TRAP model, called TRAP.NET, which is
targeted for .NET applications.

TRAP.NET provides a language-independent mecha-
nism for transparently producing adapt-ready programs
from existing programs in .NET. TRAP.NET also pro-
vides a mechanism to adapt these adapt-ready programs.
This adaptation can be static, at load time, or dynamic, at
runtime.

Static adaptation is more restrictive than dynamic ad-
aptation. Static adaptation can only occur once when the
application is loading and it is useful for applications that
will be deployed on different platforms. These applica-
tions only need to adapt to their corresponding platforms
at startup time. Dynamic adaptation is useful for applica-
tions that need to adapt to changes in their environment or
to new requirements without halting.

The major contributions of this paper are summarized
as follows. First, we assess the expressiveness and effec-

19

tiveness of .NET Attributes in providing a means to label
what portions of an existing application should become
adaptable. Attributes are pieces of metadata information
that can be placed in the source code of .NET applica-
tions. TRAP.NET uses this metadata information to iden-
tify which pieces of functionality should be made adapt-
ready. Second, we researched and developed a language-
independent software tool that realizes the first step of
transparent shaping appropriate for .NET applications.
We call this software tool the generator. The generator
automatically generates an adapt-ready application inde-
pendent of the programming language used in the devel-
opment of the original application. Finally, we researched
and developed a language- and platform-independent
software tool that realizes the second step of transparent
shaping. We call this software tool the composer. The
composer allows new adaptive behavior⎯to be added at
startup or runtime⎯to replace the existing adapt-ready
behavior.

The remainder of this paper is organized as follows.
Section 2 provides background on the .NET technologies
that TRAP.NET uses. Section 3 explains the design, im-
plementation, and operation of TRAP.NET. Section 4
compares TRAP.NET to some related work. Finally, Sec-
tion 5 offers some concluding remarks.

2. BACKGROUND

This section provides a brief overview of the .NET tech-
nologies that TRAP.NET uses to implement the transpar-
ent shaping model.

The Microsoft .NET Framework is a software compo-
nent that provides vast pre-coded solutions to common
program requirements in the form of class libraries. It
also manages the execution of programs written specifi-
cally for this framework [6]. The .NET Framework pro-
vides a run-time environment called the common lan-
guage runtime (CLR, or just runtime) that runs .NET ap-
plications and provides services that make the develop-
ment process easier. When compiling a .NET program,
the compiler translates the source code into common in-
termediate language (CIL, or just IL), which is a CPU-
independent set of instructions that can be efficiently con-
verted to native code. CIL, formerly called Microsoft in-
termediate language or MSIL, resembles an object-
oriented assembly language. TRAP.NET is language-
independent as it provides adaptation at the CIL level.

When a .NET compiler produces code in CIL, it also
produces the corresponding metadata. Metadata is “data
about data;” in the programming context it is data about
the program. Metadata describes the types in the code,
including the definition of each type, the signatures of
each type’s members, the members that the code refer-
ences, and other data that the runtime uses at execution
time. The CIL and metadata are contained in a portable
executable (PE) file referred to as module. The presence

of metadata in the module along with CIL enables the
code to describe itself. The runtime locates and extracts
the metadata from the module as needed during execution.

.NET Reflection is the component that provides class
libraries to access the metadata of .NET applications.
Therefore it contains classes to describe every program-
ming element such as assemblies, modules, namespaces,
types, fields, methods, attributes, events, etc. Using reflec-
tion, TRAP.NET can access the metadata and the IL code
of existing applications. TRAP.NET takes advantage of
this feature and puts all the adaptive-related metadata into
the same file and this way, there is no need to load a sepa-
rate file with the metadata information about the adaptive
behavior.

Reflection can also be used to dynamically create an
instance of a type, bind the type to an existing object, or
get the type from an existing object. Then it can invoke
the type’s methods or access its fields and properties.
TRAP.NET can discover information about all the ele-
ments of an application. Also, it can modify an applica-
tion’s behavior mainly through the usage of dynamic
methods. Dynamic methods are methods that can be gen-
erated and executed at runtime.

.NET Attributes are keyword-like descriptive declara-
tions. They resemble programming languages reserved
keywords such as public or private. These two keywords
further define the behavior of class members by describ-
ing their accessibility to other classes. Because compilers
are designed to recognize these predefined keywords, a
developer does not traditionally have the opportunity to
create their own. The CLR, however, allows the addition
of attributes to annotate programming elements such as
types, fields, methods and properties [7]. These attributes
can be extracted using runtime reflection services.
TRAP.NET uses attributes to label methods that should
become adapt-ready and to gather metadata information
about these methods.

3. TRAP.NET OVERVIEW

This section provides an overview of TRAP.NET from its
usage perspective. It describes the steps required to
achieve dynamic adaptation with TRAP.NET at develop-
ment time, compile time and run time. Static adaptation is
presented at the end of this section since it reuses the
techniques used to achieve dynamic adaptation.

3.1. At Development Time

To tailor the TRAP approach to the .NET develop-
ment practices we allow the user to manually place .NET
Attributes to annotate which methods should be adapt-
ready. In our particular case we implemented a custom
attribute which we call the AdaptReady attribute. By
placing this attribute, the user is staging the application so
it is suitable for the generator at compilation time. The
generator can then look for the methods with the Adap-

20

tReady attribute to automatically make them adapt-ready.
The code snippet in Figure 1 shows this attribute with a
method called Some-Method.

Another important step that occurs at development
time is the fact that the user has to add a reference to the
TRAP.NET class library. The AdaptReady attribute is
defined in the TRAP.NET class library, thus to success-
fully compile the application with this attribute, the appli-
cation has to reference this class library. This particular
reference coalesces the original application and
TRAP.NET into one application. This union makes the
generation process much easier since most of the func-
tionality to support adaptation can be placed in the
TRAP.NET library. Therefore, most of the adaptive code
that needs to be weaved can be simple calls to functions in
the TRAP.NET library.

[AdaptReady(true)]
public void Some-Method()
{
 /* some implementation */
}

Figure 1. A method with the AdaptReady attribute.

3.2. At Compile Time

After the annotated application is compiled as it nor-
mally would, the user can send its application to the gen-
erator. The generator can be executed from a plug-in for
Visual Studio or form the command-line.

The generator is in essence an aspect weaver which
adds the adaptive aspect to the methods annotated with the
AdaptReady attribute. The adaptive aspect in this case
consists of hooks that will intercept and redirect the con-
trol flow as appropriate. As mentioned earlier, since all
.NET assemblies are compiled into CIL, the generator can
weave the adaptive aspect in CIL code. The addition of
the adaptive aspect at this level makes the TRAP.NET
generator language independent and transparent with re-
spect to the original source code.

When the generator is executed, it receives as input
the annotated assembly. This assembly is immediately
loaded into an Assembly object provided by the .NET
reflection facilities. This object allows the discovery of
the types and methods of the staged assembly. The gen-
erator iterates through the list of types and methods and
finds all the methods with the AdaptReady attribute.

At this point, as illustrated in Figure 2, first the anno-
tated assembly is disassembled using ILDASM, which is a
tool distributed with the .NET Framework, to create a text
file with the intermediate language (IL) code of the as-
sembly. Next, the source code of the method, in IL, is
used as a base for the generation of the adapt-ready IL
code. Finally, the adapt-ready IL code is reassembled us-
ing ILASM, which generates the adapt-ready assembly.
The process described in this paragraph is called round-

tripping, which involves three steps: disassembly, tinker-
ing with the CIL source code, and reassembly [8].

During the tinkering phase, the generator only adds the
hooks to the methods that have the AdaptReady attribute.
The actual hooks consist of a simple if-then-else statement
to intercept and redirect the control flow. The if-condition
intercepts the control flow and checks whether adaptation
is enabled for that particular method. If it is, the auto-
matically generated code inside the if-condition redirects
the control flow. It loads and invokes the new adaptive
functionality for this method using a dynamic method.
The else-condition wraps the original functionality of the
method which is executed if adaptation is not enabled.

TRAP.NET Generator

Sample.exe

Adapt-Ready
Sample.exe

Sample.il

ILDASM
IL Disassembler

Adapt-Ready
Generation

ILASM
IL Assembler

Sample.il

Adapt-Ready
Sample.il

Adapt-Ready
Sample.il

Figure 2. TRAP.NET Round-tripping.

Presenting the code of an adapt-ready method in CIL
can be cumbersome due to the fact that intermediate lan-
guage notation is very similar to assembly language which
tends to be lengthy even for simplistic logic. Moreover,
understanding CIL requires knowledge of CIL instructions
and syntax. Therefore, for clarity, in Figure 3 we show
what an adapt-ready method would look like in pseudo-
code before and after generation.

[AdaptReady(true)]

SOME-METHOD()

1 if this method is adapted
2 then call INVOKE-DYNAMIC-METHOD()
3 else call original implementation

[AdaptReady(true)]

SOME-METHOD()

1 call original implementation

(a) Some-Method before generation.

(b) Some-Method after generation.

Figure 3. Adapt-ready method in pseudo code before and
after generation.

Inside the if-condition, the generator has to perform
code generation to invoke the dynamic method. The dy-
namic method has to be invoked with all the parameters of
the original method which may be one or more and may
be of different types. Also, the return type of the invoca-
tion needs to be casted to the return type of the original
method. Using reflection the generator can determine the
number and the types of parameters as well as the return

21

type of the method. Based on this information, the code to
invoke the dynamic method is automatically generated.

Finally, besides adding the hooks, the generator also
inserts a method call in the startup point of the applica-
tion. When the adapt-ready application starts running, this
method call is the first thing that gets executed. This
method is part of the TRAP.NET class library and initial-
izes all the components and data structures needed to sup-
port static and dynamic adaptation at runtime. As part of
this initialization a communication channel is opened so
the application can receive new functionality at runtime.
This communication is implemented using .NET Remot-
ing, which supports interprocess communication in dis-
tributed applications.

3.3. At Runtime

The last few steps to achieve dynamic adaptation with
TRAP.NET occur at runtime when the adapt-ready appli-
cation is executing. They are triggered when the user de-
cides that the functionality of a particular adapt-ready
method needs to adapt to some changing condition. Fu-
ture work may involve automated decision making ac-
cording to some policy. After this decision is made, the
user develops the new functionality using the original
source code. Then, the user can utilize the composer to
upload the new adaptive functionality.

The composer is essentially a distributed application
composed by two modules: the client composer and the
server composer. The client composer is the user interface
used to upload new functionality to the running applica-
tion. The server composer—hosted by the TRAP.NET
class library—is part of the running adapt-ready applica-
tion and it serves requests from the client composer. The
composer is the core of TRAP.NET because it achieves
dynamic adaptation. Figure 5 shows the dependency of
these components at runtime.

Adapt-Ready
Assembly

Server Composer
(TRAP.NET.dll)

Client Composer

Network

Figure 5. Dependency of components at runtime.

We developed two client composers, a Windows ap-
plication composer and a Web application composer.
Among all of their functionality, these composers perform
three basic operations. The first one is to get the status of
the adapt-ready application so the user can see which
methods can be adapted. The second operation lets the
user upload a new delegate assembly to the adapt-ready
application. A delegate assembly is an assembly that con-
tains delegate methods. Delegate methods contain the

functionality that replaces the functionality of adapt-ready
methods. Once the delegate assembly is loaded, the third
operation lets the user adapt an adapt-ready method with a
delegate method.

After the second operation, when user loads the dele-
gate assembly, the server composer matches adapt-ready
methods to their potential delegate methods candidates.
Potential delegate methods are methods that have the
same return type and parameter types as the adapt-ready
method. Once this matching is complete, the results are
returned in XML format to the client. The user interface
then displays the adapt-ready methods with their potential
delegate methods. At this time, the user may select one of
the delegate methods for adaptation of its adapt-ready
method. This adaptation request is sent to the server which
prepares the contents of this delegate method so they are
suitable for adaptation.

The preparation of the delegate method consists of the
generation of a dynamic method with the contents and
information of the delegate method. This generation is a
complex process that relies heavily on reflection. The
shell of the dynamic method has to have the same meta-
data as the delegate method. This metadata includes the
parameter types, the declaring type and the local variables
of the delegate method. After the shell of the dynamic
method is completed, its contents are populated with the
body of the delegate method. This body is the IL of the
delegate method in byte code. Assuming the delegate
method has no external references—that is, it only works
with local variables and it does not call other methods—
the newly created dynamic method is ready for usage.
This dynamic method is stored in a data structure inside
the server composer so it can be referenced when needed.
The next time the adapt-ready method is called, it finds
out that is has been adapted and its execution enters the if-
condition which gets the dynamic method from the server
composer. After the dynamic method is retrieved, the
adapt-ready method invokes it with its current parameter
values.

The process just described assumes that the delegate
method had no external references to members outside the
method itself. Non-trivial applications usually require
access to external references. Members are any language
element that can be referenced, i.e. methods, constructors,
fields, properties and events. Each of these members may
also have return types, parameters, access modifiers (such
as public or private) and implementation details (such as
abstract or virtual) among others. When a delegate
method is developed and compiled it may reference mem-
bers in the delegate assembly itself. After the delegate
method is ported into a dynamic method in the running
application, these references are still pointing to the dele-
gate assembly. However, the delegate assembly is not
being executed and it is out of the context of the running
application thus, these references are really pointing to

22

nothing. Therefore invocation of a dynamic method with
references to the delegate assembly would fail. The server
composer solves this issue by redirecting these references
to the running application.

To redirect references into the running application, the
composer takes the following steps. First, it finds the ref-
erences in the body of the delegate methods. After they
are found, it resolves them, that is, it gets the actual dele-
gate member being referenced so it can discover its signa-
ture. Using the signature of the delegate member, it lo-
cates the member with the same signature in the running
application. Then, it replaces the reference in the delegate
body so it points to the member in the running application.

The functionality that finds references in the body of
delegate methods had to be developed from scratch. Re-
flection only provides access to the metadata of methods,
not their actual contents. As a consequence, we developed
a component, called the token parser, which finds external
references in methods. Every member has a unique meta-
data identifier. These metadata identifiers—also referred
to as metadata tokens—are used to uniquely reference
members. The token parser extracts these references by
parsing the byte code of delegate methods.

Using reflection and the tokens discovered by the to-
ken parser, the composer can resolve the members being
referenced. After these members are resolved, it locates
them in the running application. Once the composer lo-
cates these members, it can obtain their metadata identifi-
ers or tokens. At this point the composer has the tokens
that represent references in both assemblies. The com-
poser then proceeds to replace tokens in the delegate
body.

After replacement is completed, the new body is as-
signed to the dynamic method. The references in the dy-
namic method body have now been redirected to members
in the running application. Now, the dynamic method is
ready for invocation.

So far we have presented how dynamic adaptation is
achieved at runtime. TRAP.NET can be used in a mode
that enables static adaptation. This type of adaptation oc-
curs at load time by reusing the functionality that achieves
dynamic adaptation. To achieve static adaptation the gen-
erator adds code to the startup of the application to pause
it as soon as it starts executing. While the application is
paused, the composer is the only available component
which is waiting to receive delegate methods. The user
then sends delegate methods and adapts the desired adapt-
ready methods. The composer then flags these methods as
adapted and will not allow new adaptive functionality
during the execution of the program. When the user
wishes, the application will be resumed.

4. RELATED WORK

Similar to TRAP.NET, other approaches to build adapt-
able programs involve intercepting calls to functional

code, and redirecting them to adaptive code [1]. There are
two main categories of related work. The first category
involves approaches that extend middleware to support
adaptive behavior (e.g., Iguana/J [3] that extends JVM).
Since the role of traditional middleware is to hide resource
distribution and platform heterogeneity from the business
logic of applications; it is a natural place to put adaptive
behavior. However, these approaches generally become
outdated after a newer version of the middleware (e.g.,
JVM) is released.

The second category includes approaches to transpar-
ently augment the application code with facilities for in-
terception and redirection. Examples related to our work
include AspectJ [4], Aspect.NET [5] and TRAP/J [2].
AspectJ and Aspect.NET enable aspect weaving at com-
pile time which is similar to the task the TRAP.NET gen-
erator performs. However, they do not provide a means
for dynamically weaving new code into the application at
runtime.

TRAP/J is an instance of TRAP in Java. To augment
an existing Java program with the required hooks, TRAP/J
uses compile-time aspect weaving provided by AspectJ.
Following the TRAP approach, TRAP/J operates in two
phases. In the first one, at compile time, TRAP/J converts
an existing program into an adapt-ready program. This
conversion is accomplished using an Aspect Generator
and a Reflective Class Generator. These generators pro-
duce aspects and the reflective classes. Next, these two
products, with the original source code, are passed to the
AspectJ compiler which weaves the generated and the
original source code together to generate and adapt-ready
assembly. Note that the generation process in TRAP/J
generates significantly more code than the generation
process in TRAP.NET. The second phase occurs at run-
time when using the reflective classes, new behavior can
be introduced to the application.

A limitation of TRAP/J is the fact that it can only
make classes adapt-ready. Even if the user only wishes to
make one method in a class adapt-ready, TRAP/J will
make the entire class adapt-ready. Performance and flexi-
bility seem affected by this limitation. In contrast,
TRAP.NET overcomes this limitation since it is able to
make methods adapt-ready. Moreover, methods are the
units of functionality and behavior in the object oriented
paradigm. Since transparent shaping focuses on changing
the business logic which is hosted by methods,
TRAP.NET offers a more natural implementation. The
state of the object is not changed by adaptation itself.
Adapting a method only changes its functionality. The
new adaptive functionality may change the state of the
object as it was programmed by the user.

Other contributions of TRAP.NET include its lan-
guage independence, tailoring of the transparent shaping
model to .NET development practices and extensive
member access. TRAP.NET can make any application

23

adapt-ready, independently of the language that it was
developed since it works at the intermediate language
level. Also, by using attributes it customizes the transpar-
ent shaping model so it fits .NET development practices.
Moreover, TRAP.NET is the implementation that offers
the most types of member access to the adaptive function-
ality. The new adaptive functionality may need to access
resources or members in the running application.
TRAP.NET enables this accessibility.

5. CONCLUSIONS

The next major step for TRAP.NET should be the devel-
opment of a case study with an application geared towards
pervasive, autonomic or grid computing. This case study
will produce important results to improve and evaluate
TRAP.NET in many aspects including performance, reli-
ability and usability.

Safe adaptation and security are two main concerns
that remain pending in this research. Safe adaptation is
the ability of a program to maintain its integrity during
adaptation [9]. And, security deals with protecting an
adaptable program from malicious entries [1]. These two
issues are ongoing research areas for dynamic adaptation.
Future work in TRAP.NET should support safe adaptation
and security as these techniques become available.

The major achievement of this paper is the research on
the design and development of TRAP.NET. This tool is a
successful realization of transparent shaping using the
TRAP model that provides dynamic adaptation of applica-
tions without the need to modify their original functional-
ity. TRAP.NET provides the means to achieve separation
of concerns when developing adaptive applications. It
adheres to the aspect-oriented paradigm by adding adap-
tive functionality across the business logic of an applica-
tion. It uses reflection to discover and modify the func-
tionality of an application. Moreover, unlike similar tools,
it intercepts only the methods selected by the user. The
rest of the application remains intact maintaining its origi-
nal performance. Adaptive code in TRAP.NET is
achieved by developing delegates which can provide its
own new functionality and reuse the already existing func-
tionality of the adapt-ready application. This important
achievement contributes to the developing area of soft-
ware adaptation in order to support critical and long-time
running applications such as the ones found in pervasive,
autonomic and grid computing.

ACKNOWLEDGMENTS

This work was supported in part by IBM, the National
Science Foundation (grants OCI-0636031, REU-0552555,
and HRD-0317692). The authors are very thankful to the
following students who played a significant role in the
implementation of TRAP.NET: Allen Lee, Tuan Cam-
eron, Ana Rodriguez, Juan H. Cifuentes, Javier Ocasio,
Amit Patel, Mitul Patel, Enrique E. Villa, Frank Suero,

Etnan Gonzalez, Edwin Garcia, Alain Rodriguez, and
Lazaro Millo.

TRAP.NET is a follow-up work on the Transparent
Shaping research originated in Michigan State University
and the authors are thankful to Philip McKinley, Betty
Chen, and Kurt Stirewalt who contributed to the original
ideas in Transparent Shaping, its TRAP extension, and the
realization of TRAP in Java, called TRAP/J. Our gratitude
is also extended to our colleagues at Florida International
University, Peter Clarke and Masoud Milani, who pro-
vided us with feedback on this work.

REFERENCES

[1] S. M. Sadjadi. Transparent Shaping of Existing Soft-
ware to Support Pervasive and Autonomic Comput-
ing. A Dissertation submitted to Michigan State Uni-
versity, 2004.

[2] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C.
Cheng, and R.E. Kurt Stirewalt. TRAP/J: Transparent
generation of adaptable Java programs. In Proceed-
ings of the International Symposium on Distributed
Objects and Applications (DOA'04), Agia Napa, Cy-
prus, October 2004.

[3] Redmond, B., Cahill, V.: Supporting unanticipated
dynamic adaptation of application behavior. In Pro-
ceedings of ECOOP, 2002.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J. M. Loingtier, and J. Irwin. As-
pect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Program-
ming (ECOOP). Springer-Verlag LNCS 1241, June
1997.

[5] Vladimir O. Safonov. Aspect.NET – an aspect-
oriented programming tool for Microsoft.NET. In
Microsoft Research SSCLI RFP II Capstone Work-
shop 2005, September 2005.

[6] .NET Framework. Wikipedia. 2 March 2007. Avail-
able at URL: http://en.wikipedia.org/wiki/ .NET_
framework.

[7] Attributes Overview. MSDN Library for Visual Stu-
dio 2005. 2005. Available at URL: http://
msdn.microsoft.com/library/en-us/cpguide/html/
cpconattributesovervi-ew.asp.

[8] Serge Lidin. Expert .NET 2.0 IL Assembler. Apress.
2006, pages 389-408.

[9] Ji Zhang, Zhenxiao Yang, Betty H.C. Cheng, and
Philip K. McKinley. Adding safeness to dynamic ad-
aptation techniques. In Proceedings of the ICSE 2004
Workshop on Architecting Dependable Systems, Ed-
inburgh, Scotland, May 2004.

24

A Framework for Selecting Agile Practices and Defining Agile Software Processes

Patrícia Vilain
INE, UFSC, Brazil
vilain@inf.ufsc.br

Priscila Basto Fagundes
CTAI - SENAI/SC, Brazil
priscilab@ctai.senai.br

Thiago Leão Machado
INE, UFSC, Brazil

thiagolm@inf.ufsc.br

Abstract

The main goal behind agile methods is to reduce the
time spent on software development. Each of those
methods tries to promote rapid development with no loss
of efficiency while keeping client and user satisfaction by
applying its own set of agile principles and practices.
Deciding which method to adopt for a given reality is a
complicated matter, and sometimes it may be necessary to
combine practices from different methods to better
approach the problem. This paper presents a framework
containing the agile practices adopted by several agile
methods and interdependencies between such practices,
as a basis for comparing and selecting which practices
should be part of the software process. A tool for defining
new software processes based on this framework is also
presented. Besides helping managing the selected
practices and respective interdependencies, this tool also
allows generating and organizing the artifacts obtained
from selected practices.

1. Introduction

Several methods proposing to accelerate the software
development process have come up in the past years.
These methods are referred to as agile methods and
usually follow the same principles, such as: short iteration
cycles, functionality driven planning, constant feedback,
tolerance to changes, team proximity, client intimacy, and
focus on the work environment [4]. A variety of different
development practices is suggested by those methods in
order to fulfill these agile principles. Therefore, deciding
which agile method to adopt for a given reality may
become complicated and time-consuming for
organizations, and sometimes it may even be necessary to
combine practices from different methods to better
approach the problem.

This paper proposes a framework to support
organizations in selecting or customizing their own agile
software processes. The purpose of proposing a
framework for agile methods is to provide a structure that

contains, in an organized and consistent way, the agile
practices and activities suggested by commonly used agile
methods, thus allowing organizations to efficiently define
an agile software process according to stakeholder needs.

The proposed framework includes agile practices
adopted by several agile methods, namely: Extreme
Programming (XP) [3], Scrum [5] [17], Feature Driven
Development (FDD) [14] [6], Adaptive Software
Development (ASD) [11], Dynamic System Development
Method (DSDM) [9], Crystal Clear [8] [11], Lean
Software Development (LSD) [15], and Agile Modeling
(AM) [2]. It also identifies interdependencies between
agile practices, thus assuring practices are applied in a
consistent order within the development process being
defined.

A tool for defining new software processes based on
this framework is also presented. This tool not only helps
managing the selected practices and respective
interdependencies, but it also allows the generation and
organization of the artifacts obtained from the selected
practices.

The rest of this paper is organized as follows. Section
2 describes the proposed framework. Section 3 presents
the tool we created to support the framework. Section 4
describes two case studies using the proposed framework.
Finally, in section 5, we present our conclusions

2. The Proposed Framework

All the agile methods selected as the basis for the
proposed framework present an incremental and iterative
process and are indicated to small and medium sized
teams that develop software with dynamic and constant
changeable requirements. These methods were selected
not only for being widely recognized as agile methods, but
also because the available literature was considered
sufficient to provide a good understanding of how such
methods should be applied to software development.
Although there are other methods like the Unified Process
that can be applied in an agile way, those were not
included here because, as pointed out by [11], the normal
usage of such methods tends to be rigorous.

25

The proposed framework consists mainly of a set of
agile practices that can be applied to software
development. In order to specify this framework, we first
had to determine which practices should be part of it by
analyzing the agile methods selected above and comparing
activities, practices and roles in each of those methods.
We borrowed the list of activities from the incremental
development process [16] as the basis for this comparative
analysis of agile methods. Each of the practices included
in the framework was then allocated to one of the
activities of the incremental development process. Finally,
the interdependencies among practices had to be identified
to constrain their application within the development
cycle, thus assuring practices are applied in a consistent
order. The details of this process and the framework that
resulted from it are described next.

2.1. Comparing Agile Methods

The set of activities proposed for the incremental
development process [16] constitutes the basis for our
comparative analysis of agile methods. According to [12],
incremental development principles are being implicitly
used since the 50’s by different development approaches.
These principles have gained more attention, especially
since the 90’s, when the agile approach emerged.

The strategy adopted for comparing agile methods was
mainly to organize agile method practices and roles
according to incremental process activities. For each
activity in the incremental development process, we
created a table that lists each agile method along with its
corresponding activity and respective practices and roles,
as in the table shown below for the activity Define Outline
Requirements (Table 1). These tables help making the
differences and similarities of agile methods more evident,
and proved to be a very useful resource for the
comparative analysis of the agile methods in question. The
complete set of tables that resulted from this analysis can
be found in [10].

Table 1. Activity define outline requirements.

Activity Define Outline Requirements

Metho
d

Specific. of the
Activity

Practices Roles

XP
Customers write user

stories.

- Planning Game
- Metaphor
- On-site
customer

- Customer
- Manager (Big
Boss)
- Programmers

Scrum
Definition of the
Product Backlog

- Product
Backlog

- Scrum Master
- Product Owner
- Customer

FDD

Generation of engines
for the

documentation of
requirements (use

- Developing by
Feature

- Manager Project
- Chief Architect
- Domain Expert
- Domain Manager

cases, user stories,
UML class and

sequence diagrams)

ASD
Requirements defined
during JAD sessions

-

- Executive
Sponsor
- Facilitator
- Scribe

DSDM

System specifying
including user classes

and mandatory
requirements

- Workshop
- Prototyping

- Visionair
- Techn. Coordin.
- Executive
Sponsor
- Ambassador
- Project Manager
- Advisor User

Crystal
Clear

Elaborate an actor-
objective list

- Workshop

- Business
Specialist
- Ambassador User
- Responsible
Executive

LSD
Requirements

gathering during the
project

- Requirements
- Disaggregating
- Scope

AM

Generation of a
Document of

Requirements;
Executive General

Vision; General
Vision of the Project

- -

2.2. Selecting Agile Practices

As a result of the comparative analysis described
above, similar practices from different methods were
identified and put together, thus helping eliminate
redundant practices. Each activity of the framework along
with the related practices is mentioned next. A complete
description of these practices, the roles incorporated, and
the set of methods that originally define each practice is
found at [10] and [13].

The activity Define Outline Requirements includes the
following practices: User Stories, List of Requirements,
Detailed Documentation of Requirements, and Document
Organization.

The activity Assign Requirements to Increments
includes the following practices: Iteration Planning,
Duration of Iterations, Distribution of Requirements to
Responsible, and Documentation Update.

The activity Design System Architecture includes the
following practices: Overall System Design, System
Detailed Design, and Documentation of the Generated
Design.

The activity Develop System Increment includes the
following practices: Requirements Development During
the Iterations, Writing of the Unit and Acceptance Tests,
Collective Development of Code, Pair Programming,
Refactoring, Daily Meetings, Simultaneous Development,
Integration Parallel to Development, Version Control,
Side-by-side Programming, and Documentation of
Development.

26

The activity Validate Increment includes the following
practices: Integration of the Increment before Validation,
Execution of Unit and Acceptance Tests, and Code
Inspection.

The activity Integrate Increment includes the practice
Integration of the Resulting Increment.

The activity Validate System includes the practices
Iteration Review Meeting and System Deployment into
Production.

The activity Final System includes the following
practices: Delivery of the System to Customer, Generation
of a Brief Documentation, and Refinement of the
Generated Documentation.

2.3. Interdependencies among Practices

The practices that are part of the framework can be
chosen and executed according to development team
needs, following the order suggested by the activities from
incremental development. However, some practices are
dependent on each other, that is, they can only be
executed after or together with other practices, and some
practices can only be executed when others are not. These
interdependencies among practices are specified by an
activity matrix. Due to space limitation, only a small part
of the activity matrix is presented in table 2. The complete
activity matrix containing all the activities and practices
proposed in the framework is available at
http://www.inf.ufsc.br/~vilain/agilemethods/ActivityMatri
x.pdf.

Table 2. Partial activity matrix.

Define outline
requirements

Assign req. to
increments

Design
system

architect.

U
se

r
St

or
ie

s

L
is

t o
f

R
eq

.

D
et

ai
le

d
D

oc
. o

f
R

e q
.

D
oc

. O
rg

an
iz

.

It
er

at
io

n
Pl

an
ni

ng

D
ur

.o
f

It
er

at
io

ns

D
is

tr
ib

. o
f

R
eq

.

D
oc

. U
pd

at
e

O
ve

ra
ll

Sy
st

em

D
es

.
Sy

st
em

D

et
.D

es
i g

n

D
oc

.o
f

th
e

D
es

ig
n

Overall
System Des.

D* D* D* D

System Det.
Design *

D* D* D* D D

D
es

. s
ys

te
m

ar

ch
it

ec
t.

Doc.of the
Design *

 D* D*

Developm. D* D* D* D D

Writ .Unit
and Accep.
Tests *

D* D* D* D

Collective
Develop. *

 E

Pair Progr *

Side-by-side
Progr. *

D
ev

el
op

 s
ys

te
m

 in
cr

em
en

t

Refactoring
*

Optional practices, that is, those that may not be
executed, are marked with a * beside its name (horizontal
entries). The dependence among practices is indicated by
the letter "D" indicating the horizontal practice depends
on the execution of the vertical practice. If a practice
depends on the execution of at least one from a set of
practices, we use the letter "D" followed by a *. The
excluding practices are marked with letter "E", that is, the
horizontal practice eliminates the possibility of executing
the vertical practice. In this case, the development team
should choose one between the two excluding practices. It
is important to pay attention to the dependences between
practices, because even though a practice is marked as
optional, it may become mandatory if other practices that
depend on it are executed.

3. Framework Supporting Tool

We created a tool that gives support to the definition
of agile processes according to the proposed framework.
This tool provides an easy-to-use graphical interface that
allows developers to easily select which practices will be
utilized in each of the activities of the development
process, while automatically checking for the
interdependencies among select practices as specified in
the activity matrix described above. In other words, this
tool can assist developers in defining new or customized
agile software processes based on the activities and
practices of the proposed framework. The tool is available
at www.inf.ufsc.br/~vilain/agilemethods/fcama.zip and its
detailed documentation can be found in [13].

The tool main screen is divided in three areas: process
area, descriptive area, and work area. The process area
presents the development process organized as a
hierarchical tree, where practices are grouped in activities
and activities are grouped in iterations. When a user
selects an activity, iteration or practice, the editor screen
for the selected artifact is shown in the work area, while
the descriptive area presents a description of the practice
currently active in the work area.

4. Case Studies

The proposed framework was utilized in two case
studies. The first case study was on a research project
developed by the development team of CIRAM/Epagri,
the meteorological information center of the state of Santa
Catarina, south of Brazil. The goal of such project was the
development of a website to provide support to the
exchange of information between companies participating
in the project, as well as to provide information about the
atmospheric discharges in order to monitor the intensity
and location of lightnings. The technical team responsible
for the development of this system had not used any

27

specific development method or prescriptive process
before. As team members were looking for an iterative
and incremental method and that would generate minimal
documentation, they agreed to utilize the framework
proposed. After development was complete, all team
members that participated in this first case study pointed
out their appreciation to the framework, especially
because it promoted efficiency while having no impact in
the team development routine.

The second case study was on the development of the
tool described in section 4. Since we were looking for an
agile method, we decided to use the framework and verify
its efficiency. However, the development process had a
particular feature in this case: it was design and
implemented by one single person. So, some of the
practices proposed by the framework could not be
observed. On the other hand, it was interesting to verify
that the framework can also be applied to one-person-only
development processes.

5. Conclusion

This paper presented a framework to support
organizations in selecting or customizing agile software
processes. The proposed framework is composed by
practices from a variety of agile methods. It allows
development teams to select the practices according to
their needs, thus defining new software processes that
more easily fulfill their expectations.

In the definition of a customized agile process, the
selection of the practices available in the framework must
be carefully made. As the framework comprises the AM
practices, a process including several of these practices
could produce a lot of documentation, and consequently
one of the most important agile principles would be
violated.

The framework proposed was successfully applied in
two case studies. Team participants stated that the
simplicity of the framework allowed its use without
significant impacts in the development routine, while
helping them to complete the development of the system
within deadlines and budgets.

We also presented an automated tool to support the
practices proposed by the framework in order to facilitate
its adoption during a development process. Such tool
supports the definition of a development process as well
as the organization and generation of the necessary
artifacts to the process defined. Unfortunately, we could
not use the tool in our case studies because it was not
available yet.

Although we did not find anything similar to the
framework proposed here, some of the previously existing
research work not only provided us with a theoretical
background on agile methods but also helped us on

selecting the guidelines used to compare the methods that
compose the framework. [1] presents a comparison among
the agile methods Crystal Family, DSDM, ISD and PP. [7]
presents a comparison of the agile methods XP, Scrum,
FDD, Crystal Family, and DSDM, in relation to agile
principles.

As a continuation of work presented here, we intend to
apply the framework in additional case studies using the
tool we developed for this purpose. We also intend to
analyze others agile methods in order to look for possibly
useful agile practices that could be included into the
proposed framework.

6. References

[1] P. Abrahamsson, J. Warsta, M. Siponen, J. Ronkainen, “New
Directions on Agile Methods: A Comparative Analysis”.
IEEE Computer Science, 2003.

[2] S. Ambler. Agile Modeling: effective practices for Extreme
Programming and the Unified Process. Bookman, Porto
Alegre, 2004. (in portuguese)

[3] K. Beck, Extreme Programming Explained. Embrace
change. Addison-Wesley, Reading, Massachusetts, 2000.

[4] K. Beck, A. Cockburn, R. Jeffries, J. Highsmith, “Agile
Manifesto”. http://www.agilemanifesto.org, 2001.

[5] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, J.
Sutherland, “SCRUM: An extension pattern language for
hyperprodutive software development”. Pattern Languages
of Programs'98 Conference, 1998.

[6] P. Coad,, Java Modeling in Color with UML. Prentice Hall,
1999.

[7] M. Cohn, “Selecting an Agile Process: Comparing the
Leading Alternatives”. http://www.mountaingoatsoftware.
com/pres/Selecting021015.pdf, 2002.

[8] A. Cockburn, Crystal Clear: A Human-Powered
Methodology For Small Teams. Addison Wesley, 2004.

[9] DSDM Tour, http://www.dsdm.org/tour/default.asp.
[10] P.B. Fagundes, Framework for Comparing and Analyzing

Agile Methods. Master Thesis, UFSC, 2005. (in portuguese)
[11] J. Highsmith, Agile Software Development Ecosystems.

Addison Wesley, 2002.
[12] C. Larman, V.R. Basili, “Iterative and Incremental

Development, A Brief History”. IEEE Computer, 36-6, 2003,
47-56.

[13] T. L. Machado, A Tool to Suport the Framework for
Comparing and Analyzing Agile Methods. Undergraduate
Thesis. UFSC, 2005 (in portuguese)

[14] S. Palmer, “Feature Driven Development - Integrating Best
Practices”. http://www.step10.com/process/Integrating
BestPractices.html, 2003.

[15] M. Poppendieck, T. Poppendieck, Lean Software
Development: An Agile Toolkit for Software Development
Managers. Addison-Wesley Professional, 2003.

[16] I. Sommerville, Software Engineering. Addison-Wesley,
São Paulo, 2003.

[17] K. Schwaber, M. Beedle, Agile Software Development with
SCRUM. Prentice Hall, 2002.

28

A Proposal to Delegate GUI Implementation using a Source Code based Model

Marco Monteiro
School of Technology and Management, Polytechnic Institute of Leiria

Campus 2, Morro do Lena - Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
marco@estg.ipleiria.pt

Paula Oliveira
Engineering Department, University of Trás-os-Montes e Alto Douro
Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal

poliveir@utad.pt

Ramiro Gonçalves
Engineering Department, University of Trás-os-Montes e Alto Douro
Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal

ramiro@utad.pt

Abstract

In this paper we propose an architecture whose main
goal is to improve productivity in user interface develop-
ment for data-intensive applications. This objective is to be
achieved by defining a high level model that describes the
user interface structure. That model will be integrated in the
source code through non-functional language extensions.
Our final goal is allowing developers to define user inter-
face model by adding language extensions to the source
code and then acquiring an external software package to
which they delegate the implementation of the concrete user
interface.

1. Introduction

As the size and complexity of information systems in-

creases, building maintaining and integrating its applica-

tions is getting harder. To keep up with that complexity,

there’s a constant need to improve productivity of the de-

velopment process in the software industry.

Driven by that need, in this paper we propose an architec-

ture whose main goal is to improve productivity in Graph-

ical User Interface (GUI) development for data-intensive

applications. Nowadays developers tend to create GUI by

composition of various components. Our final goal is allow-

ing developers to define GUI using language extensions and

then acquiring an external software package (which we’ll

call smart template) to which they delegate the implemen-

tation of the concrete GUI.

This paper is organized as follows. Research problem

and alternative solutions are discussed in section 2. Pro-

posed solution is presented in section 3 and conclusions on

section 4.

2. Overview

Currently, a large number of projects use Component

Based Development (CBD), which allows applications de-

velopment by assembling a set of pre-manufactured com-

ponents. Each component is a black-box entity, which can

be deployed independently and is able to deliver specific

services [1].

GUIs are composed of various graphical elements, such

as buttons or input fields. When developing GUIs, both the

presentation and behavior aspects of those elements are to

be considered. Presentation aspects concern the appearance

and layout of GUI elements and behavior is related to the in-

teraction between themselves or between them and the un-

derlying code. Using CBD, each GUI element is mapped

to a component and presentation or behavior aspects are de-

fined by its properties, methods and events. Also, by us-

ing Rapid Application Development (RAD) tools, GUI lay-

out design is made visually through composition of com-

ponents. Compared to older processes and methodologies

the advent of CBD and RAD tools has certainly increased

the productivity of GUI development. However, CBD still

29

hasn’t redeemed its promises of reuse and flexibility [2] and

there’s still a lot of risks, challenges and unresolved issues

in CBD [3].

The issue that drove us to study and propose a solu-

tion to improve productivity in this area, is related to the

process of components composition and configuration. On

large or very large applications, the same component can

be reused several times on different contexts, which is the

main factor for the productivity improvement accomplished

by CBD. However, as the number of instances and complex-

ity of components increases, developers time is increasingly

spent on the tedious tasks of composing layouts, configur-

ing components and maintaining consistency in presenta-

tion and behavior aspects of the GUI components through

the entire application.

Next, we’ll present some alternative solutions for the de-

scribed problem, namely Cascade Style Sheets and Tem-

plates on section 2.1, Frameworks on section 2.2 and Auto-

matic GUI generation on section 2.3.

2.1. Cascade Style Sheets and Templates

In 1994, Håkon Wium Lie [4] proposed the Cascading

Style Sheets (CSS) language, to describe the presentation

of a document written in a markup language, usually Hyper-

text Markup Language (HTML). It enables the separation of

document presentation from document content and ensures

visual consistency through central configuration. Another

concept used in web applications development is the page

template, that’s a pre-developed page layout used to create

new pages from the same design. It’s a concept adapted by

Microsoft ASP.Net 2Master Pages. As CSS, page templates

also allows developer to create consistent layout and presen-

tation through entire sites or group of pages. Unlike CSS

that acts on individual HTML elements, templates acts on

entire pages. Both CSS and page templates are great to de-

fine presentation aspects, but very limited when defining be-

havior or interactions between graphical elements. Håkon

Wium Lie himself stated that ”CSS was primarily designed
to present documents, not user interfaces” [5].

2.2. Frameworks

The word framework has a lot of meanings, depending

of the context. Within Object-Oriented (OO) design per-

spective, a framework is a set of cooperating classes that

makes up a reusable design for a specific kind of software.

A framework provides architectural guidance by partition-

ing the design into abstract classes and defining their re-

sponsibilities and collaborations. A developer customizes

the framework to a particular application by subclassing and

composing instance of framework classes [6][7].

Frameworks are used in several application domains and

at different levels of abstractions. In GUI development

context, frameworks can control components creation, de-

ployment, layout and configuration, leaving developer free

of those repetitive tasks. Contrary to CSS and page tem-

plates, frameworks aren’t limited to presentation issues, as

they can handle GUI behavior aspects. In the GUI domain,

frameworks can be generic, like Apache Struts or Mono-

Rail (Model-View-Controller based frameworks), they can

be available from commercial supplier to complement and

integrate with their own components catalog or they can be

custom made for a specific application or set of applica-

tions. In any of those cases, frameworks are proprietary,

each having its own architecture, interface, classes and id-

iosyncrasies, therefore, requiring long learning processes.

Also, code produced is interconnected with frameworks hi-

erarchy of classes, which is against separation of concerns

and creates non portable code.

2.3. Automatic GUI generation

Automatic generation is potentially the most productive

method to develop GUI, since by definition it allows de-

velopers to delegate GUI creation to an external applica-

tion. Proposed solutions to generate GUI automatically are

mainly model-based systems, that attempt to formally de-

scribe the tasks, data, and users that an application will

have, and then use this formal models to guide the gener-

ation of the GUI. Some systems automatically design the

GUI and others provide design assistance to developers[8].

These models are abstract models, meaning that they don’t

specify exactly how the GUI is going to look, but rather

what elements are to be shown and how they should be-

have. Systems will then use that abstract description to

generate concrete interfaces for various devices. Trying to

fit the same application on different devices with different

capabilities [9], is what makes automatic GUI generation

so complex. Despite a lot of research, model-based auto-

matic GUI generation still hasn’t become common in GUI

development, in part because building models is an abstract

process and better results are often achievable by a human

designer in less time [10]. Abstract models can be complex

to build and maintain, thus keeping models and applications

concrete GUI synchronized can be problematic.

There are also some commercial tools, like Oracle De-

signer, that generates not only the GUI but complete appli-

cations, embracing all development cycle, which is not ap-

propriated to development methodologies like extreme pro-

gramming [11], where constant changes and very fast pro-

totyping are required. They’re usually based on relational

database (DB), and use its metadata to generate layouts for

data representation. However, resulting applications have

behavior limitations, because DB are typically restricted to

create, retrieve, update and delete (CRUD) operations.

30

3. Proposed solution

According to our initial motivation, main goal is to im-

prove productivity in GUI development for data-intensive

applications. Based on that premise and on preliminary

studies, it was defined a set of 5 guidelines for the solu-

tion. First, it should integrate seamlessly with GUI com-

mercial components, avoiding the need to recreate code to

generate GUI elements. Second, it should be as easy to use

as possible, allowing developers to concentrate on produc-

ing business related code. Separation of concerns should

be encouraged. Third, it should be flexible, allowing rapid

changes at any phase of the product development. Fourth,

it should produce very fast prototypes, preferably in a fully

automated manner. Fifth, it can’t be limited to work with

relational DB or XML as data source. Data persistence

shouldn’t be of any concern to the solution, as stated by

separation of concerns principle.

Next, we’ll present a description of the proposed solu-

tion, namely the general architecture in section 3.1, the GUI

Model in section 3.2, the Binding Framework in section 3.3

and Smart Templates in section 3.4.

3.1. Architecture

There are 2 main characteristics for the proposed system

architecture that distinguish it from others. First, it’ll use

an abstract model to characterize GUI, but instead of rely-

ing on specialized GUI models, based on XML or any other

format, it’ll be integrated with the source code through lan-

guage extensions, which we’ll call Graphical User Interface

Language eXtensions (GUILX). Second, instead of gener-

ating GUI automatically, system will delegate that responsi-

bility to external software packages, which we’ll call smart

templates (check Figure 1). System will provide the neces-
sary resources to bind the source code model with external

smart templates, who will handle GUI implementation for

the business code included in the model.

GUI Model

Extensions (GUILX)

Language (C#)

Smart Template (A)

. . .B
in

di
ng

Fr
am

ew
or

k

Smart Template (B)

Smart Template (Z)

Figure 1. Proposed architecture.

3.2. GUI Model

Although it’s not a common technique, using the source

code as a model to generate GUI is not original. For in-

stance, in 2004 Jelinek [9], used annotated source code

to generate GUI. Despite some similar concepts, Jalinek

model uses a tree-rewrite based language, as our model will

use a mainstream OO language. That choice was made

to facilitate integration with comercial GUI components.

We’ll use C#, but all concepts are also applicable to the

Java language. Source code based models main advantage

is the proximity between the model and the code we want

to execute. This approach turns development process more

flexible, as synchronization between business code and GUI

model is no longer required. In our solution, the GUI model

is composed of standard C# source code that defines busi-

ness operations and GUILX language extensions to define

the GUI related aspects. These extensions are declarative as

they allow developers to define what GUI they want, instead

of defining how to build it.

To better comprehend the model, lets analyze data-

intensive applications. In those applications, GUI elements

such as textboxs or grids, provide data for the user to read

or write. Also, users can perform operations by activating

events on GUI elements, like clicking on a button or a menu

item. Comparing this reality with OO languages, such as

C#, there are some similarities, as objects also have data,

which can be encapsulated as properties and have associ-

ated operations called methods. Objects data and behavior

can be mapped in GUI elements or set of elements. For

example, considering a business class called ”Book” with

a read-only string property called ”ISBN”, a string prop-

erty called ”Title”, a boolean property called ”Rented” and a

method called ”Sell”. By analyzing source code at run-time

through applications metadata, we can generate the GUI el-

ements and layout needed to represent instances of Book

objects. GUI elements are chosen by the kind of language

elements and accordantly to properties types and accessabil-

ity (check Figure 2).

public class Book {
 public string ISBN {
 get { ... } }
 public string Title {
 get { ... }
 set { ... } }
 public bool Rented {
 get { ... }
 set { ... } }
 public void Sell { . . .}
}

Figure 2. Generation GUI from source code.
Although language metadata has already some useful in-

formation, it’s not enough for defining a model to gener-

ate GUI. Filling that gap is GUILX language extensions

responsibility, by enriching the metadata with structural

information about GUI. This extensions are implemented

by annotating the source code through .Net custom at-

tributes, which provide a way for developers to extend na-

tive language by associating declarative information within

the source code. ”Show” is the first attribute defined on

GUILX, indicating which language elements are meant to

be available and with what description. If we analyze

31

second example in Figure 3 and compare it with the first
one, we can verify that the checkbox is not shown because

”Rented” property doesn’t have the ”Show” attribute. Also,

”Title” property and ”Sell” method have different descrip-

tions.

public class Book {
 [Show]
 public string ISBN
 { get { ... } }
 [Show("Books title")]
 public string Title
 { get { ... }
 set { ... } }
 public bool Rented
 { get { ... }
 set { ... } }
 [Show("Sell this book")]
 public void Sell() { ... }
}

Figure 3. Usage of GUILX ”Show” attribute.

Definition of GUILX is still in progress but is critical for

the success of the solution. It must be rich enough to ensure

that a complete prototype (even if a very basic one) can be

generated from the GUI model but simple enough to avoid

cluttering the source code with GUI related details.

3.3. Binding Framework

The ”Binding Framework” will be responsible for the

connection of smart templates and the GUI model. It’ll

allow the smart template to query the GUI model, to cre-

ate object instances and to invoke methods of that objects.

Also, it’ll serve as a controller, maintaining the execution

context for the GUI elements, thus controlling navigation

through entire application. It must always know what ob-

ject instance is the user viewing and where to go or what

to show next. Every time there’s a need to map an object

instance to some GUI element, framework will notify the

smart template to change interface accordantly.

3.4. Smart Templates

Proposed solution is designed to support various smart

templates, one at a time. The idea is allowing develop-

ers to define a GUI model and then adquire a smart tem-

plate to which they delegate all GUI implementation. Smart

templates are specialized frameworks, developed by exter-

nal entities that provide complete GUI services to the GUI

model, by complying with the rules specified by the binding

framework. There can be smart templates developed by dif-

ferent suppliers, for different devices and using completely

different methods. One can generate GUI automatically,

other can generate GUI partially and another can generate

GUI from manual definitions.

4. Conclusion

Although the proposed solution is still in a embryonic

state, we’re expecting productivity improvements by allow-

ing developers to focus on business code development and

reducing the repetitive tasks of composing layouts and con-

figuring GUI components. Proposed solution is expected

to be easier to use than custom frameworks, because learn-

ing a declarative language (GUILX) is easier than learning

a complete class hierarchy. Also, in the proposed solution,

business code doesn’t use any direct code related to GUI

development, thus ensuring the separation of concerns prin-

ciple. Compared to other methods of automatic GUI gener-

ation, we’re also expecting easier development, due to the

fact that the model is integrated in the source code, therefore

being easier to create and maintain that an abstract model.

However, the success of the proposed solution depends on

the definition of the GUILX language, which requires a cor-

rect balanced between simplicity and flexibility.

References

[1] C. Szyperski, Component Oriented Programming. Springer,
1998.

[2] H. de Bruin and H. van Vliet, “The future of component-

based development is generation,” 2002.

[3] P. Vitharana, “Risks and challenges of component-based

software development,” Communications of the ACM,
vol. 46, no. 8, pp. 67–72, 2003.

[4] H. W. Lie, “Cascading html style sheets; pro-

posal.” published 10 Oct 1994. Available from:

http://www.w3.org/People/howcome/p/cascade.html;

accessed on 28/01/2007.

[5] H. W. Lie, Cascading Style Sheets. PhD thesis, Faculty of
Mathematics and Natural Sciences, University of Oslo, 2005.

[6] I. Jacobson, M. Griss, and P. Jonsson, Software reuse: archi-
tecture, process and organization for business success. ACM
Press/Addison-Wesley Publishing Co. New York, NY, USA,

1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA, 1995.

[8] J. Nichols and A. Faulring, “Automatic interface generation

and future user interface tools,” ACM CHI 2005 Workshop
on The Future of User Interface Design Tools, 2005.

[9] J. Jelinek and P. Slavik, “Gui generation from annotated

source code,” in TAMODIA ’04: Proceedings of the 3rd an-
nual conference on Task models and diagrams, (New York,
NY, USA), pp. 129–136, ACM Press, 2004.

[10] B. Myers, S. Hudson, and R. Pausch, “Past, present, and fu-

ture of user interface software tools,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 7, no. 1, pp. 3–
28, 2000.

[11] K. Beck, “Embracing change with extreme programming,”

Computer, vol. 32, no. 10, pp. 70–77, 1999.

32

Cost-based Analysis of Multiple Counter-Examples

Flavian Vasile Samik Basu
Department of Computer Science, Iowa State University

Email: {flavian,sbasu}@cs.iastate.edu

Abstract

We study the problem of counterexample analysis, where
a counterexample is presented as a sequence of states in the
model that witnesses the violation of a desired specifica-
tion. We claim that analyzing multiple counterexamples, in-
stead of a single one, will provide valuable hints regarding
the cause of the violation; specifically when the counterex-
amples are closely related. In this setting, we developed a
cost-sensitive satisfiability method which takes as input the
set of counterexamples represented as logical formulas in
DNF and identifies the minimal set of literals that must be
altered in order to eliminate all counterexamples. We will
refer to this minimal set of literals as the causal set of the
counterexamples, as they can “cause” the removal of coun-
terexamples. Minimality, in our context, is defined by the
least possible update to the existing model that eliminates
all counter-examples. It is computed using a cost model
where any sequence that is not a counterexample is conser-
vatively classified as a potential positive/correct sequence.
We show that our notion of causality is equivalent to widely-
used causality theories of Lewis and Pearl.

1 Introduction
Counterexamples resulting from verification (e.g. model

checking [10, 3]) of a system against a property, provide
valuable insights for understanding the problems in model-
ing of the system or in the system itself. Since the size of
the counterexample can be of similar size with the model
being verified, it is important to develop error localization
techniques which can further assist the user to zoom in on
specific segments of the counterexample and take appropri-
ate corrective measure.

Related Work. A number of techniques [1, 7, 6, 11] fo-
cus on obtaining the divergence between a counterexample
and the closest positive example and classify the diverging
point in the model as the cause of the corresponding coun-
terexample.

Perhaps the closest to our approach is the work by
Groce [5, 6] where the author shows that the solution fol-

lows the Lewis theory of causation. Furthermore, the au-
thor also relies on cost-sensitive satisfiability where the cost
function depends on the concrete location of the literals and
transition actions.

In [11] the authors primarily focus on addressing the
problem of selecting the best positive trace in the case of
multiple equally close positive examples. [1] also uses clos-
est positive traces to find error locations. Once an error
location is identified, that location is “marked” so that the
subsequent verification process does not search the model
along that location; the goal is to iteratively identify all er-
ror locations.

In [7] multiple counterexamples and closest positive
traces are also used in order to report general characteristics
in terms of their transitions. They identify error-causes on
the basis of the set of transitions that are present in at least
one counterexample, the set of transitions that are present
in all of the counterexamples, the set of transitions that are
present only in the counterexamples, and the set of transi-
tions that are present in all of the counterexamples and in
no positive trace.

Another promising approach for error-cause localization
relies on identifying the error-causing inputs [12, 13]. The
technique, referred to as delta debugging, is subsequently
extended to consider internal variables of the models.

In contrast to the above techniques, which typically an-
alyze one counterexample and depend on the presence of
a positive example, we propose to analyze multiple coun-
terexamples and identify the common aspects of all coun-
terexamples.

Our Solution. The main motivation of our approach is
to identify the common/minimal conditions under which
all counterexamples can be eliminated. The intuition be-
hind our approach is that there is information that can be
exploited if all counterexamples are analyzed, specifically
when these counterexamples are generated by the same in-
herent error in the system. A counterexample in our context
is defined by a conjunction of constraints which must be
satisfied for its feasibility. The set of counterexamples, de-
noted by CE, is therefore defined by a DNF formula where
each disjunct corresponds to a single counterexample. The

33

set of conditions under which all the counterexamples are
eliminated, can be obtained by finding the solution of satis-
fiability of ¬CE. The satisfiable conditions are referred to
as causal set for ¬CE.

Note that there can be multiple causal sets for ¬CE. As
such, it is necessary to identify the best possible solution
that can provide users the most succinct and precise in-
formation regarding the likely cause of the error. This is
achieved by associating a cost with each condition and iden-
tifying a set of conditions with minimum cost. The cost
function for a condition, in essence, measures the amount
by which the correct behavior of existing model will be al-
tered if the condition is used to eliminate counterexamples.
In other words, if we interpret the minimum cost solution
as a set of possible changes to the system-model then the
solution alters the behavior of the initial model as least as
possible in order to remove all counterexamples.

Another distinguishing feature of our technique is that in
contrast of existing techniques which aim to align a coun-
terexample to its closest positive example or a correct trace,
our technique can select a solution from the space of new
possible behaviors of the program if this proves to be more
economical from the point of view of the cost analysis.

At a high level, the difference in techniques can be ex-
plained as follows. Given a system-model M and the error
condition E, the space of all possible traces is divided in
four areas: correct traces covered by the region (M ∧ ¬E),
the set of all counterexamples (M ∧E) and two other areas
corresponding to the behavior not covered by the current
model M : ¬M ∧ E and ¬M ∧ ¬E. If an incorrect trace
(from M ∧ E) is aligned to the closest correct trace (from
M∧¬E) then the difference is reported as a Lewis cause for
the error. However the causality interpretation only holds
because the solution space is restricted to traces in M ∧¬E,
i.e., it is assumed that the only way to remove the error is
to alter the counterexample to fit in M ∧ ¬E. However, the
counterexample may be due to faulty modeling resulting in
an incomplete model. In other words, there may be cor-
rect/desired behavior in the region ¬M that is not modeled.
As the primary purpose of error localization is to provide
appropriate user-guidance for counterexample removal (and
not automatic correction of models), it is important to also
consider the ¬M in addition to existing correct traces when
analyzing counterexamples. The closest corrective measure
to the counterexample may therefore lie outside the current
model M .

Contribution.

1.We present an alternative way for error cause localization
by analysis of multiple counterexamples. The technique
can potentially identify causes that are beyond the exist-
ing state-space of the model being verified.

2.Our technique is based on applying cost-sensitive

MINSAT method and identifies the minimal set of condi-
tions under which all counterexamples can be eliminated.
The technique is sound and complete.

3.We show that our definition of minimal causality of coun-
terexamples is equivalent to Pearls theory of causation
and implies a solution according to the widely used Lewis
theory of causation. We provide valuable insights to the
problem of causality identification of counterexamples.

Organization. The rest of the paper is organized as fol-
lows. Section 2 describes our technique for counterexample
analysis (Subsection 2.1) and illustrates our technique us-
ing an example (Subsection 2.2). In Section 3, we present
the relationship of our results with Pearl and Lewis theory
of causality. Section 4 includes the future avenues of re-
search.

2 Analysis of Counterexamples
We are interested in finding the minimum number of

changes required to remove all counterexamples. In the
following we show that the problem can be reduced to
minimum-cost satisfiability problem and then offer an in-
terpretation of its solutions as causes according to the well-
established causal theories due to Pearl [9] and Lewis [8].
2.1 Causal set
2.1.1 Preliminaries
Given a model M and an error condition E, the counterex-
amples, if any, can be generated using the following for-
mula:

CE =

[
I(V1)

k−1∧
i=1

T (Vi, Vi+1)

]
∧ E

In the above, I(V1) describes the valuations of variables
(V1) in the start states of M and T (Vi, Vi+1) describes the
updates in the variable valuations at the i-th transition in the
reachability graph from I(V1). The formula can be written
as a DNF formulaCE = Tr1 ∨ Tr2 ∨ . . .∨ Trm where m is
the number of counterexamples and Tri is a term described
by conjunction of literals representing constraints over vari-
ables in M . Satisfiability of the above formula ensures the
presence of at least one counterexample in the model M .
Conversely, the satisfiability of its negation eliminates all
counterexamples

¬CE = Cl1(l1, l2, . . . , ln) ∧ Cl2(l1, l2, . . . , ln) ∧ . . .
∧ Clm(l1, l2, . . . , ln)

(1)
where Cli(l1, l2, . . . , ln) is a clause defined as ¬Tri

and li is a literal corresponding to specific constraint
over variables in M . We will also use Cli to denote
Cli(l1, l2, . . . , ln). The literals in ¬CE are negation of con-
straints required for the counterexamples. Satisfiability of a

34

1: int main () {
2: int i1, i2, i3; //input values
3: int least = i1;
4: int most = i1;
5: if (most < i2)
6: most = i2;
7: if (most < i3)
8: most = i3; //(ERROR: least = i3)
9: if (least > i2)

10: least = i2; //(ERROR: most = i2)
11: if (least > i3)
12: least = i3;
13: assert (least <= most); //specification
14: }

Figure 1. Minmax.c

set literals in ¬CE, containing at least one literal from each
conjunct (clause), will result in the satisfiability of ¬CE and
elimination of all the counterexamples. We will refer to this
set as causal set.
Example. Consider the Example in Figure 1 which takes
as input three variables i1, i2 and i3, and assigns the largest
and smallest of these variables to most and least respec-
tively. Assume that, there exists an error in the program
where the statement at Line 10 is written as most=i2 instead
of the correct version least=i2.

There will be two counterexamples that witness the vio-
lation of the assertion at Line 13: Figure 2. The counterex-
amples are shown along with the conditions on inputs that
are required for their feasibility. The constraints at each line
number of the counterexample are represented as varL

op n

denoting the constraint op (∈ {<, >,=,≤,≥, �=}) between
an input variable in and variable var (∈ {least, most})
which was assigned to at Line L. For example, the con-
straint at Line 3 for both counterexamples states that valua-
tion of least at Line 3 is equal to the valuation of i1.

Each counterexamples is, therefore, represented as con-
junction of constraints. Proceeding further, ¬CE is:2

4 least3
�=1 ∨ most4

�=1 ∨ most4
<2 ∨ most4

<3 ∨ least3
≤2 ∨

most10
�=2 ∨ least3

≤3 ∨ least12
�=3

3
5

V
2
4 least3

�=1 ∨ most4
�=1 ∨ most4

<2 ∨ most4
≥3 ∨ most8

�=3 ∨

least3
≤2 ∨ most10

�=2 ∨ least3
>3

3
5
(2)

2.1.2 MinCostSat Satisfiability
Once a logical formula that stands for the negation of all
counterexamples (¬CE) is obtained, identifying the causal
set Δ of literals which can satisfy ¬CE is straightforward:
Δ=SAT(¬CE). Note that there can be more than one causal
set. Our goal is to obtain a compact and precise causal set.
We formulate the problem as a minimization problem.

Definition 1 (MinCostSat Satisfiability) Given a

For:i2 < i3 < i1

3: least3
=1

4: most4
=1

5: most4
≥2

7: most4
≥3

9: least3
>2

10: most10
=2

11: least3
>3

12: least12
=3

For: i2 < i1 < i3

3: least3
=1

4: most4
=1

5: most4
≥2

7: most4
<3

8: most8
=3

9: least3
>2

10: most10
=2

11: least3
≤3

Figure 2. Counterexamples: Error at Line 10.

Boolean formula F in conjunctive normal form with
m clauses and n literals (l1, l2, . . . , ln), and a cost
function that assigns non-negative costs C(li) to li, the
MinCostSat problem is the problem of finding a set
Δ ⊆ {l1, l2, . . . , ln} which satisfies F and minimizes the

objective function:
|Δ|∑
j=1

C(lj) where |Δ| is the size of Δ. �

MinCostSat problem is NP-C as the SAT is a special case
of MinCostSat where the cost of every literal is 0. Exist-
ing technique, e.g. [4], can be effectively applied to solve
the problem.
A Simple Cost model. In order to associate a non-
negative cost C(li) to the literal li, we will consider the
minimum number of literals required to cover all clauses
in ¬CE This leads to a simple cost function:

C(li) =
1

|cover−(li)| −a |cover−(¬li)| (3)

where −a denotes absolute difference and cover−(li) is
defined as follows.

Definition 2 (cover−) Given a set of counterexamples
denoted by the formula CE, cover−(li) returns the set of
clauses in which li appears in ¬CE. |cover−(li)| denotes
the size of cover−(li). �

The Equation 3 assigns a cost value to a literal li which is
inversely proportional to the number of clauses in ¬CE that
can be potentially made satisfiable (number of counterex-
amples that can be removed) by satisfying li. Observe that,
the |cover−(¬li)| is subtracted as presence of ¬li in ¬CE
reduces the effect of li in eliminating counterexamples. For
the counterexamples in Figure 2, |cover−(least3

�=1)| is 2
and |cover−(least3

=1)| is 0 (see Equation 2).
The above cost model ensures the succinctness of the so-

lution where succinctness is defined by the number of lit-
erals needed for satisfiability of ¬CE. Such a simple cost
model is not precise as it does not take into consideration

35

the location of the counterexample at which the literal is
appearing. Typically, the initial part of the counterexamples
result from the initialization and all counterexamples will
include this initialization part. As such following the sim-
ple cost model, the minimum cost satisfiability will always
result in solutions that include the literals from the initializa-
tion segment (which may not be the best possible solution
for counterexample removal). To counter this situation, we
also take into consideration the location at which the literals
appear when computing their cost.
A cost model for precision. Recall that, a literal li is in
our solution implies that we are using li to remove all coun-
terexamples which contains ¬li; essentially we are saying
that a possible way to remove counterexamples is to alter
¬li to li. We claim that a li is more precise that lj if and
only if ¬li covers less number of model-traces compared to
that covered by ¬lj . The intuition is to identify a solution
which effects the existing model minimally.

To add precision to the cost function, we identify the po-
tential number of traces, a literal can cover. I.e., the cost
function of Equation 3 is refined as

C(li) =
Potential program coverage of li
|cover−(li)| −a |cover−(¬li)|

The numerator is computed by considering the maximum
length of the counterexamples in the model and the height
at which the literal (more specifically its negation1) appears.
For example, in case of programs, the height of a literal
is difference between the size of the program and the line
number as which the literal appears. Assuming a branching
factor of 2 per-state in any trace of the model, a literal at
height h can cover 2h traces. A weight w can be associated
with the literal which can be fine-tuned by the user to iden-
tify appropriate number of traces covered by the literal for
branching factor not equal to 2.

For example, if the average branching factor of a pro-
gram is k, then w can be computed as follows: kh = 2w×h,
i.e., w = log k. The w, in essence, establishes the belief
of the user about the model-behavior/traces that the literal
covers. Sub-unitary values of w represent a reduction of the
number of possible traces covered by li and supra-unitary
values an increase in that number. By varying the values of
w, the user can keep the solution really close to the errors
(act conservatively) or explore more of the options beyond
the existing model-space. Therefore,

C(li) =
2w(li)×h(li)

|cover−(li)| −a |cover−(¬li)| (4)

In the above, w(li) is the tunable parameter and h(li) is the
height at which negation of li appears in the counterexam-
ples. Intuitively, a literal li in ¬CE is costly if:

1Observe that li appears in ¬CE because of the presence of ¬li in the
counterexample.

1. its negation ¬li appears higher up in the counterex-
ample: as potentially more model behavior may get
effected if ¬li is altered to li to remove a counterex-
ample;

2. the user provides a high valuation for w: again esti-
mating higher number of model behavior depending
on ¬li; or

3. the counterexample coverage of ¬li is low: altering
¬li to li will not remove many counterexamples.

The above cost model will maximize our chances of obtain-
ing a solution for removal of all counterexamples and at the
same time will allow the user to fine-tune the solution using
the factor w.

Remark 1 We are not considering any positive examples;
as such any trace that is not a counterexample is deemed
positive example. This assumption allows us to obtain so-
lutions beyond existing model-space and possibly to attain
precise result as per the user requirement.

Specifically, there can be cases where aligning coun-
terexample to a positive example may not realize the best
possible solution due to incorrect modeling. So, one of the
alternative will be to empower the user with the choice to
use appropriate alignment. This is achieved by using w in
the Equation 4.

Let Δs = {l1, l2, . . . , lk} be the causal set of literals re-
quired for the satisfiability of ¬CE. We will write Δs |=
¬CE to denote that under the literals in set Δs the formula
¬CE is satisfiable. The overall cost of the solution is given
by C(Δs) =

∑|Δs|
i=1 C(li) where li ∈ Δs.

2.2 Illustrative Example

Consider the example in Figures 1, 2 and Equation 2.
Observe that there are 4 locations with branching factor 2
each and 9 locations with branching factor 1. Therefore,
the average branching factor of the overall program is com-
puted as follows:

k =
Total number of branching degree

Total size of the program
=

4 × 2 + 9 × 1
13

= 1.307

The cost of the literals in Equation 2 is computed using the
Equation 4 where w = logk.

C(least3
�=1) = 7.3, C(most4

�=1) = 5.6, C(most4
<2) = 4.3,

C(most4
<3) = ∞, C(least3

≤2) = 1.5, C(most10
�=2) = 1.1,

C(least3
≤3) = ∞, C(least12

�=3) = 1.3, C(most4
≥3) = ∞,

C(least3
>3) = ∞, C(least8

�=3) = 3.8,

For example, C(least3
�=1) = 2log(1.307)×(13−3)

2 = 7.3

36

For: i2 < i3 < i1

3: least3
=1

4: most4
=1

5: most4
≥2

7: most4
≥3

9: least3
>2

10: most10
=2

11: least3
>3

12: least12
=3

For: i2 < i1 < i3

3: least3
=1

4: most4
=1

5: most4
≥2

7: most4
<3

8: least8
=3

9: least8
>2

10: most10
=2

11: least8
≤3

For: i1 < i2 < i3

3: least3
=1

4: most4
=1

5: most4
<2

6: most6
=2

7: most6
<3

8: least8
=3

9: least8
>2

11: least8
≤3

Figure 3. Counterexamples: Error at Lines 8,
10.

Some of the costs are equal to infinity as the correspond-
ing literal appears in positive and negative form equal num-
ber of times in the counterexamples. The minimum cost
solution for ¬CE (Equation 2) using the associated cost is
most10

�=2 which correctly identifies the statement (Line 10
contains the erroneous assignment to most) where error was
injected in the example (Figure 1).

Next consider the case, where two errors are inserted in
the example Figure 1; in addition to the error at Line 10, the
statement at Line 8 is also incorrectly written as least=i3

(correct version is most=i3). The corresponding counterex-
amples are shown in Figure 3 and the ¬CE is

"
least3

�=1 ∨ most4
�=1 ∨ most4

<2 ∨ most4
<3 ∨ least3

≤2 ∨
most10

�=2 ∨ least3
≤3 ∨ least12

�=3

#
V

"
least3

�=1 ∨ most4
�=1 ∨ most4

<2 ∨ most4
≥3 ∨ least8

�=3 ∨
least8

≤2 ∨ most10
�=2 ∨ least8

>3

#
V

"
least3

�=1 ∨ most4
�=1 ∨ most4

≥2 ∨ most6
�=2 ∨ most6

≥3 ∨
least8

�=3 ∨ least8
≤2 ∨ least8

>3

#

(5)
Taking the same valuation of w and the cost equation from
Equation 4, the corresponding costs are
C(least3

�=1) = 4.9, C(most4
�=1) = 3.7, C(most4

<2) = 8.5,

C(most4
<3) = ∞, C(least3

≤2) = 2.9, C(most10
�=2) = 1.1,

C(least3
≤3) = 1.7, C(least12

�=3) = 1.3, C(most4
≥3) = ∞,

C(least8
�=3) = 1.9, C(least8

≤2) = 1.5, C(least8
>3) = 0.8,

C(most4
≥2) = 8.5, C(most6

�=2) = 6.5, C(most6
≥3) = 5.0

The minimum cost solution for satisfiability of ¬CE in
Equation 5 is the set containing least8

>3 and most10
�=2. The

set correctly identifies the erroneous assignments at Lines 8
and 10.

3 Causal Interpretation of MinCost Solution
Causality plays a major role in error explanation. We in-

vestigate and analyze our causal properties using Lewis [8]

and Pearl [9] theory of causality and aim to provide a better
understanding of the causal analysis of counterexamples.

3.1 Pearl Theory of Causality

The cornerstone of Pearl’s theory of causality is the ax-
iom named the Causal Markov Condition which states that
a variable X is independent of every other variable (ex-
cept X’s effects) conditional on all of its direct causes (its
Markov Blanket).

Markov Blanket. Suppose V is a set of random variables
(corresponding to events), and VA ⊆ V and VC ⊆ V . We
say that VC is the set of direct causes of VA relative to V if:

1. The variables in VC are causes of VA. In the prob-
abilistic sense that means that the probability of VA

occurring given that VC occurred is bigger than in the
default case: P (VA|VC) > P (VA)2.

2. For any subset Vi ⊆ V \(VA ∪ VC)

P (VA|VC) = P (VA|VC ∪ Vi)

3. No proper subset of VC satisfies (1) and (2)

Markov Blanket for removing all counterexamples.
Let CE be the counterexamples in the model. Following
the Markov blanket conditions (see above), the causal set
Δs is said to be the Markov blanket of all counterexamples
if

1. Δs |= ¬CE.

2. Literals in Δs leads to satisfiability of¬CE irrespective
of the other literals. The statement is trivially true as
conditional probability of satisfying ¬CE under Δs is
1 (P (¬CE|Δs) = 1).

3. No proper subset of Δs satisfies (1) and (2)

From the above discussion, it follows that the
MinCostSat solution Δs of ¬CE is the Markov
Blanket of ¬CE. As Δs is obtained via satisfiability, it must
satisfy the above conditions (1) and (2). Condition (3) is
ensured by minimum cost satisfiability condition.

3.2 Lewis Theory of Causation

We showed that the solution of MinCostSat can be
interpreted as a cause according to Pearl’s definition. We
now move to another widely known definition of causality
in the model-checking community which is due to Lewis.

In [6], the author effectively explains the Lewis theory
of causality as: “For Lewis, an effect E is dependent on a
cause C at a world W iff at the world(s) most similar to W
in which ¬C, it is also the case that ¬E. Causality does not

2P (A|B) is conditional probability of A under B

37

depend on the impossibility of ¬C and E being simultane-
ously true in any possible world, but on what happens when
we alter W as little as possible, other than to remove the
possible cause C.”
MinCostSat follows Lewis causality theory. Let
Δs = {l1, l2, . . . , lk} be the causal set of ¬CE where (fol-
lowing Equation 1)

¬CE = Cl1(l1, l2, . . . , ln) ∧ . . . ∧ Clm(l1, l2, . . . , ln)

We will consider a “world” being described by the valua-
tions of the literals. As such, the world in which ¬CE is
satisfiable requires the satisfiability of the literals in Δs;
Δs |= ¬CE. Consider any closest world obtained from Δ′

via altering the valuation of one of the literal in Δs, i.e.,
li ∈ Δs and ¬li ∈ Δ′. Δs and Δ′ agree on all valuations of
literals except li. We need to prove that in any such closest
world Δ′, the ¬CE is not satisfied. The proof follows from
the discussion below.

Observe that,

cover−(li) ∩ cover−(¬li) = ∅ (6)

as both li and ¬li cannot appear in the same Clj in ¬CE.
Furthermore, the number of Cljs covered by the literals in
Δ − {li} is less than the number of clauses in ¬CE. This
is because Δs is obtained by minimum satisfiability of ¬CE
and every literal is responsible for satisfiability of at least
one clause. Therefore,

|Δs|∑
j �=i,j=1

|cover−(lj)| < m where lj ∈ Δs − {li} (7)

It follows from Equations 6, 7 and the fact that the Δs

covered all clauses in ¬CE

cover−(¬li) ⊆ cover−(Δs − {li})

The clause that is covered by li is not satisfiable by replac-
ing li by ¬li. Therefore, Δ′ �|= ¬CE; the closest new world
defined by the literals in Δ′ does not satisfy the clauses in
¬CE.

In conclusion, we proved that MinCostSat produces a
set of causes that are valid under both Pearls and Lewis def-
initions of causality. A subtle point needs to be reinforced:
these are causes for the event ¬CE and not for the event CE.
We do not return the causes (ways) for producing the error
but the causes of removal of errors.

4 Discussion
In this paper, we explored minimum cost satisfiability

to identify ways to remove counterexamples with minimal
changes to the existing model. As future work, we will con-
sider also the positive examples in the model and investigate

the usage of our technique as a complimentary approach to
the existing techniques. Another avenue for development is
an iterative application of the current method. If the cor-
rective measure suggested by our solution is automatically
applied to the existing model M , a new model M ′ will be
generated. The new model can be model checked and, in
case of errors, can be fixed iteratively. The iterative pro-
cess may or may not converge. Furthermore, applying auto-
matic corrective measures requires that logic of the program
is preserved at each iteration. As such, it is necessary to add
this program logic information as requirements; however
coming up with such requirements may be non-trivial. At
present we are implementing our technique using CBMC
model checker [2] and we will evaluate applicability of our
technique in such iterative process.
Acknowledgment. This research has been supported in
part by the NSF grant 0509340.

References
[1] T. Ball, M. Naik, and S. Rajamani. From symptom to cause:

Localizing error in counterexample traces. In Proceedings
of POPL, 2003.

[2] CBMC. Bounded model checking for ansi-c. Available at
http://www.cs.cmu.edu/∼modelcheck/cbmc/.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verifi cation of fi nite-state concurrent systems using temporal
logic specifi cations. ACM TOPLAS, 8(2), 1986.

[4] Z. Fu and S. Malik. Solving the minimumcost satisability
problem using sat based branch and bound search. In Pro-
ceedings of CAD, 2006.

[5] A. Groce. Error explanation with distance metrics. In Pro-
ceedings of TACAS, 2004.

[6] A. Groce. Error Explanation and Fault Localization with
Distance Metrics. PhD thesis, Carnegie Mellon University,
2005.

[7] A. Groce and W. Visser. What went wrong: Explaining
counterexamples. In Proceedings of SPIN Workshop on
Model Checking of Software, 2003.

[8] D. K. Lewis. Counterfactuals. Harvard University Press,
1973/revised 1986.

[9] J. Pearl. Causality: Model Reasoning and Inference. Cam-
bridge University Press, 2000.

[10] J. Queille and J. Sifakis. Specifi cation and verifi cation of
concurrent systems in Cesar. In Proceedings of the ISP,
1982.

[11] S. Y. Shen, Y. Qin, and S. Li. Localizing errors in counterex-
ample with iteratively witness searching. In Proceedings of
ATVA, 2004.

[12] A. Zeller. Yesterday, my program worked. today, it does not.
why? In ACM SIGSOFT Software Engineering Notes, v.24
n.6, 1999.

[13] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. In IEEE Transactions on Software
Engineering, 2002.

38

Common Coupling as a Measure of Reuse Effort in Kernel-Based Software

Liguo Yu
CS and Informatics

Indiana University South Bend
South Bend, IN, USA

ligyu@iusb.edu

Stephen R. Schach
EECS Department

Vanderbilt University
Nashville, TN, USA

srs@vuse.vanderbilt.edu

Kai Chen
SSE Research
Motorola Labs

Schaumburg, IL, USA
kai.chen@motorola.com

Abstract

An obstacle to software reuse is the large number of
major modifications that frequently have to be made as
a consequence of dependencies within the reused
software components. In this paper, common coupling
is categorized and used as a measure of the
dependencies between software components. Five
open-source operating systems were analyzed and
compared with respect to common coupling and reuse
effort. We conclude that the way that common coupling
is implemented in the Mach and BSD kernels induces
few dependencies between software components, which
required less effort in order to be reused to produce
Darwin.

1. Introduction

Software reuse has become a topic of interest within
the software community because of its potential
benefits. These include increased productivity and
quality, and decreased cost and time-to-market.
Obviously the biggest savings are to be found in large-
scale reuse, that is, the reuse of a large portion of an
existing software product. Unfortunately, reuse
generally does not scale up for large-scale software
components [1] [2] [3] [4] [5].

One problem is that large software components may
be dependent on other components. On the one hand,
suppose that the components of a software product are
classes that communicate exclusively by message
passing. The dependency between the components is
low, and it should be possible to reuse one component
in a new software product with little difficulty. But if a
software product consists of components, all of which
reference a large number of global variables, it may be
impossible to reuse any one component in a new
product without first totally redesigning that
component, thereby all but defeating the purpose of

reuse. The problem becomes even more complex if we
wish to build a new software product by reusing two
disparate components produced by two different
organizations, particularly if the two reused
components have to interact with one another as well as
with the rest of the new product.

Many software products, including operating
systems and database management systems, are kernel-
based. That is, each implementation consists of
required kernel components, together with specific
optional architecture-specific or hardware-specific
nonkernel components.

Coupling is a measure of the degree of interaction
between two software components. It reflects the
modifiability and the maintainability of a software
product [6]. There are many different categorizations
of coupling, all of which include common (global)
coupling (two software components are common
coupled if they reference the same global variable).
Certain types of coupling, especially common coupling,
are considered to present risks for software
development [7]. For example, to reuse a kernel
component in another software product, it is important
that the kernel component should have minimal
dependency on other components. Accordingly, it is
important that the kernel components have as little
common coupling as possible.

In a previous study [8], we defined a new
categorization of common coupling within kernel-
based software, and used it to measure the maintenance
effort. In this paper, we extend our categorization and
use it to evaluate reuse effort in kernel-based software.

2. Common Coupling and Reuse Effort

Common coupling induces dependencies between
software components. As described in [8], these
dependencies are induced by the definition-use
mechanism; we say component C1 is dependent on

39

component C2 via global variable gv if C1 uses gv
and C2 defines gv (that is, if C2 changes the value of
gv and C1 utilizes that value).

In our previous study, global variables were
categorized in terms of five categories, as summarized
in Table 1 [8]. We introduced this categorization of
common coupling within the context of kernel
maintenance and discussed the impact of the existence
of global variables in each category on kernel
maintenance. In this paper, our categorization of
common coupling is applied to software reuse effort.

Table 1. Categorization of global variables [8]
Category Description

1
A global variable defined in one or more
kernel modules but not used in any kernel
modules.

2
A global variable defined in one kernel
module and used in one or more kernel
modules.

3
A global variable defined in more than one
kernel module, and used in one or more
kernel modules

4
A global variable defined in one or more
nonkernel modules and used in one or more
kernel modules.

5
A global variable defined in one or more
nonkernel modules and defined and used in
one or more kernel modules.

We consider two types of reuse. We refer to the
reuse of one or more independent kernel components as
kernel-component reuse and the reuse of the entire
kernel as entire-kernel reuse. When we wish to refer to
either kernel-component reuse or entire-kernel reuse,
we use the umbrella term kernel reuse.

Dependencies induced by common coupling affect
the reuse effort; in general, more effort is needed to
reuse a component with a large number of global
variables. However, reuse effort is also affected by the
category into which each global variable falls.

A category-1 global variable is not used in a kernel
component, so definitions of the global variable in
other components (kernel or nonkernel) cannot affect
kernel components. All kernel components are
independent with respect to this global variable.
Accordingly, the presence of a category-1 global
variable will not cause difficulties for kernel reuse.
Therefore, no kernel reuse effort is associated with a
category-1 global variable.

A category-2 or category-3 global variable is
defined in a kernel component but not in any nonkernel
component. It is used in kernel components. A

category-2 or category-3 global variable therefore
induces dependencies between kernel components. A
kernel component that defines a category-2 or
category-3 global variable can affect the reuse effort of
any kernel component that uses that global variable.
Turning to the reuse effort of the entire kernel, this is
not affected by the presence of a category-2 or
category-3 global variable because there is no
definition outside the kernel.

A kernel component that uses a category-4 or
category-5 global variable is dependent upon nonkernel
components that define that global variable. Thus, the
presence of a category-4 or category-5 global variable
in a kernel component negatively impacts both kernel-
component reuse as well as entire-kernel reuse. Hence,
more effort for kernel reuse is associated with
category-4 and category-5 global variables than for
categories 2 and 3.

Table 2 summarizes the impact of global variables
in different categories on kernel reuse effort.

Table 2. The impact of global variables on reuse
Category
number

Kernel-component
reuse effort

Entire-kernel reuse
effort

1 No impact No impact
2 Negative impact No impact
3 Negative impact No impact
4 Negative impact Negative impact
5 Negative impact Negative impact

3. New Terminology

As indicated in the previous section, reuse is
hampered by definitions in nonkernel components that
affect uses in kernel modules. In order to be able to
quantify this phenomenon, we introduce additional
terminology which is utilized in Section 5.
• Terminology 1: A definition of a global variable

that induces a dependency of a kernel component
on another component is called a component-
dependency-inducing definition.

• Terminology 2: A global variable is kernel-on-
nonkernel-dependency-inducing if it induces a
dependency of a kernel component on a nonkernel
component.

• Terminology 3: A kernel component is use-
dependency-induced if it contains a use of a
kernel-on-nonkernel-dependency-inducing
variable.

• Terminology 4: A nonkernel component is
definition-dependency-inducing if it contains a
definition of a kernel-on-nonkernel-dependency-
inducing variable.

40

4. Mach, FreeBSD, and Other Open-
Source Operating Systems

In 2001, Apple released OS X, an operating system
for Macintosh computers [9]. OS X is structured
around Darwin, an open-source core. Darwin was
produced through the integration of two existing open-
source operating systems, Mach [10] and FreeBSD
[11]. However, neither Mach nor FreeBSD is a ready-
to-use building blocks. Modifications had to be made
and effort had to be spent on each of those components
in order to incorporate them into the new product [12]
[13]. Besides Mach and FreeBSD, Darwin also
incorporates some components from OpenBSD and
NetBSD.

The reuse of Mach and FreeBSD was essentially
entire-kernel reuse; the reuse of OpenBSD and
NetBSD was kernel-component reuse. We wished to
understand the effort involved in modifying the
different pieces that were reused to produce Darwin.
Accordingly, we studied the two major pieces from
which Darwin 7.x was built [14]: version 3.0 of Mach
and version 5.1 of FreeBSD. Besides FreeBSD and
Mach, we also studied the latest versions of OpenBSD
and NetBSD.

Linux is undoubtedly the most widely used open-
source operating system. In order to gain additional
insights into differences or similarities between Mach,
FreeBSD, OpenBSD, and NetBSD from the viewpoint
of reuse, we decided to study Linux as well.

More precisely, we studied the following open-
source operating systems: Mach 3.0, FreeBSD 5.1,
OpenBSD 3.3, NetBSD 1.6, and Linux 2.4.20. All
these operating system are kernel-based and written in
C. In this paper, a component is defined to be a source
code file (“.c” file or “.h” file). The size of the product
is measured in thousands of lines of code (KLOC).
Data regarding the structure of these systems are
provided in Table 3, in which the BSD and Linux data
are taken from [15].

5. Case Studies

5.1. Common Coupling in General
We analyzed common coupling in the Mach,

FreeBSD, OpenBSD, NetBSD, and Linux operating
systems. Global variables appearing in kernel
components were identified by the Linux cross-
referencing tool, lxr. Every instance of a global
variable was determined to be either a definition or a
use of that variable. An overview of our results is
summarized in Table 4. As shown in the Table, there
are 77 distinct global variables in the Mach kernel.

Altogether, there are 332 instances of global variables
in Mach kernel components. (For the sake of
comparison, we observe that Linux has many more
instances of global variables in kernel and nonkernel
components than Mach or the three BSDs.)

Table 3. The structure of five operating systems
Operating

system
Kernel

components
Nonkernel

components
Kernel
KLOC

Total
KLOC

Mach 71 792 30 345
FreeBSD 131 3353 108 1793
OpenBSD 81 4569 55 1825
NetBSD 85 11527 64 3329

Linux 26 9407 14 4260

Table 4. Global variables in five operating systems
Operating

system
Number of

global
variables

Number of
instances of

global variables
in kernel

components

Number of
instances of

global variables
in nonkernel
components

Mach 77 332 228
FreeBSD 75 483 770
OpenBSD 75 343 521
NetBSD 66 378 1222
Linux 99 1022 14088

In general, global variables induce dependencies
between software components and make the
components difficult to reuse. However, as outlined in
Section 2, the different categories of global variables
have different effects on the reuse effort. To understand
how global variables in the open-source operating
systems affect the kernel reuse effort, each global
variable was assigned to one of the five categories.

5.2 Dependency of a Kernel Component
In order to analyze dependencies within the kernel

and between kernel components and nonkernel
components, we need to examine definitions and uses
of global variables in more detail.

As stated in Section 3, a definition of a global
variable that induces a dependency of a kernel
component on another component is called a
component-dependency-inducing definition (CDID). A
reusable component should be dependent on as few
other components as possible. A global variable in
category 2, 3, 4, or 5 is used in a kernel component and
defined in another component. Therefore, a definition
of a category-2, -3, -4, or -5 global variable induces the
dependency of a kernel component on another
component, either in the kernel or the nonkernel. More
specifically, a definition of a category-2, -3, or -5

41

global variable in a kernel component or a category-4
or -5 global variable in a nonkernel component is a
component-dependency-inducing definition. Table 5
lists the number of component-dependency-inducing
definitions in the operating systems we consider here.

Table 5. Dependencies of a kernel component
Operating

system
Total

number of
CDID

Number of
CDID per

kernel
component

Number of
CDID per kernel

KLOC

Mach 140 1.97 4.58
FreeBSD 149 1.14 1.37
OpenBSD 165 2.04 2.95
NetBSD 168 1.98 2.60
Linux 1908 73.38 134.08

The entries in Table 5 may be interpreted as
follows: Suppose we wish to reuse a kernel component
K of Mach. On average, we will then have to modify
1.97 definitions of global variables in other
components that induce dependencies in K and thereby
affect its reuse. Similarly, if we wish to reuse 1,000
lines of Mach kernel code, on average we will need to
need to modify 4.58 definitions of global variables in
other components that induce dependencies and
thereby affect the reuse of this code. (For the sake of
comparison, we remark that if we wish to reuse a Linux
kernel component, on average we will need to modify
73.38 definitions of global variable in other
components; to reuse 1,000 lines of Linux kernel code,
on average we will need to modify 134.08 definitions
of global variables in other components.)

From Table 5, we can see that Mach, FreeBSD,
OpenBSD, and NetBSD have a relatively small number
of component-dependency-inducing definitions per
kernel component and per kernel KLOC. This shows
that, on average, a kernel component K in Mach,
FreeBSD, OpenBSD, or NetBSD has few dependencies
on other components, which makes K comparatively
easy to reuse. The relatively independent property of a
kernel component in Mach, FreeBSD, OpenBSD, or
NetBSD means less effort is needed to reuse kernel
components.

5.3 Dependencies of the Kernel as a Whole
In this paper, we are more concerned with entire-

kernel reuse than kernel-component reuse. As we
mentioned before, in most cases, successful reuse of
kernel-based software depends on the reuse effort of
the entire kernel. In the following, we discuss the reuse
effort for the Mach, FreeBSD, OpenBSD, and NetBSD
kernels. As stated in Section 3, a global variable is

kernel-on-nonkernel-dependency-inducing if it induces
a dependency of a kernel component on a nonkernel
component.

As mentioned before, a category-4 or -5 global
variable is the most undesirable. According to
terminology 2, such a global variable is kernel-on-
nonkernel-dependency-inducing, because it has a
definition in a nonkernel component and a use in a
kernel component. That is, the definition of a category-
4 or -5 global variable induces a dependency of a
kernel component on a nonkernel component; these
dependencies adversely affect the entire-kernel reuse
effort. Table 6 enumerates the kernel-on-nonkernel-
dependency-inducing global variables in the open-
source operating systems we consider here.

Table 6. Kernel-on-nonkernel-dependency-inducing
global variables

Operating
system

Number of
global

variables

Number of
instances of

uses in kernel

Number of
instances of

definitions in
nonkernel

Mach 13 38 40
FreeBSD 10 48 46
OpenBSD 20 63 84
NetBSD 19 95 81
Linux 44 523 1667

Considering entire-kernel reuse, there are 13 global
variables that make Mach kernel components
dependent on nonkernel components. These 13 global
variables are used 38 times in kernel components. Also,
these 13 global variables are defined 40 times in
nonkernel components. An implication of Table 6 is
that, if we wish to reuse the entire Mach kernel, we
either need to modify the 38 uses of kernel-on-
nonkernel-dependency-inducing variables in kernel
components to remove the dependencies, or we also
need to incorporate 40 definitions in nonkernel
components (or some combination of the two
alternatives). Combining Table 6 with Table 4, we see
that, although there are 332 instances of global
variables in the Mach kernel, only 38 of them induce
dependencies of a kernel component on a nonkernel
component. Furthermore, of the 228 instances of
global variables in nonkernel components, only 40 of
them make it difficult to reuse the entire kernel. A
similar result is found for FreeBSD, OpenBSD, and
NetBSD.

Now we determine how many kernel components
have to be changed, or how many nonkernel
components have to be reused if we want to reuse the
entire kernel.

42

Dependencies between components caused by
global variables are induced by the definition–use
relationship. As stated in Section 4, a kernel component
is use-dependency-induced if it contains a use of a
kernel-on-nonkernel-dependency-inducing variable,
and a nonkernel component is definition-dependency-
inducing if it contains a definition of a kernel-on-
nonkernel-dependency-inducing variable. Use-
dependency-induced kernel components use the value
of a kernel-on-nonkernel-dependency-inducing
variable; definition-dependency-inducing nonkernel
components define the value of a kernel-on-nonkernel-
dependency-inducing variable, which means that a use-
dependency-induced kernel component is dependent on
at least one definition-dependency-inducing nonkernel
component. A kernel is difficult to reuse if it has too
many use-dependency-induced kernel components and
if there are too many definition-dependency-inducing
nonkernel components.

Table 7 shows the number of use-dependency-
induced kernel components (UDIKC) and definition-
dependency-inducing nonkernel components (DDINC)
in the operating systems we consider here. Multiple
occurrences of the same component are ignored. For
example, if kernel component K contains multiple uses
of kernel-on-nonkernel-dependency-inducing global
variables gv1 and gv2, it is nevertheless counted as
only one use-dependency-induced kernel component,
because modifications will have to be made to kernel
component K irrespective of the number of uses of
kernel-on-nonkernel-dependency-inducing global
variables. Similarly, if nonkernel component NK
contains multiple definitions of kernel-on-nonkernel-
dependency-inducing global variables gv3 and gv4, it
is likewise counted as only one definition-dependency-
inducing nonkernel component.

Using Mach as an example to explain the entries of
Table 7, 12 kernel components in Mach are use-
dependency-induced kernel components. There are 19
definition-dependency-inducing nonkernel
components. This means that 12 kernel components
have dependencies on 19 nonkernel components via
common coupling. More precisely, 12 kernel
components use at least one kernel-on-nonkernel-
dependency-inducing variable in a total of 38 instances,
which depend on 19 nonkernel components that define
a kernel-on-nonkernel-dependency-inducing variable in
a total of 40 instances.

Now, suppose that all 77 Mach kernel components
are to be reused. Two extreme approaches could be
taken. First, we could modify the 12 use-dependency-
induced kernel components in 38 places to remove the
dependencies of kernel components on nonkernel

components. Second, we could reuse the 19 definition-
dependency-inducing nonkernel components together
with the kernel. Clearly, any combination of these two
extreme approaches could also be adopted. Turning
now to reusing the FreeBSD kernel, we could similarly
modify the 14 use-dependency-induced kernel
components in 48 places, reuse the 25 definition-
dependency-inducing nonkernel components together
with the kernel, or adopt some combination of the two
extreme approaches.

Table 7. Dependencies of kernel on nonkernel
Kernel Nonkernel

Operating
system Number

of
UDIKC

Number of
instances
of uses

Number
of

DDINC

Number of
instances of
definitions

Mach 12 38 19 40
FreeBSD 14 48 25 46
OpenBSD 13 63 40 84
NetBSD 16 95 41 81
Linux 21 523 534 1667

Recapitulating, suppose we wish to reuse the entire
Mach kernel, from Table 4, it appears that we would
have to modify 332 instances of global variables in
kernel modules. By considering only those instances
that induce dependencies of a kernel component on a
nonkernel component, we see from Table 6 that only
38 of the 332 instances would have to be changed.
Finally, by considering use-dependency-induced kernel
components, we see from Table 7 that the number of
kernel components that would have to be changed is
12. Alternatively, 19 definition-dependency-inducing
nonkernel components would have to be reused
together with the entire kernel. This shows that the
Mach kernel and the FreeBSD kernel are relatively
independent as a whole, which means less effort is
needed to perform entire-kernel reuse.

(In passing, we remark that it is hard to find a good
strategy for reusing the 26 Linux kernel components.
On one hand, if we modify the 21 use-dependency-
induced kernel components in 523 places, we may
completely change the functionality of the kernel. On
the other hand, reusing the 534 definition-dependency-
inducing nonkernel components together with the
kernel would result in widespread unnecessary and
redundant reuse. Furthermore, a kernel is generally
difficult to reuse if it references a kernel-on-nonkernel-
dependency-inducing variable gv and there are many
definitions of gv in nonkernel components and many
uses in kernel components. Linux has more instances of
uses of kernel-on-nonkernel-dependency-inducing
variables in kernel components and instances of

43

definitions in nonkernel components than Mach or the
three BSDs, which means that the Linux kernel is
strongly dependent on nonkernel components.)

Software reuse depends on a large number of
disparate factors [16]. One factor is the effort spent on
customizing and reusing these components. The reuse
effort of a kernel-based software product depends on
the reuse effort of its kernel and this, in turn, depends
on the definitions and uses of global variables within
the kernel and nonkernel components. From the
viewpoint of dependencies, reusing both the Mach and
FreeBSD kernels is relatively effortless, irrespective of
the precise reuse mechanism followed.

7. Conclusions and Threats to Validity

In this paper, we have utilized our categorization of
common coupling based on definitions and uses of
global variables to analyze the reuse effort for a
software component. Common coupling in different
categories has different effects on the reuse effort in
kernel-based software. Our results show that common
coupling within the Mach kernel and the BSD kernel is
well designed, inducing only a few dependencies of
kernel components on nonkernel components. As a
result, relatively less effort is required for entire-kernel
reuse of these two operating systems.

One threat to the validity of our study is using
common coupling as a measure of reuse effort. Our
result could certainly be strengthened if a validation
test could be performed in which common coupling is
used as the independent variable and reuse effort as the
dependent variable. However, the goal of our study (as
stated toward the end of Section 1) was to understand
the relation between common coupling and software
reuse effort by analyzing the structure of software
components. This analysis was based on a well
discussed and studied approach. Therefore, we believe
our analysis is valid.

Our research was performed on five open-source
software products. The approach can be used on other
kernel-based software products to identify components
that are easy to reuse from the viewpoint of
dependencies. In addition, it can be used to suggest
how future software should be written to reduce
dependencies and thereby promote reuse.

8. References
[1] C.W. Krueger, “Software reuse,” ACM Computing

Surveys, vol. 24, no. 2, 1992, pp. 131-183.

[2] D.E. Perry, H.P. Siy, and L.G. Votta, “Parallel changes
in large-scale software development: an observational
case study,” ACM Transactions on Software

Engineering and Methodology, vol. 10, no. 3, 2001, pp.
308–337.

[3] F.P. Brooks, “No silver bullet: essence and accidents of
software engineering,” IEEE Computer, vol. 20, no. 4,
1987, pp. 10–19.

[4] K.J. Sullivan and J.C. Knight, “Experience assessing an
architectural approach to large-scale systematic reuse,”
Proceedings of the 18th International Conference on
Software Engineering, Berlin, March 1996, pp. 220–
229.

[5] W.B. Frakes and S. Isoda, “Success factors of
systematic reuse,” IEEE Software, vol. 11, no. 5, 1994,
pp. 14–19.

[6] W. P. Stevens, G. J. Myers, and L. L. Constantine,
“Structured design,” IBM Systems J., vol. 13, no. 2,
1974, pp. 115–139.

[7] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and J.
Offutt, “Quality impacts of clandestine common
Coupling,” Software Quality Journal, vol. 11, 2003, pp.
211–218.

[8] L. Yu, S.R. Schach, K. Chen, and J. Offutt,
“Categorization of common coupling and its application
to the maintainability of the Linux kernel,” IEEE
Transactions on Software Engineering, vol. 30, no. 10,
2004, pp. 694–706.

[9] Apple Computer, “Mac OS X hits stores this weekend,”
March 2001, www.apple.com/pr/library/2001/mar/-
21osxstore.html.

[10] Mach Project, “Mach 3.0 sources,” undated, www-
2.cs.cmu.edu/afs/cs/project/mach/public/-
www/sources/sources_top.html.

[11] FreeBSD Project, http://www.freebsd.org/

[12] Apple Computer, “Inside Mac OS X,” May 2000,
www.apple.com.pl/infotech/varia/macosx/InsideMacOS
X-SystemOverview.pdf.

[13] J. West, “How open is open enough? modeling
proprietary and open source platform strategies,”
Research Policy, vol. 32, no. 7, 2003, pp. 1259–1285.

[14] Kernelthread, “What is Mac OS X?” 2005,
www.kernelthread.com/mac/osx/arch_xnu.html.

[15] L. Yu, S.R. Schach, K. Chen, G.Z. Heller, and J. Offutt,
“Maintainability of the kernels of open-source operating
systems: a comparison of Linux to FreeBSD, NetBSD,
and OpenBSD,” Journal of System and Software, vol.
79, no. 6, 2006, pp. 807-815.

[16] G. Caldiera and V.R. Basili, “Identifying and qualifying
reusable software components,” IEEE Computer, vol.
24, no. 2, 1991, pp. 61–70.

44

An Approach to Validating Translation Correctness From SAM to Java

Yujian Fu
School of Computing & Information Science

Florida International University
yfu002@cs.fiu.edu

Zhijiang Dong
Department of Computer Science
Middle Tennessee State University

zdong@mtsu.edu

Gonzalo Argote-Garcia
School of Computing & Information Science

Florida International University
gargo001@cis.fiu.edu

Leyuan Shi
Department of Industrial and Systems Engineering

University of Wisconsin at Madison
leyuan@engr.wisc.edu

Xudong He
School of Computing & Information Science

Florida International University
hex@cs.fiu.edu

Abstract

SAM is a formal software architecture description model
based on Petri nets and temporal logic. SAM Parser is a tool
to automatically translate a SAM architecture design into a
program in ArchJava/Java/AspectJ with run-time verification
capability. In this paper, we present an approach to show the
correctness of the translation algorithm implemented in SAM
Parser. Our approach requires a restricted Petri net model
with an interleaving semantics, defines the operational se-
mantics of a Java program using communication traces, and
shows the consistency between an execution sequence of a
Petri net and a communication trace of the corresponding
Java program.

1 Introduction

There is a growing awareness, both in industry and acad-
emia, of the crucial role of formally proving the correctness
of safety-critical portions of systems. Most verification meth-
ods focus on the verification of a design against requirements
or an implementation with respect to a given design specifica-
tion. However, the above verification task can be eliminated if
we have a correct translation from a specification to an imple-
mentation. As addressed by Tony Hoare in the “Grand Chal-
lenge” [7] in 2003, verifying the correctness of translation is
challenging because of the complexity and syntactic and se-
mantic diversity of the target architectures, as well as the so-
phisticated analysis and optimization algorithms used in the
process of translation.

Formally verifying a full-fledged general translation from
a specification to an implementation is not possible, due to
its size, variety of source and target languages, and, possi-
bly, proprietary considerations. However it is feasible to cor-
rectly translate restricted formal specifications into programs
in some suitable high-level programming language. In the
SAM Parser [3], we implement an algorithm to automatically
translate a given SAM architecture design description into a
program in ArchJava/Java/AspectJ with runtime monitoring
code. In this paper we provide an approach to prove the cor-
rectness of the translation.

A translation mapping X is correct means that it pre-
serves the meaning of a specification (source) in the imple-
mentation (target) [9], which includes both consistency and
completeness. Translation consistency refers to the dynamic
behavior in the source is preserved in the target. There are no
internal contradictions, whereas translation completeness re-
quires that each entity in the source is correctly reflected and
represented in the target.

Definition 1 (Translation Correctness) Let X be a transla-
tion that maps a specification sp ∈ S (the set of specifica-
tions) to a program construct prog ∈ J (the set of programs),
X : S → J. The specification sp is a 3-tuple < A, B,C >,
where A denotes the architecture structure, B denotes the be-
havior of the specification, and C denotes the constraints of
a system. The correctness of translation X is defined by the
following two conditions:

1. Consistency: B ≈ X(B) and C ≈ X(C) where ≈ denotes
the semantic consistency relation to be defined later.

2. Completeness: ∀a ∈ A.∃a′ ∈ J. such that X(a) = a′, and

45

∀b ∈ B.∃b′ ∈ J. such that X(b) = b′, and ∀c ∈ A.∃c′ ∈ J.
such that X(c) = c′.

Several rules for architecture structure translation for SAM
model were discussed in the work [3], which validates the
completeness as part of the translation correctness. This paper
focuses on the consistency proof of the translation correctness
for the architecture model (SAM).

The rest of this paper is organized as follows. Section 2
gives a brief introduction of SAM. Then the method for the
translation validation is proposed in Section 3. After that, we
discuss the restricted PrT net with its semantics in section 4
and Java program and its communication trace semantics in
section 5. The sequential consistency between PrT net and it
Java program is proved in section 6. Discussion is given in
section 7. Finally, conclusion is in the section 8.

2 Preliminaries

SAM [15] is a general formal framework for specifying
and analyzing software architecture with its dual formalism –
Petri Nets and temporal logic.

Predicate Transition Nets Predicate Transition (PrT)
nets [4] are a class of high level Petri nets. A PrT has a net
structure: (P,T ,F), where P is a set of places represented by
circles, T is a set of transitions represented by rectangles and
T is disjoint from P, and F is a relation between P and T
represented by arcs. Each place is assigned a sort indicating
what kind of tokens it can contain. The tokens in a place can
be viewed as a multi-set over the sort. A marking of a PrT
net is a function that assigns tokens to each place. A label is
assigned to each arc to describe types and numbers of tokens
that flow along this arc. Each transition has a boolean expres-
sion called guard, which specifies the relationship among arcs
related with the transition. A transition is enabled if there is
an assignment to all variables occurred in arcs related with
the transition such that each incoming place contains the set
of tokens specified by the label of the arc, and the guard of
the transition is satisfied. An enabled transition is fired under
an assignment by removing tokens from incoming places and
adding tokens to outgoing places.

Linear Temporal Logic Temporal formulas are built
from elementary formulas using logical connectives ¬ and ∧
(and derived logical connective ∨,⇒, and⇔), universal quan-
tifier ∀ (and derived existential quantifier ∃), and temporal op-
erators always �, future �, until U, and next© (next). A LTL
formula, �(p → �q) means that the situation that p is true
implies eventually q is true always exists.

SAM Formally, a SAM model consists of a set of compo-
sitions C = {C1,C2, ...,Ck} and a hierarchical mapping func-
tion h relating compositions. Each composition Ci, represent-
ing an architecture of a sub-system at an abstract level, is a
three-set tuple < Cmi ,Cni ,Csi > where Cmi is a set of com-
ponents, Cni a set of connectors and Csi a set of constraints.

Components/connectors consist of two parts: a set of property
specifications and a behavior model, denoted by S i j and Bi j
respectively for a composition Ci and a component/connector
Cmi j/Cni j. Property specifications S i j and constraints of a
composition are expressed in temporal logic, while behavior
model Bi j is defined in Petri net model. The interface of a
behavior model Bi j consists of a set of places, named ports,
each of which has either no outgoing arcs or no incoming arcs.
For details in the analysis and modeling of SAM please refer
to [6].

3 The Validation Approach

The translation from SAM to java construct includes three
parts – architecture structure translation, behavior model
translation, and property translation. The target programming
languages for the three parts are ArchJava (for SAM struc-
ture), Java (for SAM behavior), and AspectJ (for properties).
The structure of the translation is shown in the Figure 1.

(SAM Behavior)
Java Code

(Runtime Verification code
AspectJ Code

for Components)

ArchJava Code
(SAM Structure)

tool
support

implementation
level

design
level

verification

compile

Aspects

runtime

Component/Connector

SAM in XML

Property SpecificationsBehavioral Model
(Petri nets in XML)

satisfy
(Temporal Logic in XML)

pseudo code formulae

SAM Parser

compile

server
logic

(Maude)
Logic Engine

Parser
StructureBehavior

Parser Parser
Property

Figure 1. An Architecture of Translation

Both ArchJava and AspectJ code are compiled to java code,
they are synthesized with the behavior Java code during exe-
cution. The translated properties are used to generate the run-
time monitor to validate the system model. In this paper, we
only consider how to validate the architecture structure and
behavior model translation, which are highlighted in the Fig-
ure 1. Since ArchJava is compiled into Java code, assuming
compiler is correct, we only consider the translation correct-
ness of behavior Java program in SAM. Figure 2 shows the
methodology used for translation validation.

The approach can be captured in the following steps (Fig-
ure 2). First, we impose some restrictions on the sorts and
variables for the PrT nets. These restrictions facilitate the

46

Java Construct

Execution Sequence Communication Trace

ct(Prog)

translation

projection

OperationalInterleaving
Semantics Semantics

syntactic

mapping

Component/Connector

(PrT nets) N

SAM

in COORE
Prog

≈(σ = M1t1...Mn)

Figure 2. The Methodology of Translation Vali-
dation

automatic Java code generation. Secondly, we restrict our
java program for each component/connector to a sequential
program and represent it with a sequential object oriented
assertion language COORE [14]. Thirdly, we construct a
mapping relation from the behavior model of SAM compo-
nent/connector (a PrT net) to the syntax of COORE. More-
over, the communication trace of a Java program is defined on
the given operational semantics of COORE. Finally, we show
the sequential consistency between the state sequence of PrT
net and the communication trace by projection calculation.

4 Restricted PrT Nets

In this section, we first give some restrictions for the PrT
nets. One of the reasons is we can automatically generate the
behavior code for the SAM model. After that, we explain the
semantics used to express their behaviors.

The following restrictions are imposed on the PrT nets:

1. The sorts of PrT nets are either Java primitive types (de-
noted by Djava) such as int, boolean etc., or defined as a
Java class (denoted by Djava−de f). A product type Dprod
can be defined by either primitive type or user defined
type or mixed.

D ::= Djava|Djava−de f |Dprod where Dprod =

D(×D)∗

2. Only the label of an incoming arc can define new vari-
ables.

3. The trap places only appear in the places that have Set
sort.

4. Each Set sort is assumed to have finite number of ele-
ments. Thus the substitutions for each variable in the
guard are finite since we model a closed system.

We use PrT nets to refer to the PrT nets with the above
restrictions throughout this paper.

The dynamic semantics of PrT nets is defined by the tran-
sition firings. Although there are several well-known seman-
tic models of Petri nets such as interleaving, interleaving set,
causal in the literature, interleaving semantics, where the be-
havior is defined as a set of execution sequences and every
execution step involves only one transition firing, is adequate
to study safety and liveness properties of a system. We can
define the interleaving semantics using the sequence of mark-
ings with the occurrence of corresponding transitions for each
set of substitutions.

Definition 2 (Interleaving Semantics of PrT nets) A se-
quence σ = M0[t0/α0 > M1[t1/α1 > ...[tn−1/αn−1 > Mn with
n ≥ 0 is called a finite interleaving execution starting with
M0 iff ∀i ∈ Nat and 0 ≤ i ≤ n and Mi−1 →ti−1/αi−1 Mi, where
Mi : P→ P(S t), αi denotes a substitution for the variables in
a guard condition of a transition ti, S t denotes set of sorts.

In the interleaving semantics of PrT nets, we examine each
individual transition instead of set of transitions during the ex-
ecution. Thus the preset and the postset of a transition provide
a local view for the system execution. Let {pr1, ..., prm} be the
preset of a transition t, {po1, ..., pon} be the postset of a transi-
tion t. The firing of transition t with binding α is represented
as follows:

F|t/α = {pr1(α), ..., prm(α)}t{po1(α), ..., pon(α)}
This definition provides a possible local reasoning for the

system in the interleaving semantics.

5 Semantics of Restricted Java Program

In this section, we first discuss how to restrict translated
Java program from SAM component/connector to a sequential
object oriented (OO) program, which means we can represent
it using an assertion language COORE [14] – a simple sequen-
tial OO language. Then we define communication trace for
translated Java program based on the operational semantics of
COORE.

5.1 Restricting Translated Java Program

As shown in Figure 1, the translated code has two parts
– architecture structure and behavioral model. Architecture
structure includes components and connectors in SAM model,
which are mapped into the component class in ArchJava code.
Each component class implements a thread. The behavior
model for each component/connector in SAM is a PrT net,
which is translated to Java code. In this paper, we only con-
sider the Java code translated from the behavior model of
SAM – a PrT net.

The execution of the generated code of PrT net is a random-
ized algorithm, i.e., to run the translated PrT net we randomly
choose an enabled transition and fire it. The execution stops

47

when there is not enabled transition in this PrT net. Since in
the runtime checking, we only examine one execution path,
based on interleaving semantics, we can view this translation
code for each component/connector of SAM model as a se-
quential OO program. Hence, we can use COORE [14]to de-
scribe this sequential OO program, we can use COORE [14]
to define it. Due to the space limitation, readers please refer
to the work [13] for details of COORE.

5.2 Communication Trace

An object’s observable communication trace (proposed in
the CSP [10] model to describe an execution path) can be
defined by the history of all communication events between
an object and its environment, which represents an abstract
view of its state, readily available for reasoning about past
and present behavior. We define a communication event for
an OO program as follows.

Let Prog be an OO program, Ob j be the set of object id
(Oid), Class is the set of classes defined in the Prog, Field,
Meth be the set of fields and methods respectively, S be the
set of statements. We define a communication event for an
OO program as follows.

Definition 3 (Communication Event) A communication
event of an object o ∈ Ob j is defined by a tuple < o1, o2,m >
such that o1, o2 ∈ Ob j and o1 � o2, m ∈ Meth.

Either o1 or o2 can be null, in which case we abbreviate a
communication event as < oi,m >, where i = [1, 2]. Com-
munication events are the ingredients of the communication
trace, which is defined as follows.

Definition 4 (Communication Trace) A communication
trace of an OO program Prog, denoted by ct(Prog), is
composed of a sequence of communication events.

We use lower case to represent elements in a set, e.g., a
method meth ∈ Meth. We define the communication trace of
translated Java program constructively in Table 1 based on the
operational semantics of COORE [13].

In the Table 1, E�e� be the evaluation on an expression e.
Explanations of evaluation rules can be found in [13].

6 Establishing Behavioral Consistency

In this section, a mapping relation is established between
elements in a PrT net and communication events of a trans-
lated Java program. We prove the semantic consistency be-
tween a PrT net execution sequence and the communication
trace of its translated Java program.

Table 1. Communication Trace

ct(Prog) = ct(class∗)

ct(class) = ct(construct)(ct(f ield∗); ; ct(meth∗)),
where ;; denotes possible interleaving order among methi and f ieldi

ct(construct) = ct(o = (C, id))ct(ei)ct(p1, ..., pn �→ o, v1, ..., vn)

ct(f ield∗) = ct(f ield1)...ct(f ieldn), where n ∈ Nat

ct(meth∗) = ct(meth1)...ct(methn), where n ∈ Nat

ct(meth(C,m)) = ct(o = (C, id))ct(ei)ct(S)ct(e),
where meth(C,m) ≡ t m(e1, ..., en){S return e}

ct(meth(C,m)) = ct(o = (C, id))ct(ei)ct(S),
where meth(C,m) ≡ void m(e1, ..., en){S }

ct(i f (e) S 1else S 2) = ct(e)(ct(S 1) ∪ ct(S 2))

ct(while(e) S) = (ct(e)ct(S))∗

ct(S 1; S 2) = ct(S 1)ct(S 2)

ct(u := e.m(−→e)) = E�u := e.m(−→e)�ct(e.m(−→e))

ct(u := newC(−→e)) = E�u := newC(−→e)�

ct(u := e) = E�u := e�

ct(e) = E�e�

6.1 A Mapping Relation

In reality, in the translated Java program, there are many in-
ternal methods, fields, assignments, expressions in the output
communication trace. The communication trace for even one
fired transition can contain a lot of information. Here, we only
consider those methods, fields and necessary expressions that
are directly related to a transition firing (F|t/α). The elements
of a communication trace that are related to a PrT net in SAM
are shown in the Table 2.

Table 2. Communication Events for PrT Ele-
ments in SAM Component/Connector

SAM Java Communication Event

substitution variable
αt assignment set of tokens tk
place Oid pi
pi(αt) pi.contains(tk) < pi, contains(tk) >

Oid ti
transition ti.fired() < ti, f ired() >
ti Oid g

g.guardEvaluate(
Vector pv)

< g, guardEvaluate(Vectorpv) >

48

As discussed before, a firing rule for a transition includes
the preset and the postset of the transition. If we fix an or-
der on the places then after each firing of a transition, we can
get the same sequence for the same transition under different
markings. Since each input (output) place object is evaluated
based on the index of the input (output) place vector [1], we
can use the index of vector as the order for places.

From Table 2, we can define a mapping relation f that maps
each element in the set of places P, set of transitions T , and
tokens CONs in a PrT net N to communication events in the
communication trace. Let e be an element defined in the set
E = P ∪ T ∪ CONs, we have ∀e ∈ E, f (e) ∈ ct(ProgN).
For instance, for a component User and a port uIn f oReq 15
specified in SAM model, we have

f (“uIn f oReq 15”) = < uIn f oReq 15,
uIn f oReq 15.contains(token) > ∈ ct(ProgUser).

6.2 Semantic Consistency

To reflect the firing for each transition in a PrT net, we
need to extract the necessary information that is relevant to
the firing of each transition, i.e., the preset and the postset of a
transition as well as the transition itself. In the following, we
first define the projection on a communication trace generated
from a PrT net.

Definition 5 (Projection on a Communication Trace)
Given a PrT net N = (Net, S pec, Insc) with net structure
defined as Net = (P, T, F), its communication trace is
ct(ProgN). Let S be the set of elements defined the Java
construct, The projection Pro j of communication trace
ct(ProgN) on the set S , Pro j(ct(ProgN), S), is the sequence
arising from ct(ProgN) when all literals not contained in S
are deleted.

For the SAM example with a component User and
port id “uIn f or 15”, Pro j(ct(ProgUser), {“uIn f or 15”}) =
...“uIn f or 15”...“uIn f or 15”...).

Corollary 1 Given a PrT net N = (Net, S pec, Insc) with net
structure defined as Net = (P, T, F), its communication trace
is ct(ProgN). Let ProgN |t/α be the set of preset and postset of
transition t w.r.t. the Java construct, i.e.,

ProgN |t/α = {< pr1, pr1.contains(tkr1) >, ...,
< prm, prm.contains(tkrm >),
< g, g.guardEvaluate(Vectorpv) >
< t, t. f ire() >, < po1, po1.contains(tko1) >, ...,
< pon, pon.contains(tkon) >}

The set of tokens tkri (where 1 ≤ i ≤ m) in the Prog are
defined by a substitution α (Table 2). F|t/α be the firing of a
transition t with α, f be the mapping function defined in the
section 6.1. We have Pro j(ct(ProgN), ProgN |t/α) = f (F|t/α).

Finally, we can lift each transition firing in the Java con-
struct to the execution sequence for a PrT net in the SAM
model.

Proposition 1 (Semantic Consistency ≈) Given a PrT net
N = (Net, S pec, Insc) with net structure defined as Net =
(P, T, F), its communication trace is ct(ProgN).

For each transition t ∈ T of a restricted PrT net N, a
firing for the transition t with substitution α is denoted as
F |t/α, let N |t be the set of preset and postset of transition t
as well as transition t, i.e., N|t = {pr1, ..., prm, po1, ..., pon, t},
σ = M0[t0/α0 > M1[t1/α1 > ...[tn−1/αn−1 > Mn be an execu-
tion sequence defined in Definition 2, then we have
∀0 ≤ i ≤ n. Pro j(σ,N |ti/αi) = F|ti/αi .
We say a Java program is semantically consistent with its

high level PrT net model if
∀0 ≤ i ≤ n. Pro j(ct(ProgN), ProgN |ti/αi) ≈

f (Pro j(σ,N |ti/αi)).

From the firing of a transition t and the mapping rela-
tion Table 2, we can get the communication sequence for
f (Pro j(σ,N |ti/αi)) that is composed of communication events
in the last column of Table 2. Based on the Corollary, we can
deduce the proposition.

7 Discussion and Conclusion

In our communication trace, we did not consider the ob-
ject initiation and object completion, which were discussed
in [8]. In the work [8], they aim at proving was to prove the
correctness of an OO programming language COORE, while
our work assume these OO features are true implicitly. More-
over, the verification method used in the work [8] is the asyn-
chronous method call instead of synchronous ones, while in
our translated Java program synchronous methods are used
for each place that has token updated. In the work [5], the
synchronization and concurrent mechanism of C/C++ were
discussed and used for the same purpose, the translation rules
from hierarchical Predicate Transition Nets to C/C++ were
established. Many works have been done on the translation
from high level Petri nets to different programming languages
[11, 12], however, there is less work on the translation valida-
tion.

When we use interleaving semantics [2] to describe a con-
current system, we need to consider if any given concurrent
behavior can be faithfully reproduced through an appropriate
choice of a sequential interleaving. The answer is Yes, if we
can simulate a concurrent execution by sequential nondeter-
ministic interleavings at a sufficiently high level of granularity
of the basic computational operations.

This paper presented an approach to validating the trans-
lation correctness of individual components/connectors mod-
eled in PrT nets in a SAM architecture design to Java pro-
grams. The translation correctness is based on a restricted

49

version of PrT nets and is established through definitions of
the communication traces for Java program and a mapping re-
lation between the execution sequences of a given PrT net and
the communication traces of its target Java Program. Our fu-
ture work includes the proof of translation correctness of the
compositions of multiple components and connectors involv-
ing synchronizations.

Acknowledgement: This research was partially supported
by NSF grants HRD-0317692 and NSF grant IIP-0534428 and
Florida International University Graduated School Disserta-
tion Year Fellowship.

References

[1] Java tutor. Available from http://java.sun.com.
[2] E. Best. Semantics of sequential and parallel programs.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.
[3] Y. Fu, Z. Dong, and X. He. A Methodology of Automated Re-

alization of a Software Architecture Design. In Proceedings
of The Seventeenth International Conference on Software En-
gineering and Knowledge Engineering (SEKE2005), 2005.

[4] H. J. Genrich. Predicate/Transition Nets. Lecture Notes in
Computer Science, 254, 1987.

[5] X. He. Translating hierarchical predicate transition nets
into cc++ programs. Information and Software Technology,
42(7):475–488, 2000.

[6] X. He and Y. Deng. A Framework for Specifying and Verifying
Software Architecture Specifications in SAM. volume 45 of
The Computer Journal, pages 111–128, 2002.

[7] T. Hoare. The verifying compiler: A grand challenge for com-
puting research. Journal of the ACM, 50(1):63–69, 2003.

[8] E. B. Johnsen and O. Owe. An asynchronous communication
model for distributed concurrent objects. In Proceedings of the
Software Engineering and Formal Methods, Second Interna-
tional Conference on (SEFM’04), pages 188–197, Washington,
DC, USA, 2004. IEEE Computer Society.

[9] C. M. Lott. Correctness is congruent with quality. Software
Engineering Notes, 15(5):19–20, October 1990.

[10] R. Milner. Communication and concurrency. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1989.

[11] K. H. Mortensen. Automatic code generation method based
on coloured petri net models applied on an access control sys-
tem. In Nielsen, M. and Simpson, D., editors, Lecture Notes
in Computer Science: 21st International Conference on Ap-
plication and Theory of Petri Nets (ICATPN 2000), Aarhus,
Denmark, June 2000, volume 1825, pages 367–386. Springer-
Verlag, 2000.

[12] P. A. Palanque, R. Bastide, and V. Sengés. Automatic Code
Generation From a High-Level Petri Net Based Specification
of Dialogue. In EWHCI’94 (East-West Conference on Human
Computer Interaction), St Petersburg (Russia), August 1994.

[13] C. Pierik. Validation Techniques for Object-Oriented Proof
Outlines. PhD thesis, Computer Science Department, Utrecht
University, May 2006.

[14] C. Pierik and F. S. de Boer. A proof outline logic for
object-oriented programming. Theoretical Computer Science,
343(3):413–442, 2005.

[15] J. Wang, X. He, and Y. Deng. Introducing Software Architec-
ture Specification and Analysis in SAM through an Example.
Information and Software Technology, 41(7):451–467, 1999.

50

QSEE Project: An Experience in Outsourcing Software Development for Space
Applications

Valdivino Santiago1, Fátima Mattiello-Francisco1, Ricardo Costa2, Wendell Pereira da Silva1 and Ana
Maria Ambrósio1

1National Institute for Space Research, São José dos Campos, SP, Brazil
2DBA Engenharia de Sistemas, Rio de Janeiro, RJ, Brazil
valdivino@das.inpe.br, fatima@iss.inpe.br, rcosta@dba.com.br, wendell@das.inpe.br, ana@dss.inpe.br

Abstract

Nowadays, IT outsourcing is an increasing market in
the world. This tendency can also be observed in space
sector. Particular attention to software acquisition is
given by the European Cooperation for Space
Standardization (ECSS) providing volumes in software
quality assurance and software engineering for space
missions in order to make it easier the customer and
supplier relationship. Facing the challenges of involving
the Brazilian industry in the satellite mission’s
development as supplier, the National Institute for Space
Research (INPE) has put effort in order to use the ECSS
standards. This paper reports an INPE´s experience in
outsourcing software development of a payload
instrument on-board of a Brazilian scientific satellite
mission using ECSS tailored form. The supplier is a
Brazilian software company, CMMI-3 formally evaluated,
which main business is development of non-critical
software.

1. Introduction

The National Institute for Space Research (INPE) in
Brazil has been involved in satellite development since
1979 with the creation of the Missão Espacial Completa
Brasileira (MECB – Complete Brazilian Space Mission).
According to MECB, INPE was responsible for building
data collecting and remote sensing satellites besides the
ground segment infrastructure for operating the satellites
in orbit. Since the beginning of MECB two data collecting
and two remote sensing satellites were developed and
launched, the latter in cooperation with China Academy of
Space Technology (CAST). Futhermore, INPE has a
program to build small satellites which aims to provide the
scientific community information related to phenomena of
Earth equatorial atmosphere, high energy astrophysics and
weather climate. These satellites are being conceived in
the Departament of Atmospheric and Space Sciences
(CEA) at INPE.

In Brazil, there is an increasing number of software
companies for the IT market which are looking for
capacitation and improvements on the quality of their
products following software process improvement models,
like CMMI and MPS.BR [1][2]. In 2005, according to
SOFTEX, a non-governamental organization whose main
goal is to increase Brazilian software companies
competitivity and their participation into national and
internartional market, 1,385 professionals attended courses
related to the MPS.BR model, 50 companies implemented
and 5 were evaluated according to such a model [3]. On
the other hand, there is no evidence that any of these
companies have expertise to develop software for satellite
on-board computers. For the case of Brazilian satellites
developed until now, the overall on-board computer
software was mainly developed at INPE or jointly with
CAST/China.

The research project Qualidade do Software
Embarcado em Aplicações Espaciais (QSEE – Quality of
Space Application Embedded Software) promoted INPE´s
experience in outsourcing the development of satellite
payload embedded software. The supplier is a Brazilian
software company CMMI-3 formally evaluated, named
DBA Engenharia de Sistemas. The QSEE project uses the
European Cooperation for Space Standardization (ECSS)
standards in order to guide the relationship between
customer and supplier. This project is a first real attempt in
order to enable a Brazilian software company to develop
software for satellite payload computers and because that
it plays a major role in industry software development for
space domain in Brazil.

This paper is organized as follows. Section 2 details
QSEE project’s scope. Section 3 discusses how the ECSS
standards were used as a basis for defining the interaction
between INPE (customer) and DBA (supplier). Section 4
addresses the Software Independent Verification and
Validation activities applied to the software product.
Section 5 addresses the lessons learned while section 6
concludes the paper.

51

2. QSEE Project’s Scope

The main goals of QSEE project are: i) to transfer to
Brazilian software industry INPE´s knowledge in software
development for space applications, particularly
Verification and Validation tools, methods and techniques
used for payload embedded software on-board of scientific
satellites and balloon applications; ii) to update the
software development methodology for scientific satellites
and balloon payloads under development at CEA/INPE;
iii) to create a methodology so that INPE can accept
software developed by private software companies. So,
QSEE was conceived to deal only with the development of
satellite payload embedded software and it is not interested
in hardware design and construction.

In order to reach these goals a satellite payload
embedded software, named SWPDC, was specified by
INPE. The Monitor e Imageador de Raios X (MIRAX –
X-ray Monitor and Imager) satellite was the case study.
MIRAX is a small X-ray astronomy satellite mission
designed to monitor a large region around the central
Galactic plane for transient phenomena and, due to its
requirements, it will provide an unprecedented discovery-
space spectral coverage to study X-ray variability in detail
[4]. For QSEE, a simplified version of the computing
subsystem architecture for MIRAX was chosen as shown
in Figure 1.

In Figure 1, the On-Board Data Handling (OBDH) is
the satellite platform computer in charge of processing
platform and payload information and making the
communication with the Ground Station. Furthemore, the
payload is composed of two scientific instruments: Central
Electronics Unit (CEU) and IONEX. IONEX indeed is a
scientific experiment of another small Brazilian scientific
satellite under development and it does not belong to
MIRAX. Its purpose is only to address the multiplicity of
instruments usually found in such systems. The CEU is the
main instrument and it is composed of three computers:
Payload Data Handling Computer (PDC) and two Event
Pre-Processors (EPPs). The purpose of the EPPs is to
accomplish a fast data processing of the X-ray cameras
detectors signals and they are usually known as front-end
processors.

The SWPDC is embedded into the PDC and its main
responsibilities are to collect and format data from the
EPPs, to receive and execute commands from the OBDH,
to transmit telemetry data to the OBDH, to be able to
generate housekeeping information of the CEU computing
subsystem, to perform data memory management, to
implement fault tolerance mechanisms and to support
loading of new programs on the fly. The SWPDC has been
developed in C/Assembly programming languages.

As hardware development is out of this project’s scope,
all computers in Figure 1, except PDC, are ordinary Intel-
based PCs. The PDC is a development kit based on an
improved version of the 8051/8032 microcontroller. Kit´s

microcontroller runs in 40 MHz, has 288 kB internal flash
memory, two UARTs, one 10-bit A/D converter among
other features [5].

Next section describes the approach adopted in order to
outsource the SWPDC development.

3. ECSS Tailoring

The absence of no uniform system of space standards
and requirements in Europe resulted in higher costs, lower
effectiveness and in a less competitive industry. So, the
European space community realized that a solution had to
be found to overcome these problems, and expressed their
will to develop a new coherent system of European space
standards which resulted in the ECSS standards [6].

The ECSS standards system has three branches,
designated as Management, Product Assurance and
Engineering. The Management standards define the
process requirements to be applied to the overall project
activities during the life cycle, the Product Assurance
standards define the requirements for the management and
performance of product assurance activities and the
Engineering standards are devoted to the products
themselves [7]. As there is a large amount of standards
applicable to all products and projects, a selection and
tailoring of ECSS standards are needed, at customer level,
in order to meet the expectations of customers. For that,
adaptation of ECSS standards shall be based on identified
specific project objectives and constraints.

The ECSS standards selected and tailored to QSEE
project were the Management ECSS-M-30A [8], ECSS-
M-30-01A [9], the Product Assurance ECSS-Q-80B [10],
and the Engineering ECSS-E-10-02A [11], ECSS-E-40
Part 1B [12] ones. The ECSS-M-30A defines the
principles and requirements to be observed during the
management of the project phasing and planning. It was
mainly used to identify the relantionship between space
project phases (0, A, B, C, D, E and F [13]) and the
project reviews. Reviews held among customer and
supplier representatives are generally conducted at the end
of a phase aiming to verify if the objectives of the phase
are met and the outputs of a phase have been produced in
conformance to the specifications established in a previous
phase. Identification and structure of all activities and
information related to the project reviews, including the
reviews bodies, are provided by the ECSS-M-30-01A. In
QSEE it was mainly used to define a minimun set of
representatives to attend the defined reviews.

The ECSS-E-10-02A establishes the requirements for
the verification of a space system product. Based on this
standard, for example, INPE defined to accomplish
verification and inspection by two methods: test and
inspection.

The ECSS-Q-80B defines a set of software product
assurance requirements to be used for the development and
maintenance of software for space systems.

52

O B D H
(S im ula tion
S oftw are)

P D C
(S W P D C)

R S-2 32

C E U

IO N E X

U S B

R S-2 3 2

R S -23 2

T em p era tu re
S im u la tio n

D A Q A D C

T em p era tu re
S im u latio n

C on verte r

E P P H 1
(D ata

S im ula tion)

E P P H 2
(D ata

S im ula tio n)

In stru m en t

Instrum ent

Figure 1 – Computing Subsytem Architecture for QSEE Project (Downsizing of MIRAX satellite). Legend: DAQ
= Data Acquisition Board; USB = Universal Serial Bus; ADC = Analog-to-Digital Converter.

In QSEE, it was used to provide INPE proper confidence
according to requirements related to the software product
assurance programme implementation (e.g. Software
Product Assurance Planning and Control, Software
Product Assurance Reporting, ...) to the software process
assurance (e.g. life cycle definition and reviews,
milestones, ...) and to the software product quality
assurance (e.g. Technical Specification, ...). By its turn,
the ECSS-E-40 Part 1B covers all aspects of space
software engineering including requirements definition,
design, production, verification and validation, transfer,
operations and maintenance. Due to its broadest software
engineering aspect, the ECSS-E-40 Part 1B was the main
basis of the tailoring in order to define the software life
cycle processes, the deliverables which are input and
output at each phase and so on. It is important to stress that
these two standards are strictly devoted to the software
component of the space application.

3.1 Sofware Life Cycle, Reviews and Deliverables

Reviews are the main interaction points between
customer and supplier [12]. According to ECSS-E-40 Part
1B, the reviews relevant to the software engineering
process are System Requirements Review (SRR),
Preliminary Design Review (PDR), Detailed Design
Review (DDR), Critical Design Review (CDR),
Qualification Review (QR) and Acceptance Review (AR).
Following this standard, these six were the ones
established to exist between INPE and DBA. Figure 2
shows the software life cycle processes and their
relationship with the software reviews.

DDR is a review specially recommended for flight
software, at the end of the detailed design. It aims to
review the detailed design, to review the software
technical budget status (e.g. CPU and memory) and to
review the completeness and stability of the TS (see
legend in Figure 2) requirements, just in case of evolution

of TS requirements after the PDR [12]. At first glance,
QSEE project would not have such a review. However,
during the SWPDC development, it became clear that it
was necessary to exist a review where the detailed
software design could be discussed and, because this is the
first DBA project in the space domain, DDR was
indispensable to the software life cycle. Although not
shown in Figure 2, the TS was input to the DDR because
there were evolution of requirements and it helped to
better understand the SwDesign deliverable contents.

In Figure 2, beneath each review there is a set of
deliverables evaluated during the review. For example, in
the SRR, the RB, the IRD(RB), the SwDevPlan, the
IVVPlan and the SRR Report are the deliverables which
are input and/or output of such a review. Also, the
deliverables in boldface and underlined should be in its
final issue as the output of the review. For instance, the
RB, which expresses the customer´s requirements, is input
of the SRR and it must be modified according to the
Review Item Discrepancies (RIDs) generated by SRR´s
participants and its final issue should be within the SRR
output. On the other hand, the IVVPlan is also input of the
SRR but its final issue should be within the output of the
CDR only. The deliverables marked with an asterisk (*)
means they are supplier’s responsibility; the others with no
mark are customer’s responsibility.

The ECSS-E-40 Part 1B recommends an input
deliverable to be discussed in the PDR which addresses
the architectural aspects of the software. In a rough
analogy this deliverable, known as Design Definition File
(DDF), is the equivalent to the Preliminary Design
Document in the PDR and it should be developed apart
from the TS. Also, the DDF is the primary input to the
CDR review process. However, DBA TS deliverable has
already addressed SWPDC architectural design aspects by
means of UML Component diagrams and also with an
equivalent of a static software architecture.

53

SRR PDR CDR QR AR

System Engineering

Requirements and
Architecture
Engineering

Acceptance

DDR

RB
IRD (RB)

SwDevPlan*
IVVPlan

SRR Report

SwDevPlan*
TS*

IVV Plan
PDR Report

SwDesign*
SwTP*

IVPlanIns
IVSpecIns
IVPlanSub
IVSpecSub

DDR Report

Design and
Implementation

Engineering

Independent Verification and Validation

SwDesign*
IVVPlan

IVPlanIns
IVSpecIns
IVPlanSub
IVSpecSub

SWPDCSrcCode*
TestFacSrcCode*

SwTP*
SwTR*

UsrMan*
CDR Report

IVReportIns
IVReportSub

VerReport
SwAccPlan
SwAccSpec

UsrMan*
SwDeliv*

QR Report

SwAccPlan
SwAccSpec

SwAccReport
VerReport
UsrMan*
SwDeliv*

SwApproval
AR Report

Legend:

RB = Requirements Baseline
IRD (RB) = Interface Requirements Document
SwDevPlan = Software Development Plan
IVVPlan = Independente Verification and Validation Plan
TS = Software Technical Specification
SwDesign = Software Design Document
IVPlanIns = Independent Validation Plan – Instrument Level
IVSpecIns = Independent Validation Test Specification–Instrument Level
IVPlanSub = Independent Validation Plan – Subsystem Level
IVSpecSub = Independent Validation Test Specification – Subsystem Level
SwTP = Software Test Plan
SwTR = Software Test Report

SWPDCSrcCode = SWPDC Source Code
TestFacSrcCode = Test Facilities Source Code
UsrMan = SWPDC User Manual
IVReportIns = Independent Validation Report – Instrument Level
IVReportIns = Independent Validation Report – Subsystem Level
VerReport = Verification Report
SwAccPlan = Software Acceptance Test Plan
SwAccSpec = Software Acceptance Test Specification
SwAccReport = Software Acceptance Test Report
SwDeliv = Software Delivery Document
SwApproval = Software Approval Document

Instrument Level Subsystem Level System Level

Figure 2 – Software Life Cycle Processes, Reviews and Deliverables (* = Supplier’s Responsibility Deliverable).

With such an approach, it became useless to produce a
deliverable with these characteristics for the PDR. INPE
accepted the DBA approach and the DDF equivalent was
not evaluated in the PDR.

4. Software Independent Verification and
Validation

One of the processes related to the software life cycle
presented in Figure 2 was the Independent Verification
and Validation (IVV). This process is mainly concerned to
the delegation of the software acceptance activities to a
third part team. The IVV processes are very suitable for
mission critical software, like the ones found in space
applications.

54

In QSEE project, the IVV activities have been
developed by an independent team at INPE with
cooperation of the University of Campinas (UNICAMP).
The IVV process started with the construction of a
verification matrix where are set up the verification
methods (test and inspection) demanded by the customer
in the different verification levels, i.e. the stages of
software development and integration [13]. INPE has
defined three verification levels: instrument, subsystem
and system [11]. These levels can be seen in top of Figure
2.

In the instrument level, the embedded software is
verified and validated according to the supplier´s Quality
Assurance process. As shown in Figure 2, INPE has
demanded two deliverables specific related to this process:
Software Test Plan (SwTP) and Software Test Reports
(SwTR). These deliverables should be in its final issue in
the CDR, where the supplier, among other artifacts,
delivers the software source code to the customer.

In the subsystem level, the customer is ready to apply
all tests planned and specified until the CDR. As in a
scientific satellite usually there are more than one
instrument, the IVV team should elaborate not only an
IVV Plan, where the activities to verify and validate the
payload embedded software for all instruments are
described, but also Independent Validation Plans
(IVPlanIns) and Specifications (IVSpecIns) for each
instrument presented in the satellite. These deliverables
should take into account the validation of the instruments
separately. For instance, in QSEE the IVV should build an
IVPlanIns and an IVSpecIns for CEU and also for
IONEX. After validating the instruments separately, the
instuments should be integrated and another set of plans
and specifications are needed: the IVPlanSub and
IVSpecSub. In these two deliverables, the IVV team
explains how the instruments integrated should be tested,
which sequence of commands will be executed and so on.
Notice that there also reports related to the different levels
of testing: IVReportIns and IVReportSub.

Firstly, in the subsystem level, integration tests of all
instruments embedded software are carried out in a test
environment where the OBDH is simulated. After this
stage, the payload (all instruments) should be integrated
with the real platform computer (OBDH) and new tests
should be applied. Performing integration tests of all
instruments before the integration with the real OBDH and
other satellite platform subsystems provides a great
confidence that the payload softwares are according to
their specifications and possible problems are more related
to the integration aspects (e.g. cabling problems) of the
instruments with the satellite platform than to the
instuments themselves.

In the system level, tests should be carried out with the
entire satellite and the ground segment. The IVV team
should concern about the way tests will be executed,
because test facilities and environment are different from

previous levels. In order to do that, the IVV team should
develop a Software Acceptance Test Plan (SwAccPlan), a
Software Acceptance Test Specification (SwAccSpec) and
Software Acceptance Test Reports (SwAccReport). It is
important to stress that acceptance processes apply exactly
in the subsystem and system levels.

The IVV team developed an acceptance strategy in
order to generate test cases. This methodology, named
CoFI [14], supports a tester to create a behavioural
modelling of the system aiming at automatic test cases
generation. The software behaviour under both, the normal
conditions and under hardware faults, are modelled in
Finite State Machines (FSMs) and test cases are generated
by an automatic test case generation tool named Condado
[15].

For test execution, a software tool has been developed
to automate this activity of test process. The QSEE-TAS
tool [16] main functionalities are test configuration and
planning, test cases preparation and automatic execution,
test project management and automatic test report
generation in XML/XSL format. The QSEE-TAS enables
a tester to create test cases manually and execute them
automatically. As the reports are also automatically
generated, the time spent to execute the test cases was
significantly reduced

Analysing test reports is another activity of the test
process. A process to cover this activity was created in
QSEE as follows: (i) firstly, the test executor observes the
test result in the QSEE-TAS; (ii) According to this result
and relying on the RB, IRD (protocol specifications
among OBDH, PDC and EPPs), TS, SwDesign, UsrMan
and SWPDCSrcCode deliverables, the tester assigns a
preliminary verdict. The QSEE-TAS enables five verdict
values: Pass, Fail, Incloclusive, Error and Pass with
Restriction. The first four values are according to the
literature and Pass with Restriction was specifically
created to situations where a software behaviour was
desired but it is not implemented. However, the absence of
this behaviour is not enough to establish a Fail verdict; (iii)
Every week the IVV team and client representatives at
INPE meet each other in order to evaluate the test reports.
All test reports with a verdict different to Pass are
reviewed; (iv) During this meeting a decision is made
about the final verdict values of the test cases execution. A
test case with a Fail verdict results in a Non-Conformance
Record (NCR).

5. Lessons Learned

The first lesson learned is that the CMMI-3 maturity
level of the DBA allowed its Software Quality Assurance
team to identify very easily the needs required by INPE for
the development of the instrument embedded software.
Although DBA were not familiar with the software
characteristics and development environment imposed by
the customer, the CMMI-3 level showed confidence to the

55

customer in terms of its solid software development
structure based on well-established processes.

One interesting INPE´s point of view is closely related
to the generation of NCRs and the IVV process. In an IVV
approach, it is fundamental to understand that what is
being verified and validated is not only the software source
code but the entire software product. The reviews between
customer and supplier are important in order to identify
possible discrepancies in the deliverables elaborated and
these are described in RIDs. Even though the customer can
create many RIDs on supplier´s deliverables during the
SRR, PDR, DDR and CDR, it is possible that some
deliverables still have some undected problems. For
example, during the execution of the tests specified by the
IVV team, the software can exhibit a behaviour that is
correct according to the IVV team analysis but one
deliverable (e.g. TS) can be in disagreement with this
behaviour. So, a NCR related to the TS deliverable can be
generated. So, NCRs are not created only due to software
source code non-conformances.

DBA company realized that it is vital to the supplier to
understand, beforehand in the analysis phase, test steps
and environment that will be applied to the software
product during the acceptance processes accomplished by
the customer. This understanding allows the resources and
activities planning to be consistent with the project
execution. Also, projects of satellite payload embedded
software usually require the development of specific
simulators and test environments in order to validate the
software in the different physical models (e.g. Engineering
Model, Flight Model, ...) [11][13].

The main advantage of outsourcing the development of
satellite embedded software is to allow Brazilian software
companies to become expert in a strategical area like space
applications. Furthemore, such an approach may allow
INPE to build more satellites in less time because it can
delegate the development of satellite computer embedded
software to other institutions. The main disadvantage of
this process is the initial effort INPE should apply in order
to allow these companies to develop software for this
domain. In QSEE project, DBA software supplier attended
training courses at INPE for 6 months in order to
understand the characteristics, tools, processes related to
the SWPDC development.

6. Conclusions

This paper presented an experience in outsourcing the
development of satellite payload embedded software to a
Brazilian software supplier. The QSEE project relied on
the ECSS standards in order to guide the interaction
between customer (INPE) and supplier (DBA). Because it
is the first real experience in order to enable a Brazilian
software company to develop software for satellite on-
board computers, QSEE is an important project not only to
transfer the concepts related to the development of space

applications software to a supplier but also to enable INPE
to define a methodology to accept software from
companies in the future. Actually, the QSEE project is on
the acceptance process where the tests planned and
specified by the IVV team are being executed on the
SWPDC delivered by the DBA in the CDR. The QR and
AR reviews will happen in the last stage of the project.

7. References

[1] SOFTEX. MPS.BR – Melhoria de Processo do Software Brasileiro:
Guia Geral. SOFTEX, 2006, p. 56, Versão 1.1 (In Portuguese).

[2] Chrissis, M.B.; Konrad, M.; Shrum, S. CMMI: Guidelines for
Process Integration and Product Improvement. Boston: Addison
Wesley Professional, The SEI Series in Software Engineering,
2007, p. 704, 2nd Edition.

[3] SOFTEX. Relatório Anual 2005. SOFTEX, 2006, p. 36 (In
Portuguese).

[4] Braga, J. MIRAX Mision Overview and Status. In: The Transient
Milky Way: A Perspective for MIRAX Conference, 2005, São José
dos Campos-SP. AIP Conference Proceedings 840. Melville-NY:
American Institute of Physics, 2006, p. 3-7.

[5] STMicroelectronics. uPSD33xx Turbo Series Data Sheet.
STMicroelectronics, 2005.

[6] European Cooperation for Space Standardization (ECSS).
Available at: <http://www.ecss.nl/>. Acessed on: 03 March 2007.

[7] European Cooperation for Space Standardization. ECSS-M-00A -
Space Project Management: Policy and Principles. Noordwijk, The
Netherlands: ESA/ECSS, 1996, p. 37.

[8] European Cooperation for Space Standardization. ECSS-M-30A -
Space Project Management: Project Phasing and Planning.
Noordwijk, The Netherlands: ESA/ECSS, 1996, p. 40.

[9] European Cooperation for Space Standardization. ECSS-M-30-
01A - Space Project Management: Organization and Conduct of
Reviews. Noordwijk, The Netherlands: ESA/ECSS, 1999, p. 38.

[10] European Cooperation for Space Standardization. ECSS-Q-80B -
Space Product Assurance: Software Product Assurance.
Noordwijk, The Netherlands: ESA/ECSS, 2003, p. 70.

[11] European Cooperation for Space Standardization. ECSS-E-10-02A
- Space Engineering: Verification. Noordwijk, The Netherlands:
ESA/ECSS, 1998, p. 144.

[12] European Cooperation for Space Standardization. ECSS-E-40 Part
1B - Space Engineering: Software – Part 1: Principles and
Requirements. Noordwijk, The Netherlands: ESA/ECSS, 2003, p.
112.

[13] Mattiello-Francisco, M.F.; Santiago, V.; Costa, R.; Jogaib, L.
Verificação e Validação na Terceirização de Software Embarcado
em Aplicações Espaciais. In: V Simpósio Brasileiro de Qualidade
de Software, 2006, Vila Velha-ES (In Portuguese).

[14] Ambrosio, A.M.; Martins E.; Mattiello-Franscisco, M.F.
Vijaykumar N. L.; Santiago, V.; Carvalho, S.V. A Methodology for
Designing Fault Injection Experiments as an Addition to
Communication Systems Conformance Testing. In: Workshop on
Dependable Software - Tools and Methods (DSN), 2005,
Yokohama, Japan.

[15] Martins, E.; Sabião, S.B.; Ambrosio, A. M. ConData: a tool for
automating specification-based test case generation for
communication systems. Software Quality Journal, 1999, v.8, n. 4,
p. 303-319.

[16] Silva, W.P.; Santiago, V.; Mattiello-Francisco, M.F.; Passos, D.
QSEE-TAS: Uma Ferramenta para Execução e Relato
Automatizados de Testes de Software para Aplicações Espaciais.
In: XX Simpósio Brasileiro de Engenharia de Software - Sessão de
Ferramentas, 2006, Florianópolis-SC. Porto Alegre-RS: SBC,
2006, p. 43-48 (In Portuguese).

56

Broadening the Use of Process Patterns for Modeling Processes

Hanh Nhi Tran, Bernard Coulette
GRIMM-IRIT, University of Toulouse 2,

5 allées A. Machado, 31058 Toulouse, France
{tran,coulette}@univ-tlse2.fr

Bich Thuy Dong
University of Natural Sciences,

227 NguyenVanCu, Q5, HoChiMinh, Vietnam
thuy@hcmuns.edu.vn

Abstract

Generally, process patterns are considered as
patterns capturing reusable development activities,
and serve as building blocks for constructing new
processes. However, such a definition is not adequate
to represent the original idea of process patterns that
aims to capture and reuse diverse process knowledge.
In this work, we broaden the definition and application
of process patterns to take more advantage of them for
different process modeling needs. First, we formalized
the process pattern concept so that it can capture
various kinds of process knowledge. Then, we
proposed different ways for reusing process patterns to
generate or improve process models. These
propositions were rigorously defined in a UML-based
meta-model to permit describing processes based on
process patterns with standard notations, and to
facilitate the development of supporting tools.

1. Introduction
Software Process Modeling deals with producing

explicit, formal representations of software processes
to help understand, analyze, enact and improve
software development. Because software processes are
intrinsically complex, process modeling is one of the
most fundamental challenges of Software Process
Technology [2]. Reusing valuable process knowledge
gained through the modeling of software processes is
thus important to reduce process modeling effort and
propagate process best-practices.

Inspired by the success of software product
patterns, the process community proposed the concept
of process pattern to capture and reuse explicitly
process knowledge. Unfortunately, this attractive
concept has still been poorly exploited due to the
limited definition, the inadequate formalization and the
lack of supporting methodology.

Generally, process patterns are defined as patterns
describing proven processes for realizing development
tasks (e.g., the Technical-Review pattern in [1]

describes how to organize and conduct the review of
one or more deliverables). Defined in this way, process
patterns are only used as building blocks for
constructing new processes. However, process
knowledge of interest includes not only such software
development tactics, but also other heuristics of process
modeling, organizing and execution (e.g. the patterns
proposed in [10] define pragmatic and abstract building
blocks for modeling recurrent situations in collaborative
works). This kind of process knowledge can be useful
for both process construction and process improvement,
but it is currently ignored in process pattern
formalization and application.

We argue that the existing definitions of process
patterns are not enough general to cover the diversity
of process knowledge. Based on these inadequate
definitions, the ways that process patterns are
formalized and used are limited too. We think that
broadening the view on process patterns can help us
taking more advantage of process patterns for different
process modeling needs.

Thus, we present in this paper a meta-model that
enables the representation of diverse process patterns
and their applications for elaborating process models
based on process patterns.

The second section gives a brief survey of some
significant works on process patterns and contrasts
them with our approach. The third section presents
how our process pattern meta-model supports
capturing and representing various process knowledge.
The fourth section describes how process patterns can
be used to generate or improve process models. The
conclusion sums up our contributions and future
works.

2. State-of-art
In this section we want to summarize what kinds of

process knowledge are generally captured in published
process patterns and how those process patterns are
formalized and reused by the existing works for
facilitate process modeling.

57

We classified process knowledge into three
principal types according to the level of abstraction.
(a) generic process structures that are applicable for
any process (e.g., the templates for modeling different
process workflows[20]); (b) general development
methods or techniques that can be applied for different
application domains (e.g., the inspection technique for
verify software artifacts[3]); (c) concrete hands-on
experiences that are relevant to a particular process for
producing a specific kind of product (such as a process
for designing information systems adopted by a
specific team).

Most of process-related patterns in literature
capture the process knowledge type (b) [1, 3, 4, 6, 9] or
(a) [10, 15, 16, 20]. Normally, the knowledge type (c) is
captured in internal process patterns of an organization.

There are few works on process patterns
formalizing, we describe here some of those that define
a meta-model for process pattern.

In the Living Process Framework [7], Gnatz et al.
introduced the process pattern notion as a modular way
to document development knowledge. However, they
did not define explicitly the structure of a process
pattern and interrelationships of patterns. In contrast,
to facilitate patterns organization, Hagen et al.
developed PROPEL [8], a UML-based language that
describes explicitly the internal process pattern
structure as well as relationships between patterns. The
language PROMENADE [5] proposed by Ribo et al.
defines process pattern as a process template and
provides a set of operators for supporting process reuse
and harvesting mechanisms. The draft submission of
SPEM2.0 [12] describe process patterns as reusable
clusters of activities in common process areas. Pattern
applications are supported through the Activity Use
mechanism, which defines relationship kinds to reflect
automatically the changes of a pattern in all processes
that applied that pattern. SPEM also ignores the
internal pattern structure relationships between
patterns. All the above works adopted a rather limited
definition for process pattern concept, i.e. they focused
mainly on capturing process knowledge type (b) and
(c). They proposed a unique way to reuse process
patterns as building blocks for generating new
development processes.

In contrast to these works, we define process
patterns as patterns for modeling processes [19].
Thus, the process patterns in our definition can capture
diverse process knowledge in all (a), (b) and (c)
(c.f. [18] for a process patterns classification). We want
to provide different mechanisms to apply process
patterns not only for elaborating new process models,
but also for redesigning or improving existing ones.

3. Process Patterns Formalization
To enable a practical use of process pattern in process

modeling, we formalize this concept by introducing it
into a process meta-model. In order to meet the
standardization and facilitate the development of
supporting tools, our meta-model is defined as a MOF-
conformed [14] meta model inspired by SPEM1.1[11]
and reusing the UML 2 Infrastructure library [13].

In our meta-model, a process pattern
(ProcessPattern) captures a model (TaskModel)
representing a solution that can be applied in a given
context (PatternContext) to resolve a recurrent process
modeling problem (PatternProblem). (Figure 1a).

The TaskModel concept is used to describe a
(fragment of) process. It is an aggregation of several
process elements, i.e. Task, Product and Role (Figure
1b). A Task is a unit of controlled work (i.e.
scheduled) realized by a Role to create or modify
Products.

Figure 1 Meta-model of process pattern concept
Process modeling problems can vary from

describing specific development tasks to suggesting
efficient generic process structures. Consequently,
solutions provided by process patterns could describe
diverse process knowledge at different levels of
abstraction.

We distinguish three kinds of process patterns:
abstract, general and concrete to capture respectively
three process knowledge type (a)(b)(c) mentioned in
section 1.

An AbstractProcessPattern captures a generic
recurrent structure for modeling or organizing
processes. In such a pattern, the precise semantic of
elements is not important but the relations between
them express the solution. For instance, in [10]
Lonchamp described the pattern “Division of labour”

0..1

(1a) Meta-model for process patterns

1 +solution

+context
* 1

*

1 +intention
*

+initial
context

+resultingcontext

ProcessPattern PatternContext

Application
Constraint *

1..*

Reuse
Situation

Abstract
ProcessPattern

General
ProcessPattern

Concrete
ProcessPattern

+subProblem

*
TaskModel PatternProblem

1

+responsiblerole

*

+parameter
1..* *

*

+task
* *

+assistant
+performer

+participant *
1

0..*

*+performedtask

TaskParameter

Role

Task TaskModel

subtask
*

*

+type 1

+product
*Product *

(1b) A TaskModel represents the solution of a process pattern

58

as a solution for modeling collaborative tasks
performed by several actors on subparts of a document
to build the whole document in a parallel way (Figure
3a). This common structure can be applied to model
any collaborative work without considering the
semantics of its tasks.

A GeneralProcessPattern provides a general
development method that is partially specified and
must be refined further to be applicable for a specific
purpose. For example, Figure 3b shows the Fagan
inspection process [3] for detecting defects of software
artifacts. In this process, the precise actions of the
tasks Preparation (tester inspects individually the
artifact) and Rework (author modifies artifact) must be
specialized when applying for a specific kind of
products (e.g. requirements, design, code, etc.);
therefore we use a general pattern to describe it.

Finally, a ConcreteProcessPattern captures a
completely specified solution of a process in a
particular context. For example, Figure 3c describes a
very specific process adopted at the Vietnamese
University of Natural Sciences (NSU) for designing
information systems. This process is used for
development teams having one developer and one
tester. The tasks of this process are described with
concrete steps and manipulated products defined by
the development approach and technique used at NSU
(e.g. RUP-based process). Thus, we use a concrete
pattern to capture this particular process.

To support representing process patterns at the
above levels of abstraction, we also describe process
elements at three abstraction levels: abstract, general
and concrete. An abstract process element is used to
refer to an unspecified element without defining its
precise semantic (e.g. a task T, a product P). A general
process element is partly defined but could be
specified further (e.g. a code product can be object-
oriented or functional with different characteristics; a
review task can work on code or design document with
different details, techniques). A concrete process
element is completely specified for a specific purpose
(e.g. a UMLDesignReview task).

This hierarchy is applied for all types of process
elements (Figure 2a), i.e. an AbstractElement can be
AbstractTask, AbstractProduct or AbstractRole, etc.
An abstract process pattern must contain at least an
abstract element. A general process pattern has no
abstract element but has at least a general element. A
concrete process pattern contains only concrete
elements.

The possible compositions of process patterns on
different levels of abstraction are shown in Figure 2b.

Figure 3 shows an example of different process
patterns in our categorization.

Figure 2 Abstraction levels of Process Elements

Figure 3 Example of three kinds of process patterns

3. Applications of Process Patterns
After examining many issues in process modeling,

we distinguish two types of problems: defining a
process element and organizing process elements.

The first problem concerns the question of how to
define the details of a process element (including

GeneralElement ConcreteElement AbstractElement
0..* 1..* 0..* 1..* 0..* 1..*

GeneralPattern ConcretePattern AbstractPattern

(2b) Compositions of process patterns on different abstraction

ProcessElement

Product Role Task

Abstract
Product

Abstract
Role

Abstract
Task

General
Product

General
Role

General
Task

Concrete
Role

Concrete
Task

(2a) Definition of process elements on different levels of abstraction

Formalism Skill

Product
Kind

Respon-
sibility

Resource

Pre-
condition

Post-
condition

Objective

Concrete
Product

«ConcreteProcessPattern» NSU Information System Design

(3c) The Design Process of NSU team having 1 designer and 1 tester

«ConcreteProduct»
Navigation Map

Kind : Class Diagram
Formalism : UML

«ConcreteTask»
DesignUserInterface

«ConcreteTask»
ReviewUserInterface

«ConcreteProduct»
DataModel

Kind : Model
Formalism : UML

«ConcreteTask»
DesignDatabase

«ConcreteTask»
ReviewDatabase

«ConcreteProduct
»

SystemModel
Kind : Model

«ConcreteTask»
DesignSystem

«ConcreteTask»
ReviewSystemDesign

«GeneralProcessPattern»FaganInspection

(3b) Fagan method for inspect software artifacts (adapted from [3])

«ConcreteTask»
Planning

«GeneralTask»
Preparation

[Artifact
 not approved] «GeneralTask»

Rework

«GeneralProduct»
Artifact

Kind : ReadableDocument

«GeneralProduct»
DefectList

Kind : Document

«ConcreteTask»
InspectionMeetin

«ConcreteTask
»

(3a) A structure enabling parallel collaborative works (adapted from [10])

«AbstractProcessPattern» Division of labour

«AbstractTask»
T1

«GeneralTask»
Integration

«AbstractTask»
T2

«AbstractTask»
TN

«AbstractProduct»
Artifact (modified)

…

«AbstractProduct»
P1

«AbstractProduct»
P2

«AbstractProduct»
PN

«AbstractProduct»
Artifact (original)

«GeneralTask»
Setup

59

development tasks, work products or participant roles).
A pattern addressing such a question captures a model
describing the content of the required process element.
For example, the process pattern in Figure 3b can be
used to define a technical review task of a development
process. This type of problems is ordinary but
frequent.

The question for the second problem is how to
organize a group of process elements to satisfy a
special situation or certain constraints. Such problems
focus on how to achieve high quality process models
and effective executions of those models. A pattern
dealing with this type of problems provides a model
for structuring a (fragment of) process, i.e. for
establishing certain relationships between process
elements. The pattern shown in Figure 2a, for example,
provides a process flow that takes into account late
information by allowing cloning process steps.
Although this type of problems is currently overlooked
in process pattern formalization, it do exist and was
discussed in many works [15, 16, 20].

During process modeling, there are several
scenarios where process designers may want to reuse
process patterns. Based on the two above types of
process modeling problems, we identified two main
uses of process patterns as follows.

3.1 Using Process Patterns to generate the
content of a process element

Often, in the process definition phase, process
designers need to elaborate a detail description for a
process element. In such cases, process patterns can be
used as building blocks to construct new processes
quickly. To our knowledge, this is the most popular
and unique use of process patterns proposed by the
process community for process modeling.

In our meta-model, this kind of process pattern
reuse is represented by the relation PatternBinding
between a process element (source) and a process
pattern (target). The presence of a PatternBinding
relation implies that the contents of the model captured
in the target process pattern will be copied into the
bound process element.

We realize process patterns reuse by the abstraction
mechanism. More precisely, we define process patterns
as parameterized templates [17] and allow explicit
parameter substitutions in the relation PatternBinding
to refine process models captured in process patterns
on instantiating them1.

We show in Figure 4 an example illustrating the use
of process patterns to generate process elements’

1 Due to the space limit, we cannot present here the detailed
definition of this relation.

contents through the relation PatternBinding. For the
sake of simplicity, we will not represent the products
in this example.

Figure 4a shows the baseline process model of
NSU containing unspecified process elements. When
refining this baseline process, the process designer
decided to apply the well-known Fagan process to
review software artifacts. Therefore, he reused the
process pattern FaganInspectionPattern (Figure 3b) to
generate the content of the tasks ReviewUserInterface,
ReviewDatabase and ReviewSystemDesign.
FaganInspection is defined as a general pattern with
three parameters corresponding to the general elements
to be specialized: the product Artifact to be inspected,
the tasks Preparation and Rework2 for detecting
defects and modifying artifact. When binding the
pattern to generate the content of a specific process
element, these parameters were substituted by
appropriate actual parameters. For example, the
parameter Preparation was substituted by
DiagramExamining for the bound task
ReviewUserInterface; and by DataModelChecking in
the bound task ReviewDatabase. The unfolded models
of the tasks ReviewUserInterface and ReviewDatabase
are shown in Figure 4b.

Figure 4 Example of process pattern application for
generating a process element’s content

2 In this pattern, there are the concrete tasks (Planning,
InspectionMeeting and FollowUp) that remain the same for any
review task. Thus, they are not exposed as parameters. DefectList is
ignored to simplify the example.

ReviewDatabase

Review
UserInterface

«GeneralTask»
DesignSystem

DesignDatabase

DesignUnserInterfa

Planning

DataModelChecking

Inspection

DataModel

DataModelModifyin

FollowUp

«GeneralTask»
Design

UserInterface

«GeneralTask»
Design

Database

«GeneralTask»
Review

Database

«PatternBinding »
<Artifact NavigationMap,

Preparation DiagramExamining
,

Re ork DiagramModif ing >

«PatternBinding

(4a) NSU Baseline Process
Model with unspecified

process elements

(4b) Resulting model of the binding relation
from ReviewUserInterface and

ReviewDatabase to FaganInspection pattern

Planning

DiagramExamining

Inspection

Navigation
Map

DiagramModifying

FollowUp

«PatternBinding »
<Artifact DataModel,

Preparation DataModelChecking
Rework DataModeModifying>

DesignSystem

ReviewSystemDesign

«GeneralTask»
Review

SystemDesign

«GeneralPattern»
FaganInspection

Artifact : Product
Preparation: Task
Rework:Task

«GeneralTask»
Review

UserInterface

60

3.2 Using Process Patterns to (re)organize
process elements

For process elements organizing problems, another
way to apply process patterns is required. The general
situation in such cases is that process designers want to
apply new relations on a group of existing process
elements, or to add new information to that group.
Process patterns for such problems can be used as
process structure templates to (re)organize processes.
However, this kind of process pattern reuse has not
been exploited yet in practical process modeling. We
define therefore the relation PatternApplying to enable
reusing process structure templates.

A PatternApplying relation represents the
application of a source pattern to a specific situation
involving specific target process elements playing the
roles of the elements defined in the pattern. As for the
relation PatternBinding, we allow parameter
substitutions in this relation to promote the use of
process patterns on different levels of abstraction3.

The presence of a PatternApplying relation implies
that the structure of the process model captured in a
source pattern will be applied to the target model. The
specific way this application is realized depends on the
applyingMode specified in the relation. We define
three applyingModes for the relation PatternApplying:
change, replace and extend.

If the mode change is chosen, all relations (if
existed) between target model’s elements will be
removed, only new relations and dependencies
(together with associated elements) defined among the
elements of the source pattern will be applied to the
corresponding elements in the target model.

If the mode replace is chosen, the content of the
source pattern will override the existing one of the
target model. More precisely, in the case the target
model contains elements and relations other than the
source pattern, these existing elements will be
conserved in the resulting model only if they are not
contrary to the ones defined in the source pattern,
otherwise they will be replaced by the pattern’s
elements.

The mode extend indicates that the content of the
source pattern will be merged with the existing one of
the target model. However, the existing elements are
intact and the new ones will be ignored if there are
conflicts 4 between them.

3 The extraction of our meta-model that defines these relations will
be presented in another work.
4 Conflicts may come from contrary dependencies between tasks’
execution orders, products’ impacts; or from the incoherent relations
between tasks and manipulated products, participants roles, etc. The
detailed analysis for such conflicts will be present in another work.

To illustrate the use of process patterns to
reorganize the structure of process models, we take a
scenario at a NSU design team.

To design an information system, normally this
team uses the concrete process described in Figure 3c.
This process was constructed for NSU small teams
composed of one designer and one tester. Thus, the
three components of design model, i.e. interface,
database and system designs are elaborated and
verified sequentially (Figure 5a). However, for a new
large project, this NSU team grew from one to three
for each role; it became a team having three designer
and three testers. Thus, to optimize the development
time, the project leader wanted to change the design
process to allow parallel works.

To satisfy this requirement, the process designer
applied the process pattern Division of labour (Figure
3a) to reorganize the workflow of NSU Information
Systems Design process when keeping the fully
specified elements of the original process.

Figure 5 shows such an application using
PatternApplying relation.

Figure 5 An example of process pattern application for
reorganizing process elements

Division of labour is defined as an abstract process
pattern having three formal parameters: N-number of
parallel tasks, T - list of tasks to be executed
concurrently, P- list of products manipulated
respectively by the tasks in the list T.

The Division of labour pattern was applied to these
existing elements of NSU DesginProcess:
DesignUserInterface, DesignDatabase and DesignSystem.

(5a) NSU Information Systems Design process with sequential workflow

(5b) Resulting model of the applying relation from Division of labour
pattern to NSU design process. The modified process has the concurrent
workflow.

«PatternApplying,
replace »
<N 3,

T {DesignUserInterface,
DesignDatabase,
DesignSystem}

P {NavigationMap,
DataModel,

SystemModel}

«AbstractPattern»
Division of labour

N: Integer
T: Task[N]
P: Product[N]

Design
UserInterface

Setup

NavigationMap DataModel

Design
Database

DesignSystem

Review
UserInterface

Review
Database

Review
SystemDesign

SystemModel

DesigneModel Integration

«ConcreteProduct»
Navigation Map

«ConcreteTask»
DesignUserInterface

«ConcreteTask»
ReviewUserInterface

«ConcreteTask»
DesignDatabase

«ConcreteTask»
ReviewDatabase

«ConcreteTask»
DesignSystem

«ConcreteTask»
ReviewSystemDesign

«ConcreteProduct»
DataModel

«ConcreteProduct»
SystemDesign

61

These elements played the pattern roles T1, T2, and
T3, respectively. The actual parameter NavigationMap,
DataModel and SystemModel substituted respectively
P1, P2 and P3.

Because the chosen applying mode was replace,
the new elements Setup and Integration were added to
the process; the new control flows were established
between these new elements and the existing
DesignUserInterface, DesignDatabase, and
DesignSystem as described in the source pattern. The
old control flows between ReviewUserInterface and
DesginDatabase; between ReviewDatabase and
DesignSytem were deleted because they did not
conform to the new relationships established among
the tasks DesignUserInterface, DesignDatabase, and
DesignSystem.

The modified model of the NSU Design Process is
shown in Figure 5b.

4. Conclusion
We have presented in this paper a solution to

broaden the definition and the use of process pattern
for exploiting better this concept in process modeling.
This proposition is formalized in a process meta-model
that defines rigorously the process pattern concept and
two operators for process patterns reuse5.

Compared with related works, our approach
emphasizes process patterns reuse by abstraction
mechanism. By distinguishing process elements at
different abstraction levels, our meta-model allows
representing various kinds of process knowledge
encapsulated in process models. Based on this multi-
levels abstraction, our process pattern definition covers
a large variety of process patterns. By using
parameterization to define process pattern concept and
its reuse relations, we promote the use of process
patterns and enable the pattern-based process model
representation.

Especially, the two proposed applications of
process patterns with the relations binding and
applying provide complementary ways to exploit
process patterns for different process modeling needs,
which were ignored in previous works.

However, the proposed formalism just allows
representing the process knowledge that can be
expressed as a set of process elements with relations
among them. Further studies on potential conflicts in
applying process pattern(s) to a target model should be
investigated to enable a more rigorous semantics of
this operator.

5 Due to space limit, we have not presented the OCL rules defining
the semantic of the proposed concepts in our meta-model.

We are now attempting to formalize the actions to
unfold the resulting process models of the proposed
operators with OCL queries. Besides, a meta-process
defining a systematic method for modeling processes
based on patterns is currently developing.

To validate our work, we are implementing the
proposed meta-model as a UML profile by using the
Objecteering ProfileBuilder. The new profile will be
imported into Objecteering UMLModeler to allow
modeling processes based on process patterns.

In the future, we will develop a process modeling
tool that supports the proposed meta-model and meta-
process for constructing and tailoring processes by
reuse process patterns.

5. References
1. Ambler, S. W., Process Patterns: Building Large-Scale Systems

Using Object Technology, Newyork: SIGS Books/Cambridge
University Press, 1998.

2. Derniame, JC., Kaba, BA., Graham Wastell, D. (Eds.), Software
Process: Principles, Methodology Technology, LNCS1500,
Springer-Verlag, 1999.

3. Fagan, M.E., “Advances in Software Inspections”. IEEE
Transactions on Software Engineering, Vol. SE-12,
No. 7, Page 744-751, 1986.

4. Firesmith, D., Henderson-Sellers, B., The OPEN Process
Framework. An Introduction. Addison-Wesley, 2001.

5. Franch, X., Ribó, J.M. “A UML-Based Approach to Enhance
Reuse within Process Technology”, EWSPT03, 2003.

6. Gnatz, M., et al., Proceedings of the 1st Workshop on Software
Development Process Patterns, OOPSLA02, Washington, 2002.

7. Gnatz, M. Marschall, F., Popp, G., Rausch, A., Schwerin, W.
“The Living Software Development Process”. Journal Software
Quality Professional, Volume 5, Issue 3, 2003.

8. Hagen, M., Gruhn, V., “Process Patterns - a Means to Describe
Processes in a Flexible Way”, ProSim04, 2004.

9. Jacobson, I., Booch, G. and Rumbaugh, J., The Unified Software
Development Process, Addison-Wesley, 1999.

10. Lonchamp J., “Process Model Patterns for Collaborative Work”,
Telecoop'98, Austria. 1998.

11. OMG, Software Process Engineering Metamodel 1.1, 2005.
12. OMG, SPEM 2.0 Draft Adopted Specification, 2006
13. OMG, UML 2.0 Infrastructure Specification, 2005
14. OMG, Meta Object Facility Core Specification 2.0, 2006
15. Pavlov, V. and Malenko, D., “Mining MSF for Process Patterns:

a SPEM-based Approach”, Viking PLoP 04, 2004.
16. Penker, M., Eriksson, H.E., Business Modeling With UML:

Business Patterns at Work. John Wiley & Sons 2000.
17. Tran, D.T, Tran, H.N., Coulette B., Crégut, X., Dong T.B.T.,

“Topological properties for characterizing well-formedness of
Process Components”. Software Process: Improvement and
Practice, Wiley Interscience, V.10 N. 2, p. 217-247, may 2005.

18. Tran, H.N., Coulette B., Dong T.B.T, “A classification of
Process Patterns”, SWDC-REK 2005. Reykjavik, 2005.

19. Tran, H.N., Coulette B., Dong T.B.T., “A UML based process
meta-model integrating a rigorous process patterns definition”,
PROFES 2006, Amsterdam, 2006.

20. Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B.
and Barros. A.P., “Workflow Patterns”, Distributed and Parallel
Databases, 14(3), pages 5-51, July (2003)

62

A Framework for Tailoring Software Process

Lisandra M. Fontoura1,2,3 and Roberto T. Price1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre RS, Brazil 91.501-970

2 Centro Universitário Franciscano (UNIFRA)
Santa Maria RS, Brazil 97.010-032

3Universidade Regional Integrada do Alto Uruguai e Missões
Santiago RS, Brazil 97.700-000

e-mail: lisandra@inf.ufrgs.br, tomprice@inf.ufrgs.br

Abstract-- Tailored software processes are required when
software projects have to adopt development methods and
practices to their own specific needs. In this work, activities
that can be performed in project processes within an
organization, are structured in a global process framework
(PRiMA-F), which also includes the process and
organizational patterns used to describe risk-preventive
and corrective actions. The basic framework structure, built
by the organization, may allow different instantiations,
creating processes strictly following agile or planned
process paradigms, as well as combined approaches, or
including activities to comply with quality models or
standards, like CMM and others. PRiMA–F defines the
software process of an organization, which is later tailored
according to risks identified and project specific needs,
originating the process that will be used in the project.
Goal/Question/Metric Plans are defined to monitor risks. A tool
to describe the process framework, with a database of patterns
and risks, was developed, in order to aid the generation and
adaptation of a process description. Some case studies were
elaborated to validate the systematic proposed.

1. Introduction
Software projects differ from each other in relation to

technology, complexity, clients, risks, formalism, team, size
and other aspects; it is not worth defining a single process
to be used applied to all the organizations’ projects. It is
necessary to adequate the software processes to the
application domain and the specific demands of each
project.

SW-CMM [9] proposes that an organization’s standard
software process model (OSSP) be defined, with the
fundamental process elements that are expected in all
projects and that process be tailored to each project,
according to their characteristics and limitations, originating
the defined software process for the project [9]. It is
possible to constantly improve this process through process

evaluation with an OSSP and all processes will benefit,
since they are obtained from such OSSP.

Software projects involve risks. Risks can become
problems and cause significant impact on time, cost, quality
and client’s satisfaction. It is necessary to manage risks.

This paper proposes a global framework (PRiMA-F),
which integrates all the possible activities to be performed
in the project processes, including preventive or corrective
actions to risks. These activities are described as
organizational and process pattern. Different processes can
be instanced from the framework, such as: the software
process of an organization and specific processes for the
projects; by selecting process elements. This instantiation is
done directly selecting process elements, or selecting
process patterns associated to identified project risks . Each
organization must define its own framework. PRiMA-F was
used to create a case study framework, combining planned
process activities from RUP [11], agile activities identified
in XP[2], and a number of process and organizational
patterns associated to risks collected from a number of
authors [3,4,5]. Some specific processes were suggested to
specific projects using analysis of the risks involved with
the projects. Process and organizational patterns are ways to
describe successful practices in software management and
are used to elaborate software processes and to describe
actions to prevent risks. In an associated work [8], process
and organizational patterns related to project risks have
been collected. The risks are used to identify preventive
process and organizational patterns to include in the process
for highly possible risks identified during the set up of the
project. Tracking risks is necessary to guarantee that risk
factors are within the accepted thresholds or to take actions
if one of the risk factors goes beyond the allowed
thresholds. The Goal/Question/Metric (GQM) paradigm [1]
is used in this work to define the risk management plan.

63

The paper is outlined as it follows: in Section 2 we
describe related works. Section 3 describes the PRiMA
framework. Section 4 describes case studies. Section 5
describes PRiMA-tool and conclusions are provided in
Section 6

2. Related Work
The proposed framework distinguishes itself from other risk
management approaches [7,10] by proposing the
description of a software process as the integration of
organizational and process patterns and to tailor the
software process of each project by identifying the risks
associated to the project. Therefore the project process will
be the combination of all process patterns associated with
the identified project risks plus all the mandatory process
activities of the organization’s global process.

3. Process Framework
The framework is the skeleton of a process from which

different processes can be instanced through the selection of
process elements, previously defined by the organization,
stored in a knowledge base. The organization’s knowledge
base is composed of a set of process elements used to define
process models; a list of possible project risks, processes
and organizational patterns, used to represent risk-
preventive and corrective actions; risk resolution rules; and
goals, questions and metrics used for risk tracking. Figure 1
shows the metamodel representing the main concepts of the
knowledge base.

The Activity, Worker, Artifact, Tool, ToolMentor,
Discipline and Template classes are used to represent the
process elements required to model software processes. In
the framework used to elaborate the case studies, the
knowledge base stores the necessary elements to describe
customization of the Rational Unified Process (RUP) [11]
and the Extreme Programming (XP) [2]. This framework is
just an example; each organization must create its own,
according to its needs.

The ProjectRisk class represents risks instances that can
happen take place in software projects. The Risks are
associated to patterns (Pattern class) by means of risk
resolution rules (SelectionRule class) set according to the
project context. The context, used in this work, is similar to
the one described by Cockburn [4] and by Boehm [3],
where the following criteria are analyzed: defects criticality
(possibility of loss caused by the defect), team size and
team skills [8]. The Processes tailoring guided by the risks
and associated preventive and corrective patterns may
balance between the practices recommended by agile
methods [2] and planned methods [11], and also risk
associated process patterns, originating hybrid methods,

according to the needs and uniqueness of each project [3].
The PatternRelationship class describes associations among
patterns.

Figure 1. Knowledge Base Class Diagram

Table 1 shows examples of risk resolution rules. The
examples of rules and of patterns have been built from
practices described in existing published methodologies
[2,9,11], and described in previous works [6,8].

Table 1. Example of Risk Resolution Rules

Risk
Process and Organizational

Patterns
Misunderstanding the
requirements

RequirementsAreValidated [9]
ScenariosDefineProblem [5]
PlanningGame [2]
BuildPrototype [5]

Failure to manage end-
user expectations

RequirementsAreValidated [9]
BuildPrototype [5]
ImpliedRequirements [5]
EarlyAndRegularDelivery [5]
PlanningGame [2]

Patterns describe solutions in high levels of abstraction.
In order to insert patterns in software processes, they need

64

to be described according to concepts (activities, papers,
artifacts, etc.) used in process models. The association of
patterns with the process elements required in the
deployment of software process standards was based on the
description of the pattern and on the practices described by
models such as the CMM [9], and by processes such as
RUP [11], XP [2], SCRUM, PMBOK or by authors as
Pressman [12], Sommerville [13], among others.

Figure 2. Association of Patterns to Risks and Activities

The Goal/Question/Metric (GQM) Approach [1] is used
to define the metrics to be used to track the progress of risk
factors, making it possible for the project manager to take
corrective actions, when necessary and in the appropriate
moment. GQM plans are associated with risks and describe
a group of goals (GQMGoals class) that aim to monitor risk
factors. Goals are unfolded in quantifying questions
(GQMQuestion class) and then to metrics (GQMMetric
class) to be obtained to monitor the progress of the project
risk factors. Table 2 shows, as an example, the GQM plan
defined for the Misunderstanding the Requirements risk.

Table 2. GQM Plan: Misunderstanding the Requirements risk
Risk: Misunderstanding the Requirements
Goal: Analyse the project with the purpose of monitoring
the definition of requirements from the viewpoint of the
development team in the following context.
Question: Did the
users validate the
project requirements
documents?

Metric 1: Percentage of validated
requirements by the client
RVRC = (amount of requirement
documents validated/ total amount
of requirement documents) *100

Activity diagrams show the flow of one activity to the
other, making it possible to model the dynamic aspect of the
process. An activity diagram (Diagram class) is made for
each discipline to organize the possible activities to be
executed in the software processes of an organization. The
activities are associated with the activity diagram by means
of extension spots (HotSpot class), previously defined for

the diagram. Hot spots make it possible for the framework
to be flexible and to instance processes for different
projects. The activities were organized in activity diagrams
by discipline. RUP`s activity diagram was extended to
include activities proposed by processes, such as XP,
CMM, SCRUM and PMBoK. Activities with common
goals are instanced in the same hot spot.

The process designer is
responsible for making the
activities, roles and artifacts
compatible within the processes in
the moment designing the activity
diagrams and of defining the hot
spots, to ensure that the processes
instanciated from the framework
are consistent.

4. Case Studies
Two case studies were carried

out to validate the proposed
framework. The case studies were

made based on two software projects developed at a
university, which will be called Y University. The projects
show different characteristics, being one of the projects goal
to develop a financial system in one of the Y University
campuses (Fin$oft Project), while the other project goal is
to develop an academic system in a distributed way, by
teams located at three different campuses of the same
university (@cadSoft Project). Y University standard
process is very simple, and it is based on a small subset of
RUP activities.

The team that will develop the Fin$oft software is
composed of a project manager, two developers, two
trainees and the Computing Center Coordinator, who is the
Senior Manager of this project. The team is classified as a
high-skilled team, as developers are experienced in the
programming language employed and have already
developed similar systems. The defined risks for the Fin$oft
project are: failure to manage end user expectations,
misunderstanding the requirements, conflict between user
departments, scope and goals are not clearly defined, and
non-realistic schedule and budget. Among the pattern list
suggested by the PRiMA Approach, the patterns selected
were: EarlyAndRegularDeliverXP, ConstantRefactoring,
PlanningGame, OnSiteCustomer, BuildPrototype,
DocumentedSoftwareEstimate, SizeTheSchedule Simple-
Design and DocumentedConfigurationManagementPlan.

The team that is developing Fin$oft financial software is
small, with developers who are knowledged on the
technology to be used in the project. The client is within the

65

campus where the system will be developed, so the project
configuration make possible to make use of the most agile
methodologies. The main patterns suggested by the PRiMA
Approach are those that aim to provide more agility to the
organization standard process, based on RUP.

Another case study, @cadSoft academic software will be
developed by three teams, totalizing 22 people: 3 project
managers, 8 developers, 10 trainees and 1 senior manager,
based on the Y University administrative area. The team is
classified as average skilled due to the number of trainees in
the team and the fact that the team does not master the
technology chosen for the system development. The defined
risks for the @cadSoft project are: lack of a methodology
for the project, lack of required knowledge/skill in the
project, misunderstanding the requirements, introduction of
new technology, wrong development of functions of user
interfaces, unfeasible design, and lack of top management
commitment to the project. Among the suggested patterns
list to prevent risks, the following were selected:
ConstantRefactoring, SoftwareLifeCycleIsDefined,
EarlyRegularDeliverRUP, ScenariosDefineProblem,
ProjectProcessIsDefined, ShunkWorks, ArchitectureTeam,
PeerReviews, ApprenticeShip, SeniorManagementReview
and DocumentedConfigurationManagementPlan.

In the @cadSoft Academic System’s process, the
situation presented is opposed to that of the Fin$oft,
because the team is distributed in different campuses, and
the customer, in this case the University administrative area,
is far from the development teams, the team is composed of
many trainees, who can stay in the team only for short
periods. The most relevant patterns, suggested by PRiMA-
Tool, are patterns which aim to provide more planning and
documentation to the software process. Considering the
difficulty in face to face communication in distributed
teams, documents are generated so that the teams can
communicate and keep informed.

5. PRiMA-Tool
An experimental environment was developed composed

of two tools, which are: Pattern-Based Methodology
Tailoring Tool (PMT-Tool) and Project Risk Management
Approach Tool (PRiMA-Tool). PMT-Tool module was
developed by Júlio Hartmann [8]. PMT-Tool is responsible
for cataloguing the process patterns and associating them
with the software risks by means of preventive rules, as well
as selecting the pattern to prevent prioritized risks in a
specific project. PRIMA-Tool module is responsible for the
elaboration of the project software process, from
organization’s standard process tailoring, inserting in it the
selected patterns to prevent the project risks and defining
the Goal/Question/Metric Plans to manage the project risks.

Having concluded the project process tailoring, Prima-
Tool generates a website with the description of the defined
process for the project to be consulted by developers,
managers and process engineers. The tools are available for
interested readers to play with at
http://www.urisantiago.br/lisandra/prima/.

6. Summary and Conclusion
This article proposes a process framework, which makes

it possible to instantiate development processes tailored
according to the identified and prioritized risks of the
development project. This is made easier trough a tool that
supports the processes instantiation from the framework.
The tailoring of the process is according to the risks of the
project. The tailoring process is based on the information,
rules and associations inserted in the knowledge base
describing risks, organizational patterns, associations
between risks and patterns and the global development
process. The knowledge base described in the studies cases
is a suggestion and works as an example. The knowledge
base of any organization deploying the approach must be
constantly revised and evaluated by the process engineers,
aiming at continuous improvement. Results of postmortem
analysis of projects may help in this task.

Future works include the use of a workflow management
system (WMS) to generate environments to support the
execution of processes defined from PRiMA-F, the
association of activities with tools, and the automated of
collection of metrics to monitor risks.

References
[1] Basili, V. R.; Seaman, C. The Experience Factory Organizational.

IEEE Software, New York, v. 19, n. 3, p. 30-31, May 2002.
[2] Beck, Kent. Embracing Change with Extreme Programming. IEEE

Computer, 32:70--77, Oct. 1999.
[3] Boehm, B.; Turner, R. Using Risk to Balance Agile and Plan-Driven

Methods. IEEE Computer, June 2003.
[4] Cockburn, Alistair. Selecting a Project’s Methodology.IEEE

Software, July/August 2000.
[5] Coplien, James. Sofware Patterns. SIGS Books and multimedia.

http://www1.bell-labs.com/user/cope/Patterns/WhitePaper/. 1996.
[6] Fontoura, L. M. PRiMA: Project Management Risk Approach. Tese

de Doutorado, UFRGS, 2006.
[7] Kiper, J. D.; Feather, M. S. A Risk-based Approach to Strategic

Decision-Making for Software Development. ICSS, 2005.
[8] Hartmann, Júlio; Fontoura, Lisandra M.; Price, Roberto T. Using

Risk Analysis and Patterns to Tailor Software Processes. XIX
Simpósio Brasileiro de Engenharia de Software, 2005.

[9] Paulk, Mark C. et. al. Key Practices of the Capability Maturity
Model, Version 1.1, TR CMU/SEI-93-TR-025, 1993.

[10] Roy, G. C. A Risk Management Framework for Software
Engineering Practice. ASWEC, 2004.

[11] Rational Software Corporation. Rational Unified Process, v. 2003.
Cupertino, 2003.

[12] Pressman, R. Engenharia de Software, McGraw-Hill, 2006.
[13] Sommerville, I. Engenharia de Software, Prentice-Hall, 2003.

66

Analyzing Configuration Management Repository Data
for Software Process Improvement

Shihong Huang Christopher Lo
Computer Science & Engineering Computer Science & Engineering

Florida Atlantic University Florida Atlantic University

shihong@cse.fau.edu clo1@fau.edu

ABSTRACT
The software development process is an incremental and iterative
activity. Source code is constantly changed to reflect changing
requirements, to respond to testing results, and to address problem
reports. Proper software measurement that derives meaningful
numeric values for some attributes of a software product or
process can help in identifying problem areas and development
bottlenecks. Objective assessment is needed of the current status
of software development so that informed project managers can
make decisions. This paper presents a methodology called VITA
for applying software analysis techniques to configuration
management repository data with the aim of identifying the
impact on file changes due to change requests and problem
reports. The repository data can be analyzed and visualized in a
semi-automated manner according to user-selectable criteria. The
approach is illustrated with a model problem concerning software
process improvement of an embedded software system in the
context of performing high-quality software maintenance.

Keywords: impact analysis, process improvement, knowledge
management, repository, software maintenance, visualization

1. INTRODUCTION
Large-scale software systems must be continuously maintained
and evolved to respond to shifting business requirements.
Business decisions are often made based on the measurements of
the software quality and priorities of business goals. The
measurements should be able to check if the software had reached
the required quality threshold, and highlight areas of the software
development where special foci are needed. Software product
measurements can be used to make general predictions about a
system’s attributes, such as the number of faults in the system, to
identify anomalous components that are likely to have more errors
that management can concentrate on these components during
quality review process.

A number of large companies such as Hewlett-Packard [4],
AT&T [1], and Nokia [9] have introduced metrics programs and
are using collected metrics in their quality management processes.
Most of the focus has been on collecting metrics on program
defects and the verification and validation processes. The
measurement used could be control measurements used by
software process or predictor measurements used by software
products [13], both of which could influence management to
make decisions about the software systems.

However, some of software process external quality attributes
often cannot be measured directly. Questions such as, “Are the
developers distributed efficiently?” “Do the components require
refactoring?”, and “Where do we spend most of our development
resources?” are affected by many factors; there is no simple way
to answer them. One of the possible solutions to measure these
external quality attributes is to use internal attributes that can be
derived from entities of software development process, such as
configuration management repository.

A configuration management repository includes abundant data of
not only configuration items, but also the use of software
components, proposed changes, components that could be
affected by these changes, and number of changes per entry.
However, some of the knowledge is implicitly hidden in the
repository data and cannot be obtained by doing simple queries.

This paper presents an integrated approach to process
improvement for identifying production problems areas and
potential bottlenecks in development. As the first step of this
project, software analysis techniques were used on configuration
management repository data with the aim of identifying and
visualizing the impact on file changes due to change of requests
and problem reports. The approach realizes the goal of providing
objective assessments of current software production processes
and makes implicit information that are hidden in the
configuration management repository explicit so that informed
decision can be made by project managements.

The next section discusses some of the fundamental issues related
to software process improvement and measurement techniques.
Section 3 outlines an integrated approach to analyze and visualize
configuration management repository and quantify qualitative
data with the aims of helping identify the impacts of particular
change requests and problems reports. Section 4 provides a real-
world case study involving a large IT company’s non-proprietary
data to illustrate the approach and highlight the key steps of this
methodology. Finally, Section 5 summarizes the paper and
outlines possible avenues for future research.

2. RELATED WORK
A software process is a set of activities that leads to the
production of a software product [13]. Process improvement is
based on the assumption that the quality of the engineering
process is critical to product quality. Normally, dramatic changes
to existing process are not a viable solution; it can only generate
turbulence within the organization. Therefore, sometimes a
quiescent, non-invasive, and adoption-centric approach to process

67

improvement is needed [7]. To identify software process problems
areas and bottlenecks, objective assessment of the process and
quantifying qualitative data is need. Software metrics, specially
looking at configuration management repository data can provide
valuable feedback of the system.

There have been many studies conducted on software metrics
[8][10]. Metrics from repositories of configuration management
are able to provide developers and analysts with large quantities
of data regarding developers’ work habits that might help analysts
deduce which modules require the most amount of effort. Studies
have been conducted that utilize metrics for effort estimation in
several capacities. More often than not, the metrics that are
acquired from previous efforts made to the system can help in
estimating how much effort is required for similar changes in a
related feature and module of similar size [5][8][10]. When one
requires information about how to proceed into the future, it is
useful to look to the past for guidance. In addition to metrics, the
requirements documents of a project are also treasure troves of
information regarding logical and natural design that occurs from
requested features. The interaction between certain requirements
provides an understanding of how to organize the large features
and modules of the system [10].

To identifying development process bottleneck an problem areas,
a set of metrics of the process need to be collected. Basili et al
introduced the Goal Question Metric (GQM) approach for
collecting data with a purpose [2]. By spending the proper amount
of time on defining the business goals, questions can then be
derived from these goals. Finally, the appropriate metrics can be
collected. The three levels that GQM address correlates with the
three parts of the approach are the conceptual, operational, and
quantitative. These three levels relate accordingly to the goal,
question, and metrics that can be obtained for improving new or
existing processes.

3. VITA METHODOLOGY
The Visualization of ImpacT Analysis (VITA) methodology
incorporates the theories from Anaylitic hierarchy Process (AHP)
[11], GQ(I)M, and DMADV/DFSS in order to analyze and
visualize configuration management repository data. Analysts first
determine the goals and questions that are to be asked of the
system and the data. Next, these goals are classified as
alternatives and thusly prioritized according AHP. From this step,
an analyst is able to derive the most pressing goals and focus
attention on gathering the metrics necessary to answer these
questions. These metrics combined form indicators that will be
used as gauges throughout the rest of the process. Thresholds will
be determined in order to see if the indicators chosen have
remained static or have breached the threshold. The time frame
can be arbitrarily set to any range depending on the approach that
is taken or at the analyst’s discretion. The impacts of change of
requests and problem reports are visualized in static and dynamic
graphs. The entire process can be performed semi-automatedly
and indefinitely in a recursive fashion or until focus is shifted to
another goal. The following sections details the steps taken by
VITA methodology.

3.1 Goals, Questions, and Metrics
GQM is used to guide the creation of different types of metrics
that could be used to measure the current status of the
development process. The goals are to be determined by two
parties. The first is that of the data provider that acts as the
customer in this situation. The customer can make suggestions as
to their intentions as well as areas of focus. The second source of
goals is to be derived from the researcher. The researcher should
choose a set of goals which will satisfy their research [6]. After
both parties have defined their goals, priorities should be assigned
to these goals. In this particular project, there are several goals in
mind. The first is that of determining the grouping of change
requests in an effort to locate virtual clustering of files. The
second is to identify and improve developer effort distribution.
These two goals can be mapped into a set of questions that map to
metrics. Samples of the mapping of the questions to be answered
and metircs related to these questions are listed in the following
tables. These metrics are generated by using GQM and AHP
methodologies mentioned in Section 2.

Based on the GQM methodology, three metrics tables were
generated to help managers to make informed decisions about the
software development process. The first table is Developer Effort
Distribution Focused. This table could be used to answer question
such as “Are the Developers distributed Efficiently?” It includes
19 entrances of matrics such as Time spent per file, Time spent
per branch etc. The second table is Problem Report Focuses. It
could be used to answer question such as “Do the Components
Require Reorganization?”. It includes 14 entrances of matrics
such as Number of files per branch, Branches with the most test
hours etc. The third table is Change Request Focused. It coul be
used to answer question such as “Where are the Clusters Reated to
CRs and PRs?”. It includes 12 entrances of metrics such as Time
spent per file in change request (CR), Time spent per branch in
CR etc.

3.2 Threshold
The threshold is the maximum imposed level a given metric can
achieve before passing into a warning level that warrants further
investigation. A threshold does not usually exist naturally unless a
governing body such as the managerial staff of a project or a
development team specifies it. At the initial stages, there is not a
set of threshold gauges to compare to all measurements in each
smaller iteration or phase. Therefore, the initial thresholds can be
obtained by deriving the average and median from the whole of
the data set. However, like any statistical analysis, there will be
outliers. Hopefully, the difference between the average and
median will be small enough to take the halfway point between
the two numbers.

4. CASE STUDY
The previous section outlined an integrated approach (VITA) that
uses configuration management repository data to identify
software development problems areas and bottlenecks. This
section illustrates this approach by using real-world data from a
large industrial partner’s non-proprietary data. The VITA method
takes three-step approach [14]: gathering data from repository,
analyzing and integrating data from different sources (i.e.,

68

knowledge management), and visualizing clustering information
according to end-users’ selection.

4.1 Data Gathering
A collection of non-proprietary repository data from a large
industrial partner was used for this research. There are two sets of
data that were acquired for this case study. The first set, denoted
by Repository Activity Table, is a collection of day-to-day
concurrency versioning system data that is collected as a
developer checks out a file as well as relating it to the appropriate
work order. Each working set entry contains information such as
filename, working directory, branch directory, date, time, action
taken, work order number, as well as developers.

The second set of data, denoted by Working Order Table, is
comprised of a unique work order number, a work order type
(problem report or change request), date submitted, date resolved,
fix hours, and development test hours.

4.2 Knowledge Management
The information gathered from the first step was then parsed into
a database with the logical organization of the pieces of the data
in order to provide meaning to each row of data. A random
section of data was selected for analysis.

As an illustrative example of this approach, this paper uses the
first two weeks of data provided by industrial partner to show the
feasibility of the VITA methodology. The earliest two weeks were
taken into analysis so that any hypotheses developed for these two
weeks can then be applied to following two week sections of time
in the data. It was taken into consideration the size of the
organization from which this information was derived, therefore,
two weeks represents a meaningful section of time in which
requests can be made as well as significant bugs have been
remedied for large pieces of the code.

4.3 Information Visualization
The last part of the methodology is information visualization.
Information visualization often deals with data that are normally
large, semi-structured, or multivariate. The visualization can
display and interactively explore data that might be abstract and
may not be intuitively comprehensible [3]. To make the VITA
methodology easy to use by end-user and to show the results of
clusters in an intuitive way, a configuration management
repository visualization tool called VITA Toolkit has been
developed. From the preliminary prototype, a user can select
timeframe that they are interested and two types of graphic views,
static view in JPEG, PNG, or GIF and dynamic view in SVG
format. Examples of these two types of graphical view are shown
in Figure 1.

4.3.1 Sample Clustering Visualization
By using the VITA Toolkit, the first two weeks’ data from the
industrial partner was analyzed and visualized. The first week of
this two-week time chunk showed that there are many files that
gravitate towards each other due to particular change requests and
problem reports. The diagram in Figure 2 shows the excerpts
generated by VITA Toolkit from the total clustering of the total of

two weeks (1st and 2nd week) of analysis. Color codes are used to
distinguish different artifacts in the analysis. For example, pink
ovals represent problem reports (CRs), light blue ovals represent
change requests (PRs), and slate blue boxes represent files. The
edges that connect the boxes to ovals represent a relationship
between a change request and a file or a problem report and a file.

Figure 1: VITA Clustering Analysis Toolkit

4.3.2 Result Analysis
Preliminary results from these two weeks of data suggest that
there is certain clustering of files that gravitate to each other due
to a change request. It is likely these files show a natural affinity
due to the design. Certain change requests and problem reports
had multiple files associated with them. In addition, the reverse
was true where certain files saw multiple change requests and
problem reports during the specified time frame. In addition to
these, there are many files that exist without the attachment to any
change requests or problem reports as well as change requests and
problem reports that do not have any nodes connected to them.
This could be due to the fact that the change request or problem
report that required the work of these specific files exists outside
of the desired time frame. Another possibility is that a change
request or a problem report was made during the time frame but
no action was taken yet.

By acquiring the knowledge of the files associated with a
particular change request or problem report, an analyst would be
able to make assumptions at a high level and keep track of all
other files that were manipulated together so that future work on a
particular file might raise a flag towards the developer so that
considerations should be taken towards other files that were
previously associated with the file in question. In addition, a file

69

with the highest problem report to change request ratios could be
deemed high risk and therefore warrant extra attention in the next
stage of development.

5. SUMMARY
This paper presented a methodology for software process
improvement, specifically visualize the impact analysis by
analyzing configuration management repository. As the first step
in identifying the development bottleneck and problem areas, an
impact analysis and visualization toolkit VITA of files changes
due to change request and problem report was developed. A case
study that applies this methodology by using real-world data from
a large industrial partner illustrates the feasibility of the
methodology.

Although this project does not involve analysis at the code level,
it does provide meaningful input for further code level analysis
because each artifact in the generated graphic view is clickable to
the source related to it. Goal Question Indicator Metrics
methodology combined with Six Sigma’s DMADV methodology
can prove to be a rather successful combination – specially if
priorities are set using the Analytic Hierarchy Process. The
advantage of a statistically-based prioritization and decision-
making process is that it allows managers and individuals in the
position to make decisions regarding a project to possess
increased credibility regarding their reasons for certain choices.
The GQ(I)M approach places emphasis on the goals and questions
that should be asked of the process improvement initiatives.

Future work will include applying statistical methods, such as
classification and regression tree algorithms (C&RT), to the

repository data. Identifying and predicting continues variables or
categorical variables for development process. For example, to
identify the clusters of files that are likely to be changed together
over the development process, to find the files with the highest
Problem Report to Change Request ratio that might suggest that
these files are prone to errors and bugs and warrant consideration
as to redesigning [12]. In addition, statistical analysis of the files,
problem reports, and change requests should be made in order to
help focus the study.

REFERENCES
[1] Barnard, J. Price, A. “Managing Code Inspection

Information.” IEEE Software, 11(2), 59-69, 1994.
[2] Basili, V. R., Caldiera, G., Rombach, H. D. “The Goal

Question Metric Approach.” Encyclopedia of Software
Engineering, Wiley&Sons Inc., 1994.

[3] Gansner, E., North, S. “An Open Graph Visualization
System and Its Applications to Software Engineering.”
Software: Practice and Experience. 1999.

[4] Grady, B. “Practical Results from Measuring Software
Quality.” Communication of the ACM, 36(11), 62-68, 1993.

[5] Graves, T.L., Mockus, A. “Inferring change effort from
configuration management data.” Metrics 98: Fifth
International Symposium on Software Metrics, pages 267-
273, Bethesda, Maryland, November 1998.

[6] Hayes, J.H., Dekhtyar, A., Sundaram, S.K., Howard, S.
“Helping analysts trace requirements: an objective look’”
Requirements Engineering Conference, 2004. Proceedings.
12th IEEE International 2004. pp. 249 – 259

[7] Huang, S.; Tilley, S.; VanHilst, M.; Distante, D. “Adoption-
Centric Software Maintenance Process Improvement via
Information Integration.” Proceedings of the 13th IEEE
International Conference on Software Technology and
Engineering Practice (STEP 2005: September 24-25, 2005;
Budapest, Hungary). Los Alamitos, CA: IEEE Computer
Society Press, 2006

[8] Huffman Hayes, J., Patel, S., and Zhao, L. “A Metrics-Based
Software Maintenance Effort Model.” Proceedings of the 8th

European Conference on Software Maintenance and
Reengineering, Tampere, Finland, March 2004. pp. 254-258.
http://selab.netlab.uky.edu/Homepage/csmr_ameffmo_hayes
_2004%5Eas_published.doc

[9] Kilpi, T. “Implementing a Software Metrics Program at
Nokia.” IEEE Software, 18(6), 72-77, 2001.

[10] Lehman, M.M., Perry, D.E., and Ramil, J.F. “Implications of
Evolution Metrics on Software Maintenance.” ICSM'98,
November 1998.
http://www.ece.utexas.edu/~perry/work/papers/feast2.pdf

[11] Mustafa, M.A., Al-Bahar, J.F. “Project risk assessment using
the analytic hierarchy process.” IEEE Transactions on
Engineering Management. Volume 38, Issue 1, Feb. 1991
Page(s):46 – 52

[12] Sandusky, R.J., Gasser, L., Ripoche, G. “Bug Report
Networks: Varieties, Strategies, and Impacts in a F/OSS
Development Community.” 2004.

[13] Sommerville, I. Software Engineering (8th Edition). Addison-
Wesley, 2006.

[14] Tilley, S. A Reverse-Engineering Environment Framework.
Software Engineering Institute, Carnegie Mellon University.
Technical Report CMU/SEI-98-TR-005, 1998.

Figure 1: Clustering Analysis for Two Weeks Data
(Partial Graph)

70

Smooth Quality Oriented Component Integration through Product Line Based
Aspect-Oriented Component Adaptation

Yankui Feng, Xiaodong Liu and Jon Kerridge
School of Computing

Napier University
Edinburgh, UK

E-mail: {y.feng, x.liu, j.kerridge}@napier.ac.uk

Abstract

Mismatches in QoS (Quality of Service) often appears
as a major but implicit hurdle to smooth component
integration. This paper presents a solution to the above
problem through product line based aspect oriented
component adaptation. The approach enjoys high level of
automation and capability of deep level adaptation,
which is achieved in an aspect-oriented component
adaptation framework by generating and then applying
the adaptation aspects under designed weaving process.
The aspect product line facilitates the creation of
adaptation aspects that support specific adaptation
requirements. An expandable repository of reusable
adaptation aspects has been developed. The approach
and its realization are integrally demonstrated and
verified with a case study.

Keywords: Component-Based System, Software Product
Line, Aspect-Oriented Programming, Software Reuse,
Quality of Service.

1. Introduction

Component-Based Development (CBD) has been
proved as an effective technology in supporting
community-wide reuse of software assets [12]. Recently,
the methodology of CBD has been expanded to build
more challenging systems, such as dependable embedded
software and web services, which consequently imposed
more rigid requirements on the methodology itself, in
particular, in the QoS (Quality of Service) aspect [5][6].

Due to the availability of components and the diversity
of target applications, in many cases pre-qualified
available components still have mismatches to the
specific reuse requirements in particular applications.
This problem has been a major hurdle of wider
component reusability and smooth component
composition. The mismatches may occur in aspect of
functionality or QoS such as performance, security and
safety, and degrade the target component-based system
severely. Component adaptation has been researched over
the years as a key solution to the above problem [2] [10].

Due to the complex nature of the mismatch problem,
available approaches are either only capable for
adaptation at simple levels such as wrappers [2], or
inefficient to use due to the lack of automation in their
adaptation process. To assure the QoS of the target
component-based system, more efficient automated
adaptation mechanisms are in need to eliminate
component mismatches. Aspect oriented programming
(AOP) [9][11] is an ideal technology for QoS oriented
component adaptation due to its unique advantages in
addressing non-functional problems such as security and
performance.

Our approach, namely Generative Aspect-oriented
component adaptatIoN (GAIN) [4][8] is proposed to
achieve automated component adaptation at a rather deep
level, particularly aiming at eliminating mismatches in
QoS such as system performance and dependability. In
this paper, a case study of an online testing system is
presented to demonstrate and verify our approach and its
implementation. Compared with traditional
AOP[9][11][13][14], the weaving process of aspects in
GAIN supports more complex control flow, i.e., not only
sequence, but also switches, synchronization and multiple
threads, in order to deal with adaptation in more
complicated environments such as concurrent and real-
time applications. To facilitate the reusability of
adaptation knowledge, based on software product line
techniques [1][3], an expandable repository of reusable
adaptation aspects is developed.

The reminder of the paper is organized as follows:
Section 2 describes the approach framework, including
aspect-oriented generative component adaptation process,
aspect repository and process-based component
adaptation specification. Section 3 presents the prototype
tool, and a case study to demonstrate and verify the
approach and its implementation. Section 4 discusses the
related work. Finally, section 5 presents the conclusion.

2. The GAIN approach

2.1 The approach process

71

Figure 1 describes the process of the aspect-oriented
generative component adaptation. We presume that in a
component based system, a component has been found
potentially suitable for an application, but some
mismatches still exist, therefore, the application developer
wishes to have the component adapted.

Original
Component CS

PCAS

Adapted
Component

Concrete
Aspects

Component
Analyzer

PCAS
Editor

Generator

Adaptor

1
2

34

Aspect Repository

AAF
AF

AInst

Figure 1: The process of GAIN Tool

The mismatch will be eliminated by applying aspect-
oriented adaptation to the original component. First, as
shown in figure 1, the component is analyzed with the
component analyzer, which analyzes the source or binary
code of the component and extracts component
specification information, e.g. class names, method
signatures and quality features. The component
specification will be used to guide component adaptation.
If the component already has well defined specification,
this step can be skipped.

Then, based on the adaptation requirements, a Process-
based Component Adaptation Specification (PCAS) will
be created by selecting aspect types, namely Abstract
Aspect Frames (AAF), from Aspect Repository and
defining the weaving process of these aspects. The
selection of aspects is actually the process to determine
functional variation of a specific adaptation. The
composition of PCAS is supported by an interactive IDE
called PCAS Editor, which supports both graphical and
XML source view of the PCAS.

In step 3, based on PCAS and the lower level aspect
definition, namely Aspect Frame (AF) in the Aspect
Repository, executable aspects instances (AInsts) are
generated by the aspect generator according to different
AOP implementation specifications. As a result, platform
variation is achieved during aspect generation. The input
for the aspect generator is XML formatted aspects and the
output is concrete aspect instances in an executable form.

In the last step, to implement PCAS in the weaving
process, a post-weaving technique is developed. The
post-weaving tool gets class files for aspects generated by
AOP platform such as AspectJ as input, and then
modifies those class files to generate new class files that
support complicated flow control and synchronization
according to PCAS.

2.2 The aspect repository

The aspect repository is an embodiment of the
proposed product line based reusable aspect model.
Reusable aspects are defined at three abstraction levels
and kept in the repository as AAF, AF, and AInst. The
reusable assets in the repository include both primitive
and composite aspect types, which come from the
adaptation process in PCAS. More details of Aspect
Repository is described in [4][8].

2.3 The PCAS

To satisfy the adaptation requirements for a particular
reuse context, it often requires performing complex
adaptation to multiple components with a set of generated
aspects applied to these components under a specially
designed process containing conditions, synchronization
and other flow controls. Process-based Component
Adaptation Specification (PCAS) is developed to describe
the above complicated adaptation details.

If a PCAS is found common and reusable in the future,
its process control part can be regarded as a composite
aspect type. Composite aspects are supported in AAF
level to achieve advanced reuse in typical aspect using
cases.

A PCAS is an XML formatted document, which
includes the details of component adaptation, such as the
target component, the weaving process, and the abstract
aspects to be applied. In a PCAS, sequence and switch
structure are supported to achieve flexible adaptation on
components. The adaptation process in PCAS is depicted
with only the ID of the selected aspects. Full details of the
aspects are still kept in Aspect Repository.

3. Tool Realisation and Case study

3.1 Tool realisation

A CASE tool has been developed to facilitate the
proposed approach. With the tool, component developers
define aspect weaving process by drag-and-drop in a
graphical tool, namely PCAS Editor. They select
candidate aspects and fill in necessary details in Aspect

72

Manager. The Aspect Generator generates concrete aspect
automatically. According to the defined PCAS, Adaptor
completes the aspect weaving and generates the final
adapted components.

3.2 The problem of current system

Case studies have been done to verify the approach, in
terms of its capability of improving QoS such as system
performance in a component based system. In this
section, we use the following case study to demonstrate
how PCAS works and how to generate an executable
aspect by mapping through the different abstraction views
of the aspect in our framework.

Figure 2: On-line testing component

As shown in figure 2, the case study regards with an
on-line testing component, which was developed by
Component Source, a software company selling COTS
components. The IT department of a university planned to
build its own online assessment system and bought the
component for integration as part of the system.
However, the system developers identified that the heavy
access load imposed by the large number of students has
made the system performance poor.

3.3 The adaptation requirement

The development team decided that prior to integration
of the online testing component three actions should be
done to adapt the performance of the component. First, a
database connection pool is to be introduced to the online
testing system to improve system performance. Then,
logging is used to monitor the usage of the connection
pool. Finally, based on the logging information, the
connection pool is tuned to achieve the best performance
with reasonable resource cost such as memory

consumption, by adjusting the parameters, including the
capacity of connection pool and the time of expire of a
connection instance.

3.4 Generative aspect-oriented adaptation

To meet the reuse requirements, the following three
aspects are applied to the component to implement the
above adaptation actions, namely database connection
pool, logging if connection pool reaches its maximum
capacity, and logging if connection pool does not reach
its maximum capacity. These adaptation actions are then
described in a Process-based Component Adaptation
Specification (PCAS). The specification is created with
the PCAS Editor shown in figure 3 by finding appropriate
AAFs, i.e., either primitive types or composite types of
aspects, and putting these AAFs into an adaptation
process. Functional variation of adaptation is
implemented through the composition of PCAS.

Figure 3: An environment to create PCAS (PCAS
Editor)

The content of PCAS is shown in figure 4:

<?xml version="1.0"?>
<AOP-Process name="Aspects_on_On-line testing"
xmlns="http://www.dcs.napier.ac.uk/2005/PCAS">
<Container name="Connection pooling and logging

 on database connections">
<Sequence>
 <Apply-aspect
 class="java.sql.DriverManager,java.sql.Connection"
 method="getConnection"
 aspect_id="030001"
 aspect_level="primitive"
 aspect_type="DBConnectionPool"
 af_id="03000101"
 af_name="dbp_1"
 synchronized="false"
 comment="Add all DB connections into the pool"/>
 <Switch expr="dbp_1.getDBPStatus()">
 <case value="true">
 <Apply-aspect

73

 class=" java.sql.DriverManager,java.sql.Connection"
 method="getConnection"
 aspect_id="010001"
 aspect_level="primitive"
 aspect_type="logging"
 af_id="01000101"
 af_name="dbp_logging_1 "
 synchronized="true"
 comment=" Tracing while DB connection pool does not
reach its capacity "/>
 </case>
 <case value="false">
 <Apply-aspect
 class=" java.sql.DriverManager,java.sql.Connection "
 method="getConnection"
 aspect_id="010001"
 aspect_level="primitive"
 aspect_type="logging"
 af_id="01000102"
 af_name="dbp_logging_2"
 synchronized="true"
 comment=" Tracing while DB connection pool reaches its
capacity "/>
 </case>
 </Switch>

 </Sequence>
 </Container>
 </AOP-Process>

Figure 4: A Process-based Component Adaptation
Specification for Online testing system

The specification in PCAS is at a rather overview level
and does not contain the details of individual aspects.
Developers need to provide parameter values for each
aspect. Common AFs can be saved into Aspect
Repository for further reuse. As shown in figure 5, the
Aspect Manager is a tool to manage reusable aspects in
the aspect repository, and to present graphical views of
aspects at various abstraction levels.

Figure 5: Manipulate aspects in Aspect Manager

In this example, three AFs will be generated for each
of the above aspects accordingly. Due to the structural
similarity of AFs of different aspects, we only give the

AF for logging while DB connection pool does not reach
its capacity in figure 6 as an example.

<?xml version="1.0" ?>
<Aspect name="dbp_logging_1">
 <!—Common Structure -->
 <CommonStructure>
 <PointCut>
 <Name>dbp_pointcut_1</Name>
 <When>execution</When>
 <ReturnType>*</ReturnType>
 <ClassName>

java.sql.DriverManager,java.sql.Connection
 </ClassName>
 <MethodName>getConnection</MethodName>
 <Parameters>..</Parameters>
 </PointCut>
 <Advice>
 <When>after</When>
 <PointCutName ref=" dbp_pointcut_1" />
 </Advice>
 </CommonStructure>

 <!-- Variations -->
 <Variation type="logging">
 <Output>
 <Device>
 <File>D:\On-lineTesting\logs\dbp.log</File>
 </Device>
 <Messages>
 <Message>Access to DB connection pool
 without reaching its capacity on
 </Message>
 <Date/>
 <Message>at </Message>
 <Time/>
 </Messages>
 </Output>
 </Variation>

</Aspect>

Figure 6: An Aspect Frame for online testing system

From the above AF in figure 6, Aspect Generator
shown in figure 7 generates an aspect instance (AInst)
that is specific to a selected AOP platform. The generated
AInst of the AF in figure 6 is given in figure 8.

Figure 7: Generate aspects in Aspect Generator

V

CS

74

import java.io.*;
import java.util.*;
import org.aspectj.lang.*;

public aspect dbp_logging_1
{
 pointcut dbp_pointcut_1():execution(*
 java.sql.DriverManager,java.sql.Connection
 .getConnection(..));
 after():dbp_pointcut_1() {

 Calendar cal = Calendar.getInstance();
 try {
 FileWriter fw =
 new FileWriter("D:\\ On-lineTesting\\logs\\dbp.log ",
 true);
 PrintWriter pw = new PrintWriter(fw);

 pw.print("Access to DB connection pool
 without reaching its capacity on ");
 pw.print(cal.get(Calendar.YEAR) + ".");
 pw.print(cal.get(Calendar.MONTH) + ".");
 pw.print(cal.get(Calendar.DAY_OF_MONTH) + " , ");

 pw.print("at ");

 pw.print(cal.get(Calendar.HOUR) + ":");
 pw.print(cal.get(Calendar.MINUTE) + ":");
 pw.print(cal.get(Calendar.SECOND));
 pw.println();
 pw.close();
 }catch(Exception e) {
 System.out.println("Error occured: " + e);

}

 }
}

Figure 8: An Aspect Instance for online testing system

The generated executable aspects are finally applied to
the component by the aspect weaver. A new adapted
version of the component is then created through aspect
weaving. Since current AOP platform like AspectJ does
not support complicated flow control such as switch in
weaving process, post-processing is applied to enable
process-based weaving in our framework.

The Aspect Weaver weaves the generated aspect
instances into the original component according to the
PCAS. The final adapted component source code is
invisible to the developer. By deploying the adapted
component, the targeted QoS requirements of system
performance are fulfilled.

3.4 Conclusion

The new system with the adapted online testing
component has been tested under various access loads.
The results show that the system performance has been
improved greatly, in particular while a large number of
students using the system. The case study verifies that the
GAIN approach is effective with good level of

automation in improving QoS of components and
component-based systems.

4. Related work

4.1 Binary Component Adaptation

Binary Component Adaptation (BCA) [10] has been
proposed by R. Keller and U. Hölzle to support
component adaptation in binary form and on-the-fly
(during program loading). BCA rewrites component
binaries before (or while) they are loaded, requires no
source code access and guarantees release-to-release
compatibility. That is, an adaptation is guaranteed to be
compatible with a new binary release of the component as
long as the new release itself is compatible with clients
compiled using the earlier release.

However, together with the binary code adaptation,
especially with “online” (on-the-fly) adaptations, extra
processing time is required. As a result, the load-time
overhead is a major problem. Consequently, when more
adaptation processes are required, the load-time will be
the bottleneck of the system performance.

4.2 Superimposition

Superimposition [2] is a novel black-box adaptation
technique proposed by Bosch. Software developers are
able to impose a number of predefined, but configurable
types of functionality on reusable components. The
notion of superimposition has been implemented in the
Layered Object Model (LayOM), an extensible
component object language model. The advantage of
layers over traditional wrappers is that layers are
transparent and provide reuse and customizability of
adaptation behaviour. Due to lack of component
information, modification is limited at simple level, such
as conversion of parameters, and refinement of
operations. Moreover, with more layers of code imposed
on original code, the overhead of the adapted component
increases heavily, which degrades system efficiency.

4.3 Aspectual Component

To achieve reusable aspects, Karl Lieberherr et al.
introduced the concept of Aspectual Components [7].
Aspects are specified independently as a set of abstract
join points. They believe that aspect-oriented
programming means expressing each aspect separately, in
terms of its own modular structure. Using this model, an
aspect is described as a set of abstract join points which
are used when an aspect is combined with the base-
modules of a software system. In this way, the aspect-

CS

V

CS

75

behaviour is kept separate from the core components,
even at runtime.

4.4 Summary

Due to the diversity and level of component mismatch,
available component adaptation approaches are either
only capable for adaptation at simple levels, such as
wrappers, or inefficient to use due the lack of automation
in their adaptation process. Deep-level highly automated
component adaptation can be achieved through AOP.
Some AOP based frameworks have been developed to
achieve reusable components. However, an AOP platform
independent framework is still desired. Furthermore,
current AOP techniques only support weaving aspects
sequentially. To cope with complex adaptation, it often
requires weaving aspects in more sophisticated control
flow, e.g. dynamically deciding whether to invoke a
particular aspect, and synchronizing in multi-thread
applications.

5. Conclusions

Despite the success of component-based reuse, the
mismatches in QoS between available pre-qualified
components and the specific reuse context in individual
applications continue to be a major factor hindering
component reusability and smooth composition. The
work presented in this paper is based on the observation
that existing reuse approaches and tools are weak in
providing a mechanism to adapt components in QoS
aspect and meanwhile with sufficient automation. The
aspect-oriented nature of our approach makes it
particularly suitable for the improvement of non-
functional features of the target component-based
software, such as dependability and performance.

The proposed approach applies aspect-oriented
generative adaptation to targeted components to correct
the mismatch problem in QoS so that the components can
be integrated into the target application smoothly.
Automation and deep level adaptation are the benefits of
the approach. This is achieved with the following key
techniques in an aspect-oriented component adaptation
framework: 1) the generation of adaptation aspects based
on specific adaptation requirements; 2) the advanced
aspect weaving process definition mechanism that
supports switch and synchronization; 3) an expandable
repository of reusable adaptation aspects.

The benefits of the approach include deeper
adaptability, especially in non-functional aspects, higher
automation and therefore smooth component integration
and wider reusability. As consequence, the target

component-based software will have better performance.
Our case studies have shown that the approach and tool
are promising in solving the mismatch problem in QoS.

6. References

[1] Batory, D., Johnson, C., MacDonald, B., & Heeder, D. V.,
"Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study", ACM
Transactions on Software Engineering and Methodology
(TOSEM), April 2002, Vol. 11(2), pp. 191-214.

[2] Bosch, J., “Superimposition: a component adaptation
technique”, Information and Software Technology, 1999,
41, 5 pp. 257-273.

[3] Diaz-Herrera, J.L., Knauber, P., & Succi, G. “Issues and
Models in Software Product Lines,” International Journal
on Software Engineering and Knowledge Engineering,
2000, 10(4):527-539.

[4] Feng, Y., Liu, X., & Kerridge, J. "Achieving Smooth
Component Integration with Generative Aspects and
Component Adaptation", Proceedings of 9th International
Conference on Software Reuse, Torino, Italy, June 11-15,
2006, LNCS 4039, pp. 260-272.

[5] Ingham, David B., Shrivastava, Santosh K., & Panzieri,
Fabio, “Constructing dependable Web services”, IEEE
Internet Computing, 2000, 4(1), pp. 25-33.

[6] Jhumka, A., Hiller, M., & Suri, N, “Component-based
synthesis of dependable embedded software”, Formal
Techniques in Real-Time and Fault-Tolerant Systems. 7th
International Symposium, FTRTFT 2002. Proceedings
LNCS, 2002, Vol.2469, pp 111-28

[7] Lieberherr, K., Lorenz, D., & Mezini, M, “Programming
with Aspectual Components”, Technical Report, College
of Computer and Information Science, Northeastern
University, NU-CCS-99-01, March, 1999.

[8] Liu, X., Feng, Y., & Kerridge, J. "Achieving Dependable
Component-Based Systems Through Generative Aspect
Oriented Component Adaptation", Proceedings of 30th
Annual International Computer Software and Applications
Conference, Chicago, September 18-21, 2006.

[9] Mezini, M., Ostermann, K., “A comparison of program
generation with aspect-oriented programming”, Lecture
Notes in Computer Science, 2005, 3566, pp. 342-354.

[10] Keller, R., & Hölzle, U. “Binary Component Adaptation”.
Proceedings of the 12th European Conference on Object-
Oriented Programming, July, 1998.

[11] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., & Griswold, W., “Getting Started with AspectJ”,
Communications of the ACM, October 2001, pp. 59-65.

[12] Sommerville, I. (2007). Software Engineering (8th
edition). Addison-Wesley. ISBN: 0-321-31379-8.

[13] Sullivan, G.T., “Aspect-oriented programming using
reflection and meta object protocols - Providing
programmers with the capability to modify the default
behaviour of a programming language.”,
Communications of the ACM, OCT 2001, 44 (10), pp. 95-
97.

[14] Viega, J., Voas, J., “Quality time - Can aspect-oriented
programming lead to more reliable software?”,
IEEE SOFTWARE, Nov-Dec, 2000, 17(6), pp. 19-21.

76

Modular Specification of Aspect-oriented Systems and Aspect Conflicts Detection

Hui Liang
School of Computing

National University of Singapore
lianghui@comp.nus.edu.sg

Jing Sun
Department of Computer Science

The University of Auckland
j.sun@cs.auckland.ac.nz

Abstract

In this paper, we propose AspecTCOZ to provide a for-
mal specification notation for aspect-oriented software de-
sign and analysis. Furthermore, we propose a formal
specification-based approach for the early detection of se-
mantic conflicts between aspects, which are caused by the
superimposition of multiple aspects on the same join point.

1 Introduction

Aspect-oriented programming (AOP) [4] has been pro-
posed as a new methodology to improve the separation of
concerns in software development. By far, a few method-
ologies for aspect-oriented requirement analysis and archi-
tecture design have been proposed [1, 12, 13]. However,
comprehensive technique supports for modeling and design
are still far from sufficient.

In this paper, we propose AspecTCOZ, an aspect-
orientated extension of the integrated formal notation
TCOZ (Timed Communicating Object-Z) [7]. The class
schema in TCOZ notation is an eligible candidate for speci-
fying an aspect formally, because aspect is the unit of mod-
ularity, encapsulation, and abstraction in AOP, just in the
same way as class in OOP. Meanwhile, the strength of
TCSP in modeling process control and real-time interac-
tions, which is preserved in TCOZ, provides a great mech-
anism for specifying the temporal order between pointcut
and advice in an aspect-oriented context. Therefore, we ex-
tend TCOZ with the mechanisms for formally specifying
the constructs of join point, pointcut, advice, and inter-type
introduction, aiming to provide a formal specification nota-
tion for aspect-oriented software design and verification.

Meanwhile, in AOP, when multiple aspects are superim-
posed on the same join point, unexpected semantic conflicts
between aspects may emerge. Therefore, we propose an
approach for the early detection of semantic conflicts be-
tween aspects, based on the formal specification of the sys-
tem written in the AspecTCOZ notation.

The rest of the paper is organized as follows. Section 2
introduces TCOZ notation. Section 3 presents AspecTCOZ
notation. Section 4 presents a formal specification-based
approach for the early detection of semantic conflicts be-
tween aspects. Section 5 reviews some related work. Fi-
nally, Section 6 concludes the paper.

2 TCOZ notation

Timed Communicating Object-Z (TCOZ) [7] is an inte-
gration and extension of the Object-Z [2, 10] and the Timed
CSP [8, 9] formal modeling notation. The essence of this
blending is the unification of Object-Z operation specifica-
tion schemas with terminating CSP processes.

The basic structure of a TCOZ document is the same as
that of an Object-Z document, consisting of a sequence of
class definitions, and some type and constant definitions in
the usual Z style. However, TCOZ varies remarkably from
Object-Z in the definition of class schema. In TCOZ no-
tation, operation schema expressions may appear wherever
processes may appear in CSP and CSP process definitions
may appear wherever operation definitions may appear in
Object-Z. Furthermore, it is natural to allow to define TCOZ
operations in terms of CSP primitives, such as event se-
quencing, as well as through the schema calculus. Thus,
it becomes feasible to specify its temporal properties when
describing the operation. Meanwhile, operation schemas
take on the syntactic role of CSP processes, so they may
be combined with other schemas and even CSP processes
using the standard CSP process operators. A detailed intro-
duction to TCOZ and its Timed CSP and Object-Z features
may be found in [7]. The formal semantics of TCOZ is doc-
umented in [6].

3 AspecTCOZ - an aspect-oriented extension
of TCOZ

Aspect is the central unit of modularity, encapsulation,
and abstraction in AOP. It is defined very much like a class,

77

Table 1. Formal notation for join point model
of AspectJ

Join point model Formal notation
method call ζ(list of operation/

constructor call constructor signatures)
method execution ξ(list of operation/

constructor execution advice/constructor/handler/
handler execution object initialization signature)
advice execution

object/class initialization
field read access �(list of class member names)

field write access �(list of class member names)

and can contain methods, fields, nested class members, and
initializers, just like a normal OOP class. Moreover, just
like class inheritance in OOP, there is a mechanism for as-
pects inheritance with which aspects can not only extend
other aspects, but also extend classes and implement inter-
faces in AOP. Therefore, the class schema in TCOZ nota-
tion might be an eligible mechanism for specifying aspects
formally. However, as the basic units for implementing
aspect-oriented crosscutting concerns, aspects must contain
the constructs that express the weaving rules for both dy-
namic and static crosscutting, namely pointcuts, advice, and
inter-type declarations and so on. There are no such mech-
anisms in TCOZ that can specify them competently. There-
fore, we extend TCOZ notation with some constructs so that
it will be capable of specifying an aspect-oriented system
formally.

3.1 Join point

Join points are events in the control flow of a program;
and they are identifiable point in the execution of a pro-
gram. The join points defined by AspectJ include: method
and constructor calls or executions, field accesses, object
and class initializations, handler and advice executions, and
so on [5]. In AspecTCOZ, we introduce formal notations,
which is as shown in Table 1, for the join point model of
AspectJ.

3.2 Pointcut

A pointcut is a program construct that captures a set of
join points by matching certain characteristics. In addition
to the join points which have been presented in Section 3.1,
the pointcut designators in AspectJ can also capture join
points based on matching the circumstances under which
they occur, such as control flow, lexical scope, and condi-
tional checks. Table 2 presents the proposed formal nota-
tion for pointcut designators.

Table 2. Formal notation for some pointcut
designators of AspectJ

Pointcut designator Formal notation
control-flow �(executing/calling pointcuts)

based pointcuts �(executing/calling pointcut)
lexical-structure ©(name of class)
based pointcuts �(name of operation)

execution object ⊕(name of class/object)
poincuts �(name of class/object)

argument pointcuts A(type/name of parameters)
conditional predicates from TCOZ

check pointcuts

Complex matching rules can be formed by combining
simple pointcuts. AspecTCOZ provides a unary negation
operator ¬ and two binary operators ∧ and ∨ to build pow-
erful pointcuts from the simple building blocks of existing
and primitive pointcuts.

• unary negation operator ¬ allows the matching of all
join points except those specified by the pointcuts.

• ∧ and ∨ are provided to combine pointcuts. Combin-
ing two pointcuts with the ∨ operator causes the selec-
tion of join points that match either of the pointcuts,
whereas combining them with ∧ operator causes the
selection of join points matching both the pointcuts.

To provide a sound formal notation, it is demanded that
all the pointcuts have a name in AspecTCOZ. Thus, the syn-
tax of a pointcut declaration is as follows:
PointcutName [(ParameterTypeList)] �

PrimitivePointcut {¬ | ∧ | ∨ (PrimitivePointcut|
PointcutName)}

Literally, the pointcut can have zero or a list of parame-
ters; and it can be a primitive pointcut or the combination
of existing pointcuts and/or primitive poincuts with opera-
tors (i.e. ¬,∧,∨).

3.3 Advice

Advice is a method-like construct that expresses what to
do at the join points captured by a pointcut. The operation
schema in TCOZ work greatly in describing “what to do”.
However, it is not capable enough of formally specifying
advice because each piece of advice must be associated with
a pointcut in AOP. The implicit invocation of advice can
happen before, after or around the join points matched by
its pointcut. The strength of TCSP in modeling process con-
trol and real-time interactions, which is preserved in TCOZ,
provides a great mechanism for specifying the temporal or-
der between pointcut and advice.

78

Join points captured by the pointcuts are essentially
events in the execution of a program. Therefore, we can
define a process PCprocess for every pointcut PointCut as
follows:

PCprocess = e : PointCut → SKIP
Furthermore, in TCOZ notation, operation schemas is

identified with CSP processes that perform only state update
events; and operation schema expressions may appear wher-
ever processes may appear in CSP. Therefore, assuming OP
is the operation schema describing ”what to do” with the
advice and PCprocess is the process corresponding to the
relevant pointcut, we can specify the before advice and af-
ter advice as the sequential composition of two processes,
namely PCprocess and OP, as follows:

before advice ⇒ OP; PCprocess
after advice ⇒ PCprocess; OP

3.4 Inter-type declaration

Inter-type declarations are statements that an aspect
takes complete responsibility for certain capabilities on be-
half of the “targets” of the inter-type declarations. The
most basic forms of inter-type declarations are for meth-
ods, fields, and constructor. The mechanism provided by
AspecTCOZ for specifying inter-type declaration of fields,
methods and constructors are similar to those mechanism
for normal declarations, but with the exception that the tar-
gets of the declarations are attached with sign ‘∝’. There
are two purposes to do so: 1) to distinguish the inter-type
declarations from the normal ones; 2) to show clearly what
the target modules of the inter-type declarations are. The
following two schemas are respectively the general form of
inter-type declaration of state variables and operations in
AspecTCOZ.

∝
{NameOfVariable ∝ TargetClassName : Type}1
[Predicates on Variables]

OpName ∝ TargetClassName
[ListOfToBeChanged]
[NameOfVariable ∝ TargetClassName : Type]

[Predicates on Variables]

3.5 Aspect

Having proposed the extension to TCOZ notation for for-
mally specifying join point, pointcut, advice, and inter-type
introduction, now we can formally define an aspect in As-
pecTCOZ notation. The general form of an aspect schema
is shown in Figure 1.

AspectName
[Inheritance]
[LocalDefinition]
[StateSchema]
[InitialSchema]
[OperationSchema]
[OperationExpressionDefinition]
[PointcutDefinition]
[AdviceDefinition]
[IntertypeStateVariableSchema]
[IntertypeStateVariableInitialSchema]
[IntertypeOperationSchema]

Figure 1. An aspect schema

4 Formal specification-based detection of se-
mantic conflicts

As multiple aspects are superimposed on the same join
point, the aspects might well interfere with each other in a
potentially undesired manner. The potential semantic con-
flict is one of the critical and intrinsic issues in aspect-
oriented software development. While those aspects are
syntactically sound and can be compiled without any prob-
lems, this kind of conflicts exhibit themselves only when
the composed application executes.

In AspecTCOZ, the aspect is defined by the association
of operation schema and pointcut. In the operation schema,
the input and output parameters are clearly laid out, and the
variables/objects that will be changed by the operation are
also explicitly laid out in the ListOfToBeChanged. Thus,
based on the formal specification, we can figure out whether
there might be any data-dependent conflicts between as-
pects. Assume that a system has been specified in AspecT-
COZ notation, and that there are some join points which
are superimposed by a few aspects. For each join point,
if it is superimposed then for each pair of the aspects su-
perimposing on it (A1, A2), for each advice a1 which is an
advice included in aspect A1, we check whether there ex-
ists an advice a2 in aspect A2 such that advice a2 is the
same kind of advice as a1 and there are variables which
are included both in the input variable list of the operation
schema associated with a1 and in the output variable list or
the ListOfToBeChanged of the operation schema associated
with a2. If yes, there will be conflicts between the two as-
pects A1 and A2. We also check whether there are common
elements between the ListOfToBeChanged of the operation
schema associated with a1 and the ListOfToBeChanged of
the operation schema associated with a2. If yes, we declare
that there will be conflicts between A1 and A2.

79

5 Related work

Some researchers have tried to extend mathematics
and/or logic based formal specification notations to sup-
port aspect-oriented program design and verification. The
work most close to ours is what have been proposed by
Yu et al. [14, 15]. They proposed AspectZ [15], an aspect-
oriented extension to Z. In a similar way, Yu et al. [14] intro-
duced the concept of join point, pointcut, advice and aspect
to Object-Z. The formal specification notation proposed by
us, AspecTCOZ, is different from the work by Yu et al. in
two main ways. Firstly, in AspecTCOZ, advice is defined
with the assistance of operation schema, which provides the
system designers with the ability to abstract and encapsu-
late the description of what to do at the join point, and the
ability to reuse this formal description. Secondly, with the
strength of TCSP in modeling process control and real-time
interactions, which is preserved in TCOZ, the temporal or-
der between pointcut and advice can be described clearly
and concisely in AspecTCOZ notation.

The detection of semantic conflicts has received some at-
tention from researchers. Durr et al. [3] proposed a detect-
ing approach that defines the semantics of advice in terms of
operations on a resource model.Tessier et al. [11] proposed
a formal way to detect semantic conflicts between aspects
based on extended UML class diagram model. In our ap-
proach, the conflicts are detected based on the analysis of
data flow between the formal specifications of two pieces
of advice.

6 Conclusions and future work

In this paper, we have proposed AspecTCOZ notation. It
is an aspect-orientated extension to TCOZ with the mech-
anisms for formally specifying the constructs of join point,
pointcut, advice, and inter-type introduction. Furthermore,
based on the formal specification of the system, which is
written in AspecTCOZ notation, we proposed an approach
for early detection of the semantic conflicts between as-
pects. It detects the conflicts in the design and modelling
phases of system development, therefore, makes it possi-
ble to reduce the development cost while promising a high
quality software. To develop the mechanism for formally
specifying around-advice is a part of our future work. And,
we will also extend our conflicts detection technique with
the analysis of control dependence based on available for-
mal specifications, so that more implicit conflicts will be
detected1.

1An extended version of this paper can be found at
http://www.comp.nus.edu.sg/∼lianghui/AspecTCOZ.pdf.

References

[1] E. Baniassad and S. Clarke. Theme: An approach for aspect-
oriented analysis and design. In ICSE ’04: Proceedings of
the 26th International Conference on Software Engineering,
pages 158–167, 2004.

[2] R. Duke and G. Rose. Formal Object Oriented Specification
Using Object-Z. Cornerstones of Computing. Macmillan,
March 2000.

[3] P. Durr, L. Bergmans, and M. Aksit. Reasoning about se-
mantic conflicts between aspects. In Proceedings of the First
Aspect, Dependencies, and Interactions Workshop, pages
10–18, 2006.

[4] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proceedings European Conference on Object-
Oriented Programming, pages 220–242, 1997.

[5] R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT,
USA, 2003.

[6] B. Mahony and J. S. Dong. Overview of the semantics of
TCOZ. In IFM ’99: Proceedings of the 1st International
Conference on Integrated Formal Methods, pages 66–85,
1999.

[7] B. Mahony and J. S. Dong. Timed Communicating Object
Z. IEEE Transactions on Software Engineering, 26(2):150–
177, Feb. 2000.

[8] S. Schneider and J. Davies. A brief history of Timed CSP.
Theoretical Computer Science, 138(2):243–271, 1995.

[9] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N.
Reed, and A. W. Roscoe. Timed CSP: Theory and prac-
tice. In J. W. de Bakker, C. Huizing, W. P. de Roever, and
G. Rozenberg, editors, Real-Time: Theory in Practice, pages
640–675. Springer-Verlag, 1992.

[10] G. Smith. The Object-Z Specification Language. Advances
in Formal Methods. Kluwer Academic Publishers, 2000.

[11] F. Tessier, L. Badri, and M. Badri. A model-based detection
of semantic conflicts between crosscutting concerns: To-
wards a formal approach. In Proceedings of International
Workshop on Aspect-Oriented Software Development, 2004.

[12] D. X. Xu and K. E. Nygard. Threat-driven modeling and ver-
ification of secure software using aspect-oriented petri nets.
IEEE Transactions on Software Engineering, 32(4):265–
278, 2006.

[13] D. X. Xu and W. F. Xu. State-based incremental testing of
aspect-oriented programs. In Proceedings of the 5th Inter-
national Conference on Aspect-Oriented Software Develop-
ment, pages 180–189, 2006.

[14] H. Yu, D. Liu, Z. Shao, and X. He. Modeling complex soft-
ware systems using an aspect extension of Object-Z. In Pro-
ceedings of 18th International Conference on Software En-
gineering and Knowledge Engineering, 2006, pages 11–16,
2006.

[15] H. Yu, D. Liu, L. Yang, and X. He. Formal aspect-oriented
modeling and analysis by AspectZ. In Proceedings of
17th International Conference on Software Engineering and
Knowledge Engineering, 2005, pages 175–180, 2005.

80

Avoiding Bad Smells in Aspect-Oriented Software

Eduardo K. Piveta1, Marcelo Hecht1, Ana Moreira2, Marcelo S. Pimenta1,
João Araújo2, Pedro Guerreiro2, R. Tom Price1

1 Inst. Informática, Univ. Federal do Rio Grande do Sul - Porto Alegre, Brazil
2 Dept. Informática, FCT, Universidade Nova de Lisboa - 2829-516 Caparica, Portugal

{epiveta, mvhecht, mpimenta}@inf.ufrgs.br, {amm, ja, pg}@di.fct.unl.pt, tomprice@terra.com.br

Abstract

Different kinds of shortcomings can appear during soft-
ware development. Some of them can be detected us-
ing static analysis and be removed using refactoring tech-
niques. A more efficient strategy is to avoid them before they
appear in the software. Recent work has been done on the
identification of bad smells in the context of aspect-oriented
software development. However, mechanisms to help the
software engineer to avoid them are not sufficient. In this
paper, based on a collection of bad smells that can occur
in aspect-oriented software, we propose a set of guidelines
to reduce the occurrence of bad smells in aspect-oriented
software artefacts and show the benefits of using, through
examples, the guidelines hereby described.

1. Introduction

Aspect-Oriented Software Development [3] is being

used to improve the modularisation of crosscutting con-

cerns. Nonetheless, the use of aspects can introduce short-

comings either particular to the use of aspects or similar

to those found in object-orientation, such as pieces of code

abandoned in a class or in an aspect, code duplication, and

classes or aspects with too many or too few responsibilities

[15]. These shortcomings, called bad smells [4], can de-

crease reuse throughout all stages of the development pro-

cess and can be minimized by the identification of their

symptoms and the removal of their causes.

There are bad smells that appear in object-oriented soft-

ware, indicating refactoring opportunities for code extrac-

tion from objects to aspects [12], or bad smells for aspect-

oriented software [15] and detection algorithms for the As-

pectJ [9] language. However, these authors do not deal with

mechanisms to avoid the occurrence of these bad smells in

aspect-oriented software.

Also, guidelines for software design and for program-

ming style for aspect-oriented software have been proposed

[1][5][2], mostly based on guidelines for object-oriented

software. These guidelines help the process of designing

software in terms of developing more readable and reusable

aspects. However, they do not address all the issues raised

by the bad smells that can appear in aspect-oriented soft-

ware.

In this paper we describe additional aspect-oriented de-

sign guidelines specifically targeted to avoid the occurrence

of bad smells in aspect-oriented software. For each guide-

line, we provide a general description, a motivation and ex-

amples. We use the AspectJ Design Patterns [6] and other

source code samples [2][7] as examples to demonstrate the

use of the proposed guidelines.

This paper is organized as follows. Section 2 describes

bad smells that can occur in aspect-oriented software. Sec-

tion 3 presents a set of guidelines to aid the software en-

gineer in conceiving aspect-oriented software. In Section

4 we discuss the relation between bad smells and guide-

lines. Section 5 discusses related work and Section 6 in-

cludes some concluding remarks.

2. Background

Bad smells are shortcomings in software artefacts, de-

tectable by a set of symptoms and that can be indicatives of

potential improvements through refactoring. In this section,

we briefly describe bad smells that can appear in aspect-

oriented software. For more details, one can refer to our

past work in [15] and [16] or refer to the work of Monteiro

and Fernandes [12]. The following bad smells are taken into

consideration in this paper:

Code Duplication. Duplication of code among meth-
ods, advices, fields and pointcut definitions can increase the

problems that occur in maintenance activities. These dupli-

cations can occur as a result of copy and paste programming

or as a result of miscommunication (when a developer in-

dependently writes code that is very similar to what exists

elsewhere).

81

Anonymous Pointcut Definition. Using the pointcut
definition predicate directly on the advice may reduce the

advice legibility and hide the predicate intention. Also, a

pointcut definition not encapsulated in a pointcut cannot be

reused by other constructions.

Lazy Aspect. This situation, initially defined in [12],
happens when an aspect has few responsibilities, and its

elimination result in benefits in terms of maintenance.

Sometimes, this responsibility reduction is related to pre-

vious refactoring or to unexpected changes in requirements

(planned changes that never occurred, for instance). After

one or more refactoring patterns are applied, some classes

or aspects can lose responsibilities.

Divergent Changes. Another shortcoming occurs when
the pointcut definitions of an aspect are almost identical,

varying only in their modifiers or in small parts of their

predicate. Every time a pointcut is modified, all the other

pointcuts have go through the same modifications.

3. Avoiding the Occurrence of Bad Smells

In this section we define guidelines dealing with bad

smells in aspect-oriented software. Each guideline is fol-

lowed by a brief motivation and by an example chosen from

a well-known set of aspect-oriented implementations of de-

sign patterns [6] and other cases from [2] and [7]. We show

both constructions that use the guidelines described in this

section and constructions that do not follow the guidelines.

3.1. Use abstract aspects

Guideline. Design toward abstract aspects, whose be-
haviour is defined completely by its advices, and its rela-

tionship with classes or other aspects is accomplished by

specialization.

Motivation. The use of abstract aspects can help in de-
veloping more reusable aspects, by postponing implementa-

tion decision and leaving the definition of concrete pointcut

definitions to the sub-aspects. Also, the behaviour defined

in abstract aspects can be reused to different target applica-

tions. Each application can create sub-aspects that capture

the specific points that will activate the aspect behaviour.

Example. In the Observer pattern [6] below there is a
ScreenObserver aspect that extends the reusable abstract as-
pect ObserverProtocol (line 1) and defines that both roles
(Subject and Observer) will be played by the Screen class
(lines 2 and 3). It also defines when the subject state

changes (line 4) and what should be done to update the ob-

servers (lines 5-7). This example complies with this guide-

line, defining an abstract aspect implementing the logic for

the Observer pattern and leaving for the sub-aspects to bind
the Subject and Observer roles and the changes in the Sub-
ject with the classes that will play these roles.

1 pub l i c a spec t Sc r e enObse r v e r ex tends Obs e r v e r P r o t o c o l{
2 d e c l a r e p a r e n t s : Sc r een implements Sub j e c t ;
3 d e c l a r e p a r e n t s : Sc r een implements Obse rve r ;
4 po in t cu t s ub j e c tChange (S u b j e c t sub) : c a l l (void Sc reen .

d i s p l a y (S t r i n g)) && t a r g e t (sub) ;
5 void upda t eObs e r v e r (S u b j e c t sub , Obse rve r obs) {
6 ((Sc r een) obs) . d i s p l a y (” Updated ”) ;
7 }
8 }

In the Decorator pattern [6], the BracketDecorator (line
1) and the StarDecorator (line 5) aspects have a duplicated
pointcut named printCall (lines 2 and 7). In the example
below, the implementation does not follow the use abstract
aspects guideline.

1 pub l i c a spec t Br a c k e tDe c o r a t o r {
2 pro t e c t ed po in t cu t p r i n t C a l l (S t r i n g s) :
3 c a l l (pub l i c vo id Conc r e t eOu tpu t . p r i n t (S t r i n g)) &&

args (s) ;
4 }
5 pub l i c a spec t S t a rD e c o r a t o r {
6 d e c l a r e p r e c ed enc e : S t a rDe c o r a t o r , B r a c k e tDe c o r a t o r ;
7 pro t e c t ed po in t cu t p r i n t C a l l (S t r i n g s) :
8 c a l l (pub l i c vo id Conc r e t eOu tpu t . p r i n t (S t r i n g)) &&

args (s) ;
9 }

This implementation can be improved by introducing a

super-aspect containing the common pointcut, eliminating

the duplication (in red).

3.2. Use named pointcuts

Guideline. Use named pointcuts to provide hot spots for
extension and to use the terms of the problem domain in

hand.

Motivation. The definition of named pointcuts allows
the reuse of the predicate associated with this pointcut.

Also, a new term is added to the vocabulary regarding the

concern being encapsulated by the aspect. The use of names

for pointcuts enables the designer to use these names as a

terminology for the development of the system. It also al-

lows that these pointcuts are subjected to future refinement,

by defining concrete pointcuts on sub-aspects.

Example. In the Factory Method design pattern [6] there
is an aspect that changes the behaviour of a Factory Method,
using an around advice. With this approach it is possible to

have the factories create different products depending on the

aspects woven into the project. In the AlternateLabelCre-
atorImplementation (line 1), the developer defines a point-
cut named labelCreation (line 2), used in the around ad-
vice. If a before or an after advice is needed, the developer

can reuse the definition. This definition serves also to de-

fine composition of pointcut predicates, and can be used by

other pointcuts in the aspect. Other examples of the appli-

cation of this guideline may be seen in Kiczales et al [8].

1 pub l i c a spec t A l t e r n a t e L a b e l C r e a t o r Imp l em e n t a t i o n {
2 po in t cu t l a b e l C r e a t i o n () : execu t i on (JComponent

L a b e lC r e a t o r . c r ea t eComponen t ()) ;
3 JComponent around () : l a b e l C r e a t i o n () {
4 JLabe l l a b e l = (JLabe l) proceed () ;

82

5 l a b e l . s e t T e x t (” . . . a l t e r n a t e JLabe l ”) ;
6 re turn l a b e l ;
7 }
8 }

In the Builder design pattern [6], this guideline is not
followed in an aspect named CreatorImplementation, as
shown below. The pointcut predicate is defined directly

in the declare construction (line 2) and therefore cannot be

reused in other pointcuts.

1 pub l i c a spec t Cr e a t o r Imp l emen t a t i o n {
2 d e c l a r e e r r o r : (s e t (pub l i c S t r i n g C r e a t o r + .

r e p r e s e n t a t i o n)
3 | | ge t (pub l i c S t r i n g C r e a t o r + . r e p r e s e n t a t i o n)) &&

! (wi th in (C r e a t o r +)
4 | | wi th in (C r e a t o r Imp l emen t a t i o n)) : ” v a r i a b l e

r e s u l t i s a s p e c t p r o t e c t e d . . . ” ;
5 }

Other examples of unnamed pointcuts can be seen in the

QueueStateAspect, that implements the state transitions for
the State pattern, in the SortingStrategy aspect, implement-
ing part of the Strategy pattern and in the SingletonProtocol
aspect, that defines the general behaviour of the Singleton
pattern [6].

3.3. Use semantic based pointcuts

Guideline. Avoid relying only on method or class names
for pointcut composition. Instead, use annotation or inheri-

tance mechanisms, to associate semantics to class members.

You can use inheritance or interface implementation refer-

ences in the pointcuts to provide clearly defined semantics.

Motivation. Sometimes, a naming convention is

adopted during the development of a system. However,

these conventions are not always obeyed, or they are inade-

quate when dealing with the representation of join points

collections to be affected by an aspect. Naming mecha-

nisms increase the coupling between the base system and

aspects and naming conventions are not checked and there-

fore are not guaranteed to be followed [10].

Example. You can define semantic based pointcuts us-
ing inheritance, for example, as used in the Singleton de-
sign pattern [6]. In the SingletonInstance aspect the devel-
oper defines a pointcut named protectionExclusions (line 3)
defining a predicate that is true every time an instance of

PrinterSubclass (line 4) or one of its sub-classes is created.
Another possibility is to associate predicates to interfaces,

using the advantages of this construct.

1 p u b l i c aspec t S i n g l e t o n I n s t a n c e ex tends
S i n g l e t o n P r o t o c o l {

2 d e c l a r e p a r e n t s : P r i n t e r implements S i n g l e t o n ;
3 pro t e c t ed po in t cu t p r o t e c t i o n E x c l u s i o n s () :
4 c a l l ((P r i n t e r S u b c l a s s +) . new (. .)) ;
5 }

In the Proxy design pattern example [6], the unsafeR-
equest method (line 6) is directly mentioned in the requests
pointcut predicate (line 2). As this example was done before

annotation support in AspectJ 5 it did not rely in the con-
structions regarding annotations. Using these constructs,

the developer can define an annotation to define a method’s

security status (@safety, for example) in order to be avail-
able to the requests pointcut.

1 p u b l i c aspec t Reque s tB lock i ng ex tends P r oxyP r o t o c o l {
2 pro t e c t ed po in t cu t r e q u e s t s () :
3 c a l l (∗ Ou tpu t Imp l emen t a t i o n . u n s a f eReque s t (. .)) ;
4 }
5 p u b l i c c l a s s Ou tpu t Imp l emen t a t i o n {
6 pub l i c vo id un s a f eReque s t (S t r i n g s) {
7 System . ou t . p r i n t l n (” [Ou t pu t Imp l emen t a t i o n .

u n s a f eReque s t ()] : ”+s) ;
8 }
9 }

3.4. Favour pointcut composition

Guideline. Every time that the predicate of a pointcut
contains join points without a strong semantic relationship,

favour specifying pointcuts as the combination of two or

more distinct pointcuts, one for each well-defined set of join

points.

Motivation. Sometimes, when defining a pointcut, the
developer put together a set of heterogeneous join points in

the same predicate. The developer should focus on group-

ing related join points in separated pointcuts and composing

these pointcuts in order to achieve the desired combination.

Example. Alwis et al [2] employ an example that il-
lustrates this principle, by separating the pointcut’s predi-

cate in different sets. Initially, there was a pointcut named

lowLevelDataOperations (line 1) containing several method
calls in its predicate. Operations related to an ASCII chan-
nel, to a binary channel, and to a list of commands are spec-

ified in a single pointcut definition, as seen below.

1 po in t cu t l owLeve lDa t aOpe r a t i o n s () :
2 (t a r g e t (Asc i iDa t aChanne l) && (c a l l (S t r i n g r e adL i n e

(. .)) | | c a l l (vo id w r i t e L i n e (. .))))
3 | | (t a r g e t (B ina ryDa taChanne l) && (c a l l (l ong r e ad (. .))

| | c a l l (vo id w r i t e (. .))))
4 | | (t a r g e t (ListCommand) && c a l l (vo id w r i t e F i l e I n f o

(. .))) ;

The separation of these definitions improves the pointcut

readability and allows the developer to reuse the new de-

fined pointcuts. It is also easier to evolve the aspect, as each

set of related method calls are defined in a separated point-

cut. Consider the example below. The lowLevelDataOp-
erations (line 1) is now composed by several pointcut def-
initions: asciiDataOps, binaryDataOps and listCommand-
DataOps (lines 2-4). Below, there is the code complying
with this guideline.

1 po in t cu t l owLeve lDa t aOpe r a t i o n s () : a s c i iDa t aOp s () | |
b ina ryDa taOps () | | l i s tCommandDataOps () ;

2 po in t cu t a s c i iDa t aOp s () : . . . ;

Pointcuts related to a single class (such as asciiDat-
aChannelDataOps, line 1) can be moved to inside this class.

83

This would simplify the maintenance of both the class and

the aspect. The disadvantage of this approach is the diffi-

culty in the comprehension of the aspect just by its defini-

tion; it becomes necessary to find pointcuts in other classes

of the system.

In the Facade pattern [6] implementation, the Facade-
PolicyEnforcement aspect defines a declare warning con-
struction that uses a composite pointcut to describe that a

warning should be raised every time a encapsulated method

is called outside the facade (line 5). This helps to avoid

developers to call the methods encapsulated by the facade

directly.

1 pub l i c a spec t FacadePo l i c yEn fo r c emen t {
2 po in t cu t enc ap su l a t e dMe thod s () : c a l l (∗ (De co r a t i o n | |

Regu l a rS c r e en | | S t r i n gT r a n s f o rme r) . ∗ (. .)) ;
3 po in t cu t f a c a d e () : wi th in (Ou tpu tFacade) ;
4 d e c l a r e warn ing : e n c ap su l a t e dMe thod s () && ! f a c a d e () :

” C a l l i n g e n c a p s u l a t e d method d i r e c t l y ” ;
5 }

Another example, the SingletonProtocol aspect [6] aims
to compose pointcut predicates, but do not define a sepa-

rated pointcut definition to a singleton construction (line 3).

Extracting this piece of predicate helps to clarify the aspect.

1 pub l i c ab s t r a c t a spec t S i n g l e t o n P r o t o c o l {
2 pro t e c t ed po in t cu t p r o t e c t i o n E x c l u s i o n s () ;
3 Ob j e c t around () : c a l l ((S i n g l e t o n +) . new (. .)) && !

p r o t e c t i o n E x c l u s i o n s () {
. . .

4 }
5 }

If a new pointcut definition is created, a pointcut compo-

sition of singletonCreation and protectionExclusions can be
used. In the next example, the use of the composite predi-

cate is illustrated. Note the extracted pointcut sigletonCre-
ation in line 2.

1 pub l i c ab s t r a c t a spec t S i n g l e t o n P r o t o c o l {
2 po in t cu t s i n g l e t o n C r e a t i o n () : c a l l ((S i n g l e t o n +) . new

(. .)) ;
3 Ob j e c t around () : s i n g l e t o n C r e a t i o n () && !

p r o t e c t i o n E x c l u s i o n s () { . . . }
4 }

3.5. One concern per aspect

Guideline. Design aspects so that they provide function-
ality to only one concern of the application. If this aspect

deals with more than one concern, try to divide it in two

or more aspects or classes, maybe forming a generalization

hierarchy.

Motivation. When an aspect handles more than one con-
cern, it should be divided into smaller aspects, each respon-

sible for a single concern. This often happens with advice

with diverging purposes or with attributes and inter-type

declarations without connection with the rest of the aspect.

Example. Consider a Debug aspect (part of an exam-
ple named Space War - a spaceship and asteroids game [7]),

that defines advices dealing with different concerns simulta-

neously. This aspect collects points regarding user interface

modification (line 2), regarding changes in the registry con-
tents (line 3), and regarding ship collisions (line 4), among
other concerns omitted in the example. Although all of

these features are related to system debugging, they could

be divided in several aspects, each one with a different per-

spective on debugging.

1 a s p e c t Debug {
2 a f t e r () re turn ing (SWFrame frame) : c a l l (SWFrame+ . new

(. .)) { . . . }
3 a f t e r (R e g i s t r y r e g i s t r y) re turn ing : t a r g e t (r e g i s t r y)

&& (c a l l (void r e g i s t e r (. .)) | | c a l l (void
u n r e g i s t e r (. .))) { . . . }

4 a f t e r (Sh ip sh ip , SpaceOb j ec t ob j) re turn ing : c a l l (
void Ship . h a n d l e C o l l i s i o n (SpaceOb j ec t)) && t a r g e t
(s h i p) && args (ob j) { . . . }

5 }

Another possibility is to make the different extracted as-

pects inherit from the same super-class (or super-aspect),

which could be the Debug aspect itself.
In the following example, we used a sub-aspect of De-

bug containing an advice responsible for manipulating the
debugging of ship collisions (line 2).

1 aspec t Co l l i s i o n ex tends Debug{
2 a f t e r (Sh ip sh ip , SpaceOb j ec t ob j) re turn ing : c a l l (

void Ship . h a n d l e C o l l i s i o n (SpaceOb j ec t)) &&
t a r g e t (s h i p) && args (ob j) { . . . }

3 }

Defining a Collision aspect enables the developer to sep-
arate the debugging responsibilities, focusing, in this case,

only in the collision specific requirements. This separation

also makes easier to reuse the Debug aspect, since it con-
tains only the basic debugging functions.

4. Discussion

The use of these guidelines can avoid the occurrence of

anonymous pointcut definitions and several occurrences of
large aspects, lazy aspects, code duplication and divergent
changes [15][16].
Anonymous pointcut definitions can be avoided using

the following guidelines: use named pointcuts and favour
pointcut composition. Large aspects and lazy aspects can
be avoided using the one concern per aspect guideline.
Code duplications can be diminished by using abstract as-
pects and named pointcuts. The favour pointcut composi-
tion guideline can be used to overcome occurrences of di-
vergent changes.
For the first guideline (use abstract aspects), it is not nec-

essary that an abstract aspect is created for every aspect in

the application, just as not every pointcut have necessarily

to be defined by an abstract aspect. Abstract aspects are the

core of aspect reuse. They are heavily used in the aspect-

oriented design patterns and they allow the definition of a

84

reusable implementation of several design patterns. The

use of this principle is exemplified by the design patterns

described by Hannemann and Kiczales [6], by the access

and authentication mechanisms in Vanhaute et al [18] and

by the implementation of distribution and persistence com-

ponents in Soares et al [17]. Vanhaute et al [18] states

that the use of abstract pointcuts and inheritance between

aspects helps a lot in the generalization required for imple-

menting aspect-based frameworks. Some further examples

of the usage of abstract aspects can be seen in the imple-

mentation of the following patterns: Chain Of Responsi-
bility, Command,Mediator, Observer, Flyweight,Memento
among others. Usually the user binds the roles in the pat-

terns using aspect inheritance.

The use of named pointcuts can be found in several as-
pects in the pattern library [6]. They are used as a key re-

source to the definition of reusable aspects. Examples of

aspects using named pointcuts are: ChainOfResponsibili-
tyProtocol, CommandProtocol,MediatorProtocol, Decora-
tor aspects and ObserverProtocol. Mahrenholz et al [11]
remind furthermore that using named pointcuts allow one

to create formal arguments (parameters) for the occurrences

referred by the predicate defined in the pointcut. Alwis et al

[2] assert that using relevant names for pointcuts may pro-

mote the reuse of the aspects. The names of the pointcuts

should describe, at high level, which kinds of operations (or

other more complex join points) fit the pointcuts context,

instead of the working details of the operation.

The use of semantic based pointcuts provides mecha-
nisms to use annotations when there is the need to group dif-

ferent structures in a set of classes or aspects. This grouping

is performed in a way to consider semantic aspects above

syntactic ones. Even the application of renaming refactor-

ing patterns may cause pointcuts to affect a different set of

join points.

The favour pointcut composition guideline contributes to
the clarity of the specification, and at the same time allows

pointcuts to be reused individually. Following this guide-

line may help avoiding bad smells with respect to divergent
changes and code duplication in aspects [15].
The one concern per aspect guideline can be used when,

in modelling for example, the concerns encapsulated by an

aspect involve an inheritance relationship, this should be

made explicit by moving duplicated members to a super-

aspect. After applying a set of refactoring patterns, aspects

with few responsibilities can appear. Aspects without suffi-

cient responsibilities can be merged with another aspect or

class. Empty aspects or aspects that does not contain ad-

vices, pointcuts or inter-type declarations can be converted

to classes or merged with existent aspects.

5. Related Work

Hanenberg and Unland [5] describe a similar guideline

than use abstract aspects, called separated pointcut defini-

tion. However, for them, every time an aspect is created, a
super-aspect should be implemented containing all the re-

quired pointcut declarations. We believe that not every as-
pect should have an abstract super aspect and we propose

using abstract aspects when they can be used to provide ex-

tension points for applications.

Alwis et al [2] presents code styles for the AspectJ pro-

gramming language, stating that even small design deci-

sions concerning the naming of pointcuts may have a sig-

nificant impact on the readability and modularisation of an

application’s code. Our work differ from that in the sense

that we complement the suggestions provided by Alwis et

al by proposing a guideline to name all anonymous pointcut

definitions.

Chavez and Lucena [1] describes a set of guidelines for

aspect-oriented design, discussing how the use of aspects

may contribute in achieving some of the principles sought

by object-oriented design. Aspect-oriented software can

help to promote the stability of classes, by allowing non-

invasive modifications in their structure or behaviour using

static or dynamic crosscutting constructs, such as: advices

and inter-type declarations. We focus more on guidelines

regarding the use of pointcuts and inheritance and on guide-

lines to avoid bad smells in aspect-oriented software

Koppen and Stoerzen [10] describe the fragile pointcut

problem and provide a tool to detect differences in pointcut

semantics. Their work focuses on finding differences on

the points matched by aspects when the software evolves

and help on preventing unwanted side effects when mod-

ifying code in the presence of aspects. Our work focuses

on favouring the use of semantic based pointcuts as a way

to prevent the occurrence of these side effects (instead of

detecting them after the problem occurs).

Monteiro and Fernandes [13] [12] present a catalogue of

refactoring patterns to help in aspect extraction from legacy

object-oriented code and discuss bad smells that might ap-

pear in aspect-oriented software, including one bad smell

that occurs only in aspects. In [14], they emphasize the

importance of the development of both refactoring patterns

and bad smells catalogues. In this work we use Large As-
pect as one of the bad smells to be minimized when using
the guidelines described here.

Piveta et al [16] define algorithms to automatically de-

tect five types of bad smells that occur in aspect-oriented

software development, more specifically those written using

the AspectJ language and provide a prototype implemen-

tation to evaluate the detection algorithms in a case study.

Even using the guidelines described in this paper, some bad

smells can appear in the resulting software. Piveta et al

work can be used as a complement to this paper, detecting

eventually remaining bad smells.

85

6. Conclusions

In this paper we provide a set of guidelines to help on

avoiding the occurrence of bad smells in aspect-oriented

software. These guidelines are exemplified and discussed

using a set of AspectJ examples from different sources.

The guidelines listed in this paper can assist software de-

signers in presence of crosscutting concerns and comple-

ments the ones defined by Chavez and Lucena [1], Hanen-

berg and Unland [5] and Alwis et al [2], refining considera-

tions regarding the problems found specifically when deal-

ing with crosscutting concerns.

The developer should focus on avoiding that these bad

smells appear in the first place. Following some basic de-

sign guidelines, several bad smells can be minimized. Al-

though the guidelines discussed in this paper are expressed

in examples of a specific language, they can be adapted to

other aspect-oriented languages. Some guidelines can be

used directly, whereas some of them are not available in

a chosen language, for example. As the AspectJ model is

the basis for several aspect languages, it can be seen as a

good starting point to the definition of bad smells and de-

sign guidelines for a large set of aspect-oriented software.

7 Acknowledgments

This work has been partially supported by CNPq un-

der grant No.140046/2006-2 for Eduardo K. Piveta and

by Capes-Grices project grant No. 2051-05-2 - Identifica-
tion of Crosscutting Concerns and Refactoring in Aspect-
Oriented Systems. It is also funded by Project PROSUL-
Proc. no. 490478/2006-9 - Latin-America Research Net-
work on Aspect-Oriented Software Development (Latin-
AOSD).

References

[1] C. V. F. G. Chavez and C. J. P. d. Lucena. Guidelines for
Aspect-Oriented Design. First Brazilian Workshop on As-
pect Oriented Software Development. Brasilia, Brazil, 2004.

[2] B. De Alwis, S. Gudmundson, G. Smolyn, and G. Kiczales.

Coding issues in AspectJ. In P. Tarr, L. Bergmans, M. Griss,

and H. Ossher, editors, Workshop on Advanced Separation
of Concerns (OOPSLA 2000), Oct. 2000.

[3] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented pro-

gramming. Comm. ACM, 44(10):29–32, Oct. 2001.
[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: improving the design of existing code. Object
Technology Series. Addison-Wesley, 2000.

[5] S. Hanenberg and R. Unland. Using and reusing aspects

in AspectJ. In K. De Volder, M. Glandrup, S. Clarke, and

R. Filman, editors, Workshop on Advanced Separation of

Concerns in Object-Oriented Systems (OOPSLA 2001), Oct.
2001.

[6] J. Hannemann and G. Kiczales. Design pattern implemen-

tation in Java and AspectJ. In Proceedings of the 17th
ACM conference on Object-oriented programming, systems,
languages, and applications, pages 161–173. ACM Press,

2002.
[7] E. Hilsdale and G. Kiczales. Aspect-oriented programming

with AspectJ, 2001. Proceedings of the 16th Object Oriented

Programming Systems Languages and Applications (OOP-

SLA’2001). Tutorial. Tampa Bay, FL, USA.
[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. Getting started with AspectJ. Comm.
ACM, 44(10):59–65, Oct. 2001.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. G. Griswold. An overview of AspectJ. In J. L.

Knudsen, editor, Proc. ECOOP 2001, LNCS 2072, pages
327–353, Berlin, June 2001. Springer-Verlag.

[10] C. Koppen and M. Störzer. PCDiff: Attacking the fragile

pointcut problem. In K. Gybels, S. Hanenberg, S. Herrmann,

and J. Wloka, editors, European Interactive Workshop on
Aspects in Software (EIWAS), Sept. 2004.

[11] D. Mahrenholz, O. Spinczyk, and W. Schroder-Preikschat.

Program instrumentation for debugging and monitoring with

aspectc++. In Fifth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, page
0249. IEEE Press, 2002.

[12] M. Monteiro and J. Fernandes. Towards a catalog of aspect-

oriented refactorings. In P. Tarr, editor, Proc. 4rd Int’ Conf.
on Aspect-Oriented Software Development (AOSD-2005),
pages 111–122. ACM Press, Mar. 2005.

[13] M. P. Monteiro and J. M. Fernandes. Object-to-aspect refac-

torings for feature extraction. In Proceedings of the 3rd In-
ternational Conference on Aspect-Oriented Software Devel-
opment (AOSD’2004). ACM Press, March 2004.

[14] M. P. Monteiro and J. M. Fernandes. The search for aspect-

oriented refactorings must go on. In T. Tourwé, A. Kellens,

M. Ceccato, and D. Shepherd, editors, Linking Aspect Tech-
nology and Evolution, Mar. 2005.

[15] E. Piveta, M. Hecht, M. Pimenta, and R. T. Price. Bad smells

em sistemas orientados a aspectos (in portuguese). Brazilian
Symposium on Software Engineering, SBES 2005, Uberlan-
dia - Brasil, 2005.

[16] E. Piveta, M. Hecht, M. Pimenta, and R. T. Price. Detect-

ing bad smells in aspectj. Journal of Universal Computer
Science (a ser publicado - setembro), JUCS 2006, 2006.

[17] S. Soares, E. Laureano, and P. Borba. Implementing distri-

bution and persistence aspects with AspectJ. In Proceedings
of the 17th ACM conference on Object-oriented program-
ming, systems, languages, and applications, pages 174–190.
ACM Press, 2002.

[18] B. Vanhaute, B. DeWin, and B. De Decker. Building frame-

works in AspectJ. In L. Bergmans, M. Glandrup, J. Brichau,

and S. Clarke, editors,Workshop on Advanced Separation of
Concerns (ECOOP 2001), June 2001.

86

METRICS OF CREDIBILITY AND INTERACTION QUALITY:
DESIGN AND EVALUATION

Nilda Pérez Otero, Marcelo Pérez Ibarra, Sandra Mendez, Adelina García, Ma. del Pilar Gálvez Díaz,
Viviana E. Quincoces, Héctor Liberatori, Beatriz Fiorito, Cecilia María Lasserre

FI - UNJu - S.S. de Jujuy, Argentina - E-mail: lasserre@imagine.com.ar

ABSTRACT
Web Engineering is the process through which high quality We-
bApps are created. Although Web Engineering incorporates many
of the concepts and fundamental principles of Software Engineer-
ing, the sites and WebApps have their own characteristics which
are rather different from those of the traditional software. Like
any other software product, the development of WebApps needs to
include quality assurance activities. So that quality could be as-
sured, evaluation and control of the intermediate products up to
the final products must be planned. WebApps applied to distance
education gave rise to what is called e-learning. Considering that
a great deal of the proposals on education software evaluation are
related to the quality or their need for expert evaluators due to its
complexity, the Group of Software Engineering belonging to the
Faculty of Engineering of the Universidad Nacional de Jujuy, Ar-
gentina developed a Metrics to determine the Credibility and In-
teraction Quality of Tele training (MECACIN). In this paper the
development process followed for obtaining MECACIN based on
the Model of Credibility and Interaction Quality of Tele training
Courses is presented. Also, the design and reliability analysis
process of MECACIN’s questionnaire is related. The results of the
experiment show that MECACIN’s questionnaire has internal
consistency.

KEY WORDS:
Quality, Metrics, e-learning, questionnaire reliability

I. INTRODUCTION
Web Engineering (IWeb) is the process through which

high quality Web applications (WebApps) are created [1].
Although Web Engineering incorporates many of the con-
cepts and fundamental principles of Software Engineering,
the sites and Web Apps as product or product in use have
their own characteristics which are rather different from
those of the traditional software [2]. Based on these charac-
teristics, a great variety of Web applications are identified:
informative, downloading, personalizing, of interaction,
user’s input, transaction-oriented, service-oriented, portal,
database access and data storing [3].

Software product quality is an issue that has been dealt
with since several years ago but, in general, for each project
different quality models are adopted. [4]. In 1991 a first
edition of the quality standard ISO/IEC 9126 [5] was pub-
lished, the idea was that it would become the reference

point for all later developments. This standard, which is
made up of four parts (ISO/IEC 9126-1, 2001; ISO/IEC
9126-2, 2003; ISO/IEC 9126-3, 2003; ISO/IEC DTR 9126-
4) [6, 7, 8, 9], gives different models for evaluating the ex-
ternal quality, the internal quality and quality in use of a
software product.

Just as any other software product, the development of
WebApps needs to include quality assurance activities. So
that quality be assured, evaluation and the control of the in-
termediate products up to the final products must be
planned. ISO/IEC 9126, is used for the formulation of qual-
ity models for different Web applications [2, 10, 11]. We-
bApps applied to distance education gave rise to what is
called e-learning. According to [12], e-learning is defined
as the systematic use of multimedia technologies based on
computers so as to upgrade students, improve learning,
linking students with people and resources that would help
to their needs, and to put together learning with perform-
ance and individual targets with organization targets.

Most of the works done on Web applications quality are
oriented to electronic business or to some other types of
sites such as magazines, television channels or entertain-
ment sites; generally funded by large organizations. The is-
sue of the evaluation of education learning software in par-
ticular, has been studied and documented by several authors
related to education, giving evaluation measures on the sub-
ject [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. However, con-
sidering that a great deal of the proposals on education
software evaluation are related to the quality or their need
for expert evaluators due to its complexity, the Group of
Software Engineering (GIS) belonging to the Faculty of
Engineering of the Universidad Nacional de Jujuy, Argen-
tina developed a Metrics to determine the Credibility and
Interaction Quality of Tele training1 (MECACIN), which is
easy to use by people who have already finished high
school, and who are not necessarily specialized in comput-

1

Tele training is a system of distance training supported on Computing
and Communication Technologies (technologies, telecommunication
webs, video-conferences, digital TV, multimedia materials), which com-
bines several pedagogical elements: classical teaching (attending the class
or self-study), practice work, real time contacts (present, videoconferences
or chats) and differed contacts (tutorials, forums, e-mail) (FUNDESCO,
1998).

87

ing nor tele training [23, 24, 25], but with knowledge on
INTERNET surfing.

The goal of this work is to state the development process
which the GIS followed for the MECACIN design and
evaluation and the model it has. The work is structured as
follows: in part 2 the Model of Credibility and Interaction
Quality of Tele training Courses (MOCACIN) is presented
which supports the metrics; in part 3 the design and refine-
ment of the measuring instrument is presented; in part 4 the
results of the evaluation of the Internal Consistency of the
measuring instrument are presented; in part 5 the conclu-
sions and finally in part 6 the references.

II. MODEL OF CREDIBILITY AND INTERACTION
QUALITY OF TELE TRAINING COURSES

When working on the Articulation of high-school educa-
tion with the university during the years 2004-2005 in the
province of Jujuy, Argentina, a group of teachers belonging
to high school education came up to the Universidad Na-
cional de Jujuy with the following situation: when they
tried to include tele training courses in their curricula, they
were not able to establish certain aspects such as: qualifica-
tions of the authors of the contents, veracity of the contents,
updating of contents, learning sequence for the user, surfing
easiness, correctness of the edition.

All these aspects would allow them to prepare a fast se-
lection of courses of easy and accessible surfing and com-
ing from a reliable source; so as to later analyze deeply if
they are adequate or not to be included in the curricula. Af-
ter this problem was presented, the University asked the
GIS to solve the above situation.

In order to start with the formulation, the GIS gathered
together information regarding the e-learning applications,
distance education applications, quality standards in exis-
tence, publications on Web Engineering (e-commerce, en-
tertainment, etc.) and formulation techniques and question
evaluation.

The material which was studied allowed us to determine:
1. that e-learning applications, which were considered in-

teresting by those teachers are classified within the In-
formation WebApps category, since they only present a
reading content with simple links and surfing [3],

2. that an e-learning course is a software product which
can be applied to models of quality as established in the
standard ISO/IEC9126, adapted to the IWeb process and

3. that the ISO/IEC 14598 [26] standard presents a set of
steps oriented to quality evaluation.

The ISO/IEC9126 standard does not consider in its qual-
ity model the content category which is considered as es-
sential for what is meant to be measured, therefore, follow-
ing the steps given in the standard ISO/IEC14598, the GIS
formulated a mixed model of quality (MOCACIN) which
considers:
1. some categories and sub-categories of external quality

which are defined in the ISO/IEC 9126 standard,

2. the content category which Olsina [27] and Fernandez
Nodarse [11] included while working on the WebApps,
which, in the context of this work, refer only to text, im-
ages (graphs, figures, photographs, etc) and audio, and

3. an accessibility subcategory which is considered essen-
tial within the specific type of WebApp to which we
pointed (tele training courses).

Table 1 presents the categories and subcategories consid-
ered in the model or requirement’s tree formulation. Below
we define each of the named categories:
Functionality: the capability of the software product to
provide functions which meet stated and implied needs
when the software is used under specified conditions.

TABLE 1. Categories and subcategories of MOCACIN

CATEGORY SUBCATEGORY

Functionality
Accuracy
Suitability
Task assurance

Usability
Understandability
Operability

Efficiency
Time behavior
Resource utilization
Accessibility

Content
Information accuracy
Information suitability
Legal compliance

Usability: the capability of the software product to be un-
derstood, learned, used and attractive to the user, when used
under specified conditions.
Efficiency: the capability of the software product to provide
appropriate performance, relative to the amount of re-
sources used, under stated conditions.
Content: the software product ability to provide exact, ade-
quate, easy to access and legal information.

Once the categories and subcategories of the tree are
considered, the following concepts to be applied are ex-
plained:
Information need: to determine in tele training courses the
qualifications of the authors of the content, the veracity of
the contents, the updating of the contents, the learning se-
quence for the user, easiness of surfing and correctness of
the edition.
Calculable concept: credibility and interaction of tele train-
ing courses. By credibility quality meaning the possibility
to accurately determine who obtains credits for the course,
who is its responsible person and if the edition regulations
were followed (spelling, grammar, speaking, lawfulness),
and by interaction quality the easiness surfing in the course
(access speed to the pages, indenting how to go back to the
previous page, to the next, links with other pages) and un-
derstanding its structure (titles, targets, audience).
Metrics: direct metrics are used to determine if attributes
are present or absent and indirect metrics to determine
global quality.

88

For each subcategory of the requirement’s tree the attrib-
utes are identified which will be measured during the qual-
ity evaluation of the courses of tele training.

Once the information need is defined, the computing
concept is defined and the interest attributes are identified,
a measuring instrument was chosen: a questionnaire with
the following characteristics. Direct, pre-codified, of closed
questions (1, 0 or X), multidimensional (five dimensions)
and of simple marks/score or not balanced.

III. MEASURING INSTRUMENT
Based on the opinion of experts on the development of

distance education courses, available standards and the
guideline for the design of e-commerce made by Alexander
and Tate [28], a questionnaire was designed having 71
questions, based on heuristics [24].

Two of the attributes corresponding to the subcategory
Operability, category Usability and their associated heuris-
tics are shown below (Table 2).

TABLE 2. Category-Subcategory-Attribute-Heuristics

ATTRIBUTE QUESTION

Link Back
and Forward

For hierarchy structured
sites, is there an included
link on the page that links
to the page which is on the
superior and/or inferior
level of the hierarchy?

C
A

T
E

G
O

R
Y

U

sa
bi

li
ty

SU
B

C
A

T
E

G
O

R
Y

O

pe
ra

bi
li

ty

Link to Site
Map, Index
or Table of
Contents

Does the page include a
link to a site map, index or
table of contents?

A preliminary test and research was made on the initial
questionnaire in order to identify the following: more ade-
quate type of questions, if the questions are clear and cor-
rect, if the questions have an adequate length, if the answers
have an appropriate categorization, if there are any psycho-
logical issues against some of the questions, if there is logic
in the order, if the time for answering is accepted by the
people being questioned.

The preliminary test was done giving the questionnaire to
a group of experts on distance education and on semi-
present education, and a survey on how questions were un-
derstood. This research established that some questions re-
quired, from the users, a knowledge of computing termi-
nology. In addition, some members of the group pointed out
that the interpretation of some of the questions was associ-
ated to personal appreciations (for example: Is it clear
which are the topics included in the course?) or they evalu-
ated more than one attribute (for example, if there are
graphs, tables or charts, are they labeled and easy to read?).

This situation led us to reformulate the questionnaire and
to modify the way in which questions were presented ac-
cording to the problems given. Some footnotes were also
added in order to make clear the meaning of the technical

terms. Table 3 shows some examples of the problems and
the modifications made to the initial questionnaire.

As a result of the previous reformulation we got a ques-
tionnaire made up of 60 questions. This questionnaire was
tested in order to evaluate if it had the properties that can
assure its measuring ability. Those properties are defined
below and the reliability analysis is pointed out.

A. Scale properties
By Scale we mean any type of measuring instrument, be-

ing the questionnaire one of the most common. An instru-
ment of this type is a set of questions which have a series of
metrics properties, through the measuring we study and
quantify those properties [29]. Every scale must have a cor-
rection method, both of the instructions for its application
and also of the guideline for interpreting the marks/score.
That is to say, of properties that assure its ability for meas-
uring, which are grouped in: Reliability, Validity and Fea-
sibility [29].

TABLE 3. Problems and reformulation of the initial
questionnaire.

ORIGINAL

QUESTION

REPORTED

PROBLEM

REFORMULATED QUES-

TION/FOOTNOTE

If there are
graphs, tables
or charts, are
they labeled
and easy to
read?

Evaluation
of more
than one at-
tribute. In-
terpretation
subject to
personal
apprecia-
tion

If there are images (graphs,
figures, photographs, etc) do
they have their corresponding
epigraph?
If there are images, can you see
them clearly?
If there are tables, do they have
their corresponding epigraph
If there are tables, can you read
them clearly?

Is there a link
included on the
subordi-
nated/secondar
y pages to the
main page?

Computing
term. Main
Page

Main page: this is the page
from which you can access to
all the items of the course (bib-
liography, contents, activities,
evaluation, etc) It can be pre-
ceded by a presentation page.

Is it clear which
topics are in-
cluded in the
course?

Interpreta-
tion subject
to personal
apprecia-
tion

The subjects/themes included
in the course, is it clearly indi-
cated.

Reliability is the scale’s ability for measuring in a consis-
tent way, accurately and without mistake the characteristic
that is to be measured. When the scale is applied to the
same objects in two different situations, the same measure-
ment must be obtained.

Validity is the instrument’s ability for measuring what it
says it measures and not other aspects.

Feasibility is the easiness that the instrument has to be
applied in several situations and group of individuals.

B. Reliability Analysis
Reliability Analysis allows us to determine the extent in

which the elements in the questionnaire are related among
them, to obtain a global index of replication (internal con-

89

sistency of the scale in its whole) and identify problematic
elements which should be taken away from the scale [29].
Reliability in a measuring instrument is valued through
Stability, Internal consistency and Reliability among the
examiners [30].
• Stability: it is meant to evaluate up to what extent the

marks obtained by an individual in a test are free of
measuring mistakes caused by at random temporal
fluctuations. They are recommended for measuring the
Test-Retest Method and the Equivalent Shape Method
[31].

• Internal Consistency: degree in which different parts or
elements from the test measure the same variable. For
this type of measurement the Equivalent Shape
Method, Half Partition and Analysis of the Variance of
Items are the ones that are proposed (Cronbach’s Alfa
Coefficient or Kuder Richardson 20).

• Reliability Inter-Examiners: it is meant to evaluate to
what extent the measurement of a feature through an
instrument is independent from the tester subjectivity.
That is to say, that the people examined by a test have
the same marks/scores in their executions, not consid-
ering who the examiner is. The suggested procedure
for this type of evaluation is the Agreement among
Judges Method.

This work only presents the analysis of reliability with
regard to internal consistency

IV. INTERNAL CONSISTENCY EVALUATION OF THE
MEASUREMENT INSTRUMENT

There are several models which allow us to get different
reliability coefficients, the GIS used Cronbach’s Alpha
which is an internal consistency model based on the aver-
age inter-elements correlation. It assumes that the scale is
made up by homogenous elements that measure the same
characteristic and that the internal consistency of the scale
can be evaluated through the existing correlating among all
its elements. In addition, it assumes that a scale is reliable
when the variation of the marks observed can be attributed
to the existing differences among the individuals. The coef-
ficient values range between 0 and 1, and it is considered
that there is a good internal consistency when the alpha
value is over 0.7 (in some special cases it is accepted a
value below 0.6 [32]. This, as the other statistical data
which are used in the reliability analysis process, assumes
that the scale elements are combined by adding, that is to
say that global scoring of the scale is obtained by adding
the marks of its elements. In the case of multidimensional
scales (questions are grouped by the way in which the ques-
tions measure a dimension and others a different dimen-
sion) the coefficient calculation of reliability is made for
each of the dimensions. The Cronbach’s Alpha coefficient
was made with the SPSS software, version 12.

The execution of the reliability evaluation made to the
questionnaire of 60 questions, regarding the consistency as-

pect reported a Cronbach’s Alpha of 0.740 for a group of
experts. When applying it to the group of teachers who
started the research, the alpha was below 0.7. After analyz-
ing the results, it was concluded that the problems found
could be due to the questionnaire which included questions
regarding the technical aspects of INTERNET which are
unknown to the specified users (for example, site map,
browser title, etc).

This led us to choose two work lines:
• Quality Model for Credibility and Interaction for us-

ers of tele training courses.
• Quality Model for Credibility and Interaction for

content developers of tele training courses.
Working with the first line, a questionnaire of 41 ques-

tions was chosen, aiming to people with training equal to
high school, and not necessarily specialized in computing
nor tele training specifically, but who do know how to surf
on INTERNET. This version had three evaluations in
groups with the mentioned characteristics, improving the
Cronbach’s Alpha. These evaluations allowed a new ad-
justment to the questionnaire which ended up in a new one
with 39 questions divided in 5 (five) dimensions (Table 4).

TABLE 4. Definite Questionnaire

N° TYPE HEURISTIC

1 D1
Is there an indication of the companies or or-
ganizations supporting/guaranteeing the course?

2 D1

How can you contact the organizations or com-
panies supporting the course? (is there a phone
number, a Web address, an official e-mail, or a
post-address)?

3 D1
Are the names and surnames of the authors of
the course indicated?

4 D1

Is there any indication regarding the background
of the author/s of the course? Do you consider
that is enough, is there at least indicated the
background of one author?

5 D1
Are the authors genuine/suited2 for the subjects
dealt with in the course? Is it enough that at least
one of the authors be considered genuine/suited?

6 D1 Is the author protected by author’s rights?

7 D1

Is there any way to contact the authors? (a
phone number, a Web-address, an official e-mail
or a post address). Is it considered enough that at
least one of the contact ways to one of the au-
thors is indicated?

8 D1
If there is a contact way established, is there any
indication as when the answer will be received?

9 D1
Is there any indication that the course has been
revised by an editor3?

10 D1
Is there any indication that the course has been
revised by peers?

11 D2 Is the title the appropriate one?
12 D2 Are the targets of the course duly stated?
13 D3 Is there any indication regarding the audience?
14 D4 Is there any indication as to the order in which

2 Genuine/suited: having the ability to do something, apt.
3 Editor: in the sense of the person responsible for the edition (spelling,

grammar, images …?

90

N° TYPE HEURISTIC

the contents of the course must be learnt?

15 D5
Is the language used to express the contents of
the course, concise4, correct and concrete (not
ambiguous)?

16 D1
If there are images (graphs, figures, photo-
graphs, etc), do they have their corresponding
epigraph5?

17 D1 If there are images, can they clearly be seen?

18 D1
If there are tables, do they have their corre-
sponding epigraph?

19 D1 If there are tables, can they be read?

20 D1

If the course includes statistical data, are the
dates when they were collected clearly indi-
cated? If there is one data missing, this would
mean for the answer to get a zero.

21 D1
Regarding the course contents: is there any
spelling mistake? If there is just one mistake it is
enough for giving a zero to the answer.

22 D1
Regarding the contents of the course: are they
free from syntax mistakes? If there is any mis-
take this means a zero.

23 D1
Regarding the contents of the course, are they
free from printing mistakes? If there is one mis-
take this means a zero.

24 D1
If the course has a speaking part, is it free from
pronouncing mistakes? If there is one mistake
this means a zero.

25 D1

If there is bibliography, are the names and sur-
names of the authors, the title of the work, pub-
lishing house, date of publishing and city where
it was published indicated? (in case of cities
having the same name you must put the country)
ALL the data stated in the heuristic must be put
for each one of the bibliographic entries.

26 D1

Is there any indication related to the date in
which it was created or of its modification (or
updating date of the course)? It is considered as
enough when the year is stated.

27 D2 The title of the main page6, is it concise?

28 D2
The title of each one of the related pages, does it
correspond to the material developed in them?

29 D2
Related to the subordinated pages, do they have
a link to the main page?

30 D2
If links are used to go to the previous or next
page (Back and Forward), is the location kept in
all the pages that are presented?

31 D2
If a linking bar and/or linking key is used, is it
put on the same place on all the pages pre-
sented?

32 D2
If a linking bar and/or linking key is used, is it
the same on all the pages presented?

33 D2
Do all the links have access to pages (or sections
within a same page) to the ones to which they
refer?

34 D2
The course: does it have an index or table of
contents?

4 Concise: brief related to the way of expressing ideas
5 Epigraph: label, explanation of an image, table, etc.
6 Main page: The page from which you can have access to all the items

of the course (bibliography, contents, activities, evaluation, etc.) It
might be preceded by a presentation page.

N° TYPE HEURISTIC

35 D2
Do all the pages have a link to the index or table
of content? Is it considered enough at least one
of the indicated alternatives?

36 D1
The back colors and sources (letters) used in the
course, do they allow to read easily the con-
tents?

37 D2
Does it keep the same back presentation for each
type of activity proposed by the course? (theory,
practice, exercises, evaluation, etc.)

38 D2
Is there any indication as to the characteristics of
the equipment and programs which are neces-
sary for the correct functioning of the course?

39 D2

Within the course, Does the unfolding of a page
not take more than 20 (twenty) seconds? This
time will not be taken into account when a link
must be done to related subjects or sites.

The last version had two new tests. The first with a group
of four persons and the second one with a group of eleven
persons which the mentioned characteristics. Table 5 shows
the results that were obtained.

TABLE 5. Results obtained with the questionnaire of 39
heuristics.

α OF CRONBACHDIMENSION
QUANTITY OF

HEURISTICS G1 G2
D1 22 0,967 0,770
D2 14 0,820 0,562
D3 1 * *
D4 1 * *
D5 1 * *

Global 39 0,925 0,779
* since it is a dimension with just one question,

the Cronbach Alpha cannot be calculated.

V. CONCLUSIONS
The results shown on table 5 allow us to assure that the

MECACIN’s questionnaire has an internal consistency.
This is because the global Cronbach’s Alpha value in both
experiences is over the threshold of 0.7, although one of the
groups presents, in D2 dimension, an Alpha which is below
0.7. Since D3, D4 and D5 dimensions have just one heuris-
tics it was impossible to apply a Cronbach’s Alpha, yet
these dimensions present, in both experiences, homogenous
answers for all the examiners, which can assure that these
three questions are well formulated.

Once the internal consistency is proved, the GIS will ap-
proach to the determination of the Stability and Reliability
Inter Examiners so as to assure the reliability of the scale.
Later we shall focus on the study of validity and feasibility.
We can foresee that, based on the experiments that were
made, this last aspect will be presented as positive.

REFERENCES
[1] Pressman, Roger S. (2005), Ingeniería del Software. Un en-

foque práctico. Sexta Edición. McGraw Hill Interamericana.
México.

[2] Covella, G. J. (2005). “Medición y Evaluación de Calidad en

91

Uso de Aplicaciones Web”. Presentación de Tesis de Maes-
tría en la Facultad de Informática de la UNLP. La Plata.

[3] Dart, S. (1999). “Contaning the Web Crisis Using Configura-
tion Management”. En Proc. First ICSE Workshop on Web
Engineering, ACM. Los Ángeles.
http://www.fistserv.macarthur.uws.edu.au/san/icse99-
WebE/ICSE99-WebE-Proc/default.htm (22/02/07)

[4] Pfleeger, S. L. (2002). Ingeniería de Software. Teoría y Prác-
tica. Primera Edición. Prentice Hall y Pearson Educación.
São Paulo SP.

[5] ISO/IEC 9126 (1991). Information technology - Software
product evaluation - Quality characteristics and guidelines for
their use. Ginebra

[6] ISO/IEC 9126-1 (2001), Software Engineering – Product
quality. Part 1: Quality Model, Secretaría General de ISO,
Ginebra.

[7] ISO/IEC 9126-2 (2003). Software Engineering – Product
quality. Part 2: External Metrics. Secretaría General de ISO.
Ginebra.

[8] ISO/IEC 9126-3 (2003). Software Engineering – Product
quality. Part 3: Internal Metrics. Secretaría General de ISO.
Ginebra.

[9] ISO/IEC 9126-4 (2005). Software Engineering – Product
Quality. Part 4: Quality In Use Metrics. Ginebra.

[10] Olsina, L. A. (2000). Metodología Cuantitativa para la Eva-
luación y Comparación de la Calidad de Sitios Web. Presen-
tación de Tesis Doctoral en la Facultad de Ciencias Exactas
de la UNLP. La Plata.

[11] Fernandez Nodarse, F.; N. Soubal y S. Lima Montenegro.
(2002) “Experiencias en la Concepción de una metodología
para el desarrollo y control de calidad de productos y servi-
cios informáticos orientadas a la Educación a distancia y el
Comercio electrónico en Internet” En Actas I Congreso In-
ternacional de Tecnologías y Contenidos Multimediales en
Ambientes Digi-
tales.http://espejos.unesco.or.uy/simplac2002/ad.html.

[12] Goodyear, P. (2000). “e-Learning, knowledge work and
working knowledge”. IST2000 Event, e-Learning Futures
session, Nice.

[13] Barroso, J.; J. L. Mendel; and J. Valdeverde. (1998). "Eva-
luación de los medios informáticos: una escala de evaluación
para el software educativo". En Cebrián, M. et al. “Creación
de materiales para la innovación con nuevas tecnologías”:
EDUTEC 97, 355-358. ICE Universidad. Málaga.
http://www.ice.uma.es/edutec97/edu97-c3/2-3-08.htm
(22/02/07).

[14] Del Moral, E. (1998). "El desarrollo de la creatividad y las
nuevas herramientas tecnológicas". En Comunicación Educa-
tiva y Nuevas Tecnologías”. pp 51-66. Praxis. Barcelona.
http://www.eafit.edu.co/articulos/evaISE.htm (22/02/07)

[15] Galvis, A. (2000). “Evaluación de MECs por juicio de exper-
tos”, Capitulo 10 del libro: “Ingeniería de software educati-
vo” 2da. reimpresión. Universidad de Los Andes. Colombia.

[16] Gómez, M. T. (1997). “Un ejemplo de evaluación de softwa-
re educativo multimedia”. En Cebrián, M. et al. “Creación de
materiales para la innovación con nuevas tecnologías”:
EDUTEC97. ICE Universidad. Málaga.
http://www.ice.uma.es/edutec97/edu97_c3/2-3-03.htm
(22/02/07)

[17] González, M. (1999). “Evaluación de software educativo.
Orientaciones para su uso” Proyecto Conexiones. Universi-
dad de EAFIT.

[18] Gros, B. (Coord.); A. Bernardo; M. Lizano; C. Martínez; M.
Panadés y I. Ruiz. (1997) “Diseños y programas educativos,
pautas pedagógicas para la elaboración de software”. Edito-
rial Ariel S.A. Barcelona

[19] Marqués, P. (1998). "La evaluación de programas didácti-
cos". En Comunicación y Pedagogía (149). pp 53-58. Barce-
lona. http://www.xtec.es/~pmarques/tecnoedu. htm
(22/02/07)

[20] MVU, Michigan Virtual University. (2002). “Standard Qual-
ity on-line courses”. http://ideos.mivu.org/standards
(22/02/07).

[21] PEMGU. (1999). “Pedagogical evaluation methods & guide-
lines for multimedia applications” Partners: Epral (Portugal),
Colegio Irabia (Spain) and Holbaek Technical College
(Denmark), DEL (Denmark), the University of Cologne
(Germany) and Olivetti (Italy). http://ww
w.irabia.org/pemgu/ (22/02/07).

[22] Stephen, B. (1998). “Evaluating checklist. Evaluating train-
ing software”. Lancaster University. http://www.
keele.ac.uk/depts/cs/Stephen_Bostock/docs/evaluationch.eckl
ist2.html (22/02/07).

[23] Lasserre, C.M. y V.E. Quincoces. (2005). Quality in E-
Learning: a Heuristic Evaluation. En Proceeding Simposio
ASSE 2005 (34JAIIO). Rosario.

[24] Quincoces, V.E. y H. Liberatori. (2005). “Métrica para eva-
luación de Cursos de Tele training”. Cuadernos 26, FHyCS,
Suplemento. VIII Jornadas Regionales de Investigación en
Humanidades y Ciencias Sociales. ISSN 0327-1471. San
Salvador de Jujuy.

[25] Gálvez, M. P; H. Liberatori; V. Quincoces; A. García y C.
Lasserre. (2006). “Evaluación de Sitios Educativos: Compa-
ración de Heurísticas”. En Investigaciones Docentes en Inge-
niería. Facultad de Tecnología y Ciencias Aplicadas. Cata-
marca.

[26] ISO/IEC 14598-1 (1999). Information Technology – Soft-
ware Product Evaluation. Part 1: General Overview. Secre-
taría General de ISO. Ginebra.

[27] Olsina, L. A.; G. Covella y G. Rossi. (2006). “Web Quali-
ty”.·En Web Engineering. E. Mendes & N. Mosley (Eds). pp
109-142.. Lecture Notes in Computer Science of Springer,
ISBN 3-540-28-28-196-7.

[28] Alexander, J. E. and M. A. Tate. (1999). WEB Wisdom. How
to Evaluate and Create Information Quality on the WEB.
Wolfgram Memorial Library Widener University. Laurence
Erlbaum Associates Publishens. Lodon. Mahwah. New Jer-
sey. Apéndice A y B.

[29] Pérez López, C. L. (2005). “Métodos estadísticos avanzados
con SPSS”. Editorial Paraninfo. Madrid.

[30] Tornimbeni, S.; E. Pérez; F. Olaz y A. Fernández. (2004). In-
troducción a los Tests Psicológicos. 3° Ed. Editorial Brujas.
Argentina. APA (American Psychological Association).
(1999). Standards for psychological and educational tests.
Washington, D.C.

[31] Aron A. y E. N. Aron. (2001). Estadística para psicología. 1ª
edición. Pearson Education. Buenos Aires.

92

Predicting Order of Likelihood of Defective Software Modules

Rattikorn Hewett∗, Phongphun Kijsanayothin∗, and Alta van der Merwe+

∗Department of Computer Science, Texas Tech University
+School of Computing, University of South Africa

Rattikorn.Hewett@cs.ttu.edu, kphongph@gmail.com, vdmeraj@unisa.ac.za

Abstract

The ability to quickly identify defective software mod-
ules can help expedite development of dependable software.
Much empirical research has focused on accurate predic-
tion of defective modules from data of software previously
developed under similar environments. While this is useful,
time wasted on investigating wrong modules can be crit-
ical when dealing with extremely large and complex sys-
tems. Is it possible to rank predicted modules in order
of their susceptibility to defectiveness? Unfortunately, the
likelihood of defectiveness is neither entirely dependent on
nor linear to the number of defects in software modules.
This paper presents an algorithm for predicting if a newly
developed software module is likely to be defective, and
rank those predicted to be defective in order of their likeli-
hood. We apply the algorithm to five benchmarked data sets
of NASA software application projects. The experiments
show highly competitive results to other well-established
approaches giving an average of 85.3% accuracy.

1. Introduction

Software dependability demands high quality assurance,
which requires rigorous and costly assessments, ranging
from time-consuming manual inspections to automated for-
mal verification [3, 4, 7, 11]. The ability to quickly identify
defective software modules can help expedite development
of dependable software. One way to quickly identify de-
fective software modules is by automated construction of
models that can accurately predict which of the software
modules under development are defective.

Such predictive models are of great benefits in various
software practices [1, 2, 4]. When time and resources are
not adequate for complete testing of an entire system, soft-
ware developers can use the resulting predictions to focus
the testing on parts of the system that are likely to have
defects. Many real-time software systems (e.g., robotics,
mission control and planning) increasingly rely on dynamic

code synthesis that can adapt code generation to satisfy run-
time requirements and changing operating conditions. To
ensure that the systems provide functionality and perform
satisfactorily in real-time, quick assessments of software
being developed in real-time become necessary. These as-
sessments give feedbacks to improve software dependabil-
ity by allowing modification of the mission objectives, de-
fect masking at runtime or proactively real-time configu-
ration of software [3]. Models that can predict defective
modules of newly developed software based on dynamically
measured metrics provide effective means for assessing de-
pendability of real-time software. The term ‘defective mod-
ule’ refers to those modules where the number of defects is
at least one, while ‘defects’ refer to faults in software that
require fixing.

Much empirical research has focused on techniques for
obtaining accurate prediction of defective modules from
data of software previously developed under similar envi-
ronments [2–4, 7, 11]. These techniques are applied under
the assumption that behaviors of software defects are con-
tributed by the same underlying development factors. Thus,
experience from defect or characteristic data of previously
developed software can be used for predicting future de-
fect behaviors of software produced under the same devel-
opment or similar environments. While this has shown to be
beneficial, it can be even more advantageous to know which
module is more susceptible to defectiveness so that time
wasted on investigating wrong modules is reduced. This
can be particularly crucial for extremely large and complex
software or real-time systems where time spent on fixing
wrong modules can degrade the system performance. One
remedy is to rank predicted modules in order of their sus-
ceptibility to defectiveness.

Unfortunately, the likelihood of defectiveness of each
module does not entirely depend on the number of defects
in the module alone [4]. Furthermore, modules with high
number of defects are not necessarily likely to be more de-
fective in later development stage than those with low num-
ber of defects as they may have had all defects tested out [4].
Similarly, modules with few defects found prerelease may

93

end up being defective post release because of poor testing
efforts. The likelihood of defectiveness is not linearly as-
sociated with number of defects in software and thus, rank-
ing of the probability of defectiveness of software modules
must account for multiple contributing factors. However,
finding an appropriate scoring function for this ranking is
challenging and the problem of predicting likelihood order
of defectiveness of software modules has not been widely
addressed.

To study the above issue, this paper presents an algo-
rithm for (1) predicting whether a newly developed software
module is likely to be defective, and (2) ranking those pre-
dicted to be defective in order of their likelihood. The algo-
rithm is based on the Martingale boosting technique [12].
We apply the algorithm to five popular benchmarked data
sets of NASA software that are publicly available [13].

Section 2 describes related work and Section 3 gives the
details of application data. Section 4 presents our ranking
algorithm, MDR (Multi-Dimensional Ranking) followed by
empirical studies and results in Section 5. Section 6 gives
concluding remarks.

2. Related work

There has been significant increase in empirical software
engineering research that aims to construct models for ac-
curate prediction of defective-prone software [1, 4, 9]. This
is partly due to recent availability of public software model-
ing tools such as Weka [13], and software data repositories
such as the PROMISE repository [13].

Many recent studies [2, 3, 7, 11] have used the same
benchmarked data sets as this study. Most of them apply ex-
isting methods either to improve prediction accuracy [3, 7]
or gain understanding about the data [2, 11]. For example,
Guo et al. [7] demonstrated how random forrest, a well-
known ensemble learning technique for accuracy improve-
ment, can have the same impact on software data. Challag-
ulla et al. [3] applied various machine learning and statisti-
cal techniques readily available in public tools and reported
their evaluation of these techniques for prediction of defec-
tive modules. Boetticher [2] exploits k-nearest neighbor,
a widely used clustering algorithm for partitioning testing
data into those that are close to defective and non-defective
training instances to enhance understanding of defective
modules in different levels of grain sizes. Koru and Liu [11]
show that the larger size of software modules yields better
prediction accuracy.

Unlike most previous efforts, our study presents a new
aspect of prediction of defective models that also produces
ranking order of likelihood of defectiveness. Although our
focus was not to evaluate natures of software metrics but to
use them for building predictive models, while doing so, our
results led to observations about data characteristics that are

Table 1. Summary of NASA software data sets.

Project Application #of
modules

#of defect.
modules

Lines of
Codes Code

CM1 Spacecraft instrum. 498 49 14,763 C
JM1 Real-time predictive

ground systems
10,885 2,109 457,346 C

KC1 Storage manage. for
rec. and proc. data

2,109 326 42,391 C++

KC2 Science data proc. 522 107 19,259 C++
PC1 Flight software for

earth orb. satellite
1,109 77 25,924 C

strongly correlated with quality of defective ranking predic-
tion. Our finding that module sizes can influence prediction
accuracy (details are not presented in this paper) is consis-
tent with previous observations [1, 10].

The proposed MDR algorithm is most similar to the Mar-
tiRank algorithm employed in the ROAM system [6]. Both
are based on the Martingale Boosting [12] but the MDR em-
ploys different heuristic evaluation functions and partition-
ing technique for constructing predictive models. Section 4
describes these features in more detail.

3. Software characteristics and data

This section gives a background of the software data under
our study. We apply the MDR algorithm to data sets ob-
tained from five NASA mission-critical software projects.
The data are publicly available from the NASA’s Metric
Data Program. In particular, we use its popular version in
the PROMISE repository [13], mainly for comparison pur-
pose.

Table 1 summarizes partial characteristics, such as a
number of software modules (or data instances), a number
of defective modules and lines of codes. The projects are
concerned with different functionalities. KC1 and KC2 deal
with data processing, storage and management, whereas the
rest involve space specific functions. JM1 is the largest
project in terms of number of modules, number of defec-
tive modules, and a total counts of lines of codes.

Each data set contains one class attribute and 21 condi-
tion attributes representing different types of software char-
acteristics including static, dynamic code attributes. Ta-
ble 2 categorizes these attributes into five metric types: Mc-
Cabe, Derived Halstead, Line Count, Operator (or Basic
Halstead) and Branch Count. Halsted metrics measure pro-
gram size and are useful for estimating programming ef-
forts, while McCabe metrics measure program complexity
based on structures of control flows. All except the class
attribute have numeric values. The defective? class at-
tribute has binary values (one for defective and zero for non-
defective). Detailed definitions and discussions of these
metrics can be found in [3, 7, 13].

94

Table 2. NASA software metrics and attributes.

Types Attribute Descriptions

McCabe

1. Line count of code
2. Cyclomatic complexity
3. Essential complexity
4. Design complexity

Derived
Halstead

5. Number of operators & operands
6. Volume
7. Program length
8. Program difficulty
9. Intelligent Count
10. Effort
11. Effort Estimate
12. Programming Time

Line Count

13. Lines of code
14. Lines of Comment
15. Blank Lines
16. Lines of code and comment

Operator

17. Unique operators
18. Unique operands
19. Total operators
20. Total operands

Branch Count 21. Total Branch Count
Target Class 22. Defective?

4. The MDR algorithm

We present a novel ranking algorithm, MDR (Multi-
Dimensional Ranking). MDR is a machine learning algo-
rithm for constructing a model for predicting if a newly de-
veloped software module is likely to be defective, and rank-
ing those predicted to be defective in order of their likeli-
hood. The algorithm is based on the Martingale boosting
technique [12]. Intuitively, boosting iteratively uses results
from one learner to tune the training instances so that learn-
ing in the next boosting round can incrementally improve
prediction accuracy. Figure 1 shows basic steps of MDR.

In each boosting round, MDR performs a greedy search
to select appropriate attributes, corresponding types of sort-
ing order (e.g., increasing or decreasing order) and parti-
tions of training modules in order to improve ranking pat-
terns of defective modules in a given training data set. The
selection is biased towards the ideal ranking, where mod-
ules are ordered from those with highest susceptibility to
defectiveness to the lowest. During the search, MDR uses a
heuristic evaluation function, R as a rating function to evalu-
ate how good the selected sorted list of values of the selected
attribute in a selected partition is compared to the ideal rank-
ing. As shown in Figure 1, the two partitioning conditions
are required to make sure that the class attribute values (i.e.,
defective or non-defective modules) are well distributed in
each partition for training.

We now define our heuristic to rate L, a list of defective
status of each of n software modules in the training set, i.e.,
L = [d1,d2, ...,dn], where di = 1 if software module i is de-

inputs : L, a list of defective status (i.e., class attribute
values) of each of n training instances (of soft-
ware modules) T , a number of boosting rounds

outputs : M, a list of triplets of the form (A,s, p), where
A, s and p, respectively, represents an attribute,
a sorting order type (e.g., Inc for increasing,
Dec for decreasing) and a ratio of a partition
size to n, for each partition in each boosting
round.

Begin
M ← Empty;
For each boosting round t ← 1 to T do

Partition L into t sub-lists: L1, . . ., Lt such that each
sub-list has (1) approximately the same number of
defective modules, and (2) approximately the same
ratio of the number of defective modules to its size;

For each sub-list Li do
α = a set of all condition attributes;
LA,s

i = a list obtained by sorting Li in the same order
as its corresponding A attribute values sorted in
s ordering type, where s ∈ {Inc,Dec};

min{R(LA,s
i)|A ∈ α ,s ∈ {Inc,Dec}} = R(LA∗,s∗

i);
If R(LA∗ ,s∗

i) < R(Li) then
Add(A∗,s∗, |Li |/n) to M;
Sort instances in Li in the same order as in LA∗ ,s∗

i
else Add(NULL,NULL, |Li |/n) to M

End For
End For
End

Figure 1. Basic steps of MDR.

fective otherwise it is 0. Formally, the rating of L is defined
as follows:

R(L) =
n

∑
i=1

ri, where ri =
{

0 , if di = 1
∑n

k=i+1 dk/n , otherwise

The rating is designed to be biased to ranking patterns
that have defective modules on top (or leftmost of the list)
and non-defective modules at the bottom. Ratings can range
from zero to d(n− d)/n where d is a total number of de-
fective modules and smaller rating values are better. For
example, consider lists L1 = [0,0,1,1], L2 = [0,1,0,1], and
L3 = [1,1,0,0]. It is clear that L3 is most desirable since de-
fective modules are all towards the top of the list and L1 is
least desirable. This is consistent with our heuristic values:
R(L1) = 1, R(L2) = 3/4, and R(L3) = 0. As expected, pat-
terns in order of preference are L3, L2, and L1, respectively.

The output model is a list of triplets of the form (A,s, p),
where A, s and p represents an attribute, a sorting order type
(e.g., Inc for increasing, Dec for decreasing) and a ratio of
a partition size to a number of training instances, respec-
tively. Figure 2 shows an example of the model generated
by MDR on NASA project CM1 when a total number of
boosting round is specified to be three. The list of triplets
for each partition in each boosting round is shown. Ai rep-
resents attribute i, as shown in Table 2. To apply the model
to a given set of testing data instances, the ranking of like-
lihood of defectiveness can be predicted by repeatedly sort-

95

(A14,Dec,1)

(A14,Dec,0.2)

(A14,Dec,0.8)

(NULL,Dec,0.12)

(A7,Dec,0.18)

(A11,Dec,0.70)

t = 1 t = 2 t = 3

Figure 2. Example of a model produced by MDR.

ing the list according to the attribute selected by the model.
For example, if we use the model in Figure 2, we will first
sort the whole list according to attribute A14 (lines of com-
ments) in decreasing order. Next (in round 2), we partition
the list into two parts with the top part containing 20% of
the total number of testing modules. We sort both top and
bottom partitions according to attribute A14 in decreasing
order. Finally, in round 3, we partition the list into three
parts: the top and middle parts contain 12% and 18% of the
total number of testing instances, respectively. The rest are
in the last partition. In the top partition, NULL signifies
that no attribute is selected and therefore there is no sorting
required. Thus, this top partition remains unchanged. We
then sort middle and bottom partitions in decreasing order
according to attributes A7 (program length) and A11 (effort
estimate), respectively. The resulting list gives the ranking
predictions.

Unlike most machine learners, MDR is specifically de-
signed for producing ranking models. MDR differs from
MartiRank in that it uses a different heuristic evaluation
function as described. Furthermore, MDR records each par-
tition boundary in terms of a ratio of a partition size to a total
number of training instances, whereas MartiRank uses ab-
solute boundary location. Consequently, MDR is more gen-
eral than MartiRank in that we can apply MDR to a testing
data set of any size whereas MartiRank can only be applied
to those with the same size as the training data set.

We have implemented MDR in Java with capabilities to
interface, at certain levels, with Weka [14]. This is to facil-
itate valid comparisons of results obtained from MDR and
other machine learners provided by Weka.

5. Application and results

This section illustrates how MDR can effectively be used
for constructing models for predicting and ranking defective
models in order of their likelihood. We apply MDR to five
data sets described in Section 3.

5.1. Evaluation metrics

Traditionally, most machine learners use accuracy (percent-
age of a ratio of a number of correct predictions to a num-
ber of testing instances) as a means to evaluate prediction
quality. However, accuracy is not adequate for measuring
ranking quality because it does not take mispredictions into
account. Recent studies [2, 7] have employed metrics such
as F-measure, and ROC (Receiver Operating Characteris-
tics) curve [8] from signal detect theory [5]. However, like
accuracy, these metrics do not have sufficient discriminating
power for ranking evaluation.

Previous study has shown the Area Under ROC Curve
(AUC) to be equivalent to the Wilcoxon statistic rank test [5]
is a suitable means for evaluating ranking quality. To under-
stand AUC, we first define the ROC curve. ROC curve is a
plot between the true positive rate (TP) of the predictions
on the Y-axis against the false positive rate (FP) of the pre-
dictions on the X-axis. TP is a ratio of positives correctly
predicted to total positives, whereas FP is a ratio of nega-
tives incorrectly predicted to total negatives [8]. TP and FP
are also referred to as sensitivity and 1− specificity, respec-
tively. In our context, positives refer to defective modules.

Given a list of predictions, a cutoff provides a bound-
ary of accumulated instances tested so far to allow counting
for defective modules correctly predicted and non-defective
modules incorrectly predicted for determining TP and FP.
Thus, each cutoff yields a single point on ROC curve (and
one accuracy value). As cutoff incrementally moves down
the list, we can obtain points on ROC curve toward the right
side of the ROC space. Thus, ROC curve can be used to
effectively evaluate (ranking) predictions. Unfortunately,
comparing two learners based on their ROC curves is not al-
ways conclusive. This issue can be resolved by AUC, which
represents each ROC curve with a single value (area under
its curve). AUC can be interpreted as the probability that
a randomly chosen example of defective module will have
a higher estimated probability of being predicted as defec-
tive than a randomly chosen example of non-defective mod-
ule. Thus, predictions with higher AUC are better. AUC
has been shown theoretically and empirically to be a better
measure for evaluating machine learners than accuracy. See
more details in [8].

5.2. Methods

For efficiency control, MDR was designed so that a user can
specify a number of boosting rounds. Although we have
not proved this, we conjecture that effects of the number of
boosting rounds (T) to the model accuracy will be similar to
the effects of size of a training set. In other words, as T gets
larger, the accuracy increases up until a certain point where
accuracy will reach a plateau. This optimal accuracy may

96

be reached at certain level of T (analogous to reaching a
certain size of the training set). For practical purpose of our
study here, we use T = 8 as applied in [6]. Further study is
required to create a method for selecting an appropriate T .

To avoid overfitting in model construction, n-fold cross-
validation [10,14], a standard re-sampling accuracy estima-
tion technique, is used. In n-fold cross-validation, a data set
is randomly partitioned into n approximately equally sized
subsets (or folds or tests). The learning algorithm is exe-
cuted n times; each time it is trained on the data that is out-
side one of the subsets and the generated model (classifier)
is tested on that subset. The estimated accuracy for each
cross-validation test is a random variable that depends on
the random partitioning of the data. The estimated accuracy
is computed as the average accuracy over the n test sets.
The n-fold cross-validations are typically repeated several
times to assure data randomness and the estimated accuracy
is an average over these n-fold cross-validations. For the
experiments in this paper, we use AUC instead of accuracy
and n = 10 as suggested in the study by Kohavi [10] to be
theoretically acceptable.

We ran 10-fold cross-validations on all five NASA soft-
ware data sets using our MDR ranking algorithm and four
other machine learning techniques, which are available on
Weka [14]. These four machine learners are ZeroR, J48,
Bayes and NN. ZeroR is a majority learner, which is com-
monly used to measure a baseline performance in machine
learning. J48 is a decision tree learner, Bayes is a well-
known Naive Bayes classifier, and NN is a neural net ap-
proach using back propagation learning algorithm [14]. The
last three learners are selected for comparison study because
they cover a variety of techniques that use different repre-
sentational models, namely decision tree models for J48,
Bayesian probabilistic models for Bayes, and neural net-
work for NN.

5.3. Results

Figure 3 shows a comparison of ROC curves obtained from
ZeroR, J48, Bayes, NN and MDR for project CM1. As ex-
pected, ZeroR shows a baseline performance equivalent to
random guessing. Therefore, it yields a no-discrimination
straight line of 45 degrees from the horizontal [8]. The
ROC curve obtained from J48 gives a better performance
than random guessing. Majority of the ROC curve obtained
from Bayes dominates that of J48. It is clear that both NN
and MDR dominate the rest but there is no way to tell ex-
actly, which of these two performs better by just observing
their corresponding ROC curves alone.

Table 3 shows comparisons of percentage averages of
AUCs, over 10-fold cross-validations, which are obtained
from various learners and MDR. For each project, Table 3
shows the highest average AUC in bold. MDR performs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate

J48
NN

Bayes
ZeroR
MDR

Figure 3. Comparison of ROC curves for CM1.

best on three of the five projects, namely CM1, JM1 and
PC1. In these projects, the differences between the aver-
age AUCs obtained from MDR and the next best results
range from close to 2% to 4%. Bayes performs best on
KC1 and KC2. However, MDR has the highest mean of
average AUCs over all five projects. Furthermore, average
AUCs obtained from MDR are only 1.38% and 1.13% less
than Bayes’ result in KC1 and KC2, respectively. In spite
of all these promising results, since the differences may not
be statistically significant in each project, we conclude that
MDR is highly competitive to other learners. In addition,
recall that MDR provides additional information of ranking
predictions of susceptibility to defectiveness, whereas oth-
ers do not. Thus, MDR is more informative.

Table 3. AUC comparisons.

Project ZeroR J48 Bayes NN MDR
CM1 48.98 55.83 65.82 73.36 75.12
JM1 49.94 65.30 67.93 68.95 71.97
KC1 49.57 68.91 78.99 77.07 77.61
KC2 48.71 70.42 83.43 82.76 82.20
PC1 48.56 66.80 64.97 72.26 76.25
Avg. 49.15 65.45 72.23 74.88 76.63

It is quite remarkable to see that J48 performs rather
poorly given a common knowledge that J48 along with
other decision tree learners are among top performers when
evaluated by accuracy. To see the magnitude difference
between the two metrics, we compare average accuracy
with average AUCs obtained from different learners on the
same project. On project CM1, an average accuracy ob-
tained from ZeroR, J48, Bayes and NN is 90.16%, 88.96%,

97

85.54% and 89.56%, respectively. These are a lot more opti-
mistic than the average AUCs obtained from corresponding
learners (as shown in the first row of Table 3). For project
CM1, accuracy measures (in percentages) are about 16 to 41
higher than AUC measures (in percentages). In fact, if we
apply a 5% cutoff to our ranking predictions from MDR,
an average accuracy over five NASA projects obtained is
85.25%, whereas the average AUC (as shown in Table 3)
is only 76.63%. Thus, using AUC as an evaluation met-
ric can be more discriminating [7] but less optimistic than
accuracy.

6. Conclusions

There has been significant amount of research in applying
machine learners to predictions of defective software. What
distinguish this work from previous efforts are the follow-
ings.

Firstly, we propose a different aspect of defective pre-
diction by presenting an algorithm for ranking predicted
defective modules in order of their likelihood. This gives
stronger and more useful results than prediction of defec-
tive modules alone. Even though most machine learners
provide some certainty measures of the predictions, obtain-
ing ranking from them would require difficult ad-hoc post-
processing, as they are not specifically designed for ranking
purpose [6].

Secondly, we apply the proposed algorithm using AUC,
an evaluation metric that is different from most previous
studies in software defective prediction, particularly for the
set of data under our study. AUC has been shown theoreti-
cally and empirically to be better than accuracy [8]. How-
ever, it has not been used widely in evaluating software de-
fective prediction. Although previous work has employed
related evaluation metrics such as probabilities of detec-
tions and false alarm, they are hard to use for comparison.
AUC is superior to these metrics and ROC that does not
provide a single measurement for easy comparison. Using
AUC instead of accuracy to evaluate and interpret results of
software data analysis obtained by machine learners could
change previous findings about software characteristics and
best prediction techniques to use in practice.

References

[1] R. M. Bell. Predicting the location and number of faults in
large software systems. IEEE Trans. Softw. Eng., 31(4):340–
355, 2005. Member-Thomas J. Ostrand and Fellow-Elaine
J. Weyuker.

[2] G. D. Boetticher. Nearest neighbor sampling for better
defect prediction. In PROMISE ’05: Proceedings of the
2005 workshop on Predictor models in software engineer-
ing, pages 1–6, New York, NY, USA, 2005. ACM Press.

[3] V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A.
Paul. Empirical assessment of machine learning based soft-
ware defect prediction techniques. In WORDS ’05: Proceed-
ings of the 10th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems, pages 263–270,
Washington, DC, USA, 2005. IEEE Computer Society.

[4] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Trans.
Softw. Eng., 26(8):797–814, 2000.

[5] D. M. Green and J. A. Swets. Signal Detection Theory and
Psychophysics. Wiley, New York, 1966.

[6] P. Gross, A. Boulanger, M. Arias, D. L. Waltz, P. M.
Long, C. Lawson, R. Anderson, M. Koenig, M. Mas-
trocinque, W. Fairechio, J. A. Johnson, S. Lee, F. Doherty,
and A. Kressner. Predicting electricity distribution feeder
failures using machine learning susceptibility analysis. In
AAAI, 2006.

[7] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction
of fault-proneness by random forests. In ISSRE ’04: Pro-
ceedings of the 15th International Symposium on Software
Reliability Engineering (ISSRE’04), pages 417–428, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[8] J. Huang and C. X. Ling. Using auc and accuracy in evaluat-
ing learning algorithms. IEEE Transactions on Knowledge
and Data Engineering, 17(3):299–310, 2005.

[9] T. Khoshgoftaar and E. Allen. Predicting the order of fault-
prone modules in legacy software. In ISSRE ’98: Proceed-
ings of the The Ninth International Symposium on Software
Reliability Engineering, pages 344–353, Washington, DC,
USA, 1998. IEEE Computer Society.

[10] R. Kohavi. The power of decision tables. In ECML ’95:
Proceedings of the 8th European Conference on Machine
Learning, pages 174–189, London, UK, 1995. Springer-
Verlag.

[11] A. G. Koru and H. Liu. An investigation of the effect
of module size on defect prediction using static measures.
In PROMISE ’05: Proceedings of the 2005 workshop on
Predictor models in software engineering, pages 1–5, New
York, NY, USA, 2005. ACM Press.

[12] P. M. Long and R. A. Servedio. Martingale boosting. In
COLT, pages 79–94, 2005.

[13] S. J. Shirabad and T. J. Menzies. The promise repository
of software engineering databases. School of Information
Technology and Engineering, University of Ottawa, Canada,
2005.

[14] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, October 1999.

98

Automated Test Code Generation from UML Protocol State Machines

Dianxiang Xu, Weifeng Xu

Department of Computer Science
North Dakota State University

Fargo, ND 58105, USA
{dianxiang.xu, weifeng.xu }@ndsu.edu

W. Eric Wong

Department of Computer Science
University of Texas at Dallas
Richardson, TX 75803, USA

ewong@utdallas.edu

Abstract
This paper presents a framework for automated

generation of executable test code from UML 2.0
protocol state machines. It supports several coverage
criteria for state models, including state coverage,
transition coverage, and basic and extended round-trip
coverage. It transforms the state invariants and
transition postconditions of a state model into
executable assertions to be verified against the actual
object states by runtime code instrumentation. Hand-
crafted test data are reused from one development
version to the next due to the change of requirements.
This reduces the working load for test regeneration of
modified models. Our framework also reports the
complexity of generated test suites, which can facilitate
empirical evaluation of different coverage criteria for
state models.

Keywords: Software testing, finite state machines,
UML, object-oriented programming, coverage criterion.

1. Introduction

Finite state machines (e.g., UML Statecharts [10]) are
widely used to document the design of object-oriented
systems. Test generation from the state models of object
behaviors has gained much attention in the past decade.
Several coverage criteria (e.g., state coverage and
transition coverage) have been proposed for state-based
testing. Existing testing methods, however, often use them
to measure how much of the state model is covered by a
given test suite, rather than automatically generating
executable test code for the criteria.

In general, model-based testing requires some level of
human intervention in order to produce executable tests.
A major problem is the extent to which the manual work
can be reused from one development version to the next.
This is similar to regression testing [9], which involves
three issues: (1) selecting from the current test suite those
tests that remain valid for the modified program; (2)

removing obsolete tests from the current test suite; (3)
identifying additional tests. Issues (1) and (2) together are
also called the regression test selection problem, whereas
issue (3) is called the coverage identification problem
[9][11]. Although each of them is significant, code-based
regression testing is by and large limited to the test
selection problem. For model-based test generation, all
tests are newly generated for the modified models. New
(obsolete) tests are added (excluded) automatically. As
such, hand-crafted test data need to be carried from one
development version to the next.

This paper presents a framework for automated
generation of executable test code from UML 2.0 protocol
state machines. It is fully implemented in the MACT
(Model-based Aspect/Class Testing) toolkit. MACT first
generates a transition tree from a state model for the
chosen coverage criterion. The tester can edit detailed test
parameters if necessary. When the state model is modified
due to requirements change, the hand-crafted test
parameters are automatically reused. Once the required
parameters are provided, MACT can generate executable
test code, including test methods and state wrapper
classes. The state wrapper classes provide a mapping
from the state invariants in a state model to the concrete
object states. They are used by runtime code
instrumentation for verifying actual object states against
expected states.

The rest of this paper is organized as follows. Section
2 describes how UML protocol state machines are used
for class modeling and provides an overview of the
automated testing process. Section 3 presents test
generation from state machines. Section 4 discusses
automated reuse of test data for modified models. Section
5 presents test metrics and our experiments. Section 6
reviews related work. Section 7 concludes the paper.

2. MACT: An Automated Test Framework

2.1 UML Protocol State Machines for Class Modeling

99

In UML 2.0, a protocol state machine specifies which
operations can be called in which state and under which
conditions, thus specifying the allowed call sequences on
the operations. A main difference between protocol state
machines and Statecharts is that transitions in a protocol
state machine are associated with a precondition (guard)
and postcondition, but not actions. As a blackbox testing
strategy, model-based testing is concerned with the effect
of the transition, rather than the procedural process.
Therefore, protocol state machines provide an appropriate
level of abstraction for test generation from state models.

We exploit protocol state machines to capture intra-
object behaviors and inter-object effects. A protocol state
model M consists of states S, events E, and transitions T.
Transition (si, e[p, q], sj) T (precondition p and
postcondition q are optional) means that, when event
(method) e E is triggered in the state si S, when p
holds, then the state sj S must be reached under q. For a
class state model, S, E, and T represent the possible states
of objects, public constructors/methods, and functionality
implemented by the constructors/methods, respectively.

A state s S can be a concrete object state or a state
invariant. For example, the state OPEN of a BankAccount
object may refer to the following: getClosed()==false &&
getBalance() >= 0 && getFrozen()==false. Such states are
specified in a state model for the purposes of test
generation. They imply a link between the SUT and the
generation of executable test code. The use of state
invariants provides a high level of abstraction of object
behaviors. A pre- or post-condition is a logical formula
constructed by using constants, instance variables, and
functions. A transition (si, e[,q], sj) without precondition
means that the transition is unconditional: event e under
state si always results in state sj and q (if it exists). For
convenience, we use to denote the state before an object
is created (as in [1]) and the new event to represent the
constructor. Usually, a class model includes in S and
new in E. The object creation transition, (, new[p, q],
s0) T, if condition p holds, constructs an object with the
initial state s0 and achieves the postcondition q. Figure 1
shows the state model of a BankAccount class, where, for
simplicity, b denotes getBalance(). The model consists of
three state invariants: OPEN, FROZEN and CLOSED.
The events are deposit, withdraw, getBalance, close,
freeze, and unfreeze.

close

freeze

withdraw
 [b-amt>=0]

new

deposit [amt>=0]

getBalance

FROZEN

CLOSED

OPEN
unfreeze

getBalance

Figure 1. The state model of a BankAccount class

A test sequence is a sequence of transitions (, new[p0,
q0], s0), (so, e1[p1, q1], s1),…,(sn-1, en[pn, qn], sn) . It starts
with object creation, invokes methods on the object, and
leads the object and other interacting objects to the
respective states. Such a test sequence exercises not only
individual constructors and methods, but also interactions
between them.

2.2 Automated Testing Process

The automated testing process is shown in Figure 2. It
starts with the tester building the state models for the
classes under test and selecting a coverage criterion for
test generation. The supported coverage criteria include
state coverage, transition coverage, basic round trip, and
extended round trip. For a given state model and coverage
criterion, MACT generates a transition tree: the root
represents the state; each non-root node represents the
resultant state and postcondition of a transition from the
state in the parent node. As such, each path from the root
to a leaf is a test sequence as described before. Section 3
will elaborate on the coverage criteria and the algorithms
for generating tests that achieve the criteria.

Figure 3 shows the generated transition tree for the
basic round-trip coverage of the BankAccount model in
Figure 1. Negative test sequences, whose leaf nodes are
illegal transitions, are marked with “[-]”. For instance, the
test sequence along the path 1 1.7 1.7.4 consists of
object creation and method invocations <new, freeze,
withdraw> (the test input of the test sequence) as well as a
sequence of expected resultant states <OPEN, FROZEN,
FROZEN> (the oracle values of the test sequence). It is a
negative test because one cannot withdraw money from a

Test Generation

State
 Model

Transition Tree

Wrapper
Classes

Test
Classes

Code Generation

SUTTest Execution

Instrumentation
aspects

Tester

Test
Results

Coverage
Criterion

Figure 2. Automated testing process

100

FROZEN BankAccount. This test is to check whether or
not the BankAccount class implementation would actually
prohibit such an operation.

Figure 3. A transition tree for the model in Figure 1

Actual parameters have to be assigned to new and
withdraw before the above test sequence becomes an
executable test case (i.e., without compile-time errors).
MACT provides a user-friendly interface for the tester to
define such parameters. Once the tester clicks on a leaf
node, the whole path from the root to the leaf is presented
as a list of tables for editing. Figure 4 shows an editing
session for the aforementioned test sequence. The user
first inputs a value 1000 and uses it as the actual
parameter for new by checking the parameter checkbox.
The method freeze needs no parameter. For the invocation
to withdraw, the user first provides a Java statement
defining a double variable amount with value 100 (in this
example, the parameter checkbox is not checked), and
then uses amount as the actual parameter of withdraw.

Figure 4. A sample editing session

The ability to insert Java statements makes it possible
to define runtime context for a specific testing task and set

up and clean up test fixtures (e.g., establish and close a
database or network connection before/after object
creation or method invocations). Because the details of
business logic (e.g., for deposit and withdraw) are often
abstracted away in the state models, the tester is
responsible for the satisfaction of method preconditions
(e.g., getBalance()-amt<=0) when presenting actual test
parameters. This is a non-trivial task, though. To alleviate
this challenge, our future work will consider adapting a
constraint satisfaction solver. This would require an
executable language in place for specifying the detailed
business logic (e.g., how deposit and withdraw operate).

Figure 5. A generated executable test method

After the required test parameters and additional code
are completed, the test code generated by MACT is
executable. If no method needs actual parameters, the
generated test code is immediately executable. The
general idea of code generation is as follows: a test
method is created for each test sequence in a transition
tree. Figure 5 shows the generated Java method for the
aforementioned test sequence. The input value 1000 is
used as the actual parameter for creating a bank account
object: BankAccount bankaccount = new BankAccount(1000);
The user-defined statement double amount=100; is inserted
before the call to withdraw, and amount is used as the
actual parameter of the call.

After each object creation and method invocation, an
assertion is created to verify if the class under test has
reached the expected state. For example, is the
bankaccount object in the FROZEN state after the
invocation to freeze? The user-defined code (e.g., double
amount = 100;) is inserted either before or after the method
invocation, depending on the order in which it occurs.
Transition postconditions are also transformed into
assertions. Once all test methods for the entire transition
tree are created, MACT wraps them up into a test class
and defines a main method that invokes all the
corresponding test methods. This test class thus becomes
a test suite that satisfies the selected coverage criterion.

MACT also generates a state wrapper class for each
class involved in a state model. It consists of constants
representing the state invariants in a state model and a
getModelState method evaluating when the runtime object
states achieve these state invariants. It thus builds a bridge
between state invariants and runtime object states and
facilitates determining whether tests pass or fail. The

101

following code shows the state wrapper class for the
BankAccount class. It is generated from the state
definitions in the BankAccount state model. For example,
the state invariant OPEN is defined as a constant. It
represents a bankaccount object state that satisfies
getClosed()==false && getBalance() >= 0 && getFrozen()==false.

public class BankAccountModelState{
 public static final String OPEN="OPEN";
 public static final String FROZEN="FROZEN";
 public static final String CLOSED="CLOSED";
 public String getModelState(BankAccount bankaccount){
 if (bankaccount.getClosed()==false
 && bankaccount.getBalance() >= 0
 && bankaccount.getFrozen()==false){
 return OPEN; }
 else if(bankaccount.getFrozen()==true){
 return FROZEN; }
 else if(bankaccount.getClosed()==true){
 return CLOSED; }
 else return "Wrong state";

}
 }
The test execution infrastructure is supported by a

collection of AspectJ aspects that instrument additional
code to the class under test at runtime. AspectJ [6] is a
Java-based aspect-oriented language. The aspects monitor
runtime object states and compare them with the expected
states. In brief, the generated test class and state wrapper
classes, the code instrumentation aspects, and the SUT
together form an executable system under the AspectJ
running environment. Due to the limited space, this paper
will not elaborate on the code instrumentation aspects.
Interested readers can contact the authors for more details.

In addition, MACT provides a number of utilities for
test management, such as saving/importing/merging test
data and adding/modifying/deleting/cloning a node in a
transition tree.

3. Automated Test Generation

3.1 Coverage Criteria for State Models

Our approach supports the state coverage, transition
coverage, basic and extended round-trip coverage for
automated test generation from state models. A test suite
is said to achieve the state (or the transition) coverage if it
covers each of the states (or the transitions) at least once.
The basic round trip coverage refers to the Binder’s
round-trip path testing [1]. A basic round-trip test suite
consists of a set of test sequences such that the resultant
object state of each sequence has occurred at least once in
some other sequence. An extended round-trip test suite
consists of a set of test sequences such that the resultant
object state and postcondition of each sequence is present
at least once in some other sequence.

Let A>B represent that coverage criterion A subsumes
coverage criterion B (i.e., a test suite that achieves A also

achieves B). Then we have: extended round-trip > basic
round-trip > transition coverage > state coverage. For
example, the transition coverage subsumes the state
coverage because a test suite of the transition coverage
must cover all the states. The extended and basic round-
trip coverage criteria are equivalent for a state model
where no transitions have postconditions.

3.2 Test Generation Algorithms

Now we describe how the transition tree for a given
coverage is generated. The root of a transition tree always
represents the state. The transition tree generation starts
with the root and expands it.

The transition tree generation algorithm for the state
coverage expands a node as follows: (1) find the
transitions that start with the state represented by the
current node (they are the object creation transitions if the
current node is the root); (2) for each of these transitions,
create a child node of the current node if its precondition
can be satisfied and its resultant state is not yet traversed.
The new child node represents the resultant state of the
transition (it also contains a reference to the transition.
This is similar for the other algorithms below). This state
is marked as traversed; and (3) expand the new node.

The generation algorithm for the transition coverage
expands a node as follows: (1) find the transitions that
start with the state represented by the current node; (2) for
each of these transitions, create a child node of the current
node if the transition is not yet covered and its
precondition can be satisfied. The new node represents
the resultant state of the transition. The transition is
marked as traversed; and (3) expand the new node.

The generation algorithm for the basic round-trip
coverage expands a node as follows: (1) for each event,
find the transitions that start with the state represented by
the current node; (2) for each of the found transitions for
the given event, create a child node of the current node if
its precondition can be satisfied. The new child node
represents the resultant state of the transition. Expand the
new node if the resultant state has not appeared anywhere
in the tree; (3) if no transition for the given event is found
in the step (1) or the disjunction of the transition
preconditions in step (2) is not a tautology (always true),
create a new child node for the event (the event is illegal
at the current state). The state of the new node is set to the
state of the current node under expansion (i.e., an illegal
event does not change object state). The precondition of
the transition referenced by the new node is either null or
the negation of the disjunction. Therefore the new node
indicates a negative test. For example, the node 1.3
deposit [!(amt>=0)] OPEN [-] in Figure 3 is a
negative node. It is generated because deposit at the
OPEN state is legal only when amt>=0. The extended
round-trip coverage is similar to the basic one except for,

102

in Step (2), expanding the new node if the resultant state
and the transition postcondition are not contained by any
node in the tree.

4. Reuse of Test Data for Modified Models

Frequent requirements change has been a norm in
software development. To deal with requirements change,
the design and implementation have to be modified. In the
context of automated test generation, hand-crafted test
data must be carried from one development version to the
next. Consider the BankAccount model in Figure 1.
Suppose a new banking policy allows overdrafts of up to
$1,000. This requirements change is reflected in the
modified BankAccount state model in Figure 6. The new
OVERDRAWN state represents the balance of a
BankAccount object is in the range of (0, -1000]. New
transitions with respect to deposit, withdraw and
getBalance are introduced.

close

freeze

withdraw
 [b-amt>=0]

new

getBalance

FROZEN

CLOSED

OPEN
unfreeze

getBalance

OVER
DRAWN

withdraw
[b-amt<0 and

 b-amt>=-1000]

deposit
 [b+amt>=0]

getBalance

deposit [b+amt<0]

deposit [amt>=0]

Figure 6. The modified BankAccount model

Let M and M’ denote the models before and after
modification, TS and TS’ are their test suites, respectively.
Each test sequence, ts’, in TS’ belongs to one of the
following situations:

(1) ts’ needs no test parameters. In this case, its
executable code can be generated immediately;

(2) ts’ needs test parameters and is also a valid test
sequence ts in TS. In this case, the user-defined
test parameters for ts are all valid for ts’.

(3) ts’ needs test parameters and it is also part of a
valid test sequence ts in TS. In this case, the
user-defined test parameters for the common
part are all valid for ts’.

(4) ts’ needs test parameters and it subsumes a
valid test sequence ts in TS (i.e., ts is a sub-
sequence of ts’). In this case, the user-defined
test parameters for ts are all valid for ts’.

The situation (2) addresses the test selection problem
of regression testing. It is not concerned about whether
the tests in TS are valid or invalid. Obsolete tests in TS are

not used in (i.e. automatically excluded from) the new test
suite. Situations (3) and (4) deal with the coverage
identification problem. They adopt existing test data, even
if the test sequences containing these test data in TS have
become obsolete. MACT offers an efficient algorithm for
carrying test data from the test suite of one model to the
next. Instead of comparing individual test sequences, it
works directly on the two transition trees and associated
test parameters.

5. Test Metrics and Experiments

MACT provides the following statistical information
on the complexity of generated test suites:

test methods (#M),
test methods with negative tests (#N),
constructor and method calls (#CM),
assertions in the test methods (#A),
parameters used in the tests (#P),
parameters inputted by the tester (#PI),
statements used in the tests (#S),
statements provided by the tester (#SI).

We have applied MACT to the generation of
executable test code for several applications. Duo to the
limited space, here we only report the test metrics for the
two BankAccount models in Figure 1 (denoted by BA1)
and Figure 6 (denoted by BA2). Let a, b, c and d be the
extended round trip, basic round-trip, transition coverage,
and state coverage, respectively. As neither of BA1 and
BA2 has postconditions, there is no difference between
the extended and basic round-trip. The number of
assertions (#A) is also the same as the number of
constructor and method calls (#CM).

Table 1 shows the metrics of the executable test suites
for BA1. For the round-trip coverage, there are 18 test
methods (#M); 14 of them contain negative tests (#N); a
total of 26 parameters (#P) are used in the test methods;
and only nine (#PI) are direct inputs by the tester. Table 2
shows the test metrics of the (non-executable) test suites
when they are first generated by reusing the test
parameters for BA1. For the round-trip coverage, eight
inputs (#PI) for BA1 are carried into the test suite of BA2
for 32 total parameters (#P, See Table 2). Table 3 shows
the metrics of the executable test suites for BA2. For the
round-trip coverage, a total of 13 tester-input parameters
(#PI) are expected. The tester needs to provide five more
parameter inputs after reuse. Similarly, for the
transition/state coverage, the tester needs to input three
and one more parameters, respectively.

Table 1. Metrics of the executable tests for BA1
 #M/N #CM #P/PI #S/SI

BA1-a/b 18/14 66 26/9 1/1
BA1-c 2/0 10 4/3 0/0
BA1-d 2/0 6 0/0 0/0

103

Table 2. Metrics of BA2 non-executable test suites
generated by reusing BA1 test parameters
 #M/N #CM #P/PI #S/SI
BA2-a/b 25/17 94 32/8 1/1
BA2-c 3/0 21 7/3 0/0
BA2-d 3/0 9 3/1 0/0

Table 3. Metrics of the executable tests for BA2
 #M/N #CM #P/PI #S/SI
BA2-a/b 25/17 94 43/13 1/1
BA2-c 3/0 21 11/6 0/0
BA2-d 3/0 9 4/2 0/0

6. Related Work

Significant research effort has been directed at the
generation of test sequences from state models [6]. For
example, the W-method [3] and Wp-method [4] construct
a transition tree and traverse the transition tree so that
each path is covered by the test cases. Many state-based
test generation methods also use a state model to
represent the SUT and then test whether or not the
implementation and design models conform to each other.
These methods have been extensively studied in the
context of protocol testing [6]. However, none of them
targets the testing of object-oriented programs. For
example, events in the state machines are different from
parameterized methods in object-oriented programming.

State models have also been used for model-based
testing of object-oriented systems. The round-trip path
testing [1] as the most referenced and applied technique is
an adaptation of the W-method for deriving tests from a
FREE state model (i.e., flattened Statechart) that describes
the behavior of a single class or a cluster of classes. It
replaces the identification sequence with a call to a state
invariant checking method and requires the SUT to have a
trusted ability to report the resultant states. Briand et al.
[2] have recently conducted a series of controlled
experiments evaluating the cost-effectiveness of the
round-trip path testing, and they have showed that it can
be enhanced by category partition. Hong et al. [5] provide
a way to derive extended state machines from Statecharts
to devise test criteria based on control and data flow
analysis. Offutt et al. [8] provide definitions for such test
criteria as all transitions, all transition pairs, and full-
predicate. These criteria are used to evaluate how much of
the state model is covered by a given test suite. Our
approach uses the coverage criteria to drive test
generation, i.e., generate tests that satisfy the criteria.

7. Conclusions

We have presented the framework for automated
generation of executable test code from protocol state
models. It supports four test coverage criteria. Reuse of

hand-crafted test data for subsequently modified models
can reduce the workload of creating new tests. MACT
can also facilitate empirical evaluation of the cost-
effectiveness (e.g., correlation of fault detection capability
and testing costs) of various coverage criteria for test
generation from state models. Such evaluation by hand
would be tedious and error-prone without tool support.

Our future work will integrate a rigorous constraint
language for specifying pre- and post-conditions in state
models and a constraint problem solver for generation of
test parameters. We will also investigate the test selection
problem for model-based regression testing – how test
sequences of modified models should be selected or
prioritized.

8. Acknowledgement

This work was supported in part by the ND EPSCoR
IIP-SG via NSF Grant EPS-047679 and the NASA
OSMA/SARP Center Initiatives Program.

9. References

[1] Binder, R. V. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 2000.

[2] Briand,L.C, Di Penta, M., Labiche, Y. “Assessing and
Improving State-based Class Testing: A Series of
Experiments”, IEEE Trans. on Software Engineering, vol.
30, no. 11, pp. 770-793, Nov. 2004.

[3] Chow, T.S. “Testing Software Design Modeled by Finite-
State Machines”, IEEE Trans. on Software Engineering,
vol. SE-4, May 1978, pp. 178-187.

[4] Fujiwara, S., Bochmann, G. v., Khendek, F., Amalou, M.,
Ghedamsi, A. “Test Selection Based on Finite State
Models”, IEEE Trans. on Software Engineering, vol. 17,
no. 6, pp. 591-603, June, 1991.

[5] Hong, H.S., Kim, Y.G., Cha, S. D., Bae, D.H., Ural, H. “A
Test Sequence Selection Method for Statecharts”, Journal
of Software Testing, Verification and Reliability, vol.10,
no.4, pp.203-227,2000.

[6] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J. and Griswold, W.G., An overview of AspectJ. Proc. of
ECOOP’01, pp. 327-353, 2001.

[7] Mathur, A.P. Foundations of Software Testing, Draft v2.1,
Purdue University, 2005.

[8] Offutt, J., Liu, S., Abdurazik, A., and Ammann, P.
“Generating Test Data from State-Based Specifications”.
Journal of Software Testing, Verification and Reliability,
vol.13, no.1,pp. 25-53, 2003.

[9] Rothermel, G. and Harrold, M.J. “Analyzing Regression
Test Selection Techniques”, IEEE Trans. on Software
Engineering, vol. 22, no. 8, pp. 529-551, 1996.

[10] UML 2.0 Specification, http://www.omg.org/technology/
documents/formal/uml.htm.

[11] Wong, W.E., Horgan, J.R., London, S., and Agrawal, H. “A
Study of Effective Regression Testing in Practice”, In Proc.
of the Eighth IEEE International Symposium on Software
Reliability Engineering, pp. 522-528, November 1997.

104

 Validating A Layered Decision Framework for Cost-Effective Network Defense

 Huaqiang Wei, Jim Alves-Foss Du Zhang
 Department of Computer Science Department of Computer Science

University of Idaho California State University, Sacramento
 {wei3004, jimaf}@uidaho.edu zhangd@ecs.csus.edu

Abstract

Cost-effective network defense includes at least three
decision layers: security policies, defense strategies,
and real-time defense tactics for countering immediate
threats. A layered decision model (LDM) has been
proposed to capture this decision process, and help us
select cost-effective defense mechanisms to safeguard
computer networks. This paper describes our efforts in
validating the rationality and consistency of the LDM
through simulation. The results indicate that the LDM is
rational and consistent in cost-effective network defense.

Keywords: cost-effective network defense, layered
decision model, simulation, rationality, consistency.

1. Introduction
How to safeguard computer networks is a critical and
complex issue. The decision making process of network
safeguarding is concerned with not only what security
goals to be fulfilled, but also how to cost-effectively
fulfill these goals. To fully understand the decision
process we must develop proper means to obtain insight
into the structure and security relationships of entities
and decision types involved in network defense. One
way to accomplish that is to develop a model that
represents and captures the real-world decision process.
Though several studies have applied modeling and
simulation approaches to the investigation of network
security and information assurance [1-9, 11-14], these
researches focus on specific information security
systems, phenomena, or network attack/defense
processes at specific levels of protection (i.e. strategic
level or tactic level), and do not combine defense
mechanisms with security policies, security
requirements, business goals and cost-benefit analysis
into a single coherent framework.
 To address these issues, we developed a layered
decision model (LDM) for cost-effective network
defense [15, 18]. The LDM includes three essential
decision layers (security policies, defense strategies and
real-time defense tactics) used to define decision
parameters, establish explicit relationships between
decision types, and support and record decisions made.

The decision making process in the model is driven by a
return-on-investment (ROI) cost-benefit analysis.
 The focus of this paper is on the issue of the LDM’s
rationality and consistency. We describe a simulation
based approach to validate the LDM’s rationality and
consistency. The reminder of the paper is organized as
follows. Section 2 gives a brief overview of the LDM.
Section 3 discusses the simulation of the LDM. Section
4 presents the results of a case study. Section 5 offers a
brief comparison. Section 6 concludes the paper.

2. Overview of the LDM
The LDM, the details of which can be found in [15, 18],
includes three decision layers. Security policies are
defined at Layer Zero, defense strategies at Layer One,
and defense tactics at Layer Two. Security policies,
defense strategies, and real-time defense tactics vary
with business types and times. To formally describe the
LDM, we consider a particular business type b at a
particular time τ, and make the following definitions:
 G = {g1,…, gI} is a set of business goals.
 T' = {tj, …, tM } is a set of threats
 T = t1,…, tM is an ordered set of threats after

ranking based on expected cost.
 P = {p1,…, pL} is a set of security policies.
 S = {S1,…, Sk} is a set of defense strategies.
 R = {r1,…, rZ} is a set of defense tactics.
Figure 1 is the LDM flow chart. Compared with the
related work, the LDM has the following advantages:
(1) It offers a consistent framework to reasonably
organize the decision process. (2) It explicitly
establishes the connectivity among security policies,
defense strategies and defense tactics. This allows us to
show how decisions made in one layer impact decisions
in another layer. (3) It optimizes security decisions
within the context of business goals through cost-benefit
analysis.

2.1 Decision process
A decision making process in the LDM can be described
as a decision graph with start points and end points. The
use of the LDM can help select the best defense for a
given threat from a set of defenses with different cost-

105

effectiveness. This decision process should be consistent
and rational.

Risk
assessment

Output:
Identified threats, established security
policies, determined defense
strategies & defense tactics

Cost-benefit
analyses

Business cost
model

Business goals
& threat
environment

 Layer Zero: Rank threats, T, based
on expected cost, and determine security

 policies, P

Layer One: Determine defense strategies, S,
and conduct cost-benefit analysis (security investment

cost and benefit, etc.)

Layer Two: Determine defense tactics,
R, and conduct threat evaluation, cost-benefit analysis

(damage cost, response cost, etc.)

Identify

Business
goals,
threat setAdjust threats,

policies, update
cost data

Adjust functionality
coverage, update cost
data, update strategy
design

Iteration between
Layers Zero and
One

Ranked defense
tactics, threat
evaluation

Ranked
defense
strategies

Ranked
defense
tactics

Final
output

Threat initial costs

Support

Figure 1. Layered decision model.

Definition 1: A decision process (DP) corresponds to a
directed graph (DG) which is composed of a set of sub-
directed graphs:

DG = (SDGi | i =1…c) (2.1)

Each sub-directed graph SDGi represents an execution
path of a layered decision making process that goes
through the defense strategy Si ∈S, and includes the
vertices and arcs in the dotted area as shown in Figure 2
below.

t1

r3r2r1

s2s1

p3p2p1

t2

Figure 2. An SDGi example.

Let Ti = T ∩ SDGi, Pi = P ∩ SDGi, Ri = R ∩ SDGi. Let
<vi, vj> denote an arc from vi to vj. Then we have

P,T
iE = {<tj, pk> | tj ∈ Ti ∧ pk ∈ Pi }

SP
iE , = {<pj, Si> | pj ∈ Pi ∧ Si ∈ S }

R,S
iE = {<Si, rj> | Si ∈ S ∧ rj ∈ Ri }

Thus, an SDGi is defined as follows:

 SDGi = (Si, Vi , Ei , ROIi) (2.2)

where
Si ∈ S.
Vi = Ti ∪ Pi ∪ {Si } ∪ Ri

Ei = P,T
iE ∪ S,P

iE ∪ R,S
iE

ROIi = Max{ROI(rj)| rj ∈ Ri }.

2.2 Properties
We are interested in two properties here for the model:
consistency and rationality. We say that a policy covers
a threat, denoted by p t, if t will be thwarted when p
is in place. A strategy S is said to be consistent with a
policy p, denoted as S p, if S is a plan of actions to
fulfill the goals in p. A tactic r is consistent with a
strategy S, denoted as r S, if r sanctions a technique
that implements S.

Definition 2: Consistency. A decision process in the
LDM is said to be consistent if we have the following:

∀t∈T ∃p∈P ∃Si∈S ∃r∈R (r Si p t) (2.3)

We use r + t to indicate that r is a consistent tactic to
the threat t.

Let ℜ(DP) indicate a set of recommendations produced
by a decision process DP in the LDM. The model’s
rationality can be defined as follows.

Definition 3: Rationality. A decision process DP in the
LDM is rational if and only if DP is consistent and its
recommendations yield the best cost-effective actions in
terms of ROI:

∀t∈T ∃p∈P ∃Si∈S ∃r∈R [(r Si p t) ∧
 (r∈ ℜ(DP)) ∧ (∀ROI(rj) ∈{ROI(rj) | rj ∈ R ∧ rj

+ t }
 (ROI(r) ≥ ROI(rj)))] (2.4)

3. Simulation of LDM
The purpose of developing a simulation software and
conducting simulations is two-fold: (1) to demonstrate
how the LDM can be applied in decision making
process for cost-effective network defense; and (2) to
validate the rationality and consistency properties for the
model.
 We developed a Prolog based simulation software to
capture the essence in the LDM and to validate its
properties. The simulation software ranks the threats,
and determines security policies, cost-effective defense

106

strategies, and defense tactics based on input threat
profiles and available defense mechanisms. The input of
the simulation software includes a set of facts to
represent threat profiles, security policies, available
defense mechanisms and estimates of their costs and
effectiveness. We also define a set of Prolog rules to
search for the defense strategies, defense tactics, and
calculate their cost-effectiveness (ROI). The following
are some defined Prolog facts and rules:
• Annual frequency of threats. The estimated annual

frequency for each threat is defined as
frequency(Threat, F).

• Single loss expectancy. The cost of damage or the
single loss expectancy (SLE) for each threat is
defined as sle(Threat, SLE). This is the post-
occurrence cost that includes labor cost, material
cost, data loss, idle pay and business disruption.
Annual loss expectancy (ALE) for each threat can
be obtained by multiplying SLE of the threat with
its annual frequency.

• Cost of defense mechanisms. The investment cost
for each defense strategy is defined as
cost_s(Strategy, Cost). This is a pre-
occurrence cost that includes: material cost, labor
cost, maintenance cost, and training cost. The
investment cost for each defense tactic is defined as
cost_t(Tactic, Threat, Cost). This is
also a pre-occurrence cost that includes: operation
cost and response cost (The unit of cost is up to the
users. We assume US dollars in this work).

• Effectiveness of defense mechanism. The estimated
effectiveness of each defense strategy when
countering each threat is defined as
effect_s(Threat, Strategy, E).
Similarly, the estimated effectiveness of each
defense tactic when countering each threat is
defined as effect_t(Threat, Tactic, E).

• Mappings between layers. Several mappings are
defined here:
- threat_policy(Threat,Policy) for

the relationships from threats to security
policies (which Threat is covered by what
security Policy.) Each threat is covered by at
least one security policy, and all threats must
be covered.

- policy_strategy(Policy,Strategy)
for mappings from a security policy to a
defense strategy (which Strategy fulfills
what Policy.

- strategy_tactic(Strategy,Tactic)
for mappings from defense strategies to
defense tactics (which defense Strategy
determines what defense Tactic.

- enforce_PST(Pol, Stra, Tac) is
used to enforce the consistency among security

policies, defense strategies and defense tactics
(Tac Stra Pol).

• Cost-benefit analysis. We use ROI as the driving
force behind the cost-benefit analysis to enforce the
model rationality. The canonical definition of ROI
is defined as (benefits – costs)/costs [15, 18]. Thus,

ROI(S) = [(ALE(t)×effect(t,S))–cost(S)]/cost(S) (3.1)

where the summation is ranging over t ∈ T and S is
a defense strategy. The ROI can be defined
similarly for defense tactics. Details on the cost-
effective analysis can be found in [15-18].

4. A simulation case study
A simulation case study is included for cost-effective
network defense for an e-commerce company. This
company manages Web-based services for real estate
brokers and mortgage companies. The network system
handles customers’ on-line requests on membership
applications, property searching, and loan applications.
Therefore, the security in the network system is very
critical in protecting customers’ personal and
confidential data, such as credit card numbers, social
security numbers, and financial information.

4.1 Facts of the simulation case
Based on interviews with security managers at the e-
commerce company, we defined the following facts as
inputs to the simulation system.
(1). A set of threats (T), annual frequencies, and SLEs

are shown in Table 1. The ranked threat set is as
follows: T = t1, t6, t2, t3, t5, t4 .

(2). A set of security policies (P) and their coverage are
given in Table 2. Therefore, the established security
policy set is: P = {p1, p2, …, p13}.

(3). A set of defense strategies {S1, S2} and their
purposes. Defense strategy S1 is shown in Table 3,
and S2 in Table 4.

(4). The estimated effectiveness and cost of each
defense strategy when countering specific threats
are given in Table 5.

(5). A set of defense tactics (R) is shown below:
r1: Block access (BA)
r2: Terminate session/connection and disable
 account (TSCD)
r3: Record/log and notify administrator (RLA)
r4: Switch to redundant network (SRN)
r5: Back up and restore (BR)
r6: Turn off the host and reboot server (TOHRS)
r7: Automatically scan and clean (viruses and
 worms) (ASC)
r8: Cooperate with other ISPs (Internet service
 providers) for rate limiting (RL)
r9: No response (NR)

 Therefore, the defense tactic set is

107

R ={r1, r2,…, r9}.
Table 6 lists the effectiveness and investment cost of
each defense tactic when countering specific threats.

4.2 Results of the simulation
Based on the above established facts, we run the
simulation software with the cost-effectiveness
information for each defense strategy and defense tactic.
We could also query the hierarchical relationships
between security policies, defense strategies, and

defense tactics. Table 5 is the simulation result of
defense strategies, which indicates that S1 has a better
cost-effectiveness (ROI) than that of S2. Table 6 presents
the simulation result of defense tactics and illustrates
that “terminate session/connection and disable account
(TSCD)” is the best defense tactic for the “internal user
misuse”, and “block access (BA)” is the best defense
tactic for the rest of the attacks.

Table 1. Threat (T) rankings.
Threats Estimated annual frequency Single loss expectancy (SLE) Ranking

Unauthorized access (UA) (t1) 20 $10k 1
Internal user misuse (IUM)(t6) 50 $3k 2
Application level attack (ALA) (t2) 10 $10k 3
Denial of service attack (DoS) (t3) 5 $10k 4
Virus and worm attack (VWA) (t5) 10 $4k 5
IP spoofing attack (IPSA) (t4) 2 $10k 6

Table 2. Security policies (P) and coverage.
Security policies Coverage

p1: Ingress and egress filtering must always be conducted. t1 – t6
p2: The system must be virus free. t5

p3: If network traffic exceeds its normal threshold by 25%, traffic rate limitation must be activated. t1 – t3
p4: If the Web server is substantially slower than normal, security manager may need to restart the Web server or switch the service to a backup server. t2 – t5
p5: Remote access must be authenticated with passwords, and passwords must be no less than 8 characters long and must be changed every 60 days. t1, t6
p6: Improper communication between servers must be recognized and blocked. t1, t3, t4, t6
p7: Unauthorized access must be blocked. t1, t2, t4, t6
p8: Communication with servers must be encrypted. t1– t6
p9: No unapproved software may be installed on any workstation without authorization from the security managers. t2, t5
p10: No email or Internet access is allowed on critical corporate financial servers and database servers. t1 – t6
p11: All account security events must be logged. t1 – t6
p12: All server data will be backed up daily using incremental backup. t1 – t6
p13: If users’ behaviors are not authorized, their accounts will be closed. t1, t6

Table 3. Features and coverage areas of S1.

Defense techniques Location Policy goals Threats covered
Three firewalls Between gateway and Internet;

between Web server and application
server; between application server
and database server

p1, p2, p3, p4, p5, p6, p7, p8, p9,
p10, p11, p13 Control access (major threats: t1 – t6)

Three host-based network intrusion
detection systems(HIDS) One on each server p1, p2, p3, p4, p5, p6, p7, p9, p10,

p11, p12, p13
Monitor entire network (major threats: t1 – t6)

Virtual private network (VPN) At remote access points p5, p7, p11, p13 Secure remote control (major threats: t1, t2, t3)
RFC 2827 and 1918 protocols Whole network p1, p2, p3, p4, p6, p7 Enforce ingress and egress filtering (major threat: t3)
Content filtering server Whole network p1, p2, p6, p7, p9, p10, p13 Scan URL request (major threat: t4)
Virus/worm scanner Whole network p1, p2, p5, p6, p7, p9, p10 Detect and disinfect viruses (major threat: t5)
Level 2 switch Between the servers p3, p4, p6, p7, p10 Maintain proper communication (major threats: t1 – t4)
Level 3 switch with IDS Between the servers p1, p2, p3, p4, p6, p7, p10 Maintain proper communication (major threats: t1– t6)
Level 4-7 application switch Whole network p1, p3, p4, p5, p6, p7, p9, p10, p13 Regulate network traffic (major threats: t1, t3, t5)
Secure Sockets Layer (SSL) Whole network p1, p5, p6, p7, p8, p10 Web-based transactions (major threats: t1, t4, t6)
IPSec encryption Whole network p5, p6, p7, p8, p9, p10 Enforce authentication (major threats: t1– t6)

Table 4. Features and coverage areas of S2.
Defense techniques Location Policy goals Threats covered

One firewall Outside Web server p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p13 Control access (major threats: t1 – t6)
Intrusion detection system (IDS) Whole network p1, p2, p3, p4, p5, p6, p7, p9, p10, p11, p12, p13 Monitor entire local network (major threats: t1 – t6)
Virtual private network (VPN) At remote access points p5, p7, p11, p13 Secure remote control (major threats: t1, t2, t3)
RFC 2827 & 1918 protocols Whole network p1, p2, p3, p4, p6, p7 Ingress and egress filtering (major threat: t3)
Network address translator (NAT) Whole network p5, p7, p11, p13 Conceal real IP addresses (major threats: t1, t2, t3)
Virus/worm scanner Whole network p1, p2, p5, p6, p7, p9, p10 Detect and disinfect viruses (major threat: t5)
Secure Sockets Layer (SSL) Whole network p1, p5, p6, p7, p8, p10 Secure Web-based transactions (major threats: t1, t4, t6)

108

5. Discussion
While there is a proliferation of separate modeling and
simulation methodologies [15] for decision support for

network defense, there is no comprehensive technology
that integrates interrelated decisions about security
policies, cost-effective defense strategies, and real-time

Table 5. Defense strategies (S) and cost-effectiveness.
 Cost
Threat

S1 S2

Effectiveness Benefit Effectiveness Benefit
Unauthorized access (UA) 0.85 Benefit(UA, 1)= $170k 0.6 Benefit(UA, 2)= $120k
Internal user misuse (IUM) 0.9 Benefit(IUM, 1)= $135k 0.5 Benefit(IUM, 2)= $75k
Application level attack (ALA) 0.85 Benefit(ALA, 1) = $85k 0.6 Benefit(ALA, 2) = $60k
Denial of service attack (DOS 0.75 Benefit(DOS, 1) = $38k 0.5 Benefit(DOS, 2) = $25k
Virus and worm attack (VWA) 0.75 Benefit(VWA, 1) =$30k 0.7 Benefit(VWA, 2) =$28k
IP spoofing attack (IPSA) 0.7 Benefit(IPSA, 1) =$14k 0.6 Benefit(IPSA, 2) =$12k
Investment cost of each defense strategy $200k $160k
Expected total net benefit (net cost saving) $272k $160k
ROI 1.36 1.0

Table 6. Defense tactics and cost-effectiveness.
 Cost

Threat

Defence
tactics

Damage
cost (SLE) Response cost Operational cost Effectiveness ROI

Unauthorized access (UA) BA $10k $2k $2k 0.9 1.25
TSCD $3k $2k 0.8 0.6

 RLA $2k $2k 0.5 0.25
SRN $5k $4k 0.95 0.05

 BR $3k $3k 0.7 0.16
ASC $2k $1.5k 0.2 -0.4

 TOHRS $5k $2k 0.9 0.8
RL $10k $4k 0.2 -0.85

 NR $0 $0 0.0 (-$10k)
Internal users misuse (IUM) BA $3K $1k $2k 0.6 -0.4

TSCD $1k $1k 0.9 0.35
 RLA $5k $4k 0.8 -0.1

SRN $5k $4k 0.2 -0.93
 BR $3k $3k 0.4 -0.8

ASC $2k $1.5k 0.2 -0.8
 TOHRS $5k $2k 0.7 -0.7

RL $10k $4k 0.1 -0.98
 NR $0 $0 0.0 (-$3k)
Application level attack (ALA) BA $10k $2k $2k 0.85 1.25

TSCD $3k $2k 0.8 0.6
 RLA $2k $2k 0.5 0.25

SRN $5k $4k 0.9 0.0
 BR $3k $3k 0.7 0.2

ASC $2k $1.5k 0.2 -0.95
 TOHRS $5k $2k 0.9 0.3

RL $10k $4k 0.2 -0.99
 NR $0 $0 0.0 (-$10k)
Denial of service attack(DOS) BA $10k $2k $2k 0.8 1.0

TSCD $3k $2k 0.7 0.4
 RLA $2k $2k 0.55 0.4

SRN $5k $4k 0.95 0.0
 BR $3k $3k 0.8 0.3

ASC $2k $1.5k 0.2 -0.95
 TOHRS $5k $2k 0.85 0.2

RL $10k $4k 0.9 -0.3
 NR $0 $0 0.0 (-$10k)
Virus and worm attack (VWA) BA $4k $2k $1k 0.9 0.2

TSCD $3k $2k 0.6 -0.2
 RLA $2k $2k 0.6 -0.2

SRN $5k $4k 0.5 -0.7
 BR $3k $3k 0.7 -0.5

ASC $2k $1.5k 0.9 0.1
 TOHRS $5k $2k 0.65 -0.7

RL $10k $4k 0.2 -0.96
 NR $0 $0 0.0 (-$4k)
IP spoofing attack (IPSA) BA $10k $2k $2k 0.8 1.0

TSCD $3k $2k 0.9 0.8
 RLA $2k $2k 0.6 0.5

SRN $5k $4k 0.9 0.0
 BR $3k $3k 0.85 0.4

ASC $2k $1.5k 0.2 -0.95
 TOHRS $5k $2k 0.9 0.3

RL $10k $4k 0.2 -0.98
 NR $0 $0 0.0 (-$10k)

109

defense tactics into a single efficient decision
framework. The LDM overcomes these weaknesses and
connects these three essential decision types together
through the combination of risk management, cost
modeling, and cost-benefit analysis. Comparing to other
modeling and simulation approaches [1-9, 11-14], our
simulation system is simple, preserving the major
features of the LDM framework, which include
searching hierarchical relationships between threat
profiles, security policies, defense strategies, and real-
time defense tactics, and conducting cost-benefit
analysis for selecting the best defense mechanisms.
Executing the simulation software can help analyze
diverse business cases, and allow security managers to
gain insight into the hierarchical relationships among the
inter-connected entities and decision types before
actually implementing a defense plan. The simulation
system can be a useful tool to test the LDM features and
performance, which include model rationality and
sensitivity.

6. Conclusion and future work
This paper presents a study of validating the rationality
and consistency for the proposed layered decision
framework for cost-effective network defense. The
LDM combines cost modeling and cost-benefit analysis
for determining cost-effective defense mechanisms for
network defense. We wrote a Prolog program to
simulate the LDM and to obtain some empirical results
through some real-world case studies. The preliminary
results indicate that the LDM is rational and consistent
in cost-effective network defense.
 Future work includes: conducting more simulation
cases and combining the probabilistic approach with the
simulation system to further study how the uncertainty
and variability of input variables affect the decision
results and to test the model’s sensitivity.

Reference

1. S. Butler, “Security attribute evaluation method: A cost-
benefit approach”, Proceedings of the 24th International
Conference on Software Engineering, Orlando, FL, USA,
May 19-25, 2002, pp. 232-241.

2. R. Campbell and G. Sands, “A modular approach to
computer security risk management”, The American
Federation of Information Processing Societies
(AFIPS)Conference Proceedings, AFIPS Press, 1979, V.
48, pp.293-303.

3. H. Cavusoglu, S. Raghunathan and B. Mishra, “A model
for evaluating IT security investments”, Communications
of the ACM, July 2004, 47(7): pp.87-92.

4. F. Cohen, “Simulating cyber attacks, defense and
consequences”,http://www.all.net/journal/ntb/simulate/si
mulate.html, March 1999.

5. F. Cohen, “Managing network security: attack and
defense strategies”,http://www.windowsecurity.com/
whitepapers/Managing_Network_Security_
Attack_and_Defense_Strategies.html, 2002.

6. J. Conrad, “Analyzing the risks of information security
investment with Monte-Carlo simulations”, 4th
Workshop on the Economics of Information Security,
WEIS 2005, Cambridge, MA, USA.

7. P. Fites and M. Kratz, Information systems security: a
practioner’s reference, Van Nostrand Reinhold, New
York, NY, 1993.

8. C. Locher, “Methodologies for evaluating information
security investments-what BASEL II can change in the
financial industry”,
http://csrc.lse.ac.uk/asp/aspecis/20050136.pdf, 2005.

9. K. Lye and J. Wing, “Game strategies in network
security”, Proceedings of the Foundations of Computer
Security Workshop 2002, Copenhagen, Denmark, July 26,
2002.

10. K. Ning, Y. Chen and D. O’Sullivan, “Rationality
Validation of Business Process Model by Simulation
Method”, 4th International Conference on E-Business,
Beijing, China, Dec. 5-9, 2004.

11. J. Saunders, “A Dynamic Risk Model for Information
Technology Security in a Critical Infrastructure
Environment”, Proceedings of Risk-Based Decision
Making in Water Resources X, 10th United Engineering
Foundation Conference, Santa Barbara, CA, USA, Nov.
3-8, 2002, pp. 23-39.

12. J. Saunders, “The Case for Modeling and Simulation of
Information Security”,
http://www.johnsaunders.com/papers/
securitysimulation.htm, 2006.

13. G. Schow, W. Lunceford, L. Massey, J. Filsinger and L.
Adelman, “Utilizing Modeling and Simulation (M&S) to
Evaluate Information Assurance (IA) Policies, Guidance,
and Systems Designs”, Proceedings of the 2000 IEEE
Workshop on Information Assurance and Security, United
States Military Academy, West Point, NY, USA, June 6-
7, 2000, pp.26-32.

14. H. Seo and T. Cho, “Simulation Model Design of a
Security System Based on a Policy-Based Framework”,
SIMULATION, 2003, 79(9): pp. 515-527.

15. H. Wei, “A layered decision model for cost-effective
network safeguarding“, Ph.D. Dissertation, the University
of Idaho, December, 2006.

16. H. Wei, D. Frincke, O. Carter and C. Ritter, “Cost-benefit
analysis for network intrusion detection systems”, CSI
28th Annual Computer Security Conference, Washington,
DC, USA, Oct. 29-31, 2001.

17. H. Wei and D. Frincke, “Risk assessment and cost-
effective business modeling for network security”, The
7th World Multi-Conference on Systemics, Cybernetics
and Informatics SCI 2003, Orlando, FL, USA, July 29-
Aug.1, 2003.

18. H. Wei, H., D. Frincke, J. Alves-Foss, T. Soule and H.
Pforsich, “A layered decision model for cost-effective
network defense”, Proceedings of the 2005 IEEE
International Conference on Information Reuse and
Integration, Las Vegas, NV, USA, August 15-17, 2005,
pp. 506-511.

110

Toward Modeling and Analysis for Software Installation Testing

Jerry Gao, Sujana Tirumalasetti, Chien-Pin Hsu, Yip Cheong Anne Colendich and Todd Fitch
San Jose State University, San Jose, California 95192, USA Intuit, Mountain View, USA

Abstract: Software testing is the last critical phase in
software quality control. Software installation testing is one
of the most important and complex tasks in system testing.
However, in the past years, researchers have not paid much
attention to the related issues and challenges in software
installation testing. Today test and QA engineers have
lacked systematic processes, test models, methods and tools
to help them in software installation testing and patch
testing. This paper addresses the test modeling and analysis
issues in software installation testing. The paper proposes a
new model, known as a semantic tree, to assist engineers to
model and present diverse system environments and
configurations, various running conditions, and system
functional features. It is very useful to assist engineers to
automatically identify, generate software installation test
items and test cases.
KEYWORDS: software test modeling and analysis,
software installation testing, software installation criteria
and standards.

1. Introduction
Software testing is the last critical phase in software

quality assurance. Software installation testing is one of the
important types of system testing. It is also one of the most
complicated types of testing to plan and execute. However,
in the past years, researchers have not paid much attention
to the related issues and challenges in software installation
testing. Hence, until now, testing and QA engineers have
lacked well-defined installation testing processes, practical
and cost-effective test models, well-defined test criteria,
systematic validation methods and tools. According to QA
and test engineers in the real world, they need to cope with
the following challenges in software installation validation.

Validating software on diverse system environments
with many different configurations.
Validating software under various system running
conditions.
Validating software under a very tight schedule without
well-defined installation test models, test criteria and
tools.

Since software installation provides the first encounter for
users and sets the tone for them on software quality, the
quality of software installation becomes very critical for
software vendors – i.e. first impressions matter
tremendously. Many software makers experience a high
abandonment rate due to the quality issue of software
installation. Many users give up before using the software
product. According to our received feedbacks from industry,

the current practice in the real world can be summarized as
follows.

Software installation testing is conducted in an ad-hoc
manner without test models and coverage criteria.
Installation test case design is done manually without
well-defined methods, test criteria and standards.
Most test executions are done manually although some
engineers use the existing software test tools to create
GUI-based executable test scripts.
It is common practice to use a matrix [3] to carry out
software installation planning.

Based on our recent literature survey, there are a very few
published papers discussing software installation topic and
issues. Hence, there are four urgent needs in software
installation validation. They are given below:

Well-defined software installation test processes with
cost-effective test criteria and standards.
Well-defined test models to assist engineers to model
and present diverse system environments and
configurations, running conditions, and installation
functions.
Well-defined metrics measuring and predicting test
complexity, costs, and coverage.
Cost-effective systematic test generation methods and
tools to support automatic software installation testing.

Today, model-driven software construction becomes a
popular research topic in software engineering [4]. Recently,
there have been a number of published papers using a
model-based approach to conducting test selection [8], test
specification and data generation [6], as well as test
automation [5]. The typical used models are: a) finite-state
machine [9][7], b) UML models [6], and statistical models.
These models are not useful to address the needs of software
installation testing. This paper addresses the first two issues
and needs in software installation testing by proposing new
models to support installation testing and analysis. In this
paper, we introduce a new model, known as a semantic tree,
to assist engineers to perform modeling and analysis for
software installation testing. This model can be used to
present diverse system environments and configurations,
various running conditions, and functional features and
capabilities. It is very useful to assist engineers in
automatically identifying and generating software
installation environments and configurations, and
conditions, as well as related installation function test items.
Based on the given model, a set of software installation test
criteria, test complexity, and coverage metrics are defined.

111

The paper is structured as follows. The next section
discusses the basic concepts, background, issues and
challenges in software installation testing. Section 3
proposes a test model, known as a semantic tree, for
software installation testing and analysis. Section 4 provides
a set of metrics to define software installation test criteria
and compute test complexity and coverage. Section 5
provides the conclusion remarks and future work.

2. Software Installation Testing
What is software installation testing? Its major purpose is to
validate software products to see if they can be correctly installed
in a specified system environment with proper system
configurations and running conditions. Moreover, it is able to
demonstrate the installation functions and behaviors correctly. The
major focus of software installation validation is to find the
answers to the following questions:

Can a given software product be properly installed on all
specified system configurations?
On each configuration system environment, can the software
be successfully installed under all of validated running
conditions?
Does the under test software product demonstrate its
installation functions and behaviors correctly?

Similar to other types of software testing activities, conducting
software installation testing needs a well-defined test process.
Based on our understanding and experience, a software
installation test process must include the following steps:
1. Understand, identify and document all of the system

configurations and possible environment settings.
2. Understand, identify, and document all of the system

installation conditions for each configured system
environment.

3. Plan software installation testing following the steps below:
o Identifying and select the right test standards and test

criteria
o Defining tasks and a working schedule
o Selecting a cost-effective test strategy by focusing on the

important and popular system configurations and running
conditions

o Selecting (and adopting) a proper installation test tool
4. Identify and design installation test cases, and develop

automatic test scripts.
5. Execute the specified installation tests and report results.

Although there has been a great deal of research work on software
testing in the past decades, only a few of them address the issues in
software installation testing. Typical issues are given as follows:

Is there an effective way to identify diverse system
configurations and settings during software installation?
Is there an effective way to identify various system running
conditions for software installation?
What are the proper quality control standards and test criteria
for software installation?
What are the systematic test design methods for software
installation?
Where are the cost-effective automatic solutions and tools for
software installation?

Based on our recent literature survey, there is a few papers
addressing software installation testing. For example, Edward Kit
in his book [1] discussed the current status and existing problems
in installation testing. In [3], Mark Pawson introduced the Install
Shield Test Matrix, which can be useful for testers to identify,
document, and select the major focuses in software installation
validation. Using this matrix, a tester can select test items and
design test cases. However, there are two issues with this matrix.
First, there is a lack of detailed engineering guidelines and
systematic solutions to help engineers identify and create this
matrix. Second, when software with complex configurations are
executed under diverse running conditions, generating this matrix
manually becomes very complex and too tedious. In addition,
testers also need a rational approach and strategy to make cost-
effective testing trade-off, measure test complexity, and analyze
test cost and coverage for software installation.

As shown in Figure 1, the scope of software installation testing can
be presented as a 3-dimonional software installation test space, in
which the X-axis presents all specified system configurations, the
Y-axis presents all of system running conditions before
installation, and the Z-axis presents system installation functions.
Clearly, well-defined test models and systematic methods are
needed to model and present the issues in this space. This paper is
written to address the mentioned software installation issues using
a model-based approach.

Figure 1 Software Installation Test Space

Figure 2 A Semantic Tree Model

3. Software Installation Test Models
This section proposes a new test model for software installation. It
can be used by test engineers to analyze, model, and present
diverse system configurations, complex running conditions, and
various system installation functions during installation test
planning. It is a very useful test model for test engineers in
software installation and patch validation. As we know, a good test
model usually is defined and developed as a base to define test
criteria, to develop systematic test generation solutions, and to
monitor and measure test coverage.

IM-Node #J

Root Node

I-Node #1

Intermediate

Node

Leaf Node

L-Node #1 L-Node #N

I-Node #M
R

R

R
IM-Node #1

L-IM-Node #1

R

L-IM-Node #P

System Installation
Condition

System
Configuration

Installation Function

SC-1 SC-i

(SC-i, SIC-j)

SIC-j

SIF-k

Z

X

Y

112

3.1. A General Semantic Tree Model

The proposed model is a semantic tree model, which can be
formally defined as 3-tuple = (N, E, R), where

N is a set of tree nodes. There are three types of nodes: a) a
single root node, b) intermediate nodes, and c) leaf nodes.
E is a set of tree edges. Each edge is a link, which connects a
parent node and child node in a tree.
R is a set of relations, and each item in R has a semantic label
that presents one semantic relation between a parent node and
its child node. There are five types of semantic labels. They
are: OR, AND, NOT, NAND, and Select-1.

Figure 2 shows an example of the proposed semantic tree model,
and Figure 3 shows the notation of the five different semantic
labels in a model. Now let us use the rest of this section to show
how this general semantic tree model can be used to model and
present diverse system configurations, installation conditions, and
system installation functions with the detailed semantics.

Figure 3 The Notations of Five Semantic Labels

Figure 4 A System Environment Configuration (SEC) Model
3.2. Modeling System Environment and Configurations

Now let’s first use the proposed semantic model to present diverse
system environments and configurations. We define it as System
Environment Configuration (SEC) model. As shown in Figure 4,
the model presents various system configurations in a hierarchical
tree model. In this model, each leaf node presents one
configuration of a hardware (or software) part of the system. Since
each hardware/software part may have more than one
configuration, or may be equipped with more than one sub-part.
Hence, each parent node may have one (or more) child node(s).
Their relations can be presented using five types of semantic
labels. Table 1 explains the semantics of the five different relations

between a parent node and its child nodes. Figure 5 shows the
operating system (OS) configurations for a product (QW) as a part
of its SEC model.
Clearly, a SEC model for a product presents its all possible system
configurations because each system configuration can be presented
as a spanning tree of the model. Of course, the spanning tree is
driven from a SEC model based on the involved semantics. The
details can be found in Sections 4 and 5.
 Table 1 Semantic Relations in a SIC Model
Relations Semantics in a System Environment Configuration Model

EOR P-Node must be provided and set up with only one of its exclusive
parts, which are denoted as two child nodes. In other words, the two
parts can’t be set up at same time.

AND P-Node must be provided only when all of its child nodes are set up.

NOT P-Node must be provided without setting up its specific part, denoted
as the only child node.

NAND P-Node must be provided without the support of some parts, denoted
as its child nodes.

Select-1 P-Node can be set up with any of one of its child nodes.

Figure 5 OS Configuration in product QW

3.3. Modeling Installation Conditions
Similarly, we can use the proposed semantic tree model to present
diverse system installation conditions. We define it as System
Installation Condition (SIC) model. As shown in Figure 6, the
model presents various system installation conditions in a
hierarchical tree model. In this model, the root node presents the
overall condition under the system installation, and it depends on a
number of conditions. Each condition, as a parent node, may
depend on a number of sub-condition factors as its child nodes.

Figure 6 A System Installation Condition Model
Table 2 Semantic Relations in SEC Model

Relations Semantics in an Installation Condition Model

EOR P condition holds only when one of its two exclusive sub-
conditions (denoted as child conditions) holds.

AND P condition holds only when all of its child conditions hold.

NOT P condition holds only when its child condition is not hold.

Home SP2

OS Configuration

Not-Configured OS

EOR Configured OS

Windows 2000

Professional

Professional
SP2

Select-1

EOR
Windows XP

EOR

Professional
SP1

Professional SP4

Home SP1

System Installation Condition

Condition #2 Condition #1

Condition Factor #1 Condition Factor #M

R

R

System Environment Configuration

System Hardware
Configuration

Software
Configuration

Device #K

Multimedia
Configuration

Setting #1

Network
Configuration

Software
Part #1

RR

R

Setting #K

P-Node

C-Node #1 C-Node #M

AND

P-Node

C-Node #1 C-Node #M

Select-1

P-Node

C-Node #1 C-Node #M
EOR

Child Node Parent Node

P-Node

C-Node C-Node

NAND

P-Node

C-Node

NOT

113

NAND P condition holds only when all of its child conditions are not
hold.

Select-1 P condition holds when any one of its child conditions holds.

Each leaf node presents a special condition of its parent node (as a
condition factor). The semantic relations between a parent node
and child node can be presented using the same set of five
semantic labels. Table 2 explains the semantics of the five relations
between a parent node and its child nodes. Figure 7 displays the
SIC model for product QW. It presents related system installation
conditions. Similarly, a SIC model for a product (QW) presents its
all possible system installation conditions because a combinational
system installation condition can be presented as a semantic
spanning tree of the SIC model. Of course, the spanning tree is
driven from a SIC model based on the involved semantics. The
details can be found in Sections 4.

Figure 7 A Sample System Installation Condition Model

3.4. Modeling System Installation Functions
The proposed semantic tree model can also be used to present
system installation functions. We define it as System Installation
Function (SIF) model. As shown in Figure 8, the model presents
various system installation functions. The model provides a
complete picture about system installation functions in a
hierarchical structure, and it depicts all of system installation
functions from the top level to the button level. Each high level
function can be presented as a parent node, and its low-level
functions (or sub-functions) are presented as its child nodes. A
similar set of semantic labels are used to represent their relations.
Table 3 explains the semantics of the three relations between a
parent node and its child nodes in the SIF model. It should be
noticed that in the most cases, a system function usually is
supported by a number of its sub-functions together. In other
words, only the AND relation exists between a parent node and its
child nodes. However, if a system allows users to select, configure,
assembly, or customize its function components, then other
semantic relations may occur.
Figure 9 displays a part of the SIF model for product QW. It
presents related system installation functions. A SIF model can be
used to present system functions in two different views. One is a
hierarchical function view, like Figure 9. And the other is a
functional feature view, which presents a system functional feature
in terms of its required system components (or sub-systems),
which support the feature. A typical example in a
telecommunication system will be caller-ID and conference-call.

They are the functional features supported by a number of sub-
systems and components.

System Installation
Function

Figure 8 A System Installation Function Model
Table 3 Semantic Relations in a SIF Model

Figure 9 A Sample System Installation Function Model
Clearly, the proposed semantic tree model does provide good
information to help engineers to analyze and understand system
configurations, running conditions, system functions and its
features in a hierarchical way. In many cases, the semantic tree
model for system installation functions may only consist of AND
relations in parent nodes. However, when a system support
customization and configuration functions based on the various
function components, the other relations (such as EOR, NOT,
SELECT-1, and NAND) may occur. Using this model-based
approach, engineers can discover and analyze the test models for
each product during the test planning phase. Once the models are
generated, they can be updated and maintained to support the
system evolution.

4. Installation Test Criteria and Metrics
Based on the proposed three models in Section 3, we define
software installation test criteria, complexity, and coverage metrics
here. First, let’s define a spanning tree for the proposed model.
Semantic Spanning Tree:

Relations Semantics in a System Installation Function Model

EOR The P function is supported only when any of its two exclusive
sub-functions (denoted as child nodes) is provided.

AND The P function is supported only when all of its sub-functions
(as denoted child nodes) are provided.

NOT The P function is supported without its specific sub-function,
denoted as the only child node.

NAND The P function is supported without the support of some parts,
denoted as its child nodes.

Select-1 P function is provided when anyone of its sub-functions
(denoted as child nodes) is provided.

Function #2 Function #1

Sub-Function #1

Function #3

Sub-Function #M

R

R

Installation Condition

Remote user Not-Installed

User Access AND Software Installation Status

Installed

EOR
Installed once

Installing

Installed more than once

Select-1

Software Existence

EOR

SW OPENED SW CLOSED

Existing Not-Existing

Admin. user

Power user

Select-1

EOR
Error-Handing

Clean Temp-directory

Installation Functions

AND

Log File Generation

EULA-Printing

Post install Registration Uninstall

Network
Connection set-up

AND

New User
Registration

Registered
User

AND

Remove Files

Remove Registration
Entries

Remove
Icons

Remove Items from
Start Menu

Patch
Notification Non-Patch

Notification

114

A semantic spanning tree GSPT is a sub-tree of a given semantic
tree GST, its holds the following properties:

GSPT must include all parent nodes in GST.
For each parent node Npi with an AND (or NAND) relation,
GSPT must includes all of its child nodes and its links
connected them.
For each parent node Npi with an EOR relation, GSPT must
include only one of its child nodes and the corresponding link.
For each parent node Npi with a Select-1 relation must
include only one of its child nodes and the corresponding link.
For each parent node Npi with a NOT relation, GSPT must
include the only child node and its corresponding link.

Figure 10 A Semantic Tree Model and Its Spanning Tree
4.1. System Environment Test Criteria and Test Metrics
For a given SEC model GSEC = (NSEC, ESEC, RSEC), let’s define
the system test criteria for the system installation environment and
its various configurations. Assume SEC is a set of all system
environment configurations, and any of its elements, say SECi,
stands for a specific system environment configuration. Based on
the semantic spanning tree concept given before, SECi can be
represented as a spanning tree of GSEC. Hence, we can define the
test criteria for system environment and configurations as follows.
Single System Environment Configuration Test Criterion:

This test criterion only can be achieved when the given test
case set TIS has been exercised under the SECi setting.

All System Environment Configuration Test Criteria:
This test criterion only can be achieved when the given test
case set TIS have been exercised under all system environment
configurations. This implies that all elements of SEC have
been tested. They refer to all of the spanning trees of GSEC.

System Environment and Configuration Test Complexity:
For given software product P, its system environment and
configuration test complexity (SECTComplecxity) can be computed as
follows: SECTComplecxity = No. of elements in SEC = |SEC| (1)

= No. of different semantic spanning trees in GSEC

Another alternative approach is to use a bottom-up approach to
compute SECTcomplexity from its leaf nodes to parent nodes, until its
root node. Section 4.3 provides a detailed algorithm and examples.
System Environment Configuration Test Coverage:
For given software product P, its system environment and
configuration test coverage (SECTCoverage) can be computed as
follows:
SECTCoverage =No. of the covered SEC’s elements / |SEC| (2)

4.2. Installation Condition Test Criteria and Test Metrics
For a given SIC model, GSIC = (NSIC, ESIC, RSIC), let’s define the
test criteria and test metrics to address the diverse software running
conditions under a given system environment and configuration.
Under a system configuration SECi, let’s assume SIC is a set of
possible system running conditions before installation, and any of
its elements, say SICj, stands for a specific system running
condition. Based on the spanning tree concept given before, SICj
can be represented as a spanning tree of GSIC.

Single-System Installation Condition Test Criterion:
This test criterion only can be achieved when the given test
case set TIS has been exercised under a system installation
condition (say SICj) when P is configured as SECi.

All- System Installation Condition Test Criteria:
For a product P configured as SECi, this test criterion only
can be achieved when the given test case set TIS have been
exercised under all system installation conditions in SIC. This
implies that all elements of SIC have been tested. They
actually are the spanning trees of GSIC.

System Installation Condition Test Complexity:
For given software product P under a given configured system
environment SECi, its system installation condition test complexity
(SICTComplecxity) can be computed as follows:

SICTComplecxity=No. of items in SIC=|SEC| (4)
= No. of different semantic spanning trees in GSIC

Another alternative approach is to use a bottom-up approach to
compute SICTcomplexity from its leaf nodes to parent nodes, until its
root node. Section 4.3 provides some detailed algorithm and
examples.
System Installation Condition Test Coverage:
For given software product P under a given configured system
environment SECi, its system installation condition test coverage
(SICTCoverage) can be computed as follows:
SICTCoverage =No. of the covered SIC’s elements / |SIC| (5)
4.3. Software Installation Function Test Criteria and Metrics
For a given product P, and its software installation function model
(SIF), GSIF = (NSIF, ESIF, RSIF), let’s define the function test criteria
and test metrics to cover system installation functions under a
given system installation condition SICj for a configured system
environment SECi as follows.
Leaf Node Function Test Criterion:
For any leaf node Ni in GSIF, this criterion is achieved when the
given TIS includes at least one test case, which exercise the
corresponding function of Ni.

a) A Semantic Tree

A1 A2

EOR

Root

A
C

AND

B
C4

Select-1

B1
B2

AND

C1
C2 C3

c) A Semantic Spanning Tree II

A2

Root

A
C

AND
B

C3
B1 B2

AND

EOR Select-1

Select-1
A1

Root
A CAND

B

C4
B1 B2

AND

EOR

b) A Semantic Spanning Tree I

115

Adequate Leaf Node Function Test Criterion:
For any leaf node Ni in GSIF, this criterion is achieved when the
given TIS includes an adequate test set, which exercise the
corresponding function of Ni.
Adequate Parent Node Function Test Criterion:
For any parent node Npi in GSIF, including the root node and
intermediate nodes, this criterion is achieved only when the given
TIS includes an adequate test set for each child node. In other
words, all of its child nodes have achieved its adequate test
criterion.

Figure 11 A Procedure to Find a Semantic Spanning Tree
Installation Function Test Complexity:
For a given software product P under a system installation
condition SICi based on a configured system environment SECi,
its system installation function test complexity (SIFTComplecxity) can
be computed using a bottom-up approach based on the given GSIF.
For any leaf node Ni of GSIF, its function test complexity is the
number of test cases in its adequate test set. For any parent node
Npi of GSIF, its function test complexity can be computed based on
its relation with child nodes and the test complexity of its child
nodes. Let Cj stands for a child node of Npi.

If its semantic relation with its child nodes is SELECT-1, then
its complexity can be computed below.

Npi’s FTComplecxity = (Cj’s FTComplecxity) (6)
Where j = 1, …n, Cj is a child node of Npi, n is the
number of its child nodes.

If its semantic relation with its child nodes is OR, then its
complexity can be computed as follow.

Npi’s FTComplecxity = (Cj’s FTComplecxity) (7)
Where j = 1,2, Cj is a child node of Npi.

If its semantic relation with its child nodes is AND, then its
complexity can be computed below.

Npi’s FTComplecxity = (Cj’s FTComplecxity) (8)
Where j = 1,…,m, m is the number of its child nodes,
and Cj is a child node of Npi.

Using a similar approach, engineers can easily identify the
SIFTcomplexity from the leaf nodes of a given semantic tree model to
their parent nodes, as well as the root node.

5. Conclusions and Future Work
This paper addresses the needs in modeling and analysis of
software installation validation. A model-based approach is used to
support systematic modeling and analysis for software installation
testing. A semantic model, known as a semantic tree is proposed
here to assist engineers to define a sound test model for software
installation testing. Comparing with the existing approach, this
model provides a rational and systematic means to assist engineers
to identify and analyze diverse system environments and
configurations, various installation conditions, and installation
functional features. Based on this model, installation test items, test
cases, test criteria, and test strategies can be easily defined and
developed. The details about them will be reported in future
publications. The proposed approach has been used in a project at a
local software company, and received very positive feedback in
test model discovery and establishment.

Semantic-Spanning-Tree(GST-Node, NSPT) {

if GST -Node is a leaf node, then

 GST –Node NSPT; // add this leaf node into NSPT

return

else add GST -Node into NSPT

switch (GST -Node’s relation) {

 case ‘EOR’: pick a GST-Node’s child node (say Ci);

 Ci NSPT // add into NSPT

Add GST-Node’s link to Ci E SPT

Semantic-Spanning-Tree(Ci, NSPT); break;

case ‘Select-1’: pick a GST-Node’s child node (say Ci)

Ci NSPT // add into NSPT

Add GST-Node’s link to Ci E SPT

Semantic-Spanning-Tree(Ci, NSPT); break;

 case ‘AND’ or ‘NADN’: GST-Node’s child nodes NSPT

Add all its links to its child nodes E SPT

Loop for each child node (say Ci) and do:

 Semantic-Spanning-Tree(Ci, NSPT); break;

 default ‘NOT’: pick a GST-Node’s child node (say Ci)

Ci NSPT // add into NSPT

Add GST-Node’s link to Ci E SPT

Semantic-Spanning-Tree(Ci, NSPT); break;

 }

}

The future extension of this research includes two parts. The first is
to develop more detailed product-oriented test cost metrics to
support more effective strategic test planning and measurement.
The other is on software installation test automation. Currently, we
are developing a software installation automation tool based on the
proposed models to support test modeling and analysis, test
generations, and test coverage analysis.

References
[1] Kit, Edward (1999) Software Testing in the Real World:
Improving the process (5th). England: ACM Press.
[2] Chirs Agruss, “Software Installation Testing: How to automate
tests for smooth system installation”, Testing & Quality Magazine,
Vol. 2, Issue 4, July/August 2000.
[3] Mark Pawson, “The Test Matrix: How one company kept a
complex test on track?” (2001). Retrieved at URL:
http://www.stickyminds.com/ March 3, 2006.
[4]Ibrahim, K. et al., Model-based Software Testing, Encyclopedia
on Software Engineering (edited by J.J. Marciniak), Wiley, 2001.
[5] A. Pretschner, et al., “One Evaluation of Model-Based Testing
and Its Automation”, Proceedings of 27th International
Conferences on Software Engineering (ICSE2005), St. Louis, MO,
USA, 2005.
[6] A. J. Offutt and A. Abdurazik, “Generating Tests from UML
Specifications”. Second International Conference on the Unified
Modeling Language (UML99). Fort Collins, CO, October 1999.
[7] S. Fujiwara, et al., “Test Selection Based on Finite State
Models”. IEEE Transactions on Software Engineering. V. 17, No.
6, pp. 591-603, June 1991.
[8] E. Farchi, A. Hartman, and S. S. Pinter, “Using a Model-Based
Test Generator to Test for Standard Conformance”, IBM Systems
Journal. V. 41, No. 1, pp. 89-110, 2002.
[9] T. S. Chow, “Testing Software Design Modeled by Finite-State
Machines”, IEEE Transactions on Software Engineering, Vol. 4,
No. 3, pp. 178-187, May 1978.

116

Automatic Test Generation for Database-Driven Applications

Zhenyu Dai
Amazon.com

705 5th Ave. S,
Seattle, WA 98104

206-266-7865
zhenyud@yahoo.com

 Mei-Hwa Chen
SUNY at Albany

Computer Science Dept.
Albany, NY12222

518-4424283
mhc@cs.albany.edu

Abstract
Database-driven software has been widely adopted in
many areas of software applications. In this type of
software, the database is an integrated part of the system.
Traditional testing techniques have focused either on the
software or on the databases, but ignored the interactions
between the two core components of the system. Recently,
the importance of testing database-driven applications has
gradually been recognized. Testing cannot be considered
complete until the software and its interactions with
databases are adequately exercised. In this paper, we
present an automatic test case generation for testing the
interactions between the applications and the databases.
The aim is to generate a test suite that can fulfill the
requirement of a set of test adequacy criteria that cover
def-use associations of database interactions and the
boundary points. We present a tool that supports
automatic generation of test cases and a case study
conducted to demonstrate the validity of the technique and
the tool.

1. Introduction
A database-driven application is a program strongly

coupled with external databases. A database is a persistent
component of a database-driven application; the behavior
of the application is highly dependent on the correctness
of the databases and the interactions between the
application and its databases. To ensure the reliability of
database-driven applications, testing is crucial and must
cope with the following complex situations: (1) Modern
software is often deployed in a shared resource execution
environment in which more than one application may
access the same database. Under such circumstances,
when one application changes a shared database, other
applications may be affected. Testing must take into
account the shared database as well as all the applications
using the database. (2) Many database-driven applications
are designed to be deployed in various execution
environments and each of them may use different database
management systems (DBMSs). Although there are
standard interfaces such as SQL, JDBC, and ODBC, the
interoperability between the applications and the DBMSs
cannot be fully guaranteed. For example, ORACLE will
enforce the “CHECK” statement in database schema while
MySQL will not. Thus, testing database-driven
applications in every deployment context is necessary. (3)

Databases are often frequently updated, and each update
may affect the applications that make use of the data. Thus
after each update, all the applications using the database
must be re-tested. To effectively and efficiently test
database-driven applications under these complex
situations, there is a need for a testing tool that can
automatically generate test cases to fully exercise not only
the applications and the databases, but more importantly,
the interactions between them.

The importance of testing database-driven
applications has recently been recognized. Several unit
level testing techniques have been proposed [3] [6] [13].
These techniques focus on testing the database at the unit
level to investigate the states of the databases after the
execution of a single or a group of SQL statements. These
techniques were not designed to detect database faults
affecting the application programs, or program faults
propagating to databases and to the other applications. To
test the interactions between the applications and the
databases in database-driven applications, Kapfhammer
and Soffa proposed a family of test adequacy criteria
based on the data-flow analysis of database entities [9].
These coverage criteria can be utilized to design test cases
to exercise the dependences between the databases and the
applications. Nevertheless, as in traditional dataflow
testing, a significant amount of effort will be required to
generate test cases in order to fulfill the coverage
requirement if a tool/technique for automatic test case
generation is lacking. Existing techniques for automatic
test case generation include symbolic execution [1] [4]
[10], execution-based techniques [7] [8] [11], and
model-based approaches [2] [5] [12]; however, none of
these techniques account for database-driven applications.

In this paper, we present an automatic test case
generation technique designed to fully exercise the
interactions between the applications and their databases.
Our test model is to cover a set of database-related
dataflow coverage criteria by extending the concept of
symbolic execution [10] and to select inputs from the
boundary values of critical points. We developed an
automatic test case generation tool implementing the
technique to demonstrate its feasibility and conducted a
case study by using this tool to show the potential
strengths of the technique.

The remainder of this paper is organized as follows:
Section 2 describes our test model. The technique for test
case generation is presented in Section 3 and an automatic

117

test case generation tool is shown in Section 4. A case
study is demonstrated in section 5 and we give our
conclusions in section 6.

2. The test model
A database-driven application normally contains

many database interaction operations. A database
interaction operation can be viewed as a computation of a
(partial) function from the input space I to the output space
O with the database state (i.e., contents of the database)
being a part of I or O or both [3]. Our test model is to
tackle database-related faults that cause the output of
database interaction operations to depart from their
specifications. Three test coverage criteria are proposed to
guide the selection of test cases to expose database related
faults, including all-DIPs, all-DUs, and all-constraints.
We use a database entity flow analysis to identify all-DIPS
and all-DUs, and a boundary analysis to cover
all-constraints. Figure 1 shows a high level view of the test
model. It takes the database schema in SQL database
definition language (DDL) and program source code as
inputs, and conducts DE-dataflow analysis and boundary
value analysis. The test case generator then generates test
cases , and each test case includes values for both input
parameters and database state. All these steps in the model
are automated in a tool.

Program SourceDatabase Schema

DE-dataflow
Analysis

Boundary Value
Analysis

Test Adequacy
Criteria

Guide

Test Case Generator

Input

Us ed b y

Automatic Execution and
Validation

Test Cases

Used b y

Guide

Figure 1: Testing Model

In the following, we first describe the type of
database related faults, and then we describe the database
entity flow analysis and the boundary value analysis.

2.1 Database-related faults
Database-related faults, in general, can be classified

into two categories by the two types of failures they can
cause: (1) database integrity failure; (2) output
inconsistency failure.

Database integrity failure:
In [9] Kapfhammer and Soffa defined four types of

failures relevant to the database integrity. The first two
types are related to the database validity. A program can
violate the validity of one of its databases if (1-v) it inserts
a record into a database that does not reflect the real world;
or (2-v) it fails to insert a record into the database when
the status of the real world changes. The last two types are
related to the database completeness. A program can
violate the completeness of one of its databases if (1-c) it
deletes a record from a database while the record still
reflects the real world or (2-c) the status of the real world
changes and the program fails to include this information
as a record in the database.

We adopt their definitions of database integrity
failures with minor modifications. Under the assumption
that when real world changes, the user will conduct a
corresponding database interaction operation to commit
these changes in database, then type (2-v) can be defined
as an insertion operation that fails to insert a record to
reflect the real world, and type (2-c) can be defined as a
deletion operation that fails to delete a record to reflect the
real world. Moreover, in addition to insertions and
deletions, modifications of some records can also cause
violation of the database integrity. Thus, we define
database integrity failures as the following two types: (1)
an operation changes the database to a state that is
inconsistent with the real world, which covers types 1-v
and 1-c. (2) An operation fails to change the database
content to reflect the real world, which covers types 2-v
and 2-c.

Output inconsistency failure:
A database interaction operation normally will render

the user some outputs based on the contents of the
database. For example, if a student conducts a “personal
information retrieval” operation, the application should
display the student’s personal information on the screen;
and if an advisor wants to check whether a student has
finished a specific course, the application should respond
with a “yes” or “no” according to that student’s record in
the database. The output inconsistency failure occurs when
the outputs of a database interaction operation are
inconsistent with the database content. For example, if the
application responds with a “no” while the student has
indeed finished a specific course, it’s an output
inconsistency failure.

2.2 Dataflow analysis for database entities
The purpose of database entity dataflow

(DE-dataflow) analysis is to investigate where a database
entity is defined and where the defined value of the
database entity is referenced subsequently. A statement
contains a definition of a database entity if it inserts,
deletes, or modifies this database entity, and a statement
contains a use of a database entity if it references this
database entity. A statement containing a definition or use
of database entity is called a database interaction point
(DIP). Database integrity failures are caused by incorrect
modifications of a database, which usually take place at

118

database interaction points. Furthermore, the database
entities are the persistent components of an application;
thus they can exist before and after the execution of the
application program. According to this, we define the root
node of the control flow graph of the application program
as the pseudo-definition of all the database entities. A
database entity or its content may be assigned to a
program variable, and this variable may be used in a
statement different from the statement references this
database entity. Therefore, we introduce the notion of
content-use, which is a statement where a program
variable representing a database entity (or some attribute(s)
of this entity) is used.

The all-DIPs criterion requires the test set to cover all
the database interaction points in the program, and
all-DUs requires that, in addition to covering all-DIPs, the
test set should cover all the paths between any def-use,
def-contentUse, pseudoDef-use and
pseudoDef-contentUse pairs of the any database record in
the program. Thus, all-DUs criterion subsumes all-DIPs.
The coverage of all the def-use and pseudoDef-use pairs is
intended to reveal the faults causing database integrity
failures, since every possible change to database will be
tested together with a subsequent use of the changed
content through all possible paths, which have a great
chance to detect any incorrect database modification. The
coverage of all the def-contentUse and
pseudoDef-contentUse pairs is intended to reveal the
faults causing output inconsistency failures.

2.2.1 DE-dataflow based path selection
To generate test cases to fulfill the all-DIP and the

all-DU criteria, we use a depth-first-search to perform
dataflow analysis for database entities and then select
paths in the application’s system control flow graph that
will satisfy the two test adequacy criteria. The CFG is
annotated by DE-dataflow information during the search.
In the depth-first-search, we maintain a
definition/pseudo-definition set that contains all the record
definitions/pseudo-definitions with their CFG node
numbers in the current path. Every time a use or a
content-use node is visited in the search, if it matches any
in the definition/pseudo-definition set with a
definition-clear path, the current control flow path will be
selected. We als o select paths to cover all the DIPs that are
not covered by any def/pseudoDef – use/contentUse pair.
A selected path starts from the root node of the
system-CFG and ends in a database-record use or
contentUse node. The following steps are performed to
select the paths:

Step1. We maintain a definition/pseudo-definition set
for the current path during the search. Specifically, when a
node is added (or removed) into (or from) the current path
during the search, if this node is a def/pseudo-def of
database record, we insert (or delete) this node into (or
from) the set with corresponding def/pseudo-def
information.

Step2. If a visited node is a use/content-use of
database record, then we find all the nodes in the
def/pseudo-def set that have a definition clear path to the

current node, and mark the corresponding paths as
selected paths.

Step3. After the depth-first-search is completed, we
do a second run of depth-first-search. In this run, when a
DIP node that is not covered by the paths selected by the
first run is visited, we mark the current path (from the root
node to the current node) as the selected path. This is to
ensure that every DIP will be covered, because some DIP
may not be in any pair of def/pseudo-def and
use/content-use.

To determine the numb er of iterations in the presence
of loops in path selection, we use a commonly used
technique in tradition dataflow analysis, which assumes a
loop can only iterate up to two times. This assumption
uses “two” to represent multiple times, and thus gains
efficiency in testing by sacrificing some completeness.

2.3 Boundary value analysis
Considering that database integrity failures may also

be caused by violation of database constraints, simply
covering a path may not expose the fault. All-constraints
criterion complements the all-DUs and all-DIPs to catch
the constraints violation faults, which requires that for
each “definition” type DIP the test set should exercise all
the conditions to ensure that the DIP does not violate any
database constraint, and should exercise all the possible
databas e constraint violation conditions for this DIP. The
database constraints can be classified into four types: (1)
database attribute type and length constraints; (2)
“ UNIQUE” , “ NOT NULL” and “ DEFAULT” constraints;
(3) primary key and foreign key constraints; (4)
constraints in “CHECK” statement. To satisfy the
all-constraints criterion, we conduct boundary value
analysis to complement our DE-dataflow analysis in test
case generation. Boundary values are the boundaries of the
input domain which satisfies the database constraints. We
first find the boundary values for both database entities
and input parameters based on the database constraints,
and then partition the input domain into sub-domains
based on the boundary values. In test case generation, we
generate test cases to exercise sub-domains and the
boundaries of sub-domains.

Boundary value analysis focuses on the boundary of
the input space to identify test cases. The rationale behind
boundary value testing is that “errors tend to occur near
the extreme values of an input variable.” In boundary
value analysis, a boundary value can also be used to
partition the input domain into sub-domains, and each
sub-domain should be tested at least once. We define that a
boundary value for a variable or database attribute as a
value such that the program may have different behaviors
(or results) in the following three different cases: (1) the
variable/attribute is assigned to this value; (2) the
variable/attribute is assigned to a larger value; (3) the
variable/attribute is assigned to a smaller value. In a
database-driven application, we can get boundary values
for database attributes by the following three ways: (1)
from database constraints in the database schema; (2) from
the SQL queries in the application; (3) from “general
boundary values” of different data types.

119

We use the following three rules to get boundary
values for database attributes from a database schema: (1)
the value specified by “ DEFAULT” constraint should be a
boundary value of the corresponding attribute. (2) The
values specified in “ CHECK” statements should also be
boundary values. (3) If an attribute is a string, the length
of this attribute should also have boundary values.

In addition to the boundary values found from
database schema, the database attributes should also have
“general boundary values” dependent on their data types:
(1) “ NULL” should be a boundary value for all data types.
(2) “ 0” should be a boundary value for numeric types
(integer, double, float, etc.). (3) “TRUE” and “ FALSE”
should be boundary values for Boolean type. (4) Empty
string should be a boundary value for a string type (i.e.,
the length of the string is 0).

After we find the boundary values for all the
database attributes, the boundary values for the input
parameters can be easily found. First, we introduce the
notation “host variable.” Host variables are the “variables
in the host language that are used as parameters in SQL
queries” [3]. If an input parameter is a host variable, its
boundary values are the same as those of the
corresponding database attribute. If not, its boundary
values are just the “general boundary values.”

In [3], Chays et al., proposed a similar approach to
find boundary values for database attributes, but their
analysis is only limited to the “check” statement in
database schema and SQL queries in program.

3. Test Case Generation
In this section, we present a technique for automatic

test case generation, which generates test cases not only
exercising the selected paths that satisfy the first two test
adequacy criteria, but also covering the all-constraints
criterion. Each test case includes all the input parameter
values and a database state.

For each selected path, we calculate the generalized
path condition (GPC); the notion of GPC is inherited
from the symbolic execution methodology proposed in
[14]. In a symbolic execution, symbolic values are used
instead of real values for input parameters, and the values
of program variables are represented by symbolic
expressions during execution and a path condition (PC) is
calculated. The GPC is an extension of PC by treating
database state as a special input parameter. It is the
condition that both the normal and the special input
parameters must satisfy for a specific path to be executed.
It is calculated by combining the initial conditions and all
the branch conditions in a path by using a logical “AND”.

The test cases satisfying GPC and covering the
all-constraints criterion are generated by using a
sub-domain generation technique. In this technique, the
domain of each input parameter defined by GPC is first
partitioned into several sub-domains by the boundary
values of that input parameter. Then one value is randomly
chosen strictly within each sub-domain (i.e., not on the
boundary of any sub-domain) and is put into the candidate
value set of that input parameter. The intuition is that the
values from different sub-domains may have different

violation conditions for a database constraint. The
boundaries of all the sub-domains within GPC should also
be put into the candidate value set no matter whether the
boundaries are open or close, since boundaries are usually
more fault-sensitive. A test case can be generated by
extracting one value from each input parameter’s
candidate value set. We provide four value-combination
rules that can be used in sub-domain generation: (1) All
the candidate value combinations should be exhausted. (2)
Each candidate value should appear at least once. (3) For
every two input parameters, every pair of candidate values
should appear at least once. The last rule is called
pair-wise-coverage in [5]. (4) The user provides a normal
test case that represents the normal running of an
application; in each generated test case, one and only one
input parameter will have different value from the normal
test case, and each candidate value should appear at least
once in the test set. The first rule will generate the largest
number of test cases and the second rule will generate the
smallest number of test cases.

The sub-domain generation cannot be directly used
when the GPC is non-statically defined , i.e., the domain of
some input parameter defined by GPC depends on the
values of other input parameters. For example, in GPC
“ x>y and x<3” , the domain of x is dependent on the value
of y, hence is non-statically defined. To make the GPC
suitable to be partitioned, we develop a domain reduction
technique to generate a statically defined subset of the
original non-statically defined GPC. The basic idea of
domain reduction is as follows. We first randomly choose
an input parameter whose domain is non-statically defined
in GPC, and assign to it a random value that does not
conflict with GPC. Then we check whether the reduced
GPC is statically defined. This process will repeat until we
get a statically defined subset of GPC or an empty set. We
usually give more than one run of domain reduction for a
GPC and union the reduced GPC from each run into the
final reduced GPC. For example if the GPC is “ x<y and
x>3” , y may first be assigned a value “ 9” , and the GPC is
reduced to “y=9 and x<9 and x>3”. It’s now statically
defined and domain reduction will stop. If the final
reduced GPC is empty, we will ignore the corresponding
GPC, since it is hard to find inputs satisfying this GPC.

The test cases generated by sub-domain generation
may not cover the following types of database constraints:
type, “UNIQUE” , primary key, and foreign key constraints.
So, after sub-domain generation, we will check if these
four constraints have been covered by the generated test
cases for each “definition” type DIP. If not, additional test
cases will be generated to cover them. The new test cases
will be generated by modifying existing test cases from
sub-domain generation. We call this technique
“incremental generation”, since the new test cases are
incrementally generated by modify existing test cases. To
cover the type constraint for a DIP, we choose an existing
test case covering this DIP, and modify the value of the
input parameter to be a different type. For example, we
give a string value “Mike” to the “age” input parameter,
which should be an integer. To cover a “UNIQUE” or
primary key constraint, we choose an existing test case

120

covering this DIP, and modify its database state to contain
the to-be-inserted (or to-be-modified) value for the
attribute with “UNIQUE” or primary key constraint. For
example, if a DIP will insert a record in STUDENT table,
and an existing test case covering this DIP, studentId =
001, studentName = “Mike”, STUDENT table is empty,
where studentId and studentName are normal input
parameters. We will generate a new test case: studenId =
001, studentName = “Mike”, student record with (PK: 001)
exists. Similar idea is used to generate new test case to
cover foreign key constraint.

Each generated test case contains the path id, the
values for input parameters and the database state, and is
recorded in an XML file. A sample test case for getting
patient by patient id is presented in Figure 2.

Figure 2: A Sample Test Case

4. An automatic test case generation tool
We have developed a tool that implements the test

case generation algorithm to automatically generate test
cases. The tool is written in Java and currently only
supports Java database applications. As shown in Figure 3,
the input for the tool is the control flow graph annotated
by database entity def-use information (in XML format),
host variables in the target application (in XML format),
and the database schema (in formal database definition
language). The path selector will parse the control flow
graph to select the paths and calculate the GPC. And the
database schema parser will analyze the database schema
to obtain the database constraints . The host variables and
the results from the path selector and the database schema
parser will be sent to the test case generator for further
processing.

The test case generator consists of three components:
a boundary value generator, a candidate value generator
and a test case organizer. The boundary value generator
generates the boundary values for all the input parameters
and the database attributes. These boundary values and the
GPC are used by the candidate value generator to do
domain partition and then generate candidate values for
each input parameter and database attribute. Finally, the
test case organizer will combine candidate values from
different input parameters and database attributes to form

a set of test cases, based on the value-combination rule the
user chooses. The generated test cases are also in XML
format.

The test case generator consists of three components:
a boundary value generator, a candidate value generator
and a test case organizer. The boundary value generator
generates the boundary values for all the input parameters
and the database attributes. These boundary values and the
GPC are used by the candidate value generator to do
domain partition and then generate candidate values for
each input parameter and database attribute. Finally, the
test case organizer will combine candidate values from
different input parameters and database attributes to form
a set of test cases, based on the value-combination rule the
user chooses. The generated test cases are also in XML
format.

con trol flow
g raph

database
sc hema

host variables

Path Selector Database Schema
Parser

Boundary Value
Generator

Candidate
Value

Generator

Test Case
Organizer

Test Cases in XML

output

Inputs

Test Case Generator

 Figure 3: Test Case Generation Tool

5. A case study
We conducted a case study to demonstrate the

validity of our test case generation technique. The target
application used in our case study is Patient Keeper, which
was implemented in Java and uses MySQL as database
system. It contains 8 operations that a doctor can perform,
and all of them need to access the database (through
JDBC): (1) Create doctor; (2) Delete doctor; (3) Create
patient; (4) Delete patient; (5) Update patient's room and
bed; (6) Get patient by doctorId; (7) Create visit history; (8)
Get visit history by patientId. It contains 14 DIPs
(database interaction point), including 7 definitions and 7
uses, and contains 9 content-use points. And there are
around 600 lines of codes and 82 nature faults.

We created the control flow graph and the host
variable file and use them together with the database
schema as inputs of our tool. We choose the fourth
value-combination rule when running the tool, which can
isolate the root cause of different faults; thus we can get a
more accurate estimate of the number of faults and the
root cause of the faults. The tool selected 15 execution

<testCase id=”1” pathId=”1”>
<input>

<patientId>112938765</patientId>
</input>
<databaseState>

<condition1>
<table>PATIENT</table>
<PK>112938765</PK>
<exist>true</exist>
<attribute>

<status>true</status>
</attribute>

</condition1>
</databaseState>

</testCase>

121

paths and generated 199 test cases and 81 faults were
detected by executing the 199 test cases. We classify the
faults into the following 9 types: (1) Empty string or
NULL is assigned to primary key, UNIQUE or NOT
NULL attribute; (2) Violation of the Uniqueness for
primary key; (3) Violation of length constraint of database
attribute; (4) Violation of foreign key constraint; (5)
MySQL is lack of support for part of the database
definition language: CHECK constraint and CHAR length
constraint is not working; (6) Truncation of decimal
number by MySQL makes the application fail; (7)
Incorrect handling of type mismatch between input
parameter and database attribute; (8) Incorrect handling of
deletion (or updating) for non-existing record; (9) Escape
characters from the input causes the SQL statement fail.
Type (1), (2), (3), (4), (5), (6), (7), and (9) can cause
database integrity failure, since these faults can cause the
database state to not reflect the real world. Types (7) and
(8) can cause output inconsistency failure, since they may
cause the message showing to the user (or customer) to be
inconsistent with the values in database. The faults
detected are shown in Table 1.

Table 1: fault analysis

The tool missed one fault, that is, if the input
contains a single quote and the input parameter is used in
SQL query, it may cause an SQL syntax error since SQL
uses single quotes to specify a string. We can modify our
tool to catch this type of fault by summing up all the
escape characters for SQL and inserting them into the
input parameters in the test case. The most significant
result of our tool is that it detected all the faults caused by
the interoperability between the applications and the
DBSMs, the type (5) faults . For example, it found that all
the CHECK constraints and the CHAR length constraints
are not working in MySQL.

Because the tool can generate the test cases
automatically, it saves a significant amount of time for the
QA for analyzing the application and creating test cases.

6. Conclusions
We have presented a methodology for automatic test

generation for database-driven applications. Our test
model includes a set of test adequacy criteria and
boundary value analysis. By using the notion of symbolic
execution, our methodology can generate test cases to
fulfill the test adequacy criteria and to fully exercise the
domains partitioned by the boundary values.

We have developed a software tool to support the
automatic generation of the test cases. With the
availability of this tool, the effort for testing
database-driven application can be significantly reduced,
while the quality of this type of application can be greatly
improved.

7. References
[1] R. S. Boyer, B. Elspas and K. N. Levitt. Select – a formal system

for testing and debugging programs by symbolic execution. ACM
SIGPLAN Notices, volume 10, issue 6 (June 1975), pages: 234 –
245.

[2] L. Briand, and Y. Labiche. A UML-based approach to system
testing. Technical Report SCE-01-01, February 2002, Carleton
University, Ottawa, Ontario, Canada.

[3] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. Vokolos and E. J.
Weyuker. AGENDA: A test generator for relational database
applications. Technical Report TR-CIS-2002-04 (8/08/2002),
Polytechnic University, New York City, NY.

[4] A. Coen-Porisini, G. Denaro, C. Ghezzi and M. Pezze. Using
symbolic execution for verifying safety-critical systems. In
Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on
Foundations of Software Engineering , pages 142 – 151, Vienna,
Austria, September 2001.

[5] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, B. M. Horowitz. Model-based testing in practice. In
Proceedings of the 21st International Conference on Software
Engineering, pages 285 – 294, Los Angeles, CA, May, 1999.

[6] Y. Deng, P. Frankl, and D. Chays. Testing database transactions
with AGENDA. In Proceedings of the 27th International
Conference on Software Engineering, pages 78 – 87, St. Louis, MO,
May, 2005.

[7] R. Ferguson and B. Korel. The chaining approach for software test
data generation. ACM Transactions on Software Engineering and
Methodology (TOSEM), volume 5, issue 1 (January 1996), pages:
63 – 86.

[8] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test data
generation using an Iterative Relaxation Method. In Proceedings of
the 6th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 231 – 244, Lake Buena Vista, Florida,
November 1998.

[9] G. M. Kapfhammer and M. Soffa. A family of test adequacy
criteria for database-driven applications. In Proceedings of the 9th
European Software Engineering Conference held jointly with 11th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering , pages 98 – 107, Helsinki, Finland,
September 2003..

[10] J. C. King. Symbolic execution and program testing.
Communications of the ACM, volume 19, issue 7 (July 1976), pages:
385 – 394.

[11] B. Korel. Automated software test data generation. IEEE
Transactions on Software Engineering , volume 16, issue 8 (August
1990), pages: 870 – 879.

[12] J. Ryser, and M. Glinz. Using dependency charts to improve
scenario-based testing. In Proceedings of the 17th International
Conference on Testing Computer Software (TCS2000). Washington
D.C., June 2000.

[13] J. Zhang, C. Xu, and S. C. Cheung. Automatic generation of
database instances for white-box testing. In Proceedings of 25th
International Computer Software and Applications Conference ,
2001.

Type 1 2 3 4 5 6 7 8 9 Total
Fault 25 3 12 6 9 8 8 3 7 81

122

Fault-Based Testing of Data Schemas

Maria Claudia F. P. Emer*

State University of Campinas
mcemer@dca.fee.unicamp.br

Silvia Regina Vergilio
Federal University of Paraná

silvia@inf.ufpr.br

Mario Jino
State University of Campinas

jino@dca.fee.unicamp.br

Abstract

Data are manipulated in several applications and can
be involved in critical operations. To have correct data in
these operations is fundamental. Data schemas are used to
define the structure and relationships among data. One way
to ensure the quality of data defined by schemas is to test
them by using schema specific testing approaches, criteria
and tools. However, few works address this subject. To
fulfill this demand, we present a testing approach based on
typical fault classes identified for data schemas. This
testing approach provides means to reveal faults related to
incorrect or absent definition of constraints for the data in
the schema. The approach includes the automatic
generation of a test set which contains data instances and
queries to these instances. Data instances and queries are
created according to patterns defined for each fault class.
The testing approach usefulness is shown by examples from
the context of databases, XML Schema documents and XML
based components, such as web services.

1. Introduction

Testing is an important activity in software development
for contributing to generate reliable products and to
evaluate their quality [17]. Moreover, testing involves many
correctness aspects in software applications. For example,
we should consider the code to be tested, the operational
environment, and data.

Schemas are used and designed according to the data
specification to describe how the data can be stored in an
application. Reliable data is essential in software
applications because incorrect data can cause failures. To
ensure data integrity and accuracy in the application, testing
schema is fundamental and, in this sense, specific testing
approaches and tools are necessary.

Most testing approaches are applied only for testing the
applications that manipulate the schema. For example,
works on testing of web applications have been reported in
the literature [12, 14, 24], but few papers address schemas
testing. Li and Miller [13] propose mutation operators for
XML schemas; however, they do not use these operators to
generate test cases and do not present a testing process.

* This work is partially supported by CNPq (Brazil).

Franzotte and Vergilio [10] introduce mutation operators
and apply the mutation analysis criterion on XML schemas;
however, the test data in the testing process are generated
manually and the operators introduced can be applied only
for XML Schemas.

In the database context, there are various works
investigating the test of database applications. Most of these
works, however, focus on the test of database applications
involving data generation, application and design [2, 4, 5, 7,
11, 21, 25]. Some of them address testing application using
information from database schemas [3, 18] without
exploring the test of schemas.

Considering the importance of ensuring the consistency
of data defined in the schemas, we have introduced a fault-
based testing approach for XML schemas [8, 9]. In addition
to that, there are other schema contexts, where this testing
approach can be applied, such as relational databases,
object-oriented databases, object relational databases,
communication among web components, as well as web
services. To allow schema testing in these other contexts,
we now propose a generic fault-based testing approach by
presenting a representation for data models based on MOF
(Meta-Object Facility) Specification [15, 16]. MOF is used
to identify schema components. We also define generic
fault classes that represent typical faults that may be found
in diverse types of data schemas.

The remainder of this paper is organized as follows.
Section 2 introduces the testing approach for data schemas.
Section 3 shows the application contexts our approach.
Section 4 describes related work. Section 5 contains the
conclusions and future work.

2. The Testing Approach

This section describes the testing approach. We first
introduce a model to represent the schemas to be tested and
to allow the identification of its elements. The use of such
model makes the approach generic, that is, the approach can
be applied to any schema that can be represented by this
model.

Common faults introduced during the creation of a
schema are organized into fault classes. A formal
representation is used to identify fault classes. Fault classes
guide the generation of data instances and queries for these
instances. Data instances represent the potential faults in the
schema according to the fault classes. Queries are able to

123

detect the faults related to fault classes in the schema under
test.

The testing approach aims to discover faults according
to fault classes in data schemas. These faults address
incorrect or absent definition of constraints for data in the
schema. The idea is to avoid incorrect data to be considered
correct or correct data to be considered incorrect, causing
failures in the application that manipulates them.

2.1. Data Model

A data model may be defined as a collection of data
related to each other, described by means of elements,
attributes, constraints and relationships.

In our testing approach the data model is represented by
a metamodel C . This metamodel is defined based on MOF
(Meta-Object Facility) Specification [15, 16], composed of
four layers. Figure 1 shows that the metamodel C
corresponds to layer M2.

Figure 1. Metamodel C and the MOF model

Figure 2 illustrates the Metamodel C , described in
UML notation [1], consisting of the following classes:
Element (elements or entities); Attribute (elements’
properties) and Constraint (restrictions associated to
elements and attributes).

Figure 2. Metamodel C

2.2. Fault Classes

Four fault classes for data schemas were determined.
They are associated to typical mistakes that may occur
during the schema design. These classes are subdivided into
fault types, as shown next.

Class 1 (C1) – Domain Constraints: faults related to
domain definition of the element or attribute values.

- Incorrect Data Type (IDT): incorrect definition of
data type;

- Incorrect Value (IV): incorrect definition of default
or fixed value;

- Incorrect Enumerated Value (IEV): incorrect
definition of the list of acceptable values;

- Incorrect Maximum and Minimum Values (IMMV):
incorrect definition of upper and lower bounds
values;

- Incorrect Length (IL): incorrect definition of
number of characters allowed for values;

- Incorrect Digits (ID): incorrect definition of total
amount of digits or decimal digits for numeric
values;

- Incorrect Pattern (IP): incorrect definition of
sequence of characters or numbers allowed for
values;

- Incorrect White Space Characters (IWSC): incorrect
definition of how white space characters must be
treated.

Class 2 (C2) – Definition Constraints: faults related
to attribute definition concerning data integrity

- Incorrect Use (IU): the attribute is defined
incorrectly as optional or obligatory;

- Incorrect Uniqueness (IN): the attribute is defined
incorrectly as unique;

- Incorrect Key (IK): the attribute is defined
incorrectly as key.

Class 3 (C3) - Relationship Constraints: faults related to
relationship definition among elements.

- Incorrect Occurrence (IO): incorrect definition of
number of times a same element may occur;

- Incorrect Order (IR): incorrect definition of the
order elements may appear;

- Incorrect Cardinality (IC): incorrect definition of
number of occurrences of an element in relation to
other element according to a relationship;

- Incorrect Generalization/Specialization (IGS):
incorrect definition of a generalization/
specialization;

- Incorrect Aggregation (IA): incorrect definition of
an aggregation;

- Incorrect Associative Element (IAE): incorrect
definition of an associative element.

Class 4 (C4) – Semantic Constraints: faults related to
constraints definition in relation to data content
expressed by business rules.

- Incorrect Condition (ICO): incorrect definition of
predicate expressed for a condition that must be
satisfied by attributes.

2.3. Formal Representation

The formal representation of data schemas provides the
identification of the elements, attributes, constraints and
associations among them. In the testing approach, it is
necessary to generate data instances and queries to reveal
faults in data schemas.

A data schema S is denoted by),,,,(PRAES = where:

124

• E is a finite set of elements (or entities);
• A is a finite set of attributes;
• R is a finite set of constraints concerning domain,

relationship and semantics associated to the elements
and attributes;

• P is a finite set of association rules among elements,
attributes and constraints represented by:
o ,......,|)...(212121 AxxxExxxEexxxe iii ∈∨∈∈

ni ≤≤1 , where n is the number of elements or

attributes;
o niRrrrAxExrrrx ii ≤≤∈∈∨∈ 1,...,|),...,,(2121

,

where n is the number of constraints;
o ∨∈∈∈ ExxxRrEexxxre ii ...,,|)...:(211211

niAxxx i ≤≤∈ 1,...21
, where n is the number of

elements or attributes. The notation):(xre is
used to indicate an association between e and x

by a constraint .r

2.4. Testing Process

The testing process for the testing approach is shown in
Figure 3.

Figure 3. Process for Testing Data Schemas

The testing process begins with the tester providing the
schema under test and the corresponding data instance
(original data instance). The representation for the schema,
S, is built. Based on S fault associations are generated. They
relate elements, attributes and elements or attributes
constraints to the fault classes, presented previously. Fault
associations are identified automatically or by the tester. S
contains the association rules between elements, attributes
and constraints. These association rules are used to
establish the fault associations automatically. Other
associations that are not present in the schema and
consequently not in S can be identified by the tester. The
tester, considering the specification, can select elements or
attributes in the schema and associate them to fault classes.
These associations are related to absent constraint
definitions.

After the fault association selection, the alternative data
instances are generated through single modifications to the
original data instances. These modifications are made by

insertions and changes to the original data instances
according to patterns defined for the fault classes. The fault
associations guide the generation of the alternative data
instances by indicating the schema element to be modified
in the original data instance and the fault class that defines
the modification patterns that should be applied. Thus, the
alternative data instances represent possible faults in the
schema.

The generated alternative data instances are separated
into valid or invalid data instances with respect to the
schema under test; that is, an alternative instance generated
by modification patterns may not be in conformity with the
schema under test. Invalid alternative instances are not
queried. However, they can be used by the tester during the
analysis of test results.

The fault associations also guide the generation of
queries. The queries are automatically generated according
to the query patterns associated to each fault class that can
be detected in the schema.

Test data are formed by a valid alternative data instance
and a query to this alternative instance. The specification of
expected result for test data (alternative instance + query) is
obtained from data specification. The test data are executed
and test results are compared with expected ones by the
tester. If the results differ, a fault was revealed by the
testing approach and the schema needs to be corrected.

3. Applying the Approach

In this section, testing contexts and examples of using
the fault-based testing approach are shown.

3.1. XML [22]

The testing approach in the context of XML schemas
may be applied to web applications to reveal faults in XML
schemas in different situations:
• XML documents used to store data as a database;
• XML messages used to change information in web

applications;
• Query results of database in XML format;
• XML documents updated due to alterations in the

specification of the data stored in these documents.

To illustrate the testing approach in this context consider
a schema of XML documents related to order data of a
store, written in XML Schema [23]. Figure 4 shows the
data schema in UML based on the metamodel C described
previously. A fragment of this schema is illustrated in
Example 1. This fragment defines the attribute orderID of
an order. According to the data specification, orderID
contains six digits and is required.

Figure 4. Data Schema for Order

125

Example 1. XML Schema fragment for order
…
<xsd:attribute name="orderID">
 <xsd:simpleType>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="999999"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:attribute>
…

Example 2 illustrates a fragment of the formal
representation ,S described previously, for the data schema
of Example 1.

Example 2. A fragment of),,,(PRAES = for Example 1
E = {order, client, items, item, code, description, quantity, price}
A = {orderID}
R = {order, type, occurrence, maximum/minimum}
P = {order(orderID client items, order: client items),
 orderID(type, maximum/minimum),
 …}

Example 3 presents a sample of the original data
instance in an XML document related to attribute orderID.

Example 3. A sample of content for the attribute orderID
…
<order orderID = "000134">
...

The fault associations among orderID and the fault
classes Incorrect Data Type (C1-IDT) and Incorrect
Maximum and Minimum values (C1-IMMV) of the
Domain Constraints Class (C1) would be determined for
attribute orderID through formal representation S of the
order schema. Moreover, the tester could add the fault
associations among orderID and the fault classes Incorrect
Digits (C1-ID) of the Domain Constraints Class (C1) and
Incorrect Use (C2-IU) of the Definition Constraints Class
(C2). The last two fault associations would be included to
reveal faults related to the absence of constraint definitions
in the data schema.

The four fault associations for orderID are used to
generate alternative data instances and queries for these
alternative instances. An example of alternative data
instance for order by modifying orderID relative to the fault
class C1-ID is presented in Example 4.
Example 4. An example of alternative content for orderID
…
<order orderID = "00013">
...

Queries are executed on the alternative instances and the
results are compared with the data specification. This leads
to revealing faults described by the proposed classes. Two
faults are revealed with respect to attribute orderID:
Incorrect Use, because the attribute was defined in the
schema as optional and should be required and, Incorrect
Digits, because the order number can contain less than six
digits and should accept exactly six digits.

3.1.1. Web Service

The approach can also be applied to the communication
among web components based on XML, such as web
services.

Web service is a set of functions available to remote
applications in the web. The communication between the
web service and the applications happens basically through
SOAP, which is a protocol for exchange of information
written in XML. In this way, the testing approach for
schemas could be applied to schemas of these messages,
used to interchange data among web applications and web
services, with the goal of ensuring the integrity of the data
that are being manipulated by web services. Hence, if data
manipulated by web services are reliable and some failure
happens in the response processing from a web service, the
testing schema could help in discovering faults in the
processing of data by a web service.

3.2. Databases

In the context of database schemas [20], the testing
approach may be applied to relational databases and to
other types of database models, such as object-oriented or
object-relational databases.

Consider a data schema of a relational database from
[19], based on the entity-relationship model [6], which
contains data about a rural cooperative. Figure 5 shows a
fragment of this data schema in UML. A fragment of this
schema, written in SQL DDL, is presented in Example 5.

Figure 5. A Fragment of the Data Schema for a Rural
Cooperative

Example 5 presents the schema fragment related to
entity member of the cooperative database. This entity
contains the attributes: profession, family income and
membership. The attribute membership is obligatory. A
fragment of the formal representation S for the data
schema of Example 5 is shown in Example 6.

Example 5. Database schema fragment for rural cooperative
…
CREATE TABLE cooperative.member (
 profession varchar(100) NULL,
 familyIncome FLOAT NULL,
 membership INTEGER NULL
);
…

126

Example 6. A Fragment of),,,(PRAES = for Example 5
E = {ruralcooperative, person, member, chairman, …}
A = {code, denomination, address, name, identityCard, profession,
familyIncome, membership, mandate, admissionDate, …}
R = {type, cardinality, use, …}
P = {ruralcooperative(code denomination address, cardinality: person,
cardinality: member),
 …
 member(profession familyIncome membership, cardinality:
 ruralcooperative),
 …
 membership(type, use),
 …}

Two fault associations can be identified for the attribute
membership through formal representation :S the attribute
membership with the fault class Incorrect Data Type (C1-
IDT) and the attribute membership with the Incorrect Use
(C2-IU). These fault associations guide the generation of
alternative data instances with modifications in the records
of the original data instance according to the patterns
defined for the fault classes C1-IDT and C2-IU. An
example of a modification based on C2-IU in the attribute
membership would be to set its value to null in a record of
the alternative data instance.

After executing the queries generated for each
alternative instance according to the fault associations, the
fault class C2-IU would be revealed for attribute
membership; the attribute was defined in the schema as
optional and the result was not the expected one, because
the attribute membership is required according to data
specification.

4. Related Work

There are several works reported in the literature on
testing of database applications; a few of them use
information on the schema to test databases. Chan and
Cheung [2] propose test data generation for testing database
applications by using white box testing and considering
SQL semantics. Chays et al. [5] propose an approach to
generate test data for database applications. AGENDA [4,
7] is the tool that supports the test of relational database
applications in this approach. Kapfhammer and Soffa [11]
propose test criteria based on data flow to verify the quality
of the test set to test database applications; they consider
the application and its interaction with the relational
database through information on the persistent data flow.
Suárez-Cabal and Tuya [21] propose a coverage
measurement for SQL statement to be used as an adequacy
criterion in database application testing. Zhang et al. [25]
propose to automatically generate database instances for
structural testing of database applications. These authors
propose approaches to generate test data to test database
applications considering the application, interactions with
the database, queries and transactions executed on the
database. Differently, our approach aims to test the
database schema. The goal is to obtain high reliability and
to ensure integrity of the data stored in the database.

Proposals which involve the database schema in testing
are: Robbert and Maryanski [18] use information from the
database schema to generate a test plan for the database
application; Chan et al. [3] propose a fault-based approach
to test SQL statements of a database application using
information captured from the conceptual data model to
generate SQL statement mutants. Our approach is fault-
based and uses database instances and queries to test
database schemas.

In the context of XML, there are studies that investigate
the use of fault-based testing to validate data interactions by
using XML messages. Lee and Offutt [12] propose
operators to apply mutation testing in XML for data
interaction validation among web-based software system
components; Offutt and Xu [14] use data perturbation in
XML to generate test cases for web services where
communication is made through SOAP messages; Xu et al.
[24] test communication among web services by modifying
XML schema using mutation operators to generate
incorrect XML messages. All these proposals do not
address the test of schemas.

There are few proposals on schema testing in the context
of XML. Li and Miller [13] propose mutation operators for
XML schemas that make simple alterations in the schema,
such as change of a value or an attribute; they do not show
the application of their operators in a testing process for
XML schemas. Franzotte and Vergilio [10] introduce a new
set of mutation operators for XML schemas and present a
tool to support their mutation testing process. Mutation
operators produce a simple change in the schema under test.
These operators are divided into elementary (to alter
attributes values and elements) and structural (to modify the
tree structure) mutations; their test data are generated
manually.

5. Conclusions and Future Work

A generic testing approach for data schemas is being
proposed. The testing approach is fault-based; therefore,
fault classes based on typical faults made during the
development of schemas are identified and classified into
fault classes. Fault classes identified in the data schema
under test guide the generation of data instances and
queries, which are used to reveal the potential faults in the
schema. Data instances and queries are generated according
to patterns defined for each fault class. Data instances
represent faults in the data schema and queries are capable
of revealing these faults.

The generic approach can be used to test: XML
documents used to store data as a database; XML messages
used to change information in web applications; query
results of database in XML format; XML documents
updated due to alterations in the specification of the data
stored in these documents. In the context of database
schemas, the testing approach may be applied to relational
databases and to other types of database models, such as
object-oriented or object-relational databases.

127

An example of the testing approach in the context of
XML was presented with XML Schema. Another example
presented is on the testing of a data schema of a relational
database.

In our approach the schema can be tested even if the
application is not available. In addition to that, the different
generated data instances may also be used, in the context of
XML, to test applications that manipulate a document in
format XML, interaction among web components and web
services; and in the context of database, to test database
applications.

This testing approach is being implemented by the tool
XTool and we also intend to conduct experiments on real
schemas in the contexts presented in this paper.

References

[1] BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. The
Unified Modeling Language User Guide. Addison-
Wesley, 1999.

[2] CHAN, M.; CHEUNG, S.. Testing Database
Applications with SQL Semantics. In Proc. of the 2nd

Intl. Symp. on Cooperative Database Systems for
Advanced Applications, pp 364-375, March 1999.

[3] CHAN, W. K.; CHEUNG, S.C.; TSE, T. H.. Fault-
Based Testing of Database Application Programs with
Conceptual Data Model. In Proc. of the 5th Intl.
Conference on Quality Software, pp 187-196, 2005.

[4] CHAYS, D.; DENG, Y. Demonstration of AGENDA
Tool Set for Testing Relational Database Applications.
In Proc. of the 25th Intl. Software Engineering
Conference, 2003. IEEE Computer Society, pp 802 –
803, May 2003.

[5] CHAYS, David; DAN, Saikat; FRANKL, Phyllis G.;
VOKOLOS, Filippos I.; WEYUKER, Elaine J.. A
Framework for Testing Database Applications. In
Proc. of the 2000 ACM SIGSOFT Intl. Symp. on
Software Testing and Analysis, Vol. 25 Issue 5, August
2000.

[6] CHEN, P. P.. The Entity-Relationship Model – Toward
a Unified View of Data. ACM Transactions on
Database Systems, Vol. 1, No 1, pp 9-36, 1976.

[7] DENG, Yuetang; FRANKL, Phyllis; CHAYS, David.
Testing Database Transactions with AGENDA. In
Proc. of the 27th Intl. Conference on Software
engineering. ACM Press, May 2005.

[8] EMER, M.C.F.P.; VERGILIO, S.R.; JINO, M.. A
Testing Approach for XML Schemas. In Proc. of the
29th Annual Intl. Computer Software and Applications
Conference, Vol. 2, pp 57 – 62, July 2005.

[9] EMER, M.C.F.P.; NAZAR, I. F.; VERGILIO, S.R.;
JINO, M. Evaluating a Fault-Based Testing Approach
for XML Schemas. In Proc. of the 8th IEEE Latin-
American Test Workshop, March 2007.

[10] FRANZOTTE, L.; VERGILIO, S. R. Applying
Mutation Testing to XML Schemas. In Proc. of the 18th

Intl. Conference on Software Engineering and
Knowledge Engineering, July 2006.

[11] KAPFHAMMER, Gregory M.; SOFFA, Mary Lou. A
Family of Test Adequacy Criteria for Database-driven
Applications. In Proc. of the 9th European Software
Engineering Conference, held jointly with 11th ACM
SIGSOFT Intl. Symp. on Foundations of Software
Engineering, Vol. 28 Issue 5, September 2003.

[12] LEE, S. C.; OFFUTT, J.; Generating test cases for
XML-based web component interactions using
mutation analysis. In Proc. of the 12th Intl. Symp. on
Software Reliability Engineering, 2001. ISSRE 2001.
Proceedings, pp 200 –209, November 2001.

[13] LI, J. B.; MILLER, J. Testing the Semantics of W3C
XML Schema. In Proc. of the 29th Annual Intl.
Computer Software and Applications Conference, July
2005.

[14] OFFUTT, J.; XU, W. Generating Test Cases for Web
Services Using Data Perturbation. In Proc. of the
TAV-WEB/ACM SIGSOFT SEN, vol. 29, n. 5,
September 2004.

[15] OMG. Meta-Object Facility (MOF) Specification
Version 1.4. http://www.omg.org/docs/formal/02-04
-03.pdf, April 2002. (accessed in August 2005).

[16] OMG. Meta-Object Facility Core Specification
Version 2.0.
http://www.omg.org/cgi-bin/doc?formal/2006- 01-01,
January 2006. (accessed in September 2006).

[17] PRESSMAN, Roger S. Software Engineering – A
Practitioner's Approach. 5th ed., McGraw-Hill, New
York, 2000.

[18] ROBBERT, M. A.; MARYANSKI, F. J.. Automated
Test Plan Generator for Database Application
Systems. In Proc. of the ACM SIGSAMLL/PC Symp.
on Small Systems, pp 100-106, 1991.

[19] RUIZ, Duncan D.. Transformação de modelos
conceituais em modelos de implementação de bancos
de dados. Brazilian Symp. Database, 2005. (in
Portuguese).

[20] SILBERSCHATZ, A.; KORTH, H. F.;
SUDARSHAN, S. Database System Concepts. 3rd ed.,
McGraw-Hill, 1998.

[21] SUÁREZ-CABAL, M. J.; TUYA, J.. Using an SQL
Coverage Measurement for Testing Database
Applications. In Proc. of the 12th Intl. Symp. on the
Foundations of Engineering, November 2004.

[22] W3C. Extensible Markup Language (XML) 1.0 (Third
Edition)–W3C recommendation, February 2004.

[23] W3C. XML Schema, Working Draft, July. 2004.
[24] XU, W.; OFFUTT, J.; Luo, J. Testing Web Services by

XML Pertubation. In Proc. of the 16th IEEE Intl.
Symp. on Software Reliability Engineering,
November 2005.

[25] ZHANG, Jian; XU, Chen; CHEUNG, S.-C.. Automatic
Generation of Database Instances for White-box
Testing. In Proc. of the 25th Annual Intl. Computer
Software and Applications Conference, pp 161 – 165,
October 2001.

128

NLForSpec: Translating Natural Language Descriptions into Formal Test Case
Specifications

Daniel Leitão, Dante Torres and Flávia Barros

Centro de Informática – Universidade Federal de Pernambuco
PO Box 7851 - 50.732-970 Recife(PE), Brazil

E-mail: {dal,dgt,fab}@cin.ufpe.br

Abstract

This paper describes the NLForSpec, a Natural Lan-
guage (NL) processing tool to translate software test cases
descriptions in NL into a formal representation in CSP
specification language. NLForSpec is part of a larger
project which aims to automate the software test process
for mobile phone applications. Our tool can be used in the
process of update or partially generate requirements docu-
ments from test cases (one of the project’s main goals). NL-
ForSpec follows the traditional NL interpretation approach,
counting on a lexicon, a case grammar and a domain ontol-
ogy. The prototype was tested with a corpus of 100 test
cases descriptions, obtaining a performance rate of 91%.
This is an original and innovative work.

1 Introduction

The software development process involves three major

artifacts: software requirements, code and test cases. Re-

quirements and test cases are often written in some natural

language (NL), since this is the stakeholders natural way

of communicating. However, NL descriptions may be am-

biguous and inconsistent. As a consequence, the interpreta-

tion of software requirements and test cases will depend on

readers experience. Misinterpretations may introduce mis-

takes into the code and in the testing phase. One way to

minimize these drawbacks is to derive unambiguous formal

specifications from NL (requirements and test cases) de-

scriptions. However, this is not a straightforward task, and

may require domain knowledge and supporting tolls based

on formal methods.

Besides imprecision of NL descriptions, we cite yet other

problems specifically concerning requirements documents.

Well-organized companies usually maintain the three arti-

facts mentioned above. However, during the development

process the initial requirements documents may not fol-

low the continuos update of code and test cases, therefore

becoming out-of-date. On the other side, some compa-

nies maintain only code and test cases defined from non-

documented requirements. For companies in the situation

(1), it would be of great help to provide for automatic up-

date of requirements documents from more up-to-date test

cases. In turn, for companies in situation (2), it would be

desirable to (even partially) automatically generate require-

ments documents from test cases.

We propose here the NLForSpec, a NL Processing

(NLP) tool to translate software test cases descriptions in

English into a formal representation. This tool addresses

the two above-cited problems: (1) by providing a (precise)

formal description of test cases, (2) which can be later used

as a basis to generate or update requirements documents [5].

NLForSpec is based on the traditional pipeline NL in-

terpretation architecture, counting on three processing mod-

ules and four knowledga bases. The input sentence is parsed

and then mapped into case grammar structures (based on

thematic roles). Finally, these structures are mapped into

representation in CSP (Communicating Sequential Pro-

cesses) formal language [9]. The prototype was tested with

a corpus of 100 test cases descriptions within the mobile

phone messaging application, obtaining a performance rate

of 91%. This is an original an innovative work in both NL

Processing and Software Engineering areas.

This work is part of the Motorola CIn-BTC research

project, a partnership between the Informatics Center (CIn-

UFPE) and the Motorola Brazil Test Center. The overall

goal of this project is to automate test case generation, se-

lection and evaluation for mobile phone applications. The

CSP representations generated by the NLForSpec are used

as input by other tools in CIn-BTC project responsible for

generating use case models and requirements descriptions.

In what follows, Sect. 2 presents some state-of-the-art in

translation from NL descriptions into formal specifications.

Sect. 3 describes the architecture and basic features of the

NLForSpec. Sect. 4 presents experiments and results, fol-

lowed by related work (Sect. 5) and conclusions (Sect. 6).

129

2 From NL to Formal Specifications

This section briefly describes techniques and systems for

translating NL descriptions into formal specifications. In

the available literature, we could only identify three sys-

tems with similar (although, not exactly the same) goal as

our tool: NL-OOPS [14], [6], [10]. This section will com-

ment on the main features of these systems, which will be

later compared to the NLForSpec (Sect. 5).These systems

were developed within the Symbolic NLP approach, which

centers around three major modules: syntactic analyzer, se-

mantic analyzer and discourse/pragmatic analyzer [2].

The syntactic analysis stage aims to determine the input

sentence syntactic structure according to a formal gram-

mar. It may also include a pre-processing lexical analysis

stage. This module can also be based on a Part-of-Speech

(POS) tagger [7], which is commonly used in NLP systems

based on the Empirical approach. In contrast to traditional

parsers, POS taggers aim to determine the grammatical cat-

egory of each word in the input sentence, rather than the

sentence syntactic structure. Regarding the above-cited sys-

tems, unfortunately, we did not find in the available litera-

ture clear information on how they perform the syntactic

analysis phase.

The semantic analysis is responsible for creating a rep-

resentation of the sentence meaning, and it can deploy dif-

ferent formalisms (e.g., First-Order Logics, Semantic Net-

works, among others). Here, Knowledge Bases (KBs) may

be used to explicit represent the objects, concepts, and other

entities in a particular domain, as well as the relationships

between them. Two of the above-cited systems follow this

approach, using Semantic Networks as KBs [14] [6].

The discourse/pragmatics stage covers discourse analy-

sis and intention recognition. Among the reviewed systems,

only [10] treats discourse, since it takes as input descrip-

tions of communications protocols, handling this input not

as isolated sentences, but rather as paragraphs.

The following section describes the NLForSpec tool in

detail, discussing its architecture and main features.

3 NLForSpec: from English Descriptions to
Test Cases Specifications

As said before, the NLForSpec is part of a larger project,

aimed to update requirements documents, among other

goals. Our tool is the first step in the translation process

from test case descriptions into formal use models, follow-

ing the Anti-Model-Based Testing Approach [5]. As said,

the formal language used in the major project is CSP [9].

Our tool was developed within the NLP symbolic ap-

proach, which decomposes the mapping process into a se-

quence of well-defined tasks (Sect. 2). However, the NL-

ForSpec does not count on discourse and pragmatics ana-

lyzers, since each sentence in a test case represents an iso-

lated action to be taken. Therefore, there is no need to pro-

cess discourse fragments, but only isolated sentences.

In what follows, Sect. 3.1 presents the tools overall ar-

chitecture, and a brief description of the tools knowledge

bases and processing modules. Finally the systems process

is illustrated by an example.

3.1 Architecture

Figure 1 illustrates the NLForSpec architecture. The

rectangles represent the processing modules (Sect. 3.3):

POS-Tagger, Semantic Processor and CSP Test Cases Gen-

erator. The cylinders represent knowledge bases (Sect. 3.4):

Lexicon, Case Frame Base, Ontology and CSP Events.

Figure 1. NLForSpec architecture

Input test cases are composed by a sequence of sentences

of three different types, in the following order: Initial Con-

ditions, Steps and Post Conditions. As said, each sentence

in a test case represents an action to be taken. Here, the ini-

tial and post conditions are also interpreted in the same way

as the actions. Each sentence is mapped onto one or more

CSP events, which compose the CSP process that formally

represents the correspondent test case.

3.2 Knowledge Bases

This section presents the tool’s KBs, which are all repre-

sented in XML format.

130

3.2.1 Ontology Base.

The domain entities are represented in the Ontology, which

groups them into classes, according to their characteristics.

Figure 2 shows a fragment of ontology and its representa-

tion in XML format in the domain of mobile phone appli-

cations.

The ontology represents only specialization relations be-

tween classes, in order to ease the addition of new domain

entities (since it is just necessary to assign a class to the new

entity).

Screen
�
�

�
�

Menu
�
�

�
�

List
�
�

�
�

Dialog
�
�

�
�

<class>
<name>Screen</name>
<code>screen</code>
<subclasses>

<class>
<name>Menu</name>
<code>menu</code>
<subclasses />

</class>
...

</subclasses>
</class>

Figure 2. Ontology excerpt: graphical and
XML representations.

3.2.2 Lexicon.

The Lexicon stores the terms that may appear in the input

domain. It is based on the phrasal lexicon approach [4],

in which the terms are multi-word phrases. This KB con-

tains three types of terms (Fig. 3): (1) Noun, representing

a domain entity; (2) Verb, representing an action; and (3)

Modifier, representing a modifier that may appear before or

after a noun, changing its meaning.

<noun>
<term>inbox folder</term>
<plural/>
<class>list</class>
<model>INBOX FOLDER</model>

</noun>

<modifier>
<term>at least <int/> </term>
<position>before</position>
<precedence>last</precedence>
<model>AT LEAST.Int</model>

</modifier>

Figure 3. A fragment of the Lexicon.

Figure 3 presents two lexical terms in the sentence “Se-

lect at least 3 messages from inbox folder”. As said, nouns

represent domain entities. Then, each noun entry must con-

tain a tag associating it to one Ontology class.

3.2.3 Case Frame Base.

This KB stores the system’s grammar, which is based on

the Case Grammar formalism [8]. It comprises a set of case

frames with information about the input domain verbs and

their thematic roles. These frames represent linguistic se-

mantic knowledge (whereas the ontology represents domain

semantic knowledge).

Each case frame corresponds to one verb meaning in the

input domain, containing all verbs which share that same

meaning and thematic roles.1 For instance, the case frame

SelectItem (Fig. 4) groups the verbs ‘select’ and ‘choose’.

<frame>
<name>SelectItem</name>
<verblist>

<verb>select</verb>
<verb>choose</verb>

</verblist>
<roles>

<role mandatory=”True”>agent</role>
<role mandatory=”True”>theme</role>
<role mandatory=”False”>from-loc</role>

</roles>
</frame>

Figure 4. Case frame base entry.

The Case Frame base also contains a set of restrictions

that specifies which ontology classes can be associated to

each frame thematic roles. For example, the case frame Se-

lectItem (Fig. 5) is composed by the theme role (associ-
ated to MenuItem ontology class), and by the from-loc role,
which is associated to the Menu ontology class.

<restriction name=”DTSEL MENUITEM MENU”>
<class role=”theme”>menu item</class>
<class role=”from-loc”>menu</class>

</restriction>

Figure 5. Frame restriction example.

1Our approach differs from the FrameNet Project [3], in which a case

frame contains a set of verbs with the same thematic roles, not necessarily

with the same meaning (e.g., ‘rent’ and ‘buy’ verbs in the Commerce buy

frame).

131

3.2.4 CSP Events Base.

This KB defines the CSP events (CSP channels and

datatypes) used to compose the output CSP representation

(Fig. 6). Each channel in this base corresponds to one frame

in the Case Frame Base. The datatypes are defined based on

the ontology classes, existing one datatype for each class.

<channel>
<name>select</name>
<casegrammar>SelectItem</casegrammar>
<datatype>DTSelect</datatype>

</channel>

<datatype class=”list”>
<label>LIST</label>
<name>List</name>

</datatype>

Figure 6. CSP Base Example.

3.3 Processing Modules

The NLForSpec three processing modules are linked to-

gether in a pipeline. These modules are detailed in the fol-

lowing sections.

3.3.1 POS-Tagger.

The NLForSpec uses the Stanford POS-tagger [15] to re-

place the syntactic parsers used in traditional NLP sys-

tems. A comparative study among three Web available

POS-taggers was performed: Montylingua [11], Stanford

POS-tagger and OpenNLP POS-tagger [1]. These taggers

were evaluated with 450 test case steps and the Stanford

POS-tagger reached the best result.

As said, tagging aims to determine the grammatical cat-

egory of each word in the input sentence, instead of its syn-

tactic structure. However, because of lexical ambiguity, the

correct determination of each category depends on the cate-

gory of neighboring words. Therefore, the analysis of each

word cannot occur in isolation. The POS-tagger receives

a sentence in English, breaks it into tokens, and tags each

token with its corresponding grammatical class.

3.3.2 Semantic Processor.

This module maps the tagged sentence into one (or more)

case grammar frame in the Case Frame base. Each verb

phrase in the sentence is mapped into one case frame. This

module analyses the tagged sentence, and applies a set of

rules to identify the most suitable case frame to each verb

phrase. It then relates the nouns associated to the verb

phrase to the corresponding frame’s thematic roles. Finally,

the Semantic Processor verifies the restrictions that deter-

mine whether the nouns related to thematic roles are al-

lowed for the case frame under analysis.

3.3.3 CSP Test Cases Generator.

This module is responsible for mapping each case frame

delivered by the previous module into the corresponding

CSP event. As said, each event is composed by a chan-

nel and its associated datatypes (Fig. 6). This way, the case

frame verb is mapped into the event’s CSP channel, and

the thematic roles are mapped into the corresponding CSP

datatypes (that will constitute the channel messages).

3.4 System Execution Flow

Here we present an input-output flow example of all NL-

ForSpec modules (Fig.7).

Consider the input sentence “Select at least 3 messages

from Inbox”. The POS-Tagger receives this sentence as in-

put, and provides a string with its parts-of-speech. The tag

VB stands for Verb, DT for determiner, NN for Noun, IN for
preposition, JJS for Adjective, and CD for Cardinal.
The Semantic Processor maps the tagged sentence into

the corresponding case frame. Initially, this module selects

the case frame that contains the verb identified by the POS-

Tagger (i.e., ‘Select’), and retrieves the ontology classes as-

sociated to each noun in the sentence. In this example, the

ontology class associated to the noun “message” is Send-
ableItem2, and the “inbox” class is list. After that, this mod-
ule maps the sentence nouns into their respective thematic

roles.

1. Input sentence:

Select at least 3 messages from Inbox

2. Parts-of-speech:

Select/VB at/IN least/JJS 3/CD messages/NN

3. Case Frame:

Verb: select; Theme: Message; From-loc: Inbox

4. CSP Event:

select.DTSEL SENDABLEITEM LIST.

(MESSAGE,{AT LEAST.3}).(INBOX FOLDER,{})

Figure 7. NLForSpec Example Flow.

2i.e., an item that can be sent.

132

The Semantic Processor also verifies whether there is a

restriction associated to the case frame ‘Select’ containing:

(1) the thematic role theme associated to the ontology class
SendableItem, and (2) the role from-loc associated to the
class list. Next, the Semantic Processor identifies the nouns
modifiers. In our example, the modifier “at least 3” is asso-

ciated to the noun “message”.

Finally, the CSP Test Case Generator receives the case

frame instantiated by the previous module and the modifiers

associated to the frame’s nouns. This module maps the verb

to the corresponding CSP channel, and the nouns and mod-

ifiers to the datatypes, delivering the CSP representation of

the input sentence.

4 Case Study

This section presents the implemented prototype and ex-

periments results. We worked within the domain of mo-

bile phone applications testing. The experiments were per-

formed over a corpus of 100 test cases descriptions from the

messaging domain (Sect. 4.2). The obtained results were

very encouraging, achieving a performance rate of 91%.

4.1 The Prototype

The tool prototype was implemented in Java, for porta-

bility and modularity. The implementation followed the

persistent data collections pattern [13]. This way, the

Knowledge Bases, represented as XML files, can be easily

migrated to another storage form, such as a database.

In order to populate the Knowledge Bases, we randomly

selected 450 test cases sentences from the mobile phone

messaging application, which were manually analyzed. The

Lexicon was filled-in with the nouns, verbs and modifiers

identified in these sentences. After that, the Case Frame

base was created considering the verbs in the lexicon, and

the restrictions for each case frame were defined. It was

also necessary to classify the identified nouns according to

the Ontology. After that, the CSP Events Base was popu-

lated with the channels corresponding to the existing verbs,

and the datatypes corresponding to nouns and modifiers.

4.2 Experiments and Results

In order to validate the prototype, we selected another

feature from mobile phone application, one not used to pop-

ulate the KBs. This feature contained 100 test cases.

The experiments results achieved a performance rate of

91%. Regarding the sentences that were not correctly trans-

lated into CSP specifications, the following situations were

identified in test case pre-conditions:

1. Sentences without a verb, e.g., the sentence “At least 2

messages in Inbox” in test case pre-conditions, instead

of “There are at least 2 messages in Inbox”.

2. Ambiguous sentences (which can be interpreted in

more than one way), e.g., the sentence “There is one

read, unread, and protected message in Message In-

box”. Which messages are in the Inbox: one of each

type exclusively or inclusively?

5 Related Work

This section presents the three systems mentioned in

Sect. 2, which aim to translate NL descriptions into specifi-

cation models: [14], [6], and [10].

The NL-OOPS (Natural Language Object Oriented Pro-

duction System) is a CASE tool that generates OO mod-

els from requirements documents in natural language. Its

nucleus is the NLP system LOLITA [12], which receives

requirements description and generates a semantic network

(SemNET) that represents these requirements. A specific

algorithm obtains from this network the classes, attributes,

associations and operations that will appear on the gener-

ated OO model.

Two main drawbacks are identified in the NL-OOPS sys-

tem: (1) it requires a manual pre-processing of the require-

ments documents in order to identify ambiguities, incon-

sistencies and omissions; and (2) for large documents, the

corresponding semantic networks are very complex; con-

sequently, the OO model generation task becomes difficult

and slow, resulting in inadequate models.

Cyre et al. [6] present a system that generates VHDL

models from NL descriptions. This system is composed by

four processing modules. The syntactic analyzer parses in-

put sentences based on a grammar of 120 rules. The second

module performs the semantic analysis of each sentence and

generates its respective conceptual graph (a semantic net-

work). The third module integrates the generated graphs,

and the final module generates the VHDL models.

The authors state that all generated models were correct.

However, the experiments were based on descriptions con-

taining at most 10 sentences. In our opinion, a description

with 10 sentences does not seem to be complex enough to

allow a more accurate evaluation of the system.

Finally, we highlight the [10] system, which translates

natural language specifications of communication protocols

into algebraic specifications. The natural language speci-

fications define action sequences performed by the proto-

col machine (program). These sentences are translated into

an algebraic specification language, called ASL. The pub-

lished results of this system are good. However, the focus of

this work is on communication protocols, which is different

from ours, that is focused on test cases descriptions.

133

6 Conclusion and Future Work

We presented here the NLForSpec, an innovative NLP

tool to translate test cases descriptions into formal specifi-

cations. This tool integrates a larger system that has as one

of its goals the update of requirement documents from more

up-to-date test cases. NLForSpec was developed based

on the traditional symbolic NLP architecture, consisting of

three processing modules (POS-Tagger, Semantic Processor

and CSP Test Cases Generator) and four knowledge bases

(Lexicon, Case Grammar, Ontology and CSP Events).

NLForSpec achieved a performance rate of 91% in ex-

periments within the domain of Motorola’s mobile phone

testing. This result indicates that the proposed tool can be

successfully integrated into a real industry software devel-

opment and testing environment. Besides that, the flexibil-

ity of our KBs design allows the use of NLForSpec in dif-

ferent domains. For that, it is only necessary to change the

KBs content. NLForSpec can also be used to translate NL

descriptions into specifications in others formal languages,

different than CSP. In this case, the CSP Events Base has to

be replaced by other KB that contains information about the

new output specification.

As future work, the NLForSpec will be adapted to trans-

late Use Cases (extracted from requirement documents) into

CSP specifications. This adaptation represents the first step

towards the automatic test cases generation from require-

ment documents (another goal of our major project). Be-

sides that, we will develop an intelligent user interface to

facilitate the update of the NLForSpec KBs. This interface

will favor the integration of our tool into the mobile phone

testing activities, also allowing experiments with new mo-

bile phone features.

References

[1] The opennlp homepage, 2006. Available at

http://opennlp.sourceforge.net/. Accessed on March

07, 2007.

[2] J. Allen. Natural Language Understanding. The

Benjamin Cummings Publishing Company, Inc, New

York, NY, 1995.

[3] C. Baker, C. Fillmore, and J. Lowe. The berkeley

framenet project. In Proceedings of COLING/ACL,
pages 86–90, Montreal, Canada, 1998.

[4] J. Becker. The phrasal lexicon. In Proceedings
of the Conference on Theoretical Issues in Natural
Language Processing, pages 70–77, Cambridge, MA,
1975.

[5] A. Bertolino, A. Polini, P. Inverardi, and H. Muccini.

Towards anti-model-based testing. In Proceedings of

the International Conference on Dependable Systems
and Networks, pages 124–125, Florence, Italy, 2004.

[6] W. R. Cyre, J. R. Armstrong, M. Manek-Honcharik,

andM. Honcharik. Generating vhdl models from natu-

ral language descriptions. In Proceedings of the Euro-
VHDL, pages 474–479, Grenoble, France, 1994.

[7] R. Dale, H. L. Somers, and H. Moisl. Handbook of
Natural Language Processing. Marcel Dekker, Inc,
2000.

[8] C. J. Fillmore. Frame semantics and the nature of lan-

guage. In Annals of the New York Academy of Sci-
ences: Conference on the Origin and Development of
Language and Speech, pages 20–32, 1976.

[9] C. A. R. Hoare. Communicating sequential processes.

Communications of the ACM, 21(8):666–677, 1978.

[10] Y. Ishihara, H. Seki, and T. A. Kasami. Translation

method from natural language specifications into for-

mal specifications using contextual dependencies. In

Proceedings of IEEE International Symposium on Re-
quirements Engineering, pages 232–239, 1992.

[11] H. Liu. Montylingua: An end-to-end natural language

processor with common sense, 2004. Available at:

web.media.mit.edu/ hugo/montylingua. Accessed on

March 07, 2007.

[12] D. Long and R. Garigliano. Reasoning by Analogy and
Causality: Model and Applications. Ellis Horwood,
Chichester, UK, 1994.

[13] T. Massoni, V. Alves, S. Soares, and P. Borba. Pdc:

The persistent data collections pattern. In First Latin
American Conference on Pattern Languages of Pro-
gramming, pages 232–239, Rio de Janeiro, Brazil,
2001.

[14] L. Mich. Nl-oops: From natural language to object

oriented requirements using the natural language pro-

cessing system lolita. Journal of Natural Language
engineering, 2(2):161–187, 1996.

[15] K. Toutanova, D. Klein, C. Manning, and Y. Singer.

Feature-rich part-of-speech tagging with a cyclic de-

pendency network. In Proceedings of HLT-NAACL,
pages 252–259., 2003.

134

Enhanced Random Testing for Programs with High Dimensional Input Domains

F.-C. Kuo1, K.-Y. Sim2*, Chang-ai Sun3, S.-F. Tang4 and Zhi Quan Zhou5

1,4Faculty of Information and Communication Technologies, Swinburne University of Technology,
Australia

2School of Engineering, Swinburne University of Technology, Sarawak Campus, Malaysia
3Department of Mathematics and Computing Science, University of Groningen, The Netherlands

5School of Computer Science and Software Engineering, University of Wollongong, Australia
1,4{dkuo,satang}@ict.swin.edu.au, 2ksim@swinburne.edu.my, 3csun@cs.rug.nl,

5zhiquan@uow.edu.au

* Contact Author

Abstract
Random Testing (RT) is a fundamental technique of

software testing. Adaptive Random Testing (ART) has
recently been developed as an enhancement of RT that
has better fault detection effectiveness. Several methods
(algorithms) have been developed to implement ART. In
most ART algorithms, however, the above enhancement
diminishes when the dimensionality of the input domain
increases. In this paper, we investigate the nature of
failure regions in high dimensional input domains and
propose enhanced random testing algorithms that
improve the fault detection effectiveness of RT in high
dimensional input domains.

1. Introduction
Effective test case selection strategies are essential to

increase the chance of detecting failures and reduce the
cost of software testing process. Random Testing (RT) is
a simple test case selection strategy that treats the
Software Under Test (SUT) as a black box [11]. In RT,
test cases are selected randomly from the input domain
(that is, the set of all possible inputs) of the SUT. Despite
the criticism that RT may be ineffective as it does not
make use of the information about the SUT [15] or
previously executed test cases, RT has been a popular and
successful testing method in many applications
[8][9][10][12][13][14][16] as it is simple in concept and
easy to implement.

Previous studies have shown that failure-causing
inputs tend to be clustered in certain ways [1][2][9].
Regions formed by the failure-causing inputs are referred
to as failure regions [1]. Chan et al. [3] classified these

failure regions into three typical patterns: point, strip and
block failure patterns.

Chen et al. [4] made use of the general information
about the typical patterns of failure regions to improve
the fault-detection effectiveness of RT. They found that
when the failure-causing inputs cluster in a block or a
reasonably thick strip area, the chance of detecting the
first failure can be magnified by spreading the test cases
widely and evenly across the input domain. This test case
selection approach is known as Adaptive Random Testing
(ART). ART can be implemented using the Fixed-Size-
Candidate-Set (FSCS) algorithm [4].

In a study of the fundamental factors that may affect
the fault-detection effectiveness of FSCS-ART [7], it was
found that the performance of FSCS-ART deteriorates
when the dimensionality of the input domain (that is, the
number of input parameters) increases. Since real-life
applications may have many input parameters, it is
essential to create new algorithms that can improve the
fault-detection effectiveness of RT in high dimensional
input domains.

In this paper, we propose two enhanced RT algorithms
for high dimensional input domains. These algorithms are
designed based on our analysis on the locations of FSCS-
ART test cases and the failure regions in high
dimensional input domains. In addition, the fault-
detection effectiveness of the proposed enhanced RT
algorithms is evaluated through simulation experiments.

The rest of this paper is organized as follows: the next
section presents the notations and evaluates the fault-
detection effectiveness of FSCS-ART in high
dimensional input domains. Section 3 analyzes the
locations of FSCS-ART test cases and the failure regions

135

in high dimensional input domains. Then Section 4
proposes two enhanced RT algorithms and evaluates their
fault-detection effectiveness against RT through
simulation experiments. Section 5 concludes the paper.

2. Background
In this section, we present the preliminaries of RT and

ART performance evaluation and the problems associated
with FSCS-ART algorithm in high dimensional input
domains.

2.1 Preliminaries
Assume that a SUT has a set of n input parameters {x1,

x2 ,…, xn}, where xi (i=1, 2, …, n) has a bounded range
ii dx0 (the situation where vixu and u 0 can

be mapped to uvix0 as this mapping does not
change the shape of the input domain). For an n-
dimensional bounded input domain D, the size of the

input domain is defined as |D|=
n

i
id

1

. With a failure

region of size m, the failure rate of the SUT is then
defined as =m/|D|.

F-measure [6] has been used to evaluate the
performance of ART (in this paper, the term “fault-
detection effectiveness” and “performance” are used
interchangeably). F-measure is defined as the number of
test cases required to detect the first failure. Let FART and
FRT denote the F-measure of ART and RT,
respectively. Since ART is an enhanced version of RT,
the ART F-Ratio (= FART / FRT) was introduced to serve
as the comparison metric to show how much
improvement ART has over RT. Obviously, the smaller
the ART F-Ratio is, the better the performance of ART
will be.

For RT with uniform usage profile and replacement
[6], the theoretical FRT mean is 1/ . The FART can be
obtained via empirical study. To obtain a statistically
significant FART mean, all simulations were repeated until
the FART mean has an accuracy range of 5% and a
confidence level of 95%. For further details, please refer
to [4].

ART is known to have the best performance in the
block failure pattern [7]. In this paper, we will confine
both empirical and analytical studies to a single block
failure region with equal size for each of its dimensions.

2.2 Performance of FSCS-ART in high
dimensional input domains

Figure 1 shows the performance of FCSC-ART when it
is applied in 1(1D), 3(3D), 6(6D) and 9(9D) dimensional
input domains for ranging from 0.75 to 0.0005. For
ease of presentation, is plotted on a log0.5 scale.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11
Log0.5

FA
R

T
 /

FR
T

1D 3D 6D 9D

Figure 1: The ART F-ratios of FSCS-ART for input
domains of different dimensionalities.

The experiment results in Figure 1 show that the
existing FSCS-ART does not perform well when the
failure rate is large or the number of dimensions of SUT
is large. This observation was explained as a consequence
of the "edge bias" of FSCS-ART in [7]. As the number of
dimensions of the input domain increases, the
performance of FSCS-ART deteriorates more
significantly. Therefore, it is necessary to further
investigate the “edge bias” problem and its impact on the
performance of FSCS-ART.

3. Why the Performance of FSCS-ART
Deteriorates in High Dimensional Input
Domains?

To investigate the above problem, we examine the test
case distribution of FSCS-ART and analyze the location
of the failure region in the input domains.

3.1 Test case distribution of FSCS-ART
Based on the definitions in Section 2.1, we additionally

define a centre region and an edge region within an n-
dimensional input domain as follow.

The centre region, Dc, is a sub-region of input domain
D which shares the same centre with the input domain
(denoted by O). The size of the centre region Dc is 50%
of the size of input domain D (that is, |Dc| =0.5×|D|). The
width for each dimension of the centre region, cdi, is
given by cdi = n 5.0 di. The edge region, De, is defined as
the non-centre region in the input domain. The size of the
edge region is equal to the centre region (that is, |De| =
|Dc| =0.5×|D|). The “width” for each dimension of the
edge region, edi, is defined as edi = 25.01 i

n d .
Having introduced the concepts of the centre and edge

regions, we would like to compare the numbers of test
cases distributed over these two regions. Let edgeCount
be the number of test cases located in the edge region,
and centreCount be the number of test cases located in

136

the centre region. Let RE,C be the ratio of edgeCount to
centreCount. In our experiment, whenever FSCS-ART
generates a test case, we will check its location and
update the corresponding centreCount or an edgeCount
accordingly. As the two regions are equal in size, an RE,C
greater than 1 implies more test cases are being selected
from the edge region. We conducted experiments to
observe the values of RE,C produced by FSCS-ART for
input domains with different dimensionalities when the
number of test cases changed from 1 to 10,000. The
results are shown in Figure 2.

From Figure 2, we can observe that, firstly, RE,C is
almost always greater than 1, which means that FSCS-
ART selects more test cases from the edge region than
from the centre region. Secondly, RE,C becomes larger as
the number of dimensions of the input domain increases.
Intuitively, this is because the higher the dimensionality,
the more corners/edges the input domain has, which will
be filled up first by the test cases generated by the FSCS-
ART algorithm. Thirdly, RE,C increases to a peak and then
fluctuates prior to decreasing gradually towards limit 1.

Before we further analyze the impact of such “edge
biased” test case distribution on the performance of
FSCS-ART, we would like to examine the location of the
failure region in the input domain.

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4
Log10 (Number of Test Case)

R
E

,C
= E

dg
eC

ou
nt

/C
en

tre
C

ou
nt

1D 2D 3D 6D

Figure 2: The ratio RE,C produced by FSCS-ART
when the number of test cases ranged from 1 to 10,000

3.2 The location of the failure region in the
input domain

When the number of dimensions of the input domain
increases, the width of the centre region will increase, and
in turn the width of the edge region will decrease. This
observation brings up an important question: for a
specific failure rate, as the edge width becomes narrower
in high dimensional input domains, would the failure-
causing inputs (points in a randomly located block failure
region) have an equal chance of falling into the centre
region and the edge region?

Let the n-dimensional input domain be homogeneous
and have a unit size, that is, |D|=1 and di=1 (i = 1, 2, …,
n). The size of a failure region F is given by |F|= ×|D|.
Assuming that the failure region has the same orientation
as the input domain and let the failure region be a block
with equal width for each of its dimensions. Each
dimension of the failure region is denoted by fi (i = 1, 2,
…, n), with the width n

i Df . Figure 4 shows how
|fi| varies against the number of dimensions for the failure
rates =0.005 and =0.0005.

Figure 3 shows that, for the same failure rate , when
the number of dimensions of the input domain increases,
|fi| will also increase but the width of the edge region, edi,
will decrease. When =0.0005, |fi| will become greater
than edi for input domains of 4 dimensions and above; for
a higher failure rate, say =0.005, this will happen more
quickly. When |fi| > edi, it means that even in the situation
where the failure region is attached to a border of the
input domain, part of the failure region will still fall into
the centre region. Therefore, the probability distribution
for the location of failure region within the input domain
warrants further analysis.
Referring to Figure 4, consider how fi of different sizes
can be located fully or partially within the centre region
and edge region of dimension i. Let Pcentre,i denote the
probability that some or all the elements of fi fall into the
centre region of dimension i. Similarly, the probability
that some or all elements of fi fall into the edge region of
dimension i is denoted by Pedge,i. Equations (1) and (2)
define Pcentre,i and Pedge,i respectively.

ii
ii

i

i

i
ii

i

2

i
ii

icentre,

dfb
fd

1
f
dab

(1)bfa
fd

f
a

1

af0
fd
ab

P

ii
ii

i

i

i
ii

i

2

i
ii

iedge,

dfb
fd

1
f
dab

1

(2)bfa
fd

f
a

af0
fd
ab1

P

137

For an n-dimensional input domain, the probability
that some or all elements of the failure region are located
in the centre region is denoted as Pcentre. On the other
hand, the probability that some or all elements of the
failure region are located in the edge region is denoted as
Pedge. Assuming that the input domain is homogeneous
(that is, d1=d2=…dn), Pcentre and Pedge can be simplified
into Equations (3) and (4), respectively.

)3(
1

,

n

i
icentrecentre PP

)4(,,
1

1

1
,

in
icentre

i
iedge

n

i

n

i
i

n
iedgeedge PPCPP

Figure 5 plots the ratio Pcentre/Pedge against the failure
rates, , from 0.75 to 0.0005. When Pcentre/Pedge > 1, it
indicates that elements of failure region have a higher
probability to occupy the centre region than the edge
region. As mentioned earlier, when the dimensionality of
the input domain increases, RE,C becomes higher, which
indicates that FSCS-ART will select more and more test
cases from the edge region than from the centre region.
However, at the same time, the ratio Pcentre/Pedge also
becomes higher, which means that the failure region has
higher probability to occupy the centre region than the
edge region when the dimensionality of the input domain
increases. As a result, FSCS-ART becomes less effective
in high dimensional input domain.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 5 7 9
Number of dimension, n

N
or

m
al

iz
ed

 W
id

th

edi, edge width cdi, centre width
|fi| (failure rate = 0.005) |fi| (failure rate = 0.0005)

Figure 3: Widths of the edge region, centre region and
failure region in different dimensionalities

Figure 4: fi of different sizes compared to the centre
and edge widths.

0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7 8 9 10 11
log0.5

P c
en

tre
 /

P e
dg

e

1D 2D 3D 4D 5D
6D 9D

Figure 5: Pcentre / Pedge for input domain of different
dimensionalities

4. Enhanced RT Algorithms for High
Dimensional Input Domains

The above analysis gives us an inspiration that if we
select more test cases from the region where failure-
causing inputs are more likely to fall into, then we will
achieve better fault-detection effectiveness. In this section,
we propose two methods (algorithms) to improve the
fault detection effectiveness of RT in high dimensional
input domains and report their performance through
simulation experiments.

4.1 Inverted FSCS-ART
Since FSCS-ART selects more test cases from the edge

region than from the centre region in high dimensional
input domains, a simple approach to improve the fault
detection effectiveness is to invert the edge/centre
distribution of FSCS-ART test cases. This can be done by
mapping the FSCS-ART test cases from the edge to the
centre region and vice versa before executing them. We
name this method Inverted FSCS-ART. This algorithm is
outlined in Figure 6. Note that the core of the FSCS-ART
test case selection algorithm remains unchanged.
Equation (5) is one of the linear functions that can map
the FSCS-ART test cases from the edge to the centre
region and vice versa. Note that xi is one of the input
parameters (that is, one of the dimensions) in the input
domain and ii dx0 .

2
2

)(
ii

ii
i dx

dx
xf

iii

ii

dxd
dx

2
20

 (5)

To evaluate the performance of Inverted FSCS-ART,
simulations were conducted for failure rates, , ranging
from 0.75 to 0.0005 for n-dimensional input domains
where n = 1, 3, 6 and 9. The simulation results in Figure 7
show that Inverted FSCS-ART outperforms RT for all
failure rates and dimensionalities of input domains under
the study. The performance of Inverted FSCS-ART in 1D
input domain is very similar to that of FSCS-ART.

138

However, for 3D input domain, it can be observed that
the FIART/FRT ratio falls to a minimum before settling at
0.7. Similar trend can be observed for 6D and 9D input
domains where the FIART/FRT minimums occur at smaller
failure rates, (that is, higher values on log0.5 scale).
This observation concurs with the higher Pcentre/Pedge and
RE,C ratios in higher dimensional input domains. As the
failure region has increasing chances of occupying the
centre region in high dimensional input domains,
inverting the edge-biased FSCS-ART test case
distribution will increase the chance of detecting the
failures region.

Figure 6: Inverted FSCS-ART algorithm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10 11
log0.5

FI
AR

T /
 F

R
T

1D 3D 6D 9D

Figure 7: The ratio of the F-measure mean of Inverted
FSCS-ART to the F-measure mean of RT.

4.2 Proportional Random Testing
The Pcentre/Pedge ratio provides a useful guideline for

the number of test cases that should be selected in the
centre and in the edge region. Ideally, 1/(RE,C) should be
in proportion to, and, as close as possible to the
Pcentre/Pedge ratio. Unfortunately, failure rate is unknown
during testing. Therefore, it is impossible to determine the

Pcentre/Pedge ratio. However, the failure rate can be
projected dynamically based on the number of test cases
that have been executed. By taking the theoretical F-
measure mean of random testing, after j test cases have
been executed, the failure rate can be projected as

projected=1/(j+1), assuming that next test case will detect
the first failure. The ratio Pcentre/Pedge can then be
estimated based on projected.

We propose the following algorithm in Figure 8 to
select test cases randomly in the centre and in the edge
region in proportion to the ratio Pcentre/Pedge. We name this
algorithm as “Proportional Random Testing” (PRT).

Figure 8: Proportional Random Testing algorithm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5 6 7 8 9 10 11
log0.5

F P
R

T /
 F

R
T

1D 3D 6D 9D

Figure 9: The ratio of the F-measure mean of
Proportional Random Testing (PRT) to the F-measure
mean of RT.

To evaluate the performance of the Proportional
Random Testing, simulations were conducted for failure
rates, , ranging from 0.75 to 0.0005 for n-dimensional
input domains where n = 1, 3, 6 and 9. The simulation

1. Initialize j to 0, edgeCount to 1, centreCount to 1, and
selectTestCaseInCentre to true, where j is the number of
test cases executed.

2. If selectTestCaseInCentre is true, randomly select and
execute a test case in the centre region. Otherwise,
randomly select and execute a test case in the edge
region.

3. Increment j by 1. If selectTestCaseInCentre is true,
increment centreCount by 1. Otherwise, increment
edgeCount by 1. Update RE,C.

4. If a failure is detected, testing is stopped and debugging
may start. Otherwise go to step 5.

5. Update the projected failure rate as projected=1/(j+1).
6. Calculate the ratio Pcentre/Pedge based on projected.
7. If 1/(RE,C) < Pcentre/Pedge, set

selectTestCaseInCentre=true. Otherwise, set
selectTestCaseInCentre=false.

8. If testing resources are not exhausted, go to step 2.

1. Initialize E as an empty set.
2. Randomly choose a test case t. Add t to E.
3. Test the SUT using test case t.
4. If a failure is detected, testing is stopped and debugging

may start. Otherwise go to step 5.
5. Randomly generate k candidates from the input domain to

form a candidate set C, where k is a constant integer
greater than 0. The value of k was set to 10 in our
experiments.

6. Find Cc such that, among all the elements in C, c has
the longest distance to its nearest neighbor in E.

7. Add c to E.
8. Map c to c’ using Equation (5).
9. Test the SUT using test case c’.
10. If testing resources are not exhausted, go to step 4.

139

results in Figure 9 show that Proportional Random
Testing outperforms RT significantly when the number of
dimensions is high (that is, when the Pcentre/Pedge ratio is
sufficiently large). As the dimensionality of the input
domain increases, it can be observed that FPRT/FRT
approaches 1 at smaller failure rates, (that is, higher
values on log0.5 scale). However, this algorithm is only
as good as RT when the number of dimensions is low
(that is, when Pcentre/Pedge 1).

5. Conclusion
In this paper, we proposed two enhanced RT

algorithms for high dimensional input domains based on
our analysis on two fundamental reasons that cause the
performance of FSCS-ART to deteriorate in high
dimensional input domains.

Proportional Random Testing is superior to Inverted
FSCS-ART in computational cost for test case generation
because Inverted FSCS-ART inherits the high
computational cost in test case selection from FSCS-ART
[5]. However, Proportional Random Testing does not
give significant improvement over RT when the number
of dimensions is low. Therefore, Proportional Random
Testing should be used to generate test cases only when
the number of dimension is high (that is, more than 3).
On the other hand, Inverted FSCS-ART does not suffer
from this setback. It can be used as a generic algorithm to
generate test cases for programs with an input domain of
any dimensionality.

For future work, we intend to evaluate the
performance of the proposed algorithms for other patterns
of failure regions in high dimensional input domains.

6. Acknowledgements
This research is partially supported by an Australia
Research Council Discovery grant (Project No.
DP0557246) and a Small Grant of the University of
Wollongong.

7. References
[1] P.E. Ammann and J.C. Knight. Data diversity: an approach

to software fault tolerance, IEEE Transactions on
Computers, 37(4): pp.418-425, 1988.

[2] P.G. Bishop. The variation of Software Survival Times for
different operation input profiles, Proceedings of the 23rd

International Symposium on Fault-Tolerant Computing,
IEEE Computer Society Press, pp.98-107, 1993

[3] F.T. Chan, T.Y. Chen, I.K. Mak, and Y.T. Yu. Proportional
Sampling Strategy: Guidelines for Software Testing
Practitioners, Information and Software Technology, 38,
(12), pp.775-782, 1996.

[4] T.Y. Chen, H. Leung, and I.K. Mak. Adaptive Random
Testing. Proceedings of the 9th Asian Computing Science

Conference, LNCS 3321, Springer-Verlag, pp.320-329.
2004.

[5] T.Y. Chen, F.-C. Kuo, R.G. Merkel and S.P. Ng, Mirror
Adaptive Random Testing, Information and Software
Technology. 46(15):pp.1001-1010. 2004.

[6] T.Y. Chen, F.-C. Kuo, R. Merkel. On the Statistical
Properties of the F-measure, Proceedings of the Fourth
International Conference on Quality Software. pp. 146 –
153. 2004,

[7] T.Y. Chen, F.-C. Kuo, and Z.Q. Zhou. On the
Relationships between the Distribution of Failure-causing
Inputs and Effectiveness of Adaptive Random Testing,
Proceedings of the 17th International Conference on
Software Engineering and Knowledge Engineering,
pp.306-311, 2005.

[8] R. Cobb and H. D. Mills. Engineering software under
statistical quality control. IEEE Software, 7(6):45-54,
1990.

[9] G.B. Finelli. NASA Software Failure Characterization
Experiments, Reliability Engineering and System Safety,
IEEE Computer Society Press, 32(1-2):pp.155-169, 1993.

[10] J. E. Forrester and B. P. Miller. An empirical study of the
robustness of Windows NT applications using random
testing. Proceedings of the 4th USENIX Windows Systems
Symposium, pp. 59 68, Seattle, 2000.

[11] R. Hamlet. Random Testing, Encyclopedia of Software
Engineering, Wiley, New York, pp. 970-978. 1994.

[12] N. Nyman. In defense of monkey testing: Random testing
can find bugs, even in well engineered software.
http://www.softtest.org/sigs/material/nnyman2.htm,
Microsoft Corporation.

[13] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, and J. Steidl. Fuzz revisited: A
reexamination of the reliability of UNIX utilities and
services. Technical Report CS-TR-1995-1268, University
of Wisconsin, 1995.

[14] H.D. Mills, M. Dyer, and R.C. Linger, “Cleanroom
Software Engineering”, IEEE Software, 3, pp.19-24, 1986.

[15] G.J. Myers. The Art of Software Testing. John Wiley and
Sons, Inc, ISBN0-471-04328-1. 1979.

[16] T. Yoshikawa, K. Shimura, and T. Ozawa. Random
program generator for Java JIT compiler test system.
Proceedings of the 3rd International Conference on
Quality Software, pp.20 24. IEEE Computer Society
Press, 2003.

140

On Test Case Distributions of Adaptive Random Testing∗

Tsong Yueh Chen Fei-Ching Kuo† Huai Liu
Faculty of ICT, Swinburne University of Technology, Australia

E-mail: {tchen, dkuo, hliu}@ict.swin.edu.au

Abstract
Adaptive Random Resting (ART) has recently been pro-

posed as an approach to enhancing the fault-detection ef-
fectiveness of Random Testing (RT). The basic principle of
ART is to enforce randomly selected test cases as evenly
spread over the input domain as possible. Many ART meth-
ods have been proposed to evenly spread test cases in dif-
ferent ways, but no comparison has been made among these
methods in terms of their test case distributions. In this
paper, we conduct a comprehensive investigation on test
case distributions of various ART methods. Our work shows
many interesting aspects related to ART’s performance and
its test case distribution. Furthermore, it points out a new
research direction on enhancing ART.

1. Introduction
Random Testing (RT), a fundamental software testing

technique, simply generates test cases in a random man-
ner from the set of all possible inputs, namely the input do-
main [10, 14]. RT has been successfully applied in industry
to detect software failures [15, 16, 17].

It has been observed that for most programs, the failure-
causing inputs (program inputs that can reveal failures) are
clustered together [1, 2, 9]. Chen et al. [8] studied how
to improve the fault-detection effectiveness of RT under
such a situation. They proposed a novel approach, namely
Adaptive Random Testing (ART), where test cases are not
only randomly selected from the input domain, but also
enforced as evenly spread over the input domain as pos-
sible. Since then, many ART methods have been proposed,
such as Fixed-Sized-Candidate-Set ART (FSCS-ART) [8],
Ristricted RT (RRT) [4], ART through dynamic partition-
ing [5] and Lattice-based ART [12]. Different ART meth-
ods distribute their test cases in different ways. All previous
studies on ART methods [4, 5, 8, 12] were focused on the
performance improvement that ART has over pure RT. No

∗This research project is supported by an Australian Research Council
Discovery Grant (DP0557246).

†Corresponding author

work has been conducted to compare ART methods with re-
spect to their test case distributions, not to say the study on
the relationship between the test case distributions and the
performance of these methods.

In this paper, we study four ART methods, FSCS-
ART [8], RRT [4], and two versions of ART through dy-
namic partitioning, namely, “by bisection” (BPRT) and “by
random partitioning” (RPRT) [5]. We measure their fault-
detection effectiveness, and examine their test case distrib-
utions using various metrics.

2. The effectiveness of various ART methods
For ease of discussion, we introduce notations and con-

cepts commonly used in this paper as follows.
• D denotes the input domain of N dimension.
• dD denotes d-dimension, where d = 1, 2, · · · , N .
• E denotes the set of already executed test cases.
• |D| and |E| denote the size of D and E, respectively.
• θ denotes failure rate, ratio of the number of failure-

causing inputs to the number of all possible inputs.
There are different notions of implementing ART, and

different notions give rise to various ART methods. For
the detailed algorithms of the ART methods, refer to [11].
The performance of ART methods is usually evaluated by
F-measure, the expected number of test cases to detect the
first failure. A testing method is considered more effective
if it has a smaller F-measure.

As shown in [7], ART performs best when failure-
causing inputs are well clustered into one single compact
block (resuls are given in Experiment 1 of [7]). We fol-
lowed the same experimental setting to study how various
ART methods perform. It was expected that the data col-
lected in this section could help us better understand the
relationship between ART performance and even spreading
of test cases. The experimental results are summarized in
Figure 1, where x-axis denotes θ, and y-axis denotes ART
F-ratio, which is defined as the ratio of F-measure of ART
(denoted by FART) to that of RT (denoted by FRT). F-ratio
measures the improvement of ART over RT. From these re-
sults, the following observations can be made.

• Almost all the experimental data show that these ART
methods have larger F-measures in higher dimensional
spaces for the same θ.

141

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

F
A

R
T
/F

R
T

FSCS-ART RRT BPRT RPRT

(a) 1D

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

F
A

R
T
/F

R
T

FSCS-ART RRT BPRT RPRT

(b) 2D

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

F
A

R
T
/F

R
T

FSCS-ART RRT BPRT RPRT

(c) 3D

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

F
A

R
T
/F

R
T

FSCS-ART RRT BPRT RPRT

(d) 4D
Figure 1. The effectiveness of various ART
methods in different dimensions
• FSCS-ART and RRT have very similar performance

trends. When θ is large, both methods perform worse
than RT and their F-ratios increase as θ decreases.
When θ drops to a certain value v, their F-ratios start
to decrease as θ decreases.

• BPRT and RPRT have opposite performance trends
compared with FSCS-ART and RRT. For large θ, F-
ratios of BPRT and RPRT are smaller than 1, and de-
crease as θ decreases. After θ drops to a specific value
v, F-ratios of BPRT and RPRT stop decreasing.

• There is a specific failure rate v such that RRT has
larger FART than FSCS-ART when θ > v; and RRT
has smaller FART than FSCS-ART when θ ≤ v.

• There is a specific failure rate v such that BPRT has
larger FART than RPRT when θ > v; and BPRT has
smaller FART than RPRT when θ ≤ v.

Although all above methods aim at evenly spreading test
cases, this study shows that their fault-detection effective-
ness vary. The differences are mainly due to their ways of
distributing test cases. In this paper, the distribution of test
cases generated by these ART methods will be measured.

3. Measurement of test case distribution
For ease of discussion, the following notations are in-

troduced. Suppose p′ and p′′ are two elements of E.
dist(p′, p′′) denotes the distance between p′ and p′′; and
ñ(p, E\{p}) denotes the nearest neighbour of p in E. With-
out loss of generality, the range of values for each dimen-
sion of D is set to [0, 1), or simply D = [0, 1)N .

In this study, three metrics were used to measure the test
case distributions (the distribution of E in D). The follow-
ing outlines the definitions of these three metrics.

• Discrepancy

MDiscrepancy = max
i=1...m

∣∣∣∣ |Ei|
|E| − |Di|

|D|
∣∣∣∣ (1)

where D1, D2, ..., Dm denote m randomly defined
subsets of D, with their corresponding sets of test cases

being denoted by E1, E2, ..., Em, which are subsets of
E. Note that m is set to 1000 in this paper.
Intuitively, MDiscrepancy indicates whether regions
have an equal density of points. E is considered rea-
sonably equidistributed if MDiscrepancy is close to 0.

• Dispersion
MDispersion = max

i=1...|E|
dist(ei, ñ(ei, E\{ei})) (2)

where ei ∈ E.
Intuitively, MDispersion indicates whether any point in
E is surrounded by a very large empty spherical re-
gion. A small MDispersion indicates that E is reason-
ably equidistributed.

• The ratio of the number of test cases in the edge of
the input domain (Eedge) to the number of test cases
in the central region of the input domain (Ecentre)

MEdge:Centre =
|Eedge|
|Ecentre| (3)

where Eedge and Ecentre denote two disjoint sub-
sets of E locating in Dedge and Dcentre, respectively;
E = Eedge ∪ Ecentre. Note that |Dcentre| = |D|

2
and Dedge = D\Dcentre. Therefore, Dcentre =[
1
2 − N

√
|D|
2N+1 , 12 + N

√
|D|
2N+1

)N

.

Clearly, in order for Mdiscrepancy to be small, the
MEdge:Centre should be close to 1; otherwise, differ-
ent parts of D have different densities of points.

Discrepancy and dispersion are two commonly used
metrics for measuring sample point equidistribution. More
details of these two metrics can be found in [3].

The above three metrics were used to measure the test
case distribution of a testing method from various perspec-
tives. The space where a method generated points (test
cases) was set to either 1D, 2D, 3D, or 4D. |E| was set
as from 100 to 10000. A sufficient amount of data were
collected in order to get a reliable mean value of a metric
within 95% confidence level and ±5% accuracy range.

It is interesting to find out how test cases of pure RT are
distributed with respect to these metrics. Like all previous
studies of ART, it was assumed that RT has a uniform dis-
tribution of test cases, which means that all test cases have
an equal chance of being selected. Note that “uniform dis-
tribution” does not imply even spreading of test cases.

4. Analysis of test case distributions
The ranges of MEdge:Centre for all testing methods are

summarized in Figure 2, with the following observations.
• When N = 1, MEdge:Centre for all ART methods un-

der study is close to 1.
• When N > 1, FSCS-ART and RRT tend to generate

more test cases in Dedge than in Dcentre (or simply,
FSCS-ART and RRT have edge bias). Moreover, the
edge bias is stronger with RRT than with FSCS-ART.

142

0.07680.06880.04730.0190Max-Min
0.90120.92360.95220.9812Min

0.97800.99230.99951.0001Max

4D3D2D1DRPRT
0.02710.05190.04800.0094Max-Min
0.99790.99630.99750.9991Min

1.02501.04821.04561.0085Max

4D3D2D1DBPRT
3.39021.05850.19010.0119Max-Min
1.34441.13581.02010.9995Min

4.73462.19431.21031.0114Max

4D3D2D1DRRT
0.83230.52410.13100.0106Max-Min
1.24091.08631.01320.9997Min

2.07331.61051.14421.0103Max

4D3D2D1DFSCS-ART
0.02040.02030.03430.0315Max-Min
0.99981.00050.99981.0000Min

1.02021.02081.03411.0315Max

4D3D2D1DRT

Figure 2. Range of MEdge:Centre for each test-
ing method and dimension where |E| ≤ 10000
• When N > 1, RPRT allocates more test cases in

Dcentre than in Dedge (or simply, RPRT has centre
bias). But the centre bias of RPRT is much less sig-
nificant than the edge bias of FSCS-ART or RRT.

• The edge bias (for FSCS-ART and RRT) and centre
bias (for RPRT) increase as N increases.

• RT and BPRT have neither edge bias nor centre bias.
The ranges of MDiscrepancy for all testing methods are

summarized in Figure 3, with the following observations.

0.0597 0.0642 0.0649 0.0554 Max-Min

0.0054 0.0054 0.0052 0.0056 Min

0.0651 0.0696 0.0701 0.0610 Max

4D3D2D1DRPRT
0.0595 0.0654 0.0655 0.0452 Max-Min

0.0013 0.0016 0.0019 0.0018 Min

0.0609 0.0670 0.0674 0.0470 Max

4D3D2D1DBPRT
0.0871 0.1052 0.0736 0.0365 Max-Min

0.0302 0.0227 0.0074 0.0035 Min

0.1172 0.1279 0.0810 0.0401 Max

4D3D2D1DRRT
0.0605 0.0731 0.0657 0.0396 Max-Min

0.0188 0.0145 0.0062 0.0040 Min

0.0793 0.0876 0.0719 0.0437 Max

4D3D2D1DFSCS-ART
0.0709 0.0833 0.0987 0.0951 Max-Min

0.0077 0.0092 0.0106 0.0105 Min

0.0785 0.0925 0.1093 0.1056 Max

4D3D2D1DRT

Figure 3. Range of MDiscrepancy for each test-
ing method and dimension where |E| ≤ 10000

• The impact of N on MDiscrepancy of RT, FSCS-
ART and RRT is different. As N increases, the
MDiscrepancy for RT decreases, but for FSCS-ART
and RRT, it increases.

• MDiscrepancy for RPRT and BPRT are independent of
the dimensions under study.

• In general, BPRT has the smallest MDiscrepancy for all
N .

• When N = 1, FSCS-ART, RRT and BPRT have al-
most identical values for MDiscrepancy.

Clearly, measuring the density of points in two parti-
tions (DEdge and DCentre) is only part of the measuring
by MDiscrepancy (which measures the density of points in

1000 randomly defined partitions of D). Hence, smaller
|MEdge:Centre − 1| does not necessarily imply a smaller
MDiscrepancy, but a smaller MDiscrepancy does imply a
smaller |MEdge:Centre − 1|. This explains why the value
of MEdge:Centre for RT is close to 1 for all N , but its
MDiscrepancy is not the smallest.

The ranges of MDispersion for all testing methods are
summarized in Figure 4, with the following observations.

0.2606 0.2071 0.1174 0.0177 Max-Min

0.1414 0.0671 0.0161 0.0002 Min

0.4020 0.2743 0.1335 0.0179 Max

4D3D2D1DRPRT
0.2733 0.2148 0.1215 0.0180 Max-Min

0.1388 0.0649 0.0150 0.0002 Min

0.4121 0.2797 0.1365 0.0182 Max

4D3D2D1DBPRT
0.3077 0.2195 0.1121 0.0154 Max-Min

0.1274 0.0585 0.0132 0.0002 Min

0.4350 0.2780 0.1253 0.0156 Max

4D3D2D1DRRT
0.2839 0.2129 0.1141 0.0158 Max-Min

0.1299 0.0601 0.0141 0.0002 Min

0.4139 0.2731 0.1281 0.0160 Max

4D3D2D1DFSCS-ART
0.2676 0.2137 0.1298 0.0267 Max-Min

0.1461 0.0714 0.0189 0.0005 Min

0.4138 0.2851 0.1488 0.0272 Max

4D3D2D1DRT

Figure 4. Range of MDispersion for each test-
ing method and dimension where |E| ≤ 10000
• For N = 1, all ART methods have smaller

MDispersion values than RT.
• For N > 1, RRT normally has the smallest

MDispersion values, followed in ascending order by
FSCS-ART, BPRT, RPRT and RT.

In Table 1, the testing methods are ranked according to
their test case distribution metrics. For the same metric, the
method which most satisfies the definition is ranked 1, and
the one which least satisfies the definition is ranked 5. When
two methods satisfy the definition to more or less the same
degree, they are given the same ranking.

MEdge:Centre MDiscrepancy MDispersion

Definition The closer to 1 The closer to 0 The smaller
is better is better is better

Dimension 1D 2D 3D 4D 1D 2D 3D 4D 1D 2D 3D 4D
RRT 1 5§ 5§ 5§ 2 4 5 5 1 1 1 1
FSCS-ART 1 4§ 4§ 4§ 2 3 4 4 1 2 2 2
BPRT 1 1 1 1 1 1 1 1 1 3 3 3
RPRT 1 3† 3† 3† 4 2 2 2 1 4 4 4
RT 1 1 1 1 5 5 3 3 5 5 5 5

† The MEdge:Centre is smaller than 1, so the testing method has a centre bias.
§ The MEdge:Centre is larger than 1, so the testing method has an edge bias.

Table 1. Testing methods ranked according to
test case distribution metrics
For those testing methods studied, in the 1D case, it has

been observed that RRT has the best performance, followed
by FSCS-ART, BPRT, RPRT and then RT. However, when
looking at the 2D, 3D and 4D cases, the same performance
ordering is observed for small θ, but almost the reverse or-
dering for large θ. It has been shown in [11] that there ex-
ist some hidden factors (unrelated to how evenly a method

143

spreads test cases) which have an strong impact on the per-
formance of ART. Only when θ is small enough, will the
performance of ART strongly depend on how evenly spread
its test cases are. In order to fairly analyze the relationship
between the test case distribution and the performance of
ART methods, without being influenced by external factors,
the rest of the discussion will be carried out on small failure
rates.

Table 1 shows that in terms of MDispersion metric, RRT
has the most even spreading of test cases, followed by
FSCS-ART, BPRT and RPRT. In other words, the ranking
according to the MDispersion metric is consistent with the
ranking according to F-measures (data shown in Figure 1).
It should be pointed out that even though MDiscrepancy and
MDispersion are two commonly used metrics for measuring
sample point equidistribution, in this study, MDispersion

appears to be more appropriate than MDiscrepancy.
Interestingly, among all ART methods under study, the

one with the largest MEdge:Centre (that is, RRT) has the
smallest MDispersion, while the one with the smallest
MEdge:Centre (that is, RPRT) has the largest MDispersion.
As discussed before, MDispersion could best reflect the
ordering of testing methods with respect to their perfor-
mance. We notice that pushing test cases away (so that
MEdge:Centre > 1) is not a bad approach to evenly spread-
ing test cases, even though it may not be the best approach
to achieving a real even spreading of test cases.

5. Conclusion
Previous studies [4, 5, 8] showed that even spreading of

test cases makes ART outperform RT. The concept of even
spreading of test cases is simple but vague. In this paper,
several metrics were used to measure the test case distrib-
ution of ART as well as RT. The relevance and appropri-
ateness of these metrics were also investigated. To our best
knowledge, this is the first work on analyzing the relation-
ship between test case distributions and performance of an
ART method. Recently, there were some works on alleviat-
ing the edge bias of FSCS-ART [6, 13]. We shall continue
the line of this research with additional knowledge gained
from this study to enhance the exsiting ART methods.

References
[1] P. E. Ammann and J. C. Knight. Data diversity: an ap-

proach to software fault tolerance. IEEE Transactions
on Computers, 37(4):418–425, 1988.

[2] P. G. Bishop. The variation of software survival times
for different operational input profiles. In Proceed-
ings of the 23rd International Symposium on Fault-
Tolerant Computing, pages 98–107, 1993.

[3] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang.
Quasi-randomized path planning. In Proceedings of
the 2001 IEEE International Conference on Robotics
and Automation, pages 1481–1487, 2001.

[4] K. P. Chan, T. Y. Chen, and D. Towey. Restricted ran-
dom testing: Adaptive random testing by exclusion.
Accepted to appear in International Journal of Soft-
ware Engineering and Knowledge Engineering, 2006.

[5] T. Y. Chen, G. Eddy, R. G. Merkel, and P. K. Wong.
Adaptive random testing through dynamic partition-
ing. In Proceedings of the 4th International Confer-
ence on Quality Software, pages 79–86, 2004.

[6] T. Y. Chen, F.-C. Kuo, and H. Liu. Enhancing adap-
tive random testing through partitioning by edge and
centre. In Proceedings of the 18th Australian Software
Engineering Conference, pages 265–273, 2007.

[7] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou. On favourable
conditions for adaptive random testing. Accepted to
appear in International Journal of Software Engineer-
ing and Knowledge Engineering.

[8] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random
testing. In Proceedings of the 9th Asian Computing
Science Conference, pages 320–329, 2004.

[9] G. B. Finelli. NASA software failure characteriza-
tion experiments. Reliability Engineering and System
Safety, 32(1–2):155–169, 1991.

[10] R. Hamlet. Random testing. In J. Marciniak, editor,
Encyclopedia of Software Engineering. John Wiley &
Sons, second edition, 2002.

[11] F.-C. Kuo. On adaptive random testing. PhD thesis,
Faculty of Information and Communications Tech-
nologies, Swinburne University of Technology, 2006.

[12] J. Mayer. Lattice-based adaptive random test-
ing. In Proceedings of the 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 333–336, 2005.

[13] J. Mayer and C. Schneckenburger. Adaptive random
testing with enlarged input domain. In Proceedings of
the 6th International Conference on Quality Software,
pages 251–258, 2006.

[14] G. J. Myers. The Art of Software Testing. Wiley, New
York, second edition, 1979.

[15] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic
unit testing engine for C. In Proceedings of 10th Eu-
ropean Software Engineering Conference held jointly
with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 263–272,
2005.

[16] D. Slutz. Massive stochastic testing of SQL. In Pro-
ceedings of the 24th International Conference on Very
Large Databases, pages 618–622, 1998.

[17] T. Yoshikawa, K. Shimura, and T. Ozawa. Random
program generator for Java JIT compiler test system.
In Proceedings of the 3rd International Conference on
Quality Software, pages 20–24, 2003.

144

Reducing the Number of Test Cases for Performance Evaluation of Components

João W. Cangussu Kendra Cooper Eric Wong
Department of Computer Science

University of Texas at Dallas
Richardson-TX 75083-0688, USA

cangussu,kcooper,ewong @utdallas.edu

Abstract

Component-based software development techniques are
being adopted to rapidly deploy complex, high quality sys-
tems. One of its aspects is the selection of components that
realize the specified requirements. In addition to the func-
tional requirements, the selection must be done taking into
account some non-functional requirements such as perfor-
mance, reliability, and usability, among others. Hence, data
that characterize the non-functional behavior of the com-
ponents are needed; a test set is needed to collect this data
for each component under consideration. This set may be
large, which results in a considerable increase in the cost
of the development process. Here, a process is proposed
to considerably reduce the number of test cases used in
the performance evaluation of components. The process is
based on sequential curve fittings from an incremental num-
ber of test cases until a minimal pre-specified residual error
is achieved. The results from experiments with image com-
pression components are a clear indication that a reduction
in number of test cases can be achieved while maintaining
reasonable accuracy when using the proposed approach.

1 Introduction

Component-based software engineering (CBSE) tech-

niques hold the promise to support the timely, cost effec-

tive development of large-scale, complex systems; they are

of keen interest to researchers and practitioners. However,

there are numerous issues to address in CBSE including

how to specify the functional and non-functional behavior

of the components, how to evaluate, rank, and select com-

ponents, how to predict the interoperability of components,

etc.

A key issue in the specification of components is the

problem of how to effectively test, or evaluate, the com-

ponents in order to obtain quantitative data about their be-

havior. In particular, the non-functional behaviors such as

response time performance, memory usage, etc. need to be

collected. Recognizing that complete sets of test cases are

not possible and large, comphrensive sets of test cases can

be prohibitively expensive, techniques to reduce the number

of test cases while still providing meaningful information

about the components are needed.

Here, we present an approach to select a reduced set of

test cases that can be applied to a wide variety of compo-

nents and non-functional properties. The approach is based

on the use of polynomial curve fitting techniques, which are

general approaches for representing a curve. The selection

of an additional test case, which can be done either adap-

tively or randomly, is performed iteratively until an error

tolerance is reached.

The approach is validated experimentally by selecting a

reduced set of test cases for evaluating image compression

components. These components implement well known al-

gorithms including Arithmetic Encoding, Huffman, and the

Burrows-Wheeler Transform. The non-functional behav-

iors under test are the compression time (how long does it

take to compress a file) and compression ratio (how much

smaller is the compressed file compared to the original file).

Using our approach, as few as eight test cases are needed

and selected in this experiment to capture the dominant be-

havior of the two non-functional behaviors. The selected

test cases have a root mean square error of 0.0254 in com-

parison to the actual behavior of the component evaluated

with a comprehensive set of 190 test cases. These results

indicate the accuracy of the approach is excellent and offers

a significant reduction in the number of test cases. The per-

formance of the new approach is also experimentally eval-

uated, comparing the random selection of an additional test

case with the adpative approach. Our results indicate that

non-linear behavior, e.g., compression ratio, has better per-

formance with the adaptive approach; linear behavor, e.g.,

compression time, has better performance with a random

approach.

The remainder of this paper is organized as follows. The

new test case reduction approach is presented in Section 2;

145

the evaluation of the new approach is in Section 3. Related

work is discussed in Section 4. Conclusions and Future

work are presented in Section 5.

2 Proposed Approach

The goal of the proposed approach is to reduce the num-

ber of test cases needed to conduct a performance evalua-

tion of non-functional behaviors of components. In general,

a large number of test cases is needed to obtain a precise

evaluation. The conjecture here is that a reasonably accu-

rate evaluation can be achieved with a considerable reduc-

tion in the number of test cases. Also, the approach needs

to be general; it should not be restricted for use on a specific

subset of non-functional attributes

Any non-functional attribute of interest will always be a

function of some input parameters, otherwise there is no

need for testing. Therefore, the performance evaluation

consists of finding the relationship between the input pa-

rameter(s) and the performance on the non-functional at-

tribute. Both the input parameter (or some feature of the in-

put parameter) and the non-functional attribute can be quan-

tified and the relationship can be captured by some mathe-

matical function. If the function is known in advance, then

it can be directly used for the performance evaluation with

no testing needed. However, this is rarely the case. In most

scenarios, only the average performance is known which

does not provide a comprehensive understanding of the be-

havior of non-functional attribute. In summary, the goal is

to find the relationship using as few test cases as possible.

Hereafter, the relationship between a input parameter and

a non-functional attribute is referred to as .

Linear or non-linear regression models [10, 9] could be

used to find the parameters of if the general format of

the function is known. For example, if is known to have

an exponential behavior such as regression models

could be applied to find the values of and based on test

cases (values of) and the observed performance (values of

). However, in most cases, this relationship is not known

and a more general approach needs to be used. Based on

that, polynomial fit [5] has been chosen as, in general, any

curve can be represented by a polynomial of a certain de-

gree , .

The problem is now the identification of the coefficients

of the polynomial. The polyfit(x,y,n) func-

tion available in MatLab [4] has been used to find the coeffi-

cients of that fits the data points

in a least square sense. In the case of performance eval-

uation, is the number of test cases and the pair

represents the input value and the corresponding observed

performance. The method of least squares is based on the

minimization of errors (least square errors); the distance be-

tween the actual point and the point in the fitting curve. The

best-fit curve of a given type is the curve that has the mini-

mal sum of errors from a given data set. Suppose a sequence

of data points are given.

The fitting function has an error associated with each

data point, i.e., , , ,

. Therefore, using the method of least

squares, the best fitting curve has the property of minimiz-

ing in Eqn. 1.

(1)

The pseudo-code in Figure 1 presents the steps of the

proposed approach. Let us assume that a performance

evaluation needs to be done within a pre-specified range

. For example, if image compression components

are being considered, one may be interested in images with

size ranging from 1K to 10G bytes of memory. The first

step is then to select an initial small set of test cases to start

with. In our experiments (refer to Section 3) the starting

testing suite is composed of three test cases

a . The stopping criterion of

the approach is based on the comparison of two consecutive

fits. That is, the curve is achieved using the results of

test suite , then a new curve is

computed using the test suite , where

is a new selected test case. Now, the root mean square

error (RMSE), as given by Eqn. 2, between and

is computed and the cycle stops when this error is less than

a pre-specified threshold . In this case, the last computed

test suite is the one that can capture the main behavior of

the performance of the non-functional attribute under con-

sideration.

(2)

The behavior of the proposed solution is depicted in Fig-

ure 2. Let us assume . Figure 2(a) shows the

second iteration of the algorithm in Figure 1. In this case,

the first test suite has four test cases a new point (test

case) marked with a square is selected to compose . The

value of the RMSE of the two fits is 0.9457 which is still

larger than . After one more iteration, as seen in Fig-

ure 2(b), the RMSE between the fits using and results

in an error of 0.0674 which means that more test cases are

needed. The stopping criterion is reached in the next iter-

ation (see Figure 2(c)) where the error between and

goes to 0.0036 . In this case a total of eight test cases is

146

01 begin
02 S = initial set of points and
03 associated outputs
04 error = infinity
05 while error > e
06 Fit1 = polyfit(S)
07 S = S + new selected point
08 Fit2 = polyfit(S)
09 error = RMSE(Fit1,Fit2)
10 end
11 TestSet = S
12 end

Figure 1. Test composition algorithm

needed to conduct the performance evaluation. As can be

seen from Figure 2(d), the curve computed with the results

of only eight test cases is very similar to the actual curve as

indicated by RMSE=0.0254. That is, using only eight test

cases the dominant behavior of the non-functional attribute

has been properly captured.

In the example above, one aspect of the Algorithm in

Figure 1 has not been considered: how to select the new

test case in Line 06? Two approaches are considered in this

paper. The first simply randomly selects the new test case

from the available test cases within the specified range. The

second approach does the selection in an adaptive way. The

largest the gap between two consecutive inputs (assuming

the test cases have been sorted), the less information the

fitting method has to cover that area. Therefore, the selec-

tion approach is to fill this gap and increase the information

used by the fitting method. After computing the gaps be-

tween each test case, the approach finds the largest gap and

then try to find an available test case within this range. This

step is needed because not all inputs in the original range

from to may be available. For example, when testing

the image compression with and , images

from all these sizes may not be available. Very large images

may be hard to find and only 3 images may be available in

the range from 5G to 10G. If no input is available, then the

algorithm searches for the next largest interval. Notice that

this selection approach will degrade to a full binary selec-

tion if all input values in the range are available; however,

this is rarely the case.

3 Evaluation of the Proposed Approach

Three components for image compression are used here

to evaluate the performance of the test case reduction tech-

nique described in Section 2. Although a large num-

ber of compression techniques exist, the decision to use

Arithmetic Encoding (ARI), Huffman coding (HUF), and

0 20 40 60 80 100

0

2

4

6

8

10

(a)

input size

N
on

−f
un

ct
io

na
l p

ro
pe

rt
y

RMSE=0.9457

0 20 40 60 80 100

0

2

4

6

8

10

(b)

input size

N
on

−f
un

ct
io

na
l p

ro
pe

rt
y

RMSE=0.0874

0 20 40 60 80 100

0

2

4

6

8

10

(c)

input size

N
on

−f
un

ct
io

na
l p

ro
pe

rt
y

RMSE=0.0036

0 20 40 60 80 100

0

2

4

6

8

10

(d)

input size

N
on

−f
un

ct
io

na
l p

ro
pe

rt
y

RMSE=0.0254

PolyFit1
PolyFit2
Points for fit 1
Extra point for fit 2

PolyFit1
PolyFit2
Points for fit 1
Extra point for fit 2

PolyFit1
PolyFit2
Points for fit 1
Extra point for fit 2

Actual curve
Final PolyFit

Figure 2. Results from applying the algorithm
from Figure 1 to an exponentially shaped
curve where (a) represents the results from
iteration 2; (b) iteration 3; (c) iteration 4; and
(d) is the comparison between the final curve
and the actual one.

Burrows-Wheeler Transform (BWT) is based on their gen-

erality and availability. Also, two non-functional attributes

are used in the examples: compression time and compres-

sion ratio. These two have been selected to represent a lin-

ear and a non-linear non-functional attribute. A large set

of 190 images is available for the performance evaluation.

The images range in size from 10 to 10M bytes. The images

are not uniformly distributed. The non-uniform distribution

is more realistic as smaller images (less than 1M byte) are

more common and easier to find than larger images (more

than 5M bytes). One image is used for each test case; the

goal is to use the least number of test cases as possible while

still capturing the dominant behavior of the non-functional

attribute.

Figure 3 shows the results of applying both the adaptive

approach and the random selection approach to the eval-

uation of compression time for the three components. The

adaptive results are shown in Figures 3(a), (b), and (c) while

the random selection results are shown in Figures 3(d), (e),

and (f). A polynomial degree of 3 and an error of

have been used. The choice for a third degree polyno-

mial is because it can represent a large variety of curves.

Also, although the error may appear to be large at first, it

is indeed small when compared to the values of the y axis

(milli-seconds). As we can see in Figures 3(a), (b),

and (c), the adaptive approach requires a total of 10, 23,

and 15 test cases to capture the behavior of compression

time for Huffman, BWT, and Arithmetic encoding, respec-

tively. The observed behavior is linear and in the best case

147

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

1000

2000

3000

4000

5000

6000

7000
(a) Huffman

image size

Number of test cases = 10

co
m

pr
es

si
on

 ti
m

e

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.5

1

1.5

2

2.5

3
x 10

5 (b) BWT

image size

co
m

pr
es

si
on

 ti
m

e

Number of test cases = 23

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 (c) Arithmetic Encoding

image size

co
m

pr
es

si
on

 ti
m

e

Number of test cases = 15

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

1000

2000

3000

4000

5000

6000

7000
(d) Huffman

image size

Number of test cases = 17

co
m

pr
es

si
on

 ti
m

e

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.5

1

1.5

2

2.5

3
x 10

5 (e) BWT

image size

co
m

pr
es

si
on

 ti
m

e

Number of test cases = 27

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 (f) Arithmetic Encoding

image size

co
m

pr
es

si
on

 ti
m

e

Number of test cases = 20

Poly Fit
Actual curve
Points used for fitting

Figure 3. Results of the adaptive selection of test cases for compression time of: (a) Huffman, (b)
BWT, and (c) Arithmetic Encoding. Results of the random selection of test cases for compression
time of: (d) Huffman, (e) BWT, and (f) Arithmetic Encoding.

scenario only three points (test cases) would be needed to

capture the behavior. However, the actual results are not

a straight line and the use of only three points could lead

to a different slope and possibly to a wrong characteriza-

tion of compression time. In any case, the number of test

cases needed seems reasonable small while appropriate to

capture the behavior. The application of the random selec-

tion (Figures 3(d), (e), and (f)) resulted in, respectively, 17,

27, and 20 test cases needed for each of the components

Huffman, BWT, and Arithmetic encoding. The results in

this case are only slightly better for the adaptive selection

when compared to the random selection. Only four extra

test cases are required for BWF, seven are required for Huff-

man while the Arithmetic encoding requires five extra test

cases. The accuracy of both approaches are almost the same

with an average mean square error of 100 between the com-

puted curve and the actual curve from all the available data

points. Note again that a 100 units difference is small in the

scale.

As stated before, compression time for the evaluated

components presents a linear behavior with respect to im-

age size. To further evaluate the proposed approach the

compression ratio, a non-functional attribute with a non-

linear behavior, is analyzed next. In this case a polyno-

mial of degree 3 and an error have been

used. The error is smaller because the scale for the y-axis

(compression ratio) is comparatively smaller. Figures 4(a),

(b), and (c) have present the results from the adaptive se-

lection while Figures 4(d), (e), and (f) are the counterparts

for the random selection of test cases. The adaptive selec-

tion required 12, 24, and 11 test cases. The results for the

random selection present a considerable decline in perfor-

mance. For the execution runs in Figures 4(d), (e), and (f),

a total of 32, 83, and 31 test cases were required. Unlike

compression time, the results in this case are much more

favorable to the adaptive selection than to the random se-

lection of test cases. Adaptive selection performs 2.6 times

better than random selection for the Huffman component.

The improvements for BWT and Arithmetic encoding are,

respectively, 3.4 and 2.8.

When considering compression ratio, the adaptive ap-

proach has performed considerably better than the random

approach. This is due to the non-uniform distribution of

the image sizes and the non-linearity of the requirement

under consideration. In general, when test cases are uni-

formly distributed, the adaptive and the random selection

approaches will have a similar behavior. The adaptive ap-

proach tries to fill the largest interval between two input

values, which tends to make the selected inputs uniformly

distributed. Therefore, if the inputs are already uniformly

distributed, it is expected that random selection will behave

in a similar manner. However, this is not the case for the

compression ratio and since images are clustered, the selec-

tion of a new image may lead to a large difference between

148

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−10

0

10

20

30

40

50

60
(a) Huffman

image size

Number of test cases = 12

co
m

pr
es

si
on

 r
at

io

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−20

0

20

40

60

80

100
(b) BWT

image size

co
m

pr
es

si
on

 r
at

io

Number of test cases = 24

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−10

0

10

20

30

40

50

60

70
(c) Arithmetic Encoding

image size

co
m

pr
es

si
on

 r
at

io

Number of test cases = 11

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−10

0

10

20

30

40

50

60
(d) Huffman

image size

Number of test cases = 32

co
m

pr
es

si
on

 r
at

io

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−20

0

20

40

60

80

100
(e) BWT

image size

co
m

pr
es

si
on

 r
at

io

Number of test cases = 83

Poly Fit
Actual curve
Points used for fitting

0 1 2 3 4 5 6 7 8 9 10

x 10
6

−10

0

10

20

30

40

50

60

70
(f) Arithmetic Encoding

image size

co
m

pr
es

si
on

 r
at

io

Number of test cases = 31

Poly Fit
Actual curve
Points used for fitting

Figure 4. Results of the adaptive selection of test cases for compression ratio of: (a) Huffman, (b)
BWT, and (c) Arithmetic Encoding. Results of the random selection of test cases for compression
ratio of: (d) Huffman, (e) BWT, and (f) Arithmetic Encoding.

the two polynomial fits and consequently a larger number

of test cases will be required. The expectation is that the

more complex the behavior of the requirement (meaning,

the more complex the curve to fit), the larger the number

of test cases (points) needed to capture its behavior. The

non-linearity of compression ratio is an indication of this

complexity leading to a larger number of test cases required

to capture its behavior.

The results presented in this Section provide a good in-

dication that the new test reduction approach can select a

small number of test cases to conduct an accurate perfor-

mance evaluation of components. However, more extensive

evaluation of the proposed approach needs to be conducted

to further verify this conjecture. This has been deferred

to future work. Another aspect that still needs additional

evaluation is the impact of the values of the degree of the

polynomial and the value of the error on the performance

of the approach. The conjecture is that the higher the de-

gree of the polynomial and the smaller the value of the

larger the number of test cases required to capture the be-

havior. Once this conjecture is confirmed (with future case

studies and simulation runs) the next step would be the op-

timization of these values. That is, given a specific non-

functional attribute, a certain degree for the polynomial and

a certain value for should be found to minimize the num-

ber of test cases required while maximizing the accuracy of

the fit. This problem is also deferred to future work.

4 Related Work

To the best of our knowledge, we are not aware of any

studies with a similar objective as what is reported here.

The rest of this section focuses on work in three categories:

test cost reduction, adaptive testing, and component-based

testing.

Test Cost Reduction: Marre et al. [8] used a spanning set

of entities to generate test suites in order to estimate and to

reduce the cost of testing based on the observation that one

test case generally covers more than one entity. As a result,

if we can identify “a subset of entities with the property that

any set of tests covering this subset covers every entity in

the program,” then we can reduce the cost of testing. They

presented a method for finding a minimum set of entities

of full coverage and an automated method for finding the

corresponding spanning set.

Ling et al. [7] proposed a decision-tree learning algo-

rithm to build more effective decision trees in order to min-

imize the sum of the misclassification cost and the test cost.

Their algorithm is based on cost-sensitive learning methods

such as a Markov Decision Process. They also explained

the problems of other approaches and claimed that their al-

gorithm is superior to the others.

Adaptive Testing: Adaptive Random Testing is an active re-

search topic because of its effectiveness under some well

149

distributed input domains [1] The actual results depend on

the “distances” between different test values. However,

such distances have only been defined for integers and other

elementary values. Ciupa et al. [2] extended this idea by

introducing an “object distance” to test object-oriented pro-

grams. A Distance-Based Adaptive Random Testing (D-

ART) method was also proposed based on object distance.

Component-based Testing: Damm et al. [3] proposed a

framework for automated component testing. This ap-

proach is based on Test-Driven Development (TDD) which

creates the test cases before developing software compo-

nents. The proposed framework extends the traditional

TDD (which is for each class and method) to the component

level, which needs to test for each component interface. As

a result, defects can be detected earlier in the development

cycle to reduce the overall cost of testing and debugging.

One difficulty of testing software components among

others is testing them under numerous hardware, operat-

ing systems, and third-party COTS components. Grundy

et al. [6] proposed an approach using a “validation agent“

and a “component aspect” to resolve this problem. They

are used at the deployment time to validate the components.

The validation agent tests functional and non-functional as-

pects of software components in an actual deployment situ-

ation, whereas the component aspect cross-cuts the aspects

of the components to increase its usability.

5 Conclusions and Future Work

A new approach that selects a reduced set of test cases

for the accurate performance evaluation of components has

been presented in this work. The approach is based on the

use of polynomial curve fitting techniques. The approach

begins by using a small set of initial test cases. Using an

iterative approach, a new test case is found and added to

the test case set. The new test case may be selected either

randomly or using an adaptive technique. The test cases

are executed; the performance evaluation results are used to

compute a new curve. When the RMSE between the previ-

ous and the current curves are below a threshold, then the

reduced test case set has been found.

The approach has been experimentally validated using a

set of components that implement well-known image com-

pression algorithms. Using our approach, as few as eight

test cases are needed and selected in this experiment to cap-

ture the dominant behavior of the two non-functional be-

haviors. These results indicate the accuracy of the approach

is excellent and offer a significant reduction in the number

of test cases.

The performance of the new approach has also been ex-

perimentally evaluated, comparing the random selection of

an additional test case with the adpative approach. Our re-

sults indicate that non-linear behavior, e.g., compression ra-

tio, has better performance with the adaptive approach; lin-

ear behavor, e.g., compression time, has better performance

with a random approach.

There are several interesting directions for future work.

The first is to apply the approach to additional sets of com-

ponents and evaluate different non-functional attributes, to

improve the validation of the approach. The second is to

investigate the impact of the values of 1) the degree of the

polynomial used in the curve fitting calculation and 2) the

error threshold. When the impact of these values are thor-

oughly quantified, then the values for non-functional at-

tributes could be optimized.

References

[1] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive ran-

dom testing. In Lecture Notes in Computer Science,
3321:320-329, 2004.

[2] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Object

distance and its application to adaptive random test-

ing of object-oriented programs. In Proceedings of the
1st International Workshop on Random Testing, 55-63

July 2006.

[3] L. Damm and L. Lundberg. Results from introduc-

ing component-level test automation and test-driven

development. Journal of Systems and Software, 2006.

[4] Walter Gander, J. H. Masaryk, and J Hrebicek. Solving
Problems in Scientific Computing Using Maple and
MATLAB. Springer-Verlag, 1997.

[5] Walter Gautschi. Numerical Analysis: an introduc-
tion. Birkhauser Boston, Cambridge, MA, USA, 1997.

[6] J. Grundy, G. Ding, and J. Hosking. Deployed

software component testing using dynamic validation

agents. Journal of Systems and Software, 2005.

[7] C. X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision

trees with minimal costs. In Proceedings of the 21st
International Conference on Machine Learning, 69-76

July 2004.

[8] M. Marre and A. Bertolino. Reducing and estimating

the cost of test coverage criteria. In Proceedings of the
18th International Conference on Software Engineer-
ing, 486-494 May 1996.

[9] G. A.F Seber and C. J. Wild. Nonlinear Regression.

John Wiley & Sons, Inc., 2006.

[10] George A. F. Seber and Alan J. Lee. Linear Regression
Analysis. Wiley-Interscience, second edition edition,

2003.

150

Combining Decorated Classification Trees with RCPS Stochastic Models to Gain
New Valuable Insights into Software Project Management

Antonio Juarez Alencar, Gelson Guedes Rodrigues, Eber Assis Schmitz and Armando Leite Ferreira
Institute of Mathematics, Electronic Computer Center and The COPPEAD School of Business

Federal University of Rio de Janeiro
P.O. Box 68530 - 21941-590 - Rio de Janeiro - RJ, Brazil

juarezalencar@br.inter.net, gelsongr@gmail.com, eber@nce.ufrj.br, armando@coppead.ufrj.br

Abstract

This work presents a process that combines deco-
rated classification trees with RCPS (Resource Constrained
Project Scheduling) stochastic modeling and simulation
to provide project managers with better insights into the
project they run. Such insights make it easier for managers
to anticipate changes in planning that favor projects to be
delivered on time and in compliance with the requirements
they were set to satisfy.

1. Introduction

Over the last few decades the environment in which orga-

nizations do business has changed considerably with enor-

mous consequences for project management. The busi-

ness paradigms that prevailed during the industrial revolu-

tion are giving way to new ones dictated by the informa-

tion age, knowledge age and technology revolution which

we are currently experiencing. For example, the existence

of rigid production lines of impersonalized tangible prod-

ucts that characterized the industrial revolution are being

successfully challenged by increasing demand for highly

customized products and services, decentralized work force

and intangible products, opening new vistas for industrial

and business development [5].

To remain competitive under these circumstances orga-

nizations have to innovate constantly. However, the demand

for new and more complex products calls for the execution

of more complex projects; requiring the coordination of ef-

forts from multidisciplinary teams with advanced technical

and business skills, the establishment of strategic alliances

with external partners, the outsourcing of project activities,

and the use of recently developed technology.

Moreover such constrains tend to put projets managers

under enormous pressure to produce results. When the pres-

sure to deliver becomes too great, common sense often goes

out the window, crucial steps in the project development are

ignored, the end result is shoddy, and the rework required

to repair the damage is far more expensive than if it were

caught in the planning stages [9].

Effective project management in a lean resource envi-

ronment requires good planning and timely information, al-

lowing problems to be anticipated and dealt with before

the worse happens. To manage projects more effectively,

over the years, IT professionals have resorted to a variety of

planning methods such as Gantt Charts, CPM (Critical Path

Method), PERT (Performance Evaluation and Review Tech-

nique) and, more recently, to RCPS (Resource Constrained

Project Scheduling) stochastic modeling and simulation [6].

This work shows how classification trees, a family of

non-parametric statistical methods, can be decorated with

financial information and used together with RCPS stochas-

tic modeling and simulation to provide valuable insight into

project planning in constrained environments, making it

easier for managers to foresee changes in planning that help

projects to be delivered within the allowed timeframe and in

accordance with the requirements they were set to satisfy.

2 The RCPS Problem

One of the main goals of project scheduling is to produce

a detailed plan of project related activities with the view of

allowing managers to deal with a large variety of problems

before the worse happens. The most frequent problem man-

agers use project scheduling to solve is the minimization of

makespan1, other common possibilities include minimiza-

tion of cost, maximization of financial results, maximiza-

tion of quality measures, etc. [13].

Projects that are subjected to precedence and re-

source constraints are called “Resource-Constrained Project

1Total project duration.

151

Scheduling” in the literature, or RCPS for short. Not sur-

prisingly, the vast majority of software projects in the real

world face RCPS problems. Over the years numerous meth-

ods have been proposed to solve RCPS problems, such as:

implicit enumeration, branch-and-bound, schedule genera-

tion schemes (SGS), X-pass, etc. A comprehensive review

of these methods is found in [7]. Despite the differences

these methods may have, they can all be classified in just

two categories: exact methods and heuristic methods [3].

Exact methods are used to find the precise maximum or

minimum value of a variable under consideration. For ex-

ample, the minimum project duration or its maximum finan-

cial return. However, these methods have considerable limi-

tations that become evident when projects have a great num-

ber of activities or complex resource constraints. Usually, in

these circumstances a solution cannot be found within rea-

sonable computing time.

Heuristic methods, on the other hand, use a schedule pri-

ority criteria to provide an approximate solution to RCPS

problems. They are particularly useful when the use of ex-

act methods are not feasible. In the heuristic methods ev-

ery activity is initially a potential candidate to be sched-

uled. However, activities can only be scheduled if all its

precedent activities have been completed and the resources

required for its execution are fully available. Unfortunately,

whenever activities share resources, it may imply that they

cannot be executed concurrently.

The use of a heuristic is then necessary to decide when

each activity should receive its required resources and be

executed as a result. When no real candidate activities are

available, the clock advances until one of the activities in

progress is completed. At that point in time resources are

freed and the process is repeated, i.e. candidate activities

are identified, resources are checked for availability and ac-

tivities are scheduled. The total duration of a project is the

time required for the completion of all its activities. As a

mathematical problem RCPS belongs to a category where,

in general, an optimal solution cannot be found in a linear

or polynomial time frame, i.e. the NP-hard category [1].

3 Classification Trees

The techniques described in this article to analyze RCPS

stochastic models make extensive use of classifications

trees, a family of statistical inferential methods conceived

by Morgan and Sonquist in the 1960’s and later perfected

by others [8].

As an inferential method, classification trees seek to ex-

plain the behavior of a target variable by combining differ-

ent values of a given set of predictive variables. To achieve

this goal, the values of the predictive variables are succes-

sively combined in such a way that an n-dimensional space

is portioned into increasingly more homogenous sets of val-

ues with respect to the target variable.

The way the portioning is done allows the final result

to be presented as a flow-chart whose format resembles a

tree, so the name of the family of methods. Furthermore,

the information presented in the flow-chart may be easily

translated into a set of rules that indicate the likelihood of

occurrence of values in the domain of the target variable for

different circumstances.

Classification trees are non-parametric methods, i.e. no

restrictions are imposed on the distribution of values of pre-

dictive and target variables. In addition, these variables are

allowed to hold all sort of relationships among themselves.

All of this makes it easier to use classification trees to solve

problems in the real word, where the distribution of val-

ues of variables and the relationships that they hold among

themselves are frequently unknown. Moreover, classifica-

tion trees have been widely reported as presenting satisfac-

tory results even in the presence of noise and when little data

is available; making it a very attractive class of methods to

be used in all sorts of different situations [12].

4 Mining RCPS Stochastic Models

According to Seneca (4 BC-AD 65), the Roman philoso-

pher: “rules make the learner’s path long, while examples

make it short and successful”. As a result, the mining pro-

cess presented in this article is introduced with the help of a

real-world inspired example. Consider a chain of furniture

stores that uses catalog marketing to increase its sales. On

a regular basis this company edit a catalog with a variety of

selected products that are sent to a large group of potential

buyers, who are selected from the company’s database. The

proper undertaking of this task requires that eight activities

are efficiently executed within a tight time-frame, i.e.
1. Product Selection - that chooses the products that will
be advertised in the catalog;

2. Prospect Selection - that identifies the prospects to
whom the catalogs are going to be mailed;

3. Pricing - that establishes the promotional price of ev-
ery product to be advertised in the catalog;

4. Catalog Design - where the graphic and textual aspect
of the catalog, and accompanying advertising material

are conceived and put together;
5. Label Printing - where labels with prospects’ names
and addresses are printed and organized;

6. Stock Control - that makes sure that the products ad-
vertised in the catalog will be available for shipping

when they are ordered ;
7. Catalog Printing - where the actual print of the catalog
is done;

8. Catalog Labeling & Mailing - which labels the cata-
logs with prospects’ names and addresses and sends

them to their intended destinations over the mail.

152

Tough competition in the furniture business has brought

down the company’s profit margins over the years. As a

result, the chain of furniture stores believes that its survival

depends upon the efficiency of its business processes.

With the view of increasing the efficiency of its catalog

marketing campaigns, the company has decided to develop

a system of software tools that, working together, provide

adequate support for the activities leading to the roll-out of

its marketing campaigns. Because each of these activities

is supported by a different software tool, altogether, eight

tools have to be built in such a way that information made

available by one tool may be used by others.

Unfortunately, due to lack of adequate funding, initially

only two people have been selected to work on the devel-

opment of the software tools. They are going to be named

Mimi (a systems analyst) and Ed (a computer programmer).
Table 1 shows the human resources required for the devel-

opment of each tool.

Tool Resource
Name Supported Activity Required
PdS Product Selection Mimi and Ed

PsS Prospect Selection Mimi

P Pricing Mimi and Ed

CD Catalog Design Ed

LP Label Printing Mimi and Ed

SC Stock Control Mimi

CP Catalog Printing Ed

CLM Catalog Labeling & Mailing Mimi and Ed

Table 1. Resources required.

Figure 1 presents the network of activities concerning the

development of the software tools. In that figure PdS is the
first tool to be developed and CLM the last. Moreover, an

arrow connecting two activities such as PdS−→ P indicates
that the latter development efforts may only start when the

former has been completed and all the necessary resources

are available.

PdS P

CD

PsS LP

CP

CLM
SC

Figure 1. The project’s network of activities.

As this project has to be completed within a strict time-

frame, it is crucial that management is made aware of its

expected makespan in respect to the current resource con-

straints and the duration of the different project activities.

However, because these activities have not been executed

yet, their duration can only be estimated. In this case, with

the support of other experienced software project managers

and a database of previously executed projects, a three point

estimate has been established for each activity, indicating

their minimum, most likely and maximum expected dura-

tion. Table 2 presents these figures.

Project Estimated Duration (time units)
Activity Minimum Most Likely Maximum
PdS 2 3 6

PsS 3 6 8

P 4 6 7

CD 1 8 10

LP 7 9 11

SC 5 6 7

CP 4 5 8

CLM 1 2 4

Table 2. Duration of project activities.

Considering that the exact duration of each activity is un-

known and that the available resources may be insufficient

to ensure that all activities are executed when their prece-

dents are completed, a Monte Carlo stochastic simulation

model has been built to analyze the project makespan. In

this model, the duration of each activity is described by a tri-

angular probability density function, one of the most widely

used functions to describe activity duration [4].

Subsequently the stochastic model was subjected to a

simulation process, where resources were granted to the

first activity to place a request for them. During simula-

tion the duration of each activity was recorded in the form

of a percentage of their respective time range, together with

the outcome of each simulated scenario, indicating whether

the project finished within the allowed time.

Variable Scenario
1 2 3 4 . . . n

PdS 0.912 0.475 0.660 0.132 . . . 0.432

PsS 0.534 0.574 0.942 0.444 . . . 0.236

P 0.160 0.856 0.650 0.270 . . . 0.260

CD 0.673 0.705 0.758 0.724 . . . 0.689

LP 0.135 0.617 0.602 0.515 . . . 0.502

SC 0.305 0.600 0.480 0.525 . . . 0.445

CP 0.207 0.127 0.192 0.797 . . . 0.217

CLM 0.383 0.596 0.156 0.456 . . . 0.560

#Ed 3 1 3 2 . . . 1

#Mimi 2 3 2 1 . . . 2

Outcome In Out In Out . . . Out

Table 3. Simulation results.

153

Table 3 presents the figures collected during simulation.

Table 4 describes the meaning of the columns presented in

Table 3. For example, as indicated by the variable CD, in
the first simulated scenario the development of the CD tool
consumed 67.3% of its time range, i.e. 1 + 0.673 × (10 −
1) = 7.05 time units.
Figure 2 shows the project makespan classification tree

built with the help of Breiman et al. approach to classifica-
tion [2]. In that figure the box labeled Node 0 is the root of
the classification tree. It contains the total number of obser-

vations available for analysis, i.e. 6,000 in this case. Also, it

displays the number and proportion of the different scenar-

ios in which the project finished and did not finish on time.

For example, initially, in 50.2% of the generated scenarios

the project finished on time, whilst in 49.8% it did not.

Variable Meaning
PdS, PsS, · · · , CLM Duration of activities PdS, PsS, · · · ,

CLM expressed as a percentage of

their respective time range.

#Mimi and #Ed Number of Mimi (systems analysts)
and Ed (computer programmers)

used in the project. These figures

vary from 1 to 3.

Outcome The outcome of a given scenario,

where In indicates that the project
finished within the allowed time-

frame and Out indicates otherwise.

Table 4. The simulation variables.

It should be noted that the relation that is used to par-

tition the initial set of scenarios is Ed ≤ 1, and that, as a
consequence, Node 1 contains the 3,027 observations for
which this relation holds and Node 2 the remaining 2,973,
i.e. 50.4% and 49.6% of the simulated scenarios respec-

tively.

Because of the incremental way in which the tree is con-

structed, all relations that hold for the observations in a node

also hold for the observations in its descendants nodes. For

example, in all the scenarios that are part of Node 3 the
number of resources Ed used to run the project is smaller
or equal to 1 and the time spent in the development of the

CD tool is smaller than or equal to 52.6% of its estimated

time range (CD ≤ 0.526). Table 5 shows all the relations
that hold for the leaves of the tree presented in Figure 2, to-

gether with the proportion of In’s and Out’s, and the propor-

tion of the total simulated scenarios for with those relations

hold.

Due to the random nature of the Monte Carlo simula-

tion, these proportions are actually estimated likelihoods of

the software project finishing on time in difference circum-

stances [4]. For example, the proportion of simulated sce-

narios where Ed ≤ 1 and CD > 52.6 is 32.5% and in only

11.7% of these scenarios the project finished within the al-

lowed time-frame, therefore the estimated likelihood of the

occurrence of a scenario where these two relations hold is

0.325 × 0.117 = 0.038.

Node 0

Category % n

50.2 3009In

49.8 2991Out

Total 100 .0 6000

Ed

Node 1

Category % n

25.7 778In

74.3 2249Out

Total 50.4 3027

CD

<= 2

Node 2

Category % n

75.0 2231In

25.0 742Out

Total 49.6 2973

Mimi

> 2

Node 3

Category % n

51.0 549In

49.0 527Out

Total 17.9 1076

Mimi

<= 0.526

Node 4

Category % n

11 .7 229In

88.3 1722Out

Total 32.5 1951

> 0.526

Node 5

Category % n

49.7 732In

50.3 742Out

Total 24.6 1474

PsS

<= 2

Node 6

Category % n

100 .0 1499In

0.0 0Out

Total 25.0 1499

> 2

Node 7

Category % n

25.3 143In

74.7 422Out

Total 9.4 565

<= 2

Node 8

Category % n

79.5 406In

20.5 105Out

Total 8.5 511

> 2

Node 9

Category % n

63.6 603In

36.4 345Out

Total 15.8 948

PdS

<= 0.617

Node 10

Category % n

24.5 129In

75.5 397Out

Total 8.8 526

LP

> 0.617

Node 11

Category % n

74.0 538In

26.0 189Out

Total 12.1 727

<= 0.579

Node 12

Category % n

29.4 65In

70.6 156Out

Total 3.7 221

> 0.579

Node 13

Category % n

51.5 67In

48.5 63Out

Total 2.2 130

<= 0.360

Node 14

Category % n

15.7 62In

84.3 334Out

Total 6.6 396

> 0.360

E F GD

A B

G

1 1

1 1

11

Figure 2. The makespan classification tree.

It follows that according to the information displayed

in Figure 2, the likelihood of the software project finish-

ing on time is 0.502, or 50.2%. See Node 0. Because this
falls short of the 70% likelihood standard established by the

company the project manager is compelled to act. There are

several actions open to management. For instance, they can

try to convince the stakeholders to extend the project dura-

tion. Also, at some extra cost, they can hire more people to

work on the project and extend the working effort from 5

days of 6 hours a week to 6 days of 8 hours a week during

the development of certain tools (an increase of 60% in the

working hours).

Data collected during the simulation process (total

project duration and the duration of the development of the

CD, PsS and PdS tools) together with the dollars per time
unit charged by Ed and Mimi (see Table 6), allow the con-

struction of Table 7 connecting actions and extra cost to the

leaves of the tree in Figure 2, helping management to con-

sider the most suitable option to increase the chances of de-

livering the project on time [11].

154

5 Discussion

Bellow one finds the answer to some key questions about

the implications of the insights provided by decorated clas-

sification trees for both project management and project

planning.

5.1 What are the steps leading to deco-
rated classification trees?

With the view of helping managers to anticipate changes

in software project planning that increase the chances of

finishing the project on time one may take the following

steps: (a) build a stochastic model that properly represents

the project’s activities, their interdependency relations and

the resource constrains to which they are subjected; (b) run

a simulation process that, for each scenario, collects the

project outcome indicating whether it finished on time or

not; (c) use the data collected during the simulation process

to construct a classification tree that has the project outcome

as its target variable; (d) examine the tree carefully looking

for ways to improve the chances of finishing the project on

time; (e) decorate the tree connecting actions and extra cost

to the leaves; (f) act on the most suitable actions [11], mak-

ing favorable but unlikely scenarios more likely to happen.

Node Rule Outcome (%)
In Out Prop.

4 Ed ≤ 1 and CD > 52.6 11,7 88.3 32.5

6 Ed > 1 andMimi > 1 100.0 0.0 25.0

7 Ed ≤ 1 and CD ≤ 52.6 and
Mimi ≤ 1

25.3 74.7 9.4

8 Ed ≤ 1 and CD ≤ 52.6 and
Mimi > 2

79.5 20.5 8.5

11 Ed > 1 and Mimi ≤ 1 and
PsS ≤ 61.7 and PdS ≤ 57.8

74.0 26.0 12.1

12 Ed > 1 and Mimi ≤ 1 and
PsS ≤ 61.7 and PdS > 57.8

29.4 70.6 3.7

13 Ed > 1 and Mimi ≤ 2 and
PsS > 61.7 and LP ≤ 36.0

51.5 48.5 2.2

14 Ed > 1 and Mimi ≤ 1 and
PsS > 61.7 and LP > 36.0

15.7 84.3 6.6

Table 5. Rules indicating the likelihood of the
project finishing on time.

Weekly Working Dollars / Time Unit
Hours Mimi Ed

Regular (30h) 1,875 1,125

Extended (48h) 2,500 1,500

Table 6. Cost of Mimi and Ed

5.2 How do project managers benefit from
decorated classification trees?

One of the main benefits of building an RCPS stochas-

tic model is the insight it can provide on the dependency

relations that exists among the duration of project activities

and the project outcome. The understanding of these rela-

tions allows the identification of activities that most strongly

influence the outcome of a project, prompting changes in

planning that increase the chances of projects being deliv-

ered on time.

However, even the construction and analysis of small

RCPS stochastic models require considerable knowledge of

mathematics and statistics. As a result, many project man-

agers are unable to enjoy the benefits of using this truly

powerful tool, because they just lack the necessary technical

skills. In addition, the two statistical methods that are most

frequently employed to identify cause and effect relation-

ships among variables in RCPS stochastic models are linear

correlation and regression. The proper use of these methods

to analyze the relationship that exists among the duration of

project activities and project outcome requires these rela-

tions to be linear, which most often is not the case.

Moreover, linear regression requires predictive variables

to be independent, i.e. the value that one of these vari-

ables may take may not depend upon the value that other

predictive variables take. Unfortunately, there is a natu-

ral tendency that the duration of project activities depend

upon each other. For example, in many industries time spent

on planning and designing tends to strongly influence time

spent on testing and delivery. Therefore, situations in which

the proper use of linear regression is welcome do not come

by as frequently as one may hope for.

Finally, both correlation and linear regression do not deal

Action Description Extra Cost
Min Max

A, C,

E, F

and G

Talk the stakeholders into

extending the allowed

project duration.

$0.00

B Hire another Mimi and in-
crease the working journey

during the development of

the CD tool.

$34,500 $66,500

D Hire nother Ed and increase
the working journey during

the development of the PsS
and PdS tools.

$26.500 $46,800

H Hire another Ed and an-

other Mimi.
$ 74,300 $ 120,000

Table 7. Possible actions and their respective
cost with 80% degree of confidence.

155

easily with categorical variables. Linear regression requires

these variables to be transformed into a set of independent

variables. Linear correlation requires variables to be of ra-

tio scale, while rank order correlation requires them to take

value in an ordinal set. See [10] for an introduction to re-

gression and correlation.

Although, decorated classification trees cannot make the

construction of RCPS stochastic models any easier, they do

help with the analysis of the simulation process, particu-

larly with the extraction of information that favors tactical

changes in project planning. The use of such trees does not

require predictive variables to be independent nor to hold a

linear relation with the target variable. Also, they can take

value in any kind of set, despite its scale of measurement

being nominal, ordinal, scalar or ratio. All of this not only

greatly facilitates the analysis of RCPS stochastic models,

but also makes it faster and less prone to errors.

5.3 Can the technique described in this
article be used as a negotiation tool?

Despite all the efforts that project managers may place

on their tasks, projects are full of uncertainties that make

planning a difficult endeavor. Not only are projects con-

cerned with interrelated events and activities that have not

happened yet, but also once these activities have been com-

pleted, they will not be executed in the future exactly the

same way as in the past. Hence, projects are very unlikely to

run as planned, requiring frequent adjustments in the course

of time. The more complex and lengthy the project, the

more adjustments it is likely to require.

Because the rules generated by classification trees are

conjunctions of logical expressions that are easy to read and

understand, and can be presented to non-technical person-

nel, the decorated tree may be used as an awareness tool to

make senior management more conscious of critical aspects

of a project. In particular of those aspects where further in-

vestment is necessary.

6 Conclusion

This article demonstrates the viability of success-

fully combining decorated classification trees with RCPS

stochastic modeling and simulation to provide project man-

agers with the means to anticipate changes in project plan-

ning that favor projects being finished on time. This combi-

nation of mathematical tools may be used to analyze project

makespan with many advantages of more classical methods.

Classification trees are not difficult to build as predic-

tive variables are not required to have any particular dis-

tribution of values or hold any kind of relationship among

themselves. Moreover, the rules generated by classifica-

tion trees are easy to read, understand and communicate to

all interested parties, helping to avoid mis-communication

among team members and also with the identification of

most needed adjustments in project planning.

Furthermore, easy to understand rules connected to fi-

nancial information favor the involvement of senior man-

agement with critical aspects of project planning and exe-

cution, making it easier for project managers to ensure that

the necessary investments are made where and when they

are most needed. All of this makes decorated classifica-

tion trees a very attractive tool to be used in combination

with RCPS stochastic modeling and simulation to support

the management of complex software projects in the real

world.

References

[1] J. Blazewicz, J. Lenstra, and A. R. Kan. Scheduling sub-

ject to resource constraints: Classification and complexity.

Discrete Applied Mathematics, 5:11–24, 1983.
[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.

Classification and Regression Trees. Chapman & Hall/CRC
Press, January 1984.

[3] A. L. Castillo and D. F. Muñoz. A decision support sys-

tem to schedule operations in water heater manufacturing.

In S. T. . G. Hart, editor, IIE Annual Conference and Ex-
hibition, Houston, Texas, May 2004. Institute of Industrial
Engineers.

[4] C. A. Chung. Simulation Modeling Handbook: A Practical
Approach. CRC Press, July 2003.

[5] Y. A. Hosni and T. Khalil. Management of Technology -
Internet Economy: Opportunities and Challenges for De-
veloped and Developing Regions of the World. Elsevier Sci-
ence, June 2004.

[6] H. Kerzner. Project Management: A Systems Approach to
Planning, Scheduling, and Controlling. John Wiley & Sons,
8th edition, January 2003.

[7] R. Kolisch and S. Hartmann. Experimental investigation

of heuristics for resource- constrained project scheduling:

An update. European Journal of Operational Research,
174:23–37, 2006.

[8] W. Y. Loh, Y. S. Shin, and T. S. Lim. A comparison of

prediction accuracy, complexity, and training time of thirty-

three old and new classification algorithms. Machine Learn-
ing, 40:203–228, September 2000.

[9] Info-Tech Research Group. Effective Project Management:
Tools, Templates & Best Practices. Info-Tech Research

Group, October 2003. Technical Report.
[10] J. T. McClave and T. Sincich. Statistics. Prentice Hall, 10th

edition, February 2005.
[11] J. X. Wang. What Every Engineer Should Know About De-

cision Making Under Uncertainty. CRC, July 2002.
[12] I. H. Witten and E. Frank. Data Mining: Practical Ma-

chine Learning Tools and Techniques. Morgan Kaufmann
Series in Data Management Systems. Morgan Kaufmann,

June 2005.
[13] G. Zhu, J. F. Bard, and G. Yu. Disruption management for

resource-constrained project scheduling. Journal of the Op-
erational Research Society, (56):365–381, 2005.

156

Towards a Reference Architecture for Software Testing Tools∗

Elisa Yumi Nakagawa†, Adenilso da Silva Simão, Fabiano Ferrari, and José Carlos Maldonado
Dept. of Computer Systems

USP - University of São Paulo
São Carlos/SP, Brazil

{elisa, adenilso, ferrari, jcmaldon}@icmc.usp.br

Abstract

Producing high quality software systems has been one of
the most important software development concerns. Soft-
ware testing is recognized as a fundamental activity for as-
suring software quality; however, it is an expensive, error-
prone, and time consuming activity. For this reason, a di-
versity of testing tools has been developed, however, they
have been almost always designed without an adequate at-
tention to their evolution, maintenance, and reuse. In this
paper, we propose an aspect-based software architecture,
named RefTEST (Reference Architecture for Software Test-
ing Tools), that comprises the knowledge to develop testing
tools. This architecture is strongly based on separation of
concerns and aspects, aiming at evolving, maintaining and
reusing efforts to develop these tools. Our experimental re-
sults have pointed out that RefTEST can contribute to the
development and reengineering of testing tools.

1. Introduction

Software engineering activities have been fundamental
to achieve high quality systems development. In special,
software testing is one of the most important activities to
guaranteeing the quality and the reliability of the software
under development [15]. In this context, the availability of
tools makes the testing a more systematic activity and min-
imizes the cost, the time consumed, as well as the errors
caused by human intervention. Testing automation is an
important issue related to the quality and productivity of
the software process. A diversity of testing tools — com-
mercial, academic, and open source — automating software
testing tasks can be found. However, these tools have al-
most always been implemented individually and indepen-

∗This work is supported by Brazilian funding agencies CAPES,
FAPESP and CNPq.

†She is also professor of the Dept. of Administrative Science and Tech-
nology, Uniara - Araraquara University Center, Araraquara/SP, Brazil.

dently, presenting its own architectures and internal struc-
tures. As a consequence, difficulty of integration, evolu-
tion, maintenance, and reuse of these tools are very com-
mon. These tools often focus on automating specific test-
ing techniques and criteria; without considering the whole
testing process. Besides, while software architecture has
become an increasingly important research topic in recent
years, contributing to software quality [19], the investiga-
tion and establishment of software architectures for testing
tools have been largely ignored. As known, the establish-
ment of architectures, specially reference architectures, for
a given domain consolidates the knowledge about how to
develop tools to that domain, contributing to the reuse of
design expertise.

Recently, Aspect-Oriented Programming (AOP) has
arisen as a new technology to support a better separation of
concerns and to more adequately reflect the way developers
reason about the system [11], to contribute to maintainabil-
ity, reusability, and easiness to write software. Besides pro-
gramming, aspects have also been explored in the early life
cycle phases including the requirements analysis, domain
analysis and architecture design phases.

In this paper, we investigate the use of aspect in ar-
chitecture design phase and present an aspect-based refer-
ence architecture, named RefTEST (Reference Architec-
ture for Software Testing Tools), that supports the devel-
opment of software testing tools. Aspect-based architec-
ture refers to architectures that use aspects — from AOP —
as mechanism to establish the communication among the
modules that compose this architecture. RefTEST is also
strongly based on separation of concerns, aiming at provid-
ing reusability, maintainability, and capability of evolution
to the testing tools built based on this architecture. For the
purpose of communicating adequately the knowledge into
RefTEST, architectural views were developed and are pre-
sented here.

The remainder of this paper is organized as follows. At
first, the background about software architecture and related
work are presented. Next, we present the proposed archi-

157

tecture for testing domain, discussing its establishment and
use. Finally, our conclusions and future directions are pre-
sented.

2. Background

Over the last decades software architecture has received
increasing attention as an important subfield of Software
Engineering [19]. According to Shaw and Clemments [19],
in the near future, software architectures will attain the sta-
tus of all truly successful technologies. As already high-
light in [22], software architectures play a major role in
determining system quality — performance and reliability,
for instance —, since they form the backbone for any suc-
cessful software-intensive system. Software architecture is
the structure or structures of the system, which comprise
software elements, the externally visible properties of those
elements, and the relationships among them [2]. In this
context, reference architectures have been investigated as
a mechanism that promotes reuse of design expertise and
achieves well-recognized understanding of a specific do-
main. Reference architectures for diverse domains — e-
commerce, for instance — can be found. Although, there is
a lack of adequate reference architectures for software en-
gineering domain, including software testing.

In order to design correctly and document clearly soft-
ware architectures, ADLs (Architecture Description Lan-
guages)1, as well as architecture evaluation methods such
as ATAM (Architecture Tradeoff Analysis Method)2, have
been proposed. Documentation based on architectural
views [9] and UML (Unified Modeling Language)3 have
been investigated as a promising approach to document ar-
chitectures.

2.1 Related Works

Few works related to software architecture for testing do-
main have been conducted [5, 23]. Eickelmann [5] estab-
lished the first reference architecture for this domain. This
architecture establishes six functions of testing tools: test
execution, test development, test failure analysis, test mea-
surement, test management, and test planning. However,
the relationship among these functions, as well as practical
and detailed considerations were not established. Based on
Eickelmann’s work, Yang [23] established a more detailed
architecture; however, the focus of this work is the testing
of web applications. As a consequence, it is concentrated in
how to structure the tools to test web applications. In spite
of the Yang’s work not proposing a reference architecture,
it has contributed with the establishment of a set of concrete

1http://www.sei.cmu.edu/architecture/adl.html
2http://www.sei.cmu.edu/architecture/ata method.html
3http://www.uml.org

and abstract class, as well as operations of testing tools. An-
other work established an architecture for testing tools de-
ployed in web platform [7]; although this work does not
address the activities directly related to testing tools core.

Besides these works, we can find architectures of spe-
cific testing tools, such as [12, 14]. These architectures
did not consider issues related to evolution, reusability, and
maintainability. Also, these architectures do not support or
foresee the support to all activities of the testing process,
such as configuration management, planning, documenta-
tion, among others. When supported, the functionalities re-
lated to these activities are implemented in the scattered and
tangled way in the core of the testing tools. Also, those
works exclusively related to architecture of testing tools
[5, 23] do not support all activities of the testing process.

Considering not only the relevance of software architec-
tures, but also the lack of works related to architectures in
the software testing domain, we have proposed a reference
architecture for that domain, presented next.

3. Reference Architecture for Testing Domain

RefTEST is based on a more generic reference architec-
ture, named RefASSET (Reference Architecture for Soft-
ware Engineering Tools) [16] that supports the development
of tools and SEEs (Software Engineering Environments).
Thus, before to present RefTEST, we will briefly discuss its
principles next.

3.1. Principles of RefTEST

In order to support adequately the development of tools
and SEEs, it is first important to understand the relationship
among the software engineering activities. We have adopted
the concept of separation of concerns, one of the key princi-
ples in Software Engineering. According to Harrison [8], an
adequate separation of concerns is pointed out as the main
mechanism to build evolvable and reusable SEEs.

In the context of software development process, we have
considered each software engineering activity as a concern
[18]. In order to identify all concerns, we adopted the inter-
national standard ISO/IEC 12207 (Information Technology
- Software Life Cycle Processes) [10] that provides a com-
prehensive set of life cycle processes, activities, and tasks
for developing and maintaining software system. This stan-
dard establishes and groups the activities (concerns) into
three categories — primary, organizational, and supporting
— depending on the role they play in the software devel-
opment. According to its characteristics, a concern can be
either a primary concern — that refers to activities that per-
form the development, operation, and maintenance of soft-
ware systems — or a crosscutting concern, term used by

158

the AOSD (Aspect-Oriented Software Development) com-
munity and referred to concerns that are spread throughout
or tangled with others concerns. It is important to highlight
that an inherent characteristic of the crosscutting concerns
(i.e. the organizational and supporting concerns) is their
occurrence along all primary concerns, as illustrated in Fig-
ure 1. For instance, documentation is one of the concerns
that must be considered from requirements specification to
maintenance.

Figure 1. Relationship among Primary, Sup-
porting and Organizational Concerns

The ideas discussed above were consolidated in RefAS-
SET, illustrated in Figure 2. This architecture is not the
focus of this work, but it is briefly described herein because
it is the basis of RefTEST. In short, RefASSET is a ref-
erence architecture based on architectures already investi-
gated, such as ECMA Reference Model [4] and architec-
tures of interactive systems and Web systems (architectural
pattern MVC (Model-View-Controller) and 3-tiers architec-
ture4), considering the future perspective of Web as plat-
form to provide diverse software systems, including soft-
ware engineering tools.

It should be highlighted that the Application Layer

in Figure 2 contains all identified concerns (primary,
supporting, and organizational). In particular, the
primary concerns part contains the core of the tools that
implement the primary concerns.

RefASSET has been explored in order to facilitate the
use and integration of tools, processes, and artifacts in
SEEs. By considering separation of concerns in this archi-
tecture, we are pursuing easier integration, maintainability,
quality, and reusability of the environments built based on
this architecture.

3.2. Establishing RefTEST

RefASSET was specialized to software testing domain,
resulting in RefTEST; thus, RefTEST inherited all Re-

4http://www.sei.cmu.edu/str/descriptions/threetier.html

fASSET’s characteristics, such as the separation of con-
cerns and the architectures of interactive systems. In par-
ticular, the specialization concentrated in identifying the
core of testing tools, i.e. the core concepts into primary

concerns part. Three steps were conducted:
Step 1: Investigation of the Software Testing Knowledge

This step was conducted to identify the core activities
performed during the testing. Knowledge into software
testing domain was arisen, considering diverse information
sources. Software testing processes, such as [20, 21], and
the activities contained in these processes were investigated
and identified as potential core activities. Software architec-
tures proposed in the testing literature [5, 23] were also in-
vestigated and the knowledge (structure, modules, and their
relationships) was considered. Besides that, as known, an
ontology is a formal explicit specification of a shared con-
ceptualization, providing a vocabulary for representing and
communicating knowledge about some topic and a set of
relationships which hold among the concepts in that vocab-
ulary as well; thus, an ontology for software testing do-
main, named OntoTest [1], was basis to identify the con-
cepts and relationships into testing domain. Moreover, the
investigation of testing tools was the most important contri-
bution for this step. The most known eight academic testing
tools were considered, such as MuJava [12] and Jazz [14],
and two broadly known and used commercial testing tools:
those of the Mercury5 and Rational6. Our experience in de-
veloping testing tools — for instance, published in [3] and
[13] — was also important. As a result, 32 activities were
identified, illustrated partially in Table 1. The information
sources of each activity are also indicated in that table. For
instance, activity “Generate test requirement” was identi-
fied through investigation of software testing processes (P),
testing tools (T) and testing ontology (O). It is noticed that
these activities refer to the core activities of testing; rather,
the activities related to testers management and test plan-
ning, for instance, were set aside, since these are addressed
by planning management module, related to a crosscutting
concern.
Step 2: Identification of the Core Concepts

Based on the identified activities, the core concepts were
established. Each activity was related to a software test-
ing concept. For instance, the activity “Include test cases”
was related to the concept “test case”, the activity “Generate
test requirements” was related to “test requirement”, and so
on. It is important to highlight that only four concepts were
identified and that they seem to be sufficient to represent
the core elements of testing tools: test case, test require-
ment, test artifact, and test criteria. Figure 3 presents the
conceptual model of the core of testing tools. Besides this

5http://www.mercury.com/us/products/quality-center/
6http://www-306.ibm.com/software/sw-

bycategory/subcategory/SW730.html

159

Figure 2. Reference Architecture of Software Engineering Environments

Table 1. Activities in the Testing Conduction
Core Activities Sourcea

Deal with artifact to be tested A, P, T, O
Execute artifact to be tested using test cases A, P, T
Import test cases P, T
Include test cases P, T
Generate test requirements P, T, O
Execute test requirements using test cases P, T, O
Establish testing adequation criterion A, O
Calculate test coverage A, P, T
... ...

aP = testing processes; A = architectures; T = Testing Tools; O = OntoTest

model, definitions and related operations were established
for each concept.

Figure 3. Core of Testing Tools

Step 3: Architectural Design
For the purpose of representing adequately the RefTEST,

as recommended by [9], architectural views — module, run-
time, deployment, among other views — were developed
using UML 2.0. Also, extensions of the UML notation are
required to support the aspects representation [17], since
this architecture is based on aspects. For the sake of space,
only the module and runtime views are presented herein.

The module view, in Figure 4, shows the structure of
the software in terms of code units; packages and depen-

dency relations are used to represent this view. While
the core of testing tools (testing tool package) can
be implemented using classes, components, or subsys-
tems, the modules that implement crosscutting concerns
use aspects in their structures. For instance, the pack-
age supporting crosscutting modules contains mod-
ules that are implemented by classes and aspects. These
aspects crosscut other modules and change the execution
flow of these modules inserting functionalities related to
a crosscutting concern. Thus, there are dependency rela-
tions, labelled with <<crosscut>>, among the package
supporting crosscutting modules and other pack-
ages. It is important to highlight that we have explored the
use of aspects to implement modules for SEE and used them
as an integration and communication mechanism among
modules in SEEs, including testing tools.

Differently from module view, the runtime view shows
the structure of the system when it is executing. Thus, the
interface among the modules is an important element that
must be detached. In [17], the extensions required to UML
to represent interfaces when aspects are used as a commu-
nication mechanism are discussed. In short, the Amodules
(Aspect-based Modules) — i.e. modules that exclusively
use aspects to communicate with other modules — have a
filled circle attached by a solid line, representing their in-
terface, named IMA (Interface Made by Aspects). This in-
terface represents a declaration of a set of coherent features
and obligations; in practice, it represents the characteristics
— for example, objects and their operations — that mod-
ules must have to use the AModules. Also, it was pro-
posed a half-square attached by a solid line to the mod-
ule that is crosscuted or affected by aspects into AMod-
ules. Our experience points out that the establishment of
the IMAs provides facilities to reuse AModules. Figure
5 presents the runtime view of RefTEST. In this figure,
Planning management and Documentation are AMod-
ules.

160

Figure 4. Module View of RefTEST

Figure 5. Runtime View of RefTEST

3.3. Use of RefTEST

We have used RefTEST to developing and reengineer-
ing of testing tools that are deployed in web platform [6].
Recent technologies to develop evolvable and reusable sys-
tems have been investigated and adopted; Java7 and As-
pectJ8 are in use. Also, we have developed modules that
implement crosscutting concerns. For instance, a testing

7http://java.sun.com/
8http://www.eclipse.org/aspectj/

documentation module was implemented; the aspects col-
lect information, such as the test cases and test requirement,
during the tool runtime and format, update, and store these
information. This module was designed and implemented
in order to facilitate its evolution to other testing tools and
tools of other domains, such as requirement specification
and analysis/design, aiming at developing a documentation
framework. In the end, we have pursuing a unique module
that manages the documentation of all other software engi-
neering activities that can be developed in an evolvable and

161

incremental approach. Moreover, our experimental results
have showed that the core of the tools can be independently
developed of the modules that implement crosscutting con-
cerns.

4. Conclusions

The systematization of the testing tools development is
a real need of the testing research community. Considering
the lack of recent works that establish reference architecture
for testing domain, in this paper we proposed RefTEST, a
reference architecture strongly based on separation of con-
cerns, pursuing evolvability and reusability of the tools built
based on this architecture. In special, this work contributed
with the establishment of the testing tools core and also with
a new point of view about how to address modules that im-
plement crosscutting concerns. It is important to highlight
that the use of aspects to develop and integrate these mod-
ules is another important contribution of this work. Our
experience has pointed out that the development of testing
tools using a well-established reference architecture is rel-
evant. RefTEST have been an important guideline to mini-
mize the efforts to the testing tools development.

References

[1] E. F. Barbosa, E. Y. Nakagawa, and J. C. Maldonado. To-
wards the establishment of an ontology of software testing.
In 18th Int. Conf. on Soft. Engineering and Knowledge En-
gineering (SEKE’06), San Francisco Bay/USA, July 2006.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley Publishing Company, 2003.

[3] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur. In-
terface mutation: An approach for integration testing. IEEE
Trans. on Software Engineering, 27(3):228–247, Mar. 2001.

[4] ECMA and NIST. Reference model for frameworks of soft-
ware engineering environments, Dec. 1991. Special Publica-
tion Report No. ECMA TR/55, 2nd Ed.

[5] N. S. Eickelmann and D. J. Richardson. An evaluation of
software test environment architectures. In 18th Int. Conf.
on Software Engineering (ICSE’96), pages 353–364, Berlin,
Germany, 1996.

[6] F. C. Ferrari. Supporting Structural and Mutation Testing of
Object-Oriented and Aspect-Oriented Software, 2006. Doc-
toral Work Plan, University of São Paulo, São Carlos, SP,
Brazil. (in Portuguese).

[7] J. Gao, C. Chen, Y. Toyoshima, and D. Leung. Devel-
opment an integrated testing environment using the World
Wide Web technology. In 21st Inter. Computer Software
and Applications Conference (COMPSAC’97), pages 594–
601, Washington, USA, Aug. 1997.

[8] W. Harrison, H. Ossher, and P. Tarr. Software engineering
tools and environments: a roadmap. In 13th Conf. on The

Future of Software Engineering (ICSE’00), pages 261–277,
New York, NY, USA, 2000.

[9] IEEE. 1471-2000 - Recommended practice for architectural
description of software-intensive systems, Sept. 2000.

[10] ISO. ISO/IEC 12207. Information technology – software
life-cycle processes, 1995.

[11] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes,
C. Maeda, and A. Menhdhekar. Aspect-oriented program-
ming. In M. Akşit and S. Matsuoka, editors, Proc. of the Eu-
ropean Conference on Object-Oriented Programming, vol-
ume 1241, pages 220–242. Springer-Verlag, 1997.

[12] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. Mujava: a mutation
system for Java. In ICSE’06 - 28th Int. Conf. on Software
Engineering, pages 827–830, New York, NY, 2006.

[13] J. C. Maldonado, M. E. Delamaro, S. C. P. F. Fabbri, A. S.
Simão, T. Sugeta, A. M. R. Vincenzi, and P. C. Masiero. Pro-
teum: A family of tools to support specification and program
testing based on mutation. In Mutation 2000 Symposium –
Tool Session, pages 113–116, San Jose, CA, Oct. 2000.

[14] J. Misurda, J. Clause, J. L. Reed, B. R. Childers, and M. L.
Soffa. Demand-driven structural testing with dynamic in-
strumentation. In 27th Int. Conf. on Software Engineering
(ICSE’05), St. Louis, Missouri, USA, May 2005.

[15] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The
Art of Software Testing. John Wiley & Sons, 2004.

[16] E. Y. Nakagawa. A Contribution to the Architectural Design
of Software Engineering Environments. Phd thesis, Univer-
sity of São Paulo, São Carlos, SP, Brazil, Aug. 2006. (in
Portuguese).

[17] E. Y. Nakagawa and J. C. Maldonado. Representing aspect-
based architecture of software engineering environments. In
1st Workshop on Aspects in Architectural Description, 6th
Int. Conf. on AOSD, Vancouver, Canada, Mar. 2007.

[18] E. Y. Nakagawa, A. S. Simão, and J. C. Maldonado. Ad-
dressing separation of concerns in software engineering en-
vironments. In IASTED Int. Conf. on Software Engineering,
Innsbruck, Austria, Feb. 2007.

[19] M. Shaw and P. Clements. The golden age of software archi-
tecture. IEEE Software, 23(2):31–39, Mar/Apr 2006.

[20] I. Sommerville. Software Engineering. Addison-Wesley
Publishing Company, 6 edition, 2001.

[21] A. M. R. Vincenzi, M. E. Delamaro, A. S. Simão, and J. C.
Maldonado. Muta-pro: Towards the definition of a mutation
testing process. In Proc. of the 6th IEEE Latin American Test
Workshop, Salvador, Bahia, Mar 2005.

[22] A. I. Wasserman. Toward a discipline of software engineer-
ing. IEEE Software, 13(6):23–31, Nov. 1996.

[23] J. Yang, J. Huang, F. Wang, and W. C. Chu. An object-
oriented architecture supporting web application testing. In
23rd Annual Int. Computer Software and Applications Con-
ference, pages 122–127, Phoenix, Arizona, USA, Oct. 1999.

162

Controlling Restricted Random Testing:
An Examination of the Exclusion Ratio Parameter

Kwok Ping Chan T. Y. Chen Dave Towey ∗

Dept. of Comp. Sci., Faculty of Information & Division of Sci. & Tech.,

The Univ. of Hong Kong Communication Technologies, BNU–HKBU United International

Pokfulam Road, Swinburne Univ. of Technology, College, Tangjiawan,

Hong Kong, China Hawthorn 3122, Australia Zhuhai, 519085, China

kpchan@cs.hku.hk tychen@it.swin.edu.au davetowey@uic.edu.hk

Abstract

In Restricted Random Testing (RRT), the main con-
trol parameter is the Target Exclusion Ratio (R),
the proportion of the input domain to be excluded
from test case generation at each iteration. Empir-
ical investigations have consistently indicated that
best failure-finding performance is achieved when
the value for the Target Exclusion Ratio is max-
imised, i.e. close to 100%. This paper explains
an algorithm to calculate the Actual Exclusion Ra-
tio for RRT, and applies the algorithm to several
simulations, confirming that previous empirically
determined values for the Maximum Target Exclu-
sion Ratio do give Actual Exclusion Ratios close to
100%. Previously observed trends of improvement
in failure-finding efficiency of RRT corresponding
to increases in Target Exclusion Ratios are also
identified for Actual Exclusion Ratios.

KEYWORDS: Software Testing; Random Test-
ing; Adaptive Random Testing; Restricted Ran-
dom Testing; Exclusion Ratio.

1. Introduction

Random Testing incorporating additional
mechanisms to ensure more widespread distri-
butions of test cases over an input domain have
been called Adaptive Random Testing (ART)

∗Corresponding author

[2, 3, 4, 5, 6, 7]. It is considered a promising
direction of automatic test case generation [8].

A version of ART, based on the use of ex-
clusion, is the Restricted Random Testing (RRT)
method [2]. By excluding regions surrounding
previously executed test cases, and restricting sub-
sequent cases to be drawn from other areas of the
input domain, RRT ensures an even distribution,
and guarantees a minimum distance amongst all
cases. In experiments, the RRT method has out-
performed RT by up to 80% on some occassions.

It has been observed that the failure-finding ef-
ficiency of RRT improved as the Target Exclus-
tion Ratio (R) was increased, with the best failure-
finding efficiency achieved when R was at a maxi-
mum [2]. The Max R refers to the maximum value
for R beyond which the Actual Exclusion Ratio is
too close to 100% for test cases to be generated.

The difference between Target and Actual ex-
clusion is due to (1) Overlapping (Olp) of exclu-
sion regions; and (2) portions of the exclusion re-
gions falling Out the Input Domain (OID). Be-
cause of the importance of the Max R, the ability
to accurately determine the Actual Exclusion Ratio
for a given Target Exclusion Ratio was desirable.

In this paper, we explain an algorithm to calcu-
late the Actual Exclusion Ratio and give the results
of an application of the algorithm to estimate the
expected Actual Exclusion Ratio for a given Tar-
get Exclusion Ratio. These results confirm that the

163

Input Domain Boundary

(a) (b)

Figure 1. (a) Example of Overlapping (Olp) of exclu-
sion regions (b) Example of portion of an exclusion re-
gion falling Outside the Input Domain (OID)

Actual Exclusion for Target Exclusion Ratio val-
ues near Max R is close to 100%. They also show
that the Actual Exclusion does increase as Target
Exclusion increases.

2. Maximum Target Exclusion

In RRT, given a test case that has not revealed
failure, the area of the input domain from which
subsequent test cases may be drawn is restricted.
By employing a hyperspherical zone, a minimum
distance (the radius of the exclusion zone) between
all test cases is ensured.

All exclusion zones are of equal size, and this
size decreases with successive test case executions.
The size of each zone is related to both the size of
the entire input domain, and the number of previ-
ously executed test cases.

The final (and most important) determinant of
exclusion zone size in RRT is the Exclusion Ratio
(R). This figure is applied to the total area of the
input domain to obtain the total exclusion area.

During the execution of the RRT algorithm, the
Actual Exclusion Ratio is usually less than the Tar-
get Ratio. This occurs when there is Overlapping
(Olp) of exclusion regions (Fig. 1(a)); or when
some portion of an exclusion region falls outside
of the Input Domain, (OID) (Fig. 1(b)); or when
some combination of both these situations occurs.

We defined the maximum target exclusion ratio
(Max R) as the highest R at which it is still possi-
ble to generate test cases for a full sample size, n.
Because of the difficulty of an analytical investiga-
tion of Max R, simulations were run to investigate
what factors influenced it. In the simulations, the

Figure 2. Results of Maximum Target Exclusion Rate
(Max R) calculation for a homogeneous input domain.
Sample size (n) is 100, and number of exclusion regions
varies from 100 to 4,000

number of regions was varied from 100 to 4,000,
the sample size (n) was set at 100, and R was in-
cremented by 10% each time. A limit of 100,000
on the number of attempts to generate a valid test
case was imposed for each test case. The input do-
main shape was homogeneous (square in 2D, cube
in 3D, and hypercube in 4D). The results are sum-
marized in Fig. 2. They indicate that, when the
number of exclusion regions is lower, the maxi-
mum target exclusion (Max R) is higher.

Because of the importance of the relation be-
tween Actual and Target Exclusion, an algorithm
to calculate the Actual Exclusion Ratio was devel-
oped. As the best failure-finding performance was
obtained when circular regions were used [1], our
algorithm calculates Actual Exclusion for circular
exclusion regions.

3. Actual Exclusion Ratio Calculation

In this section, the algorithm for calculating the
Actual Exclusion Ratio is explained. The method
examines the distribution of test cases and their ex-
clusion regions, and calculates the loss of exclu-
sion region area caused by Overlapping (Olp) of
regions, and by portions of regions falling Outside
the Input Domain (OID).

164

OID area

�

OID area
� h

b

(a) (b) (c)

Figure 3. (a) OID when TC is in a non-corner region
of the gutter (b) OID when TC is in a corner region (c)
Partitioning of OID for area calculation

3.1. Actual Exclusion Ratio Calculation
Algorithm

The Actual Exclusion will differ from the Tar-
get Exclusion when any combination of the fol-
lowing occurs: (a) OID — occur when any pre-
viously executed test case (TCx) lies within a dis-
tance r of the input domain border (this area of
depth r inside the border is referred to as the gut-
ter). (b) Olp — occur when any previously ex-
ecuted test cases (TCx,TCy) are within twice the
exclusion zone radius of each other.

To calculate the Actual Exclusion Ratio, we
first find the Target Exclusion Area, and then sub-
tract the total area of OID, and then subtract the
area of Olp inside the Input Domain.

3.2. Calculation of OID

First, the location of each previously executed
test case is examined to determine whether it will
have any portion of its exclusion zone lying out-
side the Input Domain. This occurs when the TC
is within distance r (exclusion radius) of the Input
Domain border. There are two cases.

The OID area for the TCs not lying in the cor-
ners of the gutter can be straightforwardly calcu-
lated from the area of the circle segment formed
when the Input Domain border, acting as the
secant, cuts the exclusion region circle.

Calculation of the OID area for the TCs which
are in the corners of the gutter requires partition-
ing the OID region into three smaller regions, as
shown in Fig. 3(b). Fig. 3(c) shows how this area is
partitioned into a triangle and two circle segments.

OlpOID area i

m n
i

m

nw

t
c

(a) (b)

Figure 4. (a) Example of OlpOID and Input Domain
on only one border (b) Example of OlpOID and Input
Domain on two borders

3.3. Calculation of Olp

First, every pair of executed test cases is ex-
amined to see if there is any overlap between
their exclusion regions. The overlap is calculated
by bisecting the region with the line through the
intersections of the circles, creating 2 identical
circle segments.

Next, the location of the circles’ intersection
points (ip) is checked. If an intersection point is
outside the Input Domain, some of the Olp area
will also lie outside, and must be subtracted from
the total Olp loss. The portion of Olp lying Outside
the Input Domain is referred to as OlpOID.

For an intersection point (ip) outside the Input
Domain, the area of the Overlap lying Outside the
Input Domain (OlpOID) is calculated in one of
two ways, according to whether the OlpOID area
touches the Input Domain on one or two borders.

3.4. Calculation of OlpOID

When the OlpOID is on only one border
(Fig. 4(a)), the area can be calculated by totaling
the areas of the triangle formed by the intersection
of the circles (i in Fig. 4(a)) and the intersections
of the arcs from i to the border (m and n), and the
two circle segments formed by the chords from the
intersection of the circles to the intersections of the
arcs and the border.

When the OlpOID is on two borders, the
region is split into three triangles and three
circle segments, as shown in Fig. 4(b). The area
of these regions can be easily calculated.

165

Table 1. Target vs Actual exclusion ratios for RRT .
Target Actual Exclusion (%)
Excl. Total Number of Exclusion Zones
Ratio 10 50 100 150 500 1000 5000 10000

1% 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00
20% 18.21 18.87 19.05 19.12 19.28 19.34 19.41 19.43
40% 34.15 36.03 36.51 36.72 37.14 37.29 37.50 37.55
60% 48.05 51.33 52.15 52.55 53.26 53.52 53.89 53.98
80% 60.22 64.62 65.69 66.17 67.20 67.59 68.09 68.21

100% 70.16 75.48 76.76 77.33 78.52 78.95 79.50 79.64
120% 78.29 83.69 84.97 85.51 86.61 86.97 87.47 87.58
140% 84.60 89.12 90.07 90.42 90.98 91.15 91.33 91.36
160% 88.72 91.68 91.88 91.75 91.37 91.12 90.70 90.57

4. Actual Exclusion Ratio

The algorithms described were applied to sev-
eral simulations, varying the Target Exclusion Ra-
tio, and the total number of executed test cases.
The simulations were conducted within a square
input domain.

Table 1 shows the results for different numbers
of exclusion regions (10 to 10,000), averaged over
1,000 trials. In the table, Target Exclusion is the
percentage area of the Input Domain which we at-
tempt to exclude from random point generation,
this was varied from 1% to 160%. Actual Exclu-
sion is the average percentage of the Input Domain
which is actually excluded by the exclusion zones.

As expected, there is a difference between the
Target and Actual Exclusion, and this difference
appears to become more pronounced as the num-
ber of test cases increases, and also as the Target
Exclusion Ratio increases. It also confirms that
the Actual Exclusion ratios increase with R, i.e.,
the improvement in failure-finding efficiency does
correspond to increases in the Actual Exclusion.

By nature, Max R may vary with the sample
size. Table 1 shows that around the Max R values,
the Actual Exclusion Ratio is very close to 100%.
However, with high Actual Exclusion, the number
of attempts necessary to generate a test case out-
side the exclusion regions increases: e.g. 99% ex-
clusion leaves only 1% of the input domain outside
the exclusion regions, which would take an aver-
age of 100 (1/1%) trials to find.

5. Summary

In this paper, we presented an algorithm for cal-
culating the Actual Exclusion Ratio, in 2D, for
the RRT method. We also presented the results
of simulations for various numbers of test cases,
and varying Target Exclusion Ratios. These re-
sults confirmed that the Actual Exclusion does
increase as Target Exclusion increases. Hence,
the improvements for failure-finding efficiency are
linked to increases in Actual Exclusion. Also, the
Actual Exclusion Ratio for Target Exclusion Ratio
near Max R is indeed close to 100%. The results
provide stronger theoretical support for RRT.

Acknowledegment

This project is partially supported by an Australian
Research Council Discovery Grant (DP0557246).

References

[1] K. P. Chan, T. Y. Chen, and D. Towey, “Adaptive Ran-
dom Testing with Filtering: An Overhead Reduction Tech-
nique”, 17th Int. Conf. on Software Engg. and Knowledge
Engg. (SEKE’05), Taipei, Taiwan, July 14-16, 2005.

[2] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted Random
Testing: Adaptive Random Testing by Exclusion”, Int. J. of
Software Engg. and Knowledge Engg., Vol. 16, No. 4, pp.
553–584, 2006.

[3] T. Y. Chen, F. C. Kuo, R. G. Merkel, S. P. Ng, “Mirror
Adaptive Random Testing”, Inf. and Software Tech., Vol.
46, No. 15, pp. 1001–1010, 2004.

[4] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive Random
Testing”, Lecture Notes in Comp. Sci., Vol. 3321, pp. 320–
329, Jan 2004.

[5] J. Mayer, “Adaptive Random Testing by Bisection and Lo-
calization”, 5th Int. Workshop on Formal Approaches to
Testing of Software (FATES 2005), LNCS 3997, Springer-
Verlag, pp. 72–86, 2006.

[6] J. Mayer, “Adaptive Random Testing by Bisection with Re-
striction”, Formal Methods and Software Engg, 7th Int.
Conf. on Formal Engg. Methods (ICFEM 2005), LNCS
3785, Springer-Verlag, pp. 251–263, 2005.

[7] J. Mayer, “Lattice-Based Adaptive Random Testing”, 20th
IEEE/ACM Int. Conf. on Automated Software Engg., pp.
333–336, 2005.

[8] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Object Dis-
tance And Its Application To Adaptive Random Testing Of
Object-Oriented Programs”, 1st International Workshop
on Random Testing (ISSTA-RT 2006), pp. 55-63, 2006.

166

An Approach to Software Testing of Machine Learning Applications

Christian Murphy Gail Kaiser Marta Arias
Dept. of Computer Science

Columbia University
New York, NY

cmurphy@cs.columbia.edu

Dept. of Computer Science
Columbia University

New York, NY
kaiser@cs.columbia.edu

Center for Computational
Learning Systems

Columbia University
New York, NY

marta@ccls.columbia.edu

Abstract

Some machine learning applications are intended to
learn properties of data sets where the correct answers
are not already known to human users. It is
challenging to test such ML software, because there is
no reliable test oracle. We describe a software testing
approach aimed at addressing this problem. We
present our findings from testing implementations of
two different ML ranking algorithms: Support Vector
Machines and MartiRank.

1. Introduction

We investigate the problem of making machine
learning (ML) applications dependable, focusing on
software testing. Conventional software engineering
processes and tools do not neatly apply: in particular, it
is challenging to detect subtle errors, faults, defects or
anomalies (henceforth “bugs”) in the ML applications
of interest because there is no reliable “test oracle” to
indicate what the correct output should be for arbitrary
input. The general class of software systems with no
reliable test oracle available is sometimes known as
“non-testable programs” [1]. These ML applications
fall into a category of software that Davis and Weyuker
describe as “Programs which were written in order to
determine the answer in the first place. There would be
no need to write such programs, if the correct answer
were known” [2]. Formal proofs of an ML algorithm’s
optimal quality do not guarantee that an application
implements or uses the algorithm correctly, and thus
software testing is needed. Our testing, then, does not
seek to determine whether an ML algorithm learns
well, but rather to ensure that an application using the
algorithm correctly implements the specification and
fulfills the users’ expectations.

In this paper, we describe our approach to testing
ML applications, in particular those that implement
ranking algorithms (a requirement of the real-world
problem domain). Of course, in any software testing, it
is possible only to show the presence of bugs but not
their absence. Usually when input or output
equivalence classes are applied to developing test
cases, however, the expected output for a given input is
known in advance. Our research seeks to address the
issue of how to devise test cases that are likely to reveal
bugs, and how one can indeed know whether a test
actually is revealing a bug, given that we do not know
what the output should be in the general case.

Our approach for creating test cases consists of
three facets: analyzing the problem domain and the
corresponding real-world data sets; analyzing the
algorithm as it is defined; and analyzing the
implementation’s runtime options. While this approach
is conventional, not novel, a number of issues arise
when applying it to determining equivalence classes
and generating data sets for testing ML ranking code.

We present our findings to date from two case
studies: our first concerns the Martingale Boosting
algorithm, which was developed by Long and Servedio
[3] initially as a classification algorithm and then
adapted by Long and others into a ranking algorithm
called MartiRank [4]; we then generalized the approach
and applied it to an implementation of Support Vector
Machines (SVM) [5] called SVM-Light [6].

2. Background

We are concerned with the development of an ML
application commissioned by a company for potential
future experimental use in predicting impending device
failures, using historic data of past device failures as
well as static and dynamic information about the
current devices. Classification in the binary sense (“will
fail” vs. “will not fail”) is not sufficient because, after
enough time, every device will eventually fail. Instead,

167

a ranking of the propensity of failure with respect to all
other devices is more appropriate. The prototype
application uses both the MartiRank and SVM
algorithms to produce rankings; the dependability of
the implementations has real-world implications, rather
than just academic interest. We do not discuss the full
application further in this paper; see [4] for details.

2.1. Machine learning fundamentals

In general, there are two phases to supervised
machine learning. The first phase (called the learning
phase) analyzes a set of training data, which consists of
a number of examples, each of which has a number of
attribute values and one label. The result of this
analysis is a model that attempts to make
generalizations about how the attributes relate to the
label. In the second phase, the model is applied to
another, previously-unseen data set (the testing data)
where the labels are unknown. In a classification
algorithm, the system attempts to predict the label of
each individual example; in a ranking algorithm, the
output of this phase is a ranking such that, when the
labels become known, it is intended that the highest
valued labels are at or near the top of the ranking, with
the lowest valued labels at or near the bottom.

One complication in this effort arose due to
conflicting technical nomenclature: “testing”,
“regression”, “validation”, “model” and other relevant
terms have very different meanings to machine learning
experts than they do to software engineers. Here we
employ the terms “testing” and “regression testing” as
appropriate for a software engineering audience, but we
adopt the machine learning sense of “model” (i.e., the
rules generated during training on a set of examples)
and “validation” (measuring the accuracy achieved
when using the model to rank the training data set with
labels removed, rather than a new data set).

2.2. MartiRank and SVM

MartiRank [4] was specifically designed as a
ranking algorithm with the device failure application in
mind. In the learning phase, MartiRank executes a
number of “rounds”. In each round the set of training
data is broken into sub-lists; there are N sub-lists in the
Nth round, each containing 1/Nth of the total number of
device failures. For each sub-list, MartiRank sorts that
segment by each attribute, ascending and descending,
and chooses the attribute that gives the best “quality”.
The quality of an attribute is assessed using a variant of
the Area Under the Curve (AUC) [7] that is adapted to
ranking rather than binary classification. The model,

then, describes for each round how to split the data set
and on which attribute and direction to sort each
segment for that round. In the second phase, MartiRank
applies the segmentation and the sorting rules from the
model to the testing data set to produce the ranking (the
final sorted order).

SVM [5] belongs to the “linear classifier” family of
ML algorithms that attempt to find a (linear)
hyperplane that separates examples from different
classes. In the learning phase, SVM treats each
example from the training data as a vector of K
dimensions (since it has K attributes), and attempts to
segregate the examples with a hyperplane of K-1
dimensions. The type of hyperplane is determined by
the SVM’s “kernel”: here, we investigate the linear,
polynomial, and radial basis kernels. The goal is to find
the maximum margin (distance) between the “support
vectors”, which are the examples that lie closest to the
surface of the hyperplane; the resulting hyperplane is
the model. As SVM is typically used for binary
classification, ranking is done by classifying each
individual example (irrespective of the others) from the
testing data according to the model, and then recording
its distance from the hyperplane. The examples are then
ranked according to this distance.

2.3. Related work

Although there has been much work that applies
machine learning techniques to software engineering in
general and software testing in particular (e.g., [8]),
there seems to be very little published work in the
reverse sense: applying software testing techniques to
ML software. There has been much research into the
creation of test suites for regression testing [9] and
generation of test data sets [10, 11], but not applied to
ML code. Repositories of “reusable” data sets have
been collected (e.g., the UCI Machine Learning
Repository [12]) for the purpose of comparing result
quality, but not for the software engineering sense of
testing. Orange [13] and Weka [14] are two of several
frameworks that aid ML developers, but the testing
functionality they provide is focused on comparing the
quality of the results, not evaluating the “correctness”
of the implementations.

3. Software Testing Approach

3.1. Analyzing the problem domain

The first part of our approach is to consider the
problem domain and try to determine equivalence
classes based on the properties of real-world data sets.

168

We particularly look for traits that may not have been
considered by the algorithm designers, such as data set
size, the potential ranges of attribute and label values,
and what sort of precision is expected when dealing
with floating point numbers.

The data sets of interest are very large, both in terms
of the number of attributes (hundreds) and the number
of examples (tens of thousands). The label could be any
non-negative integer, although it was typically a 0
(indicating that there was no device failure) or 1
(indicating that there was), and rarely was higher than 5
(indicating five failures over a given period of time).

The attribute values were either numerical or
categorical. Many non-categorical attributes had
repeated values and many values were missing, raising
the issues of breaking “ties” during sorting and
handling unknowns. We do not discuss categorical
attributes further (because we found no relevant bugs).

3.2. Analyzing the algorithm as defined

The second element to our approach to creating test
cases was to look at the algorithm as it is defined (in
pseudocode, for instance) and inspect it carefully for
imprecisions, particularly given what we knew about
the real-world data sets as well as plausible “synthetic”
data sets. This would allow us to speculate on areas in
which flaws might be found, so that we could create
test sets to try to reveal those flaws. Here, we are
looking for bugs in the specification, not so much bugs
in the implementation. For instance, the algorithm may
not explicitly explain how to handle missing attribute
values or labels, negative attribute values or labels, etc.

Also, by inspecting the algorithm carefully, one can
determine how to construct “predictable” training and
testing data sets that should (if the implementation
follows the algorithm correctly) yield a “perfect”
ranking. This is the only area of our work in which we
can say that there is a “correct” output that should be
produced by the ML algorithm.

For instance, we know that SVM seeks to separate
the examples into categories. In the simplest case, we
could have labels of only 1s and 0s, and then construct
a data set such that, for example, every example with a
given attribute equal to a specific value has a label of 1,
and every example with that attribute equal to any other
value has a label of 0. Another approach would be to
have a set or a region of attribute values mapped to a
label of 1, for instance “anything with the attribute set
to X, Y or Z” or “anything with the attribute between A
and B” or “anything with the attribute above M”. We
could also create data sets that are predictable but have
noise in them to try to confuse the algorithm.

Generating predictable data sets for MartiRank is a
bit more complicated because of the sorting and
segmentation. We created each predictable data set by
setting values in such a way that the algorithm should
choose a specific attribute on which to sort for each
segment for each round, and then divided the
distribution of labels such that the data set will be
segmented as we would expect; this should generate a
model that, when applied to another data set showing
the same characteristics, would yield a perfect ranking.

3.3. Analyzing the runtime options

The last part of our approach to generating test
cases for ML algorithms is to look at their runtime
options and see if those give any indication of how the
implementation may actually manipulate the input data,
and try to design data sets and tests that might reveal
flaws or inconsistencies in that manipulation.

For example, the MartiRank implementation that we
analyzed by default randomly permutes the order of the
examples in the input data so that it would not be
subject to the order in which the data happened to be
constructed; it was, however, possible to turn this
permutation off with a command-line option. We
realized, though, that in the case where none of the
attribute values are repeating, the input order should
not matter at all because all sorting would necessarily
be deterministic. So we created test cases that random-
ly permuted such a data set; regardless of the input
order, we should see the same final ranking each time.

SVM-Light has numerous runtime options that deal
with optimization parameters and variables used by the
different kernels for generating the hyperplane(s). To
date we have only performed software testing with the
default options, although we did test with three of the
different kernels: linear, polynomial, and radial basis.

4. Findings

To facilitate our testing, we created a set of utilities
targeted at the ML algorithms we investigated. The
utilities currently include: a data set generator; tools to
compare a pair of output models and rankings; several
trace options inserted into the ML implementations;
and tools to help analyze the intermediate results
indicated by the traces.

Using our testing approach, we devised the
following basic equivalence classes: small vs. large
data sets; repeating vs. non-repeating attribute values;
missing vs. non-missing attribute values; repeating vs.
non-repeating labels; negative labels vs. non-negative-
only labels; predictable vs. non-predictable data sets;

169

and combinations thereof. These equivalence classes
were then used to parameterize the test case selection
criteria applied by our data generator tool to automate
creation of appropriate input data sets.

We first applied our approach to creating the
selective test cases for execution by MartiRank. We
then generalized the approach and applied it to SVM-
Light. Here we describe our most important findings.

4.1. Testing MartiRank

The MartiRank implementation did not have any
difficulty handling large numbers of examples, but for
larger than expected numbers of attributes it
reproducibly failed (crashed). Analyzing the tracing
output and then inspecting the code, we found that
some code that was only required for one of the
runtime options was still being called even when that
flag was turned off – but the internal state was
inappropriate for that execution path. We refactored the
code and the failures disappeared.

Our approach to creating test cases based on
analysis of the pseudocode led us to notice that the
MartiRank algorithm does not explicitly address how to
handle negative labels. Because the particular
implementation we were testing was designed
specifically to predict device failures, which would
never have a negative number as a label, this was not
considered during development. However, the
implementation did not complain about negative labels
but produced obviously incorrect results when a
negative label existed. In principle a general-purpose
ranking algorithm should allow for negative labels (-1
vs. +1 is sometimes used in other applications).

Also, by inspecting the algorithm and considering
any potential vagueness, we developed test cases that
showed that different interpretations could lead to
different results. Specifically, because MartiRank is
based on sorting, we questioned what would happen in
the case of repeating values; in particular, we were
interested to see whether “stable” sorting was used, so
that the original order would be maintained in the case
of ties. We constructed data sets such that, if a stable
sort were used, a perfect ranking would be achieved
because examples with the same value for a particular
attribute would be left in their original order; however,
if the sort were not stable, then the ranking would not
necessarily be perfect because the examples could be
out of order. Our testing showed that the sorting routine
was not, in fact, stable. Though this was not specified
in the algorithm, the developers agreed that it would be
preferable to have a stable sort for deterministic results
– so we substituted another, “stable” sorting routine.

4.2. Regression testing

A desirable side effect of our testing has been to
create a suite of data sets that can then be used for
regression testing purposes. Development of the
MartiRank implementation is ongoing, and our data
sets have been used successfully to find newly-
introduced bugs. For example, after a developer
refactored some repeated code and put it into a new
subroutine, regression testing showed that the resulting
models were different than for the previous version.
Inspection of the code revealed that a global variable
was incorrectly being overwritten, and after the bug
was fixed, regression testing showed that the same
results were once again being generated.

4.3. Testing multiple implementations

Davis and Weyuker suggest a “pseudo-oracle” as
the solution to testing non-testable programs, i.e.
constructing a second implementation and comparing
the results of the two implementations on the same
inputs [2]. Should multiple implementations of an
algorithm happen to exist, our approach could be used
to create test cases for such comparison testing. If they
are not producing the same results, then presumably
one or both implementations has a bug.

There are conveniently multiple implementations of
the MartiRank algorithm: the original written in Perl
and then a faster version written in C (most of the
above discussion is with respect to the C
implementation, except the bug mentioned for
regression testing was in the Perl version). Using one
as a “pseudo-oracle” for the other, we noticed a
difference in the rankings they produced during testing
with the equivalence class of missing attribute values.
Using traces to see how the examples were being
ordered during each sorting round, we noticed that the
presence of missing values was causing the known
values to be sorted incorrectly by the Perl version. This
was due to using a Perl starship comparison operator
that assumed transitivity among comparisons even
when one of the values in the comparisons was missing,
which is incorrect.

4.4. Generalization to SVM-Light

After completing the testing of MartiRank, we then
generalized the approach and applied it to SVM-Light.

We did not uncover any issues with respect to most
of the test cases involving unexpected values (such as
negative labels or missing attributes) or repeating

170

attribute values. However, with the linear and
polynomial kernels, permuting the training data caused
SVM-Light to create different models for different
input orders. This occurred even when all attributes and
labels were distinct – thus removing the possibility that
ties between equal or missing values would be broken
depending on the input order. We confirmed that these
models were not “equivalent” by using the same testing
data with each pair of such different models, and
indeed obtained two different rankings. The practical
implication is that the order in which the training data
happens to be assembled can have an effect on the final
ranking. This did not happen for the radial basis kernel
in any of our tests to date.

Our analysis of the SVM algorithm indicates that it
theoretically should produce the same model regardless
of the input data order; however, an ML researcher
familiar with SVM-Light told us that because it is
inefficient to run the quadratic optimization algorithm
on the full data set all at once, the implementation
performs “chunking” whereby the optimization
algorithm runs on subsets of the data and then merges
the results [15]. Numerical methods and heuristics are
used to quickly converge to the optimum. However, the
optimum is not necessarily achieved, but instead this
process stops after some threshold of improvement.
This is one important area in which the implementation
deviates from the specification.

Our other key findings came from those test cases
involving “predictable” rankings. We created a small
data set by hand that should yield a perfect ranking in
SVM: for the first attribute, every example that had a
value less than X (where X is some integer) had a label
of one; everything else had a label of zero. There were
two other columns of random noise. All three kernels
correctly ranked the examples. In another test,
however, we changed the labels so that they were all
different – simply equal to the value of that row’s first
attribute incremented by 1. The linear and radial basis
kernels found the perfect ranking but the polynomial
kernel did not. We assumed that this was because of the
noise, so we removed the noise and it indeed found the
perfect ranking. This was the only case in our testing in
which noise in the data set caused SVM-Light to fail to
find the perfect ranking.

In other test cases with predictable rankings, we
noticed that different kernels exhibited different
behaviors with respect to how they performed on
different types of data sets. For example, the linear and
polynomial kernels could find the perfect rankings
when a particular attribute had a range of values that
correlated to a label of 1, but the radial basis kernel
only found the perfect rankings when an attribute had a

single value that correlated. This difference is, after all,
the motivation for multiple kernels, but from our
perspective it shows that what is predictable for one
kernel is not always predictable for another.

Finally, although there are multiple imple-
mentations of the SVM algorithm, our testing did not
include comparison testing (using one as a “pseudo-
oracle” for another). We leave this as future work.

5. Discussion

Our approach was successful in that it helped us
discover bugs in the implementations and discrepancies
from the stated algorithms. By inspecting the
algorithms, we could create predictable data sets that
should yield perfect rankings and indicate whether the
algorithm was implemented correctly; we could also
see where the imprecisions were, especially in the case
of MartiRank with respect to sorting missing or
repeated values. Lastly, by considering the runtime
options, we conceived test cases that permuted the
input data, revealing an inconsistency in SVM-Light.

Possibly the most important thing we discovered is
that what is “predictable” for one algorithm will not
necessarily lead to a perfect ranking in another. For
instance, in cases when the examples with a 1 label
have a particular attribute whose value is in the middle
of a range, it is hard for MartiRank to get that example
towards the top of the ranking, though this is possible
for most SVM kernels.

Also, as noted, although MartiRank is based on
sorting, it does not specify whether the sorting of
attributes should use a “stable” sort, so we found
problems with how repeated or missing attribute values
were handled. We also noticed that the algorithm states
that each partition should have the same number of
failures, but it does not address how many non-failures
should appear in each partition, i.e. whether the
dividing point is above or below those non-failures, or
how the failures should be split amongst partitions
when it is impossible to do so evenly.

We also discovered that tracing of intermediate state
can be useful, because even though we may not know
what the final output should be, inspection of the
algorithm could indicate what to expect from the
intermediate results. In the case of MartiRank, we
could inspect the rankings at the end of each round and
see how the examples were being sorted; this led us to
discover the unstable sorting problem.

Although our testing to date has focused only on
two ML algorithms, by developing the testing approach
for MartiRank and then applying it to SVM-Light, we
have shown that our approach and even specific test

171

cases can be generalized to other ML ranking
algorithms, which are likely to require many of the
same equivalence classes discussed here. The general
approach also seems appropriate to software testing of
the implementations of supervised ML classification
algorithms. The primary difference is that classification
algorithms seek to categorize each single example, not
rank-order a group of them, but investigating the
problem domain and considering the algorithm as
defined as well as the code’s runtime options (if any)
should still apply.

6. Limitations and Future Work

We have not yet addressed the issue of test suite
adequacy, e.g. to extend our data generation tool to
automatically generate sets of test cases that
collectively cover all statements, branches or
paths. Further, mutation analysis could be used for
evaluating and improving the effectiveness of a given
test suite. We leave these as future directions.

Other future work could include the investigation of
automatically generating data sets that exhibit the same
correlations among attributes and between attributes
and labels as do real-world data, such as in [16].
Additionally, since some ML algorithms are
intentionally non-deterministic and necessarily rely on
randomization, more detailed trace analysis techniques
should be investigated towards determining software
implementation correctness.

7. Acknowledgements

Numerous people contributed to this effort. We
would particularly like to thank David Waltz, Wei Chu,
John Gallagher, Philip Gross, Bert Huang, Phil Long
and Rocco Servedio for their assistance and
encouragement. Murphy and Kaiser are members of the
Programming Systems Lab, funded in part by NSF
CNS-0627473, CNS-0426623 and EIA-0202063, NIH
1 U54 CA121852-01A1, and are also affiliated with the
Center for Computational Learning Systems (CCLS).
Arias is fully supported by CCLS, with funding in part
by Consolidated Edison Company of New York.

8. References

[1] E.J. Weyuker, “On Testing Non-Testable Programs”,
Computer Journal vol.25 no.4, November 1982, pp.465-470.

[2] M.D. Davis and E.J. Weyuker, “Pseudo-Oracles for Non-
Testable Programs”, Proceedings of the ACM ’81
Conference, 1981, pp. 254-257.

[3] P. Long and R. Servedio, “Martingale Boosting”,
Eighteenth Annual Conference on Computational Learning
Theory (COLT), Bertinoro, Italy, 2005, pp. 79-94.

[4] P. Gross et al.,“Predicting Electricity Distribution Feeder
Failures Using Machine Learning Susceptibility Analysis”,
Proceedings of the Eighteenth Conference on Innovative
Applications in Artificial Intelligence, Boston MA, 2006.

[5] V.N. Vapnik, The Nature of Statistical Learning Theory.
Springer, 1995.

[6] T. Joachims, Making large-Scale SVM Learning
Practical. Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf and C. Burges and A. Smola (ed.),
MIT-Press, 1999.

[7] J.A. Hanley and B. J. McNeil, “The meaning and use of
the area under a receiver operating characteristic (ROC)
curve”, Radiology vol.143, 1982, pp. 29-36.

[8] T.J. Cheatham, J.P. Yoo and N.J. Wahl, “Software
testing: a machine learning experiment”, Proceedings of the
1995 ACM 23rd Annual Conference on Computer Science,
Nashville TN, 1995, pp. 135-141.

[9] G. Rothermel et al., “On Test Suite Composition and
Cost-Effective Regression Testing”, ACM Transactions on
Software Engineering and Methodology, vol.13, no.3, July
2004, pp 277-331.

[10] B. Korel, “Automated Software Test Data Generation”,
IEEE Transactions on Software Engineering vol.16 no.8,
August 1990, pp.870-879.

[11] C.C. Michael, G. McGraw and M.A. Schatz,
“Generating Software Test Data by Evolution”, IEEE
Transactions on Software Engineering, vol.27 no.12,
December 2001, pp.1085-1110.

[12] D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz,
UCI Repository of machine learning databases, University
of California, Department of Information and Computer
Science, Irvine CA, 1998.

[13] J. Demsar, B. Zupan and G. Leban, Orange: From
Experimental Machine Learning to Interactive Data Mining,
[www.ailab.si/orange], Faculty of Computer and Information
Science, University of Ljubljana.

[14] I.H. Witten and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques, 2nd Edition,
Morgan Kaufmann, San Francisco, 2005.

[15] R. Servedio, personal communication, 2006.

[16] E. Walton, Data Generation for Machine Learning
Techniques, University of Bristol, 2001.

172

��������	
������������	���������������������	����	�������
����������	�������������

�

Alexandre Lazaretti Zanatta

ICEG - Ciência da Computação
Universidade de Passo Fundo

Brazil

Patrícia Vilain

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina

Brazil

zanatta@upf.br vilain@inf.ufsc.br

��������	� ��������	�
� 	

��
���� 	�� �	
���� ����� ������
��

����
���	
������
�����	�������
����	������
�	�����	��
�
�������������� ����	�
����	����
��������
������������
��
������������ 	��	�� ����� 	����� ��
���� ������
� ����� ���

�� �������
	
���� 	��� ���
���� �����������
�	��
���	����
���������
�����������������������	�������
�
����
����������
��� �
� �������� ����	
����� ��
� !!"� #���������
��
!	�	�����
� 	��� $���������
� �������� 	��	��� %�� 	�	�
��&��������	��������������������������
�����
�
��������
��
��� ��� ��
� �������� 	��	��
	
� 	��� ������
��� ��
� 	��
������������������%��	�������	����	���	
���
����������
���������	����
�	�������������
����	��&	
�������������
��
����
	
� ��� ���������
�� ���� 	����� ��
���� ��
� !!"�
������� 	�� �����	��
�����	��&	
���� �������	����
��	�����
����	����	�����

1. Introduction

The application of agile methods in the software
development process has recently demanded the software
engineering area to review some of its practices. This is
especially true for the requirements engineering area,
where some documentation and control procedures usually
used in traditional processes are neglected by agile meth-
ods. Agile principles presented in the agile manifest [4]
show that some of the practices related to requirements
engineering are important, such as a clear understanding of
requirements. But at the same time, agile methods are
against the idea of generating too much documentation as
they claim some documentation will never be read. In fact,
such methods do not provide details on how requirements
should be documented or how requirements traceability
should be kept, which may have an impact in the quality of
the software produced.

Discussions about the integration between agile
methods and software quality models have become more
usual, specially in the requirements engineering area [12].
[7], [2], [1], and [6] bring up a relatively recent discus-
sion: Is Agile Software Development compatible with the
CMMI model? They present differences and similarities in
both approaches and consider that software engineering is
going through a new phase called Traditional Software
Development versus Agile Software Development. In fact,
this is currently a polemic discussion and there has been

no agreement whether agile methods are compatible to
software quality models such as CMMI or not. [2] also
emphasizes the difference in the meaning of quality work
between agile methods and quality models. In quality
models, quality is mostly defined by the conformance to
processes and specifications, while in agile methods qual-
ity is determined by customer satisfaction. Further, soft-
ware quality models, as SW-CMM (Capability Maturity
Model for software) and CMMI1 (Capability Maturity
Model Integration), were created for large organizations
that usually apply rigid quality standards. ���������	
���
����� �	����	� �	� 	����	
�	� ��� �����
��� ������	�������� �	�
��		
�����	��	������
����������	���������	���	������
���
�� ��� ���� ��� ���� �	� �������	� ���� ! ������ �
� �	� ���
��
�"����
#��

According to [3], the purpose of CMMI is to estab-
lish a guide for an organization to improve its process and
its capability for managing, acquiring and maintaining
products and services. This work proposes an extension to
the agile method Scrum, called xScrum, as an effort to
provide compatibility between Scrum and CMMI in Re-
quirements Management and Development process areas.
To accomplish this goal, Scrum is analyzed and some
guidelines are defined in order to fulfill the requisites that
are currently not addressed in Scrum for those two process
areas.

Scrum was chosen because it is the agile method
with the better capacity to be adapted to larger projects [2]
and because it is deficient in mechanisms to control the
requirements process. The goal of the agile method Scrum
is to define a process for object-oriented software devel-
opment focused on people and it is indicated for environ-
ments where requirements rapidly change. ��� ��	��
���
�	! ��	� ��� ������	� �
�� ��	������ �	�
�! 	� ����	���� ����
�	� �������	� �	�	����	
�� ���	#� ��� ������� 	�������	�� ��
�	�� ��� ��
��	�	
�� � �	�� �
�� �������	�� ���� � ��� �	�
�����	�������	����$	�������	�� ��	��� �#

This paper is organized as follows. Section 2 ana-
lyzes the conformance of Scrum to Requirements Man-

�
� �����
���������������� ��������	����	��	����	�	���
��	�%#&#�
'��	
���
��(���	���)�*����	#������
�	������
����������	�
�	����	����)��������
	��	��	���
�%
��	�����#�

173

agement and Development process areas of CMMI.
Guidelines that extend Scrum with the purpose of address-
ing the practices in CMMI Requirements Management and
Development process areas are presented in section 3.
Section 4 describes a real-life application of xScrum. Fi-
nally, final remarks are presented in section 5.

2. Scrum Conformance to CMMI

(� ����	� �	���� &�� �� ��� ��
���	�	�� �� ��	������
�	���� ���� ��
���
�� �	� �������	� �	�	����	
�� ����	���
�
�� ��� ��� ���	�� �
� ���
����	�� � �� ��� ������ �	�������� ���
����� �	�	
��	���	�� �	! ��	�	
��� ������	�
�����	����
�
)
��
��
�� ����� ��	�����
�#�+�&���
�� ��� �� �	������	�	����
�	
�� ��������	�� ��
� ��	�� ��	�� �� ��	��	��
	�� �	������
���� ��� �	��
	�� ��� �	� ,-� ����#� '��� ��� .��)���� ��� �	�
������
�� ���
�� ��� &�� �� �
�� ��� ��
���	�	�� �	� �������	�
�	���
����	���������	���
���	! ��	�	
����/�#��		��
�������
���� ���$	��� ���)	���	��� ��)	� ����	� �
� ���	�� ��� ���
�� � ��
��	������� ���� � ��
	���
		��� �
�� �	�
����� �	! ��	�	
���
����	�����	�	
�	������������	�'��� ���.��)�����������������
�
����
�����	�� ��)	��� ��� �	� �	�	���	�� � ��
�� �	� ���$	��#�
&�� �� ���� 	��� ��	�� �������
�� ��� �	� ����	��� ��	���
012�� 30	! ��	�	
��� ��
��	�	
�4� �
�� 05� 30	! ��	�
�	
��� 5	�	����	
�4� ��� �	� 1
��
		��
�� ���	����� ���
����#��

1��� �����������)� ���� ��� �	� ���
�� ����� ��	������
�������	�� 3&'4� ��� �	�	� ����	��� ��	��� ���� �
���"	�� ���
�	�	�mine if Scrum can obtain that given typical work
product in conformance to CMMI. In order to do that, an
ordered scale that rates how Scrum addresses such specific
practices was defined. The rating scale contains three
categories:

NA: Not Addressed – there is very little evidence that the
specific practice is presented in Scrum;
PA: Partially Addressed – there are evidences that the
specific practice is presented in Scrum;
A: Mostly Addressed – there are strong evidences that
the specific practice is presented in Scrum.

For each specific practice, Scrum was rated accord-
ing to the three categories above, as a result of an individ-
ual analysis of typical work products in each practice. The
results and interpretation of this analysis are presented
next for both process areas REQM and RD.

2.1. Requirements Management (REQM) Process
Area

In the following, Scrum is rated according to spe-
cific practices of the process area REQM in the Engineer-
ing category of the CMMI model.

Table 1 presents the typical work products resulting
from each specific practice, with corresponding ratings on
how work products are addressed by Scrum.

SP 1.1-1 Obtain an Understanding of
Requirements. In Scrum requirements are gathered
directly with customers, and selection criteria for these
requirements are allocated to each Sprint to be utilized in

the division of tasks. Requirements are understood by
project participants and placed in a list of items called
Product Backlog which represents “what” needs to be
analyzed and developed by the team. Therefore, the
specific practice REQM SP1.1-1 of the CMMI model is
considered Addressed in Scrum.

���������6��)����� ��������	�012������	�����	��
� � Typical Work

Products
!�� �� ��

�#���� 1 � � �
2 � � �
3 � � �
4 � � �

�#7�7� 1 � � �
2 � � �

�#,��� 1 � � �
2 x � �
3 x � �

�#8�7� 1 x � �
2 x � �

�#9��� 1 x � �
2 � � �
3 � � �

SP 1.2-2 Obtain Commitment to Requirements.
Scrum Master and Product Owner work so that all project
participants have a common agreement about the
understanding of requirements that will be analyzed in the
project.�An assessment of the impacts requirements will
have on a project is performed by the Product Owner, and
the documentation about requirements is registered within
accomplished activities during the definition of the
Product Backlog and the Sprint Backlog. That way, both
work products in practice REQM SP1.2-2 of the CMMI
model are addressed by Scrum. Therefore, this practice is
considered Addressed in Scrum.

SP 1.3-1 Manage Requirements Changes. During
Sprint, the Daily Scrum is used to keep a status of which
requirement is being developed. Scrum does not explicitly
state that a requirements database or some other
alternative ways for storing requirements should be
utilized. It also does not mention that there should be a
database to support decision making in regard to
requirements. This practice is then considered Partially
Addressed by Scrum.

SP 1.4-2 Maintain Bidirectional Traceability of
Requirements. Scrum does not provide a traceability
matrix and it also does not implement a requirement
tracking system. Thus, the specific practice REQM SP
1.4-2 of the CMMI model is considered Not Addressed by
Scrum.

SP 1.5-1 Identify Inconsistencies between Project
Work and Requirements. Since Scrum is based on
principles that requirements are unstable and the project is
not totally defined, any possible inconsistencies can be
verified by the Scrum team during Sprint, The project
reaches its end when all the functionality described in the
Product Backlog is implemented. The corrective actions
are performed in the Sprint Review in the presence of the

174

Scrum Master and the customer. That way, Scrum
minimizes the existence of inconsistencies between Project
Work and requirements, but it does not mention how
project inconsistencies should be documented. On the
other hand, it includes corrective actions that must be
taken after the delivery of the Product Increment, which is
originated from the final Sprint results. Therefore, the
specific practice REQM SP 1.5-1 of the CMMI model is
considered Partially Addressed by Scrum#

2.2. Requirements Development (RD) Process Area

Scrum is also rated according to specific practices
of the process area RD in the Engineering category of the
CMMI model.

Table 2 presents the typical work products resulting
from each specific practice, with corresponding ratings on
how work products are addressed by Scrum.�

������"��6��)����� ��������	�05�����	�����	��

� � ��#�$���
%��&� ����$	�

!�� �� ��

�#��7 1 � � �
1 � � �
2 � � �

�#7��

3 � � �
� � � �
7 � � �

7#���

, � � �
� � � �
7 � � �
, � � �
4 � � �

7#7��

9 � � �
7#,�� � � � �

� � � �
7 � � �
, � � �
8 � � �
9 � � �

,#���

: � � �
� � � �
7 � � �

,#7��

, � � �
� � � �
7 � � �
, � � �

,#,��

8 � � �
,#8�, 1 � � �
,#9�� � � � �
,#9�7 � � � �

SP 1.1-1 Collect Stakeholder Needs. The Product
Owner is responsible for creating and including the list of
Stakeholder needs into the Product Backlog. Therefore, as
stakeholder needs are identified and collected, the specific
practice RD SP 1.1-1 is considered Addressed by Scrum.
This practice does not define work products and is applied
only in the Continuous representation of the CMMI model.

SP 1.1-2 Elicit Needs. Scrum does not propose the
use of techniques to elicit needs, such as use cases,
prototypes, JAD (Joint Application Development), etc.

Therefore, the specific practice RD SP 1.1-2 is considered
Not Addressed by Scrum.

SP 1.2-1 Develop the Customer Requirements. The
Sprint Backlog that results from the Sprint Planning
Meeting defines what needs to be developed during the 30
days of Sprint. In Scrum, the development of customer
requirements is monitored by the Product Owner, whose
assignment is to determine whether requirements are being
developed according to what was requested by the
customer. Customer constraints on the conduct of
verification and validation are conducted by both Product
Owner and Scrum Master, respectively. That way, as all
work products are addressed, the specific practice RD SP
1.2-1 is considered Addressed by Scrum.

SP 2.1-1 Establish Product and Product-
Component Requirements. In Scrum product and
component requirements are detailed in the Product
Backlog, along with all functionality, features,
infrastructure, architecture and technology the product
must offer. The definition of costs and budgets for the
project being developed in Scrum is pointed out by [9],
thus indicating that the work product of item 1 is also
addressed by Scrum. Therefore, the specific practice RD
SP 2.1-1 is considered Addressed by Scrum.

SP 2.2-1 Allocate Product-Component
Requirements. The allocation of requirements to product
components is not a detailed process in Sprint as Scrum
does not define techniques for this phase. Even though the
work products of this specific practice may be present
during development, these are not specified by Scrum. The
specific practice RD SP 2.2-1 is then considered Not
Addressed in Scrum.

SP 2.3-1 Identify Interface Requirements.
Requirements for interfacing with other systems are not
detailed in Scrum. Therefore, the specific practice RD SP
2.3-1 is considered Not Addressed.

SP 3.1-1 Establish Operational Concepts and
Scenarios. The Product Backlog contains a description of
business needs and requirements that are the basis for
product development. It is also expected to describe the
sequence of events that can occur while using the system,
which correspond to a scenario that describes the use of
the product being developed. The Product Backlog and the
Scrum Master makes available to stakeholders all concepts
utilized during the project. Although the elaboration of
scenarios is not detailed by Scrum, the sequence of events
handled by the system is described. Given that Scrum does
not define techniques to elicit requirements, such as use
cases. On the other hand, new requirements can be added
after the Sprint Review Meeting, when the Scrum Master
reports work results to other participants. At that point, in
case a new requirement is identified, it is added to the
project. It is not very clear which rate must be assigned to
Scrum for this specific practice. Therefore, the specific
practice RD SP3.1-1 is considered Addressed by Scrum.

175

SP 3.2-1 Establish a Definition of Required
Functionality. In Scrum, the functional architecture is
indicated when the Product Backlog is created. However,
it is up to the developer to apply object oriented analysis
techniques such as use cases and activity diagrams, as well
as the identification of services, this specific practice RD
SP3.2-1 is considered Not Addressed by Scrum.

SP 3.3-1 Analyze Requirements. In Scrum, the
process of requirement analysis tries to determine if all
system functionalities/features described in the Product
Backlog List (which results from the analysis of the
Product Backlog) can be resolved by the listed
requirements and if these requirements do not overlap or
conflict with each other. However, it does not produce a
defect report as suggested this specific practice. Also, this
practice is addressed in Scrum because requirements are
developed according to stakeholder needs so that key or
fundamental requirements are then elicited. Requirements
analyzed during the elaboration of functionalities do not
refer to technical performance measures to be followed
during project developments. Since it is not clear this
practice is addressed in Scrum, the rating for the work
product closest to its goal was taken into account, which in
this case is work product 2. Therefore, the specific
practice RD SP3.1-1 is considered Addressed by Scrum.

SP 3.4-3 Analyze Requirements to Achieve
Balance. Scrum does not define models, simulations or
prototypes to analyze risks in requirements. It assumes that
possible risks should be quickly eliminated during daily
meetings or at the rapid system delivery. Since Scrum does
not analyze risks, this work product is not addressed.
Therefore, the specific practice RD SP 3.4-3 is considered
Not Addressed in Scrum.

SP 3.5-1 Validate Requirements. Requirements
validation in Scrum takes place after the phase known as
Post Sprint Demonstration and Meeting, when
requirements are verified to assure they are properly
described. The results of requirements validation, the only
work product of this practice, are presented to the Scrum
team before they start the development process. Therefore,
the specific practice RD SP 3.5-1 is considered Addressed
in Scrum.

 SP 3.5-2 Validate Requirements with
Comprehensive Methods. This specific practice differs
from the previous only because it requires a method for
requirements validation. The meeting known as Post
Sprint Demonstration and Meeting is the method utilized
in Scrum to validate requirements. Therefore, the specific
practice RD SP 3.5-2 is considered Addressed in Scrum.

3. xScrum: Extending Scrum to Conform with
CMMI

This section proposes extensions to the agile
method Scrum that allows it to address all specific prac-
tices in the process areas REQM and RD, thus trying to
become compliant to CMMI in those areas. We call this

extension “xScrum”. For each specific practice not ad-
dressed or partially addressed by Scrum (according to the
ratings presented in the previous section), a guideline is
proposed with the necessary additions in order to address
that practice. +����	�����	���
����� �	
�����
��	��
	���
�
�	� ������� � ��	��
	�� ��	� ��������	� ���
���;<<�������# ��#��<="�
����<�&�� �#�

Guideline 1: Manage Requirements Changes

This guideline aims to address the specific practice
REQM SP 1.3-1 of CMMI. In order to manage changes in
requirements, this guideline suggests the creation of a
document called Requirements Record. This document (i)
records new requirements or the changes in existing ones
and (ii) keeps a log of the impact caused by each new or
changed requirement on others requirements. The Scrum
Master is responsible for maintaining this document,
which is used during Sprint after the definition of the
Product Backlog. The proposed document consists of
three sections. The first section (Revision Log) contains
the general data about a given requirement: date, author’s
name and, change operation (inclusion, modification or
exclusion) and revision number (i.e. version). The second
section (Requirements Descriptions) is the most important
one. It keeps specific data about each requirement, such as
its type, priority, source, version, etc. Finally, the third
section (Impact on Requirements) registers the impacts of
this change on other system requirements.

Guideline 2: Identify Inconsistencies between Project
Work and Requirements

The purpose of this guideline is to address the spe-
cific practice REQM SP 1.5-1 of CMMI. It proposes the
use of another document called Component Product Back-
log. This document is utilized to identify inconsistencies
between existing project work and requirements, and it
also helps the detection of deviations, as well as the visu-
alization of inconsistencies and the identification of design
elements that are out of the development scope. The pro-
posed document consists of a date, the requirement identi-
fication and a brief description of the inconsistency of
such requirement in relation to components. The Scrum
Master is the responsible for maintaining this document,
which is created during the Sprint and validated during the
Sprint Review Meeting.

Guideline 3: Maintain a Traceability Matrix

The purpose of this guideline is to address the spe-
cific practice REQM SP 1.4-2 of CMMI. It recommends
the creation of a traceability matrix that records the rela-
tionships among the requirements, between requirements
and stakeholders, and between requirements and project
modules [10]. The traceability matrix, along with docu-
ments proposed in guidelines 1 and 2, acts as a require-
ment tracking system (which is also a work product
REQM of SP 1.4-2). The proposed traceability matrix
contains two sections. The upper section (Review Log)
contains a date, a project code and a sprint code where
requirements will be traced. The lower section (Require-
ments Traceability) is used to track any inconsistencies
("I") between a given component and requirement, de-

176

pendencies ("D") between two requirements, or if a com-
ponent allocates ("A") another component. This matrix
serves as a basis to evaluate the impact of changes and to
estimate the amount of effort and cost for modifying a
project artifact. To avoid maintaining a large traceability
matrix, it is possible to define one matrix for each Sprint,
referring to requirements and artifacts defined in other
Sprints whenever needed. The Scrum Master is responsi-
ble for maintaining the traceability matrix, which is used
during the Sprint.

Guideline 4: Allocate Product-Component
Requirements

The purpose of this guideline is to address the spe-
cific practice RD SP 2.2-1 of CMMI. The idea is to de-
fine, for each project work, a document to keep informa-
tion about product components and the requirements allo-
cated to these components. This document also contains
information about temporary requirements, derivations of
requirements and their relationships. The proposed docu-
ment is called Requirements Allocation and it consists of
two parts. The first one contains general data about the
component allocation: date, project code plus component,
and a brief description of the component. The second part
contains the identification, description, derivations, and
relationships of each allocated requirement. The Scrum
Master is the responsible for maintaining this document,
which is used during the Sprint Review Meeting.

Guideline 5: Identify Interface Requirements

The purpose of this guideline is to address the spe-
cific practice RD SP 2.3-1 of CMMI. It suggests the use of
a document that keeps details about software require-
ments, including constraints on product features, interfaces
with others applications, a description of the domain, and
additional information about the product matter. This
document is called View Documentation and it serves as a
kind of contract between users and developers, so it must
be written in high level language. The proposed document
consists of two sections. The first section (General Data)
contains the revision log including its date, author’s name
and revision (i.e. version). The second section (View
Documentation) contains a date, project code, general
description of the product, product view, and name of the
person responsible for the project. The Scrum Master and
the Client are responsible for maintaining this document,
which is used during the elaboration of the Product Back-
log.

Guideline 6: Utilize a Technique to Elicit
Requirements

The purpose of this guideline is to address the spe-
cific practice RD SP 1.1-2 of CMMI. It proposes to use of
the technique to elicit requirements called JAD (Joint
Application Development). This technique was chosen
because it is strongly based on meetings like as in Scrum
and also because it has been applied in another agile
method called ASD (Adaptive Software Development) [4].
JAD is a group dynamic technique originated at IBM

laboratories in the end of the 60's and it has been success-
fully used in ASD [4].

Guideline 7: Analyze Risks

The purpose of this guideline is to address the spe-
cific practice RD SP 3.4-3 of CMMI. Since Scrum does
not define any models, simulators or prototypes to analyze
the risks of stakeholder needs and their constraints, the
idea proposed here is to define a document that describes
the risks produced by a requirement if the functional archi-
tecture changes. This document also describes the pre-
dicted impact. The proposed document is called Risk
Analysis and it consists of three parts. The first part con-
tains general information about the project and require-
ment in question. The second part keeps information about
risk: priority, type, probability and stability. The third part
contains an evaluation of risks produced in case a change
occurs in the functional architecture besides what has to be
done. Scrum Master and Client are both responsible for
maintaining this document, which is used during the
Sprint.

Guideline 8: Establish a Definition of Required
Functionality

The intent of this guideline is to address the spe-
cific practice RD SP 3.2-1 of CMMI. Scrum identifies
required functionalities of the system through the Product
Backlog. However, it does not mention explicitly that the
use case technique should be utilized. Use cases are the
main work product in RD SP 3.2-1. Hence, this guideline
simply suggests the inclusion of the use case technique in
Scrum.

4. Case Studies

In order to validate the extensions proposed to
Scrum, we have been used xScrum in two case studies
developed in a software development organization.

The first case study was on an internet portal dedi-
cated to provide weather data to farmers. It included the
development of the following functionalities: (a) to main-
tain a database about farmers and producers; (b) to incor-
porate a module about farmers’ alimentation; and (c) to
develop an authorization module. The main goal of the
second case study was to develop a system to obtain cli-
matic information from a website containing weather data
and insert it into a local database.

In the following, we present just the first case. The
client required an internet portal release within 30 days.
So, the features were prioritized and put into a backlog
queue. A small team in the organization was given the
responsibility to establish a mechanism for everyone and
to determine how things are going. At the Daily Scrum
Meetings, management as certained progress and the team
members making progress on their work. The team dem-
onstrated what they have accomplished.

177

During the Sprints, an internet portal was built us-
ing Java. At the end of the first Sprint, the database about
farmers and producers was evaluated and the manager,
along the team, decided that the next step should to incor-
porate a module about farmers’s alimentation. Empirically,
based on what they have been able to complete, and what
is now the most important work to perform, the next Sprint
is set up. The end of Sprint Meeting after this Sprint was a
great celebration. The weather data to farmers had shown
it to be capable of delivering a real solution of scrum to a
real business. This case study was done in approximately
22 days.

At the end of the case studies, we could conclude
that an organization that uses Scrum as its software devel-
opment process and desires to adapt this method to sup-
port the REQM e RD process areas of CMMI can apply
the extensions proposed here, which would help such
organization to get a quality certification for its develop-
ment process.

5. Final Remarks

In this paper we analyzed Scrum against CMMI to
verify if agile methods and software quality models can
coexist considering they are based on so distinct principles
and ideas. The results demonstrated that Scrum does not
completely satisfy CMMI practices. Hence, ��� ������
&�� �� ��� �	� �
� ��
�����
�	� ��� 012�� �
�� 05� ����	���
��	��� ��� �	���������	����	� ������	�� �
� 	��	
���
� ���
&�� ��� ����	�� ������� ���� �� �	�� ��� � ��	��
	�#� (�	�
� ��	��
	����	����	���
��	��������
�����
����	�;����������
���	�����012��	�05�����	�����	���� ����	�����	��	�� �
�
&�� �>� ���� ��� ���
��� �����
����� ���&�� ����������>�
�
�� �
��)
��
� �������	� 	
��
		��
�� �������	�� ���� ��
�
	�������	��	������	�����
��� ����	������	�#

Although there is some previous research on inte-
grating agile methods with quality models, �	� ��	�� ���
�������
�� 	��	
���
�� ��� ������	� ��
�����
�	� �	��		
�
&�� ���
�����������	��	�	������	�)
	�#�(����)�����?��
������	�� &�� �� ��� &6������
��
�������#� ��� �������
���� the Requirements Management process area is ad-
dressed by Scrum (as opposed to our work).����������������
�����
����� ������	�	���		
�����	�����	������&6�����
��	�����	��	�����&�� ���� �������	��
���� ��	����
��	��	
�
���
�� ���� &�� �� ��� ����	��� �	� ��	�� ����	��� ��	��#� [11]
���	���� ���� �	�	���	����
�����
������	�	
�	���	��		
�����	�
�	����� �
�� ������ �
�� ���	��	� ���� 87@� ��� ����	���
��	��� �
��������	� �
� ��
�����������������	�� �����	�����
����	��	����#�(���	��	�	������	�	�����	�	
�	����
��	�
��
���"	�������	��������
��������
�"����
���������	���
�
�	� �������	��	�	����	
������	��#�1�����
�����)� �
��	
�
	���� ������	�� ����	� �	����� ��� &6����� �
��	��� ���
������ � �������)�
��1���	�	�'��������
��3A'4�����	�
����	� �	���� �
� ! 	����
#� �?�� ���
��� � �� ���� A'� ��
� �	�
 �	������&6������� ��	�����"	������
�������A'������
���	����
����� ���&6����#� �B������	
��� ����A'������

���	���
��&6�������	����������	��� ����	��
�����	�	
��
� ��	��
	�����������	��������� ���������������#��9�������
���	���������	� �	����A'�����&6���������������� ���	��
��� ����	�����������
��	�	��7#�

+�� �� ��
��
 ����
� ������)���	�	
�	��	�	���	� ��	�
	��	
��
�� &�� �� ��� ����	��� �	���
�
�� ����	��� ��	��� ���
�	� '����������� ���	����;� ������	�� ����
���� (�����
�
"�
���	
����)������	
�����
��)	���	
���# 6	�������
�	
�����
�	������ �� ����	������ ���������
� ��� �����	���� �
� ��	���
�������	� ����
�"����
�����	� �	��
�
�� ��	�������	������ ���
	��� ��	� �&�� �� ��� �
� ����	� �	���� �
�� �������
�� ����
	�����	
�������������	�	�	�����&�� �#�

References
[1] Ahern, Dennis M.. CMMI distilled: appraisals for

process improvement. Upper Saddle River: Addison-
Wesley, 2005. 218 p.

[2] Boehm, B., DeMarco, T.: The Agile Methods Fray.
IEEE Computer Science, 6 (2002) 90-91

[3] Chrissis, M.B., Konrad M., and Shrum S.: CMMI:
Guidelines for Process Integration and Product Im-
provement. Addison Wesley (2003)

[4] Highsmith, J.: Agile Software Development Ecosys-
tems. Addison Wesley, (2002)

[5] Nawrocki, J., Walter, B., Wojciechowski, A.: Com-
parasion of CMM level 2 and extreme programming.
In: Proceedings of 7th European Conference on Soft-
ware Quality, Helsinki, (2002) 288-297

[6] Paetsch, F., Eberlein, A., Maurer, F.: Requirements
Engineering and Agile Software Development. In: Pro-
ceedings of the IEEE International Workshops on Ena-
bling Technologies: Infrastructure for Collaborative En-
terprises (2003) 308-313

[7] Paulk, M.C.: Extreme Programming from a CMM
Perspective. IEEE Software, 18, 6 (2001) 19-26

[8] Reifer, D.J.: XP and the CMM. IEEE Software, Vol
20, 3 (3), May/June pp. 14-15 (2003)

[9] Schwaber, K., Beedle, M.: Agile Software Develop-
ment with SCRUM. Prentice Hall, (2002)

[10] Sommerville, I.: Software Engineering. Addison-
Wesley (2003)

[11] Turner, R., Jain, A.: Agile Meets CMMI: Culture
clash or common cause. XP/Agile Universe (2002)
153-165

[12] Zanatta, A. L., Vilain P. Uma análise do método ágil
Scrum conforme abordagem nas áreas de processo Ge-
renciamento e Desenvolvimento de Requisitos do
CMMI In: VII Workshop em Engenharia de Requisitos,
2005, Porto. Proceedings of WER05. Porto - Portugal:
FEUP - Faculdade de Engenharia da Universidade do
Porto, 2005. v.1. p.209 – 220 (in Portuguese)

�

178

A Framework of Hierarchical Requirements Patterns for Specifying
Systems of Interconnected Simulink/Stateflow Modules

Changyan Zhou† , Ratnesh Kumar‡ , Devesh Bhatt� , Kirk Schloegel� , Darren Cofer�

†Industrial & Enterprise Systems Eng., University of Illinois at Urbana-Champaign, IL
‡Electrical & Computer Engineering, Iowa State University, Ames, IA. (rkumar@iastate.edu)

�Honeywell Aerospace, 3660 Technology Drive, Minneapolis, MN 55418
({devesh.bhatt,kirk.schloegel,darren.cofer}@honeywell.com)

Abstract

Simulink/Stateflow is a graphical modeling and sim-
ulation tool (developed by Matlab) for systems with
continuous dynamics mixed with switching logics, and
is being widely used in industry for controls and diag-
nosis applications. Motivated by the need for devel-
oping a requirements specification approach for sys-
tems of interconnected Simulink/Stateflow modules
that supports traceability and formal analysis (such
as consistency, completeness, correctness), and that is
scalable and also easy to use and to modify, we propose
a hierarchical patterns-based approach. The approach
supports modularity and hierarchy to handle complex
systems. Further, it supports both the formal analy-
sis and the traceability of the requirements, and also
facilitates the design process by being mapped to the
underlying design space. The patterns are developed
following a component-oriented paradigm, and as a re-
sult they also facilitate their reuse. We develop and
present a number of requirements patterns for com-
monly used Simulink/Stateflow modules and show how
they can be hierarchically composed.
Keywords: Software engineering, requirements engi-
neering, patterns, components reuse, formal methods

1 Introduction

Due to the evidence that requirements errors (such
as incorrect, misunderstood or omitted requirements)
are difficult to debug and expensive to correct later
in the developmental life-cycle, writing complete, cor-
rect, consistent, testable, and traceable software re-
quirements specifications is an important exercise in
the software development process. The importance of

good requirements specification has led the researchers
and software industry to develop approaches and tools
for capturing and managing them.

Examples of approaches for specifying requirements
include problem frames [6], intent specification [13],
and multiple views [16]. Requirements documenta-
tion and management tools include DOORs, Requisite
Pro, and Cradle. The higher-level requirements are
generally expressed in natural language, diagrams [1],
charts [5, 19], and tables, and lower-level ones in var-
ious specification/design/modeling languages such as
UML, architecture description language (ADL), speci-
fication description language (SDL), and Hardware De-
scription Language (HDL). Natural language is easily
understandable but the use of it in describing com-
plex, dynamic systems has the problems of ambiguity,
inaccuracy, incompleteness, and inconsistency. Formal
languages, on the other hand, can be difficult to learn
and expensive to apply correctly since the requirements
must be understood by both the developers and the
customers, and many are not fluent in a formal lan-
guage.

State-diagram/table notations have been demon-
strated to offer a precise, relatively compact notation
for specifying system requirements in a wide range
of applications, including avionics systems. State-
diagrams/tables can be assigned a precise mathemat-
ical semantics and thus can be analyzed mechanically
to expose defects in requirements specifications. State-
diagram/table notations based requirements specifica-
tion languages include Software Cost Reduction (SCR)
[12], Requirements State Machine Language (RSML)
[15, 17] and its simplified versions RSML-e (RSML
without event) [18], and SpecTRM-RL (Specification
Toolkit and Requirements Methodology Requirements
Language) [14]. Software tools utilizing the state-
diagram/table notations include Scade/Lustre, State-

179

Chart/StateMate, and Esterel.
Using state-diagram/table notations, the system re-

quirements are primarily captured at discrete or logic
level. While this can be appropriate for specifying cer-
tain types of systems at a high-level of abstraction, this
may not be of much help for specifying requirements at
later phases of design, i.e., at lower-levels of abstraction
involving both the discrete and the continuous dynam-
ics. The system of requirements patterns we develop
supports specifications also at such lower-levels of ab-
straction.

Recently there has been interest in the so called
patterns-based approaches, where a pattern is a tem-
plate for capturing a specific requirement. There has
been a growing interest in the identification and use
of design patterns [3], examples of which include in-
terface patterns, proxy patterns, composite patterns,
state patterns, and scheduler patterns. Pattern us-
ing limited vocabulary, grammar and semantic domain
have also been developed [7, 4].

Patterns for specifications as well as for require-
ments are also being considered. Dwyer et al. [2] ob-
served that most temporal logic specification formulas
of LTL, CTL, and QRE (quantified regular expression)
fall into a relatively small number of categories, and
accordingly developed a set of specification patterns
that can be used for specifying properties. In the same
spirit, [10] introduced a collection of real-time speci-
fication patterns corresponding to the logics of MTL
(metric temporal logic), TCTL (timed CTL) and RT-
GIL (RT-graphical interval logic). In [9, 8] researchers
investigated (high-level) requirements patterns for cer-
tain embedded systems. Specifically, they explored
how object-oriented modeling notations can be used
to capture structural requirements.

2 Our Approach to Requirements
Specification

The requirements governing systems with time-
driven dynamics are often expressed in terms of time-
domain behaviors such as rise-time, overshoot, settling-
time, or in form or frequency-domain behaviors such
as bandwidth. The existing requirements specification
approaches are mainly for event-driven dynamics (one
that can be modeled using automata extended with
discrete-valued variables), and are not adequate for
time-driven dynamics (one that is modeled using dif-
ferential or difference equations). This is one of the
motivation for our research.

We develop formalized requirements for commonly
used Simulink/Stateflow modules. Simulink/Stateflow
is a widely accepted tool for modeling, design, and

analysis of control and diagnosis systems such as those
used in aircrafts, automobiles, medical devices, power
system, nuclear and chemical plants, and manufactur-
ing factories. Such systems possess both timed-driven
(modeled using Simulink modules) and event-driven
(modeled using Stateflow modules) dynamics. These
formalized requirements are what we call requirements
patterns. A requirements pattern describes the inputs,
the outputs, the behavior, and the constraints of a ba-
sic Simulink/Stateflow module. This patterns-based
approach is motivated by the ease of use, modular-
ity, reuse, and modifiability. (Changes in the require-
ments can be made easily and in a cost-effective manner
by replacing any of the existing patterns or their pa-
rameters with new ones.) To support traceability and
complexity-management, the approach is kept modular
and hierarchical. Finally for the fact that the patterns
are formalized our approach supports a formal analysis
(such as completeness, consistency, and correctness).

3 An Example

To illustrate our approach we present an example
of a localizer signal processing unit along with its cur-
rent set of requirements, discuss some of the limita-
tions, and present a new set of requirements according
to our own approach. The example of the localizer sig-
nal processing unit presented has been taken from the
context of a flight control system developed by Honey-
well Aerospace. The unit is used to filter the incoming
signal when it is “valid for use”, and otherwise it pro-
duces a constant output. We next give the currently
used requirements for the localizer signal processing
unit (listed as R1-R5 below), whereas Figure 1 shows
the Simulink design model of the unit.

R1: The incoming localizer signal shall be declared valid
for use by the system if the raw signal valid is true con-
tinuously for at least one second.
R2: The incoming localizer signal shall be declared invalid
for use by the system if the raw signal valid is false con-
tinuously for at least 0.5 seconds.
R3: The incoming localizer signal shall be attenuated by
-3dB at a frequency of 5 Hz and by -20dB at 50 Hz.
R4: When the raw localizer signal is invalid, the input to
the attenuation filter shall be held to the last valid value
of the raw input.
R5: When the incoming localizer signal is declared in-
valid for use by the system, the output of the value to the
system shall be set to 600 microAmps.

From the system requirements and its Simulink
model, we observe that the requirements R1 and R2
refer to the same Simulink module “Debounce”, R4
refers to two different Simulink modules, and R3 refers

180

Figure 1. Localizer unit in Simulink

to the Simulink module “lag”. The following issues be-
come evident when examining the above requirements.

1. When two or more requirements refer to the same
module (such as R1 and R2 refer to the mod-
ule “Debounce”), a reasonable question is whether
there exists any relation between the requirements
so they can be combined and written as a single
requirement.

2. R4 maps to two different modules, whereas it can
be implemented using a single module in the HAM
library.

3. It is questionable how the requirement R3 is
mapped to the “lag” module with the specific
transfer function 1

0.0318s+1 , for R3 specifies only
two points in the frequency-domain. It seems that
the designer is using a mental model with addi-
tional details of the lag module, implying that the
requirement R3 is ambiguous and incomplete.

4. R4 seems to be not about what the system should
do, rather how, whereas a good set of requirements
should only specify what a system should do and
how.

5. No specific format is followed for writing the re-
quirements.

The approach we propose is able to avoid the issues
raised above.

4 Basic Requirements Patterns

For illustration, we present examples of some basic
and composite requirements patterns that we have de-
veloped [20]. The basic patterns are for some of the ex-

isting Simulink modules in the HAM library. Each pat-
tern is associated with a requirements description and
a temporal logic representation. The requirements de-
scription part describes the interface (inputs/outputs
and their types), the parameters, the functionality, and
the constraints. The functionality is written in a nat-
ural language so it can be easily understood by all
users. The temporal logic representation part first de-
scribes the behavior in a language that is amenable for
a temporal logic specification. Next, an encoding in
the first-order metric temporal logic is provided. (The
syntax and semantics of the metric temporal logic can
be found in a standard reference such as [11].) Having
been encoded within a requirements pattern, the tem-
poral logic properties become ready-to-use for a formal
analysis. The requirements description is standardized,
and for a specific application only the corresponding
inputs, outputs, and parameters need to be identified
and specified.

IsValid Pattern
• Requirements Description:
Inputs: control input In(type)
Outputs: control output Out(type)
Parameters: debounce-on time tON(type),
debounce-off time tOFF(type)
Functionality: When the control input is ON for
at least debounce-on time, a certain signal shall be
valid for use, and otherwise when the control in-
put is OFF for at least debounce-off time, the said
signal shall be invalid for use.
Constraints: Initial value of the output must be
set to either 0 or 1, and tON and tOFF must be
the multiples of the sampling period.

181

• Temporal Logic Representation:
Behavior: It is always the case that if the input
is 1 for at least tON time unit, then the output
is set to 1, and if the input is 0 for at least tOFF
time unit, then the output is set to 0.
Instantiation:
�[0,∞)[(�[0,tON]In.V alue = 1 ⇒ ♦≤1Out.V alue
= 1)
∧ (�[0,tOFF]In.V alue = 0 ⇒ ♦≤1Out.V alue = 0)]

Filter Pattern
• Requirements Description:
Inputs: input signal In(type)
Outputs: output signal Out(type)
Parameters: passing band [f1, f2] with attenua-
tion K1db, roll-off band [f1−�, f1] or [f2, f2 +�]
with attenuation K2db/octave, and attenuation
K3db for non-passing band
Functionality: Within the pass-band [f1, f2],
the output shall be the input with attenuation
of less than K1dB, within the roll-off band
[f1 − �, f1] or [f2, f2 + �], the output shall
be attenuated at a rate of K2dB/octave, and
otherwise the output shall be attenuated more
than K3dB.
Constraints: None

• Temporal Logic Representation:
Behavior: It is always the case that if the
frequency is within the range of [f1, f2], then the
output signal shall be passed with attenuation
of less than K1dB; if the frequency is within the
roll-off regions [f1 − �, f1] or [f2, f2 + �], then
the output signal shall be attenuated at a rate
of K3dB per octave; otherwise, the output signal
shall be attenuated more than K3db.
Instantiation:
∀f : [f1 ≤ f ≤ f2 ⇒
Out.Magnitude(f)/In.Magnitude(f) ≤ K1]
∧[(f1 − � ≤ f ≤ f1) ∨ (f1 ≤ f ≤ f2 + �) ⇒
d
df (Out.Magnitude (f)/In.Magnitude(f)) ≤ K2]
∧[(f ≤ f1 − �) ∨ (f ≥ f2 + �) ⇒
Out.Magnitude(f)/In.Magnitude(f) ≥ K3]

Sample-&-Hold Pattern
• Requirements Description:
Inputs: input signal In(type), control signal
CtrIn(type)
Outputs: output signal Out(type)
Parameters: None
Functionality: The input signal shall be sam-
pled if and only if it is valid for use.
Constraints: The output type is the same as
the input type. The control input is compared to
threshold value of 0.5 to determine if it is logic 0

or 1.
• Temporal Logic Representation:
Behavior: It is always the case that if the con-
trol input CtrIn is logic 1, then the output signal
equals the input signal; otherwise (i.e., CtrIn is
logic 0), the output remains constant at its last
sample value.
Instantiation:
∀t : [(CtrIn = 1 ⇒ Out.V alue[t] =
In.V alue[t])∧(CtrIn = 0 ⇒ Out.V alue[t] =
Out.V alue[t− 1])]

Delay Pattern
• Requirements Description:
Inputs: input signal In(type)
Outputs: output signal Out(type)
Parameters: delay time T(type)
Functionality: The input signal shall be delayed
for T time unit.
Constraints: T must be a multiple of the sam-
pling rate. Initially, the output signal is set to
either ON or In.

• Temporal Logic Representation:
Behavior: Initially, the output signal is set to ei-
ther ON or In. It is always the case that if the
input signal is ON (resp., OFF) for at least T sec-
onds, then the output signal is set to ON (resp.,
OFF); otherwise, the output is set to OFF (resp.,
ON).
Instantiation:
[(Out.InitialV alue = 1) ∨ [�[0,∞)(�[0,T]In.V alue
= 1 ⇒ ♦≤1Out.V alue = 1)]]∨
[(Out.InitialV alue = 0) ∨ [�[0,∞)(�[0,T]In.V alue
= 0 ⇒ ♦≤1Out.V alue = 0)]]

5 Composite Requirements Patterns

By composite patterns we mean the patterns that
are formed by composing the basic ones. A complex
system is normally composed of several interconnected
components. Correspondingly, requirements patterns
can be composed to derive requirements patterns for
system composed of basic modules. Here we present
examples of two types of composite patterns, denoted
as A then B (cascade of modules A and B), and
A with B in feedback (feedback composition of mod-
ules A and B). Other composition mechanisms, spe-
cially those of Stateflow modules, are also possible and
will be developed as part of the project.

A then B Pattern
• Requirements Description:
Inputs: input signal In(type)
Outputs: output signal Out(type)

182

Parameters: None
Functionality: The composition shall be cas-
cade of A and B.
Constraints: input of A then B = input of A,
output of A then B = output of B, and input of
B = output of A.

• Temporal Logic Representation:
Behavior: It is always the case that the output
Out is equal to the output of B, the input of B is
equal to the output of A, and the input of A is
equal to the input In.
Instantiation:
∀t : [In.V alue(t) = A.In.V alue(t) ∧
A.Out.V alue(t) = B.In.V alue(t) ∧ Out.V alue =
B.Out.V alue(t)]

A with B in feedback Pattern
• Requirements Description:
Inputs: input signal In(type)
Outputs: output signal Out(type)
Parameters: None
Functionality: The composition shall be feed-
back of A and B.
Constraints: (input of A with B in feedback
− output of B) =input of A, output of
A with B in feedback = output of A = in-
put of B.

• Temporal Logic Representation:
Behavior: It is always the case that the output
Out is equal to the output of A, the input of B
is equal to the output of A, and the input of A
is equal to the difference of the input In and the
output of B.
Instantiation:
∀t : [(In.V alue(t) − B.Out.V alue(t)) =
A.In.V alue(t) ∧ Out.V alue(t) =
A.Out.V alue(t) = B.In.V alue(t)]

6 Specifying System Requirements and
an Illustration

The requirements for a system can be specified using
conditional assertions (or rules) of the form:

When inputs/past-outputs of the system sat-
isfy a certain condition, the present/future
outputs of the system shall be computed in ac-
cordance with certain basic or composite re-
quirements patterns.

We revisit the localizer signal processing unit example
and present the requirements for it using our approach.

Localizer Signal Processing Unit Requirements:

Inputs: rawLocalizer(float), rawLocalizer-
Valid(boolean)
Outputs: Localizer(float)

High-level requirements:
When the input signal rawLocalizer
is valid for use, output signal Localizer shall be
sampled then filtered input. Otherwise, output
shall be 600 μA.

Low-level requirements:
Req1 (IsValid Pattern): When rawLocalizer-
Valid is ON for at least 1s, the input signal
rawLozalizer shall be valid for use; when rawLo-
calizer is OFF for at least 0.5s, the input signal
rawLozalizer shall be invalid for use.
Req2 (Filter Pattern): Within the pass-band
[0, 5], the output Localizer shall be the sampled
input with attenuation of less than -3dB, within
roll-off band [5, 50], the output Localizer shall be
attenuated at a rate of -17/45dB/octave, and oth-
erwise the output Localizer shall be attenuated
more than -20dB.
Req3 (Sample-&-Hold Pattern): The rawLocal-
izer shall be sampled if and only if it is valid for
use.

It follows from the above composite requirements
that the localizer signal processing unit could consist
of three basic HAM modules, namely, IsValid, Filter,
and Sample-&-Hold. Also it is evident that the issues
associated with the previously used requirements (re-
fer Section 3 are largely resolved. Issue 1 is resolved by
having a single requirement (Req1) that captures both
the conditions under which the input signal is valid for
use. Issue 2 is resolved by rephrasing R4 using a sin-
gle Sample-&-Hold requirements pattern (Req3). This
is made possible by taking a patterns-based approach
to requirements. Issue 3 is resolved by using a Fil-
ter requirements pattern (Req2), which, by virtue of
being pre-defined, insists that a complete set of filter
parameters be provided. Issue 4 is resolved since our
requirements only state what the system should do,
and not how. Finally, issue 5 is resolved since we fol-
low a systematic approach in which all requirements
are formalized through the use of patterns.

7. Conclusion

We proposed a hierarchical patterns-based approach
for requirements specification for systems that are be-
ing designed in the Simulink/Stateflow environment.
The requirements patterns will be formalized and so a
user only needs to specify the inputs, the outputs, and

183

the parameters, making those patterns easy to use. On
the other hand, the patterns will encapsulate formal
temporal logic specifications, making them amenable
for a formal analysis. We have presented examples of
the some of the requirements patterns.

The patterns-based approach is motivated from
their ease of use and understanding in specifying re-
quirements. To support modularity, modifiability, and
reuse, the approach is component-based in the sense
that patterns are developed for certain basic compo-
nents (or modules). To support complexity manage-
ment, the approach is hierarchical that uses certain
“composition patterns” to generate higher-level com-
posite patterns from the basic ones. This further sup-
ports traceability. To support verifiability and for-
mal analysis (such as completeness, consistency, and
correctness), patterns embed encodings of the input-
output behaviors in the first-order metric temporal
logic. Finally to support specification of systems pos-
sessing both discrete and continuous dynamics, pat-
terns for certain commonly used Simulink/Stateflow
modules developed by Honeywell researchers is pro-
vided.

Acknowledgment: The work was done while the
first author was a graduate research intern at Honey-
well Technology Center, Minneapolis, MN in summer
2006, and the internship support of Honeywell is ac-
knowledged. The second author acknowledges the sup-
port from NSF under the grants NSF-ECS-0218207,
NSF-ECS-0244732, NSF-EPNES-0323379, NSF-ECS-
0424048, and NSF-ECS-0601570.

References

[1] W. R. Cyre. Capture, integration, and analysis of
digital system requirements with conceptual graphs.
IEEE Trans. Knowl. Data Eng., 9(1):8–23, 1997.

[2] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Pat-
terns in property specifications for finite-state verifi-
cation. In ICSE ’99: Proceedings of the 21st interna-
tional conference on Software engineering, pages 411–
420, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[4] J. J. Granacki and A. C. Parker. Phran-span: a nat-
ural language interface for system specifications. In
DAC ’87: Proceedings of the 24th ACM/IEEE confer-
ence on Design automation, pages 416–422, New York,
NY, USA, 1987. ACM Press.

[5] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, and A. Shtul-Trauring. State-
mate: a working environment for the development of
complex reactive systems. In ICSE ’88: Proc. of the

10th international conference on Software engineering,
pages 396–406, Los Alamitos, CA, USA, 1988.

[6] M. Jackson. Software Requirements and Specifications:
A Lexicon of Practice. Addison Wesley, 1995.

[7] R. Kittredge and J. Lehrberger. Sublanguage: Stud-
ies of Language in Restricted Semantic Domains. de-
Gruyter, New York, 1982.

[8] S. Konrad, B. Cheng, and L. A. Campbell. Object
analysis patterns for embedded systems. IEEE Trans-
actions on Software Engineering, 30(12):970–992, Dec.
2004.

[9] S. Konrad and B. H. Cheng. Requirements patterns for
embedded systems. In Proc. of the 10th Anniversary
IEEE Joint international Conference on Requirements
Engineering, pages 127–136, Washington, DC, Sept.
2002.

[10] S. Konrad and B. H. C. Cheng. Real-time specifica-
tion patterns. In ICSE ’05: Proceedings of the 27th in-
ternational conference on Software engineering, pages
372–381, New York, NY, USA, 2005. ACM Press.

[11] R. Koymans. Specifying real-time properties with met-
ric temporal logic. RealTime Systems, 2(4):255–299,
1990.

[12] G. Lee, J. Howard, and P. Anderson. Safety-critical
requirements specification and analysis using spectrm.
In Proc. of the 2nd Meeting of the US Software System
Safety Working Group, Feb. 2002.

[13] N. G. Leveson. Intent specifications: An approach to
building human-centered specifications. IEEE Trans.
Software Eng., 26(1):15–35, 2000.

[14] N. G. Leveson, M. P. Heimdahl, and J. D. Reese. De-
signing Specification Languages for Process Control
Systems: Lessons Learned and Steps to the Future. In
Seventh ACM SIGSOFT Symposium on the Founda-
tions on Software Engineering, volume 1687 of LNCS,
pages 127–145, September 1999.

[15] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and
J. D. Reese. Requirements specification for process-
control systems. IEEE Trans. Softw. Eng., 20(9):684–
707, 1994.

[16] B. Nuseibeh, J. Kramer, and A. Finkelstein. A frame-
work for expressing the relationships between multiple
views in requirements specification. Transactions on
Software Engineering, 20(10):760–773, October 1994.

[17] V. Ratan, K. Partridge, J. Reese, and N. Leveson.
Safety analysis tools for requirements specifications.
In Proc. of Eleventh Annual Conference on Computer
Assurance, pages 149–160, 1996.

[18] A. Tribble, D. Lempia, and S. Miller. Software safety
analysis of a flight guidance system digital avionics
systems. In IEEE, 2002.

[19] F. Vahid, S. Narayan, and D. Gajski. Speccharts: A
language for system level synthesis. In Proc. of Com-
puter Hardware Description Languages, pages 145–
154, 1991.

[20] C. Zhou. Hierarchical requirements patterns for sys-
tems built using honeywell autocode modules. Techni-
cal report, Honeywell Technology center, Minneapolis,
MN, 2006.

184

In the Requirements Lies the Power

Rand Waltzman
Department of Computer Science
Royal Institute of Technology

rand@nada.kth.se

Kristina Winbladh, Thomas A. Alspaugh
Debra J. Richardson

Department of Informatics
Bren School of Information and Computer Sciences

University of California, Irvine
{awinblad,alspaugh,djr}@ics.uci.edu

Abstract

System requirements expressed as scenarios represent a
rich source of knowledge about a system and the context in
which it is used. This is because the scenarios are the result
of extensive collaborative efforts of a wide variety of stake-
holders and are in a form to which all can relate. Ideally,
they serve to represent the interests of all stakeholders at
each stage of the development life cycle. Our focus in this
paper is system testing against requirements. In particu-
lar, we show (1) how the knowledge represented in scenar-
ios (using ScenarioML) can be directly transformed into an
operational knowledge base in a rule-based programming
language (JESS), (2) how this knowledge base can be used
in system testing to compute, manage, and compare expec-
tations of system behavior to actual system behavior rela-
tive to the requirements, and (3) how this can be achieved
in a manner that is transparent to all stakeholders. The
power of this approach derives from the peculiarly reflec-
tive character of knowledge based systems and their explicit
use of meta-information and meta-information processing.
We demonstrate the viability of our approach by its appli-
cation to the AquaLush system in which we detected several
violations of the system’s stated requirements.

1 Introduction

One of the most important goals of software testing is to

determine whether a system behaves the way the stakehold-

ers want it to behave. From the stakeholders’ point of view,

this behavior is ideally described by a set of high-level re-

quirements expressed so that they can be understood with

a modicum of effort and without getting bogged down in

formalisms that are obscure to all but a small group of spe-

cialists. Studies of industry practice [15] have shown that

scenarios successfully satisfy these demands on high-level

requirements. It is equally important to be able to test these

requirements in a way that is transparent to the stakehold-

ers. The stakeholders should be able to look at the test re-

sults and see that the system behaves in the way they expect

based on the requirements. This demand, however, is not

widely being met in practice in industry today. In this pa-

per, we show how to meet this demand by viewing scenario-

based requirements as a rich source of knowledge about a

system and the context in which it is being used. We use

that knowledge source to create a knowledge-based system

that tests system behavior directly against the requirements.

The structures that make up a knowledge-based system

(KBS) are qualitative models that describe the system’s do-

main [6]. These models describe the domain in terms of

causal, compositional, or sub-typical relationships among

objects and events. They represent a partition of the world

that provides a coherent picture of the domain and permits

selective views of the domain for particular purposes. The

KBS uses the models as a basis for computing actions in the

domain. When we talk of inference in a KBS, we are really

referring to a strategy for model manipulation.

The Artificial Intelligence (AI) community recognized

early on that the acquisition of qualitative models, the

knowledge of a KBS, is extremely difficult and a major bot-

tleneck to construction of such systems [9]. A key obser-

vation of this paper is that a set of scenario-based require-

ments for a system is very close to being the kind of quali-

tative model required for a KBS that could manage system

testing against requirements. A set of requirements scenar-

ios represents the collective and agreed upon understand-

ing and expertise of a wide variety of stakeholders. In the

process of formulating scenarios, stakeholders have to ham-

mer out definitions and specifications of domain concepts,

terms, events, and processes. In particular, these include

causal, compositional, and sub-typical relationships among

objects and events of the domain— the same basic elements

in the description of the qualitative models that make up a

KBS. Since the scenarios explicitly represent the system’s

behavior, it is reasonably straightforward to translate them

185

into a KBS that models the systems behavior at the same

qualitative level. The central type of inference, or model

manipulation, done by the KBS in our approach is manage-

ment and generation of expected system behavior and its

comparison with actual system behavior during testing.

The explicit use of meta-information and meta-

information processing distinguish knowledge-based sys-

tems from most other types of information processing sys-

tems and results in the ability of a KBS to reflect upon itself

in the sense that the KBS knows what it knows, how it ap-

plies that knowledge to a particular problem, and how to ex-

plain that application. In our case, that means, for example,

that if the KBS detects a mismatch between expected and

observed system behavior during system test, it can use its

requirements-based qualitative model of system behavior to

explain the nature of the mismatch directly in terms of the

requirements. This provides the transparency of the testing

process previously mentioned. Such an explanatory facility

could also be the basis of a tool that allows stakeholders to

query the model and perform what-if type experiments in

order to interactively explore the requirements.

Because we generate the KBS directly from require-

ments scenarios, we can do so at an early stage in system

development. We can then use the KBS to assist in the de-

sign of requirements-based test scenarios. There are sev-

eral advantages to designing such test scenarios at an early

stage of system development. In general, the requirements

receive additional validation before requirements problems

can cause costly misunderstandings later in the develop-

ment process [8]. In particular, we could discover (1) re-

quirements that are not testable, (2) behaviors that are not

directly observable and that might require the construction

of special equipment for observing those behaviors, and (3)

conflicting, incomplete, or ambiguous requirements.

In the remainder of this paper, we describe the trans-

formation of the rich knowledge model represented by

scenario-based requirements into a KBS that manages the

process of testing the system against requirements in a way

that is transparent to stakeholders. We show how this tech-

nique facilitates stakeholder involvement in two important

phases of system development: (1) requirements formula-

tion and evaluation and (2) system testing. We applied our

approach to a sample system, AquaLush [7], a project de-

veloped elsewhere with a full range of artifacts. AquaLush

is an automatic irrigation system that controls irrigation

based on soil moisture levels rather than timing. We will

use AquaLush artifacts and concepts to demonstrate our ap-

proach throughout the paper and validate our approach. In

section 2, we summarize related work, and in section 3 we

describe the requirements specification format that our ap-

proach uses. We present the details of our approach in sec-

tion 4. In section 5 we briefly describe the results of our val-

idation study and in section 6 we present our conclusions.

Finally, we present some thoughts about future work in sec-

tion 7.

2 Related Work

Testing research has focused mainly on code-based test-
ing, in which tests are developed and chosen in order to
achieve coverage of the implementation code. Although

code-based testing can successfully detect faults in the code,

it might not detect faults that produce plausible behavior but

fails to meet the system’s requirements. Furthermore, code-

based testing implicitly excludes stakeholder participation.

Specification-based testing, on the other hand, is a test-
ing technique whose purpose is to confirm the extent to

which a system under development meets its specifications.

Most specification-based testing approaches have focused

on the component level and are typically expressed in the

form of Labeled Transition Systems, Finite State Machines,

state charts, or message sequence charts [10]. However, as

in the case of code-based testing, stakeholders are implicitly

excluded from participation as a result of the formal com-

plexity of these representations. Since high-level require-

ments typically are less formal and more abstract than com-

ponent specifications, requirements-based testing has been

applied with only limited success [5, 11].

The KBS that we describe in this paper can be thought

of, at least at some level, as what is known as a test ora-
cle. A test oracle consists of two main parts: (1) expected
output from the system under test, and (2) a procedure that

compares the expected output with the actual output [12].

Oracles can either be human (i.e., manual checking of out-

put) or automated (e.g., software), and although they seem

essential to testing, they are often not easy to come by. Soft-

ware oracles are not used extensively in common industrial

practice. However, to the extent that software oracles are

discussed, they completely lack the fundamental reflective

characteristics of a KBS that are essential for transparent

operation. The quality of human oracles and their time and

effort is almost never taken into account in the evaluation of

testing methods even though human testers are frequently

unsure of the correctness of test output and must repeat their

work every time the tests are run. This indicates, as recent

work also shows, that test oracles can have a significant im-

pact on test effectiveness and efficiency [16]. This finding

highlights the importance of our KBS approach.

Our view that a set of scenario-based requirements is

a rich source of system knowledge and a precursor to a

KBS suggests that knowledge acquisition techniques devel-

oped over the years in the KBS community should be ex-

tremely relevant to the requirements engineering commu-

nity. Reubenstein and Waters [13], among others, made this

same observation in their work on requirements acquisition.

Little work has focused on using a KBS for

186

requirements-based testing. A notable exception is Sam-

son [14]. She suggests that the quality of a test plan can be

greatly improved by using a KBS to help match requirement

types with test types. Her KBS is not based on the require-

ments themselves, but rather on a general knowledge of how

to map classes of requirements onto classes of tests.

3 Scenarios

A scenario is a semi-formal description of uses of a sys-
tem in terms of situations, interactions between agents, and

events unfolding over time. ScenarioML is an XML lan-

guage for scenarios [3, 4]. ScenarioML expresses scenarios

with a combination of events, ontologies, references, and

scenario parameters. The events are recursively structured

from simple text events as a basis and include compound

events grouping several events in a particular order (total or

partial), event schemas such as iterated events and sets of al-

ternative events, and episodes that specify another scenario

as an event. Allen’s interval algebra relations [2] express

the temporal relationships among the parts of a compound

event. This approach to events supports automated recogni-

tion of scenarios happening in a domain, derivation of one

scenario from another (such as one or more test scenarios,

or paths through a requirements scenario), and other auto-

mated processing. Ontologies give a way to describe the

kinds of entities that can exist in a domain, define specific

entities, and express the relationships among them. We use

ontologies to help give the context of scenarios and (through

scenario parameters) specify the range of entities that can

appear in a specific scenario. We have seen that without

ontologies and scenario parameters, it is difficult to derive

adequate tests from requirements scenarios because there is

no information with which to make them concrete, and there

is little opportunity for automation of the process.

Fig. 1 shows a snippet of the “IrrigateScenario” from
AquaLush. The scenario shows that the system should try

to read each sensor three times, if it fails after three times

the sensor is marked as failed. The next sequence in the sce-

nario (Sequence 2) has a pre-condition based on the result

of the sensor reads in the top of the scenario.

4 Requirements-Based Test Harness

Our KBS together with its interface to the system under

test are components of what we call the test harness. In this

section we describe the overall architecture and operation

of the test harness.

4.1 Architecture

Fig. 2 shows the architecture of the test harness and its

relation to a requirements scenario and its test scenarios. Its

Figure 1. Scenario snippet

basic operation is to drive the system through a variety of

paths through the scenarios, compare events output from the

system to events in the requirements scenario, and evaluate

whether or not they match. If there are mismatches between

the expected and received events, the test harness alerts the

tester and provides an explanation produced by the KBS.

This process is illustrated in Fig. 3.

From the requirements scenario we map the scenario

events to input and output functions that will connect the

system under test and the test harness. We then use the re-

quirements scenario and the mapping to create several test

scenarios, with each test scenario tracing a particular path

through the requirements scenario.

The events that we monitor typically involve both the

system under test and the testing environment. The events

are divided into a system output part, which the test harness

should be monitoring occurrences of, and a system input

part, which is the response to the output generated by the

test harness and that drives the system. The test harness

functions that monitor system output and generate system

input are collectively referred to as the test harness API.

The API is the primary interface between the system un-

der test and the KBS. As an example, consider the sce-

nario event “Failed to read sensor”. The system out-

put is “Read sensor”, and maps to test harness function
SimSensorDevice.read(). The KBS decides that

the resulting system input is “fail”, which maps to the re-

turn statement of SimSensorDevice.read().

4.2 Test Scenarios and Test Cases

A test scenario corresponds to a particular path through
a requirements scenario, and provides information about

event responses along that path. A test case is a special-
ization of a test scenario created by adding concrete input

data for the system under test. Each test case is an ordered

list of event-responses. Each event-response contains infor-
mation about the type of event, particular event parameters,

and particular input that the KBS uses to drive the system.

187

Test Harness API

Test Scenarios

used to
construct

instantiate
tests with data

de�ne return
functions

generate

KBS

Test Harness

Test Case

validate

Requirements
Scenario

validate

Figure 2. Test Harness Architecture

System

Test Harness
API

KBS Test Case

User Log

output

event

response

response &
match result

positive
match result:
provide input

match
result

Next test
negative

match result

Figure 3. Test execution flow

For example, in the requirements scenario in Fig. 1, a

path could be chosen corresponding to the case where the

moisture level is below the critical value (see precondition

for Sequence 2). The test scenario corresponding to that

path contains that information without deciding concretely

what the moisture level is. A test case for this test scenario is

a further specialization and has concrete input data, such as

a particular instance of a sensor and a moisture level of 10%

when the critical moisture level is 50%. An event-response

element in a test case for this test scenario would therefore

look like: (event-response (event-type “Read sensor”)
(parameter S1) (outcome 10)), where event-type is the
output event from the system to the test harness, and out-

come is the input data from the harness to the system. Par-

ticular objects such as sensor S1 are instantiated instances
of the ScenarioML ontology InstanceType element. The
order of event-responses is derived from the sequence of

events in the test scenario. There could for example, be two

“Failed to read sensor” events followed by one “Success
to read sensor” event. The KBS keeps track of appropriate
input for each event. Fig. 4 shows a test case for the scenario

snippet in Fig. 1. Although these test cases are executable

code, our experience indicates that they are understandable

with a modest effort by non-technical stakeholders.

(event-response (event-type "Read sensor") (parameter S1) (outcome fail))

(event-response (event-type "Read sensor") (parameter S1) (outcome fail))

(event-response (event-type "Read sensor") (parameter S1) (outcome 20))

(event-response (event-type "Read sensor") (parameter S2) (outcome fail))

(event-response (event-type "Read sensor") (parameter S2) (outcome fail))

(event-response (event-type "Read sensor") (parameter S2) (outcome fail))

(event-response (event-type "Read sensor") (parameter S3) (outcome 60))

(event-response (event-type "Read sensor") (parameter S4) (outcome 40))

(event-response (event-type "Read sensor") (parameter S4) (outcome fail))

...

Figure 4. Test case snippet

4.3 KBS

The KBS performs the following functions: (1) compute

expected results based on test case and runtime information,

(2) match events coming into the test harness from the sys-

tem under test to expected events in the test case, and (3)

use the information from the event-responses to drive the

system.

The KBS is implemented in the rule-based programming

language JESS (Java Expert System Shell) [1]. Fig. 5 shows

a sample KBS rule. The qualitative model of the KBS is

structured around different sets of tasks described by the

requirements scenarios. For example, the rule in Fig. 5 par-

tially implements the task of activating a zone for watering.

We see this from the task condition pattern on the left hand

side (LHS) of the rule. The remaining condition patterns on

the LHS of the rule are satisfied if (1) the KBS has received

a “Read sensor” event for the zone in question, (2) the
number of times the system has attempted to read this sen-

sor is below the maximum number allowed (three according

to the requirements scenario), and (3) there exists an event-

response in the test case that matches the event and the zone

and that has not yet been processed, and whose outcome has

the value of ‘fail’. If the conditions in the LHS of the rule

are satisfied, the KBS takes the actions specified in the right

hand side of the rule. These actions are to update the model

by (1) incrementing the number of times this sensor was

read by 1, (2) noting that the requested sensor read failed,

(3) noting that the event has been processed, and (4) noting

that the event-response has been processed.

The KBS contains sufficient meta-information to be able

to explain its model in a form understandable to stakehold-

ers by (1) producing natural language versions of the rules,

and (2) stating the fairly direct relation between the rule

components of the model and the requirements in the sce-

nario. As we illustrate in the next section, the KBS is also

capable of generating explanations of expectation violations

in terms that stakeholders can understand.

188

(defrule process-read-sensor-request-2
;System made read sensor request and sensor failed.
(task (name activate-zone) (object ?zone))
?e <- (event (text "Read sensor") (parameter ?zone) (status matched))
?nsrwm <- (num-sensor-reads (value ?nsr&:(< ?nsr ?*max-sensor-reads*)))
(zone (name ?zone))
?er <- (event-response (event-type "Read sensor") (parameter ?zone)

(outcome fail) (status wait))
=>

(modify ?nsrwm (value (+ ?nsr 1)))
(bind ?*sensor-read-result* -1)
(modify ?e (status processed))
(modify ?er (status done))

)

Figure 5. JESS rule

5 Validation Study

In this section we briefly describe our experience con-

structing the test harness, generating tests, and running the

tests on a sample software system, AquaLush [7].

We used the requirements and use cases to produce seven

ScenarioML scenarios. We will use one of these scenarios,

IrrigateScenario, to describe our work. We chose this sce-
nario because it describes the main functionality of the sys-

tem and relates it to several stakeholder goals. IrrigateSce-
nario contains two major event sequences where the second
one itself consists of three event sequences. The first major

event sequence is illustrated in figure 1. From IrrigateSce-
nariowe derived 6 test scenarios and created 6 test cases out
of the test scenarios. Finally, we ran our test cases against

the released version of the system.

5.1 Testing Released Version

We detected a system event mismatch when we ran our
first test case on the released version of the system (see test
output below). For this test case, the test harness made the
system think that sensor S1 failed to read three times in the
first event sequence of the scenario. The system read the
other sensors and then moved on to open the valves in the
zone with sensorS3. Once the valves were open, the system
should have started reading sensor S3 every minute until
irrigation stopped. What happened instead was that after
the valves opened in the zone with sensor S3, the system
attempted to read sensor S1, even though this sensor was
not in the zone that was being irrigated at the time and had
actually been reported as not working.

...

An open valve event for V10 was received as
expected.

An unexpected request to read the sensor
from zone S1 was received. It was unexpected
since the system is currently irrigating zone S3.
This action is not in accord with Item 2.1
of IrrigateScenario.

A read sensor event for zone S3 was received as

expected while irrigating.

...

The KBS produced a moderately detailed explanation of

the expectation violation including a reference to the item

in IrrigateScenario that is the basis of the violation. This
is a good example of the type of transparent behavior that

facilitates stakeholder participation in the testing process.

Running the other test cases revealed additional prob-

lems, including some implementation faults, that we do not

describe here due to lack of space.

6 Conclusion

We have shown how using the qualitative models of

a KBS enables stakeholder participation in requirements-

based testing. We have demonstrated the effectiveness of

our approach by identifying a number of ways in which the

published version of the AquaLush system does not satisfy

its requirements. The explanations produced by the KBS

comparing the actual system behavior with expected behav-

ior clearly indicate the nature of the requirements violations

in each of our six test cases.

The strength of our approach is derived from the syn-

ergy of two complementary technologies. On the one hand,

we have ScenarioML. It provides a semi-formal language

for describing requirements that is particularly well suited

to the mechanization of their manipulation. These require-

ments are a rich source of stakeholder knowledge. On the

other hand, we have the qualitative models of KBS tech-

nology implemented with the rule-based programming lan-

guage JESS. These two technologies are deeply connected

in that the KBS is directly derived from the ScenarioML re-

quirements. JESS rules are highly modularized components

of KBSmodels. A powerful feature of these rules is their di-

rect relation to requirements scenarios. That is partly where

their power lies in terms of directly exposing requirements

violations. The data structures used to drive our rule-based

programs are directly derived from the ScenarioML repre-

sentations of the requirements. At this early stage of the

research, we derive them by hand. But our experience so

far has convinced us that the process of deriving JESS rules

from ScenarioML scenarios can be completely automated.

7 Future Work

Our evaluation study has provided us with evidence that

our approach is effective in revealing both potential spec-

ification problems and implementation faults. However, a

testing approach also needs to be efficient. In order to make

our approach both effective and efficient, we are currently

working on different ways to automate the process.

189

One substantial task in our process has been to manu-

ally write the ScenarioML scenarios. Our group is currently

implementing an Eclipse plug-in that will ease this task by

providing a graphical interface for editing scenarios. We are

also investigating ways to automatically generate test sce-

narios that cover all branches of a ScenarioML scenario. We

will use instantiations of InstanceType elements in the sce-
nario ontology and pre- and post-conditions as constraints

and search through the scenario paths with those constraints

until we have enough test scenarios to cover all branches

and conditions. Since we view scenarios as a knowledge

source, we also plan to investigate the possibility of adapt-

ing knowledge acquisition techniques from the KBS com-

munity. We also plan to auto-generate test cases in the form

of JESS event-responses from the test scenarios by either

random selection of input data that satisfies the path, manual

selection of data, or heuristic selection based on boundary

value analysis of the ontology.

As we indicated in the last section, the KBS is currently

created manually. In the future we expect to be able to gen-

erate it automatically from a set of requirements expressed

in ScenarioML. We are aware of the possible need to extend

the ScenarioML language to be able to express information

needed for this task that is not necessary for the require-

ments themselves. We also need tools that will allow stake-

holders to statically (i.e., not in the context of a running test)

inspect and understand the qualitative models of the KBS -

especially in terms of the requirements.

Once automation is in place, we will perform amore sub-

stantial validation study to evaluate the effectiveness of test

cases that are auto-generated from ScenarioML. We also

want to evaluate the efficiency of using our approach with

automation in place compared to other testing approaches.

In order for such an evaluation to be convincing we need

to develop a framework for evaluating different testing ap-

proaches with regard to effectiveness and efficiency. It is

generally known that faults that stem from requirements

misunderstandings are expensive to fix late in the develop-

ment cycle. Time spent on specifying and validating the

requirements for the system could therefore be gained by a

lower number of severe faults later in the cycle. We intend

to develop a framework that classifies the different types

of faults an approach can find and measures time spent on

specification development and testing all activities.

References

[1] JESS (Java Expert System Shell). http://
herzberg.ca.sandia.gov/jess/.

[2] J. F. Allen. Maintaining knowledge about temporal

intervals. CACM, 26(11):832–843, 1983.

[3] T. A. Alspaugh, S. E. Sim, K. Winbladh, M. Diallo,

H. Ziv, and D. J. Richardson. The importance of clar-

ity in usable requirements specification formats. Tech-

nical Report UCI-ISR-06-14, Inst. for Softw. Res.,

Univ. of Cal., Irvine, 2006.

[4] T. A. Alspaugh, B. Tomlinson, and E. Baumer. Us-

ing social agents to visualize software scenarios. In

SoftVis’06, pages 87–94, 2006.

[5] L. C. Briand and Y. Labiche. A UML-based approach

to system testing. Softw. and Syst. Mod., 1(1):10–42,
2002.

[6] W. J. Clancey. Viewing knowledge bases as qualita-

tive models. Technical Report STAN-CS-8, Stanford

University, Computer Science Department, May 1986.

[7] C. Fox. Introduction to Software Engineering Design:
Processes, Principles and Patterns with UML2. Addi-
son Wesley, 2006.

[8] D. Graham. Requirements and testing: Seven missing-

link myths. IEEE Softw., 19(5):15–17, 2002.

[9] F. Hayes-Roth, Waterman, and D. Lenat. Building Ex-
pert Systems. Addison-Wesley, 1983.

[10] H. Muccini, M. S. Dias, and D. J. Richardson. System-

atic testing of software architectures in the C2 style. In

FASE’04, volume 2984 of Lect. Notes in Comp. Sci.,
pages 295–309, 2004.

[11] C. Nebut, F. Fleurey, Y. L. Traon, and J. M. Jeze-

quel. Automatic test generation: A use case driven

approach. 2006.

[12] T. O. O’Malley, D. J. Richardson, and L. K. Dillon.

Efficient specification-based oracles for critical sys-

tems. In CSS’96, 1996.

[13] H. B. Reubenstein and R. C. Waters. The Re-

quirements Apprentice: Automated assistance for re-

quirements acquisition. IEEE Trans. on Softw. Eng.,
17(3):226–240, 1991.

[14] D. Samson. Knowledge-based test planning: Frame-

work for a knowledge-based system to prepare a sys-

tem test plan from system requirements. The Journal
of Syst. and Softw., 20(2):115–124, 1993.

[15] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer.

Scenarios in system development: Current practice.

IEEE Softw., 15(2):34–45, 1998.

[16] Q. Xie and A. Memon. Designing and comparing au-

tomated test oracles for GUI-based software applica-

tions. ACM Trans. on Softw. Eng. and Method., 2006.

190

Data and Process Analyses of Data Warehouse
Requirements

Estella Annoni
IRIT-SIG Institute (UMR 5505)

118 Route de Narbonne
F-31062 Toulouse Cedex 9

annoni@irit.fr

Franck Ravat
IRIT-SIG Institute (UMR 5505)

118 Route de Narbonne
F-31062 Toulouse Cedex 9

ravat@irit.fr

Olivier Teste
IRIT-SIG Institute (UMR 5505)

118 Route de Narbonne
F-31062 Toulouse Cedex 9

teste@irit.fr

ABSTRACT
As opposed to classical information systems, Data Ware-
houses (DW) have existing sources in addition to actor re-
quirements as inputs. DW design methods have to take
them both into account. Besides, ETL processes may con-
sume up to 80% of the development time in a DW project
and their costs are estimated to be at least one third of the
effort. Therefore, ETL and others processes we will define
should be handled at the first step of DW engineering. All
these processes allow actors to validate relevant and required
data. However, DW developpment methods which take into
account existing sources do not address these processes at
the early stage of process engineering. Thus, they are not
represented and validated during the analysis step.
Hence, we provide a model and an original approach to

analyse requirements and data sources by specifying data
and processes at the analysis stage. We specify DW prop-
erties through a graph which simplifies the confrontation
between user requirements and existing data sources.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Software Engineering De-
cision Support

Keywords
data warehouse, analysis, process, method

1. INTRODUCTION
Nowadays, processes which are evaluated in Data Ware-

houses (DW) projects concerning data extraction, data trans-
formation from existing data sources and loading into DW
are called ETL processes. As argued in [8], ETL processes
can represent 80% of development time in a Data Warehouse
(DW) project.
In I-D6 company [12], we notice that these processes are

taken into account after actor requirements analysis which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEKE ’07, Boston USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

is too late. Moreover, their representations cannot be val-
idated by all DW actors because the model is not close to
the user vision of data. In addition, ETL processes are not
represented in the same scheme of DW requirements (user
requirements and existing data sources). This can explain
the 55 % mentioned by Inmon [13] which represents the ETL
cost regarding the total cost of DW runtime.
Moreover, based on I-D6 projects, we notice that other

processes are required to improve user acceptation and sat-
isfaction of DW. In addition to ETL processes which are
related to the DW technical component, these processes are
related to the DW decision component. They evaluate the
validity, the criticity and more generally the environment
of data required to improve and to ensure decision-making
process.
However, there are few researches which deal with the

modeling processes [7, 23]. Their schemes represent only
ETL processes and are only readable by practitioners but
not by users. Moreover, the schemes are cluttered with de-
tails which disturb user understanding. Above all, they are
defined after DW conceptual scheme.
Hence, we provide a model and an approach to analyse

DW requirements. The requirements model represents data
and processes expressed by actors. It can be evaluated by
all of the actors because it is close to user vision of data. In
order to simplify the synchronization between user require-
ments and sources, we propose to represent DW require-
ments via the same model. More specifically, our contribu-
tion lies in the proposal of:

1. a model that is close to user vision of data, that han-
dles data and processes validation by all DW actors,

2. an approach of data source analysis which allows de-
signers to handle processes at the early stage of DW de-
velopment and to define quantitatively candidate mul-
tidimensional concepts.

In the following sections, we present progressively our run-
ning example. This paper is organized as follows. In sec-
tion 2, we discuss related work about DW processes. Sec-
tion 3 presents the model for data source analysis. Then in
section 4, we detail how to derive from an E-R schema a
model for data source analysis. Finally, Section 5 points out
the conclusion and future work.

2. RELATEDWORK

2.1 DW development design and processes
Several works deal with DW conceptual design and pro-

pose models and approaches to define a scheme of DW.
These works can be classified by their approaches in three
groups which are those based on demand-driven (take user

191

requirements into account [14, 22]), based on data-driven
(take data sources into account [10, 6, 11]) and mixed (take
user requirements and data sources into account)approaches.
The latter derive one ideal multidimensional scheme from

user requirements and several candidate multidimensional
schemes from data sources. The schemes are compared dur-
ing a step called ”Confrontation”. This task is very im-
portant because it consists in synchronizing the differences
between the two schemes. [4] propose to derive several can-
didate schemes; it is time-consuming. [15] do not derive
a schema, they consider directly UML class diagrams of
data sources. One specificity of multidimensional model as
oppose to classical database ones is de-normalization [21].
Thus, ideal scheme and data source schemes are not com-
parable. Hence, we propose to derive only one scheme from
data sources and we propose to represent user requirements
and data source via the same model by integrating their
respective specificities. These works propose to de termine
candidate fact according to user evaluation or number of
numeric attributes per entity and relation.
Moreover, most of the methods based on the three ap-

proaches are concerned only with the DW static aspect.
They represent only data but not the environment around
the data, e.g. DW processes.
Concerning processes in DW design, only ETL processes

are taken into account. Moreover, a few proposals deal with
the specificity of ETL activities. They define mapping be-
tween the DW scheme and data source schemes. They are
not evaluated during the analysis step but after the DW de-
sign schema. The authors of [5] distinguish refreshment pro-
cesses from ETL processes because the first is dynamic and
evolves according to user requirements, whereas the latter,
called the ”initial loading”, defines with respect to current
requirements and sources. They do not provide a formal
model to specify the activities. We also mention the work of
[7], where the authors handle the mapping between sources
and DW at logical level. In any case, the problems of ETL
processes are not taken into account at the beginning. In
[23], the authors provide a model to specify the frequently
used ETL activities by using a sui-generis model which al-
lows the definition of attributes’relationships. However, the
model is readable by practitioners but not by final users be-
cause it is not close to their data vision. The authors of [15,
16] provided a DW method based on UML which takes into
account ETL activities at four levels (database, data flow,
table and attribute). This method will be heavy in the case
of an important project due to the number of levels. The
table level, which is not very detailed, gives a view only of
data but not of processes. The attribute level gives informa-
tion about one process (e.g. calculation) but the scheme is
unreadable because notes are used instead of UML method
specification.
Hence, these methods define DW processes only after DW

schema design. Thus, DW users can not validate these pro-
cesses during the analysis step. Moreover, they tackle only
ETL processes which are not sufficient to meet user require-
ments.
Many tools have been provided to implement them like,

Sunopsis [20], OWB [19] and SSIS [18]. These tools allow
designers to describe ETL processes during the implemen-
tation but not before because they need DW conceptual
schemes. All these tools provide a large variety of ETL
activities but do not handle these problems upstream from

the DW development.

2.2 Context
For these reasons, we provide models and an approach to

analyse DW requirements in order to achieve a scheme of
data and processes readable for DW users. We distinguish
three groups of actors to distinguish decision-makers and to
consider designers as actors. Tactical actors are decision-
makers who express requirements related to the business
area and some related to technical equipment. Strategic ac-
tors are decision-makers who express requirements related
to company orientation and some requirements about se-
curity of the technical equipment. However, system actors
are decision-makers and designers who express requirements
about the data sources, meaning technical equipment, and
some requirements related to the DW decision component.
Tactical and strategic actors are DW users.
This proposal is integrated in our complete method based

on a mixed approach called Decisional Trident [2]. Our ap-
proach is in three steps during an incremental and itera-
tive lifecycle. The first step is composed of three parallel
tasks which are analysis of tactical requirements, analysis of
strategic requirements and analysis of existing data sources
where each results in a derived Decisional Diagram. This
step ends with the confrontation task where the tactical de-
cisional diagram, the strategic decisional and the system
decisional diagram are compared. Our methods to derive
the tactical decisional diagram and the strategic decisional
have been proposed in [3]. In order to present our complete
method and to tackle specificities of data source analysis,
we present in this article system decisional diagram.
The second step transforms the DW decisional diagram

into a multidimensional conceptual schema of data and pro-
cesses. We consider all the multidimensional concepts in
order to represent hierarchies, dependences between multi-
dimensional concepts.
The last step is the implementation of the prototype in

order to validate the DW design. After deployment, another
iteration begins in order to improve the DW.
To validate our proposition, we present an extract of a

medical project where we apply it in the I-D6 company [12].

3. SYSTEM DECISIONAL DIAGRAM
In this section, we present our model to represent existing

data sources analysis. We develop our running example pro-
gressively. From an existing data sources scheme, which is
more generally E-R-based, and a property graph we derive
a model called System Decisional Diagram (SDD).
A property graph an is oriented graph whose vertex are

properties of the DW dynamic aspect. We propose this
graph in our previous work [1] to guide user interviews be-
cause it is an empirical task. In fact, there is no method
and it is not based on a formal support. We represent the
properties with an oriented graph without cycles in order to
express the relation between the properties and to comment
on each vertex. The graph is composed of two subgraphs.
One consists in the technical properties group and the other
consists in the decision properties group. Both of the sub-
graphs are composed of non-leaf vertices at two levels. To
annotate a graph, we consider each class of properties via
a depth first search. We begin with the sub-graph Decision
and finish with the sub-graph Technical
Non-leaf vertex of level 2 are classes of properties. We

define a coefficient which evaluates the importance of these

192

property classes for a group of actors in the DW develop-
ment. The coefficient is a number between 1 and 4, where 4
is the highest level. It equals 1 by default. Coefficients are
used for the confrontation task in order to match DW re-
quirements. The coefficient indicates the principle of design
by contract [17].
Leaf vertices contains an assertion or a sentence in natural

language which specifies the property of the project. There
is a graph per actor group. Height and order of the prop-
erty graphs are always the same for each decisional project.
Hence, we propose to define ten processes related to man-
agement of data and its environment. These annotations
yield process parameters. These processes can be divided
into 5 groups which deal with extraction-load, error control,
data validity, data transformation and data access. All pro-
cesses are not valid for all actor groups. Thus, we define
them per actor groups in the previous work aforementioned.
The system property graph of our running example is shown
in figure 1
This derivation approach is a rule-based mechanism which

allows us to define facts, measures, dimensions, parameters,
weak attributes and hierarchy. At the beginning, designers
select all relevant data sources related to the application
and the environment project. More precisely, they choose
sources which concern business areas of the project. We
consider that all schemes are in 3-NF as presented in figure 2.

Figure 2: Medical scheme ER

The model, called ”System Decisional Diagram”, is an ex-
tension of the UML class diagram. We use a notation close
to [15]’s with only two multidimensional classes. The classes
are based on the two main multidimensional concepts well-
known by researchers and practitioners which are fact and
dimension (cf. figure 3). This model specifies fact (resp. di-
mension) entity or fact (resp. dimension) relationship as fact
(resp. dimension)-classes in a multidimensional way. Data
and processes are represented as attributes and methods of
theses classes. To indicate that a class or an attribute can be
subject to a process, we define the ”informativity” concept.
The informativity concept is a sign associated to a process
before an attribute name to indicate that this attribute par-
ticipates to this process. We have introduced these concepts
of attribute method and informativity in our previous work
[3].

4. DATA SOURCES ANALYSIS
We filter the syntactic redundancies of data sources schemes

as follows: at first, we prefix with entity or relation name
attributes which have the same name in a scheme. We also
complete the description of these attributes in the data dic-
tionary. Problems of wrong data selection are avoided with

understandable names. This contributes to data quality for
a good decision-making. Besides, datatypes of an attribute,
any codification, any item or rule must be known for data
sources analysis; Thus, they must be specified in property
graph. For instance, we prefix the attributes which have the
same name like Doctors.FirstnameD, Patients.FirstnameP.
To derive a system decisional diagram from an E-R scheme,

we define four sets of rules. Thus, we must apply them in
the following order : selection rules, structuring rules, well-
formedness rules and merge rules.

4.1 Selection rules
Selection rules allow designers to define candidate facts

from E-R scheme. Contrary to the others works [10, 6,
11, 15] where the authors define qualitatively facts we de-
fine them according to a quantitative rule by taking into
account attribute constraints in addition to numerical at-
tributes. The selection of candidate facts CFk ∈ F (F is
the set of DW facts) are defined according to table 1. The
number of rows (called N att) of this table is equal to the
maximum number of numeric attributes of entities and re-
lationships which are not primary key (PK). We define the
arity of an entity or a relationship as the number of rela-
tions with other concepts. The number of columns (called
N rel) is equal to the maximum arity of entities and rela-
tionships. The N rel varies between the highest arity and
1. The N att varies between the highest number of numeric
attributes Max(Natt) and 1.

N rel
3 2 1

N
a
tt 3 Cares

2 Tests
1

Table 1: Candidate fact table

Cell(n, p) is filled with names of entities and relationships
whose its arity equals to p and which have n numeric at-
tributes not PK. We define a function ArityR : CF → CF
which specifies the set of entities or relationships in relation
with the candidate fact CFk. We notice that right facts are
in the top part of the table, but we define the following rules
to determine formally multidimensional concepts. CFk with
CMCFk and CDCFk is a candidate fact CFk with a candi-
date measure CMCFk and a candidate dimension CDCFk .
Whereas, fk with mfk and dfk is a right fact fk with a right
measure mfk and a right dimension dfk .

Selection rules for fact (SF) and measure (SM)
selection:

• SF1: All relationships listed in the table are candidate
facts CFk. Thus Cares, Tests ∈ CF .

• SF2: If CFi ∈ ArityR(CFk) then CFk is a f ∈ F ,
CFi /∈ F . Relationships are evaluated in prior,

• SF3: If CFk− > CFi (functional dependence) then
CFk is a f ∈ F , CFi /∈ F . There is no functional
dependence between Cares and Tests. Thus Cares and
Tests ∈ F ,

• SM1: Numeric attributes of a CFk, which are not PK,
are CMCFk ,

• SM2: All numeric attributes of a fk, which are not PK,
are mCFk ∈ M . Cares.PriceC, Cares.NHFCoverage,
Cares.Frequency, Tests.PriceT, Tests.NHFCoverage are
measures,

• SM3: If CFi ∈ ArityR(fk) thus CMCFk = {CMCFi}∪
({CMCFk} \{CMCFi}). Candidate facts Cares and
Tests are not in relation with another candidate fact.

193

Figure 1: system property graph

Figure 3: Source decisional diagram

Selection rules for dimension selection:

• SD1: All entities with a 0-N or 1-N relation with a CFk
and which are not in CF or F are CDCFk . Medical file
is a CDCFdepartment ,

• SD2: All entities with a 0-N or 1-N relation with a fk
and which are not in CF or F are dCFk ∈ D. Thus
{Medical file, Nursing staff} ∈ dCares and {Medical
file, Nursing staff, Doctors} ∈ dTests,

• SD3: Non-numeric attributes and numeric attributes,
which are PK, of a fk ∈ F are associated to dfk ∈ D.

For example Cares fact have a PK numeric attribute
”CareID” and two non-numeric attributes ”NameC”
and ”DescriptionC”. They are related to the same
concepts. Thus, only one dimension will be created.
We called it MedicalCares. Idem for Tests,

• SD4: All entities connected by a relationship 0-N or
1-N to a dk and which are not in F is a ddk ∈ D. This

194

rule handles hierarchies definition recursively. Medical
file is connected to Patients by a relationship 1-N .
Thus Medical file ∈ dCares and ∈ dTests,

• SD5: datetime attributes are extracted from facts to
create Time dimension. Each fact has n (n=number
of datetime attributes) relations with Time dimension.
If n>1, the role is specified for each relation. There
are two connections between Tests fact and dimen-
sion Time (roles Prescribe and AchieveC) and one con-
nection between Cares fact and dimension Time (role
AchieveC),

• SD6: if there is not a Time dimension, then a dimen-
sion Time dt ∈ D is added,

• SD7: check functional dependences between fact and
dimension. If there is one, all attributes of a fact, that
depend on one or several attributes of a dimension, are
moved to this class-dimension,

• SD8 : represent functional dependences between di-
mension by dotted arrow between them.

Selection rules for parameter (SP) and weak at-
tribute (SW) selection:

• SP1: All numeric attributes of a dfk are parameters
pk ∈ P . Attribute primary key of each dimension is
transformed into a parameter,

• SP2 : attributes of dimension which contribute to cal-
culate attributes of fact are removed for data consis-
tency,

• SW1: All non numeric attributes of a dfk are weak
attributes ak ∈ A. The other attributes of the dimen-
sions are transformed into weak attributes,

4.2 Structuring rules
Structuring rules allow designers to represent the multidi-

mensional concepts defined above. The information issued
at class level is specified through methods of class whereas
information issued at attribute level is specified through
methods of attribute.

Structuring rules for data:

• SRD1: All facts fk are transformed into a fact-class
with their attributes which are mCFk ,

• SRD2: All dimensions dfk are transformed into dimension-
classes with their attributes which are parameters pk
and weak attributes ak,

• SRD3: All fact-classes fk are related to their dimension-
classes by a dashed line which specifies that fact-class
can be analysed according to these dimension-classes,

• SRD4: All dimension-classes ddk are related to their
dimension-classes dk by a dotted arrow which specifies
that dimension-class dk includes ddk .

Structuring rules for processes:

• SRP1: method Available(d, f, c) with a duration d,
a frequency f and a constraint c. For fact Cares, we
define Available(24, week, NULL) because the data
source required are available 24 hours per week,

• SRP2: method Complex(t, h) with the transforma-
tions t performed on data sources and h heterogeneity
of data sources. Complex(1, 1) because the transfor-
mations required are low (level between 1 and 4) and
the heterogeneity is also low (level between 1 and 4),

• SRP3: method Log(l) at level l. For the dimensions,
the method of log is log (2) and for the fact Cares, the
method is log(1),

• SRP4: method Catch(e,m) to catch error e and dis-
play the message m. Catch (’joining problem’, ’Invalid
data’) because designers want to catch this error to
evaluate the validity of data,

• SRP6: method Calculate({vi}+) which indicates how
an attribute is calculated from data vi, Calculate(Cost,
Quantity, PriceC)<<attribute>> means the attribute
”Cost” is calculated with the parameters Quantity and
PriceC. The operation is at attribute level,

• SRP7: method Historicize(p, d, c) with a period p
for a duration d and a constraint c. Historicize (year,
3) means the attributes are historicized for the three
previous years without constraint,

• SRP8: method Refresh(f, m) with a frequency f
given and a refresh mode m. Refresh(week, merge)
means the attributes are refreshed every week in merge
mode,

• SRP9 : method Archive(p, c, fct, cond) with a pe-
riod p with a duration d, a constraint c and an aggre-
gate function fct. Archive (year, 10, sum) means the
attribute of fact-class Cares is archived for ten years
by summing without constraint.

4.3 Well-formedness rules
Well-formedness rules control schema validity. They allow

designers to check decisional diagram consistency.

• WR1: A fact-class cannot be related to another fact-
class,

• WR2: A dimension-class dk related to another di must
satisfy a functional dependency,

• WR3: A dimension-class can be related to a fact-class
by a dashed line or to another dimension-class by a
dotted line.

4.4 Merge rules
Merge rules allow designers to merge decisional diagram

which can be gathered with respect to business areas of the
environment of the project. The rules are based on the syn-
tax, e.g. multidimensional objects with the same name are
added to the decisional diagram. For instances, we specify
that an E-R scheme is associated to a system decisional di-
agram. Therefore, if there are several SDD, we apply the
merge rules according to the project environment to obtain
one SDD. SDD can always be merged because there is at
least dimension Time in common.

• MR1: Fact-classes with the same name are merged by
adding attributes and methods. If parameter values
are not the same, we consider according to organiza-
tion directives the more or the less restrictive values,

• MR2: Dimension-classes with the same name are merged
by adding attributes and methods. For different pa-
rameter values, we consider according to organization
directives the more or the less restrictive values,

195

• MR3: For dimension-classes and fact-classes with dif-
ferent names, in the case of decisional diagrams of the
same type, dimension-classes connected to fact-classes
(represented in the two schemes) are added. Fact-
classes connected to at least one common dimension
of the two schemes are added,

• MR4: For dimension-classes and fact-classes with dif-
ferent names, in the case of decisional diagrams of dif-
ferent types, the application depends on the confronta-
tion type.

5. CONCLUSION
In this paper we provide a model and an approach of ex-

isting data source analysis. The model of Decisional Dia-
gram represents the requirements of each actor in a mul-
tidimensional way where data and processes are handled.
These information are represented closely to the user vision
of data and take advantage of specifying methods in the
same scheme by UML class diagram. Thus all DW project
actors (decision-makers and non IT practitioners) can take
part of DW requirements confrontation and can evaluate
data and processes of projects.
We also provide property graphs which guide designers in

the analysis step, more precisely for user interviews. The
coefficient of importance of each DW class of properties and
property assertions can be specified. These coefficients sim-
plify the task of confrontation because they indicate which
class of property should be integrated in priority. Assertions
describe project properties and they are needed for process
definition. In our complete approach, the DW conceptual
scheme is derived from the DW decisional diagram. Hence,
dynamic properties of DW are handled at the early stage of
DW development and are represented in the same require-
ment scheme. Thus, this contributes to reduce the estimated
development time regarding to the important runtime rate of
DW process. It contributes also to improve decision-maker
satisfaction in order to reduce the 80% of projects which do
not meet user requiments [9].
Our future work will be devoted to provide a user friendly

and understandable approach at logical level. We are also
working on a semi-automated or automated approach which
we aim to implement in a tool.

6. ACKNOWLEDGMENTS
We would like to thank I-D6 for its collaboration during

the four last years. Hence, we can evaluate the feasibility of
our complete method and benefits yielded.

7. ADDITIONAL AUTHORS
Additional authors: Gilles Zurfluh, IRIT-SIG Institute

(UMR 5505), 118 Route de Narbonne F-31062 Toulouse
Cedex 9, email : zurfluh@irit.fr

8. REFERENCES
[1] E. Annoni, F. Ravat, and O. Teste. Traitements

l’origine des systmes d’information dcisionnels. Revue
des Sciences et Technologies de l’Information, 11(6),
2006.

[2] E. Annoni, F. Ravat, O. Teste, and G. Zurfluh. Les
systèmes d’informations décisionnels : une approche
d’analyse et de conception à base de patrons. revue
RSTI srie ISI, Méthodes Avancées de Développement
des SI , 10(6), 2005.

[3] E. Annoni, F. Ravat, O. Teste, and G. Zurfluh.
Towards multimensional requirement design. In Data
Warehousing and Knowledge Discovery, volume
Volume 4081/2006, pages 75–84, 2006.

[4] A. Bonifati, F. Cattaneo, S. Ceri, A. Fuggetta, and
S. Paraboschi. Designing data marts for data
warehouses. ACM Trans. Softw. Eng. Methodol.,
10(4):452–483, 2001.

[5] M. Bouzeghoub, F. Fabret, and M. Matulovic-Broqué.
Modeling the data warehouse refreshment process as a
workflow application. In S. Gatziu, M. A. Jeusfeld,
M. Staudt, and Y. Vassiliou, editors, DMDW,
volume 19 of CEUR Workshop Proceedings, page 6.
CEUR-WS.org, 1999.

[6] L. Cabibbo and R. Torlone. A logical approach to
multidimensional databases. Lecture Notes in
Computer Science, 1377:155–162, 1998.

[7] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi,
and R. Rosati. A principled approach to data
integration and reconciliation in data warehousing. In
Design and Management of Data Warehouses,
page 16, 1999.

[8] M. Demarest. The politics of data warehousing, 1997.

[9] P. Giorgini, S. Rizzi, and M. Garzetti. Goal-oriented
requirement analysis for data warehouse design. In
I.-Y. Song and J. Trujillo, editors, DOLAP, pages
47–56. ACM, 2005.

[10] M. Golfarelli and S. Rizzi. Methodological framework
for data warehouse design. In DOLAP ’98, ACM First
International Workshop on Data Warehousing and
OLAP, November 7, 1998, Bethesda, Maryland, USA,
Proceedings, pages 3–9. ACM, 1998.

[11] B. Husemann, J. Lechtenborger, and G. Vossen.
Conceptual data warehouse modeling. In Design and
Management of Data Warehouses, page 6, 2000.

[12] I-D6. I-d6 is a company specialized in decision-making
where estella annoni lead her phd thesis., 2006.

[13] B. Inmon. The data warehouse budget, 1997.

[14] R. Kimball. The data warehouse toolkit: practical
techniques for building dimensional data warehouses.
John Wiley & Sons, Inc., New York, NY, USA, 1996.

[15] S. Luján-Mora and J. Trujillo. A comprehensive
method for data warehouse design. In DMDW, 2003.

[16] S. Luján-Mora, P. Vassiliadis, and J. Trujillo. Data
mapping diagrams for data warehouse design with
uml. In P. Atzeni, W. W. Chu, H. Lu, S. Zhou, and
T. W. Ling, editors, ER, volume 3288 of Lecture Notes
in Computer Science, pages 191–204. Springer, 2004.

[17] B. Meyer. Object-Oriented Software Construction.
Prentice Hall PTR., 1997.

[18] Microsoft. Sql server integration services., 2006.

[19] Oracle. Oracle warehouse builder user’s guide 10g
release 1., 2006.

[20] Sunopsis. Sunopsis etl for data warehousing., 2006.

[21] R. Torlone. Conceptual multidimensional models. In
Multidimensional Databases: Problems and Solutions,
pages 69–90. 2003.

[22] A. Tsois, N. Karayannidis, and T. K. Sellis. Mac:
Conceptual data modeling for olap. In
D. Theodoratos, J. Hammer, M. A. Jeusfeld, and
M. Staudt, editors, DMDW, volume 39 of CEUR
Workshop Proceedings, page 5. CEUR-WS.org, 2001.

[23] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos.
Conceptual modeling for etl processes. In
D. Theodoratos, editor, DOLAP, pages 14–21. ACM,
2002.

196

Requirement Analysis Evolution through Patterns

Luca Vetti Tagliati Roger Johnson George Roussos
LucaVT@gmail.com rgj@dcs.bbk.ac.uk gr@dcs.bbk.ac.uk

Computer Science and Information Systems
Birkbeck University of London

Abstract

This paper presents a strategy, based on
requirement patterns (RP), aimed at improving the
requirement analysis discipline by allowing business
analysts (BA) to produce more reliable SW
requirements in a significantly shorter time,
minimising the overall requirement risks. In numerous
business organisations, IT systems are increasing their
strategic significance. In extremely competitive
environments, such as investment banking -where this
methodology has been tested- modern and advanced IT
systems can enable the organisation to obtain and to
maintain a predominant position in the market, which
in turn results in a greater ROI.

Regrettably a number of academic and industrial
studies depict a catastrophic picture about SW
projects: most of them are likely to fail and, logically,
the probability of failure grows with the size of the
project. The project failure factor varies within a
range of 50% - 70%. Furthermore, such studies
clearly show that requirements is the area where the
major risks reside. The proposed strategy is based on
the introduction of elegant, well-proven, technology-
agnostic, architecturally-compatible, simple and
reusable patterns that, focusing on the functional
requirements, expand on other requirement analysis
artefacts such as domain object model (DOM),
business rules (BR), user interface (UI) and glossary.
Keywords: requirement patterns, functional
requirements, non-functional requirements, domain
object model, business rules, use cases, UML.

1. Introduction

This paper considers the Use Case (UC) formalism
as the foundation of the requirement analysis
discipline. However, it also provides practitioners with
a number of other requirement-related artefacts that are
beneficial to BAs regardless of the process and
formalism employed.

The RP core consists of UC models, including their
specifications, which are linked to other artefacts like

DOM, UI design, BR and glossary. Furthermore, this
paper demonstrate the opportunity to associate the RPs
with artefacts belonging to other models, like system
test cases (see Fig. 1). According to Ross Collard [1],
UCs and test cases make an effective combination in
two ways: when the UCs are complete, accurate and
clear, the process of deriving the test case is
mechanical. If the UCs are not in good shape, deriving
test cases facilitate debugging the UCs. Therefore,
while UCs describe in detail the services that the
system will have to deliver, the test cases ensure that
the system provides these services as agreed.

Figure 1. Requirement models relationships

2. Rationale

The requirements patterns concept proposed by this
research focuses on the functional requirements
modelled through the UC notation as described in the
OMG UML specification [2]. This is central to all
other artefacts. The behaviour of each UC included in
the corresponding diagrams is given in terms of a
structured natural language i.e. a template. This allows
practitioners to illustrate the sequence of interactions
between actors and the systems necessary to achieve
the UC goal. Restricting the functional requirements
modelling exclusively to UC diagrams and the
corresponding specifications would be too rigid not
only for the requirements patterns concept but also for
ordinary UC models. Therefore, it is necessary to
design a mechanism to parameterise the UCs and
requirement models to enable their convenient re-use.

197

This mechanism, consistently with the UC notation,
has to:
• present a variable level of formality (it is important

to remember that one fundamental audience of UC
models is the user community);

• be organised in a core part that cannot be easily
changed plus a number of parametric sections whose
definition represents the customisation of each single
pattern to the specific need.
The solution envisages using the BR document to

delegate the definition of the customisable parts, which
are directives that differentiate the use of specific
requirements. In this way it is possible to define UC
scenarios with parametrical sections whose
specification is delegated to well-defined entries
(paragraphs) included in the business rules document.
Therefore, the traditional use of BR is enhanced to
include the specification of the parameterisable
behaviour.

The adoption of this technique to model UCs
presents a number of advantages, independently from
the usage of the requirements patterns. For example, it
reduces redundancy. Typically, the same BR are
referred to by several UCs and by other artefacts (e.g.
design model). Therefore, instead of copying and
pasting the same BR across a number of different
artefacts, with evident problems related to
maintainability and traceability, it is possible to refer to
the same one stored in the BR document. Furthermore,
BR modelling, depending on their nature (constraints,
algorithm, etc.), can require different notations. For
example, one of the most effective ways of expressing
an algorithm is to use the UML activity diagram
notation, while some market regulations are better
expressed in natural language. Therefore, UC notation
is not always the most appropriate tool to express BRs.
For the above-mentioned reasons, BRs must be stored
in a single artefact and then be referenced by all the
others.

The main mechanism for customising the proposed
RPs, referred to as a light-weight customisation,
consists of specifying the content of the BRs referred
to by the requirements themselves or simply accepting
the proposed ones. However, this is not the only way
as, in fact, it is also possible to change everything else
including the UC specification itself (this is a heavy-
weight customisation). However, these kinds of
changes are pervasive and therefore they should be
used only when it is absolutely necessary.

Another advantage of this technique is related to its
capability to distinguish, clearly from the source, the
part of the requirements that do not change often from
the ones that vary more frequently (i.e. sections
defined in the business rules document). This should

provide development teams with an important input for
the design and implementation of reusable business
components.

RPs focus on UCs and expand on other models like
DOM, UI and glossary. Therefore, when a pattern that
provides the solution for a specific requirement refers
to well-defined, interrelated business entities (i.e. a
portion of the DOM) and/or a UI model, these can also
be incorporated in the corresponding requirements
model. Furthermore, it is possible to include in the
glossary an explanation, given in natural language, of
the concepts presented in the class diagrams.

A typical approach for business requirements
analysis and documentation consists of focusing first
on the services that the system will have to deliver,
modelled via the corresponding UCs, and then
validating them considering the organisation of the
corresponding business entities, modelled via class
diagrams. Typically, the definition of these class
diagrams requires a review of the UCs. This is the
case, for example, where the business entity structure
initially assumed in the UC was not fully correct or
complete.

Figure 2. Models of requirement patterns
The DOM is a key artefact for SW development not

only in balancing the related UCs, but also in using as
an input for the production of other fundamental
artefacts like: components design, database design,
system messages design and user interfaces.
Furthermore, the analysis of a number of business
services is better approached using the opposite
strategy: defining the business entities’ organisation
and then consequently modelling the UCs that,
manipulating these entities, are able to provide users
with requested services. RPs also fully supported this
approach: BAs can decide to include in their models
specific section of a DOM and then design their own
UCs. Therefore, although the RPs idea focuses on
UCs, the other models also assume a significant
relevance (Figure 2).

The overall RP idea consists of enabling BAs to
search through RP collections for specific

198

issues/domain problems and to extract the model
required. Each pattern can comprise a number of
models:
• one or more UC diagrams;
• a set of UC specifications (templates) which

specify the dynamics of each UC present in the
diagram mentioned above;

• a number of pre-defined paragraphs to be included
in the BRs document whose definition represents
the main mechanism to customize the RP.
Furthermore, UC specifications can contain topics
to be added into the overall glossary;

• a class diagram which models the business entities,
including their relationships, referred to by the UC.
A textual description of the mentioned entities can
be included in the glossary. Some business entities
can present a well-defined lifecycle modelled by a
corresponding UML statechart diagram which can
be included in the RP as well;

• an optional class diagram which models the UI
structure including the navigation associated with
the services described in the UC;

• a few test cases that describe the test to be
performed to verify that the implementation of the
specified services are correct and robust.

3. Case study

The following paragraphs discuss a small portion of
a case study in order to provide readers with the
practical aspect of the proposed theory. In particular,
this methodology has been successfully employed in a
global investment bank for the development of a
security system designed to implement authentication,
authorisation and data privacy services. The
experiment employed patterns previously designed and
extracted from requirements successfully used for
similar projects. These included twenty eight UCs, a
large DOM, an extensive BRs document, etc. From
this large pattern collection, we have selected an
example which is related to what is commonly and
incorrectly perceived to be a simple service: user
authentication. This service was selected because:
everybody is familiar with it, it allows the presentation
of a pattern that includes a number of different
diagrams, it is a service that everybody initially would
consider extremely simple and straightforward, but a
more detailed analysis highlights a number of
important aspects that not everybody would think
about. In the employed approach, BAs would start
from the UC diagram depicted in figure 3.

Figure 3. Authentication use case diagram
For each of the presented UCs, the RP, include the

corresponding specification. In this paper, due to
space limitations, only a small fragment of first one
(User Authentication) is presented (see fig. 4).

Date: 29/Aug/2005 USE CASE
UC: SEC.AUTHENT User authentication

Version: 0.00.001
Description: The Log-in service allows users to gain access to the system.

The system verifies the credentials inserted by the user and, if these are
valid, then the user is authenticated, otherwise the system executes a well-
define procedure depending on the number of consecutive failed log-in
attempts.
The authentication process is only a pre-condition for the execution of the
sensitive system’s services: authenticated users have to be also authorised.

User priority: Medium
Primary actor: User. This is a generic user (abstract). His/her interest in this use case is to

log into the system.
Preconditions: The system is available.
Post-conditions
 on success:

The system authenticates the user.

Post-conditions
 on failure:

The system refuses access to the user and it performs the corresponding
management actions.

Trigger: The user requests to log into the system.
MAIN SCENARIO

1 System: Displays the initial “log-in” screen. UI: SEC::LOGIN
2 User: Specifies the requested credentials. BR: SEC::login_credentials
3 System: Determines that the user login is valid. BR: SEC::login_validation
4 System: Determines that the user status is valid. BR: SEC:: login_user_status_validation

5 System: Verifies that the inserted password matches the corresponding internal one.
BR: SEC:: password_matching

6 System: Verifies that the user’s password is in a valid status.
 BR: SEC::password_status_valdation

7 System: Determines that the same credentials are not currently in use.
 BR: SEC::credentials_not_in_use

8 System: Resets the consecutive unsuccessful logins counter.
9 System: Logs the login action into the security audit trail.
10 System: Loads the user’s profile.
11 System: Verifies that the user’s profile is valid.

 BR: SEC::user_profile_status_validation
12 System: Insert the user’ login in the “users current logged in” list.

DOM: LoggedIn.users.add(current_user)

13 System: Shows the user’s menu.
14 System: The use case ends.
Alternative Scenario: User does not specify the credentials.
3.1 System: Shows an error message.
3.2 System: Resumes at point 1.
Alternative Scenario: User login not valid.
3.1 System: Determines that the maximum number of consecutive failed attempts from

the same connection has not been reached.
 BR: SEC::maximum_attempts_connection

3.2 System: Increases the number of consecutive failed attempts associated with the
connection.

3.3 System: Shows an error message.
3.4 System: Logs the login action into the security audit trail.
3.5 System: Resumes at point 1.
Alternative Scenario: Specified password does not match the internal one.
5.1 System: Determines that the maximum number of consecutive failed attempts related

to the user has not been reached.
 BR: SEC:: maximum_attempts_against_user

5.2 System: Increases the number of consecutive failed attempts associated with the user
and the ones associate with the connection.

5.3 System: Shows an error message.
5.4 System: Logs the login action into the security audit trail.
5.5 System: Resumes at point 1.

Figure 4. Authentication UC specification (Main and
some alternative scenarios)

The proposed version is particularly appropriate for
enterprise systems. This is because it includes the
logic necessary to detect possible intrusion attempts
(from a specific location and/or against a precise user)
and to check that other users are not currently logged-
in with the same credentials. Furthermore, there are
extensive controls related to the status of the user,

199

his/her profile and password, which are complex
objects with a well-defined cycle of life, etc. The
authentication UC specification presents a number of
areas where the corresponding default behaviour (i.e.
business logic) can be redefined. The definition of the
corresponding BRs is the main lightweight mechanism
to customize the UC specification. In particular, the
proposed UC specification presents the following
business rules: login_credentials, login_validation,
login_user_status_validation, password_matching, password_
status_valdation, credentials_not_in_use, user_profile_status_
validation,maximum_attempts_connection, maximum_attempts_
against_user, maximum_attempts_against_user. These allow
practitioners to define simple behaviour, like the
maximum number of consecutive failed attempts
allowed from the same remote address, or more
complex ones like the conditions that, if verified, force
the user to change his/her password.

The default rule states that the user’s password has
to be changed if its status is temporary, which means
that the password has been automatically issued by the
system, or its validity time window has expired. These
are examples of parts of the service that are subject to
change from one implementation to another, and
therefore their implementation requires a degree of
flexible. Other UCs foresee more complex business
rules whose definition is given in term of algorithm
modelled by UML activity diagrams, like the
calculation necessary to generate unique user id.

The authentication UC specification also includes a
number of references to the pre-defined corresponding
part of the DOM (figure 5), highlighted by the string
“DOM” written in bold. As mentioned before, UCs
and DOM describe two different projections of the
same “entity”, which, in this case, is the authentication
service requirement.

Figure 5. Part of the DOM
The BA, as usual, can decide to integrate the

propose sections of the DOM referenced by the UC
specification, or to use his/her own. In this case, the
most significant entities: user, profile and password,
are provided with the corresponding UML statechart
diagrams that can be included in the BA model.

Moreover, the UC specification refers to a well-
defined user interface (UI:SEC::USER_AUTH) whose

object oriented model is a part of the user requirement
as well.

Finally, the pattern adds in a number of terms (for
example, Authentication and Authorisation), including
the corresponding definition, which can be included in
the Glossary document.

4. Requirements patterns categories

The concept of pattern in the SW community has
been used with a number of different meanings. The
pattern notion considered by this paper presents a high
level of compatibility with the original Alexandrian
idea [12] that each pattern describes a recurring
problem in the particular problem domain including the
corresponding solution. This provides practitioners
with the possibility of reusing the solutions a number
of times without having to study the same problem
over and over again [3]. Therefore, the real core idea
is to produce a catalogue of elegant, well-proven,
extensible and re-usable requirements patterns in the
same way that the authors of the book [4] did for the
design model. In particular, RPs are reusable, well-
proven, architecture friendly and high-quality
requirement models for recurrent problems, obtained as
result of the experiences from development of real
projects. These patterns are provided with the context
of their usage, including forces, and they are designed
to be customisable by modifying the linked business
rules.
From the analysis of real world projects requirements,
it has been possible to divide RPs into two main
categories: domain specific and general purposes. The
former are particularly suitable for specific domains
like security, e-commerce, banking, etc. This category
presents some similarities with the work of Bjørner [5],
related to his studies to formally define the problem
domain via a formal mathematical language. The latter
are patterns, like data entry, searches, data analysis,
and so on. These are typically extracted as a result of
the process of reengineering patterns belonging to the
previous category. Therefore, the previous category is
a first-level application of the patterns present in this
set. However, both categories are proper patterns since
they provide a well-defined solution to recurrent
problems, either domain specific or more general.

RPs can provide practitioners with:
• elegant solutions that not everybody would think

of immediately;
• technology and programming language agnostic;
• architecturally compatible and consistent solutions

that have been proved through successful
implementation in other projects;

200

• well-proven solutions identified through the
analysis of real projects;

• high level of flexibility;
• simple but effective solutions;
• reusable solutions;
• a framework for developing CASE tools;
• a set of superior solutions that can also be very

useful for training purposes.

5. Advantages

The RPs adoption produced the following
advantages:
time saving. These RPs allowed BA to save time and
effort invested in modelling the requirements and
therefore they were able to invest more time in the
proper requirements analysis and less in the formal
aspect of their modelling. This time saved is not only
related to the initial production, but it is extended to the
number of re-factoring iterations that BAs typically
undertake. Often reviewing a model generates a ripple
of a number of other models. For example, reviewing
a package in the DOM necessitates the review of all
UCs that, starting from the described entities, generate
a number of services, the UI, the business rules, etc.
higher-level of quality. Analysis gathering discipline
proved to be a complicated and particularly critical part
of the SW development process. It is not always
possible to think ahead about all the different aspects
of a requirement (especially for the more complex
ones) and as a result, a number of changes can occur
that can produce serious consequences of the process
outcome (e.g. requirement creep). Furthermore, it is
not always possible or affordable to employ a BAs
expert in very specific domains, like e.g. in IT security.
Therefore, RPs are extremely convenient in these
scenarios. Furthermore, RPs explore all scenarios and
possible alternatives present in the analysed topic and
therefore they do not leave any aspect unexplored,
often they present a way of modelling the same
requirement that not everybody would think of
immediately, they are “implementation friendly” and
consistence since they have been identified in previous
projects, etc. Finally, each pattern, typically, includes
other models like the DOM and the UI model that are
often neglected because of a project’s time and budget
limitations. As proof, the issues tracking system (this
project used the software Jira) showed that there was
not a single log related to change requirements for the
security system. They were all related to fixing and
only 10% to the implementation of new services.
risk reduction. This advantage is a direct
consequence of the overall quality enhancement
described above. Furthermore, since the RPs are well-

proven solutions identified through the analysis of real-
projects, their feasibility and their ease of
implementation are guaranteed. In addition, these
patterns provide BAs with important tools for verifying
the validity, accuracy and completeness of the
requirements specified by users;
time and cost saving. These objectives are the logical
consequence of a number of factors. First of all, BAs
did not have to model a number of requirements since
these were already provided by the patterns. UCs and
scenarios can be labour-intensive to capture and
document. ([10] and [11]). Furthermore, the
requirement models present a high quality level and
they are architecture-friendly. The requirements
patterns can be raised to a further level by including
design model and implementation. In fact, other
outputs of the implementation of the security system
are reusable design model related to the security RPs.
Therefore, the selection of a RP has the potentiality to
bring with it models belonging to the design and
implementation phases. Finally, their presence allows
managers to organize teams where not all business
analysts need to be experienced.
standardisation of the business areas. A number of
practitioners started realising that the large availability
of out-of-the-box components evocated by the .Net and
J2EE architecture has not happened. One of the
explanatory factors can be found in the lack of business
domains standardisation. This problem can be solved
with the RPs, which provide a core with the description
of the flows of actions, including the point where the
behaviour can vary. Therefore, this should provide
development teams with a standardisation that would
allow them to produce well-defined and reusable
software components. As proof, the development team
is investigating the idea of releasing a few icomponents
to the open source community.
learning. RPs provide junior BAs with an effective
way of improving their technique. Furthermore, given
their quality and elegance they allow the less
experienced analysis to produce high quality outcome.

6. Related work

The RPs idea is in some ways related to previous
works in this area. The most relevant works are:
parameterised UCs introduced by Cockburn [7],
where two examples of patterns are discussed. One
such pattern, the “find whatever”, represents the
researching data function, and the second relates to a
typical CRUD functionality.
“Patterns for Effective Use Cases” [8], in this case
there are differences starting from the patterns notion,
which is clearly illustrated by several quotes included
in the book. E.g. they propose to consider patterns as

201

merely a sign of quality, and strategy. They do not
consider pattern language as a complete strategy for
writing requirements, but as a set of guidelines to
support practitioners fill a gap in their knowledge,
evaluate UCs quality, etc. Therefore, there is an
important divergence from the idea presented in this
paper.
“Use Cases Patterns and Blueprints” by G.
Övergaard and K. Palmkvist [9]
Bjørner’s study [5] where the author investigates
specific domains (like the railways) with the aim of
representing them via a formal mathematical language

The current IT body of knowledge embraces a
number of patterns methodologies applied to other
disciplines of the software development process, like
analysis patterns and design patterns. Although these
are extremely interesting, they are out of the scope of
this paper.

Although several academic studies and empirical
researches present some similarities with this approach,
there are also a number of important differences. The
most relevant ones shared by all other approaches are:
• some approaches do not consider UCs at all (e.g.

[5], [8])
• approaches that focus on UCs are often not fully

compliant with the corresponding standard ([7])
• most of the approaches focus on one artefact and

do not expand to the wider concept of SW
requirements. Either they focus on the functional
requirements or on a sort of static view ([5]).
Other important requirements artefacts, like DOM
and UI, are simply ignored

• only one approach ([9]) tries to makes use of BR
but not in a way that would promote reusability

• no single approach includes specific mechanisms
for a convenient re-use and customisation of RPs.

Övergaard and Palmkvist ([9]) propose several UC
patterns based on a high level of conceptuality that
poses a number of problems for their re-use in real
projects. E.g., as a matter of comparison, it is possible
to analyse their version of the user authentication UC,
called log-in. This is unexpectedly integrated with the
logoff UC (the same UC encapsulates two completely
different and logically opposite services). From the
analysis of this UC it is possible to highlight that it is
not considered the possibility of fraudulent security
attacks, there is not a scenario aimed at locking a user
account in case the maximum number of consecutively
failed attempts to login has been reached, there are no
further checks on the password data, etc. Therefore the
reuse of their patterns it is not straightforward. It will
likely require the production of a further and more
detailed version of the proposed UCs. Finally, the UCs
notation is adopted in an unconventional fashion

highlighted by the unusual presence of two main
scenarios.

7. Conclusion

The overall hypothesis is that the RPs strategy
provides practitioners with an effective instrument to
produce higher quality requirements analysis more
efficiently. This, in turn, produces two major
advantages:
project cost reduction: requirements are gathered
more rapidly, there are fewer change requirements, etc;
risks reduction. This is achieved because the
extracted requirements present a higher-level quality
and because the saved time can be invested in more
critical activities.

The latter advantage is particularly important since
commercial surveys still indicate that the major
number of software projects fail because of problems
with the requirements stage.

The initial study and corresponding investigation
showed a huge success during the requirement phases
where UCs and the corresponding DOM were
produced by copying patterns from a document. The
whole set was produced in only twenty three man days
and with virtually no change was requested during the
whole process. Furthermore, architects could benefit
straightaway from a whole set of requirements that
allowed them to design the architecture and the system
with no delays.

10. References

[1] R. Collard – “Test Design, Software Testing & Quality
Engineering” – July 1999

[2] OMG UML 2 specification
[3] C. Alexander, “A Pattern Language”, New York: Oxford

University Press, 1977
[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides – “Design

patterns, Elements of Reusable Object-Oriented Software” –
Addison Wesley, 1994

[5] D. Bjørner: A Cloverleaf of Software Engineering, IEEE
SEFM'05

[6] C. Wohlin, K. Henningsson, M. Höst , “Empirical Research
Methods in Software Engineering”, 1998

[7] A. Cockburn, “Writing effective use cases”, Addison-Wesley,
September 2000

[8] S. Adolph, P. Bramble, A. Cockburn, A. Pols, in the book
“Patterns for Effective Use Cases” Addison-Wesley, 08/2002

[9] G. Övergaard and K. Palmkvist – “Use Cases Patterns and
Blueprints” – Addison Wesley – Nov/2004

[10] P.A. Gough, F.T. Fodemski, S.A. Higgings, and S.J. Ray
“Scenarios – An Industrial Case Study and Hypermedia
Enhancements” Proc. Second IEEE Symposium Requirements
Engineering. IEEE Computer Society, pages 10-17. 1995

[11] T. Royer, “Using Scenario-Based Designs to Review User
Interface Changes and Enhancements”, proc. DIS95: Designing
Interactive Systems, Ann Arbor. Pages 236-246 – 1995

[12] C. Alexander, “A Pattern Language”, New York: Oxford
University Press, 1977

202

Abstract— Users appreciate applications that allow human
language as a medium of interaction. Inputs expressed in natural
language reduce the amount of time needed by a user in learning
and conforming to the required format of the application.
Computer Automated Use Case Diagram Generator (CAUse) is a
system that allows users to automatically generate use case
diagrams from English document specifications that can be used
for requirements management for business applications.
Through the use of Natural Language Understanding concepts,
the input specifications document is processed to derive potential
actors, use cases, and relationships, thereby generating a use case
diagram. The generated diagrams may be edited and saved in
the provided diagram editor.

Index Terms—requirements management, use case diagram,
natural language understanding

I. INTRODUCTION

enerating diagrams play an important role in software
development. These are used to organize and model
system behaviors, which are essential for requirements

management and communication with end-users [14].
“Requirements management is a systematic approach to
eliciting, organizing, and documenting the requirements of the
system. It is a process that establishes and maintains
agreement between the customer and project team on the
changing requirements of the system” [9]. It is identified that
the main cause of project failure is mismanaged user
requirements. Without proper requirements management, the
probability to meet the set objectives of system development
teams decreases [9].
In requirements management, the specifications of
requirements are given through textual descriptions of the
nature or roles of the actors and discussions of the functions
related to the actors. There is a style manual to be followed by
the writers of such requirements; and this is written in
simplified English in declarative form. These requirements
are then drawn through the commonly used notation of use
case diagrams of the Unified Modeling Language (UML).

Manuscript received February 19, 2007. This work was supported in part
by De La Salle University-Manila (DLSU).

N. R. Lim is with the College of Computer Studies of De La Salle
University-Manila, Philippines (phone: 632-5240402; fax: 632-5360278; e-
mail: limn@dlsu.edu.ph).

C. Cayaba and J. Rodil hold a Bachelor of Science degrees in Computer
Science specializing in Software Technology from De La Salle University-
Manila (e-mail: chriscayaba@yahoo.com, j_rodil@yahoo.com).

Use case diagrams are used to present the functional aspect of
the system. The main elements are the actors and the use
cases. Actors are the entities performing the functions of the
system. These actors are associated with roles that represent
the actual business roles in the system while use cases refer to
the business processes or the functions of the system being
performed by the entities or actors [2]. Specifically, use case
diagrams are used to obtain business processes such as
requirements management.

Tool for Requirements Elicitation and Documentation
(TRED) is an existing system that facilitates requirements
management. It requires inputs entered into a form-based
interface. In addition, a certain format of text inputs has to be
followed. However, following a format will not allow users to
describe and discuss the requirements freely; there will always
be unnecessary restrictions in presenting the requirements.
The next section discusses a system that generates use case
diagrams from English requirements specifications document.

II. THE CAUSE SYSTEM

Computer Automated Use Case Diagram Generator
(CAUse) automatically generates use case diagrams from
English document of business requirements specifications,
which will be used for requirements management for business
applications.
The system architecture of CAUse consists of three major
components namely the Natural Language Analyzer, the Use
Case Modeler and the Use Case Diagram Generator.
The Natural Language Analyzer accepts the input document
then analyzes the content and generates the candidate actors,
use cases, and relationships. These are then passed on to the
Use Case Modeler for determining the actors, use cases, and
relationships that will be used by the Use Case Diagram
Generator to draw the use case diagram (see Figure 1).

Automatic Generation of Use Case Diagrams
from English Specifications Document

Nathalie Rose T. Lim, Christobal T. Cayaba , Joseph Astrophel E. Rodil

G

203

NATURAL LANGUAGE ANALYZER

PARSER

DISCOURSE ANALYZER

REQUIREMENTS
DESCRIPTION LEXICON

STORAGE

USE CASE DIAGRAM GENERATOR

USE CASE MODELER

CANDIDATE
ACTORS

CANDIDATE
USE CASES

CANDIDATE
RELATION-

SHIPS

ACTORS USE CASES RELATION-
SHIPS

USE CASE
DIAGRAM

MODIFICATIONS

BUSINESS TERMS
RECOGNIZER

BUSINESS
TERMS

Fig. 1. System Architecture for CAUse

A. Natural Language Analyzer
The Natural Language Analyzer has two main processes:

parsing and discourse analysis. An existing parser provided by
the DLSU (sponsoring institution) was modified to tokenize
and tag the part of speech of the words. It is assumed that the
input is a business requirements document which is
grammatically correct. Initially, the system checks if any of
the words from the document matches with any terms from the
Business Terms List (stored in a separate file). Then, the
remaining words are tagged based on the lexicon used by the
parser. The attributes (e.g., human, human action, and item)
are used later to generate candidate actors and candidate use
cases. After tagging, the discourse analyzer then resolves
remaining ambiguities of the requirements specifications input
by identifying which words are referred to by pronouns. The
resulting information gathered from this phase will now be
stored as Candidate Actors, Candidate Use Cases, and
Candidate Relationships.
The problem encountered using pronouns is ambiguity as to
what the particular pronoun represents. Given the following
text, “Chris and Joseph are the entrepreneurs behind
GokongCakes, a fast growing cake company. As part of the
agreement, he collects daily inventory for analysis.”, the
pronoun “he” becomes ambiguous because the pronoun “he”
could replace two possible antecedents: “Chris” or “Joseph”.
In determining the object that is being referred to by a
pronoun, the most recent noun that is appropriate for the
reference is used. For instance, for pronouns “he” and “she”,
the preceding reference to a singular noun with an attribute of
human is used as replacement. Thus, for ambiguities as

described in the text above, the pronoun “he” refers to
“Joseph”, being the most recent and the most appropriate
noun.
For pronouns like “they”, the object being referred to may not
necessarily be human. In such cases, checking the sentence
structures also help in anaphoric resolution. In the following
text, “The students borrowed books. They will return them to
the library after reading.”, “They” is replaced with “students”
and “them” is replaced with “books”. This is because the
sentence structure is that in an active voice. Such types of
sentences indicate that the subject (in this case, “They”) acts
as the doer of the sentence and, as such, a human should be
the one performing the action (and not an item). On the other
hand, if the text is, “The students borrowed books. They are
returned by them to the library after reading.”, the “They”
refers to “books” and “them” refers to “students” because the
sentence is in the passive voice.

B. Use Case Modeler
From the Candidate Actors, Candidate Use Cases and the

Candidate Relationships generated by the Natural Language
Analyzer, the Use Case Modeler processed these and
constructs the use case model that is necessary for the
generation of the use case diagram. Basic rules used by
software engineers are applied to come up with the Actors,
Use Cases and Relationships. These basic rules are discussed
in Section III.

C. Use Case Generator
The Use Case Diagram Generator draws the use case

diagram based on the Use Cases, Actors, and the
Relationships produced by the Use Case Modeler. The
generated diagram may be modified and/or saved for future
modification. Modifications applied by the user are reflected
on the display and can be stored.

III. UNDERSTANDING ENGLISH TEXT

The extraction process considers the part of speech and the
attributes attached to the lexicons.

A. Candidate Actors
To extract candidate actors, the system looks for nouns in

the sentences. The limitation in CAUse is that the actor should
be a human because the nouns are checked if they are of the
attribute human. Since a software/hardware component could
also be an actor, a new attribute, say “software/hardware”,
could be made to recognize a candidate actor.

B. Candidate Use Cases
 To extract use cases from a sentence in active voice, the
system looks for verb phrases such that the form starts with a
verb (may be followed by other succeeding words) up to a
noun acting as its direct object. In the sentence, “The students
returned the books to the library.”, the use case will be
“returned the books”.
In a sentence written in the passive voice, the system looks for
the word “by”. The first noun, that is seen after “by”, is

204

determined to be the actor if the noun has an attribute of
human. Otherwise, no use case is generated. If the noun is a
human, then the system backtracks to check if the word next
to the auxiliary verb is a verb from the lexicon. If the part of
speech of the word is not a verb, there is also no use case.

C. Candidate Relationships
 Relationships include association, generalization, extend,
and include.

Association. Association is the relationship between an actor
and its use case. If the sentence is in active voice, the
candidate actor for this type of relationship is the noun prior to
the verb. This noun should fall under the human category. The
candidate use case is the verb phrase such that the form starts
with a verb (may be followed by other succeeding words) up
to a noun, which falls under the item category to connote that
it is the direct object of the use case. Given the sentence,
“The students returned the books to the library.”, there is an
association between the candidate actor “students” and the
candidate use case “returned the books”.
In a passive voiced sentence, the system looks for the word
“by”. Next, the noun after it, which falls under the human
category, is considered as the candidate actor. The system then
backtracks to check the auxiliary verb and the word next to it.
The verb in the sentence is verified if it could be part of the
use case (i.e., it should fall under the action category). If it
does, it should be part of the candidate use case.

Generalization. Generalization implies similarities in
attributes with some entity that exists between actors or
between use cases. As for generalization between actors, the
keywords “is a”, “is”, and “are” are considered. For instance,
the sentence “Students are users” tells that a generalization
relationship exists between “Students” and “users”. The
words before and after the keywords should both be human
nouns before a generalization among candidate actors exist.
For generalization between use cases, given the text,
“Dragging a use case is editing the diagram” or “To drag a use
case is to edit the diagram”, a generalization of use cases from
“drag a use case” to “edit the diagram” is identified, since
both phrases before the keyword are actions.

<<extend>>. To identify <<extend>> relationships, discourse
analysis should be made because an <<extend>> relationship
exists when the use cases involved are mentioned more than
once in the document. Given the example: “In the enrolment
system, the students can pay their tuition fees in cash or check.
If they paid in cash, the cashier issues an official receipt. If
they paid in check, the cashier issues a provisional receipt”, it
shows that students can either pay in cash or check and that
different receipts are issued depending on the type of
payment. To resolve this, discourse analysis should be made.
However, this system only resolves pronouns for the
discourse. In addition, a semantic analysis is also needed to
determine that paying in cash and paying in check are
variations of the use case pay. Through semantic analysis, it
will be determined that each of the variations of the use case
pay will extend a different use case. In the example above,

“pay in cash” will have an extend relationship with the use
case “issues an official receipt”. On the other hand, “pay in
check” will have an extend relationship with the use case
“issues a provisional receipt”. However, the system only
implements the use of “respectively” for the semantic
analysis. In the sentence: “Users can add and modify classes
and calendars and save and edit diagrams and websites
respectively”, the word “respectively” results to use cases save
diagrams and edit websites. A morphological analysis is also
needed to determine that two or more use cases may mean the
same thing (i.e., “pay in cash” means the same as “paid in
cash”).
The keywords “may”, “can”, “after”, “before”, “when”, and
“if” are considered in determining extend relationship.

<<include>>. Similar to detecting extend relationships, an
include relationship exists only when the use cases involved
are mentioned more than once. In the example: “The students
can edit the diagram after students opening a diagram… The
administrators must open a diagram before they can print the
diagram”, it specifies that students and administrators can edit
and print the diagram but can only do so when they open a
diagram. Thus, discourse and morphological analysis is
needed. With the limitations similar to determining extend
relationships, the system just considers the keyword “must”
and repeated use cases in determining include relationships.

IV. TESTING RESULTS

The text “The library stores items. Staffs and students are
users. Users borrow journals; students borrow books. They
return the books to the library after reading.” fed into CAUse
resulted to the diagram in Figure 2.

Fig. 2. Sample Use Case Diagram Generated by CAUse

CAUse was able to recognize that the library is not an actor.
The extracted relationships were: generalization between the
actors “staffs” and “users”, generalization between actors
“students” and “users”, association between “users” and
“borrow journals”, association between “students” and
“borrow books”, association between “students” and “return
books”.

205

It should be noted that given the same text as an exercise,
students who took up Software Engineering came up with a
similar diagram. Refer to Figure 3.

Fig. 3. Sample Use Case Diagram Created by Student

In addition to the exercise above, twenty-four other
respondents consisting of computer science students and
teachers were initially given six (6) sample inputs. They built
expected solutions for each sample and these are then
compared to the outputs of the system. The respondents are
also allowed to edit the input to further evaluate the system in
terms of correctness, consistency, usefulness and acceptability
of the output based on the input. From a scale of 1 to 5, where
1 being strongly disagree and 5 being strongly agree, the
respondents evaluated several diagrams generated by the
system. Figures 4 – 9 show the diagrams that the respondents
evaluated.

Fig. 4. Generalization relationship between actors for the
sample input: “Students and administrators are users. The

students borrow books from the library while the
administrators borrow and read journals. The librarians are

users.”

Fig. 5. Generalization relationship of use cases for the
sample input: “Changing the diagram name is done by the
users. Changing the diagram name is editing the diagram.

Saving the diagram is also done by the users.”

Fig. 6. <<include>> relationship given the sample:
“Administrators and students are users. Users can login. To

login is to enter username and to enter password. The system
must check the password and check the username when users
login. The administrators can send messages to other users.

Administrators can also delete messages. Administrators can
check the password and check the username. Students can

enroll subjects.”

206

Fig. 7. <<extend>> relationship given the example:
“Administrators may save the diagram when editing the

diagram and creating the diagram. Students can also save the
diagram after editing the diagram. Students can print diagram
if they create diagram. Administrators can also print diagram.”

Fig. 8. Use Case Diagram given the sample:
“The aim of the project is to specify the requirements and

design of a university student online system. Students login
through their ID numbers and passwords. Students should be

able to view their calendars of activities, view their class
schedule and send messages to other students. The system

should be based on the Internet.
Students are required to add in their information. This

information can be viewed by other students. The students can
input events in the calendar and insert the class schedule for a

given duration. The students can add and modify classes in
their schedules. The students can also include the duration of

the class. The students can also search for a friend in the
system and send messages to them. Finally, a page for an

administrator is provided. The system must have a bulletin
board for the administrator to post the messages for all to see.

These messages are seen in the home page of all students.”

Fig. 9. Use Case Diagram given the sample:
“The library stores various items that can be borrowed,

including books and journals. Staffs and students are users.
The librarian is not a user; the librarians act as the

administrators.
Books can be borrowed by both staffs and students but only
the staffs can borrow journals. They check loan details when
users borrow a book. Administrators can check loan details.

Users can check their own loan details at any time. Librarians
are permitted to check the loan details of any user. Users of
the library can reserve books that are currently out on loan.

Librarians order books if the users reserve books.
Administrators can order books.”

SUMMARY OF TEST RESULT
Figure 4 4.625
Figure 5 4.542
Figure 6 4.417
Figure7 4.458
Figure 8 4.542
Figure 9 4.000
Overall Rating for using the
system to verify te correctness
of their use case diagrams

4.458

Interestingly, the result showed that in case the students have
forgotten how to create use case diagrams, they confirmed that
the system was effective in making them remember and be
familiarized on how to create diagrams again. Certain
instances were noted where the respondents created incorrect
use case diagrams, and through the system, they realized their
mistakes and created the correct use case diagrams. For
instance, students omitted some functionalities, which the
system identified. Because of this, most of the respondents
claimed that they were helped by the system generate the
correct use case diagrams.
The respondents generalized the system as a useful and
helpful tool especially to software engineering students. The
system assisted students to come up with a more efficient
answer since they can compare the use case diagram they

207

manually created with the use case diagram CAUse generated.
If they did not use the system, they might have overlooked
some important components of the use case diagrams in the
exercises.

V. CONCLUSION AND FUTURE WORK

CAUse would be beneficial to students taking up Software
Engineering. The system could serve as a tool for creating the
necessary use case diagram for requirements management or
as a tool for learning by comparing manually crafted use case
diagram with that generated by the system to check for
correctness.
Currently, the sentence structures accepted by the parser is
limited. Only simple sentences and compound sentences,
whose independent clauses follow the same format as the
accepted simple sentences, can be fed into the system. The
user may choose to rephrase the statements or to use an
existing part-of-speech tagger to generate the tags before
feeding into CAUse.
A morphological analyzer is recommended to be integrated
into the system in order to remove redundancies in the
generated use case diagrams due to various morphological
forms of words. Expanding the discourse analysis will also
help in the optimization of use cases having <<extend>> and
<<include>> relationships. Lastly, a deeper semantic analysis
is also recommended in order to remove redundancies in the
generated use case diagram that exist in synonymous use
cases.
Despite the cited recommendations that could improve the
system, CAUse can be used to generate use case diagrams that
can be used for requirements management for business
applications. With the diagram editor, the user could add,
delete, and modify the use case diagrams that are initially
generated by system.

REFERENCES

[1] Boman, T. et al. 1996. “Requirements elicitation and documentation
using TRED,” in Master's Thesis, UMNAD 159.96, Umeå University,
May 1996. Available: http://www.cs.umu.se/~record/T-red/master.html.

[2] Chitnis, M., Tiware P., & Ananthamurthy L. 2004. “Creating Use Case
Diagrams”. Available:
http://www.developer.com/design/article.php/2109801.

[3] Heyward, R. 1999. “UML Use Case Diagrams: Tips and FAQ”.
[online]. Available: http://www.andrew.cmu.edu/course/90-
754/umlucdfaq.html (July 13, 2004).

[4] Larman, C. 2002. Applying UML and Patterns. Prentice Hall PTR
Prentice-Hall, Inc. Upper Sadler River, NJ 07458.

[5] Leberknight, D. 2003. “Object-Oriented Programming and Design -
UML Use Case Diagrams”. [online]. Available:
www.softwarefederation.com/csci4448/
courseNotes/09_UMLUseCaseDiagrams.pdf (July 11, 2004).

[6] Le Vie, D. Jr. 2005. “Writing Software Requirements Specifications”.
[online]. Available:
www.raycomm.com/techwhirl/magazine/writing/softwarerequirementspe
cs.html. (February 23, 2005).

[7] Lillis, S. 1998. “Use Cases: Adopted by UML and OOSE but not by
OMT1.” [online]. Available:
http://www.csn.ul.ie/~mrmen/UseCaseReport/UseCaseFinalDocument.ht
ml (July 13, 2004).

[8] Mason, O. 2003. “QTag English Tagset.” [online]. Available:
http://web.bham.ac.uk/O.Mason/software/tagger/tagset.html. (July 7,
2004).

[9] Oberg, R. 2003. “Applying Requirements Management with Use Cases”.
[online]. Available:
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitep
apers/2003/apprmuc.pdf.

[10] Object Management Group. 2004. “Introduction to UML.” [online].
Available: http://www.omg.org/gettingstarted/what_is_uml.htm. (March
29, 2004).

[11] Object Management Group. 2004. “Unified Modeling Language (UML)
1.5.” [online]. Available:
http://www.omg.org/technology/documents/formal/uml.htm (June 12,
2004).

[12] Probasco, L. and Leffingwell, D. 1999. “Combining Software
Requirements Specifications with Use-Case Modeling.” [online].
Available: http://www.spc.ca/downloads/srs_usecase.doc. (February 23,
2005).

[13] Rumbaugh, J., Blaha, M., Premerlani W., Eddy F., Lorensen W. 1991.
“Object-Oriented Modeling and Design”. New Jersey: Prentice Hall.

[14] Vinciguerra, R. 2004. “UML Diagram Types”. [online]. Available:
http://www.vinci.org/uml/diags.html.

208

REM4j - A framework for measuring the reverse engineering capability of UML
CASE tools

Steven Kearney and James F. Power
Dept. of Computer Science, National University of Ireland, Maynooth, Co. Kildare, Ireland.

Abstract

Reverse Engineering is becoming increasingly important
in the software development world today as many organi-
zations are battling to understand and maintain old legacy
systems. Today’s software engineers have inherited these
legacy systems which they may know little about yet have to
maintain, extend and improve. Currently there is no frame-
work or strategy that an organisation can use to determine
which UML CASE tool to use. This paper sets down such a
framework, to allow organisations to base their tool choice
on this reliable framework.

We present the REM4j tool, an automated tool, for
benchmarking UML CASE tools, we then use REM4j to
carry out one such evaluation with eleven UML CASE tools.
This framework allows us to reach a conclusion as to which
is the most accurate and reliable UML CASE tool.

1. Introduction
Many UML CASE tools provide the ability to reverse

engineer UML diagrams from source code, and these di-
agrams can be essential to software maintainers in under-
standing the design of a system.

Since there are many UML CASE tools available, the
question many organisations face is: Which one suits our
needs best? To answer this question they will need to eval-
uate all the available tools, measure the results of this eval-
uation and rank the tools based on the evaluation.

This paper establishes a framework for benchmarking
and evaluating UML CASE tools. We describe the con-
struction of the framework, and its use on an oracle pro-
gram, designed to expose inaccuracies in reverse engineer-
ing. We then examine the impact these inaccuracies have by
running the UML tools over a suite of real-world programs,
and examining the variance in reported metrics.

2. Background and Related Work
Often legacy systems have an originally convoluted de-

sign, obsolete documentation, and the original developers
may have left the company. Software may have numerous

patches and fixes applied over time. It can be an arduous
task to understand a legacy system [11, 12]. Re-engineering
is the examination of a subject system to reconstitute it in
a new form and the subsequent implementation of the new
form [2]. Reverse Engineering is the process of analyzing
a subject system to create representations of the system in
another form or at a higher level of abstraction [2, 16, 9, 1].

There has been much research carried out that investi-
gates tools and techniques for reverse engineering. Notable
examples include the RIGI toolset for reverse engineer-
ing [15], the Dali Workbench [8], CPPX [4] and Colum-
bus/CAN [6]. More recently, reverse engineering tools have
begun to use the diagrams of the Unified Modeling Lan-
guage (UML) as a representation for reverse-engineered ar-
tifacts. One of the major challenges faced by designers of
reverse engineering tools is the struggle to keep with con-
tinuously evolving UML versions, as well as version of the
associated XML Metadata Interchange (XMI) [10].

Our approach exploits object-oriented software metrics
to provide us with a means to collect information about the
characteristics of a Java application [13, 14]. These char-
acteristics are important since if we reverse engineer a Java
application we would expect the characteristics exported in
the XMI file to be an accurate reflection of the application.

While Cooper et al. studied the inaccuracies that occur
from Forward Engineering vs. Reverse Engineering, they
stopped short at evaluation the reliability of the tool to ex-
port XMI [3]. Jiang and Systä explored the differences in
Exchange Formats between UML CASE tools and they in-
vestigated if UML CASE tools delivered on the OMG ideal
of interchangeable XMI files, but they stopped short of au-
tomating the process[7].

Our approach, centered on the REM4j framework is
unique in that it can automate the reverse engineering, met-
ric capture and evaluation of metrics. We first calibrate the
process on a specially-designed oracle program, and then
use peer-evaluation to investigate the performance of tools
on a suite of real-world Java programs.

3. Experimental Setup
REM4j (Reverse Engineered Metrics 4 Java) takes Java

209

Tool Vendor Version Abbrv
ArgoUML Tigris 0.22 AR

MagicDraw Magicdraw 12.0 MD
Bouml Bouml 2.17 BO

Metamill Metamill 4.2 MM
Visual Paradigm Visual Paradigm 3.1 VP

Jude Change Vision Prof 6.0 JU
Enterprise Architect Sparx Systems 6.5 EA

UModel Altova 2006 r.2 UM
ESS-Model Ess-Model 2.2 ES

Ideogramic UML Ideogramic 2.3.3 IC
Poseidon for UML Gentleware 4.2 PO

Table 1. The 11 tools we have chosen for our
study. The final column gives an abbreviation
for each tool that we use in later tables.

source code as its input, and reverse engineers a class dia-
gram from the code use a pre-recorded set of macros for a a
particular UML CASE tool. The result is exported in XMI
format and then run through a commercially available met-
ric calculation engine, after which REM4j colllates all the
results and saves them to a CSV file.

The first step in this experiment was to choose a set of
UML CASE tools for the evaluation. We tried to gather as
wide a range of tools as possible, with the only selection
criterion being their ability to reverse engineer Java source
code back to UML class diagrams, and to export the dia-
grams in XMI format. These tools are listed in Table 1.

Our REM4j framework is designed to provide a modu-
lar environment within which these UML tools can be run
and their output data analysed. The framework needs to be
able to open a UML CASE tool, import Java source code,
reverse engineer it, export it to XMI, pipe the XMI into a
metric calculation engine and gather and collate the results
into one readable CSV file. REM4j uses a number of third-
party applications, and serves to coordinate the interaction
between these tools.

At the center of the framework is the SDMetrics tool
[17], which is a powerful commercial application that is
capable of analysing XMI and computing metrics based
on that XMI. Automation is achieved using Autohotkey, a
macro utility for Microsoft Windows that has the ability to
record keystrokes and mouse clicks. Autohotkey provides
the ability to write a macro for a particular CASE tool and
then compile it to an executable. Finally, Chart2D is an
open-source charting class library, and is used by REM4j to
visualise its results.

REM4j takes two inputs when starting: the directories
of the Java source files you would like to reverse engineer,
and the AutoHotKey directory. If for example three source
code directories are selected and then four UML tools are
selected, the reverse engineering loop would execute twelve

times. Each source code directory is reverse engineered and
exported to XMI and then piped into the metric calculation
engine tool. When the REM4j automation tool has finished
executing it generates its results in both text and graphical
formats.

4. Exploratory Analysis using an Oracle
We chose the term Oracle to describe a piece of Java

source code for which all its characteristics, elements and
attributes were known. The Oracle application was de-
signed and written explicitly for this paper. In particular,
all of the metric values were calculated in advance and the
code was constructed to have as many different metric sce-
narios as was feasible.

The Oracle application was written with a 0-1-2 (ZOT)
metric policy in place. For example, the Oracle application
had at least one class with no Public Methods, at least one
class with exactly one Public Method and at least one class
with more than one Public Method.

Figure 1 shows a Class Diagram which illustrates the
structure and design of the Oracle application. On this di-
agram, overlapping classes are inner classes, dotted lines
represent an implements relationship and a solid line repre-
sents an extends relationship.

In the next three sections we will break down the metrics
that this paper investigates into Size Metrics and Inheritance
Metrics. The SDMetrics tool also reports on Coupling Met-
rics but, since these must be evaluated on a per-class basis,
we have not considered them further here.
4.1. Size Metrics

Size metrics measure the size of design elements, this is
simply a count of the elements that are contained within an
application.
• Number of Variables (NoV) The NoV metric refers
to sum of the number of variables in all classes regardless
of type, visibility, changeability or scope. It does not count
inherited variables, or variables that are members of an as-
sociation [13].

As shown in the Class Diagram the Oracle application
clearly has 12 variables or attributes. However 4 of the 11
tools produced a figure other than 12. Both Jude and Bouml
had the lowest figure as they reported the Oracle applica-
tion having only 7 variables, while Poseidon reported 8 and
Ideogramic UML reported 9.
• Number of Methods (NoM) The NoM metric has a
value that is the sum of the number of all methods in all
classes regardless of type, visibility, changeability or scope.
It does not count inherited methods, but it does count ab-
stract methods [13].

The Oracle code contains exactly 23 Methods, so any
derivation from this figure would suggest an inaccurate tool.
All UML CASE tools with the exception of Bouml which
reported 20, produced the correct figure of 23.

210

Figure 1. This Class Diagram shows the 11 classes of the Oracle application.

• Number of Public Methods (NoPM) The NoPM
metric has a value which is the sum of the number of meth-
ods in all classes that have public visibility [13].

The Oracle application was written with exactly 20 pub-
lic methods, all of the tools agreed with this figure except
one, Bouml, which reported 18. This is not surprising as
Bouml only reported a total of 20 methods when there was
actually 23 methods in the application.
• Number of Setters (NoS) The NoS metric counts any
Method that begins with ‘set’. The Oracle application con-
tains 5 such methods, and all tools produced a NoS value
of 5.
• Number of Getters (NoG) This metric counts any
Method that begins with ‘get’, ‘is’ or ‘has’. The Oracle
application contains 9 such methods, and all tools produced
a NoG value of 9.
• Inner Classes (IC) This metric will return the total
number of inner classes nested within an application. The
Oracle application contains the class RFIDAntenna which
has an inner class nesting level of 2. The RandomKey
class has a inner class nesting of 1, the TagReadManager
also has a nesting of 1. These are summed to produce a
value of 4. Ideogramic UML, Bouml, Enterprise Architect
and ESSModel reported 0 inner classes, while MagicDraw
UML reported 7. ArgoUML, Metamill, Poesideon, Visual
Paradigm and Jude correctly reported 4.
• Total Number of Classes (ToC) This is a count of the
total amount of classes that the UML CASE tool exported
in its XMI document. The class diagram in Figure 1 clearly

shows 11 classes however none of the UML CASE tools
reported this figure, they all reported figures of between 9
and 53. Table 2 shows how Jude reported 42 classes above
the actual of 11 classes.

This error has most likely occurred due to the fact that
different tools treat imported packages differently, such as
the java.util.String class, while not part of the Oracle ap-
plication it is used by it. Some tools count classes like the
java.util.String class in the ToC metric, Thus making the
metric unreliable. The ToC metric will not be evaluated
further.

Size Metrics Summary As we know the correct value for
all the size metrics, we can state if the tools passed or failed.

As Table 2 shows, Argo UML, Metamill and Visual
Paradigm were the only tools to be correct on all evaluated
metrics. The table displays the actual metric value, if a tool
reported an incorrect value, the difference between the re-
ported and the correct value is displayed.

4.2. Inheritance Metrics

Inheritance Metrics deal with polymorphism, depth and
width of the Inheritance tree, the number of ancestors or
descendants of a class.
• Interfaces Implemented (II)

The total number of interfaces that are implemented
within an application. The Oracle application contains two
interfaces, both of which are implemented by RFIDAntenna
and Tag. As both interfaces are implemented twice, the cor-
rect value for the II metric is 4.

211

NoV NoM NoPM NoS NoG IC ToC
Actual 12 23 20 5 9 4 11

AR 0 0 0 0 0 0 +2
MD 0 0 0 0 0 +3 +4
BO -5 -3 -2 0 0 -4 -5

MM 0 0 0 0 0 0 -3
VP 0 0 0 0 0 0 -2
JU -5 0 0 0 0 0 +42
EA 0 0 0 0 0 -4 +1

UM 0 0 0 0 0 -4 +5
ES 0 0 0 0 0 -4 +4
IC -3 0 0 0 0 -4 -2

PO -4 0 0 0 0 0 +2

Table 2. Size Metrics Results: For each size
metric on the top row and each UML tool in
the left column, this table shows the differ-
ence between the actual value and the value
calculated.

Ideogramic, ArgoUML, Jude, Metamill and Bouml re-
turned 0 as the metric value, all other tools agreed and re-
turned 4.
• Number of Children (NoC) This measures the number
of immediate subclasses subordinated to a class in the class
hierarchy.

In the Oracle application, two classes, Object and RFI-
DObject are extended by another class, RFIDObject ex-
tends Object and Tag extends RFIDObject. The value of
NoC for the Oracle application is 2. All of the UML CASE
tools agreed that it was 2, with the one exception of Enter-
prise Architect, which stated that it was 3.
• Inheritance Tree (IT) This metric represents the sum
of the ancestors or descendants of each class within the ap-
plication. The Oracle application has two instances where
a class has a inheritance depth of greater than 0, this is the
Tag class which has a depth of 2 and the RFIDObject class
which has a depth of 1. Hence the total IT value is 3.

With the exception of Enterprise Architect which re-
ported 4, all tools agreed on 3 being the correct metric value.
• Class to Leaf Depth (CLD) With this metric we calcu-
late the longest path from a class to a leaf in the inheritance
hierarchy. For example the Object class has a depth of 2, the
distance from its furthest leaf, the Tag class. Whereas the
RFIDObject has a depth of 1 to reach its furthest leaf. These
distances are then summed for each class in the application
giving a total CLD value of 3.

All of the UML CASE tools agreed that the CLD was 3
with one exception again, the Enterprise Architect tool.
• Methods Inherited (MI) This metric is the sum of the
number of methods inherited by each class. This is calcu-
lated as the sum of Number of Methods taken over all an-
cestor classes of the class [13, 17].

II NoC IT CLD MI VI
Actual 4 2 3 3 5 2

AR -4 0 0 0 0 0
MD 0 0 0 0 0 0
BO -4 0 0 0 0 0

MM -4 0 0 0 0 0
VP 0 0 0 0 0 0
JU -4 0 0 0 0 0
EA 0 +1 +1 +1 0 0

UM 0 0 0 0 0 0
ES 0 0 0 0 0 0
IC -4 0 0 0 0 0

PO 0 0 0 0 0 0

Table 3. Inheritance Metrics Results: For each
inheritance metric on the top row and each
UML tool in the left column, this table shows
the difference between the actual value and
the value calculated.

The RFIDObject class in the Oracle application extends
the Object class, therefore it inherits the two methods in the
Object class. The Tag class extends the RFIDObject class,
so it inherits the one method in the RFIDObject class and
it also inherits the two methods from the Object class. The
MI metric value is thus 5, and all of the tools reported this
value.
• Variables Inherited (VI) This is the sum of the num-
ber of variables each class in the application has inherited. It
works in much the same manner as MI . The Oracle appli-
cation produces a metric value of 3 and all the UML CASE
tools agree on this figure.

Inheritance Metrics Summary As the table, 3 shows,
the UML CASE tools were in agreement most of the time,
with the exception of Enterprise Architect, which frequently
over rated the metric value by 1.

5. Analysis of Real World Programs
While the results for the Oracle class diagram show some

differences in the metric values over the UML tools, it is not
clear whether these are significant. In particular, it is impor-
tant to know how the differences reflected in the previous
section impact the analysis of larger programs.

To this end, we have assembled a test suite of “real-
world” Java programs, and used the REM4j framework to
extract class diagrams and calculate metrics. In this section
we examine the results of comparing the accuracy of the
eleven UML tools.

5.1. Control Charts

When using real-world programs, we have no oracular
value for the metrics, and so we use peer evaluation to rank
the UML tools. That is, we assume the collective judge-

212

ment produced by the tools to be a “correct” answer, and
judge each tool in this context. To this end, we adopt the
control chart or Shewhart chart, which is a chart with five
horizontal lines running across it. We use the threshold val-
ues of Lanza and Marinescu [14], and define the center line
as a middle line reflecting the mean value of the metric. The
upper and lower control limits are then 1.5 standard devia-
tions above or below this line, and define the boundaries of
“trustworthy” results. A wider threshold is provided by the
upper and lower warning limits, which are 1 standard de-
viation above or below the center line, and flag values that
require further investigation.

5.2. Java Application Selection

A selection of Java applications was chosen for this eval-
uation. Some were drawn from the DaCapo benchmark
suite [5] while other applications were chosen from source-
forge.net for diversity. The programs are:

antlr generates a parser and lexical analyzer
eje a simple editor for Java
fop renders pages to a specified output e.g. PDF

hsqldb a database written purely in Java
jameleon an automated test framework written in Java

java2d is a java 2d graphics package
jolden a benchmark test application written in Java

junit a well-known framework to write repeatable tests
pcj a set of collection classes for primitive data types

pmd analyzes Java source code for potential problems
xalan an XSLT processor for transforming XML
We refer to these Java applications collectively as the test

suite from now on.

5.3. Metric Capture

Table 4 summarises the pass/fail results for each tool
when run over the test suite. The top row in Table 4 lists
the 11 reverse engineering tools under study, and the left-
most column lists the 11 Java applications in the test suite.
Each cell records either “P” for pass or “F” for fail, indi-
cating whether or not the UML tool exported valid XMI for
this benchmark program. For example, we can see that the
Argo tool, represented by the column labelled “AR”, ex-
ported valid XMI for all benchmark programs other than
hsqldb and pcj.

The bottom row of Table 4 summarises the results for
each Reverse Engineering tool, by recording the number of
benchmark programs that passed. From this column, we can
see that 7 of the 11 tools failed for at least one benchmark
program.

5.4. Results Per Tool

Each tool is run over 11 test programs and then evalu-
ated with 12 metrics, giving a total of 132 potential metric
values.

Figure 2 sums up our findings on the eleven reverse en-

AR MD BO MM VP JU EA UM ES IC PO
antlr P P P P P P F P P P P
eje P P P P P P P P P P P
fop P P P P P P P P P P P

hsqldb F P P P P P P P P P P
jameleon P P P P P P P P P P P

java2d P P P P P P P P P P P
jolden P P P P P P P F P P P
junit P P P P P P P P P P P
pcj F P F P P P F P P P F

pmd P P P P P P P P P F P
xalan P P F P P F P P P P P
Σ P 9 11 9 11 11 10 9 10 11 10 10

Table 4. This table lists the test suite applica-
tions in the left column and the UML tools in
the top row. Each cell records the production
of valid XMI, indicating either “P" for pass or
“F" for fail.

Figure 2. For each UML tool on the horizon-
tal axis, this chart shows their success mea-
sured in terms of the metric values on the
vertical axis

gineering tools. In this figure, deep blue represents metric
values that are under the lower control limit while deep red
shows metric values that are above the upper control limit.
Metric values that are shaded light blue are in the lower
warning zone while metrics that are shaded orange are in
the upper warning zone. The white-coloured section repre-
sents the number of metric values within the warning limits.
Thus, for each UML tool, the larger the white shading in its
bar in Figure 2, the greater the level of reliability we as-
cribe to the tool. The different height of the bars in Figure
2 reflects the different pass/fail results as shown in Table 4.
• Bouml Of the 9 applications Bouml produced an output
for, it failed to capture the IC and the II metric. There was
a trend of Bouml underestimating size metrics, while over-
estimating inheritance metrics. The MI metric is the only

213

metric that Bouml produced that was completely accurate,
with the CLD being slightly overestimated but acceptable.
• UModel UModel showed a trend of being correct a
large proportion of the time. UModel failed to capture one
metric NoG for one application. None of UModel’s metric
values were outliers, with only one metric value being in the
warning zone.
• Visual Paradigm Visual Paradigm was accurate with
size metrics but failed to capture metrics for 5 of the inher-
itance metrics and reported metric values below the lower
control level for 3 inheritance metrics.
• ArgoUML ArgoUML has both under and over esti-
mated many of the metrics, with a clear trend showing, the
tool under-estimating the size metrics while over-estimating
the inheritance metrics.
• Metamill Metamill failed to capture the II metric for
all the applications, it also failed to capture the IC met-
ric for one application. Out of 132 possible metric values,
Metamill captured 120, or 91% of the metrics.
• Enterprise Architect Enterprise Architect failed to
capture IC and II metrics for any of the applications. In-
vestigating the results further shows that Enterprise Archi-
tect consistently under-estimates all the metrics.
• ESSModel ESSModel both over and under estimated
metrics for a variety of different metrics, there was no no-
ticeable trend.
• Magicdraw We can see that Magicdraw over and under
reported the IC metric. The majority of the tools struggled
to report this correctly, with many tools failing to capture it
at all. In total Magicdraw correctly reported 117, or 89%,
of the metric values.
• Poseidon Out of the 10 applications Poseidon did re-
port metrics for, it failed to capture 2 metrics for one appli-
cation, so in total Poseidon captured 119 metric values. For
approximately half the metrics, Poseidon under reported
them, with it only over reporting for the II metric.
• Jude Jude failed to capture the II metric but, of the
remaining metrics, only two reported values in outside the
Control Limits.
• Ideogramic UML Ideogramic failed to capture the II
and IC metric. In the majority of metrics Ideogramic UML
failed to capture a metric for each tool, in fact it only cap-
tured all the metrics values for a third of the metrics. In
total it captured 23 metrics (17%) that were deemed to be
correct.

6. Conclusions
Figure 2 shows Visual Paradigm to be the most reli-

able tool since it reported metric values that were accurate
90.15% of the time. It was closely followed by Metamill,
Magicdraw and UModel. The worst performing tool was
the Ideogramic UML tool, reporting just 17% of the metric
values correctly.

Summary REM4j is an automation framework that eval-
uates a UML CASE tool’s ability to reverse engineer and
export valid XMI for class diagrams. It has been used to
evaluate 11 UML tools using software metrics over a vari-
ety of input programs and clearly highlighted differences in
the results obtained.

References
[1] L. A. Barowski and J. H. Cross II. Extraction and use of class

dependency information for Java. In 9th Working Conf. on
Reverse Engineering, 2002.

[2] E. J. Chikofsky and J. H. C. II. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Softw., 7(1):13–17, 1990.

[3] D. Cooper, B. Khoo, B. R. von Konsky, and M. Robey. Java
implementation verification using reverse engineering. In
27th Australasian Conf. on Computer Science, pages 203–
211, 2004.

[4] T. R. Dean, A. J. Malton, and R. Holt. Union schemas as a
basis for a C++ extractor. In 8th Working Conf. on Reverse
Engineering, page 59, 2001.

[5] S. M. B. et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In 21st Conf. on Object-oriented
programming systems, languages, and applications, pages
169–190, 2006.

[6] R. Ferenc, F. Magyar, A. Beszédes, A. Kiss, and M. Tarki-
ainen. Columbus - tool for reverse engineering large object
oriented software systems. In 7th Symposium on Program-
ming Languages and Software Tools, pages 16–27, 2001.

[7] J. Jiang and T. Systä. Exploring differences in exchange
formats - tool support and case studies. In 7th European
Conf. on Software Maintenance and Reengineering, page
389, 2003.

[8] R. Kazman and S. J. Carriére. Playing detective: Recon-
structing software architecture from available evidence. Au-
tomated Software Eng., 6(2):107–138, 1999.

[9] M. Keschenau. Reverse engineering of UML specifications
from Java programs. In 19th Conf. on Object-oriented pro-
gramming systems, languages, and applications, 2004.

[10] C. Kobryn. UML 2001: a standardization odyssey. Com-
mun. ACM, 42(10):29–37, 1999.

[11] R. Kollmann and M. Gogolla. Re-documentation of Java
with UML class diagrams. In 7th Reengineering Forum,
Reengineering Week, pages 41–48, 2000.

[12] R. Kollmann and M. Gogolla. Metric-based selective rep-
resentation of UML diagrams. In 6th European Conf. on
Software Maintenance and Reengineering, page 89, 2002.

[13] M. Lorenz and J. Kidd. Object-oriented Software Metrics.
Prentice Hall, 1994.

[14] R. Marinescu and M. Lanza. Object-oriented Metrics in
Practice. Springer, 2006.

[15] M.-A. D. Storey, K. Wong, and H. A. Müller. Rigi: a visu-
alization environment for reverse engineering. In 19th Intl.
Conf. on Software Engineering, pages 606–607, 1997.

[16] A. Sutton and J. I. Maletic. Mappings for accurately reverse
engineering UML class models from C++. In 12th Working
Conf. on Reverse Engineering, pages 175–184, 2005.

[17] J. Wüst. SDMetrics, 2006. http://www.sdmetrics.com.

214

FlexUML: A UML Profile for Flexible Process Modeling

Ricardo Martinho
School of Technology and Management, Polytechnic Institute of Leiria, Portugal

rmartin@estg.ipleiria.pt

Dulce Domingos
Faculty of Sciences, University of Lisboa, Portugal

dulce@di.fc.ul.pt

João Varajão
Engineering Department, University of Trás-os-Montes e Alto Douro, Portugal

jvarajao@utad.pt

Abstract

Process modeling involves eliciting and capturing
informal process descriptions into process models.
A process model is expressed by using a suitable
Process Modeling Language (PML). Flexibility in
process modeling denotes the ability to modify only
those parts of a process model that need to be
changed and keeping other parts stable. The lack
of flexibility has recently become a main challenge
in Process Aware Information Systems (PAIS) re-
search areas. However, latest research points out
the fact of PAIS having the “wrong” rigidity, rather
than suffering from the lack of flexibility. The Uni-
fied Modeling Language (UML) is often used as a
general purpose PML. In this paper we propose the
FlexUML profile: an extension to UML 2.0 activ-
ity diagrams (ADs) that enables modelers to design
process models with the “right” flexibility.

Keywords: process modeling, flexibility, activity
diagrams, UML profile

1. Introduction

Since the early 1990s, there has been a shift from
data orientation to process orientation, triggering
the development of Process Aware Information Sys-
tems (PAIS): software systems that manage and ex-
ecute operational processes involving people, appli-
cations, and/or information sources on the basis of
process models [4]. Process modeling involves elic-

iting and capturing informal process descriptions,
and converting them into process models. A pro-
cess model is expressed by using a suitable Process
Modeling Language (PML), and is best developed
in conjunction with the people who are participants
in, or are affected by, the process. Therefore, it is
important to them to be familiar with concepts ex-
pressed by the PML. This is generally accomplished
by the use of meta-modeling, wherein a process
modeler can specify the vocabulary and concepts
used for process modeling.

One of these important concepts is flexibility.
Process flexibility denotes the ability to modify only
those parts of a process that need to be changed
and keeping other parts stable [14]. The lack of
flexibility as been pointed out in the last years as
one of the main causes for Process Aware Informa-
tion Systems (PAIS) low adoption [2]. The need for
flexibility derives essentially from poor, rigid and
user-unadaptable systems that underestimate hu-
man interaction, either in process execution, or in
any other phase of the process lifecycle.

However, in the everyday business practice,
most people do not want to have much flexibility,
but would like to follow very simple rules to com-
plete their tasks, making as little decisions as possi-
ble. In fact, latest research points out to the prob-
lem of PAIS having “wrong” rigidity, rather than
suffering from the lack of flexibility [1]. In our case,
we identify the need to express the “right” flexi-
bility into process models, i.e., to express which,
where and how flexible are the elements that com-

215

pose a process model. As an example, let us con-
sider a software company that uses a Unified Pro-
cess [8] based model to manage and develop soft-
ware projects. Several participants may contribute
to refine the model. Nevertheless, there is a senior
process modeler that designs its overall activities
and related control flow, resources and data. For
instance, she defines that a certain activity has a
fixed goal of providing a fully specified UML use
case model, accomplished by the execution of five
main sub-activities. Therefore, she presents a pre-
liminary arrangement for those sub-activities, but
she also wishes to express that they can be changed
by other participants (e.g. software architects), ac-
cording to some restrictions. The PML must sup-
port concepts that will allow her to identify which
elements composing those activities are to be flex-
ible (e.g. sequencing control flow elements), where
they can be changed (type or instance level), and
how they can be changed (e.g. a temporary change
in an activity resource).

The Unified Modeling Language (UML) [12]
can be used as a PML (see, e.g., [6, 5]), having ac-
tivity diagrams (ADs) as the base diagrams. Main
advantages include its popularity, graphical nota-
tion, extensibility, well supported standard, tool
support and integration facilities (XMI) [6]. It also
provides a meta-model and a notation guide, defin-
ing concrete syntaxes for elements that can be used
in process modeling. However, UML does not in-
clude means to express flexible aspects for those
modeling elements.

In this paper we propose FlexUML: a UML pro-
file that extends UML 2.0 ADs in order to provide a
PML for the design of flexible process models. The
profile is based on a reference meta-model that in-
cludes flexibility vocabulary and concepts, and pro-
vides the ability to combine them into a single AD
modeling element.

Below we proceed as follows: in section 2 we
briefly describe how UML 2.0 ADs can be used for
process modeling. In section 3 we present generic
flexibility concepts that will be mapped into the ref-
erence meta-model proposed in section 4. With this
meta-model, we derive the FlexUML profile and
provide an example of its application. Section 5
discusses related work and section 6 concludes the
paper.

2. Process Modeling using UML

Complete process representation is generally
achieved using several perspectives that integrate

many forms of information. PMLs usually are able
to represent one or more of these perspectives, in-
cluding [3, 5]: 1) the behavioral perspective, rep-
resenting when do process elements are performed
(e.g. sequencing), as well as aspects of how they
are performed through feedback loops, iteration,
complex decision-making conditions, entry and exit
criteria, and so forth; 2) the functional perspec-
tive, illustrating what flows of informational enti-
ties (e.g., data, artifacts, products), are relevant to
process elements; 3) the organizational perspective,
that represents where and who performs actions in
the process; and 4) the informational perspective,
that describes the informational entities produced
or manipulated by the process.

ADs often serve as the base type of diagrams for
process modeling with UML 2.0. We present in the
next subsections a brief description of ADs elements
for modeling process behavior, objects and object
flow and organizational perspective (further details
available in [12], sections 11 and 12).

2.1. Process behavior

Graphically, ADs are composed of nodes and edges.
The edges connect the nodes in sequential order.
Nodes represent either actions, activities, data ob-
jects, or control nodes. The fundamental unit of be-
havior specification in ADs is the Action. Actions
access, transform and test data, and may require
sequencing. Control nodes are used to structure
control and object flow. These include decisions
and merges to model contingency, and initial and
final nodes for starting and ending flows. They also
include forks and joins for creating and synchroniz-
ing concurrent subexecutions [12].

Activities represent the overall behavior of a
system, and are composed of actions and/or other
activities and related dependencies. In Figure 1 we
present basic and advanced constructs (with nota-
tions) of UML 2.0 ADs, including actions, control
nodes, activities, interruptible regions, expansion
regions and exception handlers.

2.2. Objects and object flow

Objects and their types are used to represent phys-
ical entities like products or persons, information
like data or documents, as well as logical concepts
like product types or organizations. Figure 2 illus-
trates both object nodes and object flow (alterna-
tive) representations within UML 2.0 ADs.

In process modeling, it is important to define

216

Advanced constructs

Control nodes

Activity name Activity
Parameter name: type

Actions

Action
ActivityFinal

Accept
Event
Action

Send
Signal
Action

InitialNode FlowFinal

MergeNode

...

JoinNode

...

InterruptibleActivity
Region

keyword
ExpansionRegion

DecisionNode

...

ExceptionHandler

ForkNode

...

...

TimeEventAction

CallBehavior
Action

Figure 1: Basic and advanced behavioral con-
structs of UML ADs

the dependencies between objects and actions oc-
curring in activities, in particular input and output
relationships as well as object flow dependencies.

2.3. Organizational perspective

Representing the organizational perspective in
UML 2.0 ADs is done by using activity partitions,
which divide the set of nodes within an activity into
different sections. Nodes can belong to none, one,
or more partitions at the same time. Partitions can
be visualized in two different ways (see Figure 3): 1)
the partition name is written in parenthesis over the
action name within the action symbol; or 2) using
swimlanes drawn through the activity diagram, di-
viding it into different sections. The name of the
partition is displayed on the top of the swimlane.
Activity diagrams can also be partitioned multidi-
mensionally, where each swimcell is an intersection

Object nodes and object flow

name
[state]

Name
[state]

name
[state] Action1

ObjectFlow2

Action1 Action2

ObjectFlow1

Output pin

name
[state]

Input pin

name
[state]

Action2

Action1

Figure 2: Object nodes and flow in UML ADs

Activity partitions

Action1

(Name 2, Name 3)
Action1

Partition
Name 4

Pa
rti

tio
n

N
am

e
2

Pa
rti

tio
n

N
am

e
1D

im
en

si
on

 n
am

e

Dimension name

Action2

Action3Action4

(Name 2, Name 4)
Action2

(Name 1, Name 3)
Action2

Partition
Name 3

...

Figure 3: Activity partitions in UML ADs

of multiple partitions. This is often used to express
both physical locations and roles simultaneously.

In the next section we provide foundations for
process flexibility, along with a generally accepted
taxonomy.

3. Flexibility in process modeling

Process flexibility denotes the ability to modify only
those parts of a process that need to be changed
and keeping other parts stable, i.e., the ability to
change the process without completely replacing it
[15].

Based upon a recent taxonomy proposed in
[13], process modeling flexibility can be classified
according to three orthogonal dimensions: 1) ab-
straction level of change, that distinguishes where
changes are to be made, i.e., if at the type or
instance levels (or both). Changing the process
model (type level) implies changing the defined
standard way of working, as it will affect all in-
stances created there forward. However, change
can occur only for certain instances of a process (in-
stance level), in order to accommodate exceptional
situations; 2) subject of change, representing which
modeling elements are to be changed, and, conse-
quently, which related perspective(s). For instance,
changing an input parameter of an activity means
changing both its functional and informational per-
spectives; and 3) properties of change, denoting how
can a modeling element be changed. We consider
four combinable properties of change: 1) the extent
of change, denoting if change is only introduced
to an already existing process model (incremental
change), or if change abolishes the existing process
model and creates a completely new one (revolu-
tionary change). Often experts are required to do
revolutionary changes to the whole or part of a pro-

217

cess model. 2) the duration of change, that can
represent temporary or permanent changes. Tem-
porary changes are valid for a limited period of
time, and permanent changes are valid until the
next permanent change; 3) the swiftness of change,
that expresses if changes are to be applied immedi-
ately to all process model instances (also the run-
ning ones), or deferred only to new instances of the
changed process model; and 4) the anticipation of
change, that identifies if the change is planned or
ad-hoc. Ad-hoc changes are often made to tolerate
exceptional situations, and planned changes are of-
ten part of a process redesign.

Based on these flexibility concepts, we present
in the next section our proposed UML profile. This
profile will provide the ability to support the re-
ferred flexibility concepts in AD process models.

4. UML Activity Diagrams as a flexi-
ble process modeling language

Since its inception, UML was intended to cover as
many domains as possible. That is the reason why
it provides extension mechanisms, such as stereo-
types, tagged values and constraints [12]. These
mechanisms allow designers to customize UML to
a particular domain or purpose. A coherent set of
such extensions constitutes a UML Profile. After
identifying the flexibility concepts in the previous
section, we turn, in the next subsections, to the very
UML viewpoint focusing on the mapping of those
concepts onto a UML meta-model, and deriving a
UML profile accordingly.

4.1. The FlexUML Profile

The first step to create a UML profile is to define
the meta-model that expresses the application do-
main. In our case, the application domain includes
both existing UML 2.0 AD modeling elements and
(new) flexibility modeling elements. In Figure 4a),
flexibility-related elements are distinguished by a
shaded class notation.

The meta-model structure is based on the deco-
rator design pattern [7]. The structure is composed
by a common abstract Element, from which both
AD existing elements and flexibility elements spe-
cialize. The decorator pattern allows to attach ad-
ditional responsibilities to an object dynamically,
i.e., a process modeler can pick an AD element
(such as an ActivityNode) and decorate it with
flexibility responsibilities, represented by Flexi-
bleDecorator’s specialized elements. These ele-

level : AbstractionLevel

«stereotype»
FlexibleDecorator

swiftness : SwiftnessKind

«stereotype»
FlexibleSwiftness

extent : ExtentKind

«stereotype»
FlexibleExtent

duration : DurationKind

«stereotype»
FlexibleDuration

anticipation : AnticipationKind

«stereotype»
FlexibleAnticipation

«metaclass»
Element

«profile»
FlexUML

Types

temporary
permanent

«enumeration»
DurationKind

immediate
deferred

«enumeration»
SwiftnessKind

incremental
revolucionary

«enumeration»
ExtentKind

planned
ad_hoc

«enumeration»
AnticipationKind

type
instance

«enumeration»
AbstractionLevel

«import»

«metaclass»
Element

level : AbstractionLevel

«stereotype»
FlexibleDecorator

swiftness : SwiftnessKind

«stereotype»
FlexibleSwiftness

extent : ExtentKind

«stereotype»
FlexibleExtent

duration : DurationKind

«stereotype»
FlexibleDuration

anticipation : AnticipationKind

«stereotype»
FlexibleAnticipation

element«metaclass»
ActivityNode

«metaclass»
Action

«metaclass»
ObjectNode

«metaclass»
ControlNode

«metaclass»
ActivityEdge

«metaclass»
Activity

1

a) UML meta-model

b) FlexUML profile

Figure 4: a) UML meta-model and b) related
stereotypes introduced with the FlexUML profile

ments derive from the four properties of change and
related attributes identified in the previous section.
Besides those attributes, each FlexibleDecorator
inherits a level:AbstractionLevel attribute that
identifies the abstraction level of change it repre-
sents (type or instance).

Figure 4a) also illustrates which «metaclass»
elements are eligible to be extended by the pro-
file’s «stereotype» elements. Stereotypes repre-
sent the new flexibility features added to the UML
meta-model for extending the language. Figure 4b)

shows a UML package representing the FlexUML
«profile», derived from Figure 4a) meta-model.
The arrow pointing from FlexibleDecorator to
Element with a filled triangle arrowhead is a UML
Extension. In our case, it indicates that properties
of AD Element classes are extended through the use
FlexibleDecorator stereotypes, giving the ability
to add (and later remove) them to any Element
class in a flexible way.

The FlexUML «profile» package has also an
«import» dependency with the Types package,
which is composed by «enumeration» types for the
attributes of each specialized FlexibleDecorator

218

stereotype.
Applying a profile means that it is allowed, but

not necessarily required, to apply the stereotypes
that are defined as part of the profile. Stereotype
attributes (also known as tag definitions) assume
tagged values when a stereotype is applied to a
model element [12].

In the next subsection we present an example
to better illustrate how we can use the FlexUML
profile.

4.2. Applying FlexUML: an example

Our example reports to a software company that
uses Unified Process-based models to manage and
develop software projects. The company also uses a
PAIS that interprets and executes operational pro-
cess definitions derived from the UP-models. Pro-
cess participants use UML 2.0 ADs as the stan-
dard PML, and all can contribute to refine process
models according to their skills. However, there’s
a senior process modeler that not only designs the
overall activities and related control flow, resources
and data for the process model, but also defines
which parts of the model and where and how they
can be flexible.

Figure 5 shows a process model for the UP Elab-
oration phase. The gray-filled AD model elements
represent the parts of the process that are flexi-
ble. FlexUML stereotypes are shown in guillemets
and their tagged values in brackets, both above the
name of the element to which they are applied.

The example has four (numbered) profile ap-
plications, each one referring to different types
of AD elements. The 1) UMLUseCaseModel ob-
ject node is represented with a «FlexibleExtent»
stereotype, along with the {instance, incremen-
tal} tagged values, signaling that instances of
the object node can be incrementally changed.
The next 2) flexible element is an Expansion-
Region that contains three sequentially arranged
actions, and to which are applied two flexibil-
ity stereotypes: «FlexibleAnticipation» and
«FlexibleSwiftness». The related tagged values
define that changes made to this element are to be
carefully planned and deferred to new instances
(not affecting the running ones). The 3) horizon-
tal JoinNode can suffer incremental changes at the
type level, and the 4) Test prototype action has a
«FlexibleDuration» partition. This means that,
for all instances of this action, the assigned role of
its performers (like the suggested Tester role) can
be temporarily changed.

5. Related work

Foundations for modeling distinct process perspec-
tives with UML can be found, for example, in [6, 5].
In [9] the authors propose dynamic task nets and
the DYNAMITE PAIS to allow for changes and
evolution in software process executions. In [11] the
authors explore the possibility of also using UML
as a formal language for operational (executable)
process definitions, that can be interpreted and in-
stantiated by a PAIS. However, neither of the above
related works has concerns regarding the expression
of selective flexibility concepts, nor present a flexi-
bility meta-model for process modeling.

In [16] the authors shed some light in finding,
through process mining, what process parts should
be flexible. Recently we proposed in [10] a meta-
model for the application of distinct flexible mech-
anisms onto UML modeling elements. Both these
works are complementary to our proposed profile,
as they can be useful in modeling flexibility and
related mechanisms for each distinct AD modeling
element.

6. Conclusion

In this paper we proposed the FlexUML profile for
expressing flexibility in process modeling. We pre-
sented a reference meta-model that provides a map-
ping of flexibility concepts onto UML. The profile
is derived from this meta-model, and consists of a
set of stereotypes and related attributes that can
be applied to each AD modeling element.

By using a decorator structure in our meta-
model, flexibility responsibilities can be dynami-
cally and differently combined with existing AD
modeling elements. This means that instantiat-
ing the proposed meta-model (using e.g., a mod-
eling tool) will provide process modelers the ability
to design flexible process models, i.e., models that
contain AD elements that can be changed by other
process participants, under certain restrictions.

The intent of our proposed profile is not to
identify specific changeable properties for each dis-
tinct AD element, as that would lead to a pro-
liferation of different stereotypes and tag defini-
tions. Moreover, working with many specific stereo-
types would imply process modelers having advance
knowledge of precisely how certain process parts
can be changed. Instead, the FlexUML profile pro-
vides simple and usable generic stereotypes, leaving
room for other more skillful participants to enforce
the “right” flexibility within a process model.

219

UP Elaboration phase
UMLUseCaseModel: UMLModel

(System analyst)
Refine system scope

and requirements

(Architect)
Perform architectural

analysis

«FlexibleAnticipation» «FlexibleSwiftness»
{type, planned} {instance, deffered}
iterative

(Use case eng.)
Analyze a
use case

(Component eng.)
Analyze a

class

(Component eng.)
Analyze a
package

UMLStatic
Model

UMLUseCase
Model

[updated]

«FlexibleExtent»
{instance, incremental}

UMLUseCase
Model

[10-20% completed]

(Architect, Programmer)
Build architectural

prototype

UMLStatic
Model(«FlexibleDuration»

{instance, temporary}
Tester)

Test prototype
[no more
funct. to

test]

(Use case eng., Architect,
System analyst)

Update UML Models

[more funct. to test]

UMLUseCase
Model

[80% completed]

UMLStatic
Model

[updated]

«FlexibleExtent»
{type, incremental}

1

2

34

Figure 5: Example process model for the UP Elaboration phase

References

[1] I. Bider. Masking flexibility behind rigidity: Notes
on how much flexibility people are willing to cope
with. In J. Castro and E. Teniente, editors, Proc.
of the CaiSE’05 workshops, volume 1, pages 7–8,
Porto, Portugal, 2005. FEUP.

[2] G. Cugola. Tolerating deviations in process sup-
port systems via flexible enactment of process
models. IEEE Trans. Softw. Eng., 24(11):982–
1001, 1998.

[3] B. Curtis, M. I. Kellner, and J. Over. Process
modeling. Commun. ACM, 35(9):75–90, 1992.

[4] M. Dumas, W. van der Aalst, and A. H. M. ter
Hofstede, editors. Process-Aware Information Sys-
tems: Bridging people and software through process
technology. John Wiley & Sons, Inc., 2005.

[5] G. Engels, A. Förster, R. Heckel, and S. Thöne.
Process modeling using UML. In Process-Aware
Information Systems, chapter 5, pages 85–117.
John Wiley & Sons, Inc., 2005.

[6] H. Eriksson and M. Penker. Business Modeling
with UML, Business Patterns at Work. JohnWiley
& Sons, 2000.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1995.

[8] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[9] D. Jäger, A. Schleicher, and B. Westfechtel. Us-
ing UML for software process modeling. In
ESEC/FSE-7: Proc. of the 7th European Softw.
Eng. Conf./ 7th ACM SIGSOFT Int’l Symposium

on Foundations of Softw. Eng., pages 91–108, Lon-
don, UK, 1999. Springer-Verlag.

[10] R. Martinho, D. Domingos, and J. Varajão. A
Flexible Perspective for Software Processes - Sup-
porting Flexibility in the Software Process Engi-
neering Metamodel. In Proc. of the 9th Int’l Conf.
on Enterprise Information Systems (ICEIS’07),
Funchal, Madeira - Portugal, June 2007.

[11] E. D. Nitto, L. Lavazza, M. Schiavoni, E. Tra-
canella, and M. Trombetta. Deriving executable
process descriptions from UML. In ICSE ’02:
Proc. of the 24th Int’l Conf. on Softw. Eng., pages
155–165, New York, NY, USA, 2002. ACM Press.

[12] OMG. Unified Modeling Language: Superstruc-
ture, version 2.0. Technical report, Object Man-
agement Group, 2005.

[13] G. Regev, P. Soffer, and R. Schmidt. Tax-
onomy of flexibility in business processes. In-
put to the 7th Workshop BPMDS’06, Web-
site, June 2006. http://lamswww.epfl.ch/

conference/bpmds06/taxbpflex.
[14] G. Regev and A. Wegmann. A regulation-based

view on business process and supporting system
flexibility. In J. Castro and E. Teniente, editors,
Proc. of the CaiSE’05 workshops, volume 1, pages
91–98, Porto, Portugal, 2005.

[15] P. Soffer. On the notion of flexibility in business
processes. In J. Castro and E. Teniente, editors,
Proc. of the CaiSE’05 workshops, volume 1, pages
35–42, Porto, Portugal, 2005.

[16] W. M. P. van der Aalst, C. W. Günther, J. Recker,
and M. U. Reichert. Using process mining to an-
alyze and improve process flexibility (position pa-
per). In Proc. of the CAiSE’06 Workshops / 7th
Int’l Workshop BPMDS’06, pages 168–177, Na-
mur, Luxembourg, June 2006.

220

A Formal Specification for Product Configuration
in Software Product Lines

Huilin Ye and Yuqing Lin
School of Electrical Engineering and Computer Science

The University of Newcastle, Callaghan, NSW 2308, Australia
{huilin.ye, yuqing.lin}@newcastle.edu.au

Abstract

Feature modeling has been widely used in product
line based software development. The major purpose of
feature models is for member product configuration.
Feature dependencies have very strong implications
on the configurations in a product line. However,
current existing approaches to feature modeling
provide limited support for the specification of the
dependency constraints. A formal specification using Z
is developed to specify the dependencies in product
lines and the constraints on the selection of variable
features for product configuration. In addition simple
dependency constraints, complex conflicting feature
dependencies caused by transitive dependencies can
be detected during the process of product
configuration. As Z specifications provide natural
transition from the specifications to implementations it
will be easy to implement a modeling tool to support
product configuration based on the Z specification.

1. Introduction

Feature oriented modeling approaches have been
widely used in product line based software
development. Software Product Line (SPL) is a
collection of systems that share common characteristics
as a family in an application domain. The features
identified from a SPL are prominent and distinctive
system requirements or characteristics that are visible
to various stakeholders in the product family [1]. A
member software product in a SPL is defined by a
unique combination of legally selected features in the
SPL. The process of selecting features for a member
product in a SPL is called product configuration. The
configuration is based on a feature model. A feature
model for a SPL specifies features, their relationships,
and the constraints of feature selection for product
configuration.

Currently existing feature modeling methods usually
use a tree structure to organize features. To configure a
member product of a product line using a feature tree, if

a parent node of the tree has one or more variable child
features, called variants, a decision must be made on
the choice of the variants. The parent feature
representing a decision point together with its possible
choices (variants) is defined as variation point [2]. The
selection of variable features must satisfy constraints
specified in feature models, otherwise the configured
product may not be a valid one. The constraints are
usually dependencies among the features. These
dependencies are non-hierarchical in nature.
Representing the non-hierarchical dependency
relationships into a tree structure has left the current
feature modeling methods with the possibility of
omitting dependencies [3]. In a large complex SPL the
number of variation points may range in thousands and
each variation point may have several variable features
[4]. Therefore the number of combination of the
selection of variable features will be very large and the
constraints for the selection will be very complex.
Specifications of dependency constraints in feature
models have not been addressed appropriately by the
current existing approaches. As the specification of
dependency constraints is crucial for validating
product configurations an appropriate mechanism
should be developed.

This paper proposes a formal specification for
member product configuration in software product lines
using a well known formal language Z. The main
advantage of using Z in comparison with other
languages, such as Object Constraint Language (OCL)
used in [5] and First-Order Logic used in [6] is that Z
can collectively represent concepts and the constraints
of the concepts in a single structure, called schema,
which makes the specification more intuitive and
comprehensive. A set of Z schemas is used to describe
a software product line and to validate the configured
member products. A Z schema consists of two parts, a
declaration part and a predicate part. The declaration
parts can be used to formally define various kinds of
concepts, such as features and variation points, used in
a SPL. The predicate parts consist of a number of logic
expressions to specify the constraints on the concepts.

The remainder of the paper will be organized as

221

follows. Section 2 will present feature models, including
feature relationships and their representations. Section
3 will discuss member product configuration and the
implication of feature dependencies on the
configuration. The details of the formal specification for
product configuration in software product lines will be
described in Section 4. Section 5 will discuss the
benefits of the approach and conclude the paper.

2. Feature models

A feature model is a hierarchical tree structure
consisting of two kinds of features, mandatory features
and variable features. Each node of the tree represents
a feature while each connection between two features
represents the relationships of the two features. The
configuration of a member product in a SPL will go
through the feature tree to include all the mandatory
features and select some of the variable features at each
variation point. Variable features include optional,
alternative, and multiple alternative features.

• Optional feature: If a feature may or may not be
selected into member products it is called
optional feature.

• Alternative features: Among a set of variable
features one and only one feature must be
chosen for member products. This set of
features is called alternative features.

• Multiple alternative features: Among a set of
features at lease one or more features must be
chosen for member products. This set of
features is called multiple alternative features.

The three kinds of variable features can be
differentiated by a specified multiplicity as follows [7].

• 0 .. *: For a variation point, each of its variants
may or may not be chosen for member products.
This multiplicity can be used to represent
optional features.

• 1: One and only one feature can be chosen from
a set of variants. This can be used to represent
alternative features.

• 1.. *: One or more features can be chosen from a
set of variants. This can be used to represent
multiple alternative features.

The multiplicity must be associated with each
variation point in a feature tree to specify how many
variants can be chosen from each variation point.

Three hierarchical feature relationships,
Composition, Generalization/Specialization, and
Variation Point, have been identified.

• Composition: When a feature is composed by a
set of child features, there is a composition
relationship from the parent to the children.

• Generalization/Specialization: If a parent feature
is a generalized feature of its children, there is a
generalization/specialization relationship
between the parent and its children.

• Variation Point: For a given feature tree, if a
parent feature node has at least one direct child
who is a variable feature, there is a variation
relationship between the parent and the child.
The parent node together with its direct variable
child features is called a variation point.

Figure 1 shows a simplified feature model for a Car
product line. A set of UML-based notations is used to
represent the relationships between features. As there
is no standard UML notation for Variation Point a circle
is used to represent a variation point. In this model Car
is composed by Control, Accessories, Engine, and
Quality attributes. They are all mandatory
features. The features specified with a stereotype
<<variant>> are variable features. Manual and
Automatic are the specialized features of Control.
Quality attributes is composed by Operating
cost and Reliability etc. Control,
Accessories, and Quality attributes represent
variation points. Control has a multiplicity of 1
specifying that its two variants are alternative features.
Accessories has two optional variants represented
by the multiplicity 0..2. Quality attributes has
multiple alternative variants represented by the
multiplicity 1..3.

Figure 1. A feature model for a Car product line.

3. Product configuration and feature
dependencies

The major purpose of developing a feature model is
for member product configuration in a product line.
Product configuration is a process of selecting variable
features from each variation point of a feature model.
Each configured product must include all the

222

mandatory features and select different set of variable
features based on the specific requirements of the
product. Thus, how to select the variable features is
crucial for the configuration. The constraints on the
selection of the variable features will depend on the
multiplicity specified for each variation point and the
dependencies among the variable features.

As discussed earlier a multiplicity is associated with
each variation point to specify the possible number of
variable features that can be selected at this variation
point. Three kinds of multiplicity are defined, 0 ..*, 1..*,
and 1. For a multiplicity of 0 ..*, it will not be a problem
when selecting any features from the set of variants of
a variation point. . For a multiplicity of 1 ..*, it must be
ensure that at least one feature will be selected at this
variation point for any product configuration. For a
multiplicity of 1 only one feature can be selected at this
variation point for any product configuration.

In addition to the multiplicity constraints for
selecting the variable features feature dependencies
have much stronger implications on the selection of
variable features [8]. Features are never stand alone in a
product line and usually need to interact with, or use,
other features to fulfill their tasks. How effective for a
product line to derive configurable member products
will greatly depend on the understanding of the
dependencies between the variable features. Three
feature dependency relationships have also been
identified as follows:

• Requires: If a feature requires, or uses, another
feature to fulfill its task, there is a Requires
relationship between the two features.

• Excludes: If a feature conflicts with another
feature, they cannot be chosen for the same
product. There is a bi-directional Excludes
relationship between the two features.

• Impacts: When a feature is selected for a
certain product and the selection will have impact
on another feature, it is called impacts
relationship between the features.

The dependencies identified from a product line
must be validated. For a complex product line involving
a large number of features, some conflicting
dependencies may be recorded without awareness of
their existence [9]. The validation of dependencies is
intended to discover these conflicting dependencies.
The following rules are defined for the validation:

• Excludes relationship must be mutually
exclusive.

• Requires and Excludes cannot be occur
between the same pair of features.

When using the rules to validate the dependencies
for a certain feature, only considering its direct
dependants is not sufficient. All the indirect
dependencies should be inspected as well. Additional
dependencies may be derived via tracing the
Requires dependencies and the derived
dependencies may conflict with the existing
dependencies. For example, if Feature A requires
Feature B and Feature B requires Feature C and
excludes Feature E then there are two derived
dependencies, A requires C and A excludes E. These
derived dependencies called transitive dependencies.
Transitive dependencies can only be derived through
direct Requires dependencies. When Feature A is
selected, Feature B and C should also be selected and
Feature E should be excluded. We extend this example
in Figure 2. Starting from A, we trace the Requires
dependencies until Feature D that has no Requires
dependency with other features is found. The tracing
path, from A to B to C to D forms a Requires
dependency chain. If A is selected all the features on
this chain should also be selected and all the features
that have Excludes dependency with any of the
features on the chain should be excluded. If the
transitive dependencies are not inspected some
conflicting dependencies may exist.

Figure 2 . An example of Requires dependency chain.

Feature dependencies are non-hierarchical in nature
and cannot be represented appropriately in a
hierarchically organized feature tree. A large number of
connections of two dependent features crossing the
branches of a tree will deteriorate the
comprehensiveness and intuitiveness of the feature
tree. A better representation of the dependencies
should be developed. We use formal language Z to
specify the dependencies in a product line. A set of Z
operation schemas have also been developed to
support product configuration. The detailed formal
specification is presented in the next section.

4. Formal specifications

The formal specification has two parts, one for
product line engineering and the other for application
engineering. In the first part of the formal specification,
we formally define a product line, the constraints on the

223

product line. The second part of formal specification is
used for product configuration. It provides a set of
operation schemas to ensure that each selection of a
variable feature is a valid selection to satisfy the
required constraints. Consequently valid products can
be configured based on the specification.

First we define a number of types.
[FEATURE-ID, VP-ID]
MultiplicityType ::= 0..* | 1..* | 1
FeatureType ::= Mandatory | Variable
DependencyType ::= Requires | Excludes | Impacts
ImpactMessage::= mesg1|mesg 2|…|mesgm

ErrorMessage::=MultiplicityError|
mesg2|…|emesg m

TruthValue ::= True|False
A feature can be modeled as a Z schema consisting

of identification number and feature type (mandatory
or variable).

The following global constraint ensures that every
feature instance in a product line is unique.

A schema defining a variation point consists of
identification number, parent feature, a set of variable
child features, and a multiplicity associated with the
variation point.

The variants defines a collection of variable child
features associated with the parent feature at a
variation point. The following global constraint ensures
that every variation point instance is unique.

The following schema defines a software product
line. A product line consists of a set of features,
variation points, and dependencies between the
variable features. The relation features maps the
features existing in a product line to the two different
types (mandatory and variable). The variationpoints
specifies a collection of variation points. The relation
dependencies maps the dependency types to different
sets of feature pairs that have different dependent
relationships. The relation ImptMesgs maps a pair of
features with Impacts relationship to an impact
message. An impact message associated with a feature
pair, such as Feature A and B, specifies the specific
impact on Feature B when Feature A is selected.

The invariants assert the following

• Each feature instance cannot be a mandatory
feature and a variable feature at the same time.

• The parent and variants of any variation point are
the existing features in a product line.

• A feature cannot have dependent relationship with
itself.

• Only the dependencies between the variable
features should be recorded for configuration.

• Any pair of features should not have both the
Requires and Excludes dependencies at the same
time in a product line.

Based on the formal definition of a product line,
member products within the product line can be
configured. We use a state schema, called
ProductConfiguration, to describe the state space of
the product configuration. The SelectedFeatures are
the features included in the configured product . The
state invariant asserts that any selected feature for a
member product belongs to the product line.

The initialization of a product configuration is
specified by the following schema.

The predicate part of InitProductConfiguration
asserts the following conditions:

• Every mandatory feature must be included in any
product in a product line.

• Initially, no variable feature has been selected.

224

After the initialization, all the mandatory features
have been included in a product being configured. We
then define a number functions for selecting variable
features for the product. When selecting a variable
feature several conditions should be satisfied. The first
condition is the multiplicity specified for each variation
point. The following schema is used to check
multiplicity condition when a variable feature of a
variation point is to be selected. The following
function returns True if a variant can be selected at a
variation point, i.e. in the situation that either
multiplicity of the variation point is not 1 or no variant
has been selected from the variation point if the
multiplicity is one. When the multiplicity is not one,
there is no limit on the maximum number of features that
can be selected. While the multiplicity is one a variant
can only be selected if there is no other variant has
been selected.

In addition to the multiplicity constraint feature
dependencies have great implications for product
configuration. The following function specifies the
constraints when selecting a variable feature that has
Excludes dependency with another feature. If Feature
A has Excludes relationship with Feature B when A
is selected B should be excluded. We also need to
remove Feature B from the selected feature set if it has
already been included in the product.

The following function is used for selecting a feature
that has Impacts dependency with another feature. The
specific impact message associated with this
relationship should be output.

When a feature to be selected has Requires
dependency with another feature transitive
dependencies must be taken into consideration. As
discussed in Section 3 when selecting a feature that has
Requires dependency with other features, we need to
recursively to include all the features on its Requires
dependency chain(s) and remove their excluded
features. The following function recursively defines the
function of selecting a feature with Requires
dependencies.

The following schema is defined for selecting features
with no dependency to other features.

When selecting a certain feature it may have various
kinds of dependencies with other features the
SelectFeature operation uses SelectExldFeature,
SelectReqFeature, SelectImptFeature, and
SelectNoDependencyFeature functions defined before.

5. Discussion and conclusions

Feature models are used for member product
configuration in product line based software
development. Feature dependencies are the major

225

constraints for the configuration. However, the current
existing approaches to feature modeling provide limited
support for the specification of the dependency
constraints. Consequently contemporary tools often
offer little or no support for the validation of feature
models and the configured product.

Some related works have been done. The Adapted
Object Constraint Language (A -OCL) was used to
check consistency of feature models [5]. A set of
constructs were developed to specify the constraints
applicable to a certain feature or several features. When
the feature dependencies in a product line are complex
it is difficult to represent the dependencies in individual
OCL constructs as there is no way to represent the
relations between the constructs. For example, the
transitive dependencies and the possible problems
caused by the transitive dependencies discussed in
Section 3 are difficult to be specified by the OCL
constructs. Mannion employed First-Order Logic
expressio ns to validate feature models [6]. Different
kinds of dependencies have not been distinguished in
the approach. It is difficult to formulate the product line
logic expressions for complex dependency relationships
among features. Such complex expressions are also
difficult to understand. Other formal models using
similar logic programming have been reported in [10-12].

The formal specification presented in this paper, in
comparison with the abovementioned formal models,
provides a generalized approach for product line
engineering and application engineering (product
configuration) and has the following advantages:

• It supports product line evolution. The defined
schemas will detect any conflicting dependencies
introduced by adding new features into a product
line. It will be difficult for the logic exp ression based
approaches to support product evolution as there is
no facility to check any inconsistent dependency
after a product line is updated.

• It validates the product configurations. The
operation schemas defined for product
configurations can inspect whether a selection of a
certain feature is valid or not. The inspection can
also detect the complex dependency
inconsistencies caused by transitive dependencies.

• As Z specifications provide natural transition from
the specifications to implementations it will be easy
to implement a modeling tool based on the
specification.

A modeling tool for product line engineering and
product configuration will be developed in the near
future. A large case study will also be conducted based
on the developed modeling tool.

References

[1] Lee, K., Kang, K., and Lee, J., Concepts and Guidelines
of Feature Modeling for Product Line Software
Engineering, In Proceedings of 7th International
Conference of Software Reuse, LNCS, 2319, pp.62-67,
2002.

[2] Riebisch, M., BÖllert, K., Streitferdt, D., and
Philippow, I., Extending Feature Diagrams with UML
Multiplicities. In Proceedings of the Sixth Conference on
Integrated Design and Process Technology, Pasadena,
CA, June 2002.

[3] Hein, A., Schlick, M., and Vinga-Martins, R. Applying
Feature Model in Industry Setting. In Software Product
Lines – Experience and Research Directions, pp. 47-70.
Kluwer Academic Publishers, Boston, 2000.

[4] Bosch, J., Software Product Families in Nokia. In
Proceedings of 9th International Software Product Line
Conference, LNCS, Volume 3714, pp. 2-6, 2005.

[5] Streitferdt, D., Riebisch, M., and Philippow, I., Details
of Formalized Relations in Feature Models Using OCL.
In Proceedings of the 10th IEEE Symposium and
Workshops on Engineering of Computer-Based
Systems(ECBS), Huntsville Alabama, USA, 2003, pp.
297-304.

[6] Mannion, M., Using First-Order Logic for Product Line
Model Validation. In Proceedings of 7th International
Software Product Line Conference, LNCS, Volume 2379,
pp.176-187, 2002.

[7] Ye, H. and Liu H., “An Approach to Modeling Feature
Variability and Dependencies in Software Product
Lines.” IEE Proceedings – Software, 152(3), pp. 101-
109, 2005.

[8] Ferber, S., Haag, J. and Savolainen, J., Feature
Interaction and Dependencies: Modelling Features for
Reengineering a Legacy Product Line. In Proceedings of
Second International Conference on Software Product
Line, pp. 235-256, 2002.

[9] Ye, H. and Sharmin, A. “Modelling Feature Variability
and Dependency in Two Views.” In Proceedings of the
17th International Conference on Software Engineering
and Knowledge Engineering, Taipei, Taiwan, pp. 661-
664, July 2005.

[10] Neema, S., Sztipanovits, J., and Karsai, G., Constraints-
Based Design Space Exploration and Model Synthesis.
EMSOFT 2003, LNCS, 2855, pp.290-305, 2003.

[11] Batory, D., Feature Models, Grammars, and
Propositional Formulas. SPLC2005, LNCS, 3714 , pp.7-
20, 2005.

[12] Benavides, D., Trinidad, P., and Ruiz -Cortes, A.,
Automated Reasoning on Feature Models. Conference
on Advanced Information Systems Engineering (CAISE),
July 2005.

226

Designing a Platform-Independent Use-Case for a Composite Application using a
Reference Architecture

Helge Hofmeister∗ and Guido Wirtz
Otto-Friedrich-University Bamberg, Distributed and Mobile Systems Group

Feldkirchenstr. 21, 96052 Bamberg, Germany
hofmeister@ecoware.de, guido.wirtz@wiai.uni-bamberg.de

Abstract

This paper describes the design of an industry-scale
use-case for a composite application. The described design
is based on former work of the group which basically
investigated the reference architecture and development
methodology for composite applications [8, 9]. The paper
puts its focus on the platform independent design of the
composite application from the business-process based
requirements down to the design of the required services.
Additionally a meta-model is provided that describes the
hierarchy of services that need to be designed in order to
meet business requirements in a more flexible way.
Keywords: SOA, composition, reference architecture

1. Introduction

Service-oriented architecture (SOA) is currently a buzz-word

hitting the industry. Following the discussions in, e.g. [4]

or [14], service orientation might be more or less just a re-

launched distributed object approach. Although being recog-

nized in the software industry most customer-industries, how-

ever, are still questioning the benefit of this approach.

We decided to evaluate the business value of SOA in a large-

scale project for an IT service provider in the area of chemical

industry. One key part of this (ongoing) evaluation is to apply

the service-oriented paradigm to a real-life industry-scale use

case. Service-orientation should proof that it brings value into

a solution landscape with various legacy applications partially

supporting business processes.

Our previous research on SOA in the same context resulted

in the definition of a reference architecture [8, 9] as well as

a proposal for a methodology [10] that can be used to de-

sign service-oriented applications - so-called composite ap-

plications - according to the reference architecture. This paper

discusses our findings in applying this methodology to the de-

sign of the real-life use-case from industry and validates our

results.

We refer to [8–10] for an in-depth discussion of related work

regarding our overall approach. The work on service-design

∗Helge Hofmeister is an external PhD student with the Distributed and

Mobile Systems Group at University of Bamberg.

as described in [6] and [11] as well as the work of the SDO [3]

specification in terms of data standardization have influenced

the design we present in this paper. Moreover, the transforma-

tion of event-driven process chains (EPC) into WS-BPEL [2]

executable processes as described in [5] is important for the

case study since it allows for the business-process centered

approach we follow.

The rest of the paper is organized as follows. After giving a

sketch of our approach in section 2, section 3 discusses the de-

sign case study in detail. The paper concludes with an outlook

on future work in section 4.

2. A Sketch of the Approach

The design of the pilot was done using a developmentmethod-

ology as well as using a reference architecture mutually cor-

responding. In order to meet both, a clean design and the

industry-scale reality of predetermined tools of the corpo-

rate environment, we decided to split the design into three

major sections: The platform-independent model (PIM), the

platform-specific model (PSM) and a landscape architecture1.

The aim is to design the composite application based on the

tool-independent reference architecture. Using a generic map-

ping of the architecture to a specific set of tools and products,

the PIM is specified with regards to the actual products in a

later phase. The PSM and the concrete realization are then

vivid demonstrations of the real-life applicability of the elab-

orated concepts. The actual tool-independent application of

the concepts to real-life business requirements proofs the ap-

plicability of the design principles. Finally, the landscape ar-

chitecture is the topology of deployed products and servers.

3. The Case Study

The use-case of the pilot project was chosen by a dedicated

internal working group. Lacking a formal methodology, the

group analyzed on a business expert level several business

processes and how steps that are included in these processes

1We still investigate the suitability of the model-driven architecture

(MDA) [7] to our approach.

227

might be used in other processes as well. Hence, the advan-

tage of service-oriented architecture that was best understood

by the business analysts was reusability across system board-

ers. The business process finally chosen was the so-called

”agreement management” business process. This process de-

scribes the procedure how the company reacts on customer

demands by estimating the request and providing an offer to

the customer.

3.1. BP-based Functional Requirements

The business process is used as a functional requirements

specification for the composite application (see Figure 1 for an

extract modelled as an EPC). It involves control and data flow

as well as the organizational/system flow. The process de-

scribes a collaborative sequence where different experts from

single delivery units work out descriptions of the offer as well

as cost estimations. In the subsequent phase, the account man-

agement (AM) uses this information to generate an offer that

might lead to a contract with the customer.

Up to now, this process is supported by various applications:

Sales and distribution (SD) as well as project management

(PM) use an ERP system. Additionally, there is a change-

management database that is employed in the different ITIL

processes of the company [1]. This database is used to store

service-level agreements, service descriptions and assets that

are required for performing the services. The account man-

agement today uses a CRM application for managing offers

and contracts. The aim of the case study is to automate this

process using the existing system landscape by building a

composite application unifying also the user access to the sys-

tems.

3.1.1. Enterprise Service Matching

The business process describing the requirements is used as

the top-level orchestration of the involved processes. Follow-

ing this approach, EPC functions (aka. Business tasks; green

boxes) are so-called enterprise services. In order to allow the

concrete implementation in terms of a service orchestration,

the enterprise service themselves might need to be aggregated

services of lower levels. In order to determine whether

such an aggregation is required, the design methodology

starts with an ”enterprise service matching”-phase. This

phase describes the determination of native services being

exposed by applications (application services) that might

fit to the described function. Since our pilot project is the

first experience with implementing composites, there are no

matching enterprise services.

3.1.2. Data Interaction Analysis

In order to set-up new enterprise services matching the busi-

ness functions, a data-interaction analysis based on the func-

tional requirements is performed next. This step mainly ana-

lyzes which data are required by the single functions as their

respective input and output. Having identified these data, the

required data structures may be deduced from the enterprise’s

canonical data model.

Figure 1. EPC for Functional Requirements

3.1.3. Transactional Property Identification

Knowing the data and the respective data access performed by

the to-be enterprise services, some transactional properties of

the process flow can be identified. Meeting the characteristics

of business processes being long-running transactions, no

ACID transactions involving multiple enterprise services are

228

identifiable. Though, global transactions with relaxed ACID

properties can be identified. In the business process snippet

in Figure 1, the set of enterprise services performing a global

transaction are marked by an underlying arrow (”Perform

Price Calculation” till ”Check Offer”). In the given example

the functions are grouped as a single global transaction since

the state reached after checking the offer might require a

new cycle of the offer phase that would replace the previ-

ously created offer. It is notable that all global transactions

identified in the business process occur in process branches

being encapsulated by a workflow pattern (8 in [13]) and a

data-based routing pattern (38 in [12]).

3.1.4. Service Composition

This phase is the main phase of the PIM because it describes

functionality that is independent of any target architecture.

Nevertheless is this the phase creating the design of the enter-

prise service’s implementation. As composite applications are

mainly orchestrations of functionality being already existent

in legacy applications, the main aspect of our design phase

is the description of how application functionality that is ac-

cessible by the means of ”application services” is aggregated

by the service coordination layer. The design of the service

composition involves all layers of the underlying reference ar-

chitecture, though. This is because the service coordination

layer’s design describes also the requirements for lower lay-

ers. These are mainly requirements for the data-exchange and

transformation layer and the data repository. Often, the co-

ordination describes an additional requirement for the design

of new application services. This is because application func-

tionality may not always be defined by means of services2.

The design method and the example service design are de-

scribed in the next section.

3.2. Enterprise Service Design

The design of the service coordination is based on three re-

quirements: The description of the business functions that re-

sults in the enterprise services, the data flow and the corre-

sponding data model that are computed by the business func-

tions as well as the organizational perspective describing how

humans and application systems are considered to interact

in order to perform a certain business task. Notable about

these three items is that the actual service designed is com-

pletely determined by the requirements expressed in the busi-

ness process. Even the application systems that need to act as

agents for the service provider part of the application services,

are identified by that description. The approach incorporates

these aspects since business experts turn out to often know

precisely which legacy systems are capable of providing the

required functionality - and these determinations are usually

to be kept in order to allow for an agile deployment of com-

posite applications.

2”means of services” refers not to the characteristics of services of us-

ing a common protocol. Furthermore does this refer to the encapsulation of

functionality into coarse-grained and stateless units of work - services.

The starting point of the service coordination design is the ac-

tual business task. As an earlier step may already have iden-

tified existent enterprise services (”perfect matches”), the ser-

vice coordination might be obsolete. Whenever no enterprise

services have been matched, the initial decision of the coordi-

nation’s design is whether the business task could be mapped

to either an application system or a user interaction3. This is a

design decision that has to consider two influence factors: The

possibility of a single service agent to implement the function-

ality completely and the potential reusability of the enterprise

service. Whenever parts of the required functionality can be

mapped to existent application services, the services shall be

reused and the enterprise service therefore will be composed

of several application services.

Usually the coordination involves both reusing application

services and designing new application services. During the

design phase of the case study it turned out that the design of

new application services is an informal procedure that relies

on a subjective design of the solution architect. This is the

case since the to-be application services need to fulfill imme-

diately the requirements of the business task. Hence, the first

step of the application service design is to model application

services that support the requirements. This approach results

in a process flow at the coordination layer that orchestrates

several application services that compute data. Which data is

actually computed results out of the data interaction analysis

of the business process and the identified data model.

Since the identified data determines the context of both, the

business process as well as the coordination process, the refer-

ence architecture relies on a data repository the context is kept

in. Even if the context data is either retrieved from legacy ap-

plications or is created by human users during the process cy-

cle, data access is not directly modeled as calling application

services. The data repository is included in the coordination

design as a separate entity (cf. [8, 9]).

The design steps described so far lead to two classes of ser-

vices: enterprise services (that are by definition the tasks of

the business process) and the steps of the coordination layer.

The latter are referred to as ”coordination services”. Coordi-

nation services are introduced in order to allow for the design

of non-existent application services. Coordination services

might be entity-centered or task-centered. Entity-services are

used to read or manipulate data kept by the legacy applica-

tions. Entity-centered services utilize application services in

order to make data available to the context. Task-specific co-

ordination services finally provide the functionality that oper-

ates on this context. The meta-model of our service hierarchy

is shown in Figure 2.

Including the data repository into the reference architecture

enables stateless services that are better reusable as the data

repository respectively the entity-services manage the state of

the composite while all participating services do not need to

keep a state. In order to allow for reusable services, stateless

3Even if the reference architecture handles user-interactions like every

other legacy functionality, it turned out to be helpful to describe application

services and user interactions separately.

229

Figure 3. Create Contract Proposal Design

Figure 2. Service Hierarchy Meta-Model

services are not sufficient, though. Services also need to be

employable in any arbitrary context. Thus, the services need

to be loosely coupled. One aspect of that design principle is

that services do not need to be aware of each other. One way

to partly achieve this goal is to set-up service registries for a

brokered communication among services. Services are com-

pletely unaware of other services whenever their dependence

to these services is managed by a dedicated instance. This is

the reason why the service coordination aggregates the single

services without passing the control to other services.

Following the principles descibed so far, the platform-

independent design of the entity services is as exemplified in

Figure 3. The control-flow is numbered and marked in red. In

the design shown, the CRM application is used as application

service provider for the entity-specific coordination services

Read Offer and Store Contract. A newly developed applica-
tion for document management is required in order to support

the task-specific services that manage the data manipulation

(Insert SVDC into FuL4 and Insert Commercial Data from Of-
fer).
The next step of the service design is to categorize the iden-

tified task-services and the activity that is required to be per-

formed in order to support the actual enterprise service. The

modeled activities pose initial candidates for the services’ op-

erations. According to the underlying task or entity, the ser-

vice is then completed by adding additional operations and

eventually modifying the operation candidates extracted from

the enterprise service model. The coordination services that

can be identified to be supported by the CRM application sys-

tem are shown in Figure 4. The operation candidates Read
Offer and Create Contract were modified to the operations
callUpOffer and bookContract, respectively.
In order to finish the design of the coordination services, the

data model needs to be analyzed. This analysis reveals the

data that are required to perform the operations of the services.

Two messages are assigned to each operation - an input and an

output message. In the presented use-case, the messages for

the operations of the CRM-related services are exemplified by

showing the message structure for the bookContract operation
of the ContractService entity-specific service. As shown in
Figure 5, the attributes of the service-inbound messages con-

sist either of the necessary attributes to create a contract or a

contract object itself.

Knowing the interfaces of the coordination services, the final

step of the PIM is finishing the interface description of the

enterprise services themselves. Since the data manipulation

is performed by the included coordination services and the

data is kept within the data repository, the enterprise service

does not require input or output parameters at all. The

business functions are clustered with regards to their business

semantics into services while the single business tasks be-

4”FuL” stands for ”Funktions- und Leistungsbeschreibung” and is a fixed

term used in the company for ”service description”.

230

Figure 4. CRM Coordination Services

Figure 5. bookContract Operation Messages

come the operations of these services. All subsequent phases

of the methodology depend on actual platform-dependent

constraints (e.g how application services could be realized

- both technically as well as functional). Hence, the later

phases are considered designing the PSM which is out of the

scope of this paper (cf. [8, 9]).

4. Conclusion and Future Work

We have presented the first application of our architectural

concepts to a real-life business process. The case study shows

that the concepts are applicable in real-life. Both, the method-

ology and the architecture are helpful when it comes to imple-

menting the business process. In addition to it’s guidance dur-

ing the design phase, the concepts showed that they quite nat-

urally lead to a distinct description of coordination services.

This distinction is both, in line with accepted best-practices

for application design as well as with more recent findings re-

garding service-design [6]. Currently we are involved with

assigning the identified coordination services to the identified

backend systems. So far it showed that only little functional-

ity is remotely accessible yet but implementing it in a remote-

accessible fashion seems achievable and efficient. The inher-

ent heterogeneity issues identified up to now can be handled

by the exchange and transformation layer. In parallel we are

also busy to start the detailed implementation of the use-case.

On the conceptual side we are validating the pattern language

described in [8] in order to check for formal support of

our approach. Formalizing the findings, we are currently

working on a design metrics that will help to identify business

cases that are suitable for the service-oriented paradigm

and that will support the design decisions even more than

the methodology, patterns and architecture presented here

accomplish already.

References

[1] British Government Office of Government Commerce: ITIL

IT-Infrastructure Library.
[2] OASIS WSBPEL Technical Committee: Web Services Business

Process Execution Language 2.0, 31.02.2007.
[3] J. Beatty, H. Blohm, C. Boutard, S. Brodsky, M. Carey, and J.-

J. Dubray. Service data objects for java specification. Technical

report, BEA and SAP and IBM, 2005.
[4] K. P. Birman. Like it or not, web services are distributed ob-

jects. Commun. ACM, 47(12):60–62, 2004.
[5] J. Dehnert and W. M. P. van der Aalst. Bridging the gap be-

tween business models and workflow specifications. Int. J. Co-
operative Inf. Syst., 13(3):289–332, 2004.

[6] T. Erl. Servcie-Oriented Architecture. Prentice Hall, Inc., Up-
per Saddle River, NJ USA, 2005.

[7] D. S. Frankl. Enterprise Patterns and MDA. Prentice Hall,
Inc., Addison-Wesley, 2004.

[8] H. Hofmeister and G. Wirtz. Approaching a methodology for

designing composite applications integrating legacy applica-

tions using an architectural framework. In Proc. GI-FG Treffen
EMISA, Hamburg, LNI, Vol. 95, Springer, 2006.

[9] H. Hofmeister and G. Wirtz. A Pattern Taxonomy for Busi-

ness Process Integration Oriented Application Integration. In

Proc. 18th Intern. Conf. on Software Engineering and Knowl-
edge Engineering, San Francisco Bay, USA, 2006.

[10] H. Hofmeister and G. Wirtz. Using patterns to design com-

posite applications. In Intern. Conf. on Enterprise Information
Systems and Web Technologies 2007, Orlando, FL; USA, 2007.

[11] H. Reijers. A cohesion metric for the definition of activities in

a workflow process. In CaiSE/IFIP8.1 International Workshop
on Evaluation of Modeling Methods in Systems Analysis and
Desing (EMMSAD, 03). Velden, Austria., 2003.

[12] N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P.

van der Aalst. Workflow data patterns: Identification, repre-

sentation and tool support. pages 353–368, 2005.
[13] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-

puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(1):5–51, 2003.

[14] W. Vogels. Web services are not distributed objects. IEEE
Internet Computing, 7:59–66, November/December 2003.

231

Abstract—Software engineers and researchers have been
increasingly use refactoring in object oriented programming.
There are different refactoring approaches in the literature.
Refactoring of source code is the starting point of the researches
and it is applied to different programming languages such as
Small Talk, C, Java, etc. Refactoring is also applied to different
software artifacts including the Unified Modeling Language
(UML) class diagrams. Since, most of today’s java development
editors provide the synchronization of source code with the UML
class diagrams, there are some open problems for the
synchronization after refactoring is applied, such as the loss of
inheritance links between two classes after renaming one of the
classes. In this research we mainly focused on the issue of
synchronization of the UML diagrams. We simulated the
problem domain to examine Rename and Extract Interface. As a
solution we have proposed a graph algorithm to maintain the
inheritance links between classes after refactoring is applied. We
have seen that, the graphical representation and transformation
techniques fit our problem domain very well and it can be used as
a solution for this domain.

Index Terms—Refactoring, graph transformation, Unified
Modeling Language, UML.

I. INTRODUCTION
Since cost is the most important key factor for a software

project to succeed, and the maintenance costs are contributed
to a big part of the project costs, new technologies decrease
the maintenance cost by providing efficient design and
implementation patterns. As the software is enhanced,
modified, and adapted to new requirements, the code becomes
more complex and drifts away from its original design [11],
hence lowering the quality of the software. Because of this, the
major part of the total software development cost is devoted to
software maintenance. The need for techniques that reduce
software complexity by incrementally improving the internal
software quality brings us to restructuring or specifically
refactoring. The term restructuring is first introduced by
Chikofsky and Cross [3] and defined as “the transformation
from one representation form to another at the same relative
abstraction level, while preserving the subject system’s
external behavior (functionality and semantics).” and

continued as “it does not normally involve modifications
because of new requirements. However, it may lead to better
observations of the subject system that suggest changes that
would improve aspects of the system.” Refactoring can be
thought as the object-oriented counterpart of restructuring. The
term refactoring, first introduced by Opdyke in his PhD thesis
[6] and defined as “the process of changing an [object-
oriented] software system in such a way that it does not alter
the external behavior of the code, yet improves its internal
structure” [7]. The earliest significant work on refactoring was
the suite of C++ refactorings developed by William Opdyke
[4]. It did however form the basis for the development of the
Smalltalk Refactory Browser [6].

Refactoring increases its usage areas and it has significant
importance for improving the design of existing code,
especially with the advent of methodologies such as Extreme
Programming [5] that involves little design and various
iterations through the software development lifecycle.

It is important that the behavior preservation capability of a
program must be satisfied. In other words, for the same input,
the program must give the same output. However, some
behavior aspects are mainly important for some software
project types. For real-time systems, an essential aspect of the
behavior is the execution time of certain (sequences of)
operations. For embedded systems, memory constraints and
power consumption are also essential aspects of the behavior
[4]. Although refactoring have been applied primarily at the
level of source code, the same techniques can also be used for
a wide variety of different object oriented software artifacts:
database schema; (UML) design models; software
architectures; software requirements; executable code; test
suites and many more-reference.
Unified Modeling Language (UML) can be used for finding
smells which is described as "certain structure in code that
suggest the possibility of refactoring" [9]. It also enables
refactoring tasks to be done in large granularity. UML
refactorings can be preferred instead of source code for some
reasons [9]:

1. Many people are visually oriented and they like to be able
to visualize the classes and their relationships

2. Being able to directly manipulate code at a higher level of

Synchronization of UML Based Refactoring
with Graph Transformation

Y. and A. B. Bener, Member, IEEE

232

granularity (i.e. methods, variables, and classes rather than
characters) can make refactoring more efficient. The efficiency
increase depends on the ability to quickly grab and move the
lines of codes in chunks that constitutes methods, classes, etc.

3. Being able to visualize code, specifically the content of
classes and the relationships between them, can help in
detecting smells.

The research in this paper is about the UML refactoring and
the basic problems encountered with UML refactoring. The
remainder of this paper is structured as follows: Section 2
defines the Unified Modeling Language (UML) and gives
information about the previous related works. Section 3 gives
a motivating example. Section 4 talks about the problem
domain and the proposed solution. Finally, section 5 and 6
evaluates the proposed solution, draws some conclusions and
talks about the future work.

II. RELATED WORK
UML is a language which gives a graphical representation of
software projects in order to visualize and better understand
them- reference. Today’s programming tools provide an
interface to build UML diagrams rather than building it from
scratch. Also, they synchronize the code and UML diagrams
according to the changes that have done. UML provides many
different types of diagrams; however Class and Sequence
diagrams are especially useful for the refactoring-reference.
Class diagrams give a static view of the system (what classes
make up the system, their contents, and their relationships),
while sequence diagrams give a dynamic view of a specific
sequence.
There has been much interest in refactoring recently, but little
work has been done on tool support for refactoring or on
demonstrating that a refactoring does indeed preserve program
behavior [12]. Refactoring with UML is a relatively new has
research area [9]. The detection of code smells and UML
refactoring is discussed by many researchers- [9,10] However,
they don’t consider reconstruction and behavior preservation
of the UML diagrams after refactoring is applied.. They use a
UML tool called Together which bases it's class diagram
directly on code, and allows you to manipulate the code by
directly manipulating the diagram [9]. There are other
researches on UML refactoring, but it is only based on the
Java programming language [12].

Mens et.al. have done various researches about refactoring
with graph transformations [1,2,4,8,11]. Although, their work
does not focus on synchronization of UML diagrams through
graphical representation, the outcomes of these researches are
the milestones for refactoring. An interesting practical
application of refactoring is used to detect inconsistencies in
UML diagrams when the UML metamodel itself evolves
which is achieved by the formalism on the level of type graphs

[8]. However, the type graphs they are using are restricted to
only one level, so it doesn’t meet our problem domain when
Extract Interface type refactoring is applied.

III. MOTIVATING EXAMPLE
A motivating example about the computer hierarchy is

given. The codes are implemented using Java language in an
object-oriented manner and Oracle JDeveloper 10g is used as
the Java editor. Java is selected since it is usage areas are
growing and the JDeveloper editor is selected because it is an
open-source free editor which makes is possible to add some
additional features as it will be discussed in the future work
part. The code is kept as simple as possible to make it easier to
understand. On the other hand, it covers most of the interesting
constructs of the object-oriented software paradigm.

A. Computer Hierarchy Example
There are six classes in the example namely Pc, Hp, Dell,

CanPlay, CanRecord, MException which are located in the
project package. Pc is the abstract class where Dell and Hp are
extended from. CanPlay and CanRecord are the interfaces
where Dell and Hp are implemented from. MException is
extended from the Exception class which is defined in
java.lang class. Below is the some sample java codes. Figure 1
shows the UML Class Diagram of the example java
implementation.

public abstract class Pc{
int screenSize = 14;
public int getScreenSize(){

return screenSize;
}
public abstract int getAge();

}
public class Hp extends Pc implements CanPlay,

CanRecord{
int age = 0;
public int getAge(){

return age;
}
public void Record(){

System.out.println("Recording..");
}
public void Play(){

System.out.println("Playing..");
}
public int CalculateCost(int basecost, int discount) throws

MException{
int result = 0;
try{

result = basecost / discount;
}

233

catch(Exception e){
throw new MException();

}
finally{

System.out.println("Test");
}
return result;

}
}
public interface CanPlay{

public void Play();
}
public interface CanRecord{

public void Record();
}
public class MException extends Exception{

public MException(){
super("I catch error");

}
}

B. Selected Refactoring

1) Rename:
This is the simplest refactoring type but generally the most
used one. Since, the renaming ability is needed any time; this
feature enables users to make this change in automatic manner.

2) Extract Interface:
This refactoring type is selected especially for the purpose of
the examination of UML and source code consistency after the
refactoring is applied.

Here is the class diagram after the two selected refactorings
are applied to the class diagram. The source code is changed
according to the change made by the refactoring applied to the
UML diagram. The Extract Interface refactoring is applied to
CanRecord class and the interface is created with the name
ExtractedInterface.
Moreover, the Rename refactoring is applied to Pc class and it
is renamed to Computer. Figure 2 shows the synchronized
class diagram after the refactoring.

Since, there exists problems with the synchronization which
will be discussed detailed in section 4; the expected
synchronized class diagram is given after applying the manual
change parts.

IV. PROBLEM DOMAIN AND PROPOSED SOLUTION

Construction of UML diagrams from source code and
generation of source code from UML diagram is supported by
today’s editor tools such as Eclipse, JDeveloper. Moreover,
the synchronization of the source code with UML class
diagrams and vice versa is supported. Refactoring of UML

class diagrams is an emerging research topic and heavily
inspired by refactoring of program code written in object-
oriented implementation languages [10]. Only few tools are
currently available to support UML refactoring. Since UML
refactoring is a growing research area and selected as the
refactoring method in our approach, we have investigated the
existence of fully automated synchronization.

Fig. 1. Class Diagram of the Computer Hierarchy example.

A. Problem Definition
After the two selected refactoring types are applied, one can

easily see that the synchronization of the UML diagrams is not
supported. The inheritance links between classes are lost and
one has to add the class diagram of the inherited classes
manually. For small software projects or for the ones which
are not object-oriented, this may not be a major problem.
However, for complicated and granular applications manual

234

updates would be costly and error prone.

Fig. 2. Class Diagram of the Computer Hierarchy example after applying the
Extract Interface and Rename type refactorings.

B. Synchronization of Refactoring by Graph Approach
There is a direct correspondence between refactorings and

graph transformations. Programs (or other kinds of software
artifacts) can be expressed as graphs, refactorings correspond
to graph production rules, the application of a refactoring
corresponds to a graph transformation, refactoring pre and
postconditions can be expressed as application pre and
postconditions [13], [15].

Software entities (such as classes, variables, methods and
method parameters) are represented by nodes whose label is a
pair consisting of a name and a node type [1]. Relationships
between software entities (such as membership, inheritance,
method lookup, variable accesses and method calls) are
represented by edges between the corresponding nodes [2].

Table 1 is taken from [11] and summarizes some formal
properties of graph transformation that may be used to address
important issues in refactoring.

Table. 1. Correspondence between Refactoring and Graph Transformation
given by [11].

However, there is no work done on synchronization over
UML class diagrams with graph transformation. Our proposed
solution involves using graph transformation for the
synchronization of UML class diagrams.

Fig. 3. The Graph representation for the java classes

When a class extends from another class or implements
another class, it can be turned into a graphical representation
that is shown in Figure 3. The rectangles here stand for the
classes and the edges stand for the inheritance. In order not to
lose that link in the UML class diagram after refactoring, we
use a simple Graph Algorithm.

C. Graph Algorithm
The behavior is preserved after the refactoring is applied. On
the other hand, preserving the graphical structure does not
successfully work. In order to provide this feature, we give a
simple algorithm here.

1) Rename:
After renaming a class, we expect that nothing will change

235

in the UML class diagram except the name of the class. Hence,
we expect that the links (edges for the graphical
representation) that denote inheritance remains unchanged, but
they do not.

So, the algorithm that will be used in order to turn graph G
to G’ by renaming the node from N to N’ is shown below-
Figure 4. Figure 5 shows the graph representation of the before
and after Rename type refactoring is applied.

Fig. 4. The Graph Algorithm for the Rename Type refactoring

Fig. 5.a. The Graph representation before refactorings are applied

Fig. 5.b. The Graph representation after Rename Type refactoring

Fig. 6. The Graph Algorithm for the Extract Interface Type refactoring

Fig. 7. The Graph representation after Extract Interface Type refactoring

2) Extract Interface:
Extract Interface type refactoring is more complicated than

Rename. When the user selects this type of refactoring over a
class, then it is expected that the newly extracted interface will
be added to the UML class diagram and necessary links will be
updated accordingly.

So, the algorithm that will be used in order to turn graph G
to G’ by extracting the node from N to N’ is shown above-
Figure 6. Figure 5.a and 7 show the graph representations of
the before and after Extract Interface type refactorings are
applied, respectively. Note that the edge (method) which is
inherited from the N’’ isn’t changed since it’s assumed that the
user doesn’t want to extract it to the newly created node N’
(class). However, the user wants to extract the method for the
class N*.

236

V. CONCLUSION

In this paper, we have examined Refactoring which we
believe it is one of the most important challenges of Software
Engineering development methodology. Refactoring based on
UML class diagrams has been our starting point. Our main
motivation was the lack of synchronization ability of today’s
Java Editors (Oracle JDeveloper 10g is used as the Java
Editor). We concentrate on two refactoring types namely
Rename and Extract Interface. In order to preserve the
inheritance of classes for UML class diagrams after
refactoring, we propose a graph algorithm. The idea behind the
graph representation is based on representing the classes as
nodes and the inherited methods or variables as edges. We
develop an efficient algorithm by the graph representation
before the refactoring is applied and transform it to a new
graph which represents the program after it is refactored.

VI. FUTURE WORK

As a future work, we would like to investigate on other
refactoring types such as Pull Members Up, Pull Members
Down, and Extract Superclass. Also, we would like to improve
the algorithm and apply it to an open source Java Editor in
order to make the system more robust. Another future direction
would be to examine the problem domain for other
programming languages (rather than Java) and for other
programming editors (rather than JDeveloper). A performance
tuning for the graph algorithm can also be done and the
algorithm can be extended to other types of refactoring.

ACKNOWLEDGMENT

This research is supported in part by Bogazici University
research fund under grant number BAP-06HA104.

REFERENCES

[1] T. Mens, S. Demeyer, and D. Janssens, "Formalising Behaviour
Preserving Program Transformations", Proceedings of Graph
Transformation: First International Conference, ICGT 2002, Barcelona,
Spain, October 7-12, 2002.

[2] T. Mens, N. V. Eetvelde, D. Janssens, and S. Demeyer, "Formalising
Refactorings with Graph Transformations", Journal of Software
Maintenance and Evolution, 2004, pp.1001–1025.

[3] W. F. Opdyke, “Refactoring: A Program Restructuring Aid in Designing
Object-Oriented Application Frameworks”. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[4] T. Mens and A. van Deursen, "Refactoring: Emerging Trends and Open
Problems", Proceedings of First International Workshop on
REFactoring: Achievements, Challenges, Effects (REFACE), University
of Waterloo, 2003.

[5] K. Beck, Extreme Programming. Addison Wesley Longman,
Massachusetts , 2000.

[6] M. Fowler, Refactoring: Improving the Design of Existing Programs.
Addison-Wesley, NY, 1999.

[7] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: A taxonomy”, IEEE Software, 7(1):13–17, 1990.

[8] T. Mens, "Conditional Graph Rewriting as a Domain-Independent
Formalism for Software Evolution", Proceedings of Applications of

Graph Transformations with Industrial Relevance: International
Workshop, AGTIVE'99, Kerkrade, The Netherlands, September 1999.

[9] D. Astels, “Refactoring with UML”. Proc. 3rd Int'l Conf. eXtreme
Programming and Flexible Processes in Software Engineering, 2002, pp.
67-70.

[10] “Refactoring OCL Annotated UML Class
Diagrams”, Proceedings of Model Driven Engineering Languages and
Systems, 8th International Conference, MoDELS 2005, Montego Bay,
Jamaica, October 2-7, 2005, Vol. 3713, 2005, pp. 280-294.

[11] T. Mens and T. Tourwe, "A Survey of Software Refactoring", IEEE
Trans. Software Engineering, vol. 30, no. 2, February 2004.

[12] O'. M. Cinneide and P. Nixon, “Composite Refactorings for Java
Programs”, Proceedings of the Workshop on Formal Techniques for
Java Programs, European Conference on Object-Oriented Programming,
2000.

[13] R. Heckel, “Algebraic Graph Transformations with Application
Conditions”, MS thesis, TU Berlin, 1995.

[14] D. Roberts, J. Brant, and R.E. Johnson, “A Refactoring Tool for
Smalltalk,” Theory and Practice of Object Systems, vol. 3, no. 4, pp.
253-263, John Wiley & Sons, NY, 1997.

[15] A. Habel, R. Heckel, and G. Ta¨ntzer, “Graph Grammars with Negative
Application Conditions,” Fundamenta Informaticae, vol. 26, no.3, pp.
287-313, June 1996.

Y. is a Computer Engineering graduate student at Bogaziçi
University. She has her undergraduate degree in Computer Engineering

Prediction and Cost/Effort Estimation. She is a BI consultant now and has 3

Turkey, yasemin.kosker@cmpe.boun.edu.tr

A. B. Bener is a faculty member in the Department of Computer Engineering
at Bogazici University. Her research interests include Web services, security,
e-commerce, and m-commerce applications and software engineering. Bener
has a PhD in information systems from the London School of Economics. She
is a member of the IEEE, the IEEE Computer Society, and the ACM. Contact

bener@boun.edu.tr

237

Using Formal Composition of Use Cases in Requirements Engineering

Rabeb Mizouni
ECE Department

Concordia University
Montreal, Canada

mizouni@ece.concordia.ca

Aziz Salah
Computer Science Department

UQAM University
Montreal, Canada

aziz.salah@uqam.ca

Rachida Dssouli
CIISE Institute

Concordia University
Montreal, Canada

dssouli@ciise.concordia.ca

Abstract

Use Case techniques are widely used to capture software
requirements. The current tendency is to keep such use case
models as understandable and simple as possible. This sim-
plicity is a barrier to make use cases more accurate and may
lead to incorrect and inconsistent system specifications. A
formal and expressive model may help the modeler to ex-
press her/his needs in a more intuitive way. In this paper we
propose an approach for generating an overall system spec-
ification using use cases. Each use case represents a partial
system behavior described as an extended finite automa-
ton. We develop an automated and incremental approach
which aims at merging use cases. We define imperative ex-
pressions that specify the semantics of the composition to
perform. In each increment, the specification is augmented
by the set of use cases generated by composition. The ap-
proach is illustrated by an e-Purchasing system case study.

1 Introduction

Requirements engineering is a critical phase in system
development process. It is the phase where the needs of
customers have to be unambiguously speciÞed in order to
make easier the process of getting the right system. It has
been proved that system behavioral models are very impor-
tant to system requirements validation. However, such mod-
els are hard to construct and need expertise. Use case-based
approach facilitates the process of generating the intended
behavioral model by describing different system function-
alities separately. Consequently, each use case may depict
the behavioral model of a system-level functionality. The
composition of these use cases should conform to the sys-
tem behavioral model. This model can further be used as a
speciÞcation of the system for checking of model compli-
ance to properties and correctness.

Despite the consensus on their usefulness, use case based

approaches suffer from a lack of formality. This formal-
ity would have facilitated the development of automated
composition approaches and tools that help building reliable
system behavioral models. In order to meet this challenge,
a use case based approach has to state the level of mecha-
nization of its composition methods, and consequently, Þnd
the appropriate formalization level of use case representa-
tion model.

Our notion of a formal use case is based on its repre-
sentation as an extended Þnite state automaton. Once the
analyst has described the different system-level functionali-
ties by delivering a certain number of use case extended au-
tomata (UCEAs), she/he can state imperative composition
expressions which describe how to compose use cases us-
ing operators. The evaluation of a composition expression
is a new behavior which results from inserting one UCEA,
called referred use case, into the other one, called base use
case, according to the template of the composition expres-
sion operator. The new UCEA is, therefore, added to the
original UCEAs initially speciÞed and can further be used
in next increments of the system speciÞcation synthesis.

The contribution of this paper is mainly extending our
previous work in [10] by using a variant of the extended
Þnite automaton model, called UCEA, in which states are
extended by values of UCEA variables, and transitions are
guarded by pre-conditions and have assignments to deÞne
the UCEA variables. We propose new composition opera-
tors which are more adapted to compose UCEAs. Introduc-
ing variables allows to fold many transitions into a single
transition of the UCEA. Consequently, UCEAs are more
concise and scalable models.

The paper is structured as follows. In section 2, we
present the formal deÞntions of the UCEA model and the
label matching based composition of two UCEA. In section
3 the composition operators and expression syntax are pre-
sented. Section 4 describes the composition method. Our
approach is illustrated through the presentation of the e-
Purchasing system case study. Discussions on related works
are given in Section 5. Finally, Section 6 concludes the pa-

238

per and shows current directions of future works.

2 Formal Use Case Model

A use case is used to describe a functionality or a part
of the system behavior regarding a certain concern. An ex-
tended Þnite state automaton model is a formal, suitable and
intuitive model for describing the behavior of a use case.
The transitions connecting states in the extended Þnite state
automaton play the role of the use case actions and repre-
sent, on one hand, the control ßow. On the other hand, the
variables of the extended Þnite state automaton represent
the data ßow.

A UCEA is a 7-tuple (S, so, Sf , L, V, I, E) such that: S
is the set of states, so is the initial state, Sf ⊆ S is the set of
Þnal states, L is the set of labels, V is the set of variables,
I ⊆ V is the set of input variables, and Þnally E ⊆ S×C×
L×A× S is the transition relation such that: C groups the
set of preconditions on variables and A is the set of variable
assignments. The precondition of a transition has to be true
before the transition is enabled. Its variable assignments
play the role of a post-condition.

The set of input variables represents the variables that
can be initiated when inserting the UCEA into another
one. For a transition (s, c, l, a, s′) ∈ E , we also write
it s

c,l,a→ s′ ∈ E. We deÞne c as a list of (vi#v) where
vi ∈ V, v ∈ dom(vi), and # is a binary relation. In con-
trast, a is deÞned as a set of assignments that can be either
(vi := vj), (vi := vi op const), or (vi := const), where vi

and vj are variables. Once the system is in s, if the precon-
dition c is true, the transition s

c,l,a−→ s′ is Þred, and then the
variables are updated by the execution of the assignments
in a. By default, the value of any variable in V is equal to
null. null denotes the fact that at this stage, the variable is
not initiated yet to any value.

In order to compose UCEA, we advocate an automated
and formal method. For this purpose, we deÞne the notions
of extension point and label matching composition. Exten-
sion point represents a location, either a state or a transi-
tion, which is used to identify where another use case can
be inserted. The label matching composition is a generic
composition method of two UCEAs. Such method will
be used later in order to build UCEAs of composition ex-
pressions. We deÞne the label matching based composi-
tion of two UCEAs U1 = (S1, s

o
1, S

f
1 , L1, V1, I1, E1) and

U2 = (S2, s
o
2, S

f
2 , L2, V2, I2, E2) where V1∩V2 = ∅ as an

UCEA U = (S, s0, Sf , L, V, I, E) where S ⊆ S1×S2 such
that all the states of S are reachable from so in the graph of
the resulting composed UCEA, so = (so

1, s
o
2) ∈ S, Sf ⊆

(Sf
1 × S2)∪ (S1 × Sf

2), L ⊆ (L1 ∪L2), V = (V1 ∪ V2),
I ⊆ (I1 ∪ I2), E ⊆ S×C×L×A×S where E and S are

inferred by the following rules:

(s1, s2) ∈ S; s1
c,l,a−→ s′

1 ∈ E1; s2
c,l,a−→ s′

2 ∈ E2

(s′
1, s

′
2) ∈ E; (s1, s2)

c,l,a−→ (s′
1, s

′
2) ∈ S

(1)

(s1, s2) ∈ S; s1
c,l,a−→ s′

1 ∈ E1; s2
c,l,a−→ s′

2 �∈ E2

(s′
1, s2) ∈ E; (s1, s2)

c,l,a−→ (s′
1, s2) ∈ S

(2)

(s1, s2) ∈ S; s1
c,l,a−→ s′

1 �∈ E1; s2
c,l,a−→ s′

2 ∈ E2

(s1, s′
2) ∈ E; (s1, s2)

c,l,a−→ (s1, s′
2) ∈ S

(3)

Rule (1) states that when the labels, the preconditions
and the assignments of two transitions of the two UCEAs
are the same, these two transitions are merged into a single
one in the composed UCEA. Otherwise, as stated in Rules
(2) and (3), each transition is represented separately in the
composed UCEA. This deÞnition is an extension of the def-
inition of label matching in [10] where we have introduced
variables. We can extend this deÞnition to the case of n
UCEAs.

3 UCEA composition Expression

3.1 Composition Operators

Operators deÞne templates for the composition of
UCEAs and allow the derivation of a new behavior from
two existing ones. We propose three composition operators:
Include, Extend with, and Alternative.

In the case of Include operator, the resulting UCEA
is composed of the behavior of the base UCEA where we
insert at the extension point the behavior of the referred
UCEA. The behavior of the base UCEA would resume from
the extension point. With this operator, some traces of the
base use case might be modiÞed. They represent the set of
traces that cross the extension point, where the traces of the
referred use case are inserted.

The Extend with operator is similar to Include be-
cause in both of them after the execution of the referred
UCEA at the extension point, the behavior of the UCEA
of the expression resumes in the base UCEA. However, the
UCEA of an expression using Extend with makes it op-
tional the execution the referred UCEA at the extension
point while it is mandatory with Include.

The Alternative operator can also be called
Branching. The UCEA of an expression using the
Alternative operator is composed of the behavior of the
base UCEA and the behavior of the referred UCEA as an
alternative behavior in the extension point.

In this paper, we are presenting our approach in the case
of these three operators, however, our approach is not lim-
ited to them and the same methodology can be applied in
order to design other composition operators.

239

[(authorization=false)]

update−inventory

(available_qtty <0)

update−inventory

get−inventory

Prod−Availability

[(database_updated:=false)]

[(available_qtty:=q),
(available_qtty •= ordered_qtty)]

[(available_qtty >=0)]

[(database_updated:=true)]

view−catalogueview−list

select−product select−product

select−catalogue

add−card select−quantity

add−card

prepareprint

Printing

search−product

exit−order

Exit

exit

Prod−Selection

[(authorization:=null),
(product_Id:=null),

(quantity:=null)]

[(product_Id=:id)]

[(quantity:=q)]

[(authorization=true)]

[(qtty<>null),
(Printing_Id<>null)][(Id:=null),

(qtty:=null)]
[(product_Id=null)]
search−product

[(product_Id=null)]

[(product_Id=:id)]

S1

S2S3

S4S5

S6

S7

S8

E1

E2

E3

P1

P2

A1

A2

Figure 1. Use Cases of the e-Purchasing System

3.2 Example : UCEAs of an e-Purchasing
System

In order to illustrate our approach, we will be using a
set of UCEAs of an e-Purchasing system which allows on-
line orders. The requirements of the e-Purchasing system
cover a wide range of use cases. We are restricting our case
study to use cases of the purchaser side only. e-Purchasing
requires a number of activities to be performed. First the
customer has to select a product. She/he either consults the
catalog list or makes a search by the name of the product
in available catalogs. After checking the availability of the
selected product, he can print a quote. He also can cancel
the order. Figure 3 depicts some UCEAs. For each of these
UCEAs, we deÞne the set of variables and we specify the
set of input variables in table 1.

Use Case Variables Input Variables
Prod Selection {prod Id, quantity, ∅

authorization}
Prod Availability {Id, available quantity, } {Id, ordered quantity}

database updated, ordered quantity}
Printing {qtty, Printing Id} {qtty, Printing Id}
Exit ∅ ∅

Table 1. Variables of the e-Purchasing Use
Cases

In the Þrst use case, prod Id deÞnes the identiÞer of the
product the customer has chosen. The variable quantity
stores the quantity of the product the customer is order-
ing. Finally, authorization is a Boolean variable which
keeps track whether the quantity asked by the customer
is available in the inventory or not. Prod availability
UCEA has four variables: Id represents the identiÞer
of the product for which availability would be checked,
available quantity returns the quantity that Þgures out
in the database, ordered quantity indicates the quan-

tity needed, and Þnally database updated indicates if the
quantity in the database has been updated by the new avail-
able quantity. The Printing use case has two input vari-
ables, qtty and Printing Id, that indicate the identiÞer and
quantity of the product asked by the user, respectively.

3.3 UCEA Composition Expressions Def-
inition

An UCEA composition expression speciÞes the way a
new behavior (a UCEA) is synthesized by composing two
existing UCEAs. A composition expression is formed from
Þve elements: two UCAEs, an extension point, and an in-
put and output sets of assignments of variables. The two
UCEAs of an expression have different roles: a base use
case role and a referred use case role. The UCEA ex-
pression speciÞes where a referred use case is inserted in
the base one as an extension point. Since we consider
that variables are deÞned locally in the UCEAs, it is nec-
essary to deÞne a mapping between the variables of the
base and the referred use cases. This is speciÞed within
the UCEA expression in the Input V ar Assign and the
Output V ar Assign Þelds. LetÕs consider the case of this
expression:

Z := Include(Prod Selection, Prod Availability)IN (S7)
[(Id := prod Id), (ordered quantity := quantity)]
[(authorization := database update)]

(4)

Z represents the UCEA that will be generated from the
valuation of the expression. Prod Selection is the base
UCEA and Prod availability is the referred one. IN (S7)
represents state where the composition will be performed.
When inserting, we have to assign to the input variables
of the referred UCEA Id and ordered quantity the values
of the variables prod Id and quantity of the base UCEA,
respectively. At the end of the referred UCEA, the variable

240

c b

1

2

a

de

2

1

3

1

2

b c

Use Case B

Composition

Use Case A Use Case B

a

de

2

1

3

c b

1

2

Use Case CUse Case A

a

2

1

2Õ

e

3

d

c0
c0c0

c2

c2
c2

c3

c3
c3

c4c4

c5c5c5

c6

a0
a0a0 a1

a2

a2
a2

a3
a3

a3

a4a4a4

a5

a5a5

a6

(a) SpeciÞcation Current Increment (b) SpeciÞcation Next Increment

C := Include(A, B) IN (2) [a1] [a4]

Figure 2. System Specification Synthesis:
Approach Description

authorization of the base UCEA is assigned to the value
of the variable database update of the referred UCEA.

3.4 Approach Overview

When evaluating a composition expression, we aim at
generating a new behavior (represented as a UCEA) where
the behavior of the referred use case is merged in the be-
havior of the base use case in the extension point. In fact,
informally, it is a cut and paste operation where the referred
UCEA is copied and pasted in the extension point according
to the semantics of the operator expressed in the compo-
sition expression. To avoid undesired scenarios, complete
traces of the referred use case are inserted in the extension
point of the base use case and insertion of a part of the trace
is not allowed.

LetÕs consider the example in Figure 2. The modeler
starts by specifying two use cases A and B, as well as a
UCEA expression C. C is a use case where the behavior
of the UCEA B is included in the behavior of the UCEA
A in state 2 with the input variable assignment a1 and the
output variable assignment a4. The UCEA C that we aim
at generating automatically is represented in Figure 2 (b).
The use cases A, B, and C represent the new increment of
the system speciÞcation. They represent the set of use cases
that the modeler can use in order to specify new behaviors.

4 UCEA Composition Approach

The insertion of a UCEA into another is performed with
respect to the semantics of the composition operator of
the expression. In our approach, this insertion is achieved
through the label matching-based composition. We devel-
oped state based patterns generated from the base and the
referred UCEA respectively that shows the semantics of the

composition the analyst speciÞed. They reßect the seman-
tics of the composition operator in the extension point. We
deÞne a pattern for each of the three operators we previ-
ously mentioned. We illustrate these patterns through the
e-purchasing UCEAs. In addition to the composition ex-
pression 4, we deÞne the UCEA Y such that:

Y := Extend with(Prod Selection, Printing) BEFORE
(s6, (authorization = true), add card, true, s7)
[(Printing Id := prod Id), (qtty := quantity)] [] (5)

It speciÞes that the UCEA Y is obtained by inserting
Printing in Prod Selection UCEA. Printing is optional
since the composition operator used is Extend with. We
also deÞne the UCEA W obtained by inserting Exit in
Prod Selection UCEA. ItÕs an alternative to the execution
of the Prod Selection UCEA at the extension point. The
composition expression is as follows:

W := Alternative(Prod Selection, Exit) AFTER
(S6, true, select quantity, (quantity := q), S7)
[] []

(6)

4.1 State-Based Patterns

To show our composition approach, we propose to gener-
ate the state-based patterns needed to derive the UCEA Z ,
Y and W . Figure 3(a) illustrates an example of a synthe-
sized state based pattern for the use case Prod Selection
using the expression of Z (Expression 4). Two states were
added, q and qÕ. Two transitions labeled withbegin and
end are added in order to indicate the starting point and the
ending point of the referred UCEA. These transitions have
to be decorated with the variables assignments the analyst
asked for. The input assignment indicates the assignment to
perform before starting the referred UCEA. Hence, it plays
the role of postcondition of the transition we added labeled
with begin. In the same way, the output assignment indi-
cates the assignment to perform before resuming back to
the base UCEA. Hence, it plays the role of postcondition of
the transition labeled with end. Figure 3(b,c) shows exam-
ples of the state base patterns in the case of Extend with
operator and Alternative operator respectively. We note
that in the case of Alternative, the state base pattern shows
the fact that there is no resumption to the base UCEA after
starting the referred one, which is not the case of the two
other state-based patterns.

In the same way, since the referred UCEA has to be in-
serted in the UCEA using the label matching, a state based
pattern for the referred UCEA has to be deÞned. It is inde-
pendent from the extension point and the composition oper-
ator. Figure 4 illustrates an example of a synthesized state

241

(b) State based pattern of Prod−Selection for synthesis of W

view−catalogueview−list

select−product

search−product select−catalogue
(product_Id=null)

select−product
(product_Id=:id) (product_Id=:id)

(product_Id=null)

(quantity:=null)

search−product

add−card
(authorization=true) (authorization=false)

add−card

(quantity:=q)

select−quantityqÕ

beginq

end
(authorization:=database_update)

(ordered_quantity:=quantity)

view−catalogueview−list

product_Id=null
search−product select−catalogue

product_Id=null

q
quantity:=qauthorization=false

add−card select−quantity

authorization=true
add−cardsearch−product

qÕ

select−quantity

end

begin

q"

product_Id=:id
select−product

product_Id=:id

select−product

quantity:=q

(authorization:=null)/\

(product_Id:=null)/\
(quantity:=null)

(Id=:prod_Id),

(product_Id:=null),
(authorization:=null),

(a)State based pattern of Prod−Selection for synthesis of Z

view−catalogueview−list

select−product select−product

search−product select−catalogue

add−card select−quantity

search−product

(quantity:=null)

(qtty:=quantity) begin

(authorization=true)
add−card

add−card
(authorization=true)

(quantity:=q)(authorization=false)

(product_Id=null)

(product_Id=:id)(product_Id=:id)

end

qÕ

q
(Id=:prod_Id),

(authorization:=null),
(product_Id:=null),

(product_Id=null)

(c) State based pattern of Prod−Selection for synthesis of Y

S1S1

S1

S2S2

S2
S3S3

S3

S4
S4

S4
S5

S5

S5

S6
S6

S6

S7S7S7

S8

S8

S8

Figure 3. Illustration of State-Based Patterns for Base UCAs

based pattern for UCEA Printing as the referred UCEA in
the expression of Y . We note that two transitions labeled
with begin and end are also added here.

4.2 UCEA Generation

When applying the composition approach to the state-
based patterns of the base and referred UCEAs, we derive
a new UCEA that contains transitions labeled with begin
and end. These transitions were not originally speciÞed.
They were added to construct the state-based patterns of the
different operators and to avoid the insertion of unexpected
scenarios. The removal of these transitions labels consists
of a backward propagation of the postconditions (the as-
signments) of begin and end labeled transitions. This prop-
agation concerns the ingoing transitions toward the source
states of the transitions begin and end. The postconditions
of these transitions (the ingoing transitions of the outgoing
state of begin and end) will be augmented by the postcondi-
tion of begin and end respectively. Then, these transitions
are considered as ε-transitions and further removed using
the algorithm of ε removal in [9].

end
p1q

p2

prepare
(Printing_Id<>null)
(qtty<>null),(Printing_Id:=null),

(qtty:=null)

print

begin (qtty:=quantity),
(Printing_Id:=prod_Id)

Figure 4. State-Based Pattern for referred
UCEA

As a last step of our composition approach, the Þnal
states of the obtained UCEA of an expression have to be

deÞned. They depend on the composition operator of the
expression and the extension point where the referred use
case has been inserted. LetÕs take as an example the case
of Include composition operator where the extension point
is different from the Þnal states of the base UCEA, then the
Þnal states of UCEA of the expression are the composite
states containing one of the Þnal states of the base UCEA.

Figure 5 shows the newly generated use case Y . It can be
further used in the description of other UCEA expressions
in the next increment of the speciÞcation synthesis.

5 Related Work

Because use cases are used in an early state of system
development, they need validation. This fact motivated the
development of several approach that generated state-based
model from use cases[3, 7, 8, 13, 14, 15]. During the com-
position of use cases into state-based system, the challenge
is to identify states at the scenario level that serve as exten-
sion points between use cases. There exist two types of state
characterization: trace-based [7, 8], and variable (or label)
state-based characterization [14, 12, 2]. On the other hand,
some classical composition operators exist on the literature
such as sequential and alternative concatenation [1] that are
used to compose use cases. They consider use cases as enti-
ties. In this paper, we added another level of granularity by
allowing the explicit speciÞcation of an extension point as a
transition or a state of the base UCEA.

On the other hand, many notations [3, 1, 6] have de-
scribed use cases with different degrees of expressiveness
and formality. Glinz [5] uses statecharts to model scenar-
ios. The integration of scenarios is performed in a way to
retrieve the relationship between scenarios by keeping their
internal structure unchanged, and to detect inconsistencies.
The approach proposed carries only the composition of dis-
joint scenarios with elementary constructors. As an exten-

242

[(qtty,.null),

S6S8

S7

 Bill•ready

view−catalogue

select−product

search−product select−catalogue

add−card select−quantity

S3

S2

 s0

S4

S5

S1

search−product

view−list

select−product

add−card

(authorization=true)

(authorization=false)

add−card

Printer•ready
print

(product_Id:=null),
(quantity=null)]
[(authorization:=null),

[(Id:=null), (qtty:=null)]

[(qtty,.null), (Id<>null)]

[(authorization=true)]

[(Id:=prod_Id),
(qtty:=quantity)]

[(quantity:=q)]

[(product_Id=:id)][(product_Id=:id)]

[(product_Id=null)] [(product_Id=null)]

prepare
print

(qtty:=null)][(Id:=null),

prepare

(Id<>null)]

Figure 5. The synthesized UCEA Y

sion of this work, Ryser [11] introduces a new kind of chart
and notation to model dependencies among scenarios. The
advantage of this approach is the fact of capturing clearly
these inter-scenarios dependencies. Bordeleau et al. [4]
have proposed integration patterns for scenario dependen-
cies, detected using UCMs. A state-based speciÞcation per
use case is generated for each component and integrated to
reßect the scenarios dependencies. The whole process is
done manually and relies on the creativity of the analyst to
connect together the different statecharts in the right way.
Our approach has the advantage of being fully automated:
the analyst will only specify the set of composition expres-
sions in order to generate a UCEA representing the intended
system behavior.

6 Conclusion

In this paper, we present a formal and incremental ap-
proach for composing use cases expressed as extended Þ-
nite automata. Our main contributions are : Þrst, our com-
position approach which may be distinguished by avoiding
to keep use cases as solid blocs. It also allows to incre-
mentally build the targeted use case using a ßexible method
that promotes separation of concerns. Second, the intro-
duction of variables in the description of use cases in the
form of UCEA provides a concise, expressive, and scalable
use case model. Our mechanism of composition has the ad-
vantage of generating the exact intended behavior without
inducing any unexpected scenario. As a future work, we
aim at extending the system speciÞcation by distinguishing
between local variables to the use case and global variables
to the speciÞcation. Such distinction may ease the process
of writing composition expressions.

References

[1] Message Seuqnce Chart (MSC). ITU Communcation Stan-
dardization Sector (ITU-T. Z120 Recommendation for MSC-
2000, 2000.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of Mes-
sage Sequence Charts. In 22nd International Conference on
Software Engineering, pages 304Ð313, 2000.

[3] D. Amyot, D. Cho, X. He, and Y. He. Generating scenarios
from use case map speciÞcations. In Third International
Conference on Quality Software, Dallas, November 2003.

[4] F. Bordeleau and J.-P. Corriveau. On the Need for ÓState
Machine ImplementationÓ Design Patterns. InProceedings
of ICSE 2002 Workshop on Scenarios and state machines:
models, algorithms, and tools, May 2002.

[5] M. Glinz. An integrated formal model of scenarios based on
statecharts. In In proceeding of the fifth european Software
Engineering Conference, pages 254Ð271. Springer Verlag,
1995.

[6] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231Ð274,
June 1987.

[7] D. Harel and H. Kugler. Synthesizing state-based object sys-
tems from LSC speciÞcations. Lecture Notes in Computer
Science, 2088:1Ð??, 2001.

[8] K. Koskimies, T. M¬annist¬o, T. Syst¬a, and J. Tuomi. SCED:
A tool for dynamic modelling of object systems. Technical
Report A-1996-4, 1996.

[9] P. Linz. An introduction to formal languages and automata.
D. C. Heath and Company, Lexington, MA, USA, 1990.

[10] R. Mizouni, A. Salah, S. Kolahi, and R. Dssouli. Composi-
tion of use cases using synchronization and model checking.
In E. Najm, J.-F. Pradat-Peyre, and V. Donzeau-Gouge, ed-
itors, FORTE, volume 4229 of Lecture Notes in Computer
Science, pages 292Ð306. Springer, 2006.

[11] J. Ryser and M. Glinz. Dependency Charts as a Means to
Model Inter-Scenario Dependencies. In In G. Engels, A.
Oberweis and A. Zndorf (eds.): Modellierung 2001. GI-
Workshop, Bad Lippspringe, Germany. GI-Edition - Lecture
Notes in Informatics, volume P-1, pages 71Ð80, 2001.

[12] A. Salah, R. Dssouli, and G. Lapalme. Implicit integration
of scenarios into a reduced timed automata. Information and
Software Technology, 45, Issue 11:715Ð725, 2003.

[13] S. Somé, R. Dssouli, and J. Vaucher. From scenarios to
timed automata: Building speciÞcations from users require-
ments, 1995.

[14] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavorial
models from scenarios. In IEEE Transactions on Software
Engineering, volume 29, February 2003.

[15] J. Whittle and J. Schumann. Statechart synthesis from sce-
narios: An air trafÞc control case study. In International
Conference on Software Engineering (ICSE2002).

243

Real-Time Trust Management in Agent Based Online Auction Systems*

Rinkesh Patel, Haiping Xu and Ankit Goel
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747

{g_rpatel, hxu, agoel}@umassd.edu

Abstract. Agent based online auctions have not yet
become popular because they are not trustable. One of the
major concerns in agent based online auctions is the
shilling behavior problem, which makes winners have to
pay more than what they should pay for auctioned items.
In this paper, we propose a real-time trust management
module for agent based online auction systems using role-
based access control mechanisms. As one of the key
components of the trust management module, a security
agent can actively monitor online auctions in order to
detect abnormal bidding behaviors in real-time. To
illustrate the feasibility of our approach, we implemented
a prototype real-time trust management module for agent-
based online auction systems, and demonstrated how shill
agents could be efficiently detected.

1. Introduction

One of the most popular electronic commerce
activities in recent years has been the use of online auction
systems. Among the various auction types, the English
auction has emerged as the preferred form for online
auction systems (e.g., eBay) due to its characteristics of
multiple bids and ascending bidding price [1, 2]. As the
number of users and products increases, more time is
required for a user to search and bid for an auctioned item.
To cope with this problem, agent based online markets
have come into play. An agent based online auction
system is a multi-agent system [3] that comprises software
agents to handle tedious tasks on behalf of human users.
Each agent is autonomous and capable of taking actions to
fulfill its goal. Thus, in an agent based online auction
system, an agent can represent a user to search and bid for
a product based on the constraints defined by the user.

However, with the rapid rise in the number of users,
fraudulent behaviors in online auctions become more and
more severe. The British Sunday Times recently revealed
that shill biddings were very common on eBay [4]. A shill
bidding is an act of bidding against other bidders in order
to raise the auction price, so a winner has to pay more than

what he should pay for an auctioned item [2]. In a
trustworthy online auction system, buyers must trust
sellers to provide the services they advertise, and not
indulge in shill bidding; while sellers must trust buyers to
be capable of paying for goods or services, and be
authorized to make purchases on behalf of an organization.
Trust in the sellers’ competence and honesty will influence
a buyer’s decision on choosing sellers. In addition, users
also must trust an auction house for not disclosing their
personal information. Thus, there is a pressing need for a
trust management system to maintain trust among users as
well as with the online auction system.

* This material is based upon work supported by the Chancellor’s
Research Fund and UMass Joseph P. Healey Endowment Grants.

In this paper, we propose a real-time trust
management model to establish trust for agent based
online auction systems. In our proposed model, a security
agent is responsible for keeping track of each transaction
and detecting unusual activities, such as shill biddings;
while an authorization module can update a user’s role and
access permissions dynamically. Due to real-time actions
against any abnormal auction activities, our trust
management model can effectively maintain trust for agent
based online auction systems.

The rest of this paper is organized as follows. Section
2 discusses about related work. Section 3 describes agent
based online auction systems. Section 4 introduces a real-
time trust management module integrated with a security
agent. Section 5 presents an example to show how shill
agents can be detected in real-time. Section 6 provides
conclusions and our future work.

2. Related Work

There are two main strands of work to which our
research is related, i.e., work on agent-based online
auction system and work on trust management in e-
commerce. Ito and his colleagues proposed BiddingBot as
a multi-agent system that supports co-operative bidding
[5]. In their approach, bidding decisions are actually made
by users rather agents. Ogston and Vassiliadis proposed a
peer-to-peer agent-based auction system for continuous
double auctions [6]. They found that peer-to-peer auctions
are able to display price convergence behavior similar to
that of centralized auctions. In Collins and his colleagues’
work, a multi-agent system for contract negotiation was

244

presented [7]. The system can be used as a testbed for
online auctions; however, it may have problems with
secrecy of bids, non-repudiation, and manipulation of bids.
Although the above efforts are useful in justifying the
feasibility of agent-based approach for online auctions,
there are no attempts so far to provide security
mechanisms to prevent an agent-based online auction
system from being abused. Therefore, it is still hard to
convince users to adopt the existing agent-based
approaches for practical usage.

On the other hand, most of the previous work related
to trust management in e-commerce tried to secure online
transactions, and establish trust among users by proposing
different trust models [8, 9, 10]. Trust management using
reputation models are based on a user’s prior history and
feedback from other users. For example, the reputation
based trust model used by eBay has a very simple rating
scheme for users. As one of the major drawbacks of this
approach, it is possible for a user to provide counterfeit
ratings for other users with a dummy account. Zacharia
and Maes implemented a social mechanism of reputation
management in Kasbah, in which a central system keeps
track of users’ explicit ratings, and uses these ratings to
compute a person’s overall reputation in a directed graph
[10]. However, it is not clear how the agents may collect
the ratings in an open agent-based environment.

Our work is closely related to a trust management
model proposed by Herzberg and his colleagues [11],
which was later extended by Mouri and his colleagues for
consideration of changes in user’s internal state [12]. In
their proposed models, a trust management system consists
of a trust establishment module and a role-based access
control (RBAC) module [13]. However, their models are
either “stateless” in nature, or use state information only
when a user starts a new session. Thus, their approaches
can not ensure trust among users in real-time.

In this paper, we propose a real-time trust
management model for agent based online auction systems.
Our proposed model can be used to establish and maintain
trust among agents based on both agents’ history
information and real-time state information. To monitor
and detect any undesired behaviors such as shilling
behaviors in an agent based online auction system, a
security agent is designed and implemented. In addition,
we isolate various security related policies in different
modules, so the policies can be updated dynamically.

3. Agent Based Online Auction System

An agent based online auction system is a multi-agent
system that facilitates online auction activities on behalf of
human users to make users’ life much easier. We have
developed a prototype agent based online auction system
using the JADE agent development framework [14].
Figure 1 shows a client-server architecture of our agent
based online auction system, which consists of various
types of software agents, such as search agent, bidding

agent, and auction agent. In particular, a security agent is
introduced to provide security mechanisms for detection of
undesired bidding behaviors.

The agent based online auction system is managed by
an auction house administrator and used by various sellers
and buyers. The auction house is implemented at the sever
side with three major types of agents, namely the main
agent, the auction agent, and the security agent. The main
agent works as a controller for the auction house, and is
responsible for creating new accounts for users, creating
auction agents, and also responding to queries for items or
auctions from agents at the client side. For each new
auction, a corresponding auction agent is created to handle
its auction related activities such as posting bids. While an
auction is running, an agent representing a user can put
bids on auctioned items; meanwhile, the corresponding
auction agent is responsible for updating bidding activities
for all involved agents. At the end of an auction, the
auction agent notifies the winner of the auction, and passes
the control back to the main agent. As a major component
for security, the security agent monitors all online auction
transactions performed by bidding agents.

The agents that work on behalf of human users are
implemented at the client side, which involves three major
types of agents, namely the search agent, the selling/
bidding agent, and the GUI agent. A GUI agent receives
commands from a user, and updates the user interface
when messages are sent and received. A search agent can
automatically search and join an auction on behalf of a
user. Finally, a selling/bidding agent is responsible for
initiating auctions or automatically placing bids on behalf
of a user according to user defined bidding strategies. Note
that a user can be a seller and a bidder at the same time.

In the agent based online auction system, a user can
configure a bidding agent by providing auction related
information, such as the type of items they are interested
in, maximum value for that item, and bidding strategies for
how to put bids during an auction. A configured bidding
agent will run autonomously, and make decisions on
behalf of the user during the bidding process.

Database

Security
Agent

Selling/Bidding GUI
Agent

Auction
 Agent Agent

 Main

Search
Agent Agent

Figure 1. Architecture of agent based auction systems

Auction House
(Server)

Client

245

4. Trust Management for Online Auction Systems

4.1 Shilling Behaviors

A shill bidding is a deliberate activity of placing bids
in order to artificially raise the price of an auctioned item.
Although shilling behaviors are prohibited in most of the
online auction houses, e.g., eBay, it is very easy for
malicious users to disguise themselves and put shill bids.

As most of the auction houses allow users to create
new accounts using false information, a seller can create a
new dummy account and pretend to be a valid bidder to
bid on his own auction for shilling purpose. A shill user
may also get help from his friends, immediate employees,
and relatives to put fake bids using their auction accounts.
When normal buyers realize that they have to pay extra for
an auctioned item due to shilling activities, the credibility
of the online auction house will surely be affected. To
maintain trust among users as well as with the auction
house, it is necessary to provide security mechanisms to
detect shilling behaviors in real-time, and restricts further
abnormal activities done by shill bidders.

Shilling behaviors could be much more severe in an
agent based online auction systems because detection of
shill bidders can be more difficult than in ordinary online
auction systems, where auction activities are continuously
monitored by human users. Furthermore, shill bidders may
take advantages of the agent technology to introduce more
shilling activities that are hard to detect. The major goal of
this paper is to propose a real-time trust management
module that can detect shilling behaviors and takes
appropriate actions accordingly in a timely manner for
agent based online auction systems.

4.2 An Overview

Figure 2 is an overview of our proposed trust
management module in an agent based online auction
system. From the figure, we can see that a human user can
configure an agent to initiate an auction as a seller or put
bids on an auctioned item as a buyer. Before an agent
starts to work, it must go through a trust management
module for security purpose. The agent needs to send a

digital certificate or user credentials to the trust
management module for authentication and authorization.
Once the user configured agent is authenticated and
authorized, it will be allowed to place requests for auction
related activities. During the auction process, a configured
agent can check current status or ratings of other
configured agents in order to make proper decisions on
choosing the right auction. Meanwhile, a security agent is
designed for monitoring auction transactions for any
suspicious bidding behaviors.

4.3 Trust Management Module

The trust management module (TMM) defined in
Figure 2 is a key component in an agent based online
auction system for trust maintenance, which can be further
refined as shown in Figure 3. From the figure, we can see
that the trust management module consists of a number of
sub-modules such as authentication, authorization, state
and history modules. As one of the major features of our
TMM module, the security agent works closely with other
modules of the TMM to maintain trust among agents in
real-time. The authorization module, the access control
module, and the security agent have their own policy rules
defined by the auction administrator. Each set of policy
rules are modularized in a corresponding database that can
be updated dynamically without shutting down the agent-
based online auction system.

Both the history module and the state module are parts
of the TMM that are used to store and maintain the
activities performed by user configured agents. When a
user configured agent provides its digital certificate to the
authentication module, the authentication module checks
the certificate against previously stored information in the
history module. If the authentication process is passed, the
agent receives its initial pass, and is ready to make
requests to perform auction activities. However, to make a
request, the agent must also go through the authorization
module, which consists of two major procedures, namely
the role assignment and the access control. The role
assignment process assigns a role to the configured agent
dynamically by applying role assignment policies, called
RA Policies based on gathered information related to the
corresponding user. The access control process grants or
restricts the access to auction related activities for the user
configured agent based on access control policies, called
AC Policies. The access control mechanism also
determines how frequently the security agent should
monitor a configured agent’s auction transaction activities.
After being authorized, the configured agent can start to
make requests for auction related activities with certain
permissions. Meanwhile, the security agent continuously
monitors auction related activities in the auction system
according to security agent policies called SA Policies.
Once the security agent detects any shilling behaviors, the
security agent determines the severe level of the shilling
behaviors, and updates the current state information of theFigure 2. Trust management module

User
Authentication Authorization

TransactionAgent Ratings

History

Trust Manage ent ModulemAgent

Agent

Agent

Security
Agent

User

246

shill bidder. Furthermore, the security agent notifies all
participating configured agents about the shilling behavior
of the shill bidder in the corresponding auction.

4.4 History Module and State Module

The history module stores information about users’
previous auction activities over a certain period of time.
Examples of such information include previously assigned
roles, access information, shilling behaviors, and feedback
information. After each successful transaction of a
configured agent, the information in the history module is
updated, and is ready to be accessed by the security agent
and the trust management module for decision making.

The state module stores information related to the
configured agents and their current activities, which
includes currently assigned agent roles, granted resource
access information, and possible shilling behaviors. The
state module information is used along with the history
module information to determine a configured agent’s next
dynamic role assignment by the role assignment module.

The information stored in the state module can be
updated by both of the security agent and the authorization
module. Current state information of the configured agent
is the vital information used in a role assignment process
for an agent’s next bidding activity. After each successful
transaction, information stored in the state module is saved
into the history module for future use.

4.5 Authorization Module

In our proposed agent-based auction system, all
requests made by an agent are controlled by the
authorization module (Figure 3). In other words, in order
to perform any auction related activities, an agent must
first get an appropriate role and access permissions from
the authorization module. We now describe in more details
for the two major components in the authorization module,
i.e., the role assignment module and the access control
module, as follows.

Role Assignment Dynamic role assignment is performed
according to predefined RA Policies stored in a role
assignment database. The needed information for the
computation includes the following: (1) the configured
agent’s history information, number of positive and
negative feedbacks, and feedback status from the history
module; (2) the user’s current role and shilling behavior
information from the state module. According to the RA
policies, an agent can be assigned to one of the following
five types of roles: most trusted, trusted, average,
untrusted, and most untrusted for both sellers and buyers.
As an example of role assignment rules, the following
policy written in Prolog defines the conditions for
assigning the most trusted buyer (mtb) role to an agent.

%If the current role is mtb or tb, and the
agent’s reputation score is high enough.
conditions_for_mtb(HIST,CUR_ROL,SHILL_STATUS,POS_
FB,NEG_FB):- HIST>=0.8,
(is_identical_to(CUR_ROL,mtb);
is_identical_to(CUR_ROL,tb)),
(is_identical_to(SHILL_STATUS,clean);
is_identical_to(SHILL_STATUS,probable)),
POS_FB>=1000, NEG_FB=<(0.1*POS_FB).

According to the above rule, an mtb role is assigned to
a bidding agent when the agent satisfies requirements such
as having more than 1000 positive feedbacks, having less
than 100 negative responses, not doing shilling in the last
transaction, and taking a role of either most trusted buyer
(mtb) or trusted buyer (tb) currently.

Access Control The access control module grants or
denies an agent the access to resources requested by the
agent. It may also restrict a bidding agent to perform
certain auction activities for a period of time, if the agent
has any shilling behaviors in its previous history.

A newly registered agent, which starts by getting a
role of average buyer, is assumed to be trustable, so it
shall have the privilege to perform auction activities.
During the auction time, if an agent’s role is downgraded
(e.g., from a role of average buyer to a role of untrusted

Figure 3. Refinement of the trust management module

History
Module

Authentication
Module

Role
Assignment

Access
Control

RA Policy AC Policy

State
Module

Security
Agent

Auction
Transactions

SA Policy

Authorization Module

Agent

Auction Request

Initial Pass

Feedback

Update Monitoring

Access

Store

Fetch

247

buyer), it signifies that undesired activities have been done
by the agent. In this case, the access control module may
give warnings to the agent or restrict the agent to perform
further activities for a certain period of time. If an agent is
restricted to participate in any auction related activities for
a certain period of time, the access control module sets the
penalty status as active for the agent, and will deny all
requests by that agent. The following is an example of AC
Policy in Prolog that defines how different penalties can be
applied and how different security levels will be set
according to different situations of role changes.

% When a user's role has been downgraded
(is_identical_to(CUR_ROLE,tb),is_identical_to(LAS
T_ROLE,mtb))->
(penalty_assess(PENALTY,FIRST_TIME,oneday),assign
ed_value(SEC_STATUS,level3));
(is_identical_to(CUR_ROLE,avgb),is_identical_to(L
AST_ROLE,tb))->
(penalty_assess(PENALTY,FIRST_TIME,oneweek),assig
ned_value(SEC_STATUS,level2));
(is_identical_to(CUR_ROLE,ub),is_identical_to(LAS
T_ROLE,avgb))->
(penalty_assess(PENALTY,FIRST_TIME,twoweeks),assi
gned_value(SEC_STATUS,level2));
(is_identical_to(CUR_ROLE,mub),is_identical_to(LA
ST_ROLE,ub))->
(penalty_assess(PENALTY,FIRST_TIME,onemonth),assi
gned_value(SEC_STATUS,level1));

Note that the security level assigned (from 1 to 4, with
level 1 being the highest security level) will be used by the
security agent to determine the way the bidding agent
should be monitored for abnormal behaviors when the
bidding agent’s auction activities are resumed.

A configured agent, whose role has been downgraded
due to its past undesired behaviors, may gain back trust by
refraining itself from performing undesirable activities
after the restricted time period expires. When an agent has
shown sufficient evidence for trustworthiness, the role
assignment module may upgrade the agent’s role
according to predefined RA Polices. In addition, to prevent
further undesired bidding behaviors, for those agents with
high security level, the security agent will monitor them
more closely and thoroughly for any activities performed
by them when their bidding activities are resumed.

4.6 Security Agent and Detection Rules

To make online auction system trustworthy and to
ensure the bidding process reliable, we should prevent and
minimize undesired bidding behaviors. The security agent
is designed for the purpose of monitoring bidding agents
for their activities, and detecting shilling behaviors based
on shill patterns and security policies. Since it is not
feasible to monitor every activity of each agent in details,
we decrease the load of the security agent by defining
different security levels such that the depth of checking is
directly proportional to the level of distrust in the user. For
example, a bidding agent with security level of 1 will
receive the most careful monitoring.

The following SA Policy is an example of detection rules
that defines the way of monitoring a bidding agent with
security level 2.

% Invoked if the security status is level 2
security_level_2(SHILL_STATUS,SHILL_PROB,DIFF_IN_
LOC,CONC_BID,WL_RATIO,PRESENT_INITIAL_STYLE):-
proximity_of_ip(TEMP1,DIFF_IN_LOC),
concurrent_bid_check(TEMP2,CONC_BID,WL_RATIO),
initial_bid_style(TEMP3,PRESENT_INITIAL_STYLE),
SHILL_PROB is TEMP1+TEMP2+TEMP3,
status_evaluation(SHILL_STATUS,SHILL_PROB).

To detect shilling, the security agent is configured to
perform different types of security checks. At the lowest
level (level 4), only the distance in locations of a buyer
and a seller are checked according to their IP addresses. At
level 3, we check if a buyer is participating in concurrent
auctions with identical auctioned items. Note that
concurrent shilling, where a bidding agent places bids on
an auction item with higher auction price rather than on
the auctioned item with lower auction price, is a strong
indication of shilling behaviors. At level 2, the security
agent analyses the bidding style of a buyer against
common shill patterns. In many cases, it has been found
that a shilling agent does aggressive biddings at the
beginning, and stops bidding towards the end of the
auction to avoid winning the auction. Finally, at the
highest security level (level 1), the security agent performs
all above checks coupled with an analysis of the bidding
agent’s history. The security agent derives a shill factor by
applying different security rules on the agent’s current and
previous behaviors. If the shill factor is high enough, the
agent’s bidding status will be set as shilling, and the state
module will be updated. The updated information stored in
the state module will be used by the role assignment
module when the shill bidder makes a new bidding
request. Furthermore, as an alert, the security agent will
inform all participating agents about the detected abnormal
behavior. In a severe situation, when an agent’s shilling
behaviors are committed based on strong evidence, the
security agent will force the auction to be closed and
notify all involved users about such decision.

5. An Example

Our approach can be illustrated by an example of
online auctions that involve shilling behaviors. In our
example, we consider two concurrent online auctions – we
call them Auction 1 and Auction 2, which are initiated by
seller S1 and S2, respectively. The auctioned items are
“Nikon 8x Optical and 4x Digital Zoom Camera,” which
are identical in both of the two auctions. There are five
bidding agents B1 to B5 that may put bids on either of the
auctions. Agent B1, B2 and B4 are configured to work as
normal bidders. But for agent B3, we set up a bad
feedback history for the agent initially. Consequently, the
role assignment module downgrades B3’s role from
average buyer to untrusted buyer when B3 makes a

248

bidding request, and the access control module sets agent
B3’s security status to level 1. Furthermore, we configure
agent B3 with the following bidding strategy: it tries to
drive up the auction price of the item listed by seller S2
aggressively at the beginning, but stops to put bids on that
item when the auction price reaches a certain value. In
addition, agent B5 is configured with a strategy called
Preferred Seller Strategy, which instructs agent B5 to put
bids on the item listed by seller S1 rather than S2 for most
of the time. Table 1 lists the role assignment and some of
the access rights for each bidding agent.

Table 1. State information of bidding agents

While both Auction 1 and Auction 2 are running, the
security agent monitors each bidding agent according to its
security level. Since the bidding agent B1, B2 and B4
show their normal bidding behaviors, the security agent
sets their bidding status as normal. On the other hand,
since agent B5 puts bids on both of the auctions, and the
security agent detects that B5 sometimes bids on one of
auctions with higher auction price. By further analyzing
B5’s bidding behaviors, the security agent has found
that B5 bids on the item listed by seller S1 for most of
the time, and puts bids on the item after the reserve
price has reached. This indicates that agent B5 does not
attempt to drive up the price because it has no intention
to avoid winning the auction. Thus the security agent
concludes that agent B5’s bidding status is normal.

Since B3’s security status has been set to level 1,
the security agent analyzes B3’s bidding activities
thoroughly and finds that B3’s bidding behavior
matches the concurrent shilling pattern, where an agent
places bids on the auctioned item with higher auction
price rather than on the auctioned item with lower price,
and also tries to avoid winning an auction by stopping
bidding when the price reaches the reserve price.
Furthermore, the security agent analyzes B3’s current
and past bidding transactions as well as the number of
wins in auctions listed by both seller S1 and S2. The
security agent notices that B3’s win-loss ratios on
auctions listed by seller S1 and S2 are close to 0. Based
on the above knowledge, the security agent assigns B3’s
bidding status as shilling. The security agent then
notifies all participating agents, and updates the state

module information for agent B3. Figure 4 shows the
user interface for agent B3 with a notification from the
security agent.

Bidding
Agent

Previous
Role Role Assignment Access Control

B1 most trusted
buyer

most trusted
buyer

no actions
Sec_status: level 4

B2 trusted buyer trusted buyer no actions
sec_status: level 3

B3 average buyer untrusted buyer warning
sec_status: level 1

B4 average buyer average buyer no actions
sec_status: level 2

B5 average buyer average buyer no actions
sec_status: level 2

Figure 4 User interface for bidding agent B3

When agent B3 places a new bidding request, the
role assignment module assigns B3 a role of most
untrusted buyer, and as a penalty, the access control
module restricts B3 from putting bids for a week. Table
2 shows the updated state information of each agent
after the analysis is done by the security agent.

Table 2. Updated state information of bidding agents

Bidding
Agent

Bidding
Status Role Assignment Access Control

B1 normal most trusted
buyer

no actions
sec_status: level 4

B2 normal trusted buyer no actions
sec_status: level 3

B3 shilling most untrusted
buyer

one week penalty
sec_status: level 1

B4 normal average buyer no actions
sec_status: level 2

B5 normal average buyer no actions
sec_status: level 2

In Figure 5, we show a user interface for an auction
house administrator to view all auction related activities
performed by bidding agents, as well as any actions
taken by the security agent.

In our prototype agent-based online auction system,
actions against a shill bidder are taken in real-time by
updating the agent’s role assignment and restricting the
agent’s access to auction related activities. To ensure a
more accurate detection of shill bidders, the security agent
also requires evidence such as user’s IP address, ratings,
user feedbacks and current and past trading histories. In
addition, expert experience and considerations of

249

practical situations are vital for us to set up effective
policy rules for shill detection. With more and more
expert knowledge on shill patterns [15, 16], our
approach can be very effective in shill detection for
practical agent-based online auction systems.

Figure 5 User interface for auction house administrator

6. Conclusions and Future Work

In order to build a trustworthy agent-based online
auction system, we introduced a real-time trust
management module (TMM) to restrict and prevent
undesired bidding behaviors such as shilling behaviors in
online auctions. Based on an agent’s current and previous
behaviors in agent-based online auctions, the real-time
trust management module can assign agent roles
dynamically, and grant or deny an agent for varying levels
of access to auction related resources and activities.
Meanwhile, any undesirable bidding behaviors performed
by a bidding agent can be automatically detected by a
security agent. We have defined different policy rules in
Prolog for dynamic role assignment, access control
mechanisms, and undesirable bidding behavior detection.
The shill detection example, which is simulated on our
prototype agent based online auction system, shows that
our approach is feasible and efficient. For our future work,
we will try to formalize various policy rules, and based on
existing work on shill patterns [2, 16], we will try to
develop a more accurate method for real-time shill
detection in agent-based online auction systems.

References

[1] A. Vakali, L. Angelis, D. Pournara, “Internet Based
Auctions: A Survey on Models and Applications,”
ACM SIG on E-commerce Exchanges, Vol. 2, No. 2,
Jun 2001, pp. 5-13.

[2] H. Xu and Y. Cheng, “Model Checking Bidding
Behaviors in Internet Concurrent Auctions,” To
appear in International Journal of Computer Systems
Science & Engineering (IJCSSE), 2007.

[3] Katia Sycara, “MultiAgent Systems,” AI Magazine,
Vol. 19, No. 2, Summer 1998, pp. 79-92.

[4] TimesOnline, “Revealed: How eBay Sellers Fix
Auctions,” The Sunday Times, Tech & Web, Jan 28,
2007. Retrieved on January 29, 2007, from
http://technology.timesonline.co.uk/tol/news/

[5] T. Ito, N. Fukuta, T. Shintani, K. Sycara,
“BiddingBot: A Multiagent Support System for
Cooperative Bidding in Multiple Auctions,” In
Proceedings of the Fourth International Conference
on MultiAgent Systems, July, 2000, pp. 399-400.

[6] E. Ogston and S. Vassiliadis, “A Peer-to-Peer Agent
Auction,” In Proceedings of the First International
Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2002), pp. 151-159.

[7] J. Collins, W. Ketter, M. Gini, “A Multi-Agent
Negotiation Testbed for Contracting Tasks with
Temporal and Precedence Constraints,” International
Journal of Electronic Commerce, 7(1):35-57, 2002.

[8] Bhavani Thuraisinham, “Trust Management in a
Distributed Environment,” In Proceedings of the 29th

COMPSAX’05, 2005.
[9] T. Gradison, M. Sloman, “A Survey of Trust in

Internet Applications,” IEEE Communications
Surveys, Fourth quarter 2000.

[10] G. Zacharia and P. Maes, “Trust Management through
Reputation Mechanisms,” Applied Artificial
Intelligence, 14:881-908, 2000.

[11] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y.
Ravid, “Access Control Meets Public Key
Infrastructure,” IEEE Symposium on Security and
Privacy, Oakland, California, USA, 2000, pp. 2-14.

[12] H. Mouri, Y. Takata and H. Seki, “A Formal Model
for Stateful Trust Management Systems,” In
Proceedings of IASTED International Conference on
Software Engineering and Applications (SEA 2005),
Phoenix, USA, Nov. 2005, pp. 87-92.

[13] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman,
“Role-Based Access Control Models,” IEEE
Computer, 29(2):38-47, 1996.

[14] P. Moraitis and N. Spanoudakis. “Combining Gaia
and JADE for Multi-Agent Systems Development,”
In Proceedings of the 17th European Meeting on
Cybernetics and Systems Research (EMCSR 2004),
Vienna, Austria, April 2004.

[15] D. H. Chau, S. Pandit and C. Faloutsos, “Detecting
Fraudulent Personalities in Networks of Online
Auctioneers,” PKDD 2006, Berlin Germany.

[16] J. Trevathan and W. Read, “Undesirable and
Fraudulent Behaviour in Online Auctions,” In
Proceedings of the International Conference on
Security and Cryptography, 2006, pp. 450-458.

250

GEOMETRIC THUMBNAILS FOR WEB SEARCHING

Chris Dunn, Beomjin Kim
Department of Computer Science

Indiana University-Purdue University
Fort Wayne, IN, U.S.A.

ABSTRACT: Previous studies have shown the
effectiveness of using thumbnails for scanning large
amounts of information such as Internet searching. This
paper introduces a technique that converts web pages to
geometrically produced thumbnails. It shows the layout
of web pages and search term distributions within the
web pages through graphical illustrations. The structural
preview of the documents will help the users to
understand the components within the web pages
including the number of non-text components and the
image to text ratio. The color-coded geometrical objects
represent the amount of text content, search term
concentration, and their relationships with the text
portions. By providing the layout and position of the
search terms together, the user will be able to avoid
irrelevant pages, and will have direct access to the
portion of the web page that pertains to the users
interests. Unlike other studies that use pixmap-based
thumbnails that generate significant network usage, the
proposed method represents the web page through simple
geometrically produced thumbnails that will cut down on
the amount of network traffic. We expect the developed
visual abstract of web pages will improve the users
ability to search by alleviating the need to sort through
irrelevant information.

1. INTRODUCTION
Internet provides us with a huge amount data. Further the
amount of data available continues to grow, and the forms
it takes constantly expand. Recently, the difficulty is not
searching for information, but finding relevant
information from the search. The search engine
commonly returns a long list of relevant Web resources
with limited descriptions, while the users frequently
refine their queries only after reviewing a very small
portion of the retrieved results [6]. With so many pages
to evaluate, an effective strategy that does not require the
searcher to evaluate every page or even many of them is
of paramount importance.
 The traditional summary based approach, which
poorly utilizes the screen space, can only shows a few
pages’ summaries on the screen simultaneously. The

words deliver little information about the page in question
for the amount of space they take up, and large amounts
of white space often appear on summary based search
results. And the summaries reveal information only about
the portion of the webpage where the text is extracted
from, and if the summary does not use verbatim
contiguous text, it can be misleading in terms the amount
of distance between the search terms and the information
density of the page. In addition, it does not provide us
search terms distribution or their correlations within the
document.
 Visualization of the information is an effective
technique to assist the user in exploring a vast space.
Various visualization techniques and graphical user
interfaces assisted users in exploring Internet [7]. In
multiple studies, subjects that participated in empirical
studies have shown satisfaction in using the visual
abstraction of information for searching [9].
 WebTOC is a visualization method for presenting the
contents of a website using a hierarchical table of
contents [8]. WebTOC uses several visual attributes such
as lines, color, length, and shadow to present a link to a
Web resource (document, image, multimedia), file type,
file size, and number of items subordinate to the
document. This visual abstraction assists the user by
giving an overview of an entire website, the hierarchical
relationship of Web resources, and in finding the location
of the website where it has numerous resources.
 Thumbnail is a small version of image that helps the
user to visualize documents or Web pages. This provides
the preview of the underlying information that helps the
users’ in scanning the information quickly and assists
their search activities [5]. Beyond the easiness in
organizing the thumbnail, it is also an effective memory
aid, which helps users to recall previous reviewed
information [7].
 Woodruff et al. (2001) introduced a technique for
creating thumbnails that utilized the advantages of text
summaries and plain thumbnails [4]. In their experimental
study, the user’s search time for desired information had
decreased when they used textually enhanced thumbnails
over summary-based and plain thumbnails. Although the
system has supported users’ search activities, the usage of
thumbnails in studies was mainly confined to the

251

organization of visited Web pages. This application could
not deliver the distributional pattern of search terms,
which is important in understanding the relevancy of Web
pages. In addition, these thumbnails require sending a
large amount of content to the end user, in the form of a
pixmap. The thumbnail view of a Web page can be
further abstracted, while providing more information.
 The visualization we are proposing in this paper
attempts to synthesize the advantage of graphical
abstraction of the page with the information stored in the
structural layout and term positions. The proposed
technique presents the layout of web pages and search
term distribution in the web sources graphically. This
illustration will utilize more screen space. The abstracted
structural layout of the Web page will allow users to
understand the underlying contents of the webpage. The
color-coding technique transforms the frequency and
distribution of search term into an intuitive visual
abstraction that helps the user to find the location in the
webpage that has the sought information. This method
does not rely on a pixmap of the page or on sending the
content of the page to the end user. Instead, once
analyzed by the search provider, only geometric and color
information needs to be sent, reducing the amount of
associated traffic.

2. METHODOLOGY
In the proposed visualization, each web page is illustrated
as a rectangular shaped thumbnail whose dimension
represents the length of the web document. The
visualization procedure that generates the thumbnail of
each web page utilizes color-coding and layout
information can be divided into two major procedures.
The first step is analyzing the web documents and
producing the layout information. The second step is
transforming the stored layout information to a color-
coded visualization based on the terms contained in the
search query being answered.
 The parsing will convert a complex web page into a
simple form, an ordered list of tokens. A token is any
html element or block of text. An html element is
enclosed in enclosed in “<…>” [1]. The text is found
interwoven between the html elements. A text token can
consist of any amount of text, and can be divided
wherever is desired as long as it is divided at white space.
A text token may not contain an HTML element and must
end before or at the beginning of the next html element.
The token list will be in the order they are encountered in
the document, and this order cannot be changed. These
tokens will be mapped to the polygons that appear in the
thumbnail of web document. The magnitude and position
of each polygon reflects the actual size and location of
the corresponding web component in the web page. In
addition, each polygon will retain information on the type
of token or tokens that generated it. It maintains this type

information to allow it to be appropriately color-coded in
the visualization phase.
 The text of the web page is divided into multiple
segments based on the paragraph tags within the HTML.
Each text segment can have multiple text blocks such as
headings and actual contents. To show the level of
concentration of search terms in a text segment, all of the
text in a segment (Ti) is treated as group and the
frequency of search terms in Ti determines the color-code
of the segment. So, all the text polygons representing text
blocks in a segment will have the same color-code.
 The types of web resources and document formats are
developing so rapidly such as various forms of style
sheets and stylesheet language [1]. Although it is difficult
to predict the evolution of web technologies, we decided
to use a recursive descent parser in the prototype. This
has the advantage of speed and simplicity, since each
token can be processed its own method and there was no
need to worry about upcoming tokens. Standard
generalized markup language (SGML) and extensible
markup language (XML) data type definitions (DTD) are
context-free grammars [2]. HTML uses context-free
grammars that can be parsed in a linear time [1, 3].
 The parsing is accomplished using a two-pass
recursive descent parser. A recursive descent parse was
chosen because it trivially solves the issue of embedded
tags. The first pass corresponds to the first step, the
analysis of the layout information. This step works by
placing each component on a separate line whenever
possible. Each tag has an associated code block, and
these are independent of each other, with the exception
that each modifies a state variable, which controls the
available drawing area. The second step actually
produces the polygons that are used in the visualization.
This step uses the same process, except that all the
components are placed horizontally across until the
current drawable area can no longer contain another
component horizontally, at which point the polygons are
then placed on the next line. However, some tags will
affect the drawable area in other ways. This is done by
modifying the state variable. For example, a
 will
immediately drop the drawing to the next line, and
<table> tags will subdivide the drawable are into multiple
components.
 The parser will yield an ordered list of tokens, say D.
The list of tokens will be partitioned into segments.
These segments should represent blocks of the webpage
that end with white space. To accomplish this, two
constraints need to be met: first, U n1i iDD ..=

= where Di

is sublist of tokens of D. This will ensure that all the
tokens appear in a segment, and that there is no
duplication. Second, for all segments, the last token of Di

forces the browser to produce white space. Such elements
include but are not limited to <p>, <table>, and
.
Any method following these two constraints will produce
an acceptable partitioning of D. A simple way to do this

252

is to iterate through D until encountering tokens that force
the production of white space, and using such tokens to
produce the partitions. These segments will be mapped
to a list of polygons.
 The polygon list can be generated by using essentially
the same method that is used to render web pages by web
browsers. The rendering of polygons representing text
tokens does not worsen the time complexity. It renders
the page using the methodology used by a web browser,
however, instead of rendering text, the prototype replaces
it with a polygon. This can be done by replacing each text
token in the text with a rectangle with a width and height
the same as the highest and widest points of the text token
rendered in the current font. Multimedia, images, and
other components are also mapped to polygons based on
their actual magnitude within the web page. For each
defined polygon, we assigned a type based on the token
that caused its production. Once this is done, rendering
the whole list of polygons, P, will produce a close
approximation of the page, sans the details inside the
polygons (Figure 1). The polygons are partitioned into
sublists, Pi, that meet the criteria P=U n1i iP.=

where Pi is

a sublist of polygons in P. Since each polygon is
produced by at least on token, and never produced by
tokens from two separate Dis, the Pi can be associated
with the Di by index. It is possible that some of the Pi

maybe empty. For example, a document may contain
“…<p></p><p>…”. The segment
starting at the first <p> will contain a font size token,
which is required to properly render the rest of the page,
but this segment will not have any polygon associated
with it.
 The text of each Di is mapped to text segments, Ti, by
concatenating all the text from text tokens. Let dik ∈ Di

and a text token. Therefore, Ti=∑ = n1k ikd.. where + is text

concatenation. Note that some Tis may be empty, a Di

might only contain images, for example. Pi may also be
empty, but it will be empty only if Ti is empty. If Ti is not
empty, then at least one polygon will be in Pi to represent
the text.
 After mapping a text segment, Ti, to polygons, Pi, we
applied a color-coding algorithm to compute a color for
the text polygons in Pi. The given queries are divided into
three subsets of search terms (S). A primary color (RGB
color model) is assigned to a subset of search terms that
informed the frequencies and relationships of the search
terms in Ti.
 For each Ti, the frequencies of search terms, (FS)i, is
computed respectively where the frequencies of the
search terms in the same S are added together. This
procedure can be formulated as follows:

i
n

1j
S
ji

S tF)()(∑=
=

where tj
S is the frequency of a search

term in a subset, (tj
S)i is the frequency of a search term in

the ith segment Ti, and S is one of search terms subset
among S -> {R, G, B}.

 The intensity factor is defined by computing the
frequency ratio of query subset to the magnitude of Ti.
The ratio (RS)i = (FS)i / Mag(di) where Mag(di) is the total
number of words in Ti, is mapped to an intensity scale
among N different levels to determine the intensity of the
subset’s color. The higher the ratio, (RS)i, maps to the
brighter intensity of the corresponding color. This color
encoding function is applied to each search term subset
for Ti separately that defines three intensities of the
primary colors, IRed

i, IGreen
i, and IBlue

i. By blending IRed
i,

IGreen
i, and IBlue

i together, a color code, Ci, is formed to
represent the search terms distribution in Ti.

Fig.1 A view of visualized Internet search results.

 Through the frequency-to-intensity mapping,
segments with a higher concentration of the search terms’
occurrences will be mapped to brighter colors. Finally,
the color code Ci is painted to the polygons in Pi that are
associated with text tokens Di. Figure 1 shows a view of
the visual illustration of about 40 web pages.

3. DISCUSSION
This paper introduced a visualization method to present
web search result through graphical illustrations. It will
allow the user to utilize their perceptual cognition in
exploring Internet search. While executing our pioneer
study, we found that there can be three pertinent issues to
address: precision, usability testing, and combining the
visualization with a search engine.
 Precision in the layout increases the detail and amount
of layout information in the thumbnail, but comes with
two costs. First, the higher precision, the more likely
there is to be useless information in the result. Consider,
for example, the visualization of a paragraph of text. A
very precise version will be very jagged along the edge as
the polygon moves in and out due to differences in the
position of word wrapping on each line. A simpler
visualization would give a more intuitive understand of
the overall structure of the resource in this case.
Secondly, this leads to excess network traffic. Every

253

vertex in the polygon needs to be transmitted, therefore,
smoothing the edge of a paragraph instead of displaying
jaggedly will reduce the number of vertices that need to
be sent across the network.
 Web pages may contain many decorative images such
as bullets, icons, and separators. Such decorations do not
affect the information content of the page, they instead
serve as visual formatting of the information. Filtering
these images will reduce the amount of network traffic
and hence increase performance. These decorations can
be found by looking for images that have dimensions that
are too small to contain information, or that have an
unbalanced aspect ratio, so that one of their dimensions is
too small to contain useful information. This separation
can be conveyed just as usefully to the user by leaving
white space in the search instead of adding an image, and
removing the image reduces the amount of data to be
transmitted and the amount of clutter in the final
thumbnail.
 Currently, the visualization technique lacks objective
usability testing. In order to perform a non-biased
evaluation of its usefulness, it will require comparison
testing between the search effectiveness of the proposed
method and the traditional methods of searching. It would
also be useful to perform similar comparisons between
this visualization technique and other thumbnail
visualizations and variations on the precision of this
visualization technique to determine what factors are
most useful in a thumbnail, and where the limited screen
space and network bandwidth resources can be most
effectively allocated. Currently, we are in the process of
preparing a series of experimental studies with the TREC
data sets provided by National Institute of Standards and
Technology (NIST) [10].
 Finally, further studies are expected to apply our
method to a search engine for realizing a visual search
engine. The primary issues are storing the layout
information and associating the information with the
search terms. The layout information is comprised of a
list of polygons. These can be stored in a database in
much the same way the text of pages is, and indexed
appropriately. Each collection of polygons must be
associated with a set of words, so that they can be color-
coded. In our prototype, we used two indices. One stored
the actual words of the document, and their frequency in
each segment. The second stored the polygons for each
segment, and the total number of words in each segment.
In the future, the search terms indexing associated with
visualization components should be investigated in depth,
while considering performance and optimization, to make
the proposed visualization can be applicable to practical
Internet search applications.

4. CONCLUSION
This paper presents a visualization technique that
improves upon previous thumbnail visualizations for

Internet searching. We have increased the amount of
structural and substantial information projected to the
user by transforming the web contents to a graphical
representation while applying color-coding.
Simultaneous, we have reduced the amount of network
traffic generated by the thumbnails by using
geometrically produced thumbnails instead of pixmaps.
The proposed algorithm increases the users search speed
and allows them to avoid portions of the page that don’t
include information that they are searching for. This will
eventually improve the searcher’s efficiency in
performing web searches, which is an important
improvement considering the size and growth of the
Internet.

Acknowledgements
The authors would like to give thanks Philip Johnson who
has provided a great contribution in developing the
prototype system.

References
[1] HTML specification, World Wide Web Consortium

(W3C), http://www.w3.org/TR/html4/
[2] Kilpeläinen, P. & Wood, D.: “SGML and XML

document grammars and exceptions,” Information
and Computation, Vol. 169, No. 2 (2001) 230-251.

[3] Nederhof, M. & Bertsch, E.: “Linear-time suffix
parsing for deterministic languages,” Journal of the
ACM, Vol. 43, No. 3 (1996) 524-554.

[4] Woodruff, A., Faulring, A., et al.: “Using
thumbnails to search the Web,” Proceedings of the
SIGCHI conference on Human factors in
computing systems (2001) 198-205.

[5] Suh, B., Ling, H., et al.: “Automatic Thumbnail
Cropping and its Effectiveness,” Proceedings of the
16th annual ACM symposium on User interface
software and technology (2003) 95-104.

[6] Jansen, B. J., Spink, A., et al.: “Real life, real users,
and real needs: A study and analysis of user queries
on the Web,” Information Processing and
Management, Vol. 36, No. 2 (2000) 207-227.

[7] Hightower, R.R., Ring, L.T., et al.: “Graphical
multiscale Web histories: a study of padprints,”
Proceedings of the ninth ACM conference on
Hypertext and hypermedia (1998) 58-65.

[8] Nation, A.: “WebTOC: a tool to visualize and
quantify Web sites using a hierarchical table of
contents browser,” CHI 98 conference summary on
Human factors in computing systems (1998) 185-
186.

 [9] Card, S.K., Mackinlay, J.D., Shneiderman, B.:
Readings in information visualization using vision
to think, Morgan Kaufmann (1999).

 [10] National Institute of Standards and Technology
(NIST), The Text REtrieval Conference (TREC),
http://trec.nist.gov

254

ADkwik: Web 2.0 Collaboration System for Architectural Decision Engineering

Nelly Schuster, Olaf Zimmermann, Cesare Pautasso
IBM Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

{nes, olz, cpa}@zurich.ibm.com

Abstract

Capturing and sharing software architecture design
rationale has always been particularly challenging in
complex application domains such as enterprise com-
puting. Facing the ongoing acceleration of technology
innovation and economic forces such as outsourcing
and offshoring, conservative knowledge management
practices and existing tools are no longer sufficient,
offering only rudimentary support for knowledge ex-
change and collaboration on the Internet. In this pa-
per, we present ADkwik, a Web 2.0 collaboration system
supporting the cooperative decision making work of
software architects. We describe the realization of
ADkwik as a situational application wiki and discuss
initial evaluation results. Thanks to its ease of use,
ADkwik has already shown concrete benefits to its users,
including rapid team orientation, tangible decision
making advice, and simplification of asset harvesting.

1. Introduction
Architectural decisions capture the rationale behind

software architecture design. In current practice, this
knowledge is tacit and rarely captured explicitly [1].
However, an explicit knowledge engineering approach
to architectural decision capturing is beneficial, e.g., to
attain regulatory compliance. Governance and maturi-
ty models such as Capability Maturity Model Integra-
tion (CMMI) desire architectural decisions to be captu-
red and archived along with justifications.

A second motivation for explicit decision capturing
is team collaboration. On large software development
projects (e.g., in enterprise computing), architectural
decision making is a team effort. Typically a lead ar-
chitect has the overall technical responsibility, but de-
legates certain decisions to subsystem architects, chief
developers, and platform specialists. Communication
problems between these roles occur frequently; it is
challenging to reach a shared view and a consensus
over the architecture. This is even more difficult to
achieve due to the current offshoring and outsourcing

trends; more and more development teams are geo-
graphically distributed.

A third motivator for architectural decision captu-
ring is reuse. A vast amount of architectural know-
ledge exists in practitioner networks such as company-
wide Community of Practice (CoP) networks [2].
Often architectural knowledge is tacit or embedded in
code. If documented at all, it resides in inappropriate,
therefore rarely visited data stores such as personal
mail archives and poorly structured team repositories.

In response to the regulatory compliance require-
ments, the need for collaboration during architectural
decision making and the opportunities for reuse of ar-
chitecture design rationale in CoPs, we have started to
apply architectural decision trees as a fine-grained unit
of knowledge exchange within and between project
teams [3]. In this paper, we present how such a know-
ledge exchange can be facilitated by ADkwik

1, a Web
2.0 collaboration system supporting the cooperative
work of software architects. ADkwik embeds a rich do-
main model into a situational application wiki, with the
goal of making it easy for practitioners to share their
knowledge about architectural decisions across project
boundaries. The system is in use within a small com-
munity of software architects already. Their feedback
has shown us the benefits of the approach, in terms of
the acceleration of project initiation (team orientation),
improvement of decision making quality, and simpli-
fication of project result sharing (asset harvesting).
Users have also pointed out critical success factors:
ease of use and dealing with extreme change dynamics.

The remainder of this paper is structured as follows:
Section 2 introduces the context of this work and pre-
sents related work. Section 3 gathers requirements for
ADkwik. Section 4 discusses the knowledge engineering
aspects of ADkwik, while Section 5 focuses on its
architecture and implementation. Section 6 presents
our preliminary evaluation; Section 7 concludes the
paper.

1 ADkwik stands for “Architectural Decision Knowledge Web
Interchange Kit” and pronounces “AD-quick”.

255

2. Background and Related Work
In the 1990s, Design Decision Rationale (DDR)

research [4] proposed techniques such as QOC dia-
grams [5] structuring the decision making process for
the general design process of software systems and hu-
man-computer interfaces. Knowledge-Based Software
Engineering (KBSE) proposals such as Argo [6]
stressed that tools for designers should support their
cognitive needs such as “Reflection in Action, Op-
portunistic Design, Comprehension and Problem Sol-
ving”. To achieve this, a “Managed To Do List” was
seen as one of several key features. At that time, the re-
gulatory compliance and team collaboration forces
were not as dominating as today; therefore, aspects
specific to these forces were not addressed. Furthermo-
re, DDR and KBSE did not provide any support speci-
fic to architectural decision modeling.

Recently, the DDR ideas were revived and applied
to the particular domain of architectural design decisi-
ons [7][8]. Each decision describes a concrete, atomic
design issue for which several alternate solutions with
pros and cons exist. Examples for such decisions in-
clude: selection of programming language and tools
for any development project, of communication proto-
cols in client-server environments, of architectural pat-
terns [9] in certain application domains, and of highly
available network topologies in enterprise computing.
In general, we defined architectural decisions as “con-
scious design decisions concerning a software system
as a whole, or one or more of its core components” [3].
Many inhibitors for capturing such decisions have
been reported, including no appreciation from project
sponsors and missing short-term benefits, as well as
lack of time, budget, and tool support [10]. Several ar-
chitectural decision capturing tools have been pro-
posed [11][12]. For example, PAKME [13] is the
prototype of an architecture knowledge management
system implemented on top of an existing groupware
platform. It uses 25 tables to capture various forms of
architectural artifacts, including design rationale.
PAKME is populated from patterns repositories and
the literature.

As potential building blocks for our solution, we
also evaluated existing assets such as the Eclipse-based
Architects’ Workbench (AWB) [4], UML tools, plain
HTML and wiki technologies. None of these met all of
our requirements. Due to its powerful refactoring
capabilities, AWB is well suited for architectural deci-
sion content capturing; it can generate reports, thus
addressing the regulatory compliance issues. However,
it was not designed for knowledge exchange and team
collaboration over the Internet. UML tools are strong
in capturing analysis- and design-level structure
models such as use cases, class, activity, and sequence

diagrams; they fall short when it comes to modeling
knowledge comprising of text, often semi-structured,
combined with other formats, e.g., images and Web
links, that motivate and justify the rationale behind the
designs captured in UML models.

Plain HTML and standard wiki engines provide fle-
xible human user interfaces when designed and confi-
gured appropriately. One advantage is that many de-
velopment projects already use plain wikis for collabo-
ration and information sharing. Still, using plain wikis
does not fully meet our needs. First, no explicit domain
model exists since the content is left unstructured and
blended with presentation elements in HTML or wiki
code. Furthermore, there is no API to access the con-
tent apart from the HTML data sent to the browser via
HTTP. Thus, it is difficult to populate the system from
third party software, or to extract any well-structured
knowledge content for further automatic processing.

3. Requirements and Use Cases
We believe that a lack of collaboration and syste-

matic knowledge reuse features are key deficiencies of
existing approaches. Unlike passive knowledge bases,
we aim to guide the user through the content in the
spirit of Argo’s Managed To Do List, providing team
orientation. This To Do list should be organized accor-
ding to domain-specific engagement types and pat-
terns, e.g., business process integration in enterprise
computing. To keep its value, the knowledge base
must be updated continuously with new decisions, ex-
periences, and rationale gathered both on successful
and failed projects. We refer to this collaborative
knowledge maintenance activity as asset harvesting.

In response to these shortcomings, we propose
ADkwik, a Web-centric collaboration system, providing
explicit support for sharing and reusing knowledge ele-
ments from the domain of architectural decision
capturing. We see the following use cases for ADkwik:

Obtain architectural knowledge, captured in
decision models, from other projects and CoP.
Tailor imported decision models according to
project-specific needs, e.g., filtering content.
Involve experts from other projects and CoP
leaders when looking for advice.
Manage dependencies between correlated de-
cisions automatically to guide the user.
Share gained architectural knowledge with
other projects and CoP (after sanitization).

Discussion and interaction support, e.g., via email,
comments and issue tracking, document management,
and versioning are additional functional requirements
shared with existing wiki-like collaboration systems.
Integration with other tools is also an important factor
to ease the adoption of ADkwik. An Application Pro-

256

gramming Interface (API) should be provided so that
import and export mechanisms to automatically po-
pulate the ADkwik content repository can be built, e.g.,
from requirements management systems and UML
design tools. The system must be highly usable, as
practitioners do not appreciate having to work with yet
another tool to fulfill extra obligations. It must be intu-
itive to browse the content, and users should be attract-
ted to contribute new knowledge. User management,
including simple workflow and basic security support
(authentication, authorization) is required if decision
making responsibilities are shared within the team. A
thin client eases deployment and remote access.

4. Knowledge Engineering in ADkwik

In this section we present ADkwik from the user’s
point of view, both including an overview of its do-
main model and also briefly describing the most im-
portant features of the user interface. For the organiza-
tion of the knowledge content in ADkwik, the main
elements of the domain model are: Architectural Deci-
sion (AD), ADAlternative, ADOutcome, and ADTopic.
AD is the core entity describing the context of a decisi-
on including decision drivers [3] and relationships with
other decisions [8]. ADAlternative instances present
solution design options for ADs with their pros and
cons. ADOutcome elements record the selection of
ADAlternatives and the justification for decisions.
ADTopic is a simple hierarchical grouping construct.
We also define three ADLevels of abstraction in our
domain model: conceptual, technology, and assets.

To give an example: on the conceptual level, the
choice of programming language and runtime plat-
forms such as application servers and databases are
among the key executive decisions according to the on-
tology defined in [8]. A screenshot with this exemplary
decision is shown in Figure 1. Several of the domain
model elements, e.g., an AD (here: “Platform And
Language Preferences”) are visible at first glance (1).
Applying the master-details pattern, ADs can be
browsed using the hierarchical ADLevel/ADTopic
Explorer (2). Clicking on entries then displays the
details about the AD and its ADAlternatives in the
main window (1,3). The breadcrumb pattern provides
additional means of orientation, flattening the ADTo-
pic hierarchy into a link list (4). The knowledge is
organized and displayed in a hierarchical structure (2),
but also tagged to enable searches (5).

The same user interface can be used for decision
identification, decision making, and decision enforce-
ment in a development team: Rather than identifying
decisions from scratch, an initial set can be imported,
e.g., from AWB, realizing the Obtain use case (6);
export features also exist, supporting the Share use
case (6). Decision drivers (forces) provide basic de-
cision making support (1); more detailed do-
cumentation including scoring spreadsheets and DDR
QOC diagrams can be attached to the page. ADs carry
owner and status information to further facilitate team
collaboration (7). In support of the Involve use case,
there are literature links (8). The domain model is sha-
red between projects so that knowledge can be ex-
changed, e.g., via generated e-mails.

Fig. 1. User interface of ADkwik: ADTopic Explorer as master, detail views organized according to domain model

ADLevel/
ADTopic
Explorer

as AD master
(2)

Team collaboration (7)

Literature links (8)

Dependencies (9)

Architectural Decision
(AD) details (1)

ADAlternative
master/
details (3)

ADTopic
breadcrumbs
(4)

Import/export and other project-level operations (6)Search via tags (5)

257

ADs can be related to each other. Dependencies
between them are shown (9), e.g., “Tooling Preferen-
ces”. For example it is no longer required to select
between C# and Visual Basic as a programming langu-
age if it has already been decided that .NET will not be
used as a platform. On the technology and asset level,
many more such constraining relationships exist, often
buried in vendor information and best practices docu-
ments. Explicit, fine-grained representation of decision
dependency relationships helps uncovering implicit
assumptions, contradictions, and implementation limi-
tations so that a more objective technical discussion
becomes possible (Manage use case). Active depen-
dency management leads to a more dynamic and
therefore up-to-date knowledge base than static content
repositories can provide, which is very important when
dealing with the complexity and change dynamics of
current enterprise computing environments. It also
helps attaining regulatory compliance.

5. Software Architecture of ADkwik

Conceptual Design. ADkwik combines the benefits of a
rich Web 2.0 front end [14] with those of the domain
model pattern from [9]. The use cases from Section 3
and the user interface design from Section 4 lead to a
logical decomposition as shown in Figure 2.

Fig. 2. High-level building blocks of ADkwik

There are four functional building blocks: Collabo-
ration Features, Decision Workflow, Content Reposi-
tory, and Dependency Management. A Domain Model
is orthogonal to these four building blocks. The Colla-
boration Features and Decision Workflow building
blocks realize the Obtain, Involve, and Share use
cases. The Content Repository provides Create, Read,
Update, Delete, and Search (CRUDS) operations for
the Domain Model elements.

Dependency Management structures the knowledge
into a graph. As opposed to a simple decision catalog,
the graph improves the user’s navigation across related
decisions and provides the basis for advanced features
such as context-specific, dynamic decision tree
morphing and what-if simulations.

An example of an abstract conceptual decision in
the Web services integration domain is the message
exchange pattern (request-response vs. one-way) [3],
which can be refined into a technology decision
dealing with Web Services Description Language
(WSDL) contract design (in and out message vs. in
message only), which in turn lead to two asset decisi-
ons (which SOAP engine and WSDL tool to use when
realizing the abstract pattern as a WSDL-described
service that can be invoked via SOAP). These decision
dependencies modify the asset-level To Do List for the
user depending on the outcome of the conceptual and
the technology decisions.

To refine this functional view into a logical compo-
nent model we use logical layering [9] as our gover-
ning architectural pattern. The three layers of ADkwik
are: Presentation, Domain, and Persistence Layer (Fi-
gure 3). The Presentation Layer supports all functional
building blocks, e.g., Collaboration Features. Blogs
and feeds from vendor forums such as IBM developer-
Works [15] and industry thought leaders [16] can be
integrated here without development effort. Dependen-
cy Management and Decision Workflow are key Do-
main Layer responsibilities. The Persistence Layer im-
plements the Content Repository as a Relational Da-
tabase Management System (RDBMS); hence, the full
power of the RDBMS technology can be leveraged,
e.g., for reporting purposes during technical audits (in
response to the regulatory requirements). The Domain
Model affects all layers: each model element is re-
presented by one user interface component, related do-
main layer logic, and a corresponding database entity.

Implementation. The design of ADkwik resembles tra-
ditional enterprise application architectures. However,
using wiki technology as the presentation layer of such
an enterprise application is a new approach requiring
an application wiki rather than a plain wiki engine.
Application wikis extend the user and page mana-
gement capabilities of plain wikis with application
server features and a mash-up API. This allows us to
create and manage content programmatically.

User Interface

Collaboration
Features

Dependency
Management

Decision
Workflow

Content
Repository

Domain Model

258

More specifically, ADkwik is implemented in a situ-
ational application and Web 2.0 mashup environment
called QEDWiki [14]. QEDWiki can be characterized
as a hybrid wiki engine and PHP application server,
providing access to incoming HTTP request data via a
command interface. QEDWiki extends the Zend PHP
Framework and uses the XAMPP distribution from
apachefriends.org. It includes the Apache HTTP server
and the MySQL RDBMS. HTTP server and QEDWiki
provide the required user management.

Through predefined commands, QEDWiki provides
out-of-the-box support for adding comments, attach-
ments, and email threads. We customized and extended
these commands to provide native support for our do-
main model, also using the Dojo JavaScript library in
order to provide a user experience as attractive as that
of rich clients. The domain layer – comprising the
model elements outlined in Section 3 – is implemented
in PHP. It accesses the persistence layer via the active
record pattern [9], requiring little coding effort. The
integration with other tools is realized via file import,
and a RESTful interface that can be accessed remotely
via HTTP.

6. Evaluation
ADkwik has knowledge acquisition and presentation

capabilities similar to, for example, PAKME [13].
ADkwik also provides support for dependency manage-
ment, decision workflow, and decision maker gui-
dance. Its initial content comes from large-scale indu-
stry projects conducted since 2001. Since then we have
updated the repository continuously with input from
additional projects and refactored it many times accor-
ding to the needs of practitioners [3]. At present,
ADkwik contains 130 decision nodes capturing reusable
knowledge about enterprise application architectures
and Web services integration.

We started to make the system available to selected
colleagues and clients in December 2006. To obtain
usability feedback, we conducted several workshops.
ADkwik already is in use within one industry project.
From these engagements, the initial user feedback
regarding the value and usability of ADkwik is en-
couraging: users appreciate that all knowledge required
during architectural decision making can be
conveniently located in a single place, and that the
system comes with a rich set of initial content. Despite
the large size of the decision space, early users
reported to be productive without major training
efforts. ADkwik leverages Web 2.0 application wiki
technologies; first users perceive the HTML-based
user interface to be compelling and well designed.
Thanks to the modeling and collaboration features, we
can already report improvements in the quality of the
decision making experienced by several ADkwik users.
For example, one architect consulting to an IBM client
in a SOA coach role reported that he could locate and
reuse detailed advice regarding 13 of 15 required deci-
sions related to the usage of Web services [3].

We also have received constructive criticism regar-
ding the challenges of modeling a large and complex
decision space facing a high degree of change.
Numerous new ADs and even more new
ADAlternatives become available almost on a daily
basis. If we aimed for completeness, just for enterprise
applications organized according to SOA principles,
we estimated that ADkwik would contain thousands of
decision nodes with numerous dependencies and alter-
natives. While this complexity is inherent to the pro-
blem domain, we run the risk of being criticized for
exposing it. However, experienced practitioners report
that they prefer to be made aware of this complexity
and to have a system that manages it collaboratively,
rather than to let the knowledge remain tacit and unma-

Domain Layer

Decision Workflow Component

Dependency Management Component

Versioning and Reporting Component

Persistence
Layer

Collaboration Component

A
pplication W

ikiInfrastructure, A
P

I

Presentation
Layer

Decision-
WorkflowView

Dependency-
Management-

View

AdView

Collaboration-
View

NavigationView

ErrorHandlingComponent

LoggingComponent

SecurityComponent

AdData-
Source-

Component

Server-
Component

RDBMS Import/Export Component

Import/Export-
View

Content
Repository

 Fig. 3. Logical view on architecture of ADkwik, our Web 2.0 collaboration platform for architectural knowledge exchange

259

naged. As we further improve ADkwik based on the
feedback of this initial evaluation, we will continue the
usability studies on a larger scale.

7. Conclusion
In this paper, we described the conceptual design

and implementation of ADkwik, a Web-centric collabo-
ration platform for architecture knowledge capturing
and exchange. ADkwik supports five use cases, Obtain-
Tailor-Involve-Manage-Share. Its design employs both
domain modeling concepts and a layered architecture.
ADkwik features an API to populate the initial decision
model from existing requirements models, reference
architectures, and other community assets. The
presentation layer is a Web 2.0 application wiki facili-
tating community collaboration. The persistence layer
is implemented as a RDBMS so that database reports
can be generated to meet regulatory requirements.

Using Web 2.0 technology for team collaboration
and project internal documentation purposes is state-
of-the-practice; layered software architectures and do-
main modeling are known concepts as well. We com-
bine these technologies in a novel way, and apply them
to the domain of architectural decision knowledge ex-
change. Key features of the ADkwik knowledge mana-
gement approach include pre-population of content, a
rich domain model with decision relationship
management, support for collaborative decision
making, and project result sharing over the Internet.
ADkwik has been tested by a small number of early
adopters. Extended user tests are planned already.

A critical success factor for ADkwik is to create
incentives for users to contribute, not only consume,
content, which according to our experience has been a
challenge for many industrial knowledge management
approaches in the past. Through close contacts with
practicing architects, e.g., via a CoP, we have con-
tinuous access to up-to-date project results and lessons
learned which have to be quality assured and generali-
zed before they can be added to the knowledge base.
Architectural decision engineering is a broad, complex,
and continuously changing domain. Therefore, keeping
the organization of the hierarchical classification of the
decision space consistent and manageable is another
important factor for future success.

Future research work will investigate additional
use cases. For instance, we plan to study design space
pruning and recommendation making algorithms.
When team collaboration support becomes available
on top of the Eclipse platform, additional integration
opportunities will arise. Improving usability even
further is another focus area. Finally, we are interested
in the interdisciplinary aspects of architectural decision
making. For instance, will investigate the relationship

of architectural decision knowledge with project mana-
gement concerns such as effort estimations, status
reporting, and work breakdown structure creation.

References
[1] Tyree, J., Akerman, A., Architecture Decisions:
Demystifying Architecture, IEEE Software, 22 (2005)
[2] Gongla P., Rizzuto C.R., Evolving Communities of
Practice: IBM Global Services Experience, IBM
Systems Journal Vol. 40, 4/2001
[3] Zimmermann O., Koehler J., Leymann F., The
Role of Architectural Decisions in Model-Driven
Service-Oriented Architecture Construction,
Workshop on Best Practices and Methodologies in
SOA, OOPSLA 2006
[4] Lee J., Lai, K, What's in Design Rationale?,
Human-Computer Interaction, 6(3&4), 1991
[5] MacLean A., Young R., Bellotti V., and Moran T.,
Questions, Options, and Criteria: Elements of Design
Space Analysis, Human-Computer Interaction, 6
(3&4), 1991
[6] Robbins J. E. , Hilbert D. M. , and Redmiles D. F.:
Extending Design Environments to Software Architec-
ture Design, KBSE 1996
[7] Farenhorst R., de Boer R., Deckers R., Lago P.,
van Vliet H., What’s in a Domain Model for Sharing
Architectural Knowledge?, SEKE 2006
[8] Kruchten P., Lago P., van Vliet H, Building Up and
Reasoning About Architectural Knowledge, QOSA
2006
[9] Fowler M., Patterns of Enterprise Application
Architecture, Addison Wesley 2003
[10] Tang W., Ali Babar M., Gorton I., Han J., A
Survey of the Use and Documentation of Architecture
Design Rationale, WICSA 2005
[11] Abrams S. et al, Architectural thinking and
modeling with the Architects' Workbench, IBM
Systems Journal Vol. 45, 3/2006
[12] Jansen A., Bosch, J., Software Architecture as a
Set of Architectural Design Decisions, WICSA 2005
[13] Ali Babar M., Gorton I., Jeffery R., Capturing and
Using Software Architecture Knowledge for Architec-
ture-Based Software Development, QSIC 2005
[14] IBM QEDWiki,
http://services.alphaworks.ibm.com/qedwiki
[15] IBM developerWorks,
http://www.ibm.com/developerworks
[16] Booch G., Handbook of Software Architecture,
http://www.booch.com/architecture

260

Improving Usability of Web Systems with Similar Business Objectives
Rashid Ahmad, Zhang Li, Farooque Azam
School of Computer Science & Engineering

Beijing University of Aeronautics & Astronautics (BUAA)

No.37, XueYuan Road, HaiDian District, Beijing 100083, P. R. China

{r.ahmad, lily, farooque}@buaa.edu.cn

Abstract
Large web systems are being made so complex that often
the users have to make excessive amount of navigational
efforts to complete their tasks. This inflicts heavy
navigational burden upon users, thus seriously damaging
usability of the web based systems. In this paper, we
present findings from our recent empirical study of the
websites for usability improvement of the web based
systems. Our findings are based on the analysis of an
experimental data obtained from the prospective students
who were invited to interact with the websites of few world
class universities to perform a information search task. The
data collected in first phase allows us to determine that
despite active research in the area of usability engineering,
the users still experience heavy ‘navigational burden’
while performing same task using similar systems. Based
on this analysis we proposed to resort to ‘Generic
Information Architecture’ as a standard for organizations
in public domain serving similar functions such as
universities, hospitals etc. In the second phase, to support
our idea, we developed artificial websites (with minimal
content and no functionalities) for these universities with
generic information architecture and repeated the same
experiment. We allowed the prospective students to access
these artificial sites from our experimental site. In this
paper we report the results from the second phase.
Comparing results with those of first phase we observed
dramatic improvement in the usability. This work shows the
strength of the generic-ness of the information architecture
and demonstrates extraordinary improvement in the
usability of the web systems which serve similar business
objectives.

Keywords
Usability, Generic information architecture, Navigational
burden.

1. Introduction
Usability is now viewed as issue of human rights. Guru of
usability Mr. Nielsen [1] says that “usability is an ideology
-- the belief in a certain specialized type of human rights:
The right of people to be superior to technology i.e. if
there's a conflict between technology and people, then
technology must change. And the right of people to have
their time respected i.e. awkward user interfaces waste
valuable time”. Web professionals talk about user

experience as a way to describe user’s successes, failures,
and thoughts about these events as they browse or complete
tasks on the Web. So, for example, we might say that a
particular site or application has a positive user experience
or a negative user experience. [2] It is in fact the user
interface design and the information architecture that earns
this positive or negative user experience for the websites.
Organizations in fact ignore the preference of functionality
over the aesthetics. Many organizations serve similar
business objectives e.g. universities, but their user interface
would be so different (different in all respects i.e. look and
feel, content and navigational structure) that a user
performing same task on one institution’s website will not
feel any improvement in familiarity with the website
content while he performs the same task on the other
institution’s website. The navigational burden experienced
by the user in performing the task on one institution’s
websites remains same while he performs same task on the
other institution’s website or sometimes is even more. This
‘familiarity’ and ‘navigational burden’ is the focus of our
work.

In our previous work (we call it phase 1) reported in [3] we
conducted an experiment on the websites of four
universities of world class repute. We determined that
usability of the website is not their focus. Having explored
one website for a certain task, the user does not feel any
ease in performing same task on another university
website. This is what we have proved in our previous work
with the help of an empirical study. We then proposed that
we should resort to ‘Generic Information Architecture” as a
standard for all the organization in public domain which
serve similar business objectives.

In this work (we call it phase 2), we report the results of the
experiment conducted on the artificial websites for these
Universities after implementing out idea of generic
information architecture. We compared the result with the
previous work and found a dramatic improvement in the
usability of these website.

This paper is structures as follows: In section 2 gives the
motivation. Section 3, gives background and short
summary of our previous work i.e. phase 1. Section 4
reports the results of the experiment on the artificial
websites with generic information architecture i.e. phase 2.
In section 5 we compare the results of both the phases and
we witness a remarkable improvement in the usability.

261

2. Motivation
The reason behind the success of Microsoft products is its
generic user interface. Analogically speaking, when a user
learns how to work in the environment of Microsoft Word,
he takes no time to learn their other products because he
then knows for saving a document he has to go to ‘File’
tab. He also knows that for editing purpose, he can find
tools in ‘Edit’ tab and so on. He only has to learn few extra
functions that might be specific to the new Microsoft
product.

Moving this analogy to our generic information
architecture for web based system; when a user explores
one website for first time, will have increased familiarity in
his next visit to the Website serving similar function. This
will improve and increase understanding & familiarity of
the users which will result in reduction of navigational
burden.

Other than reducing the navigational burden, many other
advantages are envisaged. For example: Statistically
speaking, this will reduce the unwanted network traffic
amazingly. Unfamiliarity requires that users locate
information through trial and error [4], increasing the
traffic that the network experiences and the likelihood of
choosing incorrect paths will be decreased and will
improve efficiency of the servers/routers. Similarly work
load of web servers will be reduced proportionally as the
user will spend less time to use the services of the servers
and will accomplish their task quickly. This reduction in
network traffic and web server load can also be researched
through empirical analysis. This will also allow
implementing ISO and other standards on usability in real
sense. This will facilitate the development of CASE tools
for automated development of User Interfaces.

3. Background
In this section we discuss the background and give a short
summary of our previous work.

3.1 Navigational Burden
In the recent past the web has become the key vehicle for
accessing the organizational applications. These
applications often provide essential business, educational
or government services, and hence the quality of the user
interaction and the extent to which users are able to achieve
their goals is vital to the success of the system. Given this,
effective design of the web application interface is crucial.
This in turn raises the issue of what is actually meant by the
effective design? Effectiveness can be defined in terms of
the ability to support the user’s goal; yet for web
applications these goals are typically both complex and
diverse, with different users having different expectations
and objectives. [5] This definition again raises an issue of
what is actually meant by “ability to support the user’s
goals”? This ability can be defined in terms of navigational
effort and cognitive burden a user has to suffer before he

achieves his goal. Together these efforts can be termed as
‘Navigational Burden’. Navigational burden is inversely
proportional to the definition of the usability. The heavy
the navigational burden, the worst would be the usability of
the website.

3.2 Test Hypothesis
In phase 1 we had set following hypothesis which was
falsified by the results of our empirical study: “Websites A,
B, C and D have common business objectives i.e. serving
similar function (such as Universities, Banks etc).
Performing a task, of retrieving particular information, on
Website A and then repeating the same task on Website B
will increase the familiarity of the user with the contents
(information architecture) of these websites. Thus, the
same user, if repeats the same task on Website C, will
acquire the target information with comparatively less time
and with minimum possible number of clicks i.e.
navigational burden will be reduced.”

3.3 Adopted Approach
We had taken the approach as mentioned in [6] that the
number of usability problems found in a usability test with
n users is: N (1-(1-L)n)
Where N is the total number of usability problems in the
design and L is the proportion of usability problems
discovered while testing a single user. The typical value of
L is 31%, averaged across a large number of projects
authors [6] studied. Plotting the curve for L=31% gives the
following result (Figure 1):

Figure 1: Number of users required to
find usability problem, source: [7]

The curve clearly shows that you need to test with at least
15 users to discover the usability problems in the design.

3.4 Research Methodology
In the first phase we invited respondents to interact with
the websites of few world class universities to perform a
search task of retrieving particular information. We asked
the respondents to repeat the same task on all the four
websites. We noticed that the respondents did not observe
any improvement in ‘understanding & familiarity’ with the
website content while performing the same task on other
institution’s website. The focus of the study was to
examine the websites from the perspective of a student who
was considering enrolling in a post graduate course of his

262

interest after graduation in his country and documenting
the information on these sites.

3.5 Respondents
A combination of postgraduate and undergraduate students
enrolled in different majors and in different universities of
different countries was invited to participate in the study.

3.6 Adopted Procedure
We sent an email to the respondents. The email included a
Requirement Statement (Figure 2) to explain to them what
is required of them to do. The search for information began
on the institution’s main page.

Requirement Statement
You are an international student and you have recently graduated from
your country. Now you are preparing to take admission in Master of
Information Technology OR Master of Computer Science OR Master of
Software Engineering (what ever option is available in the target
University). You have selected 4 Universities (UTS Australia, MIT USA,
Oxford University UK, and University of Toronto Canada). You will visit
the websites of these Universities to find information according to the
following requirements (requirement 1 and 2) given below.
While searching for this information you will have to count two things: 1)
Total time it took to reach the required information, 2) Total number of
clicks it took to reach the required information.
When to start counting time and clicks: Time and Click counting starts
from the first click after the University home page appears.
When to stop counting time and clicks: When you reach to the page
where you can read the desired information or you are ready to download
the desired information.
1. Requirement No 1: Find the information you will need for admission

application for example:
a. Whether or not, the University is offering the desired course.
b. Course code, duration, pre-requisites and credits hours etc.

2. Requirement No 2: Download admission application form/kit for the
desired course (Do not actually download the form/kit but just stop
counting time/clicks when you reach to the page where you are ready to
download).

Please fill in the following columns:

Requirement 1 Requirement 2
Site visited Time

(Min) Clicks Time
(Min) Clicks

Access Media (Dialup, ADSL, LAN etc):

Figure 2: Requirement statement

3.7 Results and Analysis (Phase 1)
Data we received from the respondents was analyzed
statistically. We found that the results falsified our test
hypothesis. We therefore proposed: that we should resort to
‘Generic Information Architecture’ as a standard for
organizations serving similar functions such as universities,
banks and hospitals etc. For detail discussion please see
[1].

4. Experimentation Phase 2
In the second phase, to support our proposal, we developed
artificial websites (with minimal contents and no
functionalities) for these universities with Generic

Information Architecture and repeated the same experiment
as was did in first phase. This work was carried out in two
steps. Below we discuss these steps in detail.

4.1 First Step
In first step we just developed an artificial user interface
for the front page (home page) of these universities with
some generic-ness. These artificial interfaces were
integrated to the original information architecture of the
universities. We allowed the prospective students to access
these artificial sites from our experimental website [8].
A combination of postgraduate and undergraduate students
enrolled in different majors and in different universities of
different countries was invited to participate in the study.
Of 30 students invited, 18 (60%) volunteered to participate.
Of 18 volunteers 10 were postgraduate (PhD) students. As
per our adopted approach mentioned in section 3.3, we
included the first 15 results received, in our data analysis.
Rest of the methodology was same as in phase 1. The
respondents were given the same requirement as mentioned
in section 3.6.

4.2 Second Step
In the next step we developed complete artificial websites
introducing premeditated generic-ness to few more layers
in the informational architecture behind the homepage and
repeated the same experiment. We also repeated this
experiment in the lab. The intention of this test in lab was
to remove the internet delays and to provide similar test
environment to all the respondents. We observed that in
both the experiments the usability of the websites improved
dramatically.
Again the same students who volunteered for the last
experiment were requested to repeat the same experiment.
And for experiment in the lab we invited 30 local students.
Of 30 students invited, 25 (83%) volunteered to participate.
Of 25 volunteers 8 were postgraduate (PhD) students, 17
were postgraduate (MS) students. As per our adopted
approach mentioned in section 3.3, we included the first 15
results received, in our data analysis. Of these 15 data 4
were PhD student and 11 were MS. Students. The
respondents were given the same requirement as mentioned
in section 3.6.

4.3 Results and Analysis (Phase 2)
4.3.1 Data
Data we used for our statistical analysis has been placed in
Appendix A. Requirement number 2 appeared to be very
easy as in most cases the application form would be on
same page as of requirement 1 so we analyzed the data of
requirement 1 only. Average clicks were rounded up to
whole number.

263

4.3.2 Statistical analysis
First of all we found the parameters Mean: x¯, Variance: s2,
Std Dev: s which are given in Table 1 below:

Table 1. Sample set parameters
Time Clicks

Parameters
A B C D A B C D

Mean: x¯ 1.31 0.75 0.59 0.3 5 4 3 3

Variance: s2 0.47 0.10 0.19 0.1 2 1 1 1

Std Dev: s 0.68 0.32 0.44 0.3 2 1 1 1

Next we found ‘Ordinates for Normal Distribution Curves’
which suggests that acquired data is normally distributed
and a z or t distribution function can be used for data
analysis. Again to avoid too much of cluttering with the
calculations, we have placed them in Appendix B.
Statistical analysis of the data allows us to conclude that
average time taken and the number of clicks used to finish
the task is getting lesser as the familiarization with similar
kind of sites increases.

5. Comparison Of The Results
For comparison we used the following parameters (Table
2):

Table 2. Sample set parameters
Average Time Average Clicks

Parameters
A B C D A B C D

Phase 1 5.26 5.75 7.43 4.00 7 10 11 6

P-II Step 1 1.31 0.75 0.59 0.35 5 4 3 3

P-II Step 2 2.35 3.12 3.23 2.30 6 7 7 5

Average time for a university is = total time taken by all 15
students to reach to the desired page on that university
divided by 15. We compare the results of first phase with
the results obtained from both steps in the second phase.

5.1 Usability Improved
The graph in Figure 3 shows that the understanding &
familiarity of the user increases after exploring first website
(University A).

If we look at line 3 in the graph which represents results
from phase 1 where the respondents were asked to interact
with the original websites of the universities, we notice that
the understanding & familiarity of the user does not
increase after exploring first website (University A). Rather
the users experience heavier navigational burden while
performing the same task on websites B & C which is
evident from the rising line from University A to B & C.
 Line 2 in the graph represents the results from step 1 in
phase 2, where the respondents were asked to interact with
the partial artificial websites. We developed artificial user
interface only for the front page (home page) of the
websites of these universities and we integrated these
interfaces with the original information architecture of the
universities. We can notice improvement in the
navigational burden as compared to phase 1 results. The
number of clicks reduced which means the user had to
waste less time in extra clicks.
However we noticed a remarkable improvement in the
results when we asked the respondents to interact with full
artificial websites with generic information architecture.
Line 1 in the graph represents the results from this
experiment. We can see the consistent improvement after
exploring first website. A similar improvement was
observed in the time the users spent in performing the task.
The graph in Figure 4 shows that the understanding &
familiarity of the user increases, with respect to time spent,
after exploring first website (University A)

Usability Improvement Chart - Time

0

2

4

6

8

A B C D

Universities

Ti
m

e
(M

in
)

P-I results

P-II, Step-1
results

P-II, Step-2
results

Line 2

Line 3

Line 1

Figure 4: Chart showing improvement in usability

Line 3 in the graph shows the results from phase 1. This
line rises from A to B & C which indicates that the
understanding & familiarity does not improve after
exploring first website (University A). When respondents
were asked to interact with the partial artificial website, the
usability improved to some extent as is evident from Line 2
in the graph. Again we noticed a remarkable improvement
in the results when we asked the respondents to interact
with full artificial websites with generic information
architecture. Line 1 in the graph represents the results from
this experiment. We can see the consistent improvement
after exploring first website.

Usability Improvement Chart - Number of
Clicks

0
2
4
6
8

10
12

A B C D

Universities

N
um

be
r o

f C
lic

ks

P-I results

P-II, Step-1
results

P-II, Step-2
results

Line 3
Line 2

Line 1

Figure 3: Chart showing improvement in usability

264

This clearly indicates that the usability improved with
incorporating generic-ness in the information architecture
of the websites of the organization which serve similar
business objectives.

6. Critique
The most striking objection from the opponents is about the
aesthetics of the interface. Their view point is that
Universities, businesses, and other organizations all wish to
present themselves as unique to visitors of their website.
Initially when we discussed our idea of ‘generic
information architecture’ with the gurus in one of the penal
discussion [9] at International Conference on Web
Engineering (ICWE 05), Australia, we heard the same
voice there. A keynote speaker [10] Mr. Craig Erry who
was also on the penal, however, agreed to our comments

that user interfaces can be different in look and feel while
still generic in information architecture. This is what we
have proved by developing artificial websites for these
universities. Figure 5 is the screen shots of these artificial
websites which differ in look & feel but have some
generic-ness in the information architecture.

7. Future Work And Conclusion
The hypermedia aspects of web systems bring on a slew of
new design problems. It has been repeatedly shown in the
hypermedia literature that building solid navigation and
information architecture in a complex enterprise; we must
insure that information is easy to find and that the user will
not experience cognitive overhead i.e. navigational burden
while exploring the information space.

MIT USA UTS Australia,

Oxford University UK University of Toronto Canada

Figure 5: Screen shots of the artificial websites [http://www.webengineers.com.pk/artificialwebsites.htm]

Navigational Patterns build usable navigational
architectures by pushing the hypermedia paradigm one step
further. Our future work includes mining and collecting
some patterns that appear recurrently in web system design.

We are also working on translating usability guidelines to
pattern language and integrating these usability guidelines
into web engineering approaches such as UWE (UML-
based Web Engineering) and WebML (Web Modeling
Language). We have made pretty good success in this

265

direction and the work will be reported elsewhere. We
believe that this work can complement our abstract vision
of the system information architecture.

Second, we want to motivate the W3 community to record
its navigation experience in the form of patterns, as has
been done by other software communities see for example
[10]. Finally, we intend to submit our experiences from the
work presented in this paper to the World Wide Web
Consortium (W3C) so that ‘Generic Informational
Architecture’ can be considered as a standard pattern for
organizations serving similar functions such as universities,
banks and hospitals etc.

8. References

[1] Nielsen, Jakob. “Usability: Empiricism or Ideology?" Jakob
Nielsen's Alertbox June 27, 2005,
http://www.useit.com/alertbox/20050627.html

[2] Technical team hesketh.com “User Experience As Corporate
Imperative”, 2002, publication section, available online:
http://hesketh.com/publications/user_experience.pdf.

[3] Rashid Ahmad, Zhang Li, Farooque Azam (2006) “Towards
Generic User Interface for Web Based Systems Serving

Similar Functions”, Proc SERA2006, ISBN 0-7695-2656-X
IEEE Computer Society, Aug 2006

[4] Schwartz, J. P. and Norman, K. L. “The Importance of Item
Distinctiveness on Performance Using A Menu Selection
System,” Behaviour and Information Technology, 1986

[5] Xiaoying Kong, David Lowe “NavOptim: On the Possibility
of Minimizing Navigational Effort” ISSN: 0302-9743, pp
581, volume 3579 of LN C S, Springer-Verlag, July 2005

[6] Nielsen, Jakob, and Landauer, Thomas K.: "A mathematical
model of the finding of usability problems," Proceedings of
ACM INTERCHI'93 Conference Amsterdam, 1993.

[7] Nielsen, Jakob. "Why You Only Need to Test with Five
Users." Jakob Nielsen's Alertbox March 19, 2000,
http://www.useit.com/alertbox/20000319.html

[8] WebEngineers:
http://www.webengineers.com.pk/artificialwebsites.htm

[9] Craig, E. “Bridging the Gap Between the
Requirements and Design” Keynote International
Conference on Web Engineering (ICWE2005)
Sydney, Australia

[10] Patterns Library: http://hillside.net/patterns

--
Appendix A, data received from respondents during Phase 2

Time(Min) clicks
S/No

University A University B University C University D University A University B University C University D

1 0.8 0.54 0.3 0.21 4 4 3 2

2 0.53 0.26 0.14 0.11 3 2 2 2

3 2.5 1 2 1.5 5 3 5 4

4 0.41 0.37 0.24 0.18 3 3 2 2

5 1.05 0.46 0.24 0.21 4 4 3 3

6 1.2 0.63 0.3 0.23 4 3 2 2

7 1.6 0.9 0.6 0.3 4 3 3 2

8 2 1.1 0.7 0.22 6 3 3 2

9 1.1 0.8 0.7 0.33 4 4 2 2

10 2.4 1.5 0.8 0.32 7 4 2 2

11 0.9 0.6 0.6 0.4 3 3 2 2

12 0.88 0.6 0.4 0.4 3 3 3 3

13 1.06 0.7 0.6 0.3 4 3 3 2

14 0.92 0.8 0.6 0.25 4 3 2 2

15 2.3 1 0.6 0.28 6 4 2 2

Total 19.65 11.26 8.82 5.24 64 49 39 34

266

Appendix B, Statistical Calculations (Phase 2 data)

Confidence intervals: Since our data sets are based on small sample sizes (n=15 in each set), with unknown population variance and
mean, we should first of all establish the confidence intervals for the data averages for the websites A, B, C and D, using t-distribution:
95% and 99% Confidence intervals:

(1-)*100% confidence interval for population mean is given by:
For 95%, = 0.05 and for 99%, =0.01, therefore, while n=15, for n-1=14 degrees of freedom,
The values of t /2 are as follows: t0.025 = 2.145 & t0.005 = 2.997, (these values are taken from standard t-distribution table, Walpole
1976). The interval is given by: x¯ - t /2*s/ n < < x¯ + t /2*s/ n
Using above formula, confidence intervals for the data sets are as follows:

Time Clicks
95% 99% 95% 99%Uni

Min Max Min Max Min Max Min Max
A 0.932 1.688 0.782 1.838 3.589 4.944 3.320 5.213

B 0.575 0.927 0.505 0.996 2.938 3.595 2.807 3.726

C 0.344 0.832 0.248 0.928 2.141 3.059 1.959 3.241

D 0.168 0.531 0.096 0.603 1.938 2.595 1.807 2.726

Establishing critical region: From Time Data set A we have: x¯A 1.31, sA 0.682 & n 15 => v or degrees of freedom = 14
We shall test the data at 95% and 99% confidence intervals, therefore: = 0.05 and 0.01. Since we are only interested in the values falling
in the lower side of confidence interval, therefore we shall take the negative values of t , and perform the One-tailed test for 95% and 99%
confidence intervals
t-0.05 -1.761 & t-0.01 -2.624 (Values taken from Walpole, 1976) [The critical regions are based on t-distribution with v=14, therefore, these
values will be the same for all data sets for Time as well as Clicks]. We shall systematically check every sample for 95% and 99%
confidence interval and conclude about acceptance or rejection of our null hypothesis.

Test Hypotheses (for Time Sets) Test Hypotheses (for Click Sets)
Ho : x¯B, C or D = x¯A = 1.31
Ha : x¯B, C or D < x¯A = 1.31

Ho : x¯B, C or D = x¯A = 4.267
Ha : x¯B, C or D < x¯A = 4.267

Using 0.05 and 0.01 levels of significance, the critical regions are:
(a) t < -1.761 (b) t < -2.624
Computations:

Time Click
B C D B C D

x¯ = 0.751 0.588 0.350 3.267 2.600 2.267
s = 0.318 0.440 0.328 0.594 0.828 0.594
n = 15 15 15 15 15 15

Time Clicks
t = (x¯B - x¯A)/(sB/ n) = -6.82101, t in critical region for 99%
confidence
t = (x¯C - x¯A)/(sC/ n) = -6.35728, t in critical region for 99%
confidence
t = (x¯D - x¯A)/(sD/ n) =-11.3453, t in critical region for 99%
confidence

t = (x¯B - x¯A)/(sB/ n) = -6.52438, t in critical region for
99% confidence
t = (x¯C - x¯A)/(sC/ n) = -7.79512, t in critical region for
99% confidence
t = (x¯D - x¯A)/(sD/ n) =-13.0488, t in critical region for
99% confidence

Conclusions:
There is not enough evidence to accept Ho, either in Time Data or in Click Data. Conversely, there is enough evidence in the acquired data
to suggest the Ha is true. Therefore we conclude that the data indicates that the average time taken is getting lesser as the familiarization
with similar kind of sites increase.

267

Processing Manipulations of Context Information on the Web

Roberto De Virgilio
Dipartimento di Informatica e Automazione

Università degli studi Roma Tre
devirgilio@dia.uniroma3.it

Abstract. Recently, the literature proposes many ap-
proaches to system specification and interoperability based
on the used of formal models. We consider Adaptive Web
Applications: a relevant requirement is the ability to cap-
ture and manipulate context information expressed in differ-
ent and heterogeneous formats. To this aim translating het-
erogeneous contexts from one representation into another
is an important issue to facilitate the integration of such
heterogeneous data and the maintenance of heterogeneous
replicated data. In this paper we describe a general for-
malism to facilitate the integration of context information
and, based on such description, a mechanism to achieve
automatically translations between heterogeneous contexts.
Translations are specified as compositions of elementary
steps, defined by means of special operations. With these
operations, we show how it is possible to reason on the mod-
els that are provided as input and output for a translation.

1. Introduction

The increasing popularity of mobile devices, such as lap-
tops, mobile phones, and personal digital assistants is en-
abling new classes of applications targeting environments
characterized by being dynamic, mobile, reconfigurable,
and personalized spontaneously. These applications and
their targeted environments raise challenging problems for
application developers, as they have to be aware of the
variations in the execution context such as location, time,
users’ activities, and devices’ capabilities in order to tune
and adapt the behavior and functionalities of applications.
In adaptive web system, it is widely recognized that the
management of context information is a fundamental re-
quirement to take into account the limited resources of mo-
bile systems, to select data relevant to the user, to improve
the interoperability with the environment, and, in general,
to make the interaction with the system truly adaptive to
highly change scenarios of use. In this framework, the
interoperability of such applications is an important task.
Metadata is critical to all aspects of interoperability within
any heterogeneous environment. In fact, metadata is the

primary means by which interoperability is achieved and
the overall strategy for sharing and understanding metadata
consists of the automated development, publishing, man-
agement, and interpretation of models [1, 2, 5].

This scenario changes the role of context information
and semantics as compared to traditional information sys-
tems [7, 8], as now the physical environment immediately
affects and interacts with the processing of data and com-
munication. Unfortunately, current technologies do not
fully support flexible and self-adapting models based on
context. For example, if a mobile user today wants to use
the computing resources of a new environment, he/she has
to obtain the necessary information, assess it (format, se-
mantics) and figure out manually how to continue his/her
activities with the local resources of that new environment.
This is unacceptable in pervasive computing environment
and neglects the advances which have been made in other
research domains dealing with context information and se-
mantics.

The most relevant context modeling approaches identify
a context as a set of profiles [11]. It is important to under-
stand how the set of context models of interest can be de-
fined, in a simple way, and the individual models be speci-
fied. The Object Management Group has introduces a num-
ber of important standard such as MOF [4], UML [10], and
XMI [9] for data modeling in various research areas. Gener-
ally the MOF is used for modeling the adaptation specifica-
tions of a web application rather than context information,
often considered trivial input values. To this aim, in [3]
we studied the notion of generic profile and we represented
contexts by means of the General Profile Model (GPM), a
conceptual model for the uniform description of the vari-
ous aspects of a context. Based on GPM, we proposed a
rule-based conversion process to translate profiles from a
representation into another. However the web designer has
to define and select manually the different and right trans-
lations between each couple of representations. This can
be a critical problem for the interoperability of adaptive
systems, because many manipulations of context informa-
tion are needed. In the plethora of context representations,

268

different models exist, often just small variations of other
ones. Many uses of a context involve managing the change
in models and the transformation of data from one model
into another. The set of possible models is potentially huge,
as they are obtained by variants of constructs. It is probably
the case that some combinations of variants are not mean-
ingful, but with more constructs and more variants for each
of them, we get a combinational explosion of the number of
models. With this size for the space of context models, it
would be hopeless to have translations between every pairs
of models, as with n models we would need n2 translations.
If we assume that our GPM generalizes all the other models
then we need one translation for each model (from GPM)
but n can be still an unmanageable number. As a conse-
quence it becomes meaningful to specify translations with
reference to them.

This paper proposes a middleware data model that serves
as a basis for the task. Our formalism permits to define dif-
ferent Profile Models to describe the primitives involved and
the structure of a context model. Then we provide a mech-
anism to generate automatically a conversion from a Pro-
file Model into another. The idea is to have many ”basic”
translations that perform elementary steps and can be com-
bined to form actual conversions, but with a lot of reusabil-
ity. With fine-grained decompositions, the basic steps can
be reused in many other conversions. In this work, we il-
lustrate the notion of Mod operation that executes an ele-
mentary step. Therefore a major issue arises: given a set of
basic translations, how do we build the actual conversion we
need? Or, at least, how do we verify that a given sequence
of basic translations produces the model we are interested
in? The idea is that all the Mod operations are assumed to
be correct, and so, if we properly apply sequence of them,
we obtain correct translations (this is sometimes called the
”axiomatic approach” [1]).

The rest of the paper is organized as follows. In Sec-
tion 2, we illustrate the basic notions of our context mod-
eling approach, defining our formalism and the notions of
Profile Model. In Section 3 we illustrate the Mod operation
and describe the conversion process. In Section 4 we de-
scribe a practical implementation. Finally, in Section 5 we
draw some conclusions and sketch future work.

2. Context Modeling

In this section we illustrate a general formalism to represent
contexts, and the special notion of Profile Model.

2.1. General Profiles

A general profile is a description of an autonomous aspect
of the context into which the Web site is accessed and that

Unordered

sequence

Key
(K)

Choice

External

Reference

(eR)

basic primitives

Ordered
sequence

Simple

Attribute

(sA)

Complex

Attribute

(cA)

Dimension
(D)

Profile
(P)

Unordered

sequence

Key
(K)

Choice

External

Reference

(eR)

basic primitives

Ordered
sequence

Simple

Attribute

(sA)

Complex

Attribute

(cA)

Dimension
(D)

Profile
(P)

Figure 1. Basic Primitives of general profiles

should influence the structuring and presentation of its con-
tents. Examples of profiles are descriptions of the user, the
device, the location, and so on.

Our formalism presents a quite limited set of constructs,
that we call basic primitives, to describe, in a graphical way,
a conceptual representation of a context, as shown in Fig-
ure 1. Principal constructs are the dimension and the at-
tribute. A dimension is a property that characterizes a pro-
file. Each dimension is described by means of a set of at-
tributes. Attributes can be simple or composite. A simple
attribute has a domain of values associated with it (printable
values such as string, integer, boolean and so on), whereas
a composite attribute has a set of (simple or composite) at-
tributes associated with it. It is possible to distinguish two
roles for a simple attribute; it can be a key or an external
reference to a component of a profile. It is possible to rep-
resent ordered and unordered sequences of attributes and a
choice of a set of attributes, whose instances can be chosen
among instances of the attributes (for instance a <choice>
of an XML-schema). Finally the cardinality is expressed
as a pair of integer values (Min,Max) that corresponds to a
primitive whose instances are sets of instances of the prim-
itive associated with it (these sets must have a cardinality
included between Min and Max).

Definition 1 (Profile and context) Given a set of dimen-
sionsD1, . . . , Dn over a set of attributesAi,1 . . . Ai,ki (1 ≤
i ≤ n) respectively, a (general) profile over D1, . . . , Dn is
function that associates with each simple attribute of every
dimension a value taken from its domain. A context is a
collection of profiles.

As an example, Figure 2 reports a graphical representation
for the context schema of a client A composed by profile
schemes for the user and the location. For instance, a user
profile of a client can be represented by means of the di-
mension account, described by a choice between the simple
attribute e-mail (so an access without a registration) or the
complex attribute login, composed by the simple attributes
username and password (so an access with a registration),
and so on. The location profile presents the dimension GSM
to characterize location information from the GSM cells:
each cell has a unique ID, expressed by the key Cell-ID.
We indicate the base type associated inside the attribute (for
instance I means integer, R real and S string).

269

User

Account

Client A

E-mail

S

E-mail

S Login

Pwd

S

Pwd

SS

USname

S

USname

Location

GSMGps

I

latitude longitude

I I

Cell-ID Average
signal

strength

country

S

country

S

Average
Cell range

R R I

#cells

Figure 2. An example of context

2.2. Profile Model

Through our formalism, we want to describe the model of
a profile by means of the constructs involved and its struc-
ture. To this aim we introduce the following notion of Pro-
file Model.

Definition 2 (Profile Model) We define a Profile Model
PM as a special Multi-Graph < L, V,E, ω, vc > where

• L is the set of labels, representing the basic primitives
of our formalism such as { �,©, . . . })

• V is the set of vertexes {v1, v2, . . .}, each one repre-
sented by a pair (OID, l), where OID is the identifier
and l ∈ L is the label of the vertex

• E is the set of direct weighted edges (vi, vj) that means
”vi is composed by vj”. The graph allows self loops
such that vi = vj

• ω is the function to assign a weight to an edge
in E. A weight on an edge (vi,vj) is a pair
(min,max) that represents the type of cardinality of
vj respect to vi. The weights admissible are in
{(0, 1), (1, 1), (0, n), (1, n), (n, n)} and it is possible
to establish an ordering between two weights ω1 =
(a, b) and ω2 = (c, d) such that ω1 ≤ ω2 if a ≤ c and
b ≤ d, where it is 0 < 1 < n.

• vc is the vertex (OID,�) representing the center of the
graph.

A Profile Model would describe the representation used for
a profile by means of primitives involved and how these
primitives are combined (or composed) in the profile. For
instance, Figure 3 shows the Profile Model PM1. The
model can articulate a profile in several dimensions. Each
dimension can be composed by simple attributes of string

PM P

SS II

SS II
SS II

SS II

PM

Figure 3. An example of Profile Model

or integer values, or by composite attributes. Each compos-
ite attribute can be composed by simple attributes of string
or integer values or, recursively, by composite attributes of
the same type. In PM1, the function ω assign to each edge
the type of cardinality (1,n): each component can be artic-
ulated by other components using the cardinality (1,1) or
(1,n). Figure 3 shows an example of profile P described
by PM1. In a profile schema the cardinality of default is
(1,1). In a Profile Model each vertex is identified by an
OID, for instance generated by using Skolem functions [6],
and characterized by a label, that represents a basic primi-
tive. So the set L represents the basic primitives involved in
a profile: for instance in the previous example we have di-
mensions, simple and composite attributes, and basic types
such as string and integer. The set E represents how the
primitives involved are composed in a profile. The func-
tion ω describes the minimum and maximum cardinality to
articulate a component.

A fundamental aspect is that different Profile Models can
be compared making use of a subsumption relationship, de-
noted by �. Intuitively, a Profile Model PM1 subsumes
a Profile Model PM2 if PM1 represents all the types of
profiles that PM2 can represent, and more others.

More precisely, we first say that two vertexes v1 =
(OID1, l1) and v2 = (OID2, l2) are similar, denoted by
v1 ≈ v2, if l1 = l2. Then two pathes of vertexes are sim-
ilar if the vertexes of the pathes, in order, are similar. The
subsumption relationship is then defined as follows.

Definition 3 (Subsumption of Profile Models) Given two
Profile Models PM1 =< L1, V1, E1, ω1, vc1 > and
PM2 =< L2, V2, E2, ω2, vc2 >, we say that PM1 is sub-
sumed by PM2, PM1 � PM2, if for each vertex v1 ∈ V1 it
exists a vertex v2 ∈ V2 such that for each edge (v1, v′) ∈ E1

it exists the edge (v2, v′′) ∈ E2 so that (v1, v′) ≈ (v2, v′′)
and ω1((v1, v′)) ≤ ω2((v2, v′′)).

As an example, given the Profile Models reported in Fig-
ure 3, we have that PM2�PM1.

We can define meet, join and difference between Profile
Models. Intuitively, given two Profile Models PM1 and
PM2, the meet (�) represents the greatest Profile Model
that is able to generate the productions (types of profile)

270

PM PM

Figure 4. Example of operators (�), (�) and (−)

in common between PM1 and PM2, the join (�) the least
Profile Model that is able to generate all the productions of
PM1 and PM2, and the difference (−) the greatest Profile
Model that is able to generate the productions of PM1 not
in common with PM2.

Definition 4 (Meet of Profile Models) The meet of two
Profiles PM1 and PM2, denoted by PM1�PM2, is a Pro-
file Model PM such that, PM�PM1, PM�PM2 and, for
each Profile Model PM ′ 	= PM such that PM ′�PM1,
PM ′�PM2, it is the case that PM ′�PM .

Definition 5 (Join of Profile Models) The join of two Pro-
file Models PM1 and PM2, denoted by PM1�PM2, is
a Profile Model PM such that, PM1�PM , PM2�PM
and, for each Profile Model PM ′ 	= PM such that
PM1�PM

′, PM2�PM
′, it is the case that PM�PM ′.

Definition 6 (Difference of Profile Models) The differ-
ence of two Profile Models PM1 and PM2, denoted
by PM1 − PM2, is a Profile Model PM such that,
PM�PM1, PM�(PM1�PM2) = ∅ and, for each
Profile Model PM ′ 	= PM such that PM ′�PM1, it is the
case that PM ′�PM .

Figure 4 shows some example of meet, join and difference.
The comparison between two Profile Models can be mea-
sured by the following idea of distance.

Definition 7 (Distance between Profile Models) Given
two Profile Models PM1 =< L1, V1, E1, ω1, vc1 >
and PM2 =< L2, V2, E2, ω2, vc2 >, and the difference
PM = PM2 − PM1 =< L, V,E, ω, vc >, the dis-
tance of PM1 from PM2, δ(PM1, PM2), is given by
|L2 − L1|+ |E|.
The distance δ(PM1, PM2) measures how much the Pro-
file Model PM1 can’t interpret the Profile Model PM2. In
other words, this distance evaluates how many primitives
and combinations of them in PM2 are not comprehensible
by PM1. For instance, in the Figure 4 the distance of PM2

from PM1, δ(PM2, PM1), is 6. In this case PM2 can’t in-
terpret the composition of composite attributes in other ones
(the self-loop).

3. Conversion of Contexts

Given a source profile PIs of a profile schema PSs, de-
scribed according to a Profile Model PM1, we need to gen-
erate a target profile PIt described according to a Profile
Model PM2, containing the same information as PIs. This
is done by a conversion (C) of PIs from PM1 into PM2,
denoted as PIt = CPM1⇒PM2(PIs). In this section we
present a mechanism to generate automatically a conversion
by means of special Mod operations.

3.1. Mod (Γ)

An operation Mod (Γ) takes as input a profile (schema)
P1 according to a Profile Model PM1 and returns a pro-
file (schema) P2 according to a Profile Model PM2 con-
taining the same information of P1, denoting such as
ΓPM1→PM2(P1) = P2. A Mod operates an elemen-
tary translation of a profile (schema) from a representa-
tion into another, for instance of some primitives. For in-
stance the Figure 5 represents a Mod operation to trans-
late a profile schema from a Profile Model that articu-
lates the schema on n levels, making use of composite at-
tributes, into a Profile Model that articulates the schema on
2 levels, making only use of simple attributes (and exter-
nal references) and no composite ones. Intuitively given a
Mod operation ΓPMi→PMj , if we apply the operation to
a profile P described by a Profile Model PM such that
PMi�PM then the operation will translate the part P ′ of
P described by PMi into P ′′ described by PMj . The re-
sulting profile will be described by a Profile Model such as
(PM − PMi)�PMj . So we can denote also the following
ΓPM1→PM2(PM) = (PM − PM1)�PM2.
Let’s consider a prefixed set of Mod operations � =
{ΓPM1→PM2 ,ΓPM3→PM4,...}. From �, we can define a
special graph as follows

271

21)(
21

PSPSPMPM =Γ →

Figure 5. An example of Mod operation

))(()(
981391 PMPMT PMPMPMPM →→ ΓΓ=

PM1 PM14

PM10

PM6

PM4

PM11

PM12

PM7

PM3

PM5

PM2

PM15

PM9

PM16

PM8
PM13

PM1 PM14

PM10

PM6

PM4

PM11

PM12

PM7

PM3

PM5

PM2

PM15

PM9

PM16

PM8
PM13

PMPM

T1

PM1 PM14

PM10

PM6

PM4

PM11

PM12

PM7

PM3

PM5

PM2

PM15

PM9

PM16

PM8
PM13

PM1 PM14

PM10

PM6

PM4

PM11

PM12

PM7

PM3

PM5

PM2

PM15

PM9

PM16

PM8
PM13

PMPM

T1

Figure 6. An example of Model Graph

Definition 8 (Graph of Profile Models) We define Model
Graph on a set of Mod operations � as a graph MG =
{NMG, EMG} not connected, directed and acyclic, where

• NMG is the set of nodes representing Profile Models

• EMG = {LMG, UMG}, where

– LMG is the set of direct edges (ni, nj) such that
∃ Γni→nj

∈ �

– UMG is the set of dashed edges (n′
i, n

′
j) such that

n′
i�n

′
j

Figure 6 shows an example. Moreover, we introduce the
following notion of grafted node in a Model Graph MG, to
compare a Profile Model PM with MG.

Definition 9 (Grafted Node) Given a model graph MG
and a model set PM , a node PM ′ ∈ NMG is a grafted
node respect to PM if PM ′�PM and we say that PM is
comparable with MG.

In MG a path {PM1, PM2, . . . , PMn−1, PMn} repre-
sents a set of elementary translations that we can apply se-
quentially to a Profile Model PM comparable with MG,
such that ΓPMn−1→PMn(. . . (ΓPM1→PM2(PM))).

3.2. Automatic generation of a Conversion

Given a set of Mod operations �, a conversion C is per-
formed by a sequence of Mod operations from �.

Definition 10 (Conversion) Given two Profile Mod-
els PM1 and PM2 and a set of Mod opera-
tions �, a conversion C from PM1 into PM2

is a sequence {Γ1,Γ2, . . . ,Γn} ∈ � such that
δ(Γn(Γn−1(. . . (Γ1(PM1)))), PM2) = 0.

We have to select the sequence of Mod operations of � such
that the Profile Model resulting by applying the sequence to
PM1 has distance zero from PM2.
Therefore a conversion from PM1 into PM2 can be gener-
ated automatically as follows.

1. we generate a Model Graph MG from �. For the na-
ture of the Mod operations, the Model Graph is not
connected, directed and has to be acyclic.

2. we set the current Profile Model PMc to PM1, the
target Profile Model PMt to PM2 and the sequence S
of Mod operation to ∅.

3. we have to select one or more pathes in MG. So
we search in MG the set of grafted nodes Gn =
{gn1, gn2, . . . , gnk} respect to PMc, ordered respect
the increasing distance from PMt;

4. we operate a backtracking strategy on each gni of Gn.

5. we select a path p of MG starting from gni as follows:
(i) from a node select the outgoing edge that applied
to PMc returns the Profile Model with the lowest dis-
tance from PMt, (ii) stop the selection if we arrive in
a node without outgoing edges or each outgoing edges
makes greater the distance from PMt.

6. add the selected path p to S and recalculate with p the
new PMc

7. if δ(PMc, PMt) = 0 then return S, otherwise select
a new set of grafted nodes in MG respect to PMc and
iterate the backtracking.

8. the fault condition of the backtracking is to obtain a
set of grafted node empty. So we go back consider-
ing S without the last path added and selecting another
grafted node, as shown in Figure 7.

9. if it is not possible to find a sequence S such that
δ(PMc, PMt) = 0, then the web engineer has to
write the missing elementary translations and update
the set �.

272

T1 T2 T3

T10T8T4 T5

T11T9T7T6

S = {T2}S = {T1} S = {T3}

S = {T1,T4}

S = {T1,T4,T6} S = {T1,T5,T7}

S = {T1,T5}

Figure 7. The backtracking strategy

Figure 8. User-interface of the tool

4. Implementation

It was extended the tool presented in [3], introducing a
module to define Profile Models. Figure 8 shows a screen-
shot of the user-friendly interface. The Mod operations are
written as production rules by the syntax described in [3].
Profile Models are implemented using RDF/XML syntax
and the Mod operations as a set of RDF inference rules
(http://jena.sourceforge.net/inference/).

5. Conclusions and Future Work

In this paper we proposed a data model that consists of a
general abstraction of existing formats that allows to define
different context models. The data model proposed is en-
riched by special operators (Mod) to embed the conversion
of context information from one representation into another.
The conversion process is resulting by a composition of ele-
mentary translation steps. We illustrated a technique to rea-
son and generate automatically a conversion by the form of
a sequence of Mod operations. The results presented in this
paper are subject of further conceptual and practical inves-
tigation. From a conceptual point of view we believe that it
is possible to define a framework for context management,
as a new approach to manipulating context information. We
are defining an algebra of operators (a lattice) to embed the
main functionalities of context management. This frame-
work can be an important support in different application

scenarios such as contexts translation, contexts integration
or contexts classification by means of clusters. From a prac-
tical point of view, an important issue strongly suggests that
an implementation of context management would provide
major programming productivity gains for a wide variety
of context management problems. Of course, to make this
claim compelling, an implementation is needed.

References

[1] P. Atzeni and R. Torlone. Management of multiple
models in an extensible database design tool. In Proc.
of the 5th Int. Conference on Extending Database Tech-
nology: Advances in Database Technology (EDBT’96),
Avignon, France, 1996.

[2] P. A. Bernstein. Applying model management to clas-
sical meta data problems. In Proc. of the 1th Bien-
nial Conference on Innovative Data Systems Research
(CIDR’03), CA, USA, 2003.

[3] R. De Virgilio and R. Torlone. Modeling Heteroge-
neous Context Information in Adaptive Web Based Ap-
plications. In Proc. of 6th ACM Int. Conference on Web
Engineering (ICWE’06), California, USA, 2006.

[4] M. J. Emerson, J. Sztipanovits and T. Bapty. A
MOF-Based Metamodeling Environment. In J. UCS,
10(10):1357-1382, 2004.

[5] R. Hull and R. King. Semantic database modelling:
Survey, applications and research issues. In ACM Com-
puting Surveys, 19(3):201-260, 1987.

[6] R. Hull and M. Yoshikawa ILOG: Declarative Cre-
ation and Manipulation of Object-Identifiers In Proc
of the 16th Int. Conference on Very Large Databases
(VLDB’90),CA, 1990.

[7] R. Kaschek, K. D. Schewe and B. Thalheim. Integrating
Context in Modelling for Web Information Systems. In
WES, LNCS, Vol. 3095, pp. 77-88, 2003.

[8] R. Pitrik. An IntegratedViewon theViewing Abstrac-
tion: Contexts and Perspectives in Software Develep-
ment, AI, and Databases. In Journal of Systems Inte-
gration, 5(1):23-60, 1995.

[9] Object Management Group. XML Metadata Inter-
change (XMI) v2.0. 2005.

[10] J. Rumbaugh, I. Jacobson and G. Booch. The Unified
Modeling Language Manual. Addison Wesley,1998.

[11] T. Strang and C. Linnhoff-popien. A context modeling
survey. In Proc. of Int. Workshop on Advanced Context
Modelling, Reasoning and Management. England, 2004

273

A Tag-Level Web-Caching Scheme for Reducing Redundant Data Transfers
Steven E. Cox, Du Zhang, Jinsong Ouyang

Dept. of Computer Science
California State Univ. Sacramento

Sacramento, CA 95819
{coxs, zhangd, ouyangj}@ecs.csus.edu

Abstract. Markup languages such as HTML and XML are
popular formats for data exchange across networks. This is
in spite of their inefficient utilization of network
bandwidth. We introduce a compaction technique that
reduces the overall size of collections of markup data by
identifying and eliminating redundant copies of common
elements. This general-purpose technique is applied to a
proxy-based web-caching scheme, Tag-Level Web
Caching (TLWC). A highlight of TLWC is its recognition
and utilization of nested markup elements. Markup
elements are treated as cacheable objects, and their nested
syntax is used to identify maximal commonalities between
requested objects and reference objects. We implement and
evaluate a prototype TLWC system consisting of server-
side proxy and client-side proxy components that intercept
HTTP requests from a web browser. The prototype is
tested on a set of web sites and is shown to reduce overall
data volumes significantly for most of the sites.

1. Introduction
While markup languages such as HTML and XML allow
easy exchange of data over networks, it is well known that
they do not make very efficient use of network bandwidth.
Markup documents are text-based, usually uncompressed,
and often include verbose meta-data. Making matters
worse, typical client-server data exchange sessions, such as
when a World Wide Web user browses a web site, involve
significant amounts of repetitive data transfer requests.
Current web-caching schemes mitigate the amount of
repetitive data transfers. Web browsers utilize caches for
HTML pages and other static files, while many popular
web sites employ distributed content caches to store their
content closer to web clients. However, a high amount of
repetition still occurs with markup language data transfers.
In the case of web pages, standard URL-based caches are
only effective for static pages. Many web sites serve
dynamic content where pages are continually changing.
A solution to this problem is Tag-Level Web Caching
(TLWC). Markup elements, rather than entire pages, are
cached on the client. In this scheme, the web server (or a
proxy server standing between the web server and the
client) gives each element an identifier, which it passes
along to the client when the element is first transferred. The

server stores the element and its identifier in a hash map for
future use. In this data structure, the element string (or a
digest of this string) serves as the key while the identifier is
the value. Any element that contains child elements is
abbreviated by replacing child element strings with special
marker tags that reference the child elements.
The client also caches the element and its identifier in a
hash map. On this end, the identifier is the key and the
element string is the value. The second time the element is
encountered in a response message, the server replaces the
element with its identifier. As it parses the response
message, the client replaces the identifier with the element
with which it is associated.
Compared to traditional web caches, TLWC has the
following potential benefits:

It can eliminate fine-grained redundancies. In contrast,
most web caches work at the document level, meaning
they cannot deal with small differences between
documents.
TLWC can work in conjunction with data compression
techniques such as gzip.
TLWC works transparently to existing browser caches.
When TLWC is implemented using proxies, no
participation by the origin web server is required.
TLWC normally requires no additional HTTP round
trip times (RTTs).

2. Background
Automated methods of reducing redundant data transfers
over the Web can be generalized as falling into three
categories: caching, compression and differencing. Of
these, caching is most widely used. Most web caches index
objects using URLs. If a requested URL matches a cached
URL, and if it is determined that the cached version is up-
to-date, a cache hit can occur [1]. However, there are three
common occurrences that confound URL-indexed web
caches: 1) Many web sites are dynamic, meaning that each
request to a single URL can produce a different response;
2) identical web objects are often served from different
URLs, a phenomenon known as aliasing [2]; and 3) the
complexity of HTTP 1.1 makes it difficult to configure
servers and proxies to perform caching optimally [1][2].

274

Data compression is also widely used on the Web. Two
web compression algorithms, gzip [3] and deflate [4], are
freely available and well supported by HTTP 1.1, by most
web servers and by most browsers. However, compression
works only on one page at a time; thus, redundancies
distributed over multiple documents are missed.
Differencing, also known as delta encoding or delta
compression, is the expression of one object as a
difference, or delta, of another. A proposal from the
Internet Society published in RFC 3229 [5] outlines how
delta encoding can be used to compress HTTP responses.
However, the difficulty of managing prior instances of web
pages has slowed the actual use of delta encoding on the
Web.

3. Related Work
The inability of URL-based web caches to suppress the
transfer of duplicate objects is the subject of a detailed
study by Mogul [6]. The paper also describes how MD5
digests [7] can be used to index cached web objects by a
hash value rather than by a URL. Mogul and Kelly expand
this idea in [2] and (with Chan) in [8]. MD5 digests are
also used by Santos and Weatherall in an approach to
duplicate suppression described in [9]. Their system
introduces a compressor-decompressor configuration
designed to reduce traffic over a congested network hop.
Other researchers have focused on methods of caching
fragments of web pages rather than entire pages. An early
work in this area comes from Douglis, Haro and
Rabinovich in [10]. That approach requires that web page
authors identify cacheable page fragments at the time of
content creation. A more automated approach is introduced
by Ramaswamy, Iyengar, Liu and Douglis in [11]. Other
fragment-level caching techniques eliminate the need for
origin servers to participate in the fragmentation process.
Digests, using algorithms such as MD5 or SHA-1 [12], are
normally used to fingerprint and index fragments based on
their string value. Such fingerprints are applicable to web
caching, as shown by Rhea, Liang and Brewer in [13].
Their value-based web caching (VBWC) system involves a
parent proxy cache that communicates with a child proxy
cache over a slow network connection. The parent proxy
divides pages into blocks averaging 2KB in length,
indexing each block by its MD5 fingerprint. Another
fragment-based approach is the “cache-based compaction”
technique proposed by Chan and Woo in [14].

4. TLWC Scheme
TLWC uses a pair of separate, synchronized caches. The
server-side cache can be maintained either at an origin
server or by a proxy located anywhere between the server
and the client-side proxy. The client-side cache can be
located at the client or anywhere between the client and the
server-side cache. For our prototype implementation of

TLWC, we adopt an architecture where the client-side
proxy is located on the same host as the client web browser
and the server-side proxy is located at the other end of a
slow network link. Another design choice was whether to
support single or multiple clients. We choose the more
challenging proposition of supporting multiple clients. The
system model overview is shown in Figure 1. The basic
sequence of events is shown in Figure 2.
This dual proxy architecture is transparent to origin servers.
The only special requirement of the client browser is that it
assigns the client-side proxy as its HTTP proxy. Note that
TLWC works only for unencrypted markup text messages
over HTTP. HTTP responses containing plain text, image
and other media files are routed through the proxy chain,
but are not encoded in any way.

4.1 Encoding approach
The TLWC server-side proxy checks the content-type of
every HTTP response it receives from origin servers. If the
content is either HTML or XML, the message body is
TLWC-encoded before it is forwarded to the client-side
proxy. The encoder parses the message body from
beginning to end, detecting each markup element. The
process is similar to the one used by HTML and XML
parsers to form a document object model (DOM).
However, the TLWC notion of a node is simpler than that
used by parsers that must examine the semantics of a
document. TLWC is interested in a node only as a string,
so a TLWC node is simply a sequence of characters
beginning with the left angle bracket (“<”) of an initial tag
and ending with the right angle bracket (“>”) of a

Origin
Server

Client-Side
Proxy

Client
Browser

URL Cache

Server-Side
Proxy

TLWC
Cache

1 1 1* *1

TLWC
Cache

Figure 1. System model

:Client Browser :Client-Side Proxy :Server-Side Proxy :Origin Server

Request Page

Process
Response

Send Response

Encode
ResponseSend Encoded

Response

Decode
ResponseSend Decoded

Response

Forward
Request Forward

Request

Figure 2. Basic sequence diagram

275

corresponding closing tag. If the initial tag is of a type that
does not require a separate closing tag, the character
sequence for the node ends with the right angle bracket of
the initial tag. Every node contains at least one tag. As far
as TLWC is concerned, every tag is of one of three types:
start tag, end tag or self-closing tag.

Note that in TLWC, the identity of a node is determined by
the string value rather than by semantics. Therefore
TLWC is not identical to TLWC, nor is
<name></name> identical to <name/>. Also note that
TLWC has no notion of node attributes and that any text
between a node’s start and end tags is part of the immediate
node – unlike in traditional HTML and XML parsing, there
is no notion of a text node. Figure 3 illustrates a simple
HTML document and its TLWC parse tree.
TLWC works most efficiently with markup documents that
are “well formed” as defined in the XML specification, but
this is not a strict requirement. In fact, only two of the
many specified constraints of a well-formed XML
document are relevant to TLWC. These are 1) every start
tag must have a corresponding end tag and 2) nodes must
be properly nested. TLWC tolerates documents that do not
have these properties, but works more efficiently on
documents that do. When nesting errors are encountered
during encoding, the node or nodes involved are simply
skipped over by the encoder.

4.2 Encoding technique
The TLWC server-side proxy encodes response messages
by checking every node in the message body to see if it is
already in its cache. Every node that is not in the cache is
enclosed in a pair of identifier tags that indicate that this is
a new node. If the new node has an end tag, the identifier
tags are in the form <new-id> and </new-id>.
Otherwise the identifier tags are in the form <new-id>
and </>. The enclosed node’s end tag is removed (if
present). The new node string is entered into the cache,
while the node and its enclosing id tags are sent to the
client as part of the encoded output string.
Every node that is already in the cache is replaced by a
reference identifier tag in the form <ref-id/>. The ref-
id is the identifier that was assigned to this node string
when it was first put into the cache. Figure 4 shows these
encoding rules applied to the HTML file of Figure 3. In
this example we assume an initially empty cache, so all the
nodes are recognized as new.
For purposes of illustration, the node counter in this
example is initialized at 100. However, in the encoded
document the node count appears to begin at 0 rather than
100. These are relative identifiers, calculated as the
difference from a base identifier that is added to the HTTP
message as a new header. For example, this encoded
message would include the HTTP header tlwc-base-
id: 100. Relative identifiers are used to minimize the
amount of bandwidth overhead required by the encoding
process. However, in the cache, all nodes are mapped to
absolute identifiers. Table 1 shows the contents of the
server-side cache after the proxy has encoded and
forwarded this response.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
 4.0 Transitional//EN">
<html>
 <head>
 <title>Example 1</title>
 </head>
 <body bgColor="#2f2210">
 <h1>Example 1</h1>

 </body>
</html>

doctype html

head

title

body

imgh1

Figure 3. An HTML document and its TLWC parse tree

<100/>
<3><html>
 <102/>
 <1><body bgColor="#2f2210">
 <0><h1>Example One</0>
 <104/>
 </1>
</3>

img

doctype html

head

title

body

h1

Figure 5. The encoding of the modified response

<0><!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
 4.0 Transitional//EN"></>
<6><html>
 <2><head>
 <1><title>Example 1</1>
 </2>
 <5><body bgColor="#2f2210">
 <3><h1>Example 1</3>
 <4></>
 </5>
</6>

Figure 4. The HTML document after TLWC encoding

276

Table 1. Contents of server-side cache after first encoding

Key Value
<!DOCTYPE HTML PUBLIC "-//W3C//DTD

HTML 4.0 Transitional//EN"> 100

<title>Example 1</title> 101

<head><101/></head> 102

<h1>Example 1</h1> 103

 104

<body bgColor="#2f2210"><103/><104/></body> 105

<html><102/><105/></html> 106

When the TLWC client-side proxy receives the encoded
response as shown in Figure 4, it decodes the message by
reversing the encoding process. Every pair of <new-id>
and </new-id> tags is stripped from the output string,
the enclosed node’s end tag is re-appended, and the node
string is entered into the cache. Every tag in the form
<ref-id/> is replaced by the associated node string from
the cache. The decoded output is identical to the original,
while the contents of the client-side cache are now similar
to the contents of the server-side cache – except that the
identifiers are the keys and the node strings are the values.

We next suppose that the client has re-requested this page,
and that the response from the origin server this time is
slightly different: the text in the h1 node has changed from
“Example 1” to “Example One”. When the server-side
proxy receives this response, it finds that some of the nodes
are already in its cache. The encoding of this response is
shown in Figure 5, which also shows the parse tree. In this
tree, the dark gray nodes are those that were not found in
the cache, while the white nodes are those that were found.
Table 2. New server-side cache entries after second encoding

Key Value

<h1>Example One</h1> 107

<body bgColor="#2f2210"><107/><104/></body> 108

<html><102/><108/></html> 109

There are three things worth pointing out here. First, the
title node is no longer explicitly present in the encoding,
but it is implicitly included since it is contained in the head
node (102). Second, since the h1 node has changed, all its
ancestor nodes have changed as well. Thus the html and
body nodes in this response are assigned new identifiers.
Third, new nodes are found in a depth-first manner, so the
first new node in this case is the h1 node, which is assigned
a relative identifier of 0. Its parent node, body, is relatively
identified as 1 and body’s parent, html, is identified as 2. If
there have been no new cache entries since the first version
of this page was encoded, the base identifier (provided in a

response header) would be 107. Thus the server-side cache
now contains the three new entries shown in Table 2.

At the client-side proxy, the decoding of the second
response is performed using the rules already described. As
on the sever side, the client-side cache is updated with
three new entries. Again, these new key-value pairs are the
mirror images of the new entries on the server-side cache:
the hash keys are identifiers, the values are node strings.

The basic encoding algorithm can be enhanced and fine-
tuned by adding two types of adjustable thresholds. The
first is a MIN_CACHE_LEN threshold that a node string is
compared against; if the node is shorter than the threshold,
encoding of the node is aborted. For example, a threshold
setting of 14 or greater would prevent the caching and
encoding of the node <106/>.
The second type of threshold, MIN_DIGEST_LEN, can be
used along with a digest algorithm such as MD5 to limit
the storage demands imposed by longer nodes. Nodes of
length equal to or greater than this threshold are hashed by
the digest algorithm, and the hash value is used in the cache
in place of the node string. Node digests can be used only
on the server-side cache, since the client-side cache needs
to retain the node string’s actual value.

4.3 Cache management
There are two issues that must be handled regarding cache
management: replacement and synchronization. First, when
either the server-side cache or a client-side cache reaches
capacity, it must remove old cache entries to make room
for new ones. Second, in order to avoid sending references
to nodes that are no longer in a client proxy’s cache, the
server-side proxy must know the current state of all the
proxies it is serving. Our general approach to solving both
of these problems is to make extensive use of timestamps.
Each cache entry is assigned a “last-accessed” timestamp,
which is used by a least-recently used algorithm running
independently on each proxy to choose replacement
victims. Synchronization between the server-side and
client-side proxies is achieved via the exchange of
timestamp information that is piggybacked onto HTTP
messages as special HTTP headers. Space limitations
prevent us in this paper from detailing this synchronization
protocol, but the key point is that, assuming a reliable
communication link, synchronization is achieved between
a server-side proxy and multiple client-side proxies without
additional RTTs.
Since communication links in practice are not always
reliable, TLWC also includes a technique for recovering
from synchronization errors once they are detected. When a
client-side proxy encounters a reference to a cache entry
that it has already removed from its cache, it sends a
special request to the server-side proxy to resend the
missing data. Only in this infrequent event does TLWC
require additional RTTs.

277

5. Experimental Results
In this section we report performance tests conducted using
the prototype TLWC implementation. All TLWC software
components were implemented in Java and deployed on a
pair of PCs that were connected to a LAN with a high-
speed Internet connection. On the client, we configured
Firefox to use a local proxy on the port at which the client-
side proxy was listening for requests. In turn, the client-
side proxy was configured to forward requests to the
TLWC server on a pre-configured port. For our test data,
we chose the ten web sites that were deemed to be a fair
representation of the Web in general. For each web site, we
cleared the browser cache before testing, and then
downloaded 20 pages at random. For each of the ten sites,
we repeated the 20-page test five times, and took the
average results for each site.
TLWC is orthogonal to gzip and other data compression
techniques. We believe combining data compression with
TLWC will produce better results than using either
technique on its own. However, to manage the scope of our
initial prototype, we did not implement support for data
compression. In the tests, we disabled decompression by
removing the Accept-Encoding header from the request.
Figure 10 plots the average bandwidth reduction for the ten
tested sites. The accumulated bandwidth savings for all
tested sites is shown in columns 2 and 3 of Table 4. The
formulas used to calculate the percentage of bandwidth
savings are:

Markup reduction = ((p – e) / p) * 100
 Total reduction = ((p – e) / t) * 100
Where p is the number of pre-encoded markup bytes, e is
the number of markup bytes after TLWC encoding, and t is
the total number of bytes delivered to the client (p plus all
non-markup).
To understand the amount of processing overhead required
by TLWC, we measured the amount of time used to encode
and decode each page. The overall average time needed to
encode a page was 0.158 seconds; the average decoding
time was 0.828 seconds. We also captured the numbers of
cache searches and cache hits for each page, as measured
on the server-side cache. The average results are provided
in columns 3-5 of Table 4.
For the average 20-page browsing session, TLWC initially
adds a small amount of bandwidth overhead (one or two
percent) for the first couple pages, but then begins to
provide bandwidth savings by the third page. The steep
initial curve in savings gradually flattens out. By the 20th
page, the curve is nearly flat at 44.8 percent reduction for
markup data and 22.4 percent the total bandwidth savings
after images and other non-markup files are factored in.
The test results confirm an expectation that the amount of
bandwidth savings provided by TLWC during a browsing
session is directly determined by the amount of redundant

markup data on the web site and the proportion of markup
data compared to non-markup data. Thus, the web sites that
most benefit from TLWC are those with large amounts of
common page elements and relatively few images.
Including both encoding and decoding, TLWC added less
than one second of processing overhead for the average
web page. These measurements are a function not only of
the efficiency of the algorithms, but also of the hardware
and the runtime environment. We are therefore cautious in
drawing conclusions from these measurements. However, it
is clear that encoding was significantly faster than
decoding. We believe this wide difference was due to the
fact that the decoding algorithm used was recursive while
the encoding algorithm was non-recursive.

Table 4. Average results per 20-page session

 Markup
Savings

Total
Savings

Cache
Searches

Cache
Hits

Hit
Ratio

W3 Schools 63.7% 34.8% 5,686 3,924 0.69
CNN 50.5% 20.4% 13,061 8,655 0.66
Allied
Telesis 53.8% 29.5% 4,674 3,189 0.68

Yahoo
Shopping 27.5% 20.3% 13,397 6,087 0.45

Smart
Webby 59.7% 22.0% 5,860 3,986 0.68

Wikipedia 18.4% 8.6% 8,858 2,563 0.29
Google 15.4% 13.6% 5,706 1,984 0.35
Netgear 58.5% 25.5% 7,567 5,174 0.68

CSUS Class
Schedule 58.7% 36.9% 14,411 10,385 0.72

Sun Micro 41.8% 12.1% 7,766 4,894 0.63
Average 44.8% 22.4% 8,699 5,084 0.58

6. Comparisons
At a system level, TLWC resembles several other
approaches to the problem of redundant data transfers. The
“dual-proxy” architecture is used by Santos and Weatherall
[9], Chan and Woo [14], and VBWC [13]. One criticism of
this architecture is that, in most implementations, the
server-side proxy serves only a single client. Of these dual-
proxy approaches, it appears from our readings that TLWC

Ave ra ge S ite

-10
0

10
20
30
40
50
60
70
80
90

100

1 4 7 10 13 16 19

P a ge s

B
an

dw
id

th
 R

ed
uc

tio
n

(%
)

M arkup Only
Total

Figure 10. Average bandwidth reduction for tested sites

278

is the only one that has been developed to support multiple
clients with a single server-side proxy.
A closely related criticism of the dual-proxy architecture is
that it lacks the simplicity and robustness of stateless
caching protocols (i.e., those involving a single cache). In a
dual-proxy system, the server needs to know the state of
the client. This arrangement is more prone to suffer from
synchronization problems when network failures and other
irregularities occur. However, we concur with the VBWC
researchers that a stateful protocol is justified when it
provides performance benefits and when it provides a
mechanism to recover from synchronization errors [13].
Both TLWC and VBWC utilize a buffer on the server-side
proxy to resend data when these errors occur.
Duplicate elimination techniques have varying levels of
granularity. Many techniques work at the page level, which
has the shortcoming of treating two pages with even the
smallest of differences as being completely unalike. In
contrast, fragment-level techniques, such as VBWC and
TLWC, detect and eliminate duplicate fragments of pages.
A key differentiator among fragment-level schemes is the
method used to select fragments. In the technique described
in [10], the fragments are selected by page authors and
identified by special instructions that are embedded into the
page. In the technique described in [11], algorithms
running on the web server automate this process. In
contrast, in both VBWC and TLWC, the task of selecting
fragments is performed by the server-side proxy, and is
thus independent of the origin server. However, VBWC
and TLWC perform this task in very different ways. In
VBWC, the fragments are blocks that are, on average, 2KB
in length. In TLWC, fragment boundaries depend on the
markup syntax of the content. Furthermore, in TLWC,
child fragments are nested within parent fragments, and
encoded parents represent their children implicitly. Thus,
the level of granularity is dynamically determined by the
amount of redundancy.
Finally, TLWC can be viewed as a form of delta encoding,
since, when two similar pages are transferred, the second
page is expressed as a difference of the first. But TLWC,
like cache-based compaction [14], varies from
conventional delta encoding because it expresses a page as
a difference to a collection of reference pages, rather than
just one. And, unlike the delta encoding technique
described in RFC 3229 [5], TLWC specifies how reference
objects for delta encoding are maintained and identified.

7. Conclusion & Future Work
This report has presented Tag-Level Web Caching, a new
technique for reducing redundant transfers of markup data
over networks. We have developed a prototype system that
applies TLWC to forward proxy-based web caching. Tests
of this prototype show TLWC can often reduce the amount
of markup data transferred during a browsing session by
over 50 percent.

Our prototype implementation of TLWC achieved its goals
but, by necessity, left much to future work. Further
development of TLWC should include the following:
Algorithm optimization. Both the TLWC encoding and
decoding algorithms are first-generation efforts that can be
improved substantially with further work.
Response-timing tests. We believe TLWC can improve
user-perceived response times during typical web browsing
sessions, but response timing tests are left for future work.
Explore other applications. TLWC is potentially
applicable to other uses. Reverse proxy, XML acceleration,
and wireless network acceleration are among the potential
applications that may be worth investigating.

8. References
[1] Wessel, D. Web Caching, First Edition. O’Reilly &

Associates. 2001. pp 22 - 36.
[2] Kelly, T. and Mogul, J. Aliasing on the World Wide

Web: Prevalence and performance implications. Proc.
WWW 2002. Honolulu, May 2002.

[3] Deutsch, P. GZIP file format spec. ver. 4.3. RFC 1952.
[4] Deutsch, P. DEFLATE compressed data format spec.

ver. 1.3. RFC 1951.
[5] Mogul, J. C., Krishnamurthy B., Douglis, F., Feldman,

A., Goland, Y., van Hoff, A., and Hellerstein, D. Delta
encoding in HTTP, January 2002. RFC 3229.

[6] Mogul, J. C. A trace-based analysis of duplicate
suppression in HTTP. Technical Report 99/2, Compaq
Western Research Laboratory, Nov. 1999.

[7] Rivest, R. The MD5 message-digest algorithm. April
1992. RFC 1321.

[8] Mogul, J. C., Chan, Y. M., and Kelly, T. Design,
implementation, and evaluation of duplicate transfer
detection in HTTP. HP Tech Report HPL-2004-29.

[9] Santos, J. and Wetherall, D. Increasing effective link
bandwidth by suppressing replicated data. Proc.
USENIX Technical Conference, June 1998.

[10]Douglis, F., Haro, A., and Rabinovich, M. HPP:
HTML macropreprocessing to support dynamic
document caching. Proc USENIX Symposium on
Internet Technology, Monterey, Calif., Dec. 1997.

[11]Ramaswamy, L., Iyengar, A., Liu, L. and Douglis, F.
Automatic detection of fragments in dynamically
generated web pages. Proc. WWW 2004. New York,
May 2004.

[12]Federal Information Processing Standards. Secure hash
standard. FIPS PUB 180-1, April 1995,
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[13]Rhea, S. C., Liang, K. and Brewer, E. Value-based
web caching. Proc. WWW 2003. Budapest, May 2003.

[14]Chan, M. C., Woo, T. Cache-based compaction: A
new technique for optimizing web transfer. Proc. IEEE
Infocom '99 Conference, New York, NY, March 1999.

279

Methodology for Reusing Human Resources
Management Standards

Asunción Gómez-Pérez
Facultad de Informática,

Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

asun@fi.upm.es

Jaime Ramírez
Facultad de Informática,

Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

jramirez@fi.upm.es

Boris Villazón-Terrazas
Facultad de Informática,

Universidad Politécnica de Madrid
Boadilla del Monte, Madrid, Spain

bvillazon@fi.upm.es

Abstract

Employment Services (ESs), Public ones (PESs) and Pri-
vate ones (PrEAs), are becoming more and more important
for Public Administrations where their social implications
on sustainability, workforce mobility and equal opportuni-
ties play a fundamental strategic importance for any cen-
tral or local Government. The EU SEEMP (Single Euro-
pean Employment Market-Place) project aims at improving
facilitate workers mobility in Europe. Ontologies are used
to model descriptions of job offers and curricula; and for
facilitating the process of exchanging job offer data and
CV data between ES. In this paper we present the methodo-
logical approach we followed for reusing existing human
resources management standards like NACE, ISCO-88
(COM) and FOET, among others, in the SEEMP project, in
order to build a common “language” called Reference
Ontology.

Keywords
Human Resources Management Standard, Human Re-
sources Ontologies.

1. INTRODUCTION
Nowadays there is an important amount of investment in
human capital for economic development. Human re-
sources management refers to the effective use of human
resources in order to enhance organizational performance
[1]. The human resources management function consists in
tracking innumerable data points of each employee, from
personal records (data, skills, capabilities) and experiences
to payroll records [1]. Human resources management has
discovered the Web as an effective communication chan-
nel. Although most businesses rely on recruiting channels
such as newspaper advertisements, online job exchange
services, trade fairs, co-worker recommendations and hu-
man resources advisors, online personnel marketing is in-
creasingly used with cost cutting results and efficacy.
Employment Services are becoming more and more impor-
tant for Public Administrations where their social implica-
tions on sustainability, workforce mobility and equal op-
portunities play a fundamental, strategic importance for any
central or local Government. The goal of the SEEMP1

1 http://www.seemp.org/

(Single European Employment Market-Place) project is to
design and implement an interoperability architecture for e-
Employment services which encompasses cross-
governmental business and decisional processes, interop-
erability and reconciliation of local professional profiles
and taxonomies, semantically enabled web services for
distributed knowledge access and sharing. For this purpose,
the resultant architecture will consist of: a Reference On-
tology, the core component of the system, that acts as a
common “language” in the form of a set of controlled vo-
cabularies to describe the details of a job posting or a CV
(Curriculum Vitae); a set of local ontologies, so that each
ES (E-Employment Services) uses its own local ontology,
which describes the employment market in its own terms; a
set of mappings between each local ontology and the Ref-
erence Ontology; and a set of mappings between the ES
schema sources and the local ontologies [3].
Studer et al. [7] defines an ontology as follows: “An ontol-
ogy is a formal, explicit specification of a shared conceptu-
alization. Conceptualization refers to an abstract model of
some phenomenon. Explicit means that the type of con-
cepts used, and the constraints on their use are explicitly
defined. Formal refers to the fact that the ontology should
be machine-readable. Shared reflects the notion that an
ontology captures consensual knowledge, that is, it is not
private of some individual, but accepted by a group”.
A major bottleneck towards e-Employment applications of
Semantic Web technology and machine reasoning is the
lack of industry-strength ontologies that go beyond aca-
demic prototypes. The design of such ontologies from
scratch in a textbook-style ontology engineering process is
in many cases unattractive for two reasons. First, it would
require significant effort. Second, because the resulting
ontologies could not build on top of existing community
commitment. Since there are several human resources man-
agement standards, our goal is not to design human re-
sources ontologies from scratch, but to reuse the most ap-
propriate ones for e-Employment services developed on the
framework of the SEEMP project. In this paper we present
the methodological approach we followed for reusing exist-

280

ing human resources management standards like NACE2,
ISCO-88 (COM)2 and FOET2 , among others.
This paper is organized as follows: Section 2 depicts the
adopted methodological approach to build the SEEMP Ref-
erence Ontology from standards and already existing on-
tologies. Section 3 describes the resultant SEEMP Refer-
ence Ontology. Then section 4 describes some considera-
tions with respect to the building process of the local on-
tologies. Then section 5 depicts the related work. Finally,
section 6 offers some final conclusions.

2. METHODOLOGY FOR REUSING HUMAN
RESOURCES MANAGEMENT STANDARDS
In this section we describe the adopted approach to build
the SEEMP Reference Ontology. This methodological ap-
proach follows and extends some of the identified tasks of
the ontology development methodology
METHONTOLOGY [4]. This methodological approach
consists of:

Specifying, using competency questions, the necessi-
ties that the ontology has to satisfy in the new applica-
tion.

Selecting the standards and existing ontologies that
cover most of the identified necessities.

Semantic enrichment of the chosen standard.

Evaluating the Ontology content.

Integrating the resultant ontology in the SEEMP plat-
form.

2.1 Specifying, using competency questions, the
necessities that the ontology has to satisfy in the
new application.
This activity states why the ontology is being built, what its
intended users are, and who the end-users are. For specify-
ing the ontology requirements we used the competency
questions techniques proposed in [5].

Intended uses of the ontology. The purpose of building
the Reference Ontology is to provide a consensual
knowledge model of the employment domain that
could be used by ESs, more specifically within the ICT
(Information and Communication Technology) do-
main.
Intended users of the ontology. We have identified the
following intended users of the ontology: candidates,
employers, public or private employment search ser-
vice, national and local governments; and European
commission and the governments of EU countries.
Competency Questions. These questions and their an-
swers are both used to extract the main concepts and

2 Available through RAMON Eurostat's Classifications Server at

http://ec.europa.eu/comm/eurostat/ramon/

their properties, relations and formal axioms of the on-
tology. We have identified sixty competency ques-
tions; they are described in detail in subsection 7.1.3 of
the SEEMP deliverable D32 “Supporting the State of
the Art”. An example of the competency questions is:
Given the personal information (name, nationality,
birth date, contact information) and the objectives (de-
sired contract type, desired job, desired working con-
ditions, desired salary) of the job seeker, what job of-
fers are the most appropriate?
Terminology. From the competency questions, we
extracted the terminology that will be formally repre-
sented in the ontology by means of concepts, attributes
and relations. We have identified the terms (also
known as predicates) and the objects in the universe of
discourse (instances); they are described in detail in
subsection 7.1.4 of the SEEMP deliverable D32 “Sup-
porting the State of the Art”.

2.2 Selecting the standards and existing ontolo-
gies that cover most of the identified necessities.
In order to choose the most suitable human resources man-
agement standards for modeling CVs and job offers, the
following aspects have been considered: The degree of
coverage of the objects identified in the previous task, this
aspect has been evaluated taking into account the scope and
size of the standard. However, a too wide coverage may
move us further away the European reality, therefore we
have tried to find a tradeoff between this aspect and the
following one: the current european needs, it is important
that standard focuses on the current European reality, be-
cause the user partners involved in SEEMP are European,
and the outcoming prototype will be validated in European
scenarios; and the user partners recommendations, in order
to asses the quality of the standards, the opinion of the user
partners is crucial since they have a deep knowledge of the
employment market.
Besides, when choosing the standards, we also took into
account that the user partners of SEEMP selected the ICT
domain for the prototype to be developed in SEEMP.
Hence, the chosen standards should cover the ICT domain
with an acceptable degree. The standards that finally were
chosen are outlined in section 3.1. In the case of the occu-
pation taxonomy, as it will be shown, we have chosen one
standard, but then we have taken some concepts coming
from other classifications, in order to obtain a richer classi-
fication for the ICT domain.
When specifying job offers and CVs, it is also necessary to
refer to general purpose international codes such as country
codes, currency codes, etc. For this aim, the chosen codes
have been the ISO codes, enriched in some cases with user
partners classification.
Finally, the representation of job offers and CVs also re-
quire temporal concepts such as interval or instant. So, in

281

order to represent these concepts in the final Reference
Ontology, the DAML time ontology3 was chosen.

2.3 Semantic enrichment of the chosen standard.
This activity states how we enrich the human resources
management standards, the time ontology, the currency
classification, the geographic location classification and
language classification. We have followed the process of:

verifying all concept taxonomies;
establishing ad hoc relationships among concepts of
different taxonomies;
specifying concept attributes for describing concept
features needed;
defining formal axioms.

2.4 Evaluating the Ontology content.
The evaluation activity makes a technical judgment of the
ontology, of its associated software environments, and of
the documentation. We will evaluate the Reference Ontol-
ogy using the competency questions identified in the first
task.

2.5 Integrating the resultant ontology in the
SEEMP platform
UPM4 and LFUI5 will work together in this task in order to
integrate the resultant ontology into WSML language at
design time, so that, the SEEMP Platform will be able to
deal with this ontology at run time.

3. SEEMP REFERENCE ONTOLOGY
The Reference Ontology described in this section will act
as a common “language” in the form of a set of controlled
vocabularies to describe the details of a job posting and the
CV of a job seeker. The Reference Ontology was devel-
oped following the process described in detail in section 2
and with the ontology engineering tool WebODE [4]. The
Reference Ontology is composed of thirteen modular on-
tologies: Competence, Compensation, Driving License,
Economic Activity, Education, Geography, Job Offer, Job
Seeker, Labour Regulatory, Language, Occupation, Skill
and Time. Figure 1 presents:

These thirteen modular ontologies (each ontology is
represented by a triangle). Ten of them were obtained
after wrapping the original format of the stan-
dard/classification, using ad hoc translator or wrapper
for each standard/classification.
The connections between the ontologies by means of
ad hoc relationships. Such relationships will be defined

3 http://cs.yale.edu/homes/dvm/daml/time-page.html
4 Universidad Politécnica de Madrid is a technical partner of the SEEMP

project, http://www.oeg-upm.net/
5 Leopold-Franzens University Innsbruck is a technical partner of the

SEEMP project, http://www.deri.at/

(identifying its domain and range) between specific
concepts inside these ontologies later on.

3.1 Wrapping human resources management
standards
As it was mentioned before, these ontologies have been
developed following existing human resources manage-
ment standards and systems classifications, and they are:

Labour
Regulatory
Ontology

Skill
Ontology

Language
Ontology Occupation

Ontology

Geography
Ontology

Time
Ontology

Education
Ontology

Driving
License
Ontology

Compensation
Ontology

Economic
Activity

Ontology

Job Offer
Ontology

Job Seeker
Ontology

has work condition /
is associated with

has contract type / is associated with
is located in /

has compensation /

is associated with

requires education /

is associated with

is associated with

has
activity

sector /

is
associated

w
ith

has nationality from / is nation of

resides in / is residence of

has compensation /

has contract type /is associated to
has work condition / is associated to

has location / is associated with

ha
s

ac
tiv

ity
se

ct
or

/
is

as
so

ci
at

ed
w

ith

ha
s

ac
tiv

ity
se

ct
or

/
is

as
so

ci
at

ed
w

ith

ha
s

jo
b

ca
te

go
ry

/

is
as

so
cia

te
d

wi
th

ha
s

jo
b

ca
te

go
ry

/

Is
as

so
ci

at
ed

wi
th

has
education

/

is
education

of

has
m

other tongue
/ is

m
other tongue

of

speaks
/ is

spoken
by

LE FOREM

EURES

ISO 6392

CEF
ISCO-88 COM

ONET

EURES

ISO 3166

EURES

DAML Time
Ontology

FOET

ISCED97

NACE Rev. 1.1

EURES

ISO 4217

Ad hoc wrapper

External Sources

is associated with

has job category /

is associated to has date of birth
/ is date of birth of

has begin date /

is begin date of

Competence
Ontology

subClass-Of

subClass-Of

requires competence /

is associated with

has competence /

is competence of

Labour
Regulatory
Ontology

Skill
Ontology

Language
Ontology Occupation

Ontology

Geography
Ontology

Time
Ontology

Education
Ontology

Driving
License
Ontology

Compensation
Ontology

Economic
Activity

Ontology

Job Offer
Ontology

Job Seeker
Ontology

has work condition /
is associated with

has contract type / is associated with
is located in /

has compensation /

is associated with

requires education /

is associated with

is associated with

has
activity

sector /

is
associated

w
ith

has nationality from / is nation of

resides in / is residence of

has compensation /

has contract type /is associated to
has work condition / is associated to

has location / is associated with

ha
s

ac
tiv

ity
se

ct
or

/
is

as
so

ci
at

ed
w

ith

ha
s

ac
tiv

ity
se

ct
or

/
is

as
so

ci
at

ed
w

ith

ha
s

jo
b

ca
te

go
ry

/

is
as

so
cia

te
d

wi
th

ha
s

jo
b

ca
te

go
ry

/

Is
as

so
ci

at
ed

wi
th

has
education

/

is
education

of

has
m

other tongue
/ is

m
other tongue

of

speaks
/ is

spoken
by

LE FOREM

EURES

ISO 6392

CEF
ISCO-88 COM

ONET

EURES

ISO 3166

EURES

DAML Time
Ontology

FOET

ISCED97

NACE Rev. 1.1

EURES

ISO 4217

Ad hoc wrapper

External Sources

is associated with

has job category /

is associated to has date of birth
/ is date of birth of

has begin date /

is begin date of

Competence
Ontology

subClass-Of

subClass-Of

requires competence /

is associated with

has competence /

is competence of

Compensation Ontology which is based on the ISO
42176 . The ISO 4217 is expressed in HTML format. It
is a list of 254 currency names and codes. The resul-
tant Compensation Ontology has 2 concepts: Cur-
rency and Salary. For every currency element speci-
fied in the ISO 4217 a different instance of the Cur-
rency concept is defined. So, the Currency concept
has 254 instances. An example of instance of the
Currency concept is UNITED STATES - US Dol-
lar.
Driving License Ontology which is based on the levels
recognized by the European Legislation7. This classifi-
cation is expressed in HTML format and it is a list of
12 kinds of driving licenses. The resultant Driving Li-
cense Ontology just has the Driving License con-
cept; and for every kind of driving license specified in
the European Legislation a different instance of the
Driving License concept is defined. An example of
instance of the Driving License concept is A1 -
Light weight motorcycle.
Economic Activity Ontology is based on the NACE
Rev. 1.18. This standard is expressed in MS Access da-

6http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html
7 http://ec.europa.eu/transport/home/drivinglicence/
8 Available through RAMON Eurostat's Classifications Server at

http://ec.europa.eu/comm/eurostat/ramon/

Figure 1. Main ad-hoc relationships between the
modular ontologies

282

tabase format and it is a classification of 849 economic
activities. The resultant Economic Activity Ontology
has 849 concepts. In this case we have defined a con-
cept for every element of the NACE taxonomy in order
to preserve the hierarchy.
Occupation Ontology is based on the ISCO-88
(COM)9, ONET10 and European Dynamics11 classifica-
tion of occupations. ISCO-88 (COM) and ONET are
expressed in MS Access database format; European
Dynamics classification of occupations is stored in an
ORACLE database table. ISCO-88 (COM) is a classi-
fication of 520 occupations; ONET is a classification
of 1167 occupations and the European Dynamics clas-
sification has 84 occupations. The resultant Occupa-
tion Ontology has 609 concepts. For this ontology we
have extended manually the ISCO-88 (COM) classifi-
cation with European Dynamics and ONET classifica-
tions for ICT occupations. In this case we have defined
a concept for every element of the resulting extended
taxonomy in order to preserve the hierarchy.
Education Ontology, the education fields are based on
the FOET9 and the education levels are based on the
ISCED979; both of them are expressed in MS Access
database format. FOET has 127 education fields and
ISCED97 has 7 education levels. The resultant Educa-
tion Ontology has 130 concepts. For the education lev-
els we have defined the Education Level concept;
and for every education level specified in ISCED97 a
different instance of the Education Level concept is
defined. For the education fields we have defined a
concept for every element of the FOET taxonomy in
order to preserve the hierarchy.
Geography Ontology is based on the ISO 316612 coun-
try codes and the European Dynamics classifications:
Continent and Region. The ISO 3166 is expressed in
XML format; Continent and Region classifications are
stored in ORACLE database tables. The ISO 3166 has
244 country codes and names; Region classification
has 367 regions and Continent classification has 9 con-
tinents. The resultant Geography Ontology has four
concepts, a Location as main concept, which is split
into three subclasses: Continent, Region and Coun-
try. For every country element specified in the ISO
3166 a different instance of the Country concept is
defined, so the Country concept has 244 instances.
For every region element specified in the Region clas-
sification a different instance of the Region concept is
defined, so the Region concept has 367 regions. Fi-

9 Available through RAMON Eurostat's Classifications Server at

http://ec.europa.eu/comm/eurostat/ramon/
10 http://online.onetcenter.org/
11 http://www.eurodyn.com/
12 http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

nally for every continent element specified in the Con-
tinent classification a different instance of the Conti-
nent concept is defined. An example of instance of
the Continent concept is EU – Europe. An example
of instance of the Country concept is SPAIN – ES.
An example of instance of the Region concept is
Galicia.
Labour Regulatory Ontology is based on the LE
FOREM13 classifications ContracTypes and Work-
RuleTypes, both of them expressed in XML format.
ContractTypes classification has ten contract types and
WorkRuleTypes has 9 work rule types. The resultant
Labour Regulatory Ontology has 2 concepts. For
every type of work condition or contract type consid-
ered by LE FOREM, a different instance of one of
these two concepts (Contract Type or Work Con-
dition) is included in the ontology. An example of
instance of the Contract Type concept is Autono-
mous. An example of instance of the Work Condi-
tion concept is Partial time.
Language Ontology is based on the ISO 639214 and
the Common European Framework of Reference
(CEF)15. The ISO 6392 is expressed in HTML format
and CEF is a description in PDF format. The ISO 6392
has 490 language codes and CEF has 6 language lev-
els. The resultant Language Ontology has 3 concepts:
Language, Language Level and Language Pro-
ficiency. For every language element specified in
the ISO 6392 a different instance of the Language
concept is defined, so the Language concept has 490
instances. For every language level element specified
in the CEF a different instance of the Language
Level concept is defined, so the Language Level
concept has 6 instances. An example of instance of the
Language concept is eng – English. An example
of instance of the Language Level concept is A2 –
Basic User.
Skill Ontology is based on European Dynamics Skill
classification. This classification has 291 skills and it
is stored in an ORACLE database table. The resultant
Skill Ontology has 2 concepts: Skill concept with its
subclass ICT Skill. For every skill element specified
in the European Dynamic classification a different in-
stance of the ICT Skill concept is defined. An ex-
ample of instance of the ICT Skill concept is Hard-
ware programming.

 Competence Ontology defines a concept called Com-
petence as a superclass of the imported concepts

13 LE FOREM is an user partner of the SEEMP project,

http://www.leforem.be/
14 http://www.iso.org/iso/en/prods-services/popstds/languagecodes.html
15 http://www.cambridgeesol.org/exams/cef.htm

283

Skill, Language Proficiency and Driving
License.
Time Ontology is based on DAML ontology16 and it is
expressed in OWL format.

In order to make possible the enrichment of the standards,
it was necessary to import them into the ontology engineer-
ing tool WebODE [4]. This process consisted of imple-
menting the necessary conversions mechanisms for trans-
forming the standards into WebODE’s knowledge model.
For this purpose we have developed for each stan-
dard/classification an ad hoc translator (wrapper) that trans-
formed all the data stored in external resources into We-
bODE’s knowledge model.

3.2 Enriching the ontologies
Once we transformed the standards into ontologies, the
next step is to enrich them introducing concept attributes
and ad hoc relationships between ontology concepts of the
same or different taxonomies. We perform this task, doing
the following.

We created from scratch the Job Seeker Ontology,
which models the job seeker and his/her CV informa-
tion.
We created from scratch the Job Offer Ontology,
which models the job vacancy, job offer and employer
information.
We defined relationships between the concepts of the
Job Seeker Ontology and the concepts defined on the
standard (classification) based ontology.
We defined relationships between the concepts of the
Job Offer Ontology and the concepts defined on the
standard (classification) based ontology.

Finally we present the Reference Ontology statistics. The
Reference Ontology is composed of twelve modular on-
tologies. The Reference Ontology has 1609 concepts, 6727
class attributes, 60 instance attributes, 94 ad hoc relation-
ships and 1674 instances.

4. LOCAL ONTOLOGIES BUILDING PROCESS
As it was mentioned before, the other components of the
resultant SEEMP architecture will be: a set of local ontolo-
gies, so that each ES (E-Employment Services) uses its
own local ontology, which describes the employment mar-
ket in its own terms; a set of bidirectional mappings be-
tween each local ontology and the Reference Ontology;
and a set of bidirectional mappings between the ES schema
sources and the local ontologies.
In this section we provide some guidelines for the building
process of the local ontologies. Based on the proposed
SEEMP architecture, the possible options for building the
local ontologies are:

16 http://cs.yale.edu/homes/dvm/daml/time-page.html

Option 1: Building local ontologies from the Reference
Ontology.
Option 2: Building local ontologies as a reverse engi-
neering process from ES schema sources.

4.1 Building local ontologies from the Reference
Ontology
In this case, we will probably need a specialization of the
Reference Ontology and also an extension; by specializa-
tion we mean extending in depth the concepts we already
have in the Reference Ontology; by extension we mean
including application dependent concepts that appear in
each ES schema source. Also mappings between local on-
tologies and Reference Ontology will not be complex. But
on the other hand, mappings between local ontologies and
ES schema sources will be complex. The building process
is structured/guided by the architecture of the Reference
Ontology and scoped with applications needs. The result
should be a Reference Ontology friendly "local" ontology.
If the customer needs data exchanges, he has to accept the
exchange protocol with some readiness. This is an oppor-
tunity to impose an 'ontological order' on various users and
systems. Regarding the evolution and change propagation
dimension we have:

Changes in the Reference Ontology imply a change in
the mappings between local and global ontologies as
well as probably changes in the mappings between the
local ontologies and the ES schema sources.
Changes in the Reference Ontology imply a change in
the local ontology; in this case, the mappings Refer-
ence Ontology – local ontology would remain as they
were. The mappings between the local ontologies and
the ES schema sources should be updated.
Changes in the ES schema sources imply changes in its
local ontology (probably the part that is not a mirror of
the Reference Ontology) and the mappings between
local ontologies and ES schema sources, and probably
minor changes in the mappings between local ontology
and the Reference Ontology.

4.2 Building local ontologies as a reverse engi-
neering process from ES schema sources
In this case, mappings between local ontologies and
schema resources should not be complex. On the other
hand, complex mappings will appear between the Local
and Reference Ontology. The building process requires
more sophistication of knowledge engineering and good
acquaintance of all the data and their structures of the ap-
plication: not easily found skill set in ES or any other op-
erational/research organizations. Regarding the evolution
and change propagation dimension we have:

Changes in the ES schema sources imply a change in
the local ontologies and, consequently, in mappings
between sources and local ontologies as well as map-
pings between local and the Reference Ontology.

284

Changes in the Reference Ontology imply changes in
the mappings between local ontologies and the Refer-
ence Ontology, but it is not necessary to modify any-
thing at the ES level.

4.3 Approach followed by SEEMP
In SEEMP project we follow a hybrid approach. On one
hand, we select option 1 (building local ontologies from the
Reference Ontology) for Job Seeker and Job Offer ontolo-
gies and other general purpose ontologies like, for exam-
ple, the Time Ontology. On the other hand, we select op-
tion 2 (building local ontologies as a reverse engineering
process from ES schema resources) for Occupation, Educa-
tion, Economic Activity, Language, Compensation, Labour
Regulatory, Skill and Driving License ontologies.
The reason of selecting option 1 for Job Seeker and Job
Offer ontologies is because there are not significant differ-
ences between these ontologies and the way how each ES
structures job seeker and job offer information. Conse-
quently mappings between local ontologies and Reference
Ontology will be simple, but mappings between local on-
tologies and ES schema sources will be complex. For the
job seeker and job offer information local ontologies will
share the same vocabulary (see [8]).
And the reason of selecting option 2 for the ontologies
mentioned above is because each ES may have its own
classification systems for the related information. It may
happen that the local ontology shares some classification
with the reference ontology (as there will happen in the
European scope with the driving license classification). In
that case, the reverse engineering process for that classifi-
cation will be skipped, and that part of the reference ontol-
ogy will be reused. By using option 2, mappings between
local ontologies and Reference Ontology will be complex,
but mappings between local ontologies and ES schema
sources will be simple.

5. RELATED WORK
Currently the Human Resource Semantic Web applications
are still in an experimental phase, but their potential impact
over social, economical and political issues is extremely
significant. [2] presents a scenario for supporting recruit-
ment process with Semantic Web technologies but within
German Government. In [6] we can find a brief overview
of a Semantic Web application scenario in the HR sector by
means of describing the process of ontology development,
but its final goal is to merge ontologies.

6. CONCLUSIONS
In this paper we have presented the methodological ap-
proach we followed for reusing existing human resources
management standards in the SEEMP Project. We also
described the resultant Reference Ontology which acts as a
common “language” in the form of a set of controlled vo-
cabularies to describe the details of a job posting and the

CV of a job seeker. The Reference Ontology was devel-
oped with the proposed methodology and with the ontology
engineering tool WebODE. Finally, we have provided
some guidelines for the building process of the local on-
tologies, and we conclude that the best option for building
the local ontologies is building them following a hybrid
approach.
An important conclusion of the work that we have carried
out is that we can reuse human resource management stan-
dards in new applications following a systematic approach.
Moreover, it is clear such a reuse can save time during the
development of the whole system. However, it is not al-
ways possible to reuse a standard in a straightforward way,
because sometimes the ideal standard does not exist for
different reasons (different scope, outdated, etc.), and it is
necessary to extend some “imperfect” standard with addi-
tional terminology coming from other standards or ad hoc
classifications.

ACKNOWLEDGMENTS
This work has been partially supported by the FP6 EU
SEEMP Project (FP6-027347).

REFERENCES
[1] Legge, K.: Human Resource Management: Rhetorics

and Realities. Anniversary ed. Macmillan. (2005).
[2] Bizer C., Heese R., Mochol M., Oldakowski R.,

Tolksdorf R., Eckstein R.:”The Impact of Semantic
Web Technologies on Job Recruitment Processes”; 7th
Interna-tional Conference Wirtschaftsinformatik
(2005)

[3] FOREM, UniMiB, Cefriel, ARL, SOC, MAR, PEP:
User Requirement Definition D.1.SEEMP Deliverable
(2006).

[4] Gómez-Pérez A., Fernández-López M, Corcho O.:
Ontological Engineering. Springer Verlag. (2003)

[5] Grüninger M, and Fox MS.: Methodology for the de-
sign and evaluation of ontologies In Skuce D (ed)
IJCAI95 Workshop on Basic Ontological Issues in
Knowledge Sharing, (1995) pp 6.1–6.10

[6] Mochol M., Paslaru Bontas E.: Simperl: “Practical
Guidelines for Building Semantic eRecruitment Appli-
cations”, International Conference on Knowledge
Management (iKnow'06), Special Track: Advanced
Semantic Technologies (2006)

[7] Studer, R., Benjamins, V.R., Fensel, D.: Knowledge
Engineering: Principles and Methods. Data and
Knowledge Engineering. 25: (1998) 161-197.

[8] Swartout, W.R., Patil, R., Knight, K., and Russ, T.:
Towards Distributed Use of Large-Scale Ontologies,
AAAI-97 Spring Symposium on Ontological Engi-
neering, Stanford University, May, (1997)

285

An Adaptive Resource Management Approach for a Healthcare System

Claudia Raibulet, Luigi Ubezio, Stefano Mussino
Università degli Studi di Milano-Bicocca

DISCo – Dipartimento di Informatica Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi, 8, I-20126, Milan, Italy
{raibulet, ubezio, stefano.mussino}@disco.unimib.it

Abstract: ARMS (Adaptive Resources Management
System) represents our solution to address dynamic
adaptivity. It defines appropriate abstractions and
mechanisms to capture and manage at runtime non-
functional information about the components of a
system and the services they provide. The objectives of
ARMS are (1) to identify the most suitable system
component able to execute the current service request
and (2) to ensure that the required qualities of services
are guaranteed during its execution. This paper aims
to present the issues raised by applying our ARMS
architecture to an actual case study regarding a
healthcare system. Attention is focused on how to
exploit both domain specific knowledge and system
knowledge in the adaptation process. Moreover, we
describe three scenarios related to this case study and
the problems encountered and addressed through
ARMS.

1. Introduction

Adaptivity is one of the challenging issues of today
information systems [5, 8, 11, 14]. It is achieved by
exploiting at runtime information which is not usually
modelled in a software representation of a system.
Thus, it claims for appropriate abstractions to represent
this information and for efficient mechanisms to
implement activities usually performed by humans
based on their own knowledge and experience.

The aim of ARMS is to provide an example on how
to design flexible systems predisposed to adaptation.
Adaptation in ARMS regards various aspects ranging
from the selection of the most appropriate system
component to execute a service based on aspects
behind its functionality (i.e., performance, quality,
cost) to the observation of services’ execution to check
if the non-functional aspects are ensured at runtime
and to the management of emergency requests and
situations. In the scientific literature adaptation is
considered mostly as a solution to critical problems
(i.e., fault tolerance, security attacks) [9, 11]. ARMS
aims not only to address this type of situations, but
also to prevent them.

Our solution for adaptive systems exploits
reflection to observe and control various aspects of the
underlying system. Reflection introduces meta-
representations of the system’s components and a
mechanism to maintain them up-to-date with the status
and the non-functional features of the system’s
components. This mechanism is used also to apply the
changes required by the adaptation process after the
observation of the meta-representations. Reflection
may introduce several disadvantages (i.e., increase
number of objects, modifications at the reflective level
may cause overall damage if reflection is not properly
exploited), but it provides significant advantages too:
separation of concerns, modularity, reusability, and an
easier overall maintainability and evolution.

In previous works we have described in detail
various aspects of our solution: the design of the
reflective entities [15], the service-oriented aspects of
ARMS [16], and the mapping between high-level
qualities of services and low-level features of the
system’s components [17]. In this paper we present
how ARMS is exploited by an actual system. The case
study is related to a healthcare system. Attention is
focused on the usage of both domain and system
knowledge to achieve adaptivity. We described the
addressed problems and the solutions adopted.

The rest of the paper is organized as following.
Section 2 presents on overview of ARMS introducing
the main concepts it defines for runtime adaptation.
Section 3 describes HARMS (Health-ARMS) by
focusing on three different scenarios which claim for
adaptivity. Discussions and further work are dealt
within Section 4.

2. Our Approach

ARMS defines a service oriented based architecture
[6] which exploits reflection [4, 10] at the architectural
level to achieve adaptivity at runtime. Essentially,
reflection defines the causal connection mechanism to
observe and control the underlying components of a
system through appropriate metadata [10]. Metadata
models non-functional information (i.e., qualities of
services (QoS) [1, 13]) of the systems’ components

286

which is used at runtime in the adaptation process.
This information represents the reflective knowledge.
The causal connection mechanism ensures that any
modification in a system component is propagated to
its corresponding meta-representation, and vice-versa,
any modification at the meta level is reflected on the
corresponding system component (whenever this is
possible) (see Figure 1).

In ARMS, reflective knowledge is modeled through
four elements: reflective objects, reflective services,
QoS, and properties. Reflective objects are the meta-
representations of the system objects modeling their
current status, while reflective services are meta-
representations of the services offered by the system
objects. Low-level QoS (representing measurable
values) model the non-functional features of services
which may be used to achieve adaptivity (i.e.,
bandwidth, cost, provider). Properties represent
additional information about the system’s components
which are not strictly related to the services they
provide, but which may be meaningful for adaptation
(i.e., location of a user or of a resource).

Figure 1. ARMS Main Components

To improve the organization and the management
of the reflective knowledge we have introduced two
additional elements: views and strategies. A view is
defined as an organizational structure on the reflective
objects which has its own semantic and its own
computational strategies to evaluate the elements under
its control [12].

Strategies implement the logic necessary to take
decisions. A view has associated a best-effort strategy
which assigns scores to the reflective objects it
manages based on its own semantic. The higher the
score is, the better suits the object to the current
service request. In this way, a view is able to indicate a
classification or the most appropriate object able to
fulfil a request. For more details see [12].

Note that a reflective object may be used in various
views, but it has only one representation in the system.
Views contain references to the reflective objects they
manage.

When applying ARMS to an actual case study three
types of knowledge should be managed: domain
knowledge (i.e., defining objects specific to the current
example), system knowledge (i.e., defining objects
specific to the underlying physical components of the
system), and reflective knowledge (i.e., defining
objects which influence the performances of the
system). Each of the three types of knowledge is
manipulated through a manager. Managers can interact
among them to exchange information related to the
services’ requests. As views, also managers have
associated strategies. For example, the reflection
manager has associated a strategy which decides the
views to be used to solve each service request.

The request manager receives the services’ requests
from applications and chooses, based on the
information available in each request, the types of
knowledge to exploit to solve it. Whenever a request
claims for adaptivity, the reflection manager is asked
to identify the most appropriate resource and/or to set
the QoS on the chosen resource as close as possible to
the once specified in the request.

At the application level services are characterized
by high-level QoS, which may be either qualitative
(i.e., high resolution) or quantitative (i.e., 1600 x 1200
resolution). Note that high-level QoS include both QoS
and properties. For example, a user may claim for a
printing service with a high quality on the nearest
printer to her/his current location. These high-level
QoS are translated into resolution, colour depth, and
printing speed as low-level QoS of a reflective service
and into the location property of its corresponding
reflective object. These mappings between high-level
and low-level QoS and properties are performed by
strategies associated to views [12].

The service execution manager has a monitoring
module which verifies if the QoS claimed in a request
are guaranteed during the execution of the service.
Currently, two solutions are considered in case QoS
become out of an expected range. The first regards the
specification of the first two most appropriate system
objects able to execute a service. If the first system
object fails to ensure the promised QoS or a failure
occurs, the second one is asked to execute the service.
In an alternative solution, the service execution
manager asks the reflection manager to choose another
solution for the current request. In both cases the
request manager (and implicitly the application or
user) is not aware of the problems occurred.

3. Applying ARMS to a Healthcare System

The HARMS case study models the main
information regarding a hospital: patients with their
clinical records including the medical tests they have

287

done, the medical tests which can be performed in the
hospital and the equipment necessary to do them,
employees (i.e., doctors/physicians, nurses), the
organizational structure of the hospital (i.e., hospital
departments). A simplified class diagram describing
these elements is shown in Figure 2.

NurseMedicalRecord Doctor

Patient

1
1
1
1

MedicalTest
0..*0..*

0..*

0..*

0..*

0..*

Department
0..1

0..*

0..1

0..*

MedicalEquipment
0..*

0..*

0..*

0..*

Employee
0..*

1

0..*

1

0..*

0..*

0..*

0..*

Figure 2. Entities of the Domain Application

In the following we present three scenarios to point
out how ARMS can be used in this case study and how
adaptation is performed exploiting both domain and
system knowledge at runtime.

3.1 First Scenario
This scenario regards the request of information by

the patients or by the medical stuff. The result of this
request is the visualization of the information in a
clinical record of a patient. Adaptation here can
involve different aspects.

When a user asks for information (i.e., through a
SMS) specifying only her/his current location [2], the
system identifies the component which can display
information (i.e., wall monitor, PC) and which is the
nearest one to the user. The reflective part of the
architecture uses the display service view and the
location view to solve this request. When a user asks
for information by specifying also the QoS the
displayed information should be characterized by, the
system identifies the nearest component to the user
with the required QoS. As previously, the reflective
part uses both the display service and the location view
to identify the suitable resource. The difference
consists in the scores associated by each view to the
reflective objects they manage based on the
information specified in the request. Hence, the
identified resources in the two cases may be different
or identical. In both cases the system sends all the
information in the clinical record of a patient (specified
in the request as InputData – see Figure 4) and notices
the user where information is displayed (specified in
the request as Resource – see Figure 4).

A version of this scenario may require also the
adaptation of the requested information to the

characteristics of a user (i.e., preferences, disabilities)
and/or to the device claiming for information (i.e.,
mobile phone, PDA). For example, when using a PDA,
a user would like to receive only textual information,
or when using a high resolution monitor s/he may
receive detailed information including also images. Or,
a doctor may want to receive only the information of a
patient regarding her/his specialization. In this case,
the resource and QoS elements are already specified in
the request and only domain specific knowledge is
involved in the decision process. The resource and its
related QoS are implicitly included in the request (see
Figure 4). Adaptation here consists in the extraction of
the information based on the user profile or on the QoS
of the indicated resource. This has been done by
introducing strategies into the domain knowledge as
shown in Figure 3.

Strategy

formatInf(deviceType : String, criteria : String)
MedicalRecord

0..*1 0..*1

TextualStrategy CompleteStrategy SpecializationStrategy

Figure 3. Strategies to Extract Information from a
Clinical Record based on Various Criteria

There are also cases in which both domain and
system knowledge are required for adaptation. For
example, a doctor claims the clinical record of a
patient specifying her/his specialization and current
location. The system should identify the nearest
display device and extract the requested information
from the clinical record.

To summarize, adaptation may use:
only system knowledge to identify the most
appropriate component to provide a service;
only domain specific knowledge to adapt the
requested information to the user’s preferences
and/or to a system component features;
both domain and system knowledge to identify the
most appropriate component to provide the service
and in the same time to adapt the requested
information to the identified component.

3.2. Second Scenario
This scenario considers that a person arrives in

critical conditions in a hospital or the conditions of a
recovered patient become critical and s/he needs
immediate assistance. Such scenarios and their related
requests can be seen as particular, unexpected
situations in which the system should react
immediately and efficiently by providing the most
appropriate solution for the current context. However,
they are quite usual in such an application domain.

The obvious solution to this type of problems
identifies a doctor with the required preparation or

288

specialty (or with the closest one) available in that
moment (present in the hospital), and not implied in a
critical activity (a surgery) to treat the case.

In this case, adaptation uses only the location view
of the reflective knowledge, while it exploits heavily
the domain knowledge. It identifies the doctor heaving
the required specialty, the tests which should be
performed, the available equipment for doing medical
tests, etc. Adaptation can be significantly improved by
introducing reflective knowledge also for domain
entities, which however is implicitly used in everyday
life. For example, there are various medical tests which
can be performed to identify a disease, each of them
having different duration, response time, and precision.
Thus, it is fundamental to choose the one providing the
most valuable result for the current situation. Or, there
are doctors with the same specialty, but with different
experience or treatment methodology. To decide
which/who the most appropriate solution is, a system
should model and exploit this information at runtime.

To improve the adaptation process, we exploit
reflection for the domain knowledge too. We have
reused all the reflective entities defined for the
system’s objects: reflective objects, reflective services,
QoS, properties, views and strategies. Hence, the only
conceptual modification in Figure 1 is that domain
objects have a causal connection with reflective
objects similarly to the one between system’s objects
and reflective objects.

To summarize, adaptation exploits both domain and
system knowledge. It is a challenging issue the
definition of domain QoS as well as domain strategies,
while there is little agreement in what should be
exploited at runtime for adaptation and how much
influences each reflective entity the adaptation process.

3.3. Third Scenario
The third scenario regards the request of a medical

test which should be performed immediately or within
a specified period of time. When required immediately,
the system verifies who is the available doctor able to
perform the test and if required, the available medical
equipment. If there are no immediate solutions it
checks who/which will finish first the current activity
and uses it/s/he as soon as possible.

If the test is not linked to an emergency request, it
should be booked in a specified period of time (i.e.,
after 24 hours and before 48 hours) or within a time
limit (i.e., within seven days). The system books the
first available resource meeting the time constraint.

This type of scenario raises two issues which are
related to each other: the time dimension and the
allocation of resources. There are requests in which a
service should be provided immediately, or as soon as
possible, while there are requests that claim for a

service booking. In the first scenario we have
implicitly considered that all the system’s components
are always available. This is not always the real case.

The solution we provide to these problems is to
introduce the BookingTime class in a service request
to specify a time interval when the service should be
executed (see Figure 4). If the supLimit variable is
zero, than the service should be immediately executed.
If the supLimit is not zero, than the service should be
booked. The result of the booking is a Contract
indicating the resource which will execute the service,
the QoS which will be guaranteed, and the expected
time when the service will be executed (see Figure 5).

BookingTime
infLimit : Date
supLimit : Date

<<QoS>>

InputData

Request
id : String
state : String
idRequester : String
type : String

0..*

1..*

0..*

1..*

QoS

name : String
isControllable : boolean
isObservable : boolean

(from QoS)

Service

sName : String
(from Service)

11 11
11 11

0..*

0..*

0..*

0..*

Resource
id : String
name : String

0..*
0..*
0..*
0..*

Figure 4. Services’ Requests

A contract represents an agreement between the
requester of a service and a component of a system
which can provide the service. Contracts are checked
and supervised by the request manager of ARMS.
Each agreement has an expiration time (the expected
execution time).

InputData

ExecutionTime
time : Date

<<QoS>>Request
id : String
state : String
idRequester : String
type : String

0..*

1..*

0..*

1..*

QoS

name : String
isControllable : boolean
isObservable : boolean

(from QoS)

Contract
id : String 11 11

0..*1 0..*1

0..*

1

0..*

1

Resource
id : String
name : String

1

1..*

1

1..*

Figure 5. Contract for Booking Services

Note that booking and execution time are
considered as QoS of the requested, respectively
booked service. Hence, they are addressed as all the
other QoS in ARMS. Both represent absolute time.

A service contract is sent to the user too, who may
claim its cancellation before its execution.
Modifications of contracts are currently implemented
through a cancellation and a new service request.

Through the various QoS specific to each service,
we have introduced one indicating the average time the

289

component needs to execute that type of service (see
Figure 6). Each reflective component (R_Object) has
associated a timetable to trace the contracts it has to
execute. The timetable is common to all the services
(R_Service) provided by a component. It is used to
book services and to execute the scheduled contracts.

QoS
(from QoS)

SystemObject

Property Contract
(from Logical View)

Timetable
addContract()
removeContract()

0..*0..*

R_Object

1

1

1

1

1

1..*

1

1..*

11 11

AvgTime
time

<<QoS>>

R_Service
status : boolean

1..*

1..*

1..*

1..*

1..* 11..* 1
1
11
1

Figure 6. Services, Timetables and Contracts

The request manager maintains a list of the
contracts, too. It uses this list to cancel a contract and
to execute a contract. When a cancellation request
arrives to the Request Manager it verifies if the
contract exists, and if it exists it asks the system
component which should have provide the service to
cancel the contract. The actual execution of a service
booked through a contract is requested by the Request
Manager at the expected execution time. In this way, a
customer/application does not have to re-send the
request for the execution of the service. The list of
contracts of the Request Manager is implemented as a
view on all the timetables in the system.

Figure 7 shows the sequence diagram for the
execution of a contract. The Request Manager checks

the execution time of each contract. When a contract
should be executed, it creates two types of requests: a
setting request (if in the contract are specified the QoS
which should be guaranteed during the execution of
the service) and a service execution request. The
setting request is sent to the Reflection Manager which
is in charge to manipulate the reflective knowledge.
The reflection correspondent of the component which
should execute the service checks if the contract in its
timetable corresponds to the contract indicated in the
request and if the answer is positive than it sets the
QoS on the values specified in the contract. Once
finished this operation it notifies the system component
through the causal connection mechanism that settings
are ready and cancels the contract from its timetable.

To summarize, there are requests which claim for
an immediate (or as soon as possible) execution of a
service, and requests which book a service. Time
becomes important because it determines when to
execute a service, and how long a resource is used to
provide a service.

4. Conclusions and Further Work

In this paper we have described how our solution
for adaptivity is applied to an actual case study and
which have been the problems encountered and the
solutions adopted. Attention was focused on the
possibility to exploit additional information about
domain knowledge which is not usually modelled in
traditional approaches, but which improves adaptivity.
Usually, this information is the property of the actors

Figure 7. Execution of a Contract

Reflective
Manager

Contract Reflection
Manager

R_Object Timetable R_Service QoS System Object Service Execution
Manager

checkExecutionTime()

return Contract

createSettingRequest(Contract)

execute(Request)
execute(Request)

getContract()

checkContract()

prepareExecution()
setQoS()

removeContract

ready()

createExecutionRequest(Contract)

execute(Request)

execute()

290

of the system and they use it implicitly when making
requests or offering solutions, but there is no explicit
representation and usage of it in the system.

Furthermore, we have considered the possibility to
book services, not only to execute them. Booking
services implies the definition of additional elements to
trace the accepted contracts, but in the same time it
allows a system to improve the usage of its
components by grouping together those services
claiming for the same QoS. The evolution of ARMS
involved the addition of elements such as booking
time, contracts and timetables. It has not lead to the
modification of the other elements of our architecture.

The introduction of contracts raises additional
issues which regard the check that the solution
established through a contract remains the best for a
request also at the execution of the contract. This may
be addressed by associating timetables to the service
views and not to reflective objects. In this case it is
supposed that services may be executed in parallel
(i.e., two or more different components may execute
the same type of service at the same time). The
allocation of resources becomes more complicated
because the same component may provide two or more
different services booked in parallel by different views.

As anticipated by experts, the actual application of
HARMS in a hospital may encounter difficulties of
various types. For example, there are medical
departments where location sensors are not welcome
(i.e., cardiology).

Several related works consider the healthcare
system as a case study to apply various architectural
models to achieve adaptivity [3, 7, 9]. They address
similar issues related to the variety of the devices used
to access information and to the availability and
efficient usage of the resources especially in
emergency situations. The main differences with our
solution are that we use reflection to achieve adaptivity
at runtime, we use domain specific non-functional
aspects and we consider also the booking of services
not only their immediate execution.

5. References

[1] Aagedal, J.O. Quality of Service Support in Development
of Distributed Systems. PhD Thesis, University of Oslo,
Norway, 2001.

[2] Arcelli, F., Raibulet, C., Tisato, F., Ubezio, L. Designing
and Exploiting the Location Concept in a Reflective
Architecture. In Proceedings of the 14th International
Conference on Intelligent and Adaptive Systems and
Software Engineering), 2005

[3] Bardram, J. E. Hospitals of the Future – Ubiquitous
Computing support for Medical Work in Hospitals. In
Proceedings of the 2nd International Workshop on

Ubiquitous Computing for Pervasive Healthcare
Applications, 2003

[4] Cazzola, W., Sosio, A., Savigni, A., Tisato, F.
Architectural Reflection. Realising Software
Architectures via Reflective Activities. In Proceedings of
the International Workshop on Engineering Distributed
Objects. LNCS, Springler Verlag, 2000, pp. 102-115.

[5] Cheng, S. W., Garlan, D., Schmerl, B. Architecture-based
Self-Adaptation in the Presence of Multiple Objectives.
In Proceedings of the ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems,
2006, pp. 2-8

[6] Erl, T. Service-Oriented Architecture: Concepts,
Technology and Design, Prentice Hall PTR, USA, 2005.

[7] Favela, J., Rodriguez, M., Preciado, A., Gonzalez, V. M.
Integrating Context-Aware Public Displays Into a Mobile
Hospital Information System. IEEE Transactions on
Information Technology in Biomedicine, 8, 3, 2004, pp.
279-286

[8] Kon, F., Costa, F., Blair, G., Champbell, R.H. Adaptive
Middleware: The Case for Reflective Middleware. In
Communications of the ACM, Vol. 45, No. 6, 2002,
pp.33-38

[9] Kumar, M., Shirazi, Das, S. K., Sung, B. Y., Levine, D.,
Singhal, M. PICO: A Middleware Framework for
Pervasive Computing. IEEE Pervasive Computing
Mobile and Ubiquitous Systems, 2, 3, 2003, pp. 72-79

[10] Maes, P. Concepts and experiments in computational
reflection. In Proceedings of the Object-Oriented
Programming Systems Languages and Applications
(OOPSLA’87), 1987, pp. 147-155.

[11] McKinley, P. K., Sadjadi, S. M., Kasten, E. P., Cheng,
B. H. C. Composing Adaptive Software. Computer,
IEEE Computer Society, 37, 7, 2004, pp. 56-64.

[12] Mussino, S. ARM (Adaptive Resource Management):
Design and Development of Adaptive Applications. MSc
Thesis, University of Milano-Bicocca. Italy. 2005.

[13] OMG Adopted Specification. UML Profile for
Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms. ptc/2004-06-01,
http://www. omg.org, 2004.

[14] Poladian, V., Sousa, J.P., Garlan, D., Shaw, M.
Dynamic Configuration of Resource-Aware Services. In
Proceedings of the 26th International Conference on
Software Engineering, 2004, UK, pp. 604-613.

[15] Raibulet, C., Arcelli, F., Mussino, S., Riva, M., Tisato,
F., Ubezio, L. Components in an Adaptive and QoS-
based Architecture. In Proceedings of the ICSE
Workshop on Software Engineering for Adaptive and
Self-Managing Systems, 2006, pp. 65-71

[16] Raibulet, C., Arcelli, F., Mussino, S. Exploiting
Reflection to Design and Manage Services for an
Adaptive Resource Management System. In Proceedings
of the IEEE International Conference on Service Systems
and Service Management, 2006, 1363-1368

[17] Raibulet, C., Arcelli, F., Mussino, S. Mapping the QoS
of Services on the QoS of the Systems’ Resources in an
Adaptive Resource Management System. In Proceedings
of the 2006 IEEE International Conference on Services
Computing, Work-in-Progress, 2006, pp. 529-530

291

Study of the Relationships between Personality, Satisfaction and Product Quality in
Software Development Teams

Marta Gómez Silvia T. Acuña
Escuela Politécnica Superior Escuela Politécnica Superior
Universidad San Pablo-CEU Universidad Autónoma de Madrid

mgomez.eps@ceu.es silvia.acunna@uam.es

ABSTRACT
In this article we analyse the relationships between
personality, task and group characteristics, product quality
and satisfaction in software development teams. The data
were collected from a sample of 35 teams of students (105
participants) at a Spanish university. The arithmetic mean is
used as an index for aggregating individual team members’
scores.
The teams most satisfied with their work are precisely the
ones that score higher on the agreeableness and
conscientiousness personality factors. Satisfaction levels
are also higher when members can decide how to develop
and organize their work. On the other hand, the level of
satisfaction and cohesion fall the more conflict there is
among team members about the task. Finally, there is a
significant positive correlation in teams between the
extroversion personality factor and the quality of the
developed software product.
Keywords: Personality factors; Software quality;
Satisfaction; Team building

1. INTRODUCTION
People are a fundamental and critical concern in software
development success or failure. There is research that takes
this aspect into account and incorporates people into the
software process [1][2][3]. These studies analyse people
individually and establish relationships to the activities
performed as part of the software project. They agree on the
fact that these people work together to perform
interdependent development tasks, and these group
interrelationships are complex. This leads to the need to
examine software development team formation.
Social psychology is now researching team formation
considering a series of factors that have been found to
affect team performance. This research analyses team
member personality factors and their relationship to task
characteristics [4][5][6]. However, other team behaviour
factors, like interactions between people, including conflict,
cohesion, cooperation, communication and climate [7], play
a role in this relationship.
The results of social psychology studies are task dependent
(although there are general trends that appear to affect all
tasks equally). Therefore, software development teams need
to be examined separately to discover what factors are
influential in this particular field and how alike these
specialized results are to the outcomes for other tasks.
There are few studies in the field of software development
on the impact of some group factors —cohesion, conflict,

team structure, coordination, expertise— on team
performance [8][9]. Other research analyses the
motivational issues that govern the behaviour of developers
and their teams [10].
The key question addressed here is whether software
product quality and the level of team member satisfaction
depend on team member personality. The study we
conducted measures the personalities of the members of
each team on the basis of the Big Five personality factors
[11]: extroversion, neuroticism, agreeableness,
conscientiousness and openness to experience. We also
measure the characteristics of the task the teams perform.
This measurement is confined to interdependency and
autonomy, which Molleman et al. [4] established as being
the most important factors influencing team behaviour.
Finally, we also account for other factors that are important
for getting a better understanding of these relationships.
They are the group behaviour factors conflict and cohesion.
This article is structured as follows. Section 2 describes the
work related to team formation in the field of software
engineering. Section 3 details the experimental study
method used to relate personality factors to software quality
and team satisfaction, as well as the task characteristics and
some group processes. Section 4 presents the data analysis
and results. Section 5 discusses the results and sets out the
conclusions.

2. TEAM FORMATION RELATED WORK
This section analyses studies related to team formation and
behaviour in the field of software engineering, highlighting
only the factors most closely related to our study, i.e. the
five personality factors, cohesion, conflict and task
characteristics (autonomy and interdependency).
To quote DeMarco and Lister [12], “Most software
development projects fail because of failures with the team
running them.” Nowadays there is widespread recognition
that software process productivity and efficiency is
critically dependent on human and social factors [13]. Most
research examines the individual qualities of the people
involved in the software process. This research tends to
consider what personality factors and competencies are
required depending on the characteristics of the task at hand
[2][3]. We need to go a step further and examine the
development team, its interrelationships and personality
traits to find out more about what factors influence team
performance.
There is little research on group aspects applied to software
development. Some studies use a standard test, such as the

292

MBTI (Myers-Briggs Type Indicator) [14] [15] [16], to
determine guidelines for team success depending on
software engineer personality types. Another study
determines the relationship between competencies,
personality traits and team performance [17].
There are also team forming methods based on a
quantitative competencies model [18], but they do not
consider aspects like team member personality factors.
Another team forming method is based on analysing
required and available skills [19], although it does not
specify how to evaluate people’s skills. Nor does it consider
group factors or the task.
Zuser and Grechening [20] propose the use of a
questionnaire based on abilities and personality traits that
provide the team with information during development on
finished software projects to improve team performance.
The team is built according to the team forming phases of
Tuckman’s model: forming, storming, norming, performing
and adjourning [21].
Despite its importance, little research has been done on the
person-team-climate fit in software development. We
expect this experimental study to provide a tool for use in
software development team formation.

3. EXPERIMENTAL STUDY SET-UP AND DESIGN
The empirical study run fits the description of a quasi-
experiment [22]. Quasi-experiments are run when the
subjects cannot be randomly assigned to an experimental
condition or, alternatively, a treatment cannot be randomly
assigned to a group. A quasi-experiment tends not to be
very intrusive and relatively low cost. Selected statistical
tests are applied to the collected data.
In the following, we describe the participants, response
variables and measurement instruments used in the quasi-
experimental procedure.

3.1. Participants
The participants were 2nd-year computing students at
Autonomous University Madrid’s Higher Technical School
of Computing during the 2004/2005 academic year. These
students were taking the Data Structures and Algorithms
subject. The project set was to design and implement
software of medium complexity using the Extreme
Programming (XP) agile methodology [23].
The number of subjects participating in this empirical study
was 105, of which 83 were male (79%) and 22 were female
(21%). Of the students, 75% (77 students) were under 21-
year-olds and 25% (26 students) were aged from 21 to 30
years.
This group of students was divided into 35 three-member
teams working together on software development. These
teams were formed at random and their members were
blind to the quasi-experimental conditions.

3.2. Response Variables: Software Product Quality and
Satisfaction

One of the response variables in this study is the quality of
the software product evaluated through code analysis,
project documentation and observed team member

participation. The projects developed by the teams were
graded according to the following weighted formula:

Grade = (((Modularization * 2 + Testability * 2 + Functionality * 2 +
Reusability * 2 + Style * 2) / 4) * 0.8) + ((Participation * 10 / 4) * 0.2))

The other response variable is development team member
satisfaction. The Gladstein questionnaire was used as a
measurement instrument to evaluate team satisfaction [24].
People fill in this questionnaire stating how satisfied people
they are with their team mates, group work, etc. The scale
ranges from 1 (completely disagree) to 5 (completely
agree).

3.3. Measurement instruments
The NEO Personality Inventory (NEO-PI-R) [11] was used
to study the personality of the participants of each team.
This test is composed of 60 questions that measure five
personality factors: neuroticism (N) extroversion (E),
openness to experience (O), agreeableness (A) and
conscientiousness (C). These factors are each divided into
12 items. All the factors are evaluated using a Likert scale.
Students are told that there are no right or wrong answers
and that they should concentrate on answering accurately
and truthfully, scoring responses on a scale from 1 (not at
all) to 5 (completely).
The group processes for cohesion and conflict were
measured using 13 items taken from the Gross Cohesion
Questionnaire [25] and an inter-group conflict
questionnaire developed by the Autonomous University of
Madrid’s School of Psychology. Task interdependency was
determined according to Van der Vegt et al.’s questionnaire
[26] on a scale from 1 (not at all) to 5 (completely). Finally,
task autonomy was measured using a Molleman
questionnaire [27].

3.4. Validity threats and control
The internal validity threats known before running this
quasi-experiment were:
a) There is no way of guaranteeing that students will do

all the specified tasks in the right order or that the work
will be shared out adequately. This was countered by
allocating two professors for every 50 students
responsible for following up project development.

b) Not all teams are as knowledgeable about the task to be
undertaken. This was countered by forming teams at
random.

c) Questions about the project under development. The
professors are directing the quasi-experiment and
should take care not become a factor of bias, that is,
they should not answer individual questions related to
software development. The countermeasure was to
establish practical classes to answer these questions so
that all the teams were given the same information
which they later used as best they could in their
project.

4. DATA ANALYSIS AND RESULTS
The following statistical techniques were applied to analyse
the data and output the results.

293

1. Analysis of the correlations between personality
factors, task autonomy and interdependency, group
processes (cohesion and conflict), satisfaction and final
software product quality.

2. Regression between satisfaction and personal conflict,
task conflict, task cohesion and interdependency.

4.1. Team Factor Correlations
The analysis of the correlations between personality factors,
task autonomy and interdependency, group processes
(cohesion and conflict) and satisfaction revealed some
positive and significant associations (see Table 1).
Table 1 shows that extroversion correlates positively with
another two team member personality factors, openness (r =
0.414 Sig. 0.014) and agreeableness (r = 0.480 Sig. 0.003),
as well as with the group process of cohesion (r = 0.469
Sig. 0.005). Similarly, neuroticism has negative correlations
with conscientiousness (r = -0.636 Sig. 0.000) and
extroversion (r = -0.336 Sig. .049).

Table 1. Table of correlations between personality factors, task
characteristics, group processes and satisfaction

N E O A C AUTONOMY INTERDEPENDENCY SATISFACTION CONFLICT COHESION
N 1 -0.336* -0.112 -0.151 -0.636** -0.148 -0.214 -0.129 -0.034 -0.186
E 1 0.414* 0.480** 0.256 0.302 0.281 0.153 -0.192 0.469**
O 1 0.302 0.052 -0.085 0.090 0.068 0.236 -0.061
A 1 0.167 0.503** 0.500** 0.334* -0.157 0.376*
C 1 0.216 0.476** 0.341* 0.007 0.261

AUTONOMY 1 0.599** 0.471** -0.314 0.333

INTERDEPENDENCY 1 0.797** -0.243 0.421*
SATISFACTION 1 -0.464** 0.294

CONFLICT 1 -0.496**
COHESION 1

sig. 0.05*
sig. 0.01**

Conflict has a significant negative correlation with
cohesion (r = -0.496 Sig. 0.002) and satisfaction (r = -0.464
Sig. 0.005). Conflict is divided into personal conflict and
task conflict, a distinction that we will analyse later.
There is a positive linear relationship between students’
mean satisfaction and their mean team personality scores
for agreeableness and conscientiousness (r = 0.334 Sig.
0.050 and r = 0.341 Sig. 0.045). Satisfaction also correlates
positively to task interdependency (r = 0.797 Sig. 0.000)
and autonomy (r = 0.471 Sig. 0.004).
Development team interdependency is related to autonomy
(r = 0.599 Sig. 0.000), agreeableness (r = 0.500 Sig. 0.002),
conscientiousness (r = 0.476 Sig. 0.004) and cohesion (r =
0.421 Sig. 0.012).
No significant relationships were found between software
quality and other evaluated factors like autonomy, interde-
pendency, satisfaction, conflict or cohesion. However, a
significant correlation was identified between the personal-
ity factor extroversion and software quality (r = 0.455 Sig.
0.038) in all the evaluated teams. Finally, there was found
to be a significant relationship (r = 0.201 Sig. 0.040) be-
tween the individual performance of the 105 participants
and team performance.

4.2. Linear Regression of Satisfaction
We adopted a backwards regression model to which all the
independent variables were added and then removed
stepwise based on the output criteria (lowest absolute value

of R2; F criterion >= 0.1). This produced the model shown
in Table 2.
Note that the procedure was divided into two steps, yielding
a coefficient of determination or corrected correlation coef-
ficient of R2 = 0.733. In other words, the model predicts or
explains from interdependency, cohesion and task conflict a
variance (VD) of 0.733 in the satisfaction variable. Personal
conflict is removed. It is clear that personal conflict makes
no contribution to the model’s explanation.

Table 2. Table of correlations between personality factors, task
characteristics, group processes and satisfaction

Non-standardized regression
coefficients

Standardized regression
coefficients

B Beta
(Constants) 8.013
INTERDEPENDENCY 0.521 0.765
COHESION -0.168 -0.182
TASK CONFLICT -0.674 -0.380
R² = 0.733

The coefficient carrying the heaviest predictive weight for
satisfaction is interdependency with Beta = 0.765. Teams
are small and have to complete the activities in a very short
time frame. This they would be unable to do without
interdependency, and would find failure very frustrating.
Table 3 shows how the linear regression converges with
correlations between the model variables, and interdepen-
dency and satisfaction correlate at r = 0.797 (Sig. 0.000). It
also shows how task conflict (r = - 0.526 Sig. 0.001) is
more negatively related to satisfaction than personal con-
flict (r = - 0.354 Sig. 0.037). According to Table 3, then, if
there is conflict between the team members, they will logi-
cally find it more difficult to reach agreement on how to do
the task.

Table 3. Regression Model for Satisfaction

SATISFACTION
PERSONAL
CONFLICT

 TASK
CONFLICT

INTERDEPENDENCY

SATISFACTION 1 -0.354* -0.526** 0.797**

PERSONAL CONFLICT 1 0.637** -0.178

TASK CONFLICT 1 -0.287
INTERDEPENDENCY 1

sig. 0.05*

sig. 0.01**

5. DISCUSSION AND CONCLUSIONS
Figure 1 illustrates the results of our study. Note that the
most highly correlated personality factors are agreeableness
and extroversion. Figure 1 also highlights the importance of
the group factor cohesion because of its relationships both
to the above personality factors and to task characteristics.
Figure 1 reveals that there are several relationships between
different personality factors, some of which are easier to
understand and interpret than others. For example, the
extroversion personality factor appears to be clearly related
to openness and agreeableness. The logical explanation is
that relationships will be more agreeable and fluid, with
less tension between team members, in teams with average
extroversion levels. In such a team environment, people
will obviously find it easier to propose innovative methods
for doing the work. Therefore, the quality of the work in
such teams is likely to improve, as is the result (in this case
the developed software product).
Team cohesion will tend to be stronger at average
extroversion levels. These conditions in which the team is

294

more united will perhaps support and boost the openness to
experience and agreeableness factors among team
members.
There are several points to be made about satisfaction
(Figure 1). We find that the most satisfied students are
precisely the ones that score higher on the agreeableness
and conscientiousness factors. Molleman et al. [4] also
discovered this positive relationship between satisfaction
and conscientiousness. In other words, people feel more
satisfied in teams where there is a more agreeable and/or
conscientious environment. Satisfaction levels are also
higher when the team can decide on how to develop and
organize the work to be done (autonomy). Finally, the more
conflict is perceived in the team, the less cohesion and
satisfaction there is among its members.

+0,471 +0,503

+0334

+0,341

+0,599

+0,5

+0,376

+0,469

+0,455

+0,414

+0,480

+0,421

-0,636

-0,336

-0,496

CONFLICT

AUTONOMY

SOFTWARE
QUALITY

SATISFACTION

EXTROVERSION

AGREEABLENESS

NEUROTICISM
OPENNESS TO
EXPERIENCE

INTERDEPENDENCY+0,797

+0,476

COHESION

CONSCIENTIOUSNESS

-0,464

+0,471 +0,503

+0334

+0,341

+0,599

+0,5

+0,376

+0,469

+0,455

+0,414

+0,480

+0,421

-0,636

-0,336

-0,496

CONFLICT

AUTONOMY

SOFTWARE
QUALITY

SOFTWARE
QUALITY

SATISFACTION

EXTROVERSION

AGREEABLENESS

NEUROTICISM
OPENNESS TO
EXPERIENCE

OPENNESS TO
EXPERIENCE

INTERDEPENDENCY+0,797

+0,476

COHESIONCOHESION

CONSCIENTIOUSNESS

-0,464

Figure 1. Personality-Group Behaviour-Task Characteristics-
Quality/Satisfaction Correlations

As regards software quality, the only clear relationship
found was to extroversion (Figure 1). The scores for some
NEO-PI-R factors are outside the standardized values for
the sample of this study. The results might possibly have
been clearer if the sample had been more variable. This
would to some extent explain the lack of statistically
significant relationships to developed software quality
identified in other research. However, the one relationship
we did identify matches the results reported by Barrick and
Mount [6], Barry and Stewart [5] and Barrick et al. [7].
While these works deal with different task types, they do
have the common denominator of high interaction between
team members and a unanimous vision of the goals to be
achieved. These are also key characteristics for the agile
development method. Therefore, average extroversion
within teams is considered to improve the software product
quality for this development method.

REFERENCES
1. M.I. Kellner, R.J. Madachy, D.M. Raffo.: Software Process Simu-

lation Modelling: Why? What? How?. Journal of Systems and
Software. Vol. 46, pp. 91-105, (1999).

2. J. Wynekoop, D. Walz.: Investigating traits of top performing
software developers. Information Technology & People. Vol.
13(3), pp. 186-195, (2000).

3. S.T. Acuña and N. Juristo.: Assigning people to roles in software
projects. Software: Practice and Experience. Vol. 34, pp. 675-696,
(2004).

4. E. Molleman, A. Nauta, K.A. Jehn.: Person-Job Fit Applied to
teamwork: A Multi-Level Approach. Small Group Research. Vol.
35, pp. 515-539, (2004).

5. B. Barry, G.L. Stewart.: Composition, process and performance in
self-managed groups: The role of personality. Journal of Applied
Psychology. Vol. 82, pp. 62-78, (1997).

6. M.R. Barrick, M.K. Mount.: The Big Five personality dimensions
and job performance: A meta-analysis. Personnel Psychology.
Vol. 44, pp. 1-26, (1991).

7. M.R. Barrick, G.L. Stewart, M.J. Neubert, M.K. Mount.: Relating
Member Ability and Personality to Work Team Processes and
Team Effectiveness. Journal of Applied Psychology. Vol. 83, pp.
377-391, (1998).

8. H.-L.Yang, J.-H. Tang.: Team structure and team performance in
IS development: a social network perspective. Information &
Management. Vol. 41, pp. 335-349, (2004).

9. S. Faraj, L. Sproull.: Coordinating expertise in software develop-
ment teams. Management Science. Vol. 46(12), pp. 1554-1568,
(2002).

10. W.S. Humphrey, M.D. Konrad.: Motivation and Process Im-
provement. In: Software Process Modeling. Springer, (2005).

11. Jr.P.T. Costa, R.R. McCrae.: NEO Personality Inventory. Psycho-
logical Assessment Resources, (1992).

12. T. DeMarco, T. Lister.: Peopleware: Productive Projects and
Teams (2nd ed): New York: Dorset House, (1999).

13. B.W. Boehm, C. Abts, W.A. Brown, S. Chulani, B.K. Clark, E.
Horowitz, R. Madachy, D.J. Reifer, B. Steece.: Software Cost Es-
timation with COCOMO II. Upper Saddle River: Prentice Hall
PTR, (2000).

14. R.H. Rutherford.: Using personality inventories to help form
teams for software engineering class projects. SIGCSE-Bulletin.
Vol. 33(3), pp. 76–76, (2001).

15. R.P. Bostrom, K.M. Kaiser.: Personality differences within sys-
tems project teams: Implications for designing solving centers.
Proceedings of the Eighteenth Annual ACM SIGCPR Confer-
ence. pp. 248–285, (1981).

16. L.T. Hardiman.: Personality types and software engineers. IEEE
Computer. Vol. 301(10), pp 10–10, (1997).

17. K. White, R. Leifer.: Information systems development success:
Perspectives from project team participants MIS Quarterly. Vol.
10(3), pp. 215–23, (1986).

18. G. Burdett, R-Y. Li.: A quantitative approach to the formation of
workgroups. Proceedings of the ACM SIGCPR Conference. pp.
202–212, (1995).

19. A. Zakarian, A. Kusiak.: Forming teams: An analytical approach.
IIE Transactions. Vol. 31, pp. 85–97, (1999).

20. W. Zuser, T. Grechening.: Reflecting skills and personality inter-
nally as means for team performance improvement. Proceedings
of the 16th Conference on Software Engineering Education and
Training, IEEE Computer Society, (2003).

21. B. Tuckman.: Developmental sequence in small groups. Psycho-
logical Bulletin. Vol. 63, pp. 384–399, (1965).

22. T.D. Cook, D.T. Campbell.: Quasi-Experimentation Design and
Analysis Issues for the Field Settings. Boston, MA: Houghton
Mifflin, (1979).

23. K. Beck.: Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading, (1999).

24. D.L. Gladstein.: Groups in Context: A Model of Task Group
Effectiveness. Administrative Science Quarterly. Vol. 29, pp. 499,
(1984).

25. J.P. Stokes.: Toward an understanding of cohesion in personal
change groups. International Journal of Group Psychotherapy.
Vol. 33, pp. 449-467, (1983).

26. G. Van der Vegt, B. Emans, E. Van de Vliert.: Affective reac-
tions to individual task interdependence in outcome interdepend-
ence groups. Personnel Psychology. Vol. 54, pp. 51-69, (2001).

27. E. Molleman.: The modalities of self-management: the “must”,
“may”, “can” and “will” of local decision making. The Interna-
tional Journal of Operations and Production Management. Vol.
20, pp. 889-910, (2000).

295

ABSTRACT
In decentralized computing environments, systems are built

mainly from components that are developed and maintained
independently by different third-party providers. The executions and
evolutions of components located on distributed sites are beyond the
control of the system developers and the availabilities of those
components are, to some extent, unpredictable because of their own
tendencies and the unstable network. As a result, it is still a great
challenge to construct high-available decentralized systems. In this
paper, a self-adaptive component model is proposed to model those
components distributed on the Internet and the running framework is
described for constructing systems composed of self-adaptive
components. Self-adaptive components can adjust their knowledge
about the availabilities of the required services via learning from the
feedback of historical invocations. Based on the knowledge,
components can find the most appropriate service providers
effectively and automatically. Experiments show that systems can
always gain a high availability under the dynamic decentralized
environment by using the approach.

1.INTRODUCTION

The emergence and popularization of new computing
paradigms such as pervasive computing, grid computing, and
service computing, make today’s software to be increasingly
“Internet-scale” and “service-oriented”. Many Internet-based
applications reuse different third-party components to
improve their development productivity and quality. We call
these systems as decentralized systems [1], which represents
systems that are built mainly from components that are
developed and maintained independently by different
providers, on hardware nodes that are not under the
control of the system developers. As more and more
services and decentralized systems will certainly be deployed
in the coming years, how to construct high-available
decentralized systems is becoming a crucial challenge.

System availability can be defined as the degree to which a
system is operational and accessible when required for use [2].
As situated in the unstable network environment,
decentralized system’s availability is always weakened by the
underlying connectivity failures. Moreover, third-party

+ Corresponding Author

services often evolve outside of the systems, join or quit the
network without notifying others. As a result, service
availability often keeps on changing at runtime and, to some
extent, is unpredictable. On the other hand, the proliferation
of services available on the Internet increases the candidate
providers. To improve the overall system availability,
research efforts [3] [4] have been put into clustering many
function-identical services and binding most adequate
service(s) automatically during the execution time.

Unfortunately, most of existing solutions are using a
centralized architecture style, which may be unsuitable in a
large, decentralized environment with a large number of
independent and distributed components. In the web service
community, Ran [5] presents an approach to storing quality
information (e.g., availability) of web services into the UDDI
registry. However, service availability depends on not only
the service implementation but also the network status
between service requestors and providers, and a service
highly available to the UDDI server may provide a poor
user-experience to the actual client. Another typical approach
is to delegate customer requests to a service broker [6].
However, this approach needs the central broker to process a
large number of client requests.

To cope with the uncertainty and dynamics in
decentralized environments without a global coordinator,
system components are required to approximate the current
status of remote resources [1] (i.e., software entities
constructing Internet-scale applications). That is, components
should estimate the availabilities of service providers, and
adjust the estimated values according to the service
evolutions. Consequently, two important problems should be
addressed at least: (1) given a collection of third-party
services, how can the currently most available candidate be
found effectively without a central information service? (2)
When the quality of service or network connectivity changes,
how can the system be aware of and adapt to the change
automatically?

To address above problems, in this paper, we present a
component framework to facilitate constructing
high-available self-adaptive systems in the decentralized
environment. The main contributions of this paper are: First,

Towards Constructing High-available Decentralized Systems
via Self-adaptive Components

Xi Sun, Li Zhou, Lei Zhuang, Wenpin Jiao+, Hong Mei

Software Institute, School of Electronics Engineering and Computer Science, Peking University
Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education

 Beijing 100871, P.R. China
 {sunxi, zhouli04, zhuanglei04, jwp, meih} @sei.pku.edu.cn

296

we propose a self-adaptive component model to encapsulate
the availabilities of remote components and resources as
adaptable “knowledge”. This model allows a component to
dynamically estimate the availabilities of remote entities at
runtime to adapt to the dynamic environment. Second, we
design and implement an algorithm to reason about the
availabilities of required services via learning from the
feedback of historical invocations. This algorithm enables
components to update their knowledge automatically. Finally,
a running infrastructure is implemented to increase the
feasibility of our approach.

The reminder of this paper is organized as follows. Section
2 proposes the self-adaptive component model, and describes
the process of constructing systems based on self-adaptive
components. Section 3 presents the algorithm for
dynamically estimating and adjusting the availabilities of
services in detail. Section 4 reports the experimental studies
and analyzes the results. Section 5 compares with some
related work. Finally, Section 6 concludes this paper and
discusses our future work.

2.CONSTRUCTING HIGH-AVAILABLE SYSTEMS VIA
SELF-ADAPTIVE COMPONENTS

In this section, we first give a definition to the self-adaptive
component. Then, we illustrate the runtime structure of the
components in our current implementation. We finally
describe the system constructing process.

1. Self-adaptive component definition
First, the definitions of interface and service are provided

for completeness.
An interface is defined by Szyperski as:
Definition 1. An interface is a set of named operations that

can be invoked by the clients [7].
We define a service as a program that implements and

publishes one or more interfaces. A service may also depend
on zero or more required interfaces.

Definition 2. A service is defined as a triple as follows:
S = < name, PIs, RIs >, where:

name is the unique name of service S;
PIs is the set of provided interfaces of S;
RIs is the set of required interfaces of S;

Self-adaptive components in our approach specify the
services (including those they provide and they require) as
interfaces explicitly. For each required interface, a set of
service candidates should be given at the component
deployment stage. In our current implementation, the
candidates list can also be modified at runtime via
component’s reflective interface. Due to the space limit, the
details of reflective interface are not included in this paper.

Definition 3. A self-adaptive component can be formally
defined as a tuple as follows:

C = < name, PIs, RIs, D, Beh >, where
name is the unique name of component C;
PIs is the set of provided interfaces of C;

RIs is the set of required interfaces of C;
D is a relation to specify C’s dependencies, where:
D = RIs (S),
That is to say, for every required interface, there exist
one or more service candidates that implement this
interface (S is the set of the services). Moreover, for
every service, component has a variable (which is
with range of , the set of real numbers) to record the
estimated value of the service’s availability.
Beh is the component’s behavior to maintain the
component’s dependencies and to adjust those
estimated values related to the depended services’
availabilities. The component behavior is realized via
an algorithm, which will be explained in depth in
Section 3.

2. The runtime structure of self-adaptive components
When developing a self-adaptive component, developers

should provide an implementation of the provided interfaces
and a specification of the required interfaces separately. In the
required interfaces specification, each service candidate
should be specified with service type (e.g., web services,
RESTful services [8]), address (e.g., URL), communication
protocol (e.g., SOAP [9]), message structure, and etc.

Figure 1 self-adaptive component: structure overview

Figure 1 shows a runtime self-adaptive component from
the structural perspective. The component is running in a
container, and the service candidate list of every required
interface is stored in the container’s dependency table. The
component’s invocations to the required interfaces are
delegated to the container’s selector module, which chooses
one of the candidates and then requests the service via the
candidate’s connector. Our current implementation provides
a tool to assist in generating the web service connector (i.e.,
the invocation stub) according to the given web service
specification.

As shown in Figure 2, briefly, there are three phases when
a self-adaptive component invokes a service:

1. At the initialization stage, for each required interface,
self-adaptive component loads the list of service candidates
that implement this interface. Then, the component
designates a selection probability to each service candidate.
Each service is initially assigned with the same probability.

2. When the component needs to invoke a service, the

Interface
Specification:
 Candidate1
 Candidate2

Computation

Connector1

Connector2

Service

Service parsing

 Computation

Selector

Event
Dispatcher

Strategy
List

Dependency
Table

……
invokeService
.(name)

Component
Specification

Runtime Container

297

selector module chooses a candidate according to the current
specified probability distribution. (Steps 1-3 in Figure 2)

3. After the invocation, component adjusts the selection
probabilities related to the service candidates according to the
invocation feedback event (Steps 4-6 in Figure 2). The
adjustment is determined by the learning algorithm, which is
registered in the strategy list.

Figure 2 the behaviors of self-adaptive components

3. Self-adaptive component based systems.
Self-adaptive component-based systems are composed of

many self-adaptive components and service candidates. Note
that a self-adaptive component is also a service from the
definitions in section 2.1; thus, the components composing
the system can be organized in a layered structure, in which a
self-adaptive component can be used as one service candidate
of other components.

Figure 3 self-adaptive component based system

In decentralized environments, services (include the
self-adaptive components) are running independently and
continuously. Every service processes the requests from
many different requestors, and may send request to other
services. Furthermore, none of the services has a global view
of the system: each self-adaptive component only knows
some dependent services, in other words, a part of the system
architecture. Figure 3 shows these components’ local view of
the environment.

During the execution time, which services participate in the
current computation task is dependent on the self-adaptive
components’ selection results. As shown in Figure 3, a
request for service to component A may lead to the invocation
to component B during A’s execution, and the path labeled
with ‘a’ is the whole service process; to process another

request, A may select component C and the process may be
the path labeled with ‘b’ in the figure. Although the selection
is dynamic, as the components process more invocations, the
learning algorithm will enable them to find the most available
service providers, and then the service process is increasingly
stable.

In a word, the construction of a decentralized system is
determined at runtime. Self-adaptive component-based
systems are represented as coalitions of distributed entities
which are self-organized to guarantee the high availability.

3.THE ESTIMATED SERVICE AVAILABILITY
ADJUSTMENT ALGORITHM

Our adjustment algorithm borrows the idea of the
simulated annealing algorithm [10], but has many important
differences in addressing the requirements of finding the
service with highest availability in dynamic environments.

The estimated availability value vi of service candidatei is
calculated in formula 1 below.

history
temperature

iv e (1)
There are two variables in formula (1), history and

temperature. Variable history denotes the historical success
rate of service candidatei. The success rate is quantified as the
ratio of the number of successful completed interactions
between component and candidatei to the total number of
attempted requests between them. A candidate performs
better in the history will have a bigger probability to be
chosen in the next invocation. We enlarge the influence of
history by multiplying it by a constant , which is designated
to 60.0 in our current implementation.

Variable temperature denotes the degree of freedom to
select among the candidates. As we known, even a highly
available service may fail occasionally due to network
failures or other problems; meanwhile, at the beginning, it’s
difficult for the component to differentiate the candidates
based on insufficient historical invocation feedback.
Therefore, a high temperature is given in the initial learning
stage, thus the candidates will have similar estimated values
(i.e., similar probability to be selected). As the component
gains more experiences, the temperature is decreased
continuously and the estimated value becomes more sensitive
to the value of history. When the temperature drops to a
minimum, the probability of the most available service
candidate will be significantly different from those of the less
available ones.

During the annealing process, temperature is adjusted as
follows:

Formula 2: Formally, let ‘T’ be the temperature and minT
be its lower bound. Let ‘minCT’ and ‘totalCT’ denote the
minimum and the sum of the historical invocation times of
service candidates, respectively. Let be the incremental
operator. Then,

{ , / }annealT Min T minT totalCT i minCT (2);

Component

Service

Selector

Selector

Service

Service
Service

Component

Service

Service…

B

C

A

A’s

B’s vision

C’s vision

a

a

b

b b

Connector1

Connector2 Service

Computation
 Logic

Selector

Event
Dispatcher

Strategy
List

Dependency
Table

Service

1

2

3

4

56

298

where ‘i’ is the adjusting parameter. In our experiment, its
value is set as 50, and ‘minT’ is set as 1.

This formula represents that temperature is decreased
every time when the increment of totalCT is over i times,
which implies that the component has gained rich experience.
We also decrease temperature when minCT is increased,
which indicates that the component gains more availability
information about the candidate with the least invocation
times. The annealing process ends when temperature drops to
minT.

On the other hand, a service candidate with a high success
rate in previous invocations may become unavailable at
runtime; meanwhile, the component may add new service
candidate dynamically. In these cases, we should increase the
temperature to provide other candidates (or the new services)
with more opportunities. And it is called the ‘heating
process’.

Formula 3: Formally, for a service candidate, let
‘recentSR’ and ‘hisSR’ denote the success rates of the recent
‘j’ times of invocations and the historical invocations,
respectively. During the heating process, T is adjusted as
follows:

 (if - 0.1 and);
 (if a new service is added);

0 (other cases).
heat

m recentSR hisSR T minT
T n (3);

in this formula, ‘m’ and ‘n’ are the heating parameters. In our
experiment, ‘j’ is set as 40, and values of ‘m’ and ‘n’ are set as
20 and 50, respectively.

 This formula represents that if the difference between
recentSR and hisSR is more than 10% and current
temperature has been decreased to the lower bound, the
temperature should be increased by m; note that after the
heating process, the changed candidate’s old invocation
records will be removed. If a new service is added into the
candidate list, we will increase the temperature by n.

After an invocation, the component will receive a feedback
that contains the invoked candidate and the invocation result
(success or failure). Then the component will adjust its
estimated value of candidate availability as follows:

Algorithm 1: adjust the candidates’ estimated values when a
new feedback is received.
1. If a new feedback is received, load the required service’s
candidate list from dependency table.
2. Add this feedback into the list of history records. Update
the values of totalCT, minCT, recentSR, hisSR, etc.
3. Calculate annealT and heatT based on formula (2), (3).
Update the value of temperature.
4. Calculate the candidates’ estimated values of availability
based on formula (1).
5. Normalize these values so that the sum will keep being 1 to

facilitate the selection; that is, i
i

i

vv
v

A Self-adaptive component can add a new service provider
into its candidate list at runtime, and the candidates’ values
will be adjusted as follows:

Algorithm 2: adjust existing candidates’ estimated values
when a new provider is added.
1. Load the required service’s candidate list from dependency
table and add the new service provider.
2. Reset minCT to 1.
3. Calculate heatT based on formula (3). Update the value
of temperature.
4. Recalculate the candidates’ estimated values of availability
based on formula (1).

As the historical records become rich and the temperature
is gradually decreased, the component will have the highest
probability to select the most available candidate. The
correctness of our algorithm can be proven by using the Law
of large numbers [11] in Statistics. Due to space limit, the
proof is not discussed in this paper.

4.EXPERIMENTAL STUDY

Our experimental study is divided into two stages. First, we
evaluate our learning algorithm by comparing it with some
general algorithms; in the experiment, we use a component
with several service candidates that may change their
availability dynamically. Then, we build a system with
multiple self-adaptive components to observe the overall
availability of the system. For the requirements of
experiments, we programmed several simulated services,
whose availability can be changed by us at runtime.

1. The evaluation of the learning algorithm
Figure 4 shows the self-adaptive component and the

services used in our first experiment. For simplicity, we
assume the self-adaptive component’s computation is always
available (i.e., the availability is 100%), whereas the
simulated services may throw an exception according to a
specified probability.

Figure 4 the experiment to evaluate the learning algorithm

In this experiment, a client program will generate service
requests to the component continuously at a fixed speed
(About 200 requests / per minute). The component will select
one of the function-identical services to delegate a part of its
tasks; after eight minutes, we change the service1’s
availability to 60% to simulate a network problem (stage 2);

Service 1’
60%

Component
Service 2

80%

Service 1
90%

Service 3
85% Service 4

95%Stage 3
join in Service 5

60%

Client Stage 2
change into

299

and after another eight minutes, we add two different new
services to the component’s candidate list (stage 3).

Two general algorithms are also implemented to compare
with our learning algorithm (named as LA). The algorithm
named test-and-choose (T&C) is to select every service
candidate n times first, and then choose the service with
highest availability. Another algorithm named
recent-successful-choice (RSC) is to select a service
randomly, and then choose the same one at the next time if
this invocation is successful; otherwise (the invocation is
failed), the component delegates the following request to
another service candidate randomly.

Figure 5 shows the obtained experiment results, which
have been averaged over fifty runs.

0.700

0.750

0.800

0.850

0.900

0.950

1 3 5 7 9 11 13 15 17 19 21 23
Invocation Times (1 : 200)

O
ve

ra
ll

Av
ai

la
bi

lit
y

R S C
L A
T & C

stage 2 stage 3stage 1

Figure 5 the results of Experiment 1

As shown in Figure 5, at the stage 1, the component using
the learning algorithm finds the high quality candidate fast
and achieves highest availability; the T&C algorithm may
find the best candidate (the success rate depends on the test
times n, which is set as 50 in our experiments), but it has to
spend a period of time in invoking each candidate many times
to make decision. At the stage 2, although both LA and RSC
can switch to another candidate quickly, the LA algorithm
can find the new highest available candidate (i.e. Service3)
and send most requests to it, thus gains a better availability.
On the other hand, the T&C algorithm cannot detect the
change of service availability, which may occur frequently in
a dynamic environment. Experiment results also show that
although RSC algorithm has a quick response to invocation
failures by sending following requests to another candidate,
this strategy cannot recognize the best candidate so that
system cannot obtain the theoretically maximal availability
after the environment becomes stable later. Therefore, we
believe that the LA algorithm is effective; based on our
approach, systems can gain a high availability under the
dynamic and decentralized environment.

2. The evaluation of self-adaptive component-based systems
Experiment 2 is to test the overall availability of a

self-adaptive component-based system. In figure 6, there are
three self-adaptive components and six services in the test
environment. As mentioned in section 2.3, services need to
process requests from different clients, and every request will
have an influence on the self-adaptive components’ decision-

making. To simulate the real environment, for each
self-adaptive component, we place a client to send requests
simultaneously. The component A is our test’s target.

Figure 6 the experiment to evaluate the overall availability of a
self-adaptive component based system

At the early stage, component B and C have not found their
best dependent service candidates; as a result, their own
availabilities are not stable, and from the perspective of
component A, the availabilities of component B and C keep
changing at runtime. As component B and C gain more
experiences from invoking their candidates to finish the tasks
delegated from component A and other clients, these
self-adaptive components will recognize their best candidates
based on the learning algorithm and send most of requests to
them. Consequently, their availabilities reach to their
maximal values and become stable. Meantime, component A
will be able to find its most available candidate. Figure 7
shows the experiment result, which represents that the system
finds the best invocation process quickly (Note that the path
labeled by ‘h’ in Figure 6 is the only path whose overall
availability exceeds 80%), and with the run times increasing,
the availability of the system becomes higher and gradually
tends to the theoretically maximal value.

0.72

0.74

0.76

0.78

0.8

0.82

0.84

1 5 9 13 17
Invocation Times (1 : 200)

O
ve

ra
ll

Av
ai

la
bi

lit
y

L A

Figure 7 the results of Experiment 2

3. Discussion
So far, we have given an effective algorithm to find the

most available service provider from many third-party
candidates. As situated in a dynamic environment and
unknown service providers, a self-adaptive component has to
take a period of time to learn from the feedback of
invocations.

 To further reduce the learning cost, one way is to “learn
from others”, that is, to enrich a component instance’s
experience by reusing other instances’ invocation results. In
our current work, we are extending our component

b 85%

c 95%

e 80%

d 80%

f 75%

a 75%

90%
B

95%
C

Test
A

Client

Client

Client

h

h

300

framework to support a mechanism that enables the
component instances to share knowledge among each other.
In the improved framework, for each self-adaptive
component type, an Instance Manager will record all the
active component instances and their invocation times, and
when a new component instance is created, it will be
initialized with the most “experienced” instance’s invocation
history. In other words, this new instance will perform as
good as the trained instances without a learning curve in its
early stage.

5.RELATED WORK

Many research efforts have focused on how to improve the
system availability at runtime. In some distributed systems
(e.g., systems built on the internal services within an
enterprise boundary), system components are deployed
throughout a group of machines, and the lifecycles of
components are controlled by a centralized management
server. The availability of this kind of systems can be
improved via system redeployment [12]. The redeployment
process mainly includes the following steps: first, the
management server monitors and calculates the reliability of
the underlying network; then, the server determines the
optimal deployment plan based on the components’
availability, their interaction frequencies, the reliability of
network connectivity, etc; finally, the server redeploys the
system via component migration. However, in decentralized
systems, redeployment techniques are unsuitable because
components deployed in third-party provider’s machine
cannot be migrated. Moreover, a service’s availability may
change at runtime, whereas existing redeployment algorithms
often consider it as a static value.

Availability is an important aspect of Quality of Service
(QoS). Several related work on QoS has been done in the area
of service selection. Zeng et al. [13] presents a platform
which addresses the issue of selecting web services for the
purpose of their composition in a way that maximizes user
satisfaction expressed as utility functions over QoS attributes.
As mentioned in Section 1, this centralized planner may be
unavailable in dynamic environments where it is not always
possible to access to the server. Moreover, the planner may
become a potential bottleneck when the number of the
services grows up.

Several existing research projects use machine learning
techniques to adapt systems to the changing environments.
Doshi et al. [14] use Markov decision process (MDP) to
model web service workflow composition. They interleave
MDP-based workflow generation and Bayesian model
learning to produce robust workflows. In that approach, the
optional services are predefined and cannot be modified at
runtime. Dowling [15] proposed an adaptive component
framework named K-Component, which facilitates building
autonomic systems by collaborative reinforcement learning.
In this model, adaptation actions of the adaptive components
are fixed after the compile stage, thus how to deal with new

coming services is not addressed.

6.CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to constructing
high-available decentralized systems in a dynamic
environment. We introduced our self-adaptive component
model and gave a detailed description of the self-adaptive
component-based systems. We also explained the learning
algorithm in depth and validated its effectiveness by several
experiments

For the future, we plan to further investigate the
self-adaptive component model and the algorithm to concern
multiple system quality attributes (such as security, response
time) for the purpose of building high-quality decentralized
systems.

ACKNOWLEDGMENT

The research was sponsored by the National Grand
Fundamental Research 973 Program of China under Grant
No.2005CB321805 and the National Nature Science
Foundation of China under Grant No.90412011, 90612011.

REFERENCES
[1] R. Khare and R. N. Taylor, "Extending the Representational State

Transfer (REST) architectural style for decentralized systems," in
Proceedings of 26th International Conference on Software Engineering,
2004, pp. 428-437.

[2] IEEE Standard Computer Dictionary: IEEE Standard Computer
Glossaries. New York. 1990

[3] G. Huang, L. Zhou, X. Z. Liu, H. Mei, and S. C. Cheung, "Performance
Aware Service Pool in Dependable Service Oriented Architecture,"
Journal of Computer Science and Technology, vol. 21, pp. 565-573, 2006.

[4] B. Benatallah, Q. Sheng, and M. Dumas, "The Self-Serv environment for
Web services composition," IEEE Internet Computing, vol. 7(1), pp.
40-48, 2003.

[5] S. Ran, "A model for web services discovery with QoS," ACM SIGCOM
Exchanges, vol. 4, pp. 1-10, 2003.

[6] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, "Dynamic discovery
and coordination of agent-based semantic Web services," IEEE Internet
Computing, vol. 8(3), pp. 66-73, 2004.

[7] C. Szyperski, Component Software. Addison-Wesley, 1998. ISBN:
0-201-17888-5

[8] RESTful Service:
http://www.answers.com/topic/representational-state-transfer

[9] SOAP Specification: http://www.w3.org/TR/soap/
[10] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.

Prentice-Hall, 1995.
[11] J. L. Devore, Probability and statistics for engineering and the

sciences. Duxbury Press Belmont, 1995.
[12] M. Mikic-Rakic, S. Malek, and N. Medvidovic, "Improving

Availability in Large, Distributed, Component-Based Systems via
Redeployment," Proceedings of 3rd International Working Conference on
Component Deployment (CD 2005), Lecture Notes in Computer Science,
vol. 3798, pp. 83-98, 2005.

[13] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, "QoS-aware middleware for Web services composition," IEEE
Transactions on Software Engineering, vol. 30, pp. 311-327, May 2004.

[14] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, "Dynamic
Workflow Composition Using Markov Decision Processes," International
Journal of Web Services Research, vol. 2, pp. 1-17, Jan-March 2005.

[15] J. Dowling, "The Decentralised Coordination of Self-Adaptive
Components for Autonomic Distributed Systems," University of Dublin,
Trinity College, phd thesis,October 2004.

301

SAFES: A Static Analysis for Field Security in Java Components

Aiwu Shi and Gleb Naumovich
Department of Computer and Information Science

Polytechnic University
6 MetroTech Center, Brooklyn, NY 11201, USA

ashi01@cis.poly.edu, gleb@poly.edu

Abstract

In this paper, we address the security problems of vul-
nerable Java components by means of a combined static
analysis. More precisely, we use escape analysis relying on
points-to and dependence analysis to determine the infor-
mation leaks of security-sensitive fields in the components
under analysis, and apply mutability analysis to figure out
the mutability of the fields in the analyzed components. Fi-
nally, our analysis approach combines both escape and mu-
tability information to discover the security problems in the
components and reports to the developers for reviewing and
fixing them.
SAFES, which implements our static analysis technique,

has been developed to statically detect field security in Java
components. Using the tool, we have experimented on a set
of publicly-available J2EE applications and explored the
trade-offs between the precision and performance with a va-
riety of underlying analysis techniques as well as a couple
of different implementations for mutability analysis. On the
benchmarks examined, the results of our study show the ef-
fectiveness and efficiency with few false positives.

1 Introduction

In this paper, we present a novel static analysis tech-
nique for detecting security threats to confidentiality and
integrity in Java components. Our technique builds upon
work done in escape analysis and mutability analysis and
uses a combination of both analysis techniques targeted at
object fields in Java components. The key insights behind
the development of the technique go as follows: (1) whether
the information controlled by the fields in a Java compo-
nent is accessible beyond the boundary of the component;
(2) whether an untrusted client can modify confidential data
encapsulated in the component. As a result, we first use es-
cape analysis, which combines existing points-to analysis
and dependence analysis, to reason about the accessibility

of the fields in a component. Then, along with the escape
information, our technique employs mutability analysis for
checking whether the fields are modifiable outside the do-
main of the component. The potentially accessible and (or)
modifiable fields found by our analysis approach to violate
the security policy are reported for the component develop-
ers to fix the security vulnerabilities.

We have implemented the static analysis technique in
a prototype tool, SAFES, a Static Analysis for
Field sEcurity in java componentS, and used
the tool to evaluate the technique on a set of benchmark ap-
plications.

The main contributions of this work to the field of static
analysis for security are as follows:

1. A combined static analysis for Java components,
aimed at detecting security vulnerabilities in the com-
ponents.

2. A taxonomy of software vulnerabilities, addressed by
the notions of escape and mutability analysis.

3. SAFES, a prototype tool that implements our proposed
analysis technique, written in pure Java and based on
some existing frameworks.

4. An experimental validation of SAFES’s ability to de-
tect the security flaws, showing the effectiveness and
the efficiency of the technique.

The remainder of this paper is organized as follows. Sec-
tion 2 describes software vulnerability categories with real
examples. Section 3 presents the novel static analysis com-
bining escape analysis and mutability analysis. We intro-
duce the SAFES architecture and implementation in Sec-
tion 4. In Section 5, we run SAFES on a set of publicly-
available benchmark applications, and validate the preci-
sion and efficiency of our tool and analysis technique. Sec-
tion 6 reviews related work. Finally, we conclude the paper
in Section 7.

302

public class NBA{ public final class NBA{
......
public long data; private long data;
public int size; private int size;
public Class type; private Class type;
} }

Before (JMF 2.1.1c) After (JMF 2.1.1e)

Figure 1. Information Leak Example: JMF

2 Software Vulnerability Categories with Ex-
amples

We classify software vulnerabilities into three general
categories in this paper.

• Information Leaks, which occur when an inter-
action between untrusted clients and trusted software
components returns sensitive information that should
be inaccessible to clients. Therefore, this sort of vul-
nerabilities violate the confidentiality policy of infor-
mation security.

• Modification Access Violations, which
occur when the untrusted clients invoke accessible
methods to interact with the trusted component and are
able to modify sensitive data controlled by the compo-
nent. As a result, data integrity of information security
is compromised by this category of vulnerabilities.

• System Resource Leaks, which occur when the
trusted component allows untrusted clients to perform
sensitive operations upon the resources of the under-
lying computer system, e.g., executing arbitrary com-
mands in a system shell.

Our work in this paper focuses on addressing the first
two vulnerability categories using a combined static analy-
sis technique.

Example 1: (Information Leaks: JMF API) The Java
Media Framework API (JMF) extends the J2SE for multi-
media developers by providing a powerful toolkit to develop
scalable, cross-platform technology. The public JMF 2.1.1c
class com.sun.media.NBA exposes a public pointer to
a physical memory by means of public, long field
data, so untrusted applets may read the system memory
and crash the JVM or gain unauthorized privileges [9]. The
vulnerability is fixed in JMF 2.1.1e or later, as presented in
Figure 1.

To prevent leaking of secret data from new methods, the
creation of subclasses is forbidden in the fixed version by
declaring class with final. In addition, three public
fields are changed into private in order to avoid direct
access to the sensitive data by untrusted parties.

// Before (JDK 1.42_04)
public class org.apache.xpath.compiler.

FunctionTable{
public static org.apache.xpath.compiler.

FuncLoader[] m_functions;
......
}

// After (JDK 1.42_05)
public class org.apache.xpath.compiler.

FunctionTable{
private static org.apache.xpath.compiler.

FuncLoader[] m_functions;
......
}

Figure 2. Modification Access Violation Ex-
ample: XSLT

Example 2: (Modification Access Violation: XSLT
Parser) The XSLT (eXtensible Stylesheet Language
Transformations) parser embedded in Sun JDK is di-
rectly taken from the Apache Xalan [1]. In JDK
1.42 04, malicious objects may be inserted into the
non-final static array m functions of public class
org.apache.xpath.compiler.FunctionTable
in the XSLT parser to allow the untrusted applet to escalate
privileges [10]. The bug is fixed in JDK 1.42 05 or later, as
presented in Figure 2.

The private modifier of the field m functions pro-
hibits malicious codes to modify the table consisting of the
built-in functions in the XSLT parser and enhances func-
tionality of the parser component to the level needed for
running the component securely in JVM.

3 Combined Static Analysis

To reason about potential information leaks from a com-
ponent, we present the escape analysis, which employs ex-
isting points-to analysis for reference type fields (or vari-
ables) and dependence analysis technique for primitive type
fields (or variables), to compute the accessibility of the
fields in the component and detect whether a security-
sensitive field is accessible in some way from outside the
component. Specifically, the traditional data and control de-
pendence relationships are extended to better suit our secu-
rity analysis under the boundary of a software component.
The detailed algorithms for detecting potential leaks of sen-
sitive information beyond the domain of a component are
proposed in our previous work [15] and implemented in the
Escape Analyzer analysis engine of our prototype tool.

303

DetermineSecurity(f)

Inputs: field f to be analyzed, ImmutableFields, EscapeFields
Output: classification of field f as Safe, Visible,
Modifiable
Steps:

if f ∈ ImmutableFields
if f ∈ EscapeFields

return Visible
else

return Safe
end if

else
return Modifiable

end if

Figure 3. An Algorithm to Determine the Se-
curity of a Field

To address the modification access violation problem, an
extended mutability analysis [15] relying on escape infor-
mation from the escape analysis technique described above
is proposed to determine whether a security-sensitive field
can be modified outside the analyzed component. Our mu-
tability analysis is largely based on the earlier work in [14]
and nevertheless modifies some definitions and algorithms
for improving the analysis precision in the context of com-
ponents.

With the escape information and field (or class) mutabil-
ity in hand, we combine the analysis results and present an
algorithm to perform the static analysis for security in Fig-
ure 3. Sets ImmutableFields and EscapeFields denote the
set of fields that have been classified immutable in the com-
ponents under analysis (CUA) and the set of fields that es-
cape outside the CUA, respectively. Three levels of security
of a given field in the CUA are defined in our analysis, i.e.,
Safe, Visible and Modifiable. As the names mean,
the Safe fields are safe since the value of the fields does
not escape the CUA and remains unmodifiable from outside
the CUA; the Visible fields are moderately dangerous
since the value of the fields can escape the CUA but cannot
be modified outside the CUA; the Modifiable fields are
highly dangerous since the value of the fields can escape
and be modified outside the CUA.

4 SAFES Architecture and Implementation

We have implemented our combined static analysis tech-
nique in a prototype tool, called SAFES, to statically detect
security problems in Java components. The following sec-
tions illustrate the architecture of SAFES and describe the

implementation details for the analysis engines in SAFES.

4.1 SAFES Architecture

Figure 4 shows the architecture of SAFES, which con-
sists of three major analysis engines, i.e., Escape Analyzer,
Mutability Analyzer and Security Analyzer. The inputs
to SAFES are the Java codes to be analyzed as well as a
user specification. SAFES, similar to some static analysis
tools [2,3,5] which require a set of criteria or rules as input
(or annotating in source programs), also needs a user speci-
fication by the developers (or testers) to specify the security-
sensitive fields in the CUA.

Through the three analyzers sequentially, a security re-
sult is reported by SAFES for security analysts to review the
analyzed programs and fix the security problems. In terms
of the three levels of security classification presented above,
the security report details each security-sensitive field about
its escapability and mutability as well as the causes and
traces to a certain degree.

4.2 Analysis Engines

The basic analysis engine, Escape Analyzer, performs
the escape analysis proposed in our work [15] relying on
as inputs points-to and dependence information, which are
computed from points-to and dependence sub-analyzer, re-
spectively. The escape tuples output by Escape Analyzer
imply the escape type, e.g., Reference-, Data-,
Control-escape proposed in [15], and simple escape
trace for the security-sensitive fields in the CUA.

Mutability Analyzer takes as input escape information
from the preceding Escape Analyzer and implements the
proposed mutability analysis algorithm for computing mu-
tability results of the fields (and classes) concerned with the
security in the CUA. Both a general iterative implementa-
tion and an optimized Graph-based implementation (simi-
lar to topological sort solution) for the mutability analysis
algorithm are developed to evaluate the efficiency of our
technique, as experimented in the evaluation later.

The final analysis engine, Security Analyzer, concludes
the static analysis for field security in Java components with
the analysis results from the prior two analyzers. It imple-
ments the algorithm presented in Figure 3 and determines
the security level of a given security-sensitive field in the
CUA based on the escape and mutability information. Be-
sides the security levels, the security result reported from
Security Analyzer shows the causes of the security prob-
lems and a few traces to the root in the analyzed codes.
With the security result in hand, security analysts can re-
view the source codes and fix the security bugs displayed in
the result.

304

Escape

Analyzer

Escape

Information

Mutability

Information

Mutability

Analyzer

User Spec

Security ProblemsSecurity ProblemsSecurity

Analyzer

Bytecodes

or Source Codes

Security Analyst

Figure 4. SAFES Architecture

5 Evaluation

5.1 Experiment Setup

The applications are chosen as our benchmarks
as follows: OrderApp [11], CustomerApp [11],
DukesBank [7], RMS [6] and PetStore [8]. For each
application, Table 1 presents:

• The overall size of the EJB bytecodes analyzed in the
corresponding J2EE applications in Column 2.

• The total number of the class files analyzed (including
the loaded library classes) and the number of class files
defined in the EJB components in Columns 3 and 4,
respectively.

• The total number of reachable methods in each appli-
cation’s call graph and the number of methods declared
in the EJB components in Columns 5 and 6, respec-
tively.

• The number of reference type and primitive type
fields declared in the EJB components in the last two
columns.

We used a Pentium 4 3.06 GHz Dell Dimension machine
with 1.43 GB RAM and Windows XP Professional Version
2002, SP2. We ran the experiments inside Eclipse V3.1.1,
using Sun JDK 1.5.0 05.

5.2 Comparison of Escape Analysis Implementa-
tions

We employ two points-to analysis implementations with
a simple Soot-based implementation for dependence anal-
ysis to evaluate the precision of our tool. Our points-to
analysis is implemented with Spark framework of Soot. In

the experiments, two implementation options we chose are
ot-otf-fs and ot-cha-fb with the hybrid set imple-
mentation, which are detailed in [13]. ot means respecting
declared types, otf and cha represent the call graph con-
struction through on-the-fly and CHA-based, respectively.
fs and fb describe field-sensitive and field-based, respec-
tively.

Table 2 shows the experimental results with our default
user specification, which conservatively treats all fields in
the CUA as security-sensitive. Columns 5, 6 and 7, la-
beled as M(FP), V(FP) and S(FP), report the number
of fields in the corresponding security level and the number
of false positives in the parentheses, where M, V, S mean
the security level of Modifiable, Visible and Safe,
respectively. False positives are the fields that are mistak-
enly classified as the corresponding security level. In our
study, the false positives are manually checked with a lot of
reviews.

In all cases, SAFES reports few false positives. Between
the two points-to implementation options, ot-otf-fs
shows better precision, which corresponds to the report
in [13]. According to Column 3 of Table 2, the combi-
nation with ot-otf-fs as points-to analysis runs faster
for each benchmark since on-the-fly call graph construction
reaches much fewer methods compared to CHA-based one.
The memory usage of our experiments takes on the same or-
der as time cost. As a result, on the experimental results re-
ported in Table 2, ot-otf-fs is the better points-to analy-
sis implementation with higher precision and performance.

5.3 Comparison of Mutability Analysis Imple-
mentations

We evaluated the performance of mutability analysis
with two implementations, such as general iterative imple-
mentation and optimized graph-based implementation. The
details for each algorithm implementation are presented in

305

Name Size #Classes #Methods #Fields
(KB) Total App. Total App. Ref. Pri.

OrderApp 43 4988 37 5286 260 32 14
CustomerApp 44 4988 35 5341 213 32 10
DukesBank 53 4976 39 5485 314 48 1
RMS 58 4987 23 5479 158 83 7
PetStore 231 5306 121 6555 1006 343 32

Table 1. Benchmark Characteristics

Benchmark PT Analysis Time (Sec.) Mem (MB) M(FP) V(FP) S(FP)
OrderApp

ot-otf-fs 130 354 26(0) 12(1) 8(0)
ot-cha-fb 440 903 27(1) 12(1) 7(0)

CustomerApp
ot-otf-fs 131 335 27(0) 11(0) 4(0)
ot-cha-fb 380 856 27(0) 12(1) 3(0)

DukesBank
ot-otf-fs 124 309 36 (1) 7(0) 6(0)
ot-cha-fb 445 899 36 (1) 10(3) 3(0)

RMS
ot-otf-fs 99 300 78(0) 10(0) 2(0)
ot-cha-fb 397 870 78(0) 10(0) 2(0)

PetStore
ot-otf-fs 476 521 95(3) 239(2) 41(0)
ot-cha-fb 1160 989 95(3) 245(8) 35(0)

Table 2. Experimental results of comparing the escape analysis implementations

our earlier work [15]. Both implementations have identical
precision in the sense that they compute the same mutability
information for each application. For each benchmark, we
ran each algorithm 3 times and averaged the run time and
memory cost for each version. The experimental results are
reported in Table 3.

As for the running time, the graph-based implementation
ran much faster than iterative implementation on the bench-
marks examined, which proves that a nice order of scan is
the key to improve the performance of algorithm. Other-
wise, the iterative implementation consumed a little more
memory than the graph-based one.

5.4 Discussion

In our study, the precision of our analysis result is sen-
sitive to the precision of underlying analysis engines, es-
pecially, Points-to analysis. Comparing the experimental
results in Table 2, ot-otf-fs points-to analysis reports
the best precision and performance on our benchmark ap-
plications. In contrast, excessively conservative treatments
in ot-cha-fb points-to analysis produces more false pos-
itives as illustrated.

The experiments in mutability analysis definitely prove

that our optimized graph-based implementation ran faster
than general iterative implementation. Because of the inter-
dependence between field mutability and class mutability,
the execution order of classes is critical to performance of
the mutability analysis algorithm. We map the optimal or-
der solution problem in the mutability analysis to a graph
problem, which is similar to a topological sort but graphs
with cycles may be considered.

At first glance, graph-based implementation needs to
keep a graph in memory and thus seems to need more exe-
cution memory. Conversely, our study shows that it ran with
a little less memory. We believe that this can be explained
by the fact that our graph-based algorithm deletes nodes
and edges of the graph representation as analysis proceeds,
which makes some objects unreachable and frees memory
by Java garbage collection mechanism constantly.

Our combined static analysis approach is heavily depen-
dent on escape analysis, whose information result is in turn
input into consecutive mutability analyzer as depicted in
Figure 4. In our evaluation, escape analyzer costs much
more time than other analyzers (e.g., mutability analyzer,
or security analyzer) in each execuation. It is not surprising
because the exhaustive field-sensitive Andersen’s points-to
analysis from Spark framework in our tool is much more

306

Benchmark Iterative Optimized
Time (msec) Mem (Mb) Time(msec) Mem (Mb)

OrderApp 620 380 578 373
CustomerApp 766 350 750 343
DukesBank 578 328 531 310
RMS 1438 323 1031 322
PetStore 3619 552 2001 528

Table 3. Comparison between two kinds of mutability analysis implementations

complicated, as compared to other analyzer engines. Recent
demand-driven points-to analysis [16] might be promising
to efficiently meet the time challenges.

6 Related Work

Static analysis tools and specialized checkers such as
FindBugs [3] report useful information about code viola-
tions. However, the type of violations are largely lim-
ited to errors that do not require detailed program analy-
sis. ESC/Java2, the extended static checker for Java ver-
sion 2, attempts to find common run-time errors by program
verification techniques and its formal annotations. Unlike
SAFES, ESC/Java2 needs programmers’ assistance to an-
notate their programs with specially formatted comments
called pragmas, and then verifies the correctness of the
JML(Java Modeling Language)-annotated Java programs.
JLint [4] analyzes Java bytecodes and performs syntactic
checks and data flow analysis for finding bugs. Also, JLint
builds the lock graph to find inconsistencies and synchro-
nization problems. PMD [5] performs syntactic checks on
Java source codes to look for potential problems such as
dead code and duplicate code. These bugs from PMD are
largely due to stylistic conventions, some of which are pos-
sibly bad programming style, but not real bugs. Unlike
other bug-finding tools mentioned above, Bandera [12] is
a verification toolset, which includes optional slicing and
abstraction phases, followed by model checking tools.

7 Conclusion

In this paper, we have presented SAFES, a static secu-
rity analysis tool, which automatically detects field security
problems in Java components. SAFES combines escape and
mutability analysis techniques to find two categories of vul-
nerabilities, i.e., information leak and modification access
violation. In our study, SAFES can correctly identify poten-
tial security problems on our benchmark applications with
few false positives, making our tool useful for real-world
applications. In our future work, we will focus on helping
to fix the security problems found by the analysis tool, and
developing the guidelines for developers to fix them.

Acknowledgments

We want to thank Phyllis Frankl, David Chays and the
anonymous reviewers for commenting on an earlier version.

References

[1] The apache xalan project. http://xalan.apache.org/.
[2] ESC/Java2-the extended static checker for Java version 2.

http://secure.ucd.ie/products/opensource/ESCJava2/.
[3] Findbugs-find bugs in Java programs.

http://findbugs.sourceforge.net/.
[4] Jlint. http://artho.com/jlint/.
[5] PMD. http://pmd.sourceforge.net/.
[6] Sun microsystems industry and partners engineering team,

resource management system.
http://java.sun.com/developer/technicalArticles/J2EE/rms/.

[7] Sun microsystems, J2EE 1.4 tutorial.
http://java.sun.com/j2ee/1.4/download.html#tutorial/.

[8] Sun microsystems, Java petstore.
http://java.sun.com/developer/releases/petstore/.

[9] Sun alert id: 54760.
http://sunsolve.sun.com/search/document.do?assetkey=1-
26-54760-1, 2003.

[10] Sun alert id: 57613.
http://sunsolve.sun.com/search/document.do?assetkey=1-
26-57613-1, 2004.

[11] G. Anderson and P. Anderson. Enterprise Javabeans compo-
nent architecture: Designing and coding enterprise applica-
tions. Sun Microsystems Press Series.

[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: Extracting
finite-state models from java source code. Proceeding of
the 22nd International Conference on Software Engineer-
ing, pages 439–448, June 2000.

[13] O. Lhoták. Spark: a flexible points-to analysis framework
for Java. Master’s thesis, McGill University, Dec 2002.

[14] S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Auto-
matic detection of immutable fields in Java. Proceedings of
IBM Centre for Advanced Studies Conference (CASCON),
page 10, 2000.

[15] A. Shi and G. Naumovich. Static analysis of computing es-
capability and mutability for Java components. Fifth IEEE
International Workshop on Source Code Analysis and Ma-
nipulation (SCAM’05), Sep 2005.

[16] M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-
driven points-to analysis for Java. OOPSLA’05, Oct 2005.

307

Reuse of Database Access Layer Components in JEE Product Lines: Limitations
and a Possible Solution (Case Study)

Ding Peng, Stan Jarzabek, Damith C. Rajapakse
Department of Computer Science

School of Computing,
National University of Singapore
ding_peng@alumni.nus.edu.sg;

stan@comp.nus.edu.sg;damith@comp.nus.edu.sg

Hongyu Zhang
Tsinghua University

China
hongyu@mail.tsinghua.edu.cn

Abstract

We set up an experiment to evaluate JEE as a platform
for product line development. While JEE provides many
useful mechanisms for reuse of common
services/components, still we found that systematic
across-the-board reuse in application domain-specific
areas was hard. The main difficulty was the lack of a
mechanism to represent groups of similar components in
a generic, adaptable form. Such similar components arise
as the number of variant features of a product line grows,
and we need to accommodate legal combinations of
variant features in components of a product line
architecture. Such uncontrolled growth of similar
component versions hinders productivity of reuse-based
development and raises maintenance costs. In the paper,
we study the manifestation of this problem in the JEE™
database access layer. Interactive Development
Environments such as NetBeans or JBuilder speed up the
development process, but they do not address the source
of the problem, which is the lack of mechanisms to design
generic components capable of accommodating variant
features in various combinations. We filled this gap with
a “mixed strategy” solution based on generative
programming technique of XVCL applied on top of JEE.
In the paper, we highlight the nature of the problems we
encountered and our solution.

1. Introduction

JEETM(Java Enterprise Edition) is a widely accepted
standard and platform for Java based enterprise
applications. Rapid application development, reuse and
flexible deployment of applications are crucial in today’s
enterprises. Component platforms such as JEE help
industries to achieve these qualities. Another important
industry trend is the product line approach, whereby
productivity is boosted by systematic reuse across a
family of similar software systems. Because of much
synergy in targets, JEE, already widely accepted in
industries, is a viable option to consider for product
lines.

In this paper, we describe an experiment in which we
explored this option. We worked with a product line that
we developed in an earlier project – a Computer-Aided
Dispatch (CAD) system family 1 . We completely re-
designed the previously developed product line
architecture to take best advantage of the JEE platform
and its reuse mechanisms. With understanding of the
issues specific to the new platform, we added some new
variant features2 of CAD product line to facilitate better
evaluation. We included JBuilder™ into the toolbox for
the project.

We have positive and negative findings. JEE offers
many useful mechanisms for reuse in the area of common
services for component-based systems, such as
component communication and management of
components’ lifetime. Normally, a developer would have
to switch his attention between supporting such services
and writing the actual application code. There would be
much repetition of similar service code across
components and mutual cross-cutting of the application
code and service code. JEE component infrastructure
avoids this problem in which it is very supportive to
product line goals.

However, we found little support for systematic reuse
in application domain-specific areas. For product lines
whose members differ in functional features, such as our
CAD systems, this is certainly a problem that needs to be
solved. In an earlier paper, we discussed the problem and
solution in the JEE presentation and business logic
system layers [12]. In this paper, we illustrate problems
encountered in the database access layer (DAL) and
analyze their sources. We outline a solution based on a
“mixed strategy” approach in which we enhance JEE
with generic design capabilities of XVCL (XML-based
Variant Configuration Language) 3 . The JEE/XVCL
solution allows us to represent DAL components as
generic, adaptable meta-components. Meta-components

1 A project in collaboration with ST Electronics Pte Ltd., under
the Singapore-Ontario joint research project.
2 Variant features are product line requirements that vary across
product line members.
3 http://xvcl.comp.nus.edu.sg

308

can be customized to produce specific DAL components
accommodating any legal combination of variant
features. Specifications of such customizations are in
both human- and machine-readable form. These
mechanisms are sufficient to keep the number and
complexity of DAL components under control in the
product line situation.

2. Brief introduction to JEE

JEE simplifies enterprise application development by
providing a standardized architecture that helps
developers reuse common service components. JEE takes
advantage of many features of the Java 2 Platform,
Standard Edition, such as "Write Once, Run
AnywhereTM" portability, JDBCTM API for database
access, and a security model that protects data even in
internet applications. Building on this base, JEE adds full
support for Enterprise JavaBeansTM (EJB) components,
Java Servlets API, JavaServer PagesTM and XML
technology. Tools such as NetBeans and JBuidler
provide visual development environment and template-
like mechanism for automatic generation of JEE/EJB
components. JBuilder can be integrated with application
server such as BEA Weblogic, Tomcat, etc.

3. CAD product line

We briefly describe the domain of our
experimentation: Computer Aided Dispatch (CAD for
short) systems are mission-critical systems that are used
by police, fire & rescue, health service, port operations
and others. Figure 1 depicts a basic operational scenario
and roles of a CAD system for Police.

incident!

Call Taker

Dispatcher

Task ManagerResources (police units)

monitor

assign task

phone
call

Incident
i f

handle
incident

Situation
displayNetwork

Figure 1. A CAD system for police

Once a Caller reports an incident, a Call Taker
captures the details about the incident and the Caller, and
creates a Task for this incident. The Dispatcher selects
suitable Resources for un-dispatched Tasks and
dispatches the Resources to execute the Task. The
Resources execute the instructions given and reports to
the Task Manager. The Task Manager actively monitors
and updates the Tasks until the case is closed. The Task
Manager closes a Task when there are no more activities
associated with the Task in the context of CAD system.

At the basic operational level, all CAD systems are
similar. However, the specific context of operation results
in many variations on the basic operational scheme. We
depict general CAD variant features in Figure 2 and JEE
data access layer (DAL) variant features in Figure 3.

G eneral features

Validation

D atabase

D istributedC entralized

D ispatch
A lgorithm

C all Taker and
D ispatcher

R oles
(C T-D ISP)

Location
C ode

Based

Shortest
D istance

Based

M ergedSeperated

Advanced
Validation

Basic
Validation

Encryption

Legend
M andatory

R equirem ent

O ptional
R equirem ent

A lternative
R equirem ents

O R
R equirem ents

 Figure 2. General CAD features

 Figure 3. Data access layer (DAL) features

4. CAD product line with JEE

We developed the CAD product line architecture
(CAD-PLA, for short) on JEE according to a blueprint of
a product line lifecyle developed in our earlier projects
[13][14], as follows: Having analyzed the CAD domain,
we scoped the product line by selecting variant features
for the project. Then, we defined a default CAD system –
a typical system in CAD domain. We designed logical
runtime architecture for the default CAD on JEE. We
designed CAD-PLA and its components for ease of
customization in the view of variants selected in domain
analysis. We implemented CAD-PLA as a collection of
component configurations [6] within a stable architecture
[5]. We explored EJB/JEE platform and tools (JBuilder)
to maximize reuse.

4.1. Domain analysis and a default CAD system
We used UML models such as use case, class,

sequence, activity and deployment diagrams, with
provisions for modeling variant features [8], to model
CAD domain. Task (Figure 4) is a central concept in
CAD systems: A Task is created as soon as the Call
Taker has received the information about the incident.
The Task is closed once the handling of the incident has
been completed. The Task’s lifecycle spans major CAD

309

components and all the major roles interact by means of a
Task. We defined a default CAD system around the Task
concept, as a natural bridge to a generic CAD-PLA.

Caller
-PhoneNo

-Name
-NRIC

-Location

Task
-ID
-Type

-Location
-SourceType

-Urgency
-Description

-CreationTime
-CompletionTime

-State

Call Taker

Dispatcher

Task Manager

Create/Update Task

1

nDispatch/Update Task
1 n

Update/Close Task

1

n

Informs

Resource
-ID

-State
-Location

-OrganizationID

Reports to

0..n

1

Operator
-OperatorID

-OrganisationID
-Name

Execute

Geographical Map
-Area

-Graphic

Displayed on

n

1

Displayed
n

1

DMPrOI
-Location

-PRoI Type

Happend in

0..1

1

Organization
-OrganizationID

-Name
-AreaOfResponsibility

-Manager

belongs to

n

1

Belongs To

n

1

n

1

 n

Figure 4. CAD class diagram

4.2. A JEE CAD-PLA
We skip the intermediate step of building a runtime

architecture for the default CAD system and describe the
final, refined-for-reuse, JEE CAD-PLA. CAD-PLA was
based on a standard five-layer JEE model (Figure 5).

Figure 5. The five-layer JEE architecture

 Presentation layer components used JSP to generate
and format responses to the clients. Enterprise beans
encapsulated the application logic on the server side. A
Session Bean represented an activity (or process)
operating on business objects and an Entity Bean
provided a persistent storage mechanism for business
objects. Many business objects corresponded to classes in
a class diagram of Figure 4. There are two types of
persistence of Entity Beans, namely bean-managed
(BMP) and container-managed (CMP) persistence. With
BMP, a developer writes the Entity Bean code to access a
database. With CMP, the EJB container automatically
generates the necessary database access calls. We applied
both BMP and CMP in our system. Typically, each Entity
Bean has a corresponding table in a relational database

where bean instances are stored. We used MySQL 4.0 as
the Database server.

One of the main performance problems associated
with EJBs is the amount of network traffic needed to
access attributes of the bean. The standard solution for
alleviating the network delays is to return all the
attributes in one method call, using a simple data-holder
class. In JEE, this is achieved by the Value Object Pattern
[5] and we applied it in our architecture. To achieve
database independence, we applied the Data Access
Object (DAO) Pattern which separates Entity Beans from
low-level database access code. We designed a generic
evaluator component to further separate DAO details
from the query generation and evaluation code. We also
used MVC, Template, Composite and many other
recommended general and JEE-specific design patterns.

5. Evaluation of the JEE DAL for CAD-PL

The five-layer architecture model has several
advantages. Firstly, rather than building isolated
components, it allows us to build modules comprising a
collection of client and server components, forming
meaningful parts of an application. These components
communicate through standardized, abstract interfaces,
and when combined together form a complete
application. Sometimes, change can be conveniently
propagated from one bean to other related beans. Suppose
we change Task bean from basic validation to advanced
validation. Create Task process and Dispatch Task
process beans will change their behavior automatically to
reflect advanced validation.

Tools such as Jbuilder™ provide templates to facilitate
auto generation of EJB codes, which speeds up
development. For example, to create a Task bean, a
developer typically enters attributes such as Task name,
or Task location into a template, and the tool creates
methods such as findByPrimaryKey, setTaskName,
getTaskName, setLocation, getLocation, etc.
automatically. Reusability is achieved due to EJB
standard specification.

The key issue in product line (PL) approach is to
customize components of a product line architecture
(PLA) to accommodate variant features required in the
specific system, PL member, that we wish to build. The
ease of selecting PLA component configurations and
their customization determines the economic benefit of
the PL approach [6]. Therefore, we analyzed the impact
of variant features on CAD domain model, and JEE
CAD-PLA components. We found that variants had a
profound impact on CAD. Understanding the impact of
variants on a domain model is a good starting point for
tracing the impact of variants on PLA and components’
code. For example, Caller/Task validation method and
Call Taker and Dispatch roles affected use cases such as
Create Task, View Task, Create Caller, and many others.
Class and sequence diagrams were also affected by these
variants. As UML provisions for modeling variant
features are limited, we used extensions described in [8]
to model CAD product line.

At times, the impact of variants on the PLA and
components’ code was quite drastic, and required us to

310

change allocation of functions across components,
component communication patterns, and/or component
interfaces. Certain variants (or their combinations)
required us to include/exclude certain components
to/from a PLA. We say that a variant has architectural
(or non-local) impact on the PLA, if the chain of
customizations triggered by the variant spreads through
the system rather than being confined to a small number
of components. Variants that affected multiple CAD
models most often also had such architectural, non-local
impact on JEE CAD-PLA.

In our case study, most of the general variants had
architectural, non-local impact on CAD. For example, an
option under one variant is that Dispatcher and Call
Taker roles are played by the same person. In such a case,
components related to Call Taker and Dispatch Task,
both user interface and business logic, must be re-
formulated and re-designed into single components to
reflect new requirements for system operation. In most
cases, addressing a variant also requires us to modify
component implementation.

We have discussed handling general CAD variant
features in a CAD-PLA in other papers [12][13][14]. In
this paper, we focus on the database access layer (DAL)
features (Figure 3). Changes of a database and database
access codes may have profound impact on application-
level CAD components and vice versa. JEE uses DAO
pattern to shield application-level code from possible
changes in the database. DAL components, built around
DAO, receive database requests (queries) from the
business logic and presentation layers. DAL receives
result of the query first and then passes it to the caller in
the required format which is either input parameter or
output parameter.

CAD-PLA must cater for many CAD systems that
differ in general features (Figure 2). General variants often
affect the database structure, database access codes. The
choice of general features of CAD triggers the need for
specific variant features that affect DAL components
(Figure 3). Table 1 shows some of the Entity Bean DAL
components (listed in the first column) affected by
variant features (listed in the first row).

Table 1. DAL components

DB
Type

Connection
Pool

Input
Parameter

Bean
Type

Caller Bean X X X X

Task Bean X X X X
Organization

Bean X X X X

Area Bean X X X X
Resource

Bean X X X X

Location Bean X X X X
Command

Bean X X X X

Any member of CAD product line needs Entity Beans
implementing some combination of features, as shown in
Figure 6. Strictly speaking, each path from the top to the
bottom in Figure 6 denotes a unique Entity Bean, that may

be needed in some CAD system. Suppose we address
four different databases, then we have four choices at
Level 1. We have two choices at Level 2; seven choices
at Level 3; and two choices at Level 4. Therefore, we
may have as many as 112 possible Entity Beans that arise
from CAD variant features. Here, our analysis covers
only a rather simplified situation. In reality, transaction
attribute, exception handling and many other variants
need be taken into account which is likely to result in
thousands possible Entity Beans.

Figure 6. Features affecting DAL components

Entity Beans implementing various combinations of
variant features are similar to each other, in their
interfaces, the way they represent underlying tables, and
in implementation details. Consider Task bean and Caller
bean. Caller bean needs the caller phone information,
location information etc. Task bean needs the task
creation date, task area information. The classes
implementing the two beans are the same with the
exception of attribute names/types, and small differences
in algorithmic details. Unfortunately, JEE does not
provide any mechanism to abstract this kind of similarity
pattern into a generic component for reuse.

Component explosion problem affects all the software
layers, not only DAL. We observed the same situation in
JEE presentation and business logic component layers of
JEE Web Portals [12]. The problem is not limited to JEE.
Other OO and component-based technologies lack strong
enough mechanisms to address the problem at the root
level, or even to deal with its symptoms. Studies indicate
that as many as ten thousand versions of a component
may arise during evolution of industrial product lines [6].

6. JEE/XVCL “mixed strategy” solution

“Mixed strategy” approach avoids the problem of
component explosion by means of generic design:
Whenever we observe enough similarity among a group
of components affected by variant features, rather than
multiplying component versions, we apply generative
programming technique of XVCL to build a generic,
adaptable meta-component. Along with a generic
component, we keep specifications of how to produce
concrete components for required combinations of variant
features. Such specifications can be examined by a
developer, and also executed by the XVCL Processor to
produce custom components on demand.

We described XVCL mechanisms in other papers, so
here we only outline the general structure of the solution.

311

Figure 7. JEE/XVCL CAD-PL

Our JEE/XVCL “mixed strategy” solution addressed
four groups of similar components for which we built
generic meta-components. They are shown in rectangle
boxes of Figure 7 as CMP Entity Beans, BMP Entity
Beans, DAO Pattern, and SQL Evaluator. Below the
rectangle boxes, there are generic building blocks from
which the XVCL Processor could synthesize, after
possible customizations, concrete classes or Entity Beans.
The top-most meta-component, called SPC, contained
specifications describing how to customize lower level
meta-components to produce concrete classes or Entity
beans for any required combination of features.

7. Evaluation of results

In the default CAD built on JEE, DAL included 42
Entity Bean classes and 19 DAO classes, comprising the
total of 5811 LOC (without blank lines and comments).
The JEE/XVCL “mixed strategy” solution for DAL
consisted of 20 meta-components, comprising the total of
2354 LOC, counting both JEE and XVCL code. These 20
meta-components were generic and adaptable, capable of
accommodating anticipated range of variant features.

The reduction of physical and conceptual size of the
solution had a positive impact on implementing changes.
We conducted an experiment to compare the effort
involved in changing DAL components in each of the
JEE and JEE/XVCL representations. We implemented
new combinations of variant features in both
representations. We considered variants DB Type,
Connection Pool, Input Parameter and Bean Type. We
measured the effort in terms of the number of
modification points, modified classes, and total number
of lines of code (LOC) in Entity Beans that we needed
modify to accommodate the change.

In Table 2 and Table 3, we show the number of
modification points in DAL in each of the JEE and
JEE/XVCL “mixed strategy” solutions. Modification
points are either in class attributes (A), or methods (M) in
each of the 42 classes. X stands for DB Type, Y – for
Connection Pool, Z – for Input Parameter, and P – for
Bean Type.

Table 2. Modification points (JEE)

Entity
Bean

DAO Value
Object

A M A M A M

Total

X 0 0 2 38 0 0 40

Y 0 0 3 38 0 0 41
Z 7 56 7 14 14 21 119
P 24 20 4 38 11 24 122

Table 3. Modification points (JEE/XVCL)

Entity
Bean

DAO Value
Object

A M A M A M

Total

X 0 0 1 3 0 0 4
Y 0 0 1 4 0 0 5
Z 1 8 1 4 1 3 18
P 3 4 1 6 1 4 19

8. Conclusions

In the product line situation, variant features need be
implemented into software components, resulting in an
explosion of component versions. In the paper, we
focused on the problem of explosion of component
versions in the JEE database access layer (DAL), caused
by feature combinations.

In JEE solution, many similar components had to be
implemented. Despite striking similarities, groups of
similar components had to be repeatedly implemented.
We addressed the problem with a generative technique of
XVCL. The JEE/XVCL “mixed strategy” solution could
represent each of the groups of similar DAL components
in unique, generic, adaptable form. Not only did
JEE/XVCL representation collapse the physical and
conceptual size of DAL representation, but it also
reduced the effort to implement changes to DAL.

While the “mixed strategy” solution solves the
problem of component version explosion and makes
reuse easier, it is not without pitfalls. It is easier to
understand a concrete program than a meta-program. It is
also difficult to validate a meta-program as we can derive
many concrete programs from it. The current form of
XVCL is an assembly language for generic design via
parameterization. XVCL’s explicit and direct articulation
is the source of its expressive power, but it also adds a
certain amount of complexity to the problem. However,
benefits of being able to deal with issues of genericity at
the meta-level plane seem to outweigh the cost of the
added complexity. These benefits include ease of reuse
with adaptation, the overall reduction of conceptual
complexity and size of the solution, improved traceability
and changeability. We are currently collecting empirical
and analytical evidence to support the above hypothesis.
Our lab studies and two projects by our industry partner
ST Electronics confirm our expectations [9].

In the future work, we plan to extend empirical studies
on JEE and .NET platforms to further substantiate the
results reported in this paper. We plan to study the impact
of pattern-driven development on reuse in the application

312

domain-specific areas of component-based systems. We
believe there may be good opportunities for “mixed
strategy” to improve productivity in application of
patterns and in maintaining software developed in
pattern-driven way. Finally, we plan to work on tools
helping in detecting similarity patterns in legacy code, for
possible re-engineering into “mixed strategy” solutions
[2].

References
[1] Bassett, P. Framing software reuse - lessons from real

world, Yourdon Press, Prentice Hall, 1997
[2] Basit, A.H. and Jarzabek, S. “Detecting Higher-level

Similarity Patterns in Programs,” ESEC-FSE'05,
European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ACM Press, September 2005,
Lisbon, pp. 156-165

[3] Basit, H.A., Rajapakse, D.C., and Jarzabek, S.
“Beyond Generics: Meta-Level Parameterization For
Effective Generic Programming,” Proc. 17th Int.
Conf. on Software Engineering and Knowledge
Engineering, SEKE’05, Taipei, July 2005

[4] Basit, H.A., Rajapakse, D.C., and Jarzabek, S.
“Beyond Templates: a Study of Clones in the STL
and Some General Implications,” Int. Conf. Software
Engineering, ICSE’05, St. Louis, May 2005, pp. 451-
459

[5] Clements, P. and Northrop, L. Software Product
Lines: Practices and Patterns, Addison-Wesley,
2002

[6] Deelstra, S., Sinnema, M. and Bosch, J. “Experiences
in Software Product Families: Problems and Issues
during Product Derivation,” Proc. Software Product
Lines Conference, SPLC3, Boston, Aug. 2004, LNCS
3154, Springer-Verlag, pp. 165-182

[7] Jarzabek, S. and Li, S. “Eliminating Redundancies
with a “Composition with Adaptation” Meta-
programming Technique,” Proc. ESEC-FSE'03,
European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of

Software Engineering, ACM Press, September 2003,
Helsinki, pp. 237-246; paper received ACM
Distinguished Paper award

[8] Jarzabek, S. and Zhang, H. “XML-based Method and
Tool for Handling Variant Requirements in Domain
Models”, Proc. 5th International Symposium on
Requirements Engineering, RE’01, August 2001,
Toronto, Canada, pp. 166-173

[9] Pettersson, U., and Jarzabek, S. “An Industrial
Application of a Reuse Technique to a Web Portal
Product Line,” accepted for ESEC-FSE'05, European
Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of
Software Engineering, ACM Press, September 2005,
Lisbon, pp. 326-335

[10]Wong, T.W., Jarzabek, S., Myat Swe, S., Shen, R.
and Zhang, H.Y. “XML Implementation of Frame
Processor,” Proc. ACM Symposium on Software
Reusability, SSR’01, Toronto, Canada, May 2001, pp.
164-172

[11]Introducing Enterprise Java Beans, Justin Couch,
Daniel H. Stenberg. JavaTM 2 Enterprise Edition
Bible pp. 818-830

[12]Yang, J. and Jarzabek, S. “Applying a Generative
Technique for Enhanced Reuse on JEE Platform,” 4th

Int. Conf. on Generative Prog. and Component Eng.,
GPCE'05, Sep 29 - Oct 1, 2005, Tallinn, Estonia, pp.
pp. 237-255

[13]Zhang, H. and Jarzabek, S “An XVCL-based
Approach to Software Product Line Development,”
Conf. on Software Engineering and Knowledge
Engineering,SEKE’03, San Francisco, July 2003, pp.
267-275

[14]Zhang, H. and Jarzabek, S. “A Mechanism for
Handling Variants in Software Product Lines,”
special issue on Software Variability Management of
Elsevier’s journal Science of Computer
Programming, Volume 53, Issue 3, Dec. 2004, pp.
255-436

313

Design of Wrapper for Self-Management of COTS Components

Michael E. Shin
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

(806) 742-3527
Michael.Shin@ttu.edu

Fernando Paniagua
Department of Computer Science

Texas Tech University
Lubbock, TX 79409-3104

(806) 742-3527
Fernando.Paniagua@ttu.edu

Abstract

This paper describes an approach to the design of
wrapper for self-managing COTS (commercial off-the-
shelf) components. Each wrapper for COTS components
encapsulates the properties of self-management –
detection, reconfiguration, and repair. A COTS
component deals with application perspectives, whereas
the wrapper handles self-management perspectives,
separately from the application perspectives. Each
wrapper for self-managing COTS components is
structured into several objects in support of detection,
reconfiguration, and repair of the anomalous COTS
component. The approach suggested in this paper is
applied to the distributed elevator system consisting of
COTS components.

1. Introduction

COTS (commercial off-the-shelf) component-based
software technologies for concurrent and distributed
systems have been enhanced for a long time. Nowadays,
more and more commercial, industrial, military, medical,
and consumer application systems are developed using
COTS components, instead of developing from scratch.
However, the COTS-component based systems may still
have design faults or come across unanticipated events
resulting in system failures. Some software system
failures result in loss of business and, at the worst, loss of
human life.

Traditionally, software fault-tolerant approaches
[Kopetz94, Torres-Pomales00, Kim00, Guerra02] have
been used in concurrent and distributed systems to ensure
that software faults do not cause system failures. The
mechanisms used in the approaches rely on software
diversity or redundancy; however, it may not be practical
for two or more different development teams to design
and implement (separately) various versions of a single
software system using the same specification, whereas
replicates of a software system can result in the same
system failures under the same execution conditions.

As an alternative, self-management (or self-healing)
[Koopman03, IMB03, Dashofy02, Garlan02, Garlan03,
Shin06] of COTS component-based concurrent and
distributed systems is considered in which anomalies of
systems (i.e., design faults or unanticipated events) are
autonomously detected and repaired at runtime by a self-
managing mechanism. For this, COTS components may
need to be changed to support the properties of self-
management in a system, but the change to COTS
components are not always possible due to COTS
vendor’s protecting intellectual property.

This paper describes an approach to the design of a
wrapper [DeLine99] for self-managing COTS
components. Self-managed COTS-components need to be
capable of detection of anomalies in COTS components,
reconfiguration, and repair of anomalous COTS
components. A wrapper for self-managing COTS
components is structured into several objects in support
of the self-management mechanism.

The approach described in this paper is applicable for
soft real-time COTS component-based concurrent and
distributed application systems, rather than hard real-time
systems that should provide each service within its tight
deadline. This is because the time required for repairing
anomalous objects may go beyond the deadline specified
for a service in hard real-time systems. An earlier paper
[Shin06] describes the software architecture for self-
managed COTS component-based systems. Other
previous work [Shin05a, Shin05b] describes the design of
reliable software components using the internal structure
of components.

2. Related work

Related work addresses approaches to making COTS
components more reliable. The architecture of mediators
and obligations [Thomas00] makes it possible to build
dependable systems including COTS components.
Mediators are software entities that detect faults by
monitoring interactions between client and server
components, enforcing client and server obligations. A
mediator for a COTS component can provide multiple

314

functions including fault management, acceptance tests
for inputs and outputs, and system monitoring. A
mediator for COTS components is designed for
client/server systems.

A fault tolerant COTS component [Guerra03,
Anderson03, Guerra04] has been proposed by adding
protective wrappers to COTS components to design
dependable software architecture. A fault tolerant COTS
component is structured into normal activity and
abnormal activity. A COTS component is encapsulated in
the normal activity, which detects errors using upper and
lower detectors. The errors detected by the normal
activity are resolved by error handlers in the abnormal
activity.

Protective wrappers for COTS components can also
mediate the input to and output from COTS components
to make the system more dependable [Meulen05]. The
specifications of inputs to and outputs from COTS
components are defined as preconditions and
postconditions, which are used by protective wrappers to
detect the outbound values of specifications for the input
and output. The wrappers adjust the outbound values to
reasonable values in order to avoid behavior undefined
for COTS components or the system.

Although several approaches have been suggested for
making COTS components reliable, these approaches
support partially the requirements of wrapper for self-
managing COTS components.

3. Requirements of wrapper for self-
managing COTS components

A wrapper for self-managing COTS components
needs to encapsulate a COTS component so as to control
the interaction between COTS components. In the design
of a wrapper for self-managing COTS components, the
following are required:
(1) Detection. Each wrapper for COTS components

needs to be capable of monitoring a COTS
component to detect anomalies that may result in
system failures. A COTS component may contain
malfunctions that can be caused by such anomalies in
the component as design errors, unfair resource
allocation, or inappropriate controlling of
concurrency among threads in the component. These
anomalies within a COTS component can make the
systems unreliable and unavailable.

(2) Reconfiguration. COTS components need to be
reconfigured at run-time by their wrappers to
minimize the impact from the anomalies detected. An
anomalous component needs to be isolated from
other healthy components in the system. As the
anomalous component is back to normal after the

repair, wrappers also need to reconfigure the system
to provide full functionality of the system.

(3) Repair. The wrappers of COTS components need to
repair anomalies in the COTS components. Some
anomalies in a COTS component are critical to the
whole system, which may lead to system failures.
The repair of anomalies in COTS components is to
protect the system from system failures.

In addition, each COTS component needs to be used
as sold by COTS component vendors. That is, a COTS
component is considered a black box whose internal
details are hidden except for its original interface to
services the component provides and requires.

4. Design of wrapper for self-managing
COTS components

A wrapper for self-managing COTS components is
structured into several objects (Fig. 1) to support the
properties of self-management of COTS components.

COTS Component

«component»

«wrapper»

«interface»

COTS Modified Interface

«controller»
Wrapper

Controller

«monitor»

COTS
Monitor

«manager»
Reconfiguration

Manager

«manager»
Repair

Manager

Self-Manage Provide/Request Services
via Wrapper

Fig. 1 Wrapper Architecture for Self-Managed
COTS Component

4.1. COTS Modified Interface

The COTS Modified Interface is a linker between a
wrapper and its COTS component. The interface to an
original COTS component is wrapped up by the COTS
Modified Interface through which the COTS component
provides services to and/or requires them from other
components. The COTS Modified Interface captures the
messages passing between the COTS component and
other COTS components. The messages are delivered to
the COTS Monitor, which detects anomalies in the COTS
component using the messages.

315

The COTS Modified Interface maintains the status of
each operation provided by a COTS component. An
operation is “unblocked” if it performs its functionality
normally, whereas an operation is marked “blocked” if
either the operation is anomalous (referred to as
malfunction block) or the operation requires anomalous
operation in other COTS component (referred to as
dependency block). An operation can be blocked during
the repair of anomalous COTS component as well
(referred to as repair block). When a COTS component
(service requestor) requests an operation from other
COTS component (service provider), the COTS Modified
Interface for the service provider COTS component
checks the status of the operation requested, and then it
allows the operation to be performed if the operation is
unblocked.

The COTS Modified Interface is involved in the
dynamic reconfiguration of the anomalous COTS
component before and after the repair. The details are
described in section 4.3.

4.2 COTS Monitor

The operations provided by a COTS component are
monitored by the COTS Monitor, which encapsulates
statecharts describing the specifications of each operation
of the COTS component. When an operation in a service
provider COTS component is invoked by a service
requestor COTS component, the statechart for the
operation makes a transition from the “Idle” state to the
“Performing the Operation” state. Some operation in a
COTS component may need services from other COTS
components to complete its own service. The statechart
for an operation also describe these dependencies among
the operations in COTS components.

The statecharts for each operation of a COTS
component, encapsulated in the COTS Monitor, are
executed by the messages from the COTS Modified
Interface. The interface to a COTS component is invoked
by the COTS Modified Interface, which is invoked by
service requestor COTS components. The COTS
Modified interface is an intermediary in interaction
between a COTS component and its service
requestor/provider COTS components, notifying the
COTS Monitor when the COTS components
communicate with each other. The COTS Monitor uses
the notification messages to check the specifications of
operations so that it determines when and which
operation in a COTS component is anomalous.

Fig. 2 depicts the self-management of a COTS
component using the message communication diagram of
UML [Booch05, Rumbaugh05], in which the message
sequence A1 through A8 describes the monitoring of the
Operation1 of the COTS component that is invoked by an

input device such as an elevator button. When the
Operation1 is invoked by an input device (message A1),
the COTS Modified Interface checks the status of the
Operation1. If the Operation1 is blocked, it is not allowed
to be called by the input device. However, if the
Operation1 is unblocked, the COTS Modified Interface
notifies the COTS Monitor that the Operation1 has been
invoked (message A2), and calls the Operation1 in the
COTS Component (message A3). Similarly, when the
Operation1 needs other OperationK from a different
COTS component (message A5 and A7), the COTS
Modified Interface notifies the COTS Monitor (message
A6 and A8).

The COTS Monitor presumes that an operation
provided by a COTS component is anomalous if the
expected notification messages have not arrived within a
reasonable time interval. Each state in a statechart for an
operation, encapsulated in the COTS Monitor, should
make transitions within an expected time interval once
the operation is invoked. Otherwise, the COTS Monitor
reports the anomaly of the operation to the Wrapper
Controller, which in turn takes an appropriate action
against the anomalous operation. In Fig. 2, the COTS
Monitor notifies the Wrapper Controller of the anomaly
of the Operation1 (i.e., “Notify Failure” in Fig. 2) if it did
not receive a notification message from the COTS
Modified Interface within a predefined time interval.

«device»

:InputDevice

«controller»
:Wrapper
Controller

«manager»

:Reconfiguration
Manager

«manager»
:Repair

Manager

«interface»
:COTS Modified

Interface

«monitor»
:COTS Monitor

A1: Request Operation1

A2: Operation1 Requested
A4: Operation1 Called
A6: OperationK Required
A8: OperationK Requested

A3: Call Operation1 A5: Require OperationK

A7: Request OperationK

Notify Failure

B1: Operation1 Failed
C3: Repair COTS
C9: COTS Repaired

B3: Notify Operation1
Failure
C6: Operations Blocked
C12: COTS Service Ready

C10: COTS
Repaired

B2: Block Malfunction
Operation1
C4: Block Operations
C11: Unblock Operations

C5: Operations Blocked

C7: Repair COTS

C8: COTS Repaired

B4: Operation1 Failure
C1: COTS Repair
C13: COTS Repaired

C2: Acknowledgements

:COTS Component
«component»

«wrapper»

Fig. 2 Self-Management of COTS Component

4.3 Reconfiguration Manager

The reconfiguration of a self-managed COTS
component is performed by the Reconfiguration Manager
in a wrapper for the COTS component. The COTS
components are reconfigured by blocking or unblocking
the interfaces to each operation of COTS components,
which are encapsulated in the COTS Modified Interface.

316

Anomalous operations are blocked so that other
components cannot request the operations paralyzed. An
operation is blocked either if the operation is anomalous,
or if the operation requires anomalous operations in
different COTS components. The status of an operation is
changed to “Unblocked” as the operation resumes its
service normally.

The Reconfiguration Manager has information
associated with the reconfiguration of a COTS
component. The information includes the status of both
each operation in a COTS component and its associated
operations (i.e., callee and caller operations) in other
COTS components. An operation may call some
operations (i.e., callee operations) in other components,
or may be called by some operations (i.e., caller
operations) in other components. The status of each
operation (including its callee and caller operations) is
classified into “Unblock”, “Malfunction block”,
“Dependency block”, and “Repair block”. In addition, the
Reconfiguration Manager contains the dependency
relationship among operations in a COTS component and
in other COTS components. This relationship is used to
generate reconfiguration plans against anomalous
operations both within a COTS component and in
different COTS components.

Fig. 2 depicts the reconfiguration of COTS
components against anomalous Operation1 in a COTS
component. When an anomaly in the Operation1 has been
detected, the Reconfiguration Manager is notified the
status of the Operation1 by the COTS Monitor through
the Wrapper Controller (message B1). With the
notification, the Reconfiguration Manager updates the
status of the operation, and generates a reconfiguration
plan against the anomalous Operation1. Based on the plan,
the Reconfiguration Manager sends a request to the
COTS Modified Interface to block the anomalous
Operation1 as “malfunction” (message B2), and then the
COTS Modified Interface updates the status for this
operation from “unblock” to “malfunction block”. The
Reconfiguration Manager sends a failure notification to
the neighboring components (messages B3 and B4)
through the Wrapper Controller as well.

4.4 Repair Manager

An anomalous operation of a COTS component is
repaired by the Repair Manager by means of re-
initialization, re-installation, or modification of input to
the component. The anomalies in a COTS component are
repaired at the level of a component, not at the level of
each operation of a component. This is because a COTS
component is a black box whose internal details are
unknown enough to heal each operation provided by the
COTS component. An anomalous COTS component can

be reinitialized if the component provides an operation
for initializing the component state. An anomalous COTS
component can be also reinstalled using the same version
of the COTS component or replaced with a variant of the
component if it is available. The variants of a component
can be different versions of the component, which may
either be implemented in a different way or provide
different performances. Some input to a COTS
component may need to be modified to fix anomalous
operations in the COTS component.

A COTS component should be repaired immediately
when critical operations in the component come to be
anomalous. Each operation in a COTS component can be
classified into either a non-critical or critical operation.
For example, in an elevator system with multiple
elevators, an operation that controls the elevator direction
lamp at a floor can be a non-critical operation, whereas an
operation scheduling multiple elevators can be a critical
operation. Non-critical operations in a COTS component
may not result in system failures although the COTS
component may provide degraded services. Non-critical
operations may be fixed at the regular maintenance
instead of immediate repair of the component. This is to
avoid the interruption of services provided by a COTS
component that are not affected from the anomalous, non-
critical operations. However, critical operations should be
healed immediately although the component repair may
result in the service interruption.

Fig. 2 depicts the repair of an anomalous Operation1
in the case where the Operation1 is a critical operation to
the system. The repair is performed by means of re-
installation of the COTS component - message sequence
C1 through C13. After isolating neighboring components
from the anomalous component (messages C1 and C2),
all operations in the COTS component being repaired are
blocked to stop their services (messages C3 through C6)
during the repair. Then the Repair Manager reinstalls the
COTS component (messages C7 and C8). As the COTS
component is repaired to provide service again, the COTS
Monitor is reinitialized (messages C9 and C10) and all
operations are unblocked (message C11). Finally the
neighboring components are notified the readiness of the
COTS component resuming services (messages C12 and
C13).

4.5 Wrapper Controller

The Wrapper Controller coordinates the other objects
in a wrapper to control the self-management of a COTS
component. The Wrapper Controllers in wrappers for
COTS components co-operate with each other to
reconfigure the system at run-time against anomalies
detected, so that the neighboring COTS components have
the minimal impact from anomalous COTS components.

317

The Wrapper Controller in a wrapper for a COTS
component determines whether an operation in a COTS
component should be repaired immediately or not. The
Wrapper Controller maintains information on operation
type such as critical or non-critical operations. With the
notification messages about anomalous operations from
the COTS Monitor, the Wrapper Controller makes
decisions about what actions will be taken against the
operations - either just blocking anomalous operations, or
both blocking and repairing the whole COTS component
immediately.

5. Implementation

Part of the wrapper designed in this paper has been
implemented and applied to the distributed elevator
system with multiple elevators [Gomaa00] including
three Elevator, ten Floor, and one Scheduler COTS
components. The COTS Modified Interface, COTS
Monitor, and Wrapper Controller objects were
implemented using Java programming language, while
the Reconfiguration Manager and Repair Manager are
under development.

The Scheduler COTS component schedules three
elevators in response to the elevator requests from floor
components. The Scheduler Modified Interface contains a
Scheduler Operation Status Table to trace the status of
each operation provided by the Scheduler COTS
component. If an operation of the Scheduler COTS
component is unblocked, the operation can be called by
the Scheduler COTS Modified Interface.

When the Floor Modified Interface requests an
elevator from the Scheduler Modified Interface, the
Scheduler Modified Interface notifies this event to the
Scheduler Monitor by sending the “Service Request
Arrived” message, and then the Scheduler Modified
Interface calls the “ServiceRequest” operation in the
Scheduler COTS component. The statechart for
“ServiceRequest” operation in the Scheduler Monitor
makes a transition by the notification message - from Idle
state to the state “Waiting for Service Request Called”.
After calling the “ServiceRequest” operation, the
Scheduler Modified Interface notifies the Scheduler
Monitor of “Service Request Called” message. Then the
Monitor starts timing the operation while it waits for the
next notification message, “Scheduler Request Arrived”
from the Scheduler Modified Interface (The “Scheduler
Request” message is delivered to one of three Elevator
Modified Interfaces so that an elevator is sent to a floor
requesting an elevator). The “ServiceRequest” operation
is anomalous if the notification message, “Schedule
Request Arrived”, does not arrive within an expected
time interval.

When the “ServiceRequest” operation is detected as an
anomalous operation, the Scheduler Wrapper Controller
determines whether the operation is critical or non-critical
using a Scheduler Operation Class Table. This operation
is critical for the Elevator system because it receives
requests for elevators from floors. Elevators cannot be
sent to floors if this operation is anomalous. Thus the
Scheduler COTS component needs to be repaired
immediately.

The Scheduler Reconfiguration Manager generates a
reconfiguration plan against the anomalous
“ServiceRequest” operation using the Scheduler
Reconfiguration Table (Table 1) and
Scheduler/Callee/Caller Operation Status Table. When
the critical “ServiceRequest” operation is anomalous, the
Reconfiguration Plan Manager changes the status of all
operations in the Scheduler Modified Interface to “repair
block”. It also notifies the Floor Modified Interface
(Caller component in Table 1) so that the
“FloorButtonRequest” operation in the Floor COTS
component cannot call the anomalous “ServiceRequest”
operation. The Scheduler Repair Manager starts repairing
the Scheduler COTS component.

Table 1. Scheduler Reconfiguration Table

6. Conclusions

This paper has described the design of a wrapper for
self-managing COTS components. Each COTS
component is structured into a self-managed COTS
component using its own wrapper. A wrapper supporting
the self-management of a COTS component is composed
of several objects – COTS Modified Interface, COTS
Monitor, Wrapper Controller, Reconfiguration Manager,
and Repair Manager. These objects are designed to
realize the requirements of a wrapper for self-managing
COTS components. Each wrapper is capable of detecting
anomalies in the COTS component, reconfiguring the
COTS component against the anomalies detected, and
repairing the anomalous COTS component.

Scheduler Reconfiguration Table

Callee Caller
Operation

Operation Component Operation Component

ScheduleRequest Elevator 1

ScheduleRequest Elevator 2 ServiceRequest

ScheduleRequest Elevator 3

FloorButtonRequest Floor

ElevatorButton
Request Elevator #

UpdateStatusPlan

ScheduleRequest Elevator #

ElevatorButton
Request Elevator #

UpdateElevator
Status

ScheduleRequest Elevator #

318

This research can be extended to further research. The
capability of decision mechanism in a COTS Monitor
needs to be extended to detect anomalies of external
devices (such as door or motor in the distributed elevator
system) handled by a COTS component. Currently, a
COTS Monitor determines if an operation of the COTS
component is anomalous or not. However, the anomalies
of an operation may result from the anomalies in external
devices.

References

[Anderson03] Tom Anderson, Mei Feng, Steve Riddle,
Alexander Romanovsky, Protective Wrapper Development: A
Case Study, in Proceedings of the 2nd International Conference
on COTS-Based Software Systems (ICCBSS 2003), Ottawa,
Canada, 10-13 February 2003.
[Booch05] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified
Modeling Language User Guide”, Second Edition, Addison
Wesley, Reading MA, 2005.
[Dashofy02] Eric M. Dashofy, Andre van der Hoek, and
Richard N. Taylor, “Towards Architecture-based Self-Healing
Systems,” Workshop on Self-healing systems, Proceedings of
the first workshop on Self-healing systems, Charleston, SC,
November18-19, 2002.
[DeLine99] R.DeLine, “A Catalog of Techniques for Resolving
Packaging Mismatch,” In Proceedings 5th Symposium on
Software Reusability, Los Angeles, CA. May 1999, pp. 44-53.
[Garlan02] David Garlan and Bradley Schmerl, “Model-based
Adaptation for Self-Healing Systems,” Workshop on Self-
healing systems, Proceedings of the first workshop on Self-
healing systems, Charleston, SC, November18-19, 2002.
[Garlan03] David Garlan, Shang-Wen Cheng, and Bradley
Schmerl, “Increasing System Dependability through
Architecture-based Self-repair,” in Architecting Dependable
Systems. R. de Lemos, C. Gacek, A. Romanovsky (Eds),
Springer-Verlag, 2003.
[Gomaa00] Hassan Gomaa, “Designing Concurrent, Distributed,
and Real-Time Applications with UML,” Addison-Wesley,
2000.
[Guerra02] Paulo Asterio de C. Guerra and Rogerio de Lemos,
“An Idealized Fault-Tolerant Architectural Component,”
Workshop on Architecting Dependable Systems, ICSE’02
International Conference on Software Engineering, Orlando,
FL, May 25, 2002.
[Guerra03] Paulo Asterio de C. Guerra, Alexander
Romanovsky, Rogerio de Lemos, Integrating COTS Software
Components into Dependable Software Architectures, in
Proceedings of the 6th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2003), Hakodate, Hokkaido, Japan, 14-16 May 2003, pp. 139-
142.

[Guerra04] Paulo Asterio de C. Guerra, Cecília Mary F. Rubira,
Alexander Romanovsky, Rogério de Lemos, “A Dependable
Architecture for COTS-Based Software Systems using
Protective Wrappers,” in Architecting Dependable Systems
ADS II LNCS 3069. October 2004, pp. 147-170.
[IBM03] IBM, “An architectural blueprint for autonomic
computing,” IBM and autonomic computing, April 2003.
[Kim00] Kim, K.H. and Subbaraman, C., “The PSTR/SNS
Scheme for Real-Time Fault Tolerance via Active Object
Replication and Network Surveillance,” IEEE Trans. on
Knowledge and Data Engr., Vol.12, No.2, Mar./April 2000,
pp.145-159.
[Koopman03] Philip Koopman, “Elements of the Self-Healing
System Problem Space,” Workshop on Software Architectures
for Dependable Systems (WADS2003), ICSE’03 International
Conference on Software Engineering, Portland, Oregon, May 3-
11, 2003.
[Kopetz94] Hermann Kopetz and Gunter Grundteidl, “TTP-A
Protocol for Fault-Tolerant Real-Time Systems,” IEEE
Computer, pages 14-23, January 1994.
[Meulen05] Meine van der Meulen, Steve Riddle, Lorenzo
Strigini, Nigel Jefferson, Protective Wrapping of Off-the-Shelf
Components, in Proceedings of the COTS-Based Software
Systems: 4th International Conference, ICCBSS 2005, Bilbao,
Spain, February 7-11, 2005.
[Rumbaugh05] J. Rumbaugh, G. Booch, I. Jacobson, “The
Unified Modeling Language Reference Manual,” Second
Edition, Addison Wesley, Reading MA, 2005.
[Shin05a] Michael E. Shin, “Self-Healing Component in Robust
Software Architecture for Concurrent and Distributed Systems,”
Science of Computer Programming, Vol. 57, No. 1, 2005, pp
27-44.
[Shin05b] Michael E. Shin and Daniel Cooke, “Connector-
Based Self-Healing Mechanism for Components of a Reliable
System,” Workshop on Design and Evolution of Autonomic
Application Software (A Workshop of ICSE2005), St. Louis,
Missouri, USA, May 21, 2005.
[Shin06] Michael E. Shin and Fernando Paniagua, “Self-
Management of COTS Component-Based Systems Using
Wrappers,” 30th Annual International Computer Software and
Applications Conference (COMPSAC 2006), Chicago,
September 17-21, 2006.
[Thomas00] V. Thomas, SuriKumar Kareti, Walter
Heimerdinger, Sunondo Ghosh, “Mediators and obligations: An
architecture for building dependable systems containing COTS
software components,” Proceedings Workshop on Dependable
System Middleware and Group Communication (DSMGC
2000), Nuremberg, Germany, October 2000.
[Torres-Pomales00] Wilfredo Torres-Pomales, “Software Fault
Tolerance: A Tutorial,” NASA/TM-2000-210616, October
2000.

319

QoS-Optimized Integration of Embedded Software Components with
Multiple Modes of Execution ∗

Zonghua Gu
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Hong Kong, China

Qingxu Deng
Department of Computer Science

Northeastern University
Shenyang, China

Abstract

Component-Based Software Engineering (CBSE) is
an effective approach for tackling the increasing com-
plexity of large-scale embedded software development
projects. Software components often have multiple
modes of execution, each characterized by a set of re-
source requirements such as maximum stack and heap
memory size, worst-case execution time, etc, and one
or more Quality of Service (QoS) values that measure
its benefit. There is typically a tradeoff relationship
between the resource requirements and utility value. In
this paper, we address the problem of optimizing system
utility when composing multiple software components
into a complete system, each having a set of discrete
modes of execution with different resource requirements
and utility values. We present an optimal branch-and-
bound algorithm and another fast heuristic algorithm
for solving the optimization problem.

1 Introduction

Embedded software components are often modal,
each having several modes of execution, and each mode
having a different set of QoS value and resource con-
sumption characteristics. For example, a software com-
ponent in an embedded control system may have two
possible runtime modes: one implementing a sophis-
ticated control algorithm with good control perfor-
mance but has high resource requirements in terms of
execution time and memory size, and the other im-
plementing a simplistic control algorithm with below-
average control performance but has low resource re-

∗This work is partially supported by the Cultivation Fund of
the Key Scientific and Technical Innovation Project (No 706016),
Ministry of Education, China and the Competitive Earmarked
Research Grant (No 613506), Research Grants Council, Hong
Kong.

quirements. In this paper, we assume that we can as-
sign an application-specific utility value to each mode
to quantify its QoS. For example, in control theory, the
control performance can be measured with a compos-
ite index number that combines the steady-state error,
maximum overshoot, settling time and rise time.

TacSteering

NavSteering

Active

Inactive

Figure 1. A modal software component Steer-
ing with two sub-modes of execution when it
is active: NavSteering (Navigational Steering)
and TacSteering (Tactical Steering).

As a more concrete example, Figure 1 shows a modal
component taken from Avionics Mission Computing [1]
with two high-level modes of execution: active and in-
active. The active mode further has two sub-modes
within it, each offering the same input/output inter-
face but with different resource consumption and per-
formance characteristics. When the component is in
the TacSteering mode, it produces results with high
accuracy but also has high CPU requirements; when
it is in the NavSteering mode, it produces results with
lower accuracy but has lower CPU requirements. The
component may switch to a different mode at runtime
depending on runtime resource availability. This can
be implemented by having multiple implementations
for each component, loading all of them into memory
at system startup, and switching among them dynam-
ically at runtime.

As a demonstration of the modal component in ac-

320

Push()

NavDisplayPilotControl

Navigator

GetData()

GetData()

GetData()

Push()

20Hz Timer

Push()

Push()

GPS

AirFrame

Steering

ChooseMode()

5Hz Timer

GetData()

NavSteeringPoints

1Hz Timer

SetData()

Figure 2. An application scenario.

tion, Figure 2 shows an application scenario that con-
tains the modal Steering component. The behavior of
this scenario can be described in three stages depend-
ing on the mode of the Steering component, which can
switch between three modes, i.e., Inactive, NavSteering
and TacSteering, at runtime:

1. The GPS component wakes up upon a 50ms
(20Hz) interval timeout and issues a Data Avail-
able event. The Airframe component receives the
event and issues its own Data Available event. The
Steering component receives this event, updates
its internal state, but does not issue events since
it is initially inactive.

2. PilotControl issues a command that enables the
NavSteering mode of the Steering component.
Now when the Steering component receives the
Airframe’s Data Available event, it updates its
state and issues a Data Available event, caus-
ing the NavDisplay to display the navigational
steering data obtained from the NavSteeringPoints
component.

3. PilotControl issues a command that enables the
TacSteering mode of the Steering component.
From this point on, the NavDisplay component
displays the tactical steering data instead of the
navigational steering data.

Embedded systems used to be designed in a fairly
static fashion for the sake of predictability, with a fixed
set of tasks run at a static cyclic schedule. However,

modern embedded systems are required to handle more
dynamic situations, where unexpected tasks may arrive
and leave the system at runtime, and system resource
availability may also change dynamically due to run-
time load variations and hardware faults. This requires
the engineer to add flexibility and adaptivity to run-
time execution, in order to protect the system from
overload by trading off resource requirements for QoS
and achieve graceful degradation. Existing work on dy-
namic runtime adaptation is typically programmed in
an ad hoc manner, and reconfiguration code is tangled
with application functional code. This breaks compo-
nent modularity, a key benefit of CBSE, and hinders
system maintenance and evolution. We propose an ap-
proach of predefining a set of system modes, each of
which is a combination of component modes designed
and optimized offline at design time according to some
optimization criteria. In each mode, a different set of
components are active, and each active component may
be in one of its sub-modes depending on the current
active system mode. At runtime, one of the system
modes is activated as the initial default mode. The sys-
tem may change modes during execution to accommo-
date dynamic resource availability. The runtime mid-
dleware monitors runtime conditions and dynamically
switches between system modes based on runtime re-
source availability by changing component modes. Its
role is similar to a transaction manager in database
systems, and coordinates system-wide mode changes
while maintaining global consistency. This approach
allows the designer to use time-consuming optimization
techniques to predefine and optimize system modes at
offline design time, yet incurs low overhead for perform-
ing dynamic mode changes at runtime. Figure 3 shows
the overall workflow.

Possible resource constraints include total memory
size, CPU utilization (percentage of time when the
CPU is busy), network bandwidth, etc. For example,
for a system with n tasks scheduled in a rate monotonic
fashion, the upper bound of the total CPU utilization
in order to guarantee schedulability is n(21/n− 1). We
solve the optimization problem to obtain a set of sys-
tem modes, each characterized by a tuple [CPU utiliza-
tion, total memory size, system utility] expressing the
tradeoff relationships between the available resources
and the achievable system utility. At runtime, the
middleware adaptively switches among different system
modes to cope with varying system load and resource
availability, e.g., when the system is lightly loaded,
then upgrade to a system mode with high utility; when
overload occurs, downgrade to a system mode with low
utility by producing lower quality results. In this pa-
per, we focus on the design stage, where the engineer

321

Figure 3. Overall workflow of the proposed
methodology. A dotted box denotes an inac-
tive mode.

selects a mode for each component in the application
to form multiple system modes, each optimized for a
different design objective, such as high performance or
low resource requirements.

The rest of this paper is structured as follows: we
present the problem formulation in Section 2, then
present two optimization techniques in Section 3, one
optimal algorithm based on exhaustive search and an-
other fast heuristic algorithm. We present performance
evaluation results in Section 4. We discuss related work
in Section 5, and draw conclusions and discuss future
work in Section 6.

2 Problem Formulation

An embedded software application consists of a set
of real-time tasks, each containing a set of software
components. Here we assume that each software com-
ponent belongs to at most one task, and it is not pos-
sible for multiple tasks to share one component, as dis-
cussed in [2]. There are n software components in the
system (C1, C2, . . . , Cn), taking into account compo-
nents in all tasks. The available system resources are
given by a vector R = (R1, . . . , Rm). Each compo-
nent Ci, where i = (1, . . . , n), has li possible execution
modes Cij , where j = (1, . . . , li), each of which has a
set of resource requirements rij = (rij1, . . . , rijm), and

a user-defined utility metric vij . (There may be multi-
ple utility metrics in general, but we only consider the
case with a single utility metric here.) There may be
mutual exclusion constraints, e.g., no more than one
component among a set of components is active in any
system mode, and mutual attraction constraints, e.g.,
a set of components are always active simultaneously,
or none of them are active in any system mode. The
component integrator must define a small set of system
modes such that each satisfies resource constraints and
optimizes the utility metrics. For example, one system
mode may be high-performance with high resource con-
sumption, while another may be degraded-performance
with minimal resource consumption, designed to cope
with the situation where certain faults may have oc-
curred and reduced the system resource availability.

Assuming each component mode is associated with
a set of resource requirements and a utility value, the
optimization problem can be formulated as finding the
combination of component modes with the largest total
utility value given total cost constraints. A special case
is when all constraints are mutual attraction, and the
system has a few fixed system-level modes of certain
component mode combinations without any freedom
for design space exploration. In this paper, we assume
that there is some flexibility in choosing component
modes, hence there is a need for searching through a
potentially large design space.

Suppose we have two resource constraints, CPU uti-
lization U and total memory size M ; one optimization
objective, an application-specific utility value V , with
a monotonic tradeoff relationships V grows larger with
larger U and M . We can formulate the optimization
problem in several different ways:

1. Given an upper bound on U and an upper bound
on M , maximize V .

2. Given a lower bound on V and an upper bound on
M , minimize U .

3. Given a lower bound on V and an upper bound on
U , minimize M .

4. Optimize U , M and V jointly to obtain a Pareto
optimal curve 1 using Evolutionary Algorithms [3].

In other words, we can optimize one objective while
treating the others as constraints, or we can jointly op-
timize all objectives simultaneously. The formulation
of joint multi-objective optimization is more general

1A Pareto optimal curve for a multi-objective optimization
problem contains all the solutions where no solution is inferior
or superior to any other solution for all objectives.

322

than single objective optimization, since the single-
objective solutions can be easily obtained from the
Pareto optimal curve. In this paper, we focus on the 1st
problem formulation by using both exhaustive search
and fast heuristic algorithms.

3 Solving the Optimization Problem

Branch-and-bound is widely used for solving combi-
natorial optimization problems. It works by construct-
ing a search tree, and each node in the tree represents a
solution where some variables are assigned and others
are free. A node is expanded by assigning value to a
free variable, e.g., expanding a node by assigning value
to a binary variable x generates two nodes: one with
x = 0 and another with x = 1.

For our optimization problem, each leaf node in the
search tree is a complete solution represented by a vec-
tor x = {xij}, where i = 1, . . . , n and j = 1, . . . , li.
For component Ci, xij = 1 means that mode j of
component i is active, and xij = 0 means that it is
inactive. we use another bit vector b = (b1, . . . , bn)
to represent the status of mode assignment for compo-
nents (C1, . . . , Cn). bi = 1 indicates that Ci’s mode has
already been assigned, and bi = 0 indicates that Ci’s
mode has not been assigned. The algorithm has the fol-
lowing key steps: start with the initial state where none
of the component modes have been assigned. Find the
tree node N with the largest upper bound on utility
value. If the bit vector b for node N contains all 1’s,
then all component modes have been assigned. Record
a solution and backtrack. Otherwise, the bit vector b
contains at least one 0, then expand node N by gener-
ating lj children nodes to represent all possible mode
assignments for a component Cij whose mode has not
been assigned. Prune any generated tree node that vi-
olates resource constraints and backtrack. Iterate until
all component modes have been assigned, or no feasible
solution is found.

Since combinatorial optimization problems are NP-
Hard in general, running time of the branch-and-bound
algorithm grows exponentially with the number of com-
ponents. Suppose an application consists of 3 com-
ponents, and each component has 2 execution modes,
then we have 23 = 8 possible system modes. In order to
scale up to larger models, we next present a heuristic
algorithm for solving the optimization problem. The
algorithm has the following key steps:

1. Start with the system mode where each compo-
nent is in the mode with the smallest utility value.
If this system mode does not satisfy memory size
or utilization constraints, then there is no feasible
solution, and the algorithm terminates.

2. Find the additional resources r = (r1, . . . , rm)
needed to upgrade each component to the next
higher utility value, and choose the component
mode upgrade that provides the largest utility gain
divided by additional resource demand.

3. If a feasible component mode upgrade cannot be
found, then return the current solution and termi-
nate. Otherwise, go to step 2.

In the above description, we start from a feasible so-
lution with lowest utility value and gradually upgrade
each component to a higher utility mode until the re-
source bound is violated. We then choose the solution
that satisfies the resource bounds and has the largest
utility. It is also possible to start from an infeasible
solution with highest utility value and gradually down-
grade each component to a lower utility mode until
the resource bound is satisfied. The former approach
may converge to the solution faster when resources are
scarce, and the latter approach may converge faster
when resources are abundant.

4 Performance Evaluation

To evaluate the performance of our optimization al-
gorithms, we generate sets of modal components, and
assign random values of CPU utilization and utility to
each component mode. We assume that CPU is the
bottleneck resource and do not consider memory size
constraints, therefore the resource vector r becomes a
single scalar value. We optimize the total system util-
ity given different upper bounds on CPU utilization.
The optimization algorithms are run on a Pentium PC
with 3.2 Ghz CPU and 1GB memory. Table 4 shows
the performance results. Nc denotes total number of
components; Mc denotes number of modes per com-
ponent; UB denotes the utilization bound; VBB de-
notes the maximum utility achieved with branch-and-
bound algorithm. When the utilization bound is 1.0,
we scale and normalize the maximum utility to be 1 for
easy comparison. VHEU denotes the maximum utility
achieved with the heuristic algorithm; TBB denotes the
branch-and-bound algorithm running time; THEU de-
notes the heuristic algorithm running time. For the
heuristic algorithm, we start from the system mode
where each component is assigned the mode with low-
est utility value, and scale up gradually. As we can
see, running time of the branch-and-bound algorithm
increases sharply with the number of components and
number of modes per component, while running time
of the heuristic algorithm stays more or less constant.
Optimization results of the heuristic algorithm are re-
markably close to the true optimal calculated with

323

Nc Mc UB VBB VHEU TBB(s) THEU (s)

5 2 1.0 1.0 0.99 1.7 0.21
5 2 0.8 0.91 0.88 1.4 0.15
5 2 0.6 0.78 0.74 0.9 0.11

10 3 1.0 1.0 0.94 34.2 0.94
10 3 0.8 0.86 0.82 27.3 0.88
10 3 0.6 0.67 0.64 20.8 0.71
15 3 1.0 1.0 0.95 403.2 1.13
15 3 0.8 0.89 0.84 356.1 0.97
15 3 0.6 0.59 0.53 316.2 0.85
20 4 1.0 1.0 0.97 2598.1 1.41
20 4 0.8 0.91 0.87 2109.1 0.99
20 4 0.6 0.64 0.62 1600.5 0.91
20 10 1.0 1.0 0.89 9374.0 1.70

Table 1. Performance evaluation results.

branch-and-bound, as we can see by comparing the
columns labeled VBB and VHEU . Note that the al-
gorithm running time gets smaller when the utilization
bound is reduced, which results in reduction of design
space size. The final result is a set of system modes,
each consisting of a collection of component modes and
characterized by a tuple [CPU utilization, system util-
ity]. At runtime, different system modes may be acti-
vated depending on runtime resource availability.

5 Related Work

Most existing work on CBSE focuses on the issue
of component integration based on functional criteria,
i.e., how to choose a set of components that implement
certain functionality and are compatible with each
other. Our focus is on component integration based
on non-functional criteria, where the designer must
choose among multiple component modes to form sys-
tem modes that offer similar functionality, but have dif-
ferent resource requirements and performance/utility
attributes.

Some researchers have addressed the problem of
embedded software component integration. Sedigh-
Ali [4] presented a graph-based model for component-
based software development with optimization objec-
tives such as system reliability, complexity metric and
cost constraints, but no details on solving the prob-
lem were provided. Neema et al [5] developed a design
space exploration tool (DESERT) based on Boolean
Decision Diagrams (BDD) data structure. The tool
starts with a set of design templates, each template
consisting of several possible implementation alterna-
tives, and synthesizes fully specified models that meet
selected design constraints. However, the DESERT ap-
proach allows pruning of design space based on design
constraints, but does not offer the capability of opti-

mization. That is, it gives the designer a set of im-
plementation alternatives that all satisfy design con-
straints, but does not give a ranking of the alterna-
tives based on one or more optimization objectives.
Wandeler et al [6] introduced a component system for
interface-based design of systems with mixed Fixed
Priority, Rate Monotonic and Earliest Deadline First
scheduling. Henzinger et al [7] presented an assume-
guarantee interface algebra for real-time components
that supports both the incremental addition of new
components and the independent stepwise refinement
of existing components. Gößler et al [8] proposed a
framework for component-based modeling using an ab-
stract layered model for components, which ensures
correctness by construction of a system from proper-
ties of its interaction model and of its components. The
properties considered include global deadlock-freedom,
individual deadlock-freedom of components, and inter-
action safety. However, optimization of QoS under re-
source constraints is not considered.

Abdelzaher et al [9] proposed a model for quality-
of-service (QoS) negotiation in building real-time ser-
vices with the goal of guaranteeing predictable per-
formance under specified load and failure conditions,
and ensuring graceful degradation when these condi-
tions are violated. Since their algorithm was designed
to operate at runtime, an efficient greedy heuristic
is adopted to tradeoff computation time with solu-
tion optimality. Our approach is based on offline op-
timization of multiple pre-defined system modes and
online switching among them, therefore we can afford
to use time-consuming optimization techniques such as
branch-and-bound to achieve more optimal results.

6 Conclusions and Future Work

In this paper, we address the problem of opti-
mized integration of embedded software components
with multiple execution modes. Even though we have
used memory size and CPU utilization as resource con-
straints, and a user-defined utility metric as optimiza-
tion objective, our problem formulation is quite gen-
eral and abstract and can be easily extended to ad-
dress other resource and utility function definitions.
As an example, Critical Scaling Factor (CSF) [10, 2]
was proposed to be a metric that measures the sen-
sitivity of a real-time system to variations of task ex-
ecution times. It is defined as the largest coefficient
by which execution time of all tasks can be simultane-
ously multiplied while preserving feasibility. For exam-
ple, if a system has CSF of 1.17, then if we multiply
the execution time of all tasks by a number n ≤ 1.17,
the system would still be schedulable. However, any

324

n > 1.17 would render the system unschedulable. A
larger CSF value means that the system is more ro-
bust to timing faults caused by inaccuracies in execu-
tion time estimation. A system is schedulable if and
only if its CSF n ≥ 1. Therefore, it is desirable to
adopt scheduling algorithms and task timing attribute
assignments to maximize the CSF. We can treat CSF
as another optimization objective in addition to one
or more utility metrics. One way to solve the multi-
objective optimization problem is by converting it to a
single-objective one using a weighted sum of the multi-
ple objectives. However, this approach is often not de-
sirable since the assignment of weights can be arbitrary
when combining multiple unrelated metrics. Another
approach is to formulate a multi-objective optimization
problem and solve it using evolutionary algorithms [3].

References

[1] Z. Gu, S. Wang, S. Kodase, and K. G. Shin, “An
End-to-End Tool Chain for Multi-View Modeling
and Analysis of Avionics Mission Computing Soft-
ware,” in IEEE Real-Time Systems Symposium
(RTSS), 2003, pp. 78–81.

[2] Z. Gu and K. G. Shin, “Synthesis of real-time
implementation from component-based software
models,” in IEEE Real-Time Systems Symposium
(RTSS), 2005.

[3] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler,
“PISA — a platform and programming language
independent interface for search algorithms,” in
Evolutionary Multi-Criterion Optimization (EMO
2003), ser. Lecture Notes in Computer Science,
C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,
and L. Thiele, Eds. Berlin: Springer, 2003, pp.
494 – 508.

[4] S. Sedigh-Ali and A. Ghafoor, “A graph-based
model for component-based software develop-
ment.” in WORDS, 2005, pp. 254–262.

[5] S. Neema, J. Sztipanovits, G. Karsai, and
K. Butts, “Constraint-based design-space explo-
ration and model synthesis.” in EMSOFT, 2003,
pp. 290–305.

[6] E. Wandeler and L. Thiele, “Interface-based de-
sign of real-time systems with hierarchical schedul-
ing.” in IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2006,
pp. 243–252.

[7] T. A. Henzinger and S. Matic, “An interface al-
gebra for real-time components.” in IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS), 2006, pp. 253–266.

[8] G. Gößler and J. Sifakis, “Composition for
component-based modeling.” Sci. Comput. Pro-
gram., vol. 55, no. 1-3, pp. 161–183, 2005.

[9] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin,
“QoS Negotiation in Real-Time Systems and Its
Application to Automated Flight Control.” IEEE
Trans. Computers, vol. 49, no. 11, pp. 1170–1183,
2000.

[10] S. Vestal, “Fixed-priority sensitivity analysis for
linear compute time models,” IEEE Trans. Soft-
ware Eng., vol. 20, pp. 308–317, 1994.

325

A C++ Framework for Developing Component Based Software Supporting
Dynamic Unanticipated Evolution

Andre Rodrigues, Hyggo Almeida, and Angelo Perkusich
Embedded Systems and Pervasive Computing Lab,

Electrical Engineering and Informatics Center, Federal University of Campina Grande

Postal Code 10.105 - 58109-970, Campina Grande, PB, Brazil

felipe.andre@gmail.com, hyggo@dsc.ufcg.edu.br, perkusic@dee.ufcg.edu.br

Abstract

In this paper we present a C++ component-based frame-
work, called CCF, for developing software with support to
dynamic unanticipated evolution. The CCF is an imple-
mentation of the COMPOR Component Model Specifica-
tion, which provides mechanisms to manage software run-
time evolution, even for unpredicted changes. We describe
the framework design and main implementation issues. To
exemplify the use of the proposed framework, we describe
the development of an application for encoding/decoding
files for a compact internat tablet.

1. Introduction

In 1980, a study published by Bennet Lientz pointed

out evolution activities as responsible for 50% of the to-

tal software cost [8]. In a more recent study, presented by

Len Erlikh in 2000, evolution activities in software develop-

ment increased to 90% [5]. Motivated by this scenario, sev-

eral engineering approaches have been proposed to reduce

the software evolution cost. One of theses approaches is

the Component Based Development (CBD)[2], which pro-

vides means to reduce the impact of requirement changes in

the application design and code, by establishing well de-

fined interfaces and preparing the architecture for antici-

pated changes.

However, the impact of software evolution on both the

design and the existing code is more significant when the

changes in the software requirements have not been antici-

pated. The problem occurs when part of the software which

had not been prepared for changes needs to be modified.

Managing unanticipated evolution is more difficult in some

domains, in which the software execution cannot be inter-

rupted due to financial or security reasons, such as telecom-

munications, banking systems, military systems, hospital

systems, etc. For these cases, an infrastructure for dynamic

unanticipated evolution is necessary.

Within this context, the COMPOR Component Model
Specification (CMS) provides mechanisms for developing
component based software with support to dynamic unan-

ticipated evolution [1]. Following this specification, appli-

cation components can be added, removed, and changed

without stopping the system execution.

In this article we present a C++ based framework

for developing component based software supporting dy-

namic unanticipated evolution called CCF (C++ Compo-

nent Framework). This framework implements the CMS

[1], providing an API to develop C++ applications with sup-

port to unanticipated changes, even at runtime. We describe

the framework design and main implementation issues.

We also present the implementation of an adaptable im-

age compression application based on DjVu [7]. Such an

application, named DjVu Compactor, is implemented using

the CCF for a Linux based mobile device. The choice to

implement it in a mobile device is to make clear the needs

and advantages of the dynamic evolution feature when de-

veloping application for computational devices with limited

memory and storage capacity, such as mobile phones and

compact internet tablets.

The remainder of this paper is organized as follows. In

Section 2, we describe the COMPOR Component Model

Specification. In Section 3, we present the proposed frame-

work. Section 4 describes the case study. Section 5 dis-

cusses related works. Finally, in Section 6, we present the

concluding remarks.

2. Component Model Specification (CMS)

The COMPOR Component Model Specification is based

on a hierarchical structure, where leaf-nodes represent

functional components and the other nodes represent con-
tainers. Functional components provide, through services

326

and events, the system functionalities and do not have child

components. Containers are software entities that imple-

ment no application-specific functionalities. The containers

work as “folders” storing the child components, which may

be functional components or other containers. Moreover,

they manage the services and events provided by their chil-

dren [1].

Functional components are made available by inserting

them into containers. Therefore, at least one container,

named root container, must exist. The containers store two

tables, one for provided services and other for events of in-

terest to their child components. When a component is in-

serted into a given container, both the provided services and
the events of interest tables of each container up to the root
of the hierarchy are updated. After that, any component of

the hierarchy can access the services provided by the new

component as well as notify events of interest to it. The

removal and updating processes are similar to the insertion

one. Figure 1 shows the component deployment process

and its steps are detailed as follows.

1. The Component X that implements the “calculate” ser-

vice is inserted in Container 2.

2. The Container 2 updates its service table redefining the

services provided by its child components.

3. The Container 2 requests its parent container to update

its service table.

4. The Container 1 updates its service table redefining the

services provided by its child components.

Container 1

Container 2

X Y

1

2

3

4

Service Component

calculate Container 2

print Container 2

Service Component

calculate X

print Y

Figure 1. Component deployment.

After the component “X” deployment, any component

of the hierarchy can access its services as well as notify it

when some event of its interest occurs, even without having

an explicit reference for “X”. Observe that a component has

only the reference to its parent container.

The interaction among components can be performed

based on services or events. In the service based interaction

a functional component can invoke any service provided by

another component of the hierarchy, even if it belongs to

a different container. On the other hand, the event based

interaction focuses on the announcement of a state change

in some functional component to all the interested ones. In

both cases there is no explicit reference among components.

2.1. Service based interaction

When a service request occurs, the service provider must

be found. Thus, the request of the “save” service by a com-

ponent “X” triggers a search in the hierarchy for a compo-

nent “K” that implements the “save” service. Such a process

is presented in Figure 2 and the steps are detailed as follows.

1. The Component X requests the execution of the “save”

service to its parent container.

2. The Container 2 verifies, according to its service ta-

ble, that none of its child components implements the

service “save”.

3. The Container 2 forwards the request to its parent con-

tainer.

4. The Container 1 verifies, according to its service table,

that one of its child components implements the “save”

service(Container 3). For Container 1, the Container 3

is the component that provides the service.

5. The Container 1 forwards the request to Container 3.

6. The Container 3 does not implement the service but

has a reference to the real provider of the service -

Component “K”.

7. The Container 3 forwards the request to Component

“K”.

8. The Component “K” executes the “save” service and

returns the result.

Container 1

Container 2 Container 3

X Y K

Service Component

calculate X

print Y

1

2

3

4
5

6

7

8

Service Component

calculate Container 2

print Container 2

save Container 3
Service Component

save K

“save”?

There is no reference among X and K

Figure 2. Service based interaction.

327

It is important to observe that there is no reference

between the requester component (“X”) and the provider

component(“K”). Thus, the component that implements the

“save” service can be changed without modifying the rest

of the structure.

2.2. Event based interaction

When an event is announced by a given functional com-

ponent, all the components in the hierarchy of the appli-

cation that are related to the event must be notified. The

interaction based on events is also implemented by contain-

ers, and thus there are no direct references among functional

components. This process is shown in Figure 3 and the steps

are detailed as follows.

1. The component X announces an event named “Event

A”.

2. The announcement is directly received by its parent

container (Container 2), which verifies if any of its

child components have to be notified about the event,

by inspecting the event table.

3. Container 2 forwards the event to the interested com-

ponents, in this case only the component Y.

4. Container 2 then forwards the event to its parent con-

tainer (Container 1).

5. Container 1, according to its event table, forwards the

event to those interested on it, except the one that an-

nounced the event (Container 2). Since Container 1 is

the root of the hierarchy, there is no parent container to

forward the event. Thus, the event is only forwarded

to Container 3.

6. Container 3 forwards the event according to its event

table that in this case is component K.

Container 1

Container 2 Container 3

X Y K

Event Component

EventA Y

EventB X

1

2

3

4 5

6

Event Component

EventA Cont.2, Cont.3

EventB Container 2

Event Component

EventA K

There are no references between X,Y and K

Figure 3. Event based interaction.

As can be seen in Figure 3, there are no references be-

tween the component that announced the event (X) and

those interested on it (Y and K).

3. C++ Component Framework

The C++ Component Framework (CCF) is a C++ im-

plementation of the CMS. The CCF design is based on

the Composite design pattern [6], which is used to com-

pose objects in tree structures in order to represent part-

whole hierarchies. The CCF main methods are described

in the class diagram depicted in Figure 4. The func-

tional components and containers are instances of the

classes FunctionalComponent and Container, re-
spectively. The abstract class AbstractComponent al-
lows composing complex elements from simple elements,

through recursive composition [6]. Thus, the containers

do not know if their children are functional components

or other containers. The AbstractComponent class

defines the methods that must be overwritten by the sub-

classes. Therefore, the FunctionalComponent and

Container classes implement in different ways the ex-
tended methods, for both service and event interaction mod-

els.

<<abstract>>

...
doIt(ServiceRequest):ServiceResponse
receiveRequest(ServiceRequest):ServiceResponse
announceEvent(EventAnnounment);

AbstractComponent

FunctionalComponent

doIt(ServiceRequest):ServiceResponse
receiveRequest(ServiceRequest):ServiceResponse
doItAsynchronous(ServiceRequest):ServiceRequestId
receiveServiceResponse(ServiceResponse);
announceEvent(EventAnnounment);
receiveEvent(EventAnnounment);
start();

Container

doIt(ServiceRequest):ServiceResponse
receiveRequest(ServiceRequest):ServiceResponse
announceEvent(EventAnnounment);
receiveEvent(EventAnnounment);
start();

Figure 4. CCF simplified class diagram.

There are two methods to implement the service based

interaction: doIt and receiveRequest. These meth-
ods are responsible to find and execute a service request

following the hierarchy. The doIt method forwards the
service request, in a bottom-up way, until reaching the

container that stores the reference to the provider. When

this occurs, the receiveRequest method is invoked

to forward the requisition, in a top-down way, until ar-

riving the functional component that implements the ser-

vice (Figure 5). Both methods receive, as parameter, a

328

ServiceRequest object that encapsulates the name and
the necessary parameters for the service execution. The re-

turn of both doIt and receiveRequest methods is a
ServiceResponse object that stores the service result,
when the execution occurs successfully, or stores the excep-

tion, when the execution fails.

Container 1

Container 2 Container 3

X Y K

save

doIt(...“save”..);

doIt(...“save”..);

receiveRequest(...“save”..);

receiveRequest(...“save”..);

Figure 5. The doIt and receiveRequest meth-
ods.

The service based interaction can also occur asyn-

chronously. For that, a component requests a service ex-

ecution through the doItAsync method and receives a
request identifier (ServiceRequestId). Then, a new
thread is started to invoke the doIt method. In this way,
while all the hierarchy is visited by the doIt method to
find the service provider, the main thread can continue its

execution normally. When the doIt method execution

ends, the response (ServiceResponse) is forwarded to
the component that had requested the service by calling

the receiveAsyncServiceResponse method. As

the ServiceResponse stores the request identifier, the
component that invoked doItAsync method can identify
which request a given response refers to.

The event announcement is similar to the asynchronous

service invocation. The announceEvent method starts a
new thread where the announced event is forwarded to all

containers, in a bottom-up way. When a container identifies

that some child component has interest in the announced

event, the receiveEvent method is invoked, in a top-
down way, until the notification reaches the interested com-

ponents.

The asynchronous service interaction and the event in-

teraction are based on the ActiveObject [12] design pattern.
Such a pattern is implemented using the Pthreads API [10].

This API allows encapsulating the processing of the new

thread within a function. Pthreads has been chosen because

it is an IEEE POSIX standard and presents implementations

in several platforms, such as Windows, Linux, Solaris etc.

FunctionalComponent class contains attributes of
type ProvidedSevice and EventOfInterest. The
ProvidedSevice and EventOfInterest classes

have an attribute to store a reference to the method that will

be invoked when the service request or the event announce-

ment occurs. The storage and recovery of these methods

is performed through computational reflection [3]. As the

C++ language does not have a native reflection mechanism,

the CCF uses the Seal Reflex library [11]. Such a library

makes possible a C++ program to recover information about

a class and its members as well as to create a class instance

through its name. Furthermore, methods can be referenced

and invoked through information on their signatures. Fig-

ure 6 shows the process that allows the computational re-

flection in a CCF component. The steps related to such a

process are detailed as follows.

1. The genreflex tool is used to generate the dictionary,

MyComponentRflx.cpp, with information about the

class described in the MyComponent.h file.

2. The shared library, MyComponentRflx.so, with the

dictionary information is generated.

3. The functional component shared library, MyCompo-

nent.so, is generated.

4. The shared libraries previously generated are loaded in

the CCF. After that, the computational reflection can

be performed in the inserted functional component.

MyComponent.h

MyComponent.cpp

CCF

MyComponentRflx.cpp

make

genreflex

MyComponentRflx.soMyComponent.so

make

1 2

3

4

Figure 6. Computational reflection in CCF

Moreover, the CCF provides a mechanism for starting

and stopping the components execution. The initialization

and finalization of the components are implemented by the

start and stop methods, respectively.

4. Application: DjVu Compactor

DjVu [7] is a image compression technology capable

of replacing formats such as PDF, PS, and TIFF, with ad-

vantages in terms of size and transmission efficiency for

scanned documents, digital documents and high resolution

photographs. It is an open format, although proprietary,

whose specifications are available under GPL license. Com-

paring with the PDF format, DjVu files are about 3 to 8

329

times smaller than PDF files and can be visualized with-

out the need for downloading the entire document, therefore

the parts of documents that are displayed on the screen are

decompressed on-the-fly. The technology was developed

by AT&T Laboratories and, today, an open source imple-

mentation of the decoders and part of the encoders, called

DjVuLibre1, is available.

The DjVuLibre project makes available various imple-

mentations for both encoders and decoders. Two examples

are: (i) the bzz, which is a general purpose encoder/decoder,
similar to bzip2, and; (ii) the cjb2, which is an image en-
coder. Although several other enconder/decorders are avail-

able, they are not all used at the same time. Also, other ones

can be developed whenever new file formats will be speci-

fied.

In order to provide an on-demand loading/unloading of

encoders/decoders, an application called DjVu Compactor

has been developed using the CCF. The DjVu Compactor

provides a structure for insertion and removal at runtime of

DjVu encoders/decoders implementations. Thus, the user

can tune the Djvu Compactor to its needs. Figure 7 illus-

trates the component hierarchy of DjVu Compactor. The

screens shots shown in Figure 8 illustrate the bzz compo-
nent removal and the cjb2 component addition.

ContainerAlgorithm

ComponentBzz ComponentCjb2...

GUI

Functional components that implement the algorithms

Figure 7. DjVu Compactor components hier-
archy

The on-demand dynamic evolution feature is very im-

portant for computational devices with limited memory and

storage capacity, such as mobile phones and compact inter-

net tablets. In this context, the implementations of CCF and

DjVu Compactor have been ported to the MAEMO plat-

form2. MAEMO is a Linux based open platform to create

applications and it is available for the Nokia Internet Tablet

products, such as Nokia N800 and Nokia 770. This way, it

is possible to develop other applications for such a platform

with on-demand dynamic evolution feature.

5. Related Work

In the context of infrastructures for supporting dynamic

unanticipated software evolution in C++, we highlight the

Balboa composition environment [4]. It has three parts: a

1http://djvu.sourceforge.net/
2http://www.maemo.org/

component integration language (CIL); a set of C++ com-

ponent libraries; and a set of split-level interfaces (SLIs) to

link the two. The Balboa uses a custom interpreted language

(CIL) for both instantiating and connecting the components.

After that, a C++ component can be manipulated through an

SLI wrapper, which is implemented with the BALBOA in-

terface definition language (BIDL), or interact directly with

other components. In contrast with CCF, the Balboa uses

three different languages to implement the dynamic evolu-

tion. Moreover, the Balboa performance using SLI is im-

pacted, since the language must be interpreted.

The framework proposed in [13] uses the idea of proxy

to eliminate references between C++ implementation mod-

ules. It is divided into two parts. The first part is the

dynamic configuration service, which includes a module-

proxy. The dynamic modules, which consist of module-

implementations, constitute the second part. The module-

implementations are the upgradeable C++ components,

which can be disabled, enabled, loaded, unloaded, and hot

swapped. The module-proxy is used as a port forwarding all

the incoming requests to the right module-implementation.

For this work, there is no mechanism to provide recursive

composition and dynamic composition is only allowed for

the part of dynamic modules.

The programming framework for autonomic applica-

tions called Accord[9] also allows composition of C++ el-

ements at runtime through definition of rules. The com-

position manager injects interaction rules defined by users

into corresponding element manager which then executes

the rules to appropriately configure the C++ element and

establish interaction with other elements. Although the Ac-

cord allows replacing of C++ elements, the elements being

replaced do not answer the requests nor store them to for-

ward to the new elements. Furthermore, recursive composi-

tion is not possible in Accord.

6. Concluding Remarks

This paper presented a C++ framework for developing

component based software supporting dynamic unantici-

pated evolution, called CCF. CCF is an implementation

of the COMPOR Component Model Specification (CMS).

Such a specification provides mechanisms to make unpre-

dicted changes in applications, even at runtime.

We described the framework design and the implemen-

tation issues. An application implemented in C++ using the

proposed framework, called DjVu Compactor, was also pre-

sented. CCF allows DjVu Compactor to be evolved at run-

time, more specifically, it makes possible to insert and re-

move DjVu encoders/decoders implementations on the fly.

As future work, we plan to develop applications in the

domain of pervasive computing. More specifically, we are

330

Figure 8. DjVu Compactor dynamic evolution

working on a C++ component based middleware for provid-

ing services in pervasive environments.

References

[1] H. Almeida, G. Ferreira, E. Loureiro, A. Perkusich, and

E. Costa. A Component Model to Support Dynamic Unan-

ticipated Software Evolution. In Proceedings of Interna-
tional Conference on Software Engineering and Knowledge
Engineering, volume 18, pages 262–267, San Francisco,
USA, 2006.

[2] A.W. Brown. Large-Scale, Component Based Development.
Prentice Hall, 2000.

[3] W. Cazzola, R. J. Stroud, and F. Tisato. Reflection and Soft-
ware Engineering. Springer, 2000.

[4] F. Doucet, S. Shukla, R. Gupta, and M. Otsuka. An En-

vironment for Dynamic Component Composition for Effi-

cient Co-Design. In Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 736–743, Paris,
France, 2002. IEEE Computer Society.

[5] L. Erlikh. Leveraging Legacy System Dollars for E-

Business. IEEE IT Professional, 2(3):17–23, 2000.
[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

[7] P. Haffner, L. Bottou, P. G. Howard, and Y. LeCun. DjVu:

Analyzing and Compressing Scanned Documents for Inter-

net Distribution. In Proceedings of the Fifth International
Conference on Document Analysis and Recognition, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[8] B. P. Lientz and E. B. Swanson. Software Maintenance Man-
agement. Addison-Wesley, 1980.

[9] H. Liu and M. Parashar. Accord: a programming framework

for autonomic applications. In Systems, Man and Cybernet-
ics, Part C: Applications and Reviews, IEEE Transactions,
volume 36, pages 341–352. IEEE Computer Society, 2006.

[10] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads Pro-
gramming: A POSIX Standard for Better Multiprocessing.
O’Reilly & Associates, 1996.

[11] S. Roiser. The SEAL C++ Reflection System. In Computing
in High Energy and Nuclear Physics (CHEP) Conference,
Interlaken, Switzerland, 2004.

[12] J. Vlissides, J. Coplien, and N. Kerth. Pattern Languages of
Program Design 2. Addison-Wesley, 1996.

[13] L. Yu, G. C. Shoja, H. A. Mller, and A. Srinivasan. A Frame-

work for Live Software Upgrade. In Proceedings of the 13 th
International Symposium on Software Reliability Engineer-
ing (ISSRE), pages 149–158, Annapolis, MD, USA, 2002.
IEEE Computer Society.

331

Representing Design Rationale to support Reuse

Adriana Pereira de Medeiros and Daniel Schwabe

Dept. of Informatics, PUC-Rio
Rua Marquês de São Vicente 225,

22453-900, Rio de Janeiro - RJ, Brasil
{adri, dschwabe}@inf.puc-rio.br

ABSTRACT
Many engineering areas benefit from design reuse, and it is
widely accepted that software engineering should be no
exception. However, design reuse requires knowledge about
the “why” and “how” an artifact was designed the way it
was. Design Rationale provides such information. This
paper presents Kuaba, a new design rationale representation
approach, and the architecture of an integrated design
environment to support recording design rationale, as well
as use of design rationale to support reuse of model-based
designs, particularly software design. The Kuaba approach
uses a formal representation language and takes advantage
of the formal semantics of artifacts, as defined by the design
methods, for representing design rationale. This
representation approach enables a new type of design reuse,
where existing artifacts rationales are integrated and re-
employed in designing a new artifact.

1. INTRODUCTION
Design reuse means reusing the knowledge invested in a
design, so that the proposed solutions for an artifact can be
reused in designing other artifacts. Therefore, for reusing an
existing design it is necessary to know “why” and “how”
the produced artifacts were designed. Design Rationale
(DR) [5] provides such information, since it records the
reasons behind the design decisions, including also design
alternatives considered and eventually rejected, the
tradeoffs evaluated and the argumentation that led to the
decisions. Reusing design without understanding DR may
cause defects, since the modifications may destroy the
carefully elaborated solutions in the existing design.

Although DR has a potential value for the design reuse, it
has not been very used during software design. One of the
reasons, despite much research, is the time consumption
and the cost generally required for the capture and
representation of DR. Another reason is the lack of a
representation approach that enables the development of an
integrated tool that can function as the capture,
representation and use of design rationale part of the
software design process.

It is fair to say that reuse at the highest abstraction level
occurs when rationales are integrated and re-employed

when designing a new artifact. This type of reuse can be
achieved by a formally defined DR representation, which
integrates the formal semantics provided by the meta-model
that describes the artifacts being designed. Starting with
existing artifacts, the designer can analyze their rationales
and decide to integrate or extend them to get a more
complete design solution, generating a new DR. From this
point of view, both software maintenance and evolution can
be considered simply as a continuation of a previous design
process, captured in a given DR.

This paper first briefly describes the Kuaba1 approach [7], a
new DR representation approach, and how it integrates a
DR representation model with the formal semantics of the
artifacts provided by the design meta-models for recording
DR. Next, we present the conceptual architecture of the
integrated design environment that is being built to support
designers through processing of formal DR representations.
Finally, we conclude by discussing related work and
drawing some conclusions.

2. THE KUABA APPROACH
Although there are several different approaches for
representing DR, such as IBIS [4] and DRL [6], most of
them generate incomplete or informal representations, not
enabling the effective DR use in the design of new artifacts.
Furthermore, when applying them to formally defined
artifacts (such as software artifacts), their informality
prevents automatically taking into consideration alternatives
prescribed by the design methods, as well as incorporating
their restrictions. In other words, it is not possible to
leverage the semantics of the artifact provided by the formal
model that describes it.

For many design domains, particularly in software design,
the artifacts (models) are built according to the semantics
provided by the meta-model of the modeling language or
design method used to guide the design process. We call
this special kind of design domain “model-based design”, in
which design can be seen as an instantiation process of a

1 “Kuaba” means “knowledge” in Tupy-guarany, the
language of one of the native peoples in Brazil.

332

meta-model. This meta-model represents the formal models
that describe the modeled artifacts and provide semantic
descriptions which allow reasoning over the artifacts being
produced. An example of such a formal model is the meta-
model of the Unified Model Language (UML) [10].

The Kuaba approach proposes the use of the artifact’s
formal semantics, as provided by the meta-model of the
design methods (or modeling language). This is achieved
through the instantiation of the DR representation model
described by the Kuaba ontology [8]. This approach allows
the creation of a semi-automated process to represent DR.
In this process, the integrated design environment uses the
formal model for the artifact being designed to suggest
design options at each step in the design, and to record the
corresponding choices made by the designer, using the
Kuaba ontology vocabulary. This vocabulary is described in
F-logic [3], a formal language for ontology specification,
which permits the definition of a set of rules and
computable operations to support the reuse of designs by
the processing and integration of their rationales. Figure 1
shows the elements of this vocabulary, using an UML-like
notation to help visualization; some relations and
constraints were omitted to simplify the presentation.

Figure 1. Kuaba Ontology Vocabulary

Briefly described, the Kuaba ontology vocabulary
represents the reasoning elements used by the designers
during the design; the decisions made by them; information
about the artifacts that results from these decisions; and
information about the formal models used to specify the
produced artifacts. The reasoning elements represent the
design questions that the designer should deal with, the
possible solution ideas for these problems and the
arguments against or in favor of the presented ideas. In
Kuaba, some of these elements (questions and ideas) are
instantiated according to the artifact formal model
prescribed by the (software) design method.

2.1 The Kuaba Approach in Use – An Example
Consider the following scenario: a designer needs to model
the navigation that will be used by users in a Web
application of a CD Store and decides to use the Object

Oriented Hypermedia Design Method (OOHDM) [11] to
guide his design. When the designer chooses this design
method, he indirectly determines the formal model(s) that
will be used to describe the artifacts. This formal model
specifies, to a great extent, the questions and ideas that the
designer can propose, since they are pre-defined by this
model. Figure 2 shows part of the formal model prescribed
by the OOHDM method to specify the navigation of a Web
application.

Figure 2. Partial OOHDM formal model for Navigation

According to the OOHDM formal model, an element in a
navigation model can be an index, a list, a navigational
class, a context or an InContext class. Contexts define the
set of navigation objects that will be explored by the user at
each moment. These objects are defined based on the
navigational classes related to the context. The access to a
context object can be achieved through an index or through
an anchor. An index is a set of ordered objects, where each
object has at least an attribute of the type anchor (seletor).
For example, the “CDs of the artist Daniela Mercury”
context represents the set of CDs that will be accessible to
the user, after he has selected his favorite artist (Daniela
Mercury) in a index. Figure 3 shows the context schema
that represents this navigation. Note that the “CDs by
Artist” context includes a group of possible contexts, whose
objects are defined by the name of the artist selected by the
user in the “Artists” index.

Figure 3. Context Schema Example.

Figure 4 shows the portion of the DR regarding the
alternatives and decisions that resulted in the artifact shown
in Figure 3. It is a graphical representation we have created
to help visualizing instances of the Kuaba ontology (DRs).
In this representation, the root node is an initial question
(represented as rectangle), “What are the sets of elements?”,
which is addressed by the ideas “Artists”, “Artist’s CDs”

333

and “Artist in alphabetic order”, represented as ellipses.
Notice that these values are determined by the designer’s
knowledge of the domain, or were extracted from the DR of
a previous phase, requirements elicitation, which is not
addressed in this paper.

 Once these initial ideas for the sets of elements have been
established, the designer must decide how each one of them
will be modeled using the primitives of the OOHDM
method to make up his final navigation model. This next
step is represented in Figure 4 by the “suggests” relation,
which determines questions of the type “How to model
‘set’?” entailed by ideas. The possible ideas that address
these questions are determined by the OOHDM formal
model (Figure 2) for defining navigation models – sets of
elements can essentially be modeled as an index, a context,
or a list. Accordingly, the OOHDM formal model is
instantiated into the “Index” and “Context” ideas linked to
the “How to model Artist’s CDs?” question.

Figure 4. DR representing the navigation in the Figure 3

Observe that when the designer considers the ideas of
modeling the sets “Artists” and “Artist’s CDs” as indices,
the questions “Index Attributes?” are immediately
suggested. This occurs because an index must be associated
to one or more attributes, according to the OOHDM formal
model. These questions are addressed by the ideas that
correspond to the respective attributes of these indices.
Notice that these attributes can be of type “Index Anchor”
or “Context Anchor” with different destinations, depending
on the navigation that the designer desires. The proposed
ideas for the type of the attributes “Name” and “Title” of
the indices “Artists” and “Artist’s Cds”, respectively, and
the ones that address the question “Destination?” in Figure
4, define two different solutions for the navigation design in
the Web application being developed. The first solution

leads from the “Artists” index, through the “Name” anchor,
to the “Artist’s CDs” context. This alternative was accepted
by the designer (labels “A” on the arrows between
questions and ideas), corresponding to the solution
represented in the context schema in Figure 3. Observing
the rationale of this solution (Figure 4), we can perceive
that the designer decided to include the “Artist_Bio”
attribute of type “Context Anchor” in the CD navigational
class. This anchor allows the user to navigate from the
information of a CD to the artist’s biography in the “Artists
in alphabetic order” context. In the second navigation
solution, rejected by designer (labels “R”), the user selects
the desired artist in the “Artists” index to access a list of
CDs of this artist, in the “Artist’s Cds” index. Then, he
could select the desired CD in this index to access its
detailed information, in the “Artist’s Cds” context. Observe
that the idea “Artist’s CDs” had two design alternatives
(index and context) and both could have been accepted by
the designer as solutions to model this set.

This example illustrates how the formal model “drives” the
instantiation of the Kuaba ontology, recording the DR. This
formal model is used by the support environment proposed
in this work to suggest to the designer the possible Kuaba
ontology instances that must be defined at each step of the
design process. After defining the design options for each
set, the designer has to record the arguments for and against
each option (dashed rectangles in Figure 4), and decide
which design solution will be used in the final artifact.

3. DESIGN REUSE WITH RATIONALE
Formalizing DR representation using the model defined by
Kuaba enriched with the artifact formal model semantics
allows a new kind of design reuse. This reuse is possible
through the integration of existing DRs to start a new
artifact design. This integration involves matching Kuaba
ontology instances (DRs) to compose a more complete
design solution. Figure 5 shows the conceptual architecture
of an integrated design environment that supports recording
DR, as well as use of DR to support design reuse.

Figure 5. Architecture of an Environment Supporting DR

Since most software design support tools already use some
kind of formal description of the artifacts being designed,
we propose to extend them to allow their integration with
the DR “processor” that is capable of processing

334

representations using Kuaba. The extension enriches the
design tools by adding two layers to support the editing and
searching of DR. In the editing layer, the designer informs
the arguments for and against the design alternatives
considered, and the justifications for the decisions made. In
the search layer, he searches existing designs with their
rationales, formulates questions about the designs found,
and starts the integration of rationales. In this layer the
designer can also graphically visualize the rationale of the
artifact being designed, or the rationale of the designs being
reused in his design. These layers are being developed
initially for HyperDE [9], a support environment to the
hypermedia applications design using the OOHDM method.

In the proposed architecture, the design tool transfers the
design options and the rationale information provided by
the designer to the rationale processor, responsible for
creating the DR representations and processing the
rationales integration, when requested by the designer. The
representation and the integration of DR involve different
types of operations. Currently, the rationale processor
implements the complete union of two DR representations.
This operation consists of a set of rules implemented in the
Flora-2 language [2] that translates F-Logic in tabled Prolog
code and processes this code in the XSB [12] deductive
system.

3.1 Integrating Design Rationale
Consider again the scenario in which the designer needs to
model the navigation of a Web application for a CD store.
Since the online (CD) stores domain is common in software
design, the designer decides to perform a search for existing
designs, trying to find similar artifacts, before he begins a
new design. As a result, he finds the artifacts shown in
Figures 3 and 6. These artifacts represent different design
solutions to model the navigation using OOHDM.

Figure 6. Context schema of a navigation solution

Analyzing the artifacts found, the designer notices that in
the navigation solution of the second artifact (Figure 6),
initially the user selects the favorite artist in the “Artists”
index to access information of this artist in the “Artist
Alphabetic” context. From this information he can navigate
to the “CDs by Artist” context to have access to the detailed
information of that CD. Observing the rationale of this
navigation solution (Figure 7) we can notice that its author
decided to include the “Artist’s CD” InContext class for the
“Artists Alphabetic” context. This InContext class defines

an attribute of the type “Context Anchor” which will be
accessible to the user only when he visualizes an artist’s
information in the context “Artists Alphabetic”.

Figure 7. DR representing the navigation in the Figure 6

After analyzing the DRs of these artifacts, shown partially
in Figures 4 and 7, the designer decides to integrate the
navigation solutions used by other designers to start his
design with a bigger set of options. The integration of these
different solutions is possible only because the artifacts
(Figures 3 and 6) are built based on the same type of formal
model (OOHDM navigation) to design the same domain
(CD store) and their rationales are represented as instances
of the same ontology (Kuaba).

The integration of two DR representations involves: the
definition of the representation that will be used as the basis
for the integrated DR; the equality specification for the
domain ideas and questions of the two representations; and
the union of the sub-trees of elements (equivalent or not) of
these ideas. The base representation definition and the
equality specification are performed by the designer. Based
on this information, the rationale processor applies
equivalence rules and performs operations to process the
DRs. Figure 8 shows the integrated DR, which has the DR
shown in Figure 4 as base. Observe that the arguments
presented by the designer to the “Context Anchor” idea in
the DR shown in Figure 7 are copied to the sub-tree of its
equivalent idea in the base representation. The idea of
modeling the “Artist’s CD” InContext class used in the
navigation solution shown in Figure 6 is also copied.

In integrated DR, all navigation options considered in the
artifacts shown in Figures 3 and 6 were joined into one
unique DR representation. Notice that the decisions made

335

for the reused artifacts are not incorporated to this
representation. This reflects the fact that this integrated DR
represents a new design, in which the designer can do
modifications and make new decisions according to his
objectives.

Figure 8. Example of an integrated DR

4. RELATED WORK
Considering the DR approaches for software design, Kuaba
is similar to the Potts and Bruns model, that was extended
by [6] in the creation of DRL. Both integrate the DR
representation with software design methods semantics.
But, they differ in the way they use this semantics. In Potts
and Bruns, the generic model entities are refined to
accommodate a particular design method’s vocabulary for
deriving new artifacts. In the Kuaba approach the meta-
model elements prescribed by the design method is used in
the instantiation of the reasoning elements.

The SEURAT (Software Engineering Using RATionale)
system [1] has architecture similar to the architecture of the
integrated support environment presented in this work.
However, SEURAT supports the use of rationale only to
identify inconsistencies during the software maintenance
process. Moreover, SEURAT does not consider computable
operations over the DR to support reuse.

5. CONCLUSION
To permit a more effective use of DR to support design
reuse, we have proposed the use of the artifacts formal
semantics integrated to the representation model defined in

Kuaba ontology for representing DR. Design reuse is
supported by the processing of the recorded DR in the new
artifacts production, using an integrated design
environment. Using the artifacts formal models in the DR
representation, the Kuaba approach makes the rationale
more specific according to the software design methods and
permits new uses for DR, such as the DR integration for
designing new artifacts. We believe that the use of formal
models of artifacts can also facilitate the DR capture, since
it permits automating part of generation of DR
representations. Therefore, the large amount of data
produced in DR representations of actual designs is
significantly hidden from the designer through the use of
automated support.

REFERENCES
1. Burge, J., Brown, D.C. An Integrated Approach for

Software Design Checking Using Rationale, Design
Computing and Cognition 2004, Kluwer Academic
Publishers (2004), 557-576.

2. Flora-2 Language. http://flora.sourceforge.net/
3. Kifer, M., Lausen, G.: F-Logic: A Higher-Order

Language for Reasoning about Objects, Inheritance and
Scheme. ACM SIGMOD May (1989) 134-146

4. Kunz, W., Rittel, H. W. J.: Issues as Elements of
Information Systems. Institute of Urban and Regional
Development Working Paper 131, Univ of California,
Berkeley, CA, (1970)

5. Lee, J. Design Rationale Systems: Understanding the
Issues. IEEE Expert Volume 12, No. 13, 1997, 78-85

6. Lee, J. Extending the Potts and Bruns Model for
Recording Design Rationale. In Proceedings of the 13th

International Conference on Software Engineering,
Austin, TX (1991) 114-125

7. Medeiros, A. P. Kuaba: An Approach for Representation
of Design Rationale for the Reuse of Model-based
Designs. Rio de Janeiro, 2006. 149p. DSc. Thesis –
Dept. of Informatics, PUC-Rio.

8. Medeiros, A. P., Schwabe, D., Feijó, B.: Kuaba
Ontology: Design Rationale Representation and Reuse
in Model-Based Designs. Proc. ER 2005, LNCS 3716,
241-255.

9. Nunes, D. A. and Schwabe, D. Rapid prototyping of
web applications combining domain specific languages
and model driven design. In Proceedings of the WWW,
2006. ACM Press, New York, NY, 889-890

10.OMG: Unified Modeling Language Specification
version 1.5. March (2003)

11.Schwabe, D., Rossi, G. An object-oriented approach to
Web-based application design, Theory and Practice of
Object Systems (TAPOS), 1998, 207-225.

12. XSB System. http://xsb.sourceforge.net/

336

Telling Stories about System Use: Capturing Collective Tacit Knowledge for
System Maintenance

Adriana Cristina de Oliveira1, Renata Mendes de Araujo2, Marcos R.S. Borges1

1Graduate Program in Informatics, IM&NCE, UFRJ, Brazil
adricris@gmail.com; mborges@nce.ufrj.br

 2Department of Applied Informatics, UNIRIO, Brazil
renata.araujo@uniriotec.br

Abstract

One of the great system engineering challenges has
been how to understand user needs. The evolution of
software requirements methodologies and techniques has
been motivated by the belief that understanding business,
client and user needs is a key activity for successfull
system deployment and use. During maintenance, system
users are again the most suitable actors able to recognize
special kind of information about system use, usually
hidden from the system maintenance team. Benefits and
problems of using the system in ther daily activities,
opinions, suggestions of improvement, beliefs, ‘shortcuts’
for greater productivity while using the system etc,
usually remain as user tacit knowledge. This article
presents the use of Group Storytelling as a knowledge
capture and sharing technique, intending to use the
colaborative creation of stories about the use of
information systems as a way to assist software
maintenance team activities.

Keywords: system maintenance, knowledge capture,
group story telling.

1. Introduction

 Let us start this paper by telling you a brief story:
‘Lucy is a teacher at the Computing Department of the
Somewhere University. The department has a supporting
team that takes care of the IT infrastructure, including
mail servers and accounts. The department and the
supporting team invest greatly on open source
technology, having installed a version of a well-known
webmail for researcher and student use.
 Lucy faces many problems using the webmail, and has
frequently reported them to the supporting team by means
of the helpdesk system available for that purpose. One of
these problems, however, seemed very atypical, with the
supporting team not being able to understand and solve
the problem, as nobody else in the Department had

reported it and the cause was not apparent. What the
supporting team did not know was that other users had
reported to Lucy they had faced the same problem once.
What the supporting team did not know was that Lucy
was probably one of the most frequent webmail users, -
all day long - differently from the majority of users, who
used it much occasionally. Her chances of facing unusual
problems were much higher. Something about her daily
working context, about the way she used the tool and
about her interaction with her colleagues, could bring the
supporting teams valuable information about how to
recognize and handle the problem as well as improve
system use. How could the supporting team collect all this
information?”
 Systems users increasingly build knowledge about
their experiences on using the system which is not often
documented [1]. Maintenance teams, in turn, deal with
system errors reports and suggestions for functionality
evolution and adaptation. However, they lack
understanding about the way systems are actually used,
about the impacts that they have on users’ daily work, and
about how users overcome problems and share among
themselves, ways for improving system use in their daily
work. Maintenance teams usually focus on dealing with
errors, changing code, testing and updating system
documentation and do not have the opportunity to
observe and obtain knowledge about the way systems are
used.

This paper suggests the use of the Group Storytelling
technique for knowledge capture as an approach for the
collective creation of information systems use stories in
organizations. It also suggests how maintenance teams
can use these stories to support their activities.

The paper is organized as follows: Section 2 presents a
summary of related work about approaches for
knowledge management in maintenance activities; where
the need for addressing the tacit knowledge of system
users is put into evidence. Section 3 further discusses the
issue of capturing user tacit knowledge. Section 4

337

presents the Group StoryTelling technique, while in
Section 5 it is shown how this technique can be used to
capture user experiences. Section 6 presents the tool
called Feedback, designed according to this proposal.
Section 7 presents some case studies using Feedback and,
finally, Section 8 presents our conclusions.

2. Approaches for knowledge management in
system maintenace

Basili, Caldiera e Rombach [1] defined the Experience
Factory approach for organizing and reusing software
development experiences, enforcing organizational
learning. An Experience Factory is a knowledge
repository continuously fed by information gathered
during the development process. The Experience Factory
in turn, processes all the information gathered from
different projects and provides feeback while facing a
specific activity during the development process.

Valett, Condon, Briand e Basili [11] proposed an
Experience Factory focused on system maintenance for
the FDD (Flight Dynamics Division) / GSFC (Goddard
Space Flight Center). This Experience Factory is similar
to the orginial proposal described above although having
some particular characteristics, such as: feedback analysis
must be shorter since the maintenance cycles are shorter
than development cycles; experiences should include
previous experiences of a same project, since the focus on
process evolution is stronger during maintenance
compared with the development process.

Souza, Anquetil e Oliveira [8] proposed the
Postmortem Analysis (PMA) technique as an approach to
manage maintenance knowledge. Three aspects were
considered: when the technique should be used, which
knowledge should be used and how to extract knowledge
from project participants.

Dias, Anquetil e Oliveira [5] defined an ontology for
system maintenace comprising five aspects: systems,
computer science, the maintenance process, the
organizational structure and the application domain.

Torres, Anquetil e Oliveira [10] proposed the use of
Learning Stories technique to collect stories obtained at
the end of a project aiming at capturing and disseminating
knowledge from the different project participant
viewpoints . This objective is achieved by following these
steps: the project is performed; some project members are
interviewed; the knowledge captured during interviews is
converted into stories in a format which allows its
dissemination. Later, when a new project is started, the
created story can be retrieved and the team can learn
about it and apply this knowledge to the new project.

3. Capturing information for system
maintenance

There are many other approaches reported in literature
about knowledge management for system maintenance
[3] [7]. However, what can be observed is that these
approaches deal with how to capture, organize, classify
and reuse knowledge generated during the maintenance
process and within the maintenance team. This work
argues that special attention is necessary towards
capturing information regarding the continuous
knowledge and experiences built by system users. How is
it possible to provide continuous and high interaction
among users (specially when there are many) and the
maintenance team, at low costs and without disturbing
user work as well as maintenance team work? How to
facilitate the communication process between users and
the maintenance team where the latter prefers to receive
an identified error or problem to correct and the former is
not usually able to identify it, but has a rich story about
daily work using the system?

There are ways applied by the system maintenance
teams to capture user information such as questionnaires,
interviews; system user committees, and even
ethnographic observations. However, these approaches
fail by involving a small number of possible system users,
restricting its view and experiences, or by being costly, or
by capturing overly strucutured information, in which
users must report their experiences based on pre-defined
concepts such as errors, problems or improvement
suggestions.

We argue that maintenance teams should have a better
understanding of the user work context and needs, where
some of these needs may not even be noticed. Continuous
communication among users, and between users and the
maintenance team should be provided in order to allow
for collective discovering opportunities for improving the
system and daily work.

This work proposes an approach allowing for
scalability, freedom for users to report their views about
system use and the identification of implicit experiences,
serving as a learning basis for maintenance teams.

4. Group StoryTelling

The Group Storytelling technique has been used in
Knowledge Management to capture people’s tacit
knowledge in order to create collaborative stories for
further analysis. People involved in a project, for
example, can tell stories related to relevant events,
attempting to reproduce the main facts and creating at the
end, a complete story [4] [6].

338

The use of this technique in organizations can inprove
communications and knowledge sharing. Communication
in organizations tend to be very formal. Storytelling
intends to engage people in a less formal interaction,
using authentic language and an interesting narrative [9].

Group Storytelling is more appropriate than individual
storytelling in situations where there is more than one
person performing related tasks. The group can make a
collective story about the activities performed by their
members. All group members can present their
impressions about the events of the story. At the end of
the process, the knowledge generated by the stories is a
combination of each participant’s tacit knowledge in
hypertext form [12].

The Group Storytelling technique can be used with or
without a software tool. In both cases, however, we have
the same objective: creating collective stories, through the
collaboration of the participants in this process. Without a
software tool, the group members must be together in the
same place. The presence of a moderator is also necessary
to moderate the interaction and to encourage
participation. Individual interviews can be carried out
during this process, in order to get more details about the
participants of the group. However, the congregation of
people in the same place and at the same time proves to
be a hard and expensive task, because teams are usually
geographically distributed. The use of a software tool
enables Group Storytelling to be used even when people
are far from one another.

Some additional advantages of a software tool are the
creation of a group memory, the increase of perception
and communication among participants, and the
coordination of the collaborative storytelling process.

5. Telling stories about system use

Collaborative stories about software use exhibit
important features to help software maintenance teams.
The Group Storytelling technique can be used to capture
tacit knowledge and to share this knowledge after it has
been formalized. We applied this technique with these
two objectives in mind.

In this work, we use the Group Storytelling approach to
obtain system use stories, as experienced by system
users, with relevant information for software maintenance
teams. The story topics should be the work tasks
supported by information systems in an organization.
Information capture, storage and organization are
supported by a software tool which implements the Group
Storytelling technique.

The Group Storytelling dynamics proposed in this
work is asynchronous and distributed. This dynamics is

particularly useful in organizations where teams are
geographically distributed.

5.1. Capture

Task selection. The capture stage starts with the selection
of a task supported by an organization´s information
system. This selection is made by the software
maintenance team responsible for the coordination of the
group storytelling process. The selected task will be the
subject of the story.
Use definition. The group storytelling process can be
used in two ways: limited use or continuous use. If the
software maintenance team wishes to capture specific
information about a certain system in a short period of
time, and according to the kind of problem to be
observed, they can choose the limited use, defining a
period of use, the system users and the story objectives.
Otherwise, the software maintenance team can choose
continuous use, in which system users can participate at
any time, and for an indefinite period.

Limited use intends to induce system users to create
specific stories, in order to help solve specific software
maintenance teams problems. On the other hand, the
continuous use will make group storytelling as part of
system user daily tasks.
Participant selection. The software maintenance team
also defines the system users who will take part in the
group storytelling process. If the limited use option was
chosen, only the system users defined by the software
maintenance team will be able to participate in story
creation. If the continuous use was chosen, all system
users may access the environment.
User participation. User participation happens as
follows: the user selects the story in which he wishes to
participate, and if his access is allowed, begins to provide
information about the task subject of the selected story.
The user should organize the given information in steps,
so that each step represents a different stage in that task
execution. For each step, the user can add contextual
information and comment on other user reports. This is
optional, but can help in the creation of the story context.

5.2. Retrieval

In the retrieval stage, the software maintenance team
will be able to read the stories created by system users,
including steps, comments, context information and user
interactions during story creation. The software
maintenance team can then update the stories, by adding
comments and classifying the information. This
classification will be done by assigning symptom

339

descriptions, which are previously defined categories
associated to words, sentences or paragraphs in the sories.

6. Feedback

According to the proposed group storytelling process,
we have developed a software tool called Feedback. The
main objective of the Feedback tool is to allow the
collaborative creation of stories about the use of
information systems in an organization, in order to help
software maintenance teams. Feedback is a customization
of the TellStory tool [6] which was developed using Zope
– an open source plataform for building content
management applications.

Software tool functionalities were developed to support
the proposed process and can be divided according to
users profiles. We have three user profiles: moderator,
system user and maintenance team. The moderator is
responsible for starting and finishing stories and for
allowing or rejecting user participation. The system user
is responsible for story creation, by writing and
commenting steps and characters, and including
documents. Finally, the maintenance team is responsible
for reading the stories, identifying symptoms and
commenting on the stories. To illustrate, we will use one
of the case studies concerning a project management
system in a government organization, named REQUEST.
Start story. In the capture stage, this functionality
represents the task selection activity, the main subject of
the story to be created. The moderator starts a new story,
for instance, the story of the task Tracking Project
Activities – to track the development of a project, and its
purpose, such as: Often professionals do not updated
project status information. It seems that they did not
created a habit to register information using the system.
Allow/Reject user participation. The moderator allows
or rejects user request to participate in story creation,
according to the use definition (limited use or continuous
use), selected by software maintenance team. The
moderator can also invite users to participate in story
creation. These functionalities represent the use definition
and participant selection activities, in the capture stage.
Include step (Figure 1-a). The system user includes
steps in the story, informing, for each step: title,
description, environment, reasons, results and emotions.
Users must be oriented to organize their steps in the same
order they are performed, so as to achieve the main
objective, the completion of the task and the subject of
the story.
Read details. The user can read all the information
related to the steps written by other users: title,
description, environment, reasons, results and emotions.

Include/Read comments. The user can include and read
all the comments related to the steps written by other
users.
Include characters. The user can include characters in
the story being created, informing: name, description,
skills and task knowledge. The characters created can
represent system users writing the story or other people
mentioned during story creation.
The text bellow presents an example of steps:
Step 1: Login – First of all, I login using my account.
Context information: Environment - I use an Itautec
desktop with Pentium IV. Reasons: I must login to have
system acces. Expected results: I can have access to the
system.
Comments: User1: the system login is suffering from a
small number of user licences. User2: after 9 AM it is
necessary to be lucky or to be patient. We have to try the
login several times.User3: This delay demotivate us to
report project status. User 4: I don’t know why but I
always succeed in loging in. Does it have something to do
with my desktop or am I just lucky? When somebody is
not able to login I offer my desktop and everyting works
fine.
Step 2 (provided by a different user from Step1): My SMS
– after login, I use the Personal Queries/My SMS
function, where I can use a filter to select only the tasks
under my responsibility…

Figure 1: Steps of a story.
Include document. The user can include documents
related to the story subject. The functionalities named C
to G represent user participation in the group storytelling
process, in the capture stage.
Finish story. When the moderator finishes a story, this
leaves the construction phase and goes to the finishing
phase. In the finishing phase, the moderator can still edit
the final story text.

340

Read finished stories (Figure 2-b). The software
maintenance team can read all the stories created by
system users. This functionality represents the retrieval
stage, in which software maintenance teams can extract
relevant information written by system users.
Classify information. The software maintenance team
can classify information from finished stories,
indentifying symptoms that can be further explored as
system evolutions. It is possible to select stretches of the
story, classify the selection and comment on the
classification. Texts marked in yellow were those selected
by the maintenance team as possible symptoms to be
classified (Figure 2-b).
For instance, the part of the story where one user says that
he can not login after 9 AM can be classified as a user
difficulty that the software team must find the cause. A list
of symptoms is maintained by the team (Figure 2-c).

Figure 2: Functionalities of Retrieval stage.

7. Case Studies

To evaluate the benefits of the proposed approach and
the adequacy of the supporting tool, we have carried out
three case studies in one company, the main business of it
is to provide IT support for the Brazilian Government.
There were seven participants – all of them have been
using the system for at least one year - distributed into
three groups in such a way that each person has been a
member of two groups. Each group told one story.

Before the experiment, the participants received
general instructions about the study and training on the
Feedback tool. The initial step of each story had been
created before the participants were allowed to tell their
own stories. The objective of this first fragment was to
provide some context and also to show the importance of
the chronological order of the story fragments.

During the first stage of the case study, the participants

built the collective stories. They added fragments to the
story reproducing their experience with the system and
their perspectives. They interacted with each other during
this phase through the shared stories, being able to read
other participants’ fragments and comment on them.
Having completed their stories, the participants answered
a questionnaire about their understanding of the process,
the usefulness of the tool and of the shared stories.

In the second phase, the users who had not participated
in the first stage read the stories and indicated whether the
stories carried relevant information about the system.
They also answered a questionnaire similar to that applied
to those who built the stories.

The third stage consisted of story evaluation by the
analysts in charge of system maintenance. After reading
the stories told by the users, the analysts added comments
and pointed to what they thought were symptoms of
possible problems. All three groups answered another set
of questions related to their interpretation of the stories
taking into account maintenance activities. We were
interested in learning whether the information reported in
the stories could contribute to the activities related to
system maintenance. The case studies were designed to
answer the following goals:
Goal 1: To evaluate whether the fragments created by
system users generate a use story that can support the
maintenance activity. Based on the concept of story, as
defined in this work, the process suggested by our
approach should result in a meaningful set of steps, and
each step should contain some relevant information. In
the case studies, the user narratives had these features, as
confirmed by system analysts.
Goal 2: To evaluate whether collective stories can
serve as technique to externalize tacit knowledge and
that they were coherent and relevant to their purpose.
Based on the analysis of the stories generated, we
conclude that part of the knowledge was tacit, kept in
system user minds, was externalized and became formal.
The group storytelling approach and the Feedback tool
were successful in supporting this transformation.
Knowledge had been disseminated to other participants,
who were able to comment and to add more relevant
information to the stories.
Goal 3: To evaluate whether the knowledge obtained
from the stories was useful to the system maintenance
team. The symptoms identified by the maintenance team
were useful to reach a common understanding of the
problem. Problem classification was used as a source of
information to new maintenance team members.
Goal 4: To evaluate whether users and analysts shared
relevant knowledge. Users and analysts interact through
the collaborative building of stories, which allowed the

341

exchange of experiences among them. Information kept
with few participants could be shared among all.

8. Conclusions

In this work we have presented an approach to assist
software engineers, working in system maintenance,
towards better understanding the organization and its
requirements. We provide this support by capturing tacit
knowledge about the actual system operation. Knowledge
is represented by a set of collective stories told by those
who have participated in or witnessed any event relevant
to the maintenance request. The Feedback tool provides a
shared space supporting the capture, storing and retrieval
of this type of knowledge.

Although the knowledge management techniques had
been applied before to the context of software
maintenance, we believe that the group storytelling
approach brought a new perspective to the tacit
knowledge problem.

The issues outlined previously in this work, could be
answered as follows:

How is it possible to provide continuous and high
interaction among users (specially when there are many)
and the maintenance team, at low costs and without
disturbing user work as well as maintenance team work?
The Feedback system, being distributed and
assynchronous, allows scalability in capturing user stories
, can be used whenever users feel able to, and serves as a
knowledge repository that can be systematicaly used by
the maintenance team.

How to facilitate the communication process between
users and the maintenance team where the latter prefers to
receive an identified error or problem to correct and the
former is not usually able to identify it, but has a rich
story about daily work using the system?

The Feedback tool supports the construction of
collective stories as well as the association of the events
represented therein with a set of symptoms of bad or
wrong system behavior. This association provided a good
starting point for maintenance work and tracking of
previous problems. Users reported their stories in a
natural way, without worrying about the need to classify
their contributions and the Feedback tool provided the
maintenance team with facilities to integrate different
views, to analyse the information and to identfy and
classify system use symptoms.

The technique and the tool were evaluated in three case
studies. The initial observations have confirmed that the
Feedback tool worked well and supported the group
storytelling approach. The knowledge acquisition process

was followed, and collaboration among participants
occurred naturally, stimulating interaction. The resulting
stories did capture part of the tacit knowledge and were
considered useful by the maintenance team.

The work has some limitations to be addressed as
future work. First, we need more experience with both the
technique and with the Feedback tool, which includes
performing empirical investigation. We also need a
comparison between the traditional maintenance process
and our proposal. A new set of functions will be added to
deal with awareness and context.

10. References

[1] AURUM, A.; JEFFERY, R.; WOHLIN, C.; HANDZIC, M.
Managing Software Engineering Knowledge, Springer, Germany,
2003.

[2] BASILI, V. R. ; CALDIERA, G. ; ROMBACH, H. D. Experience
factory. In: MARCINIAK, John J. (Ed). Encyclopedia of Software
Engineering. New York: John Wiley &Sons, 1994. v. 1, 469-476.

[3] BURGE, J.E.; BROWN, D.C. Rationale-Based Support for
Software Maintenance. In: Dutoit, A.H., McCall, R., Mistrík, I.,
Paech, B. (eds) Rationale Management in Software Engineering,
Springer, Germany, 2006, pp. 273-296.

[4] CARMINATTI, N.; BORGES, M. R. S.; GOMES, J. O.
Analyzing Approaches to Collective Knowledge Recall,
Computing and Informatics, 2006, Vol. 25 (6), 1001-1024.

[5] DIAS, M. G. B. ; ANQUETIL, N. ; OLIVEIRA, K., Organizing
the knowledge used in software maintenance. Journal of Universal
Computer Science, 2003, Vol. 9 (7), 641-658.

[6] LEAL, R. P.; BORGES, M. R. S.; SANTORO, F. M. Applying
Group Storytelling in Knowledge Management. Proceedings of the
International Workshop on Groupware, 2004, Costa Rica. Lecture
Notes in Computer Science, 2004. Vol. 3198, 34-41.

[7] RODRÍGUEZ, O. M.; MARTINEZ, A.I.; VIZCAINO, A.;
FAVELA, J.; PIATINI, M. Identifying knowledge management
needs in software maintenance groups: a qualitative approach. In:
Proceedings of the Mexican International Conference in Computer
Science, 5., 2004, Colima. 72-79.

[8] SOUSA, K. D. ; ANQUETIL, N. ; OLIVEIRA, K. M. Learning
software maintenance organizations. In: MELNIK, G. ; HOLZ, H.
Advances in Learning Software Organizations, LNCS Vol. 3096,
Berlin: Springer, 2004, 67-77.

[9] BROWN, J.S.; DENNING, S.; GROH, K.; PRUSAK, L.
Storytelling in Organizations: Why Storytelling Is Transforming
21st Century Organizations and Management. Butterworth-
Heinemann, 2004.

[10] TORRES, A. H. ANQUETIL, N. ; OLIVEIRA, K. M. Pro-active
dissemination of knowledge with Learning histories. In:
Proceedings of the International Workshop on Learning Software
Organizations, Rio de Janeiro, Brazil, 2006, 19-27.

[11] VALETT, J.D.; CONDON, S.E.; BRIAND, L.; KIM, Y.M.;
BASILI V.R. Building on Experience Factory for Maintenance,
Proceedings of the Software Engineering Workshop, Software
Engineering Laboratory, 1994.

[12] VALLE, C.; RAYBOURN, E.M., PRINZ, W., BORGES, M.R.S.
Group storytelling to support tacit knowledge externalization. In:
Proceedings of the International Conference on Human Computer
Interaction, Crete, 2003. Vol. 4, 1218-1222.

[13] ZOPE.ORG – www.zope.org

342

Evolution and Runtime Monitoring of Software Systems

Hui Liang Jin Song Dong
School of Computing

National University of Singapore
{lianghui, dongjs}@comp.nus.edu.sg

Jing Sun
Department of Computer Science

The University of Auckland
j.sun@cs.auckland.ac.nz

Abstract

Software evolution is a critical and inevitable stage in the
life cycle of all software systems. We propose an evolution
technique based on aspect-oriented programming. In our
technique, join points guide where the modification should
be made, and inter-type declaration and advice describe the
expected modification. To check whether the software sys-
tem resulting from the evolution based on AOP technique
behaves as expected by system requirements, we propose a
runtime monitoring technique for verifying aspect-oriented
programs dynamically. In our technique, the valuable in-
formation about desired dynamic behaviors of the system
is extracted through animating the formal specification of
the system. Meanwhile, the information about dynamic be-
haviors of concrete implementations of the target system is
obtained through program debugging. Base on the attained
information from both sides, the judgement on the consis-
tency of the concrete implementation with the formal speci-
fication is timely made while the system is running.

1 Introduction

Software evolution is widely recognized as one of the
most important issues in software development process. It
is an inevitable and critical stage in the life cycle of software
systems, particularly, those serving highly volatile business
domains such as banking and telecommunications [15].
Generally, software evolution means to change the func-
tionality of software according to the change of the spec-
ification/requirement or the operating environment of the
software system.

Aspect-oriented programming (AOP) [11] has been pro-
posed as a new methodology and a complement to tradi-
tional object-oriented programming (OOP) to improve the
separation of concerns in software systems. The essential
idea of aspect-oriented programming is that all concerns
should be treated as modular units regardless of the limi-
tations of the implementation languages. By placing these

crosscutting concerns separately in an aspect, the core con-
cerns are made more cohesive since their implementations
are relieved of the burden of managing concepts unrelated
to their purpose. With the effective modular decomposi-
tion, AOP facilitates the development of complex systems
and make it easier to maintain the systems that have been
developed.

Traditionally, AOP focuses on realizing the cross-cutting
behaviors and is used to improve the separation of concerns
in software systems . In this paper, we investigate how AOP
can contribute to the evolution of core classes in an object-
oriented programming language and propose an evolution
technique based on aspect-oriented programming and de-
sign technique. Although our examples use Java and As-
pectJ, the idea presented in this paper can be applied in other
programming contexts as well.

Furthermore, just as with the introduction of OOP, AOP
not only brings a unique set of benefits; but also introduces
a set of challenges, such as new problems with respect to
verifiability and testability. By far, the development of ver-
ification techniques for aspect-oriented systems are still lag
far behind what has been achieved for the static analysis of
procedural and object-oriented programs. Because the ex-
pressive power that aspects unleash heightens the potential
for insidious errors, finding cost-effective verification tech-
niques that address aspect-oriented software is especially
important in AOP.

Therefore, in this paper, we also propose a runtime moni-
toring technique, which is based on the animation of formal
specifications, for aspect-oriented software systems. With
the runtime monitoring technique, we will be capable of
checking whether the software system resulting from the
evolution based on AOP technique behaves as expected by
system requirements which are described in a formal nota-
tion.

The rest of the paper is organized as follows. Section
2 introduces background information about AspectJ, the Z
specification language, and specification animation. Sec-
tion 3 presents the aspect-oriented programming based soft-
ware evolution technique. Section 4 presents our runtime

343

monitoring technique and a prototype system. Section 5
demonstrates the application of our evolution approach and
runtime monitoring technique with a case study. Section 6
reviews some related work. Section 7 concludes the paper.

2 Background

2.1 AspectJ

AspectJ [1, 10, 13] is an implementation of aspect-
oriented programming methodology. As an aspect-oriented
extension to Java, it adds to Java some new concepts and
associated constructs such as join points, pointcuts, advice,
intertype declarations and aspects. Join point is a well-
defined point in the execution of a program, such as a call
to a method or an access to an attribute. Pointcut is a set
of points that optionally expose some of the values in the
execution of the join points. Advice is a method-like mech-
anism used to define certain code that executes before, af-
ter, or around a pointcut. Inter-type declaration is a static
crosscutting instruction that introduces changes to classes,
interfaces and aspects of the system. Aspects are modu-
lar units of crosscutting implementation, which encapsulate
behavior and state of those crosscutting concerns whose im-
plementations must span across the core concerns.

2.2 The Z specification language and specification
animation

The Z specification language has been a widely accepted
formal language for specifying the behaviours of software
and hardware systems. Based on set theory and first or-
der predicate logic, Z is a model oriented specification lan-
guage. It models a system by describing its states and the
ways in which the states can be changed. Actually, the Z
specification language includes two parts: the mathematical
language and the schema language [18]. The schema lan-
guage can be used to structure and compose descriptions,
making it possible to build big schemas from small ones.
As an example, the Z specification in Figure 1 describes a
simplified version of a bank account. It contains one state
variable - Balance, and two operations - Credit and Debit.

Specification animation exhibits the dynamic be-
haviourial properties of a formal specification. It not only
provides the specification designers with a way to test
whether their specifications behave as expected, but also
validates the behaviour of formal specifications with the
end users. In the last decade, several animation tools have
been developed for executing and interpreting formal spec-
ifications automatically [9, 8]. The animation tool used in
our monitoring system is Jaza [17]. It is an animator for
Z, which has a strong support for quantifiers and various

less-often-used Z constructors(such as μ, λ, θ terms). It pro-
vides more efficient and convenient evaluation of schemas
on ground data values; and it can handle not only unpre-
dictable performance characteristics but also nondetermin-
istic schemas.

Account
balance : N

Init
Account′

balance′ = 0

Credit
ΔAccount
amount? : N

balance′ =
balance + amount?

Debit
ΔAccount
withdrawamount? : N

withdrawamount? < balance
balance′ =
balance − withdrawamount?

Figure 1. The Z specification of a bank ac-
count

3 AOP-aided software evolution

AOP provides the basis for an effective software evolu-
tion technique because crosscutting concerns can be added
without making invasive modifications on original pro-
grams. In this section, we describe an AOP-aided software
evolution technique.

3.1 Determine the difference

First of all, the changes to the original system, which
is corresponding to the transformation of the users’ re-
quirement, should be identified. In order to get a precise,
concise and unambiguous specification of the system,
the requirement is described in a formal specification
language – Z notation. Given the new and old versions
of the formal specification of a system, there is a function
which figures out the difference between the old version
and the new version. Taking the two versions of the formal
specifications as inputs, the function will output the sets of
removed members (fields and methods), added members,
and modified members. The algorithm behind the function
is shown as follows.

Algorithm SpecDiff (OldSpec, NewSpec):
AddSV, RmvSV,MdfSV, AddOS, RmvOS, MdfOS

input:
OldSpec : old version of the formal specification of the system
NewSpec : new version of the formal specification of the system

output:
AddSV: the set of added state variables
RmvSV: the set of removed state variables

344

MdfSV: the set of modified state variables
AddOS: the set of added operation schemas
RmvOS: the set of removed operation schemas
MdfOS: the set of modified operation schemas

global:
ComnSV: the set of common state variables of the old and new

version of the specification
ComnOS: the set of common operation of the old and new

version of the specification

1. ComnSV←− OldSpec.StateVariables ∩ NewSpec.StateVarialbes
2. AddSV←− NewSpec.StateVariables \ ComnSV
3. RmvSV←− OldSpec.StateVariables \ ComnSV
7. for each Sv ∈ ComnSV do
8. opdiff←− Compare(NewSpec.Sv.Type, OldSpec.Sv.Type)
9. if opdiff then
10. MdfSV←−MdfSv ∪ {NewSpec.SV}
11. end if
12. end for
13. ComnOS←− OldSpec.OpSchemas ∩ NewSpec.OpSchemas
14. AddOS←− NewSpec.OperationSchemas \ ComnOS
15. RmvOS←− OldSpec.OperationSchemas \ ComnOS
16. for each Op ∈ ComnOp do
17. opdiff←− Compare(NewSpec.Op.Schema, OldSpec.Op.Schema)
18. if opdiff then
19. MdfOS←−MdfOS ∪ {NewSpec.Op.Schema}
20. end if
21. end for

3.2 Construct aspects

After the difference between the old and new versions
of the formal specification has been identified, we can
construct the aspects that would modify the original sys-
tem without invasive modifications on it. The approach to
construct the aspect is described in the algorithm as follows:

Algorithm CtrAspect (AddSV, MdfSV, AddOS, MdfOS): NewAspect
input:

AddSV: the set of added state variables
MdfSV: the set of modified state variables
AddOS: the set of added operation schemas
MdfOS: the set of modified operation schemas

output:
NewAspect: an aspect

1. declare NewAspect, an aspect crosscutting the original class
2. for each Sv ∈ AddSV ∪MdfSV do
3. inter-type declaration Dlr sv is added to NewAspect end for
4. for each Os ∈ AddOS do
5. inter-type declaration Dlr op is added to NewAspect end for
6. for each Os ∈MdfOS do
7. pointcut PC os: call(Os) is added to NewAspect
8. around-advice AD os is added to NewAspect
9. end for

With the information about the difference between the
original specification and the new specification as input, the
above algorithm will construct an aspect - NewAspect. For

each new state variable, an inter-type declaration Dlr sv,
which declares and initializes a new field in the original
class, will be added to NewAspect. The modification that
can be made to the state variable is the change of type.
We can take it as an introduction of a new state variable.
Therefore, for each modified state variable, an inter-type
declaration Dlr sv, which declare the corresponding class
variable with the new type and initializes it, is added to
NewAspect. For each new operation schema, an inter-type
declaration Dlr os, which declares a method corresponding
to the new operation schema, is introduced to NewAspect.
For each modified operation schema, PC os, a pointcut
which captures all the call of the corresponding methods is
constructed; meanwhile, AD os, an around-advice which
implements the functions described by the modified oper-
ation schema is constructed and bound with the pointcut
PC os.

After construct the aspect, we remove class variables
corresponding to state variables that are removed and mod-
ified in the new version of the specification from the orig-
inal implementation. We also remove the methods corre-
sponding to operation schemas that are removed in the new
version of the specification. Then, the aspect we have con-
structed will be woven with the original implementation. As
a result, a new version of the implementation can be gener-
ated and an AOP-aided evolution is achieved.

4 Runtime monitoring technique for AOP

After the evolution is accomplished, we need to check
whether the new version of the software behaves as required
by the new version of system requirements. In this section,
we present a runtime monitoring technique for dynamically
checking the consistency of the concrete implementation
with the formal specification. The monitoring technique has
been applied to object-oriented programs [14]. Now, we ex-
tend it so that it can work with aspect-oriented programs.

4.1 Overview of the runtime monitoring tech-
nique

Given concrete implementations and formal specifica-
tions, the workflow of the monitoring technique is shown
in Figure 2. With the specification animator, our run-
time monitoring technique gets the information about the
dynamic behavioural properties of the formal specification
through specification animating. And with the observer
module, the information about the dynamic behaviour of
the concrete implementation is gathered. Taking the execu-
tion sequences provided by the user as input, the controller
module controls the specification animator and the observer
module so that the concrete implementation is run in par-
allel with the animation of the formal specification. Mean-

345

Formal
Specification

Inconsistency
report

&
User’s decision

Execution
sequences

Monitor

Specification
Animator Analyzer

Module

Observer
Module

Concrete
Implementation Controller

Module

Figure 2. Runtime Monitoring.

while, based on the information obtained from the specifica-
tion animator and the observer module, the analyzer module
provides judgement on the consistency of the concrete im-
plementation with the formal specification. If any inconsis-
tency is found, it will be reported to the user. Given the in-
consistency report, the user needs to make a decision about
how to deal with such an inconsistency. Then, the monitor-
ing system will continue its work according to user’s deci-
sion.

4.2 A prototype runtime monitoring system

To demonstrate our runtime monitoring technique, we
have implemented a prototype runtime monitoring system.
The monitoring system works with a formal specification
written in Z formal language and its concrete implementa-
tion developed in AspectJ programming language. In our
monitoring system, the animator used for animating the
specification is Jaza [17], the observer module and con-
troller module are implemented based on the Java Debugger
API.

The monitoring system can work in two different modes,
i.e., the debugging mode and the running mode. In the de-
bugging mode, the user inputs all of the methods which are
expected to be executed into the monitoring system as a
whole sequence; and the system will automatically gener-
ate the sequence of corresponding running commands for
the animator. Then, the system starts the dynamic checking
of the behaviourial results of the implementation against the
behaviourial results of the specification animation. In the
debugging mode, our specification-based monitoring sys-
tem can serve as an effective dynamic test execution and
test result checking tool.

In the running mode, the user chooses the execution step
by indicating the methods to be executed and inputting pa-
rameters (if necessary). The commands for executing cor-
responding operations in the formal specification will be
automatically generated for the animator. The monitoring

public class Account {
private int _balance;
private int _accountNumber;
public Account(int accountNumber)

{_accountNumber = accountNumber;}
public Account() { _balance = 0;}
public void credit(int amount)

{ setBalance(getBalance() + amount);}
public void debit(int withdrawamount)
{
int _balance = getBalance();
if (_balance < withdrawamount) {}

else {setBalance(_balance - withdrawamount);}
}
public int getBalance() { return _balance;}
public void setBalance(int newbalance)
{_balance = newbalance;}

}

Figure 3. Class Account

system will then check the running results of the implemen-
tation execution with the corresponding specification ani-
mation result to identify whether there is any inconsistency.
In the running mode, the user indicates what will be exe-
cuted next in a step-by-step manner. Thus, the system can
achieve a runtime monitoring of concrete implementations
against the formal specifications.

5 Case study

In this section, we demonstrate the application of our
evolution and runtime monitoring techniques with the bank-
ing system presented in Section 2.2 as an example. As
described by the Z specification in Figure 1, money can
be withdrawn from the account only if the amount of the
money to be withdrawn is less than the current balance. The
Java code in Figure 3 implements such a class.

In Figure 4, the Z specification describes an account
which has evolved from what is described in Figure 1.
They are similar except that, in the new version, and a new
state variable minBalance is introduced and that there is a
minimum balance rule demanding that the amount of re-
mained money in the MBAccount should not be less than
minBalance at any time.

While the difference between the original and new ver-
sions of the specification has been identified, an aspect
which cuts across the Account class and implement the min-
imum balance rule is constructed. As shown in Figure 5,
the MinimumBalanceRuleAspect aspect introduces a data
member minimumBalance of type integer and a method
for computing the available balance into the Account class.
Meanwhile, through two pieces of advice, the MinimumBal-
anceRuleAspect aspect modifies the execution behavior of
the Account module: 1) whenever a new object of Account
class is created, the data member minimumBalance will be
initialized as 25; 2) before the execution of method debit,
check whether the amount of remained money will be less

346

MBAccount
balance : N

minBalance : N

Init
MBAccount′

balance′ = 0
minBalance′ = 25

Credit
ΔMBAccount
amount? : N

balance′ =
balance + amount?

Debit
ΔMBAccount
withdrawamount? : N

withdrawamount? <
balance − minBalance

balance′ =
balance − withdrawamount?

Figure 4. The Z specification of a bank ac-
count with minimum balance rule

public aspect MinimumBalanceRuleAspect {
private int Account._minimumBalance;
public int Account.getAvailableBalance() {

return getBalance() - _minimumBalance;
}

after(Account account):
execution(Account.new(..)) && this(account) {

account._minimumBalance = 25;
}

before(Account account, int amount)
throws InsufficientBalanceException :
execution(* Account.debit(*))

&& this(account) && args(amount) {
if (account.getAvailableBalance() < amount) {

throw new InsufficientBalanceException(
"Insufficient available balance");

}
}

}

Figure 5. Aspect for minimum balance rule

than the minimumBalance after the money is withdrawn as
demanded; if yes, then an exception will be thrown. After
weaving the MinimumBalanceRuleAspect aspect with the
original class Account, the evolution required by the new
version of specification is achieved.

Now, we try to verify the result of evolution using our
runtime monitoring technique. After load the monitoring
system with the new version of specification and imple-
mentation and finish configuration, we input the sequence
of methods: credit(50); debit(40), and enable the monitor-
ing system to work. When the method debit(40) is exe-
cuted, the monitoring system reports an inconsistency as
shown in Figure 6, informing the user that the operation
Debit is not implemented correctly, and provides the user
with two choices for what to do next. Checking the AspectJ
code in Figure 5, we find that the last advice in the Min-
imumBalanceRuleAspect aspect only throws an exception

Figure 6. Runtime monitoring system in work

void around(Account account, int amount):
execution(* Account.debit(*))

&& this(account) && args(amount) {
if (account.getAvailableBalance() < amount) {}

else{ proceed(account, amount);}

Figure 7. Correct advice

but does not prevent the operation debit from being invoked.
It should be changed to the advice as shown in Figure 7.
With the around advice, aspect modifies the execution be-
havior of the Account module in a way that the withdrawal
is not allowed if the amount of remained money will be less
than the minimumBalance after the money is withdrawn as
demanded. This is just exactly what is described by the Z
specification in Figure 4. With the modified version of the
aspect loaded to the monitoring system, no inconsistency is
reported. It reassures the user that, after woven, the Min-
imumBalanceRuleAspect aspect and the Account class im-
plements the specification as expected.

6 Related Work

There are some other researches on assisting software
evolution with AOP. Greenwood et.al [6] proposed a frame-
work which allows a system to be developed in a way that
it is able to evolve using a combination of framed aspects
and dynamic AOP. Previtali and Gross [16] presented an
approach to support software evolution at run-time based
on the ideas of AOP. Their approach aims to manage the
update of applications that require continuous uptime such
as file and authentication servers. Techniques and tools have
been proposed for runtime monitoring with the purpose of
detecting, diagnosing, and recovering from faults for tradi-
tional softwares. Java PathExplorer (JPaX) [7] is a runtime

347

monitoring technique developed for sequential and concur-
rent Java programs. Monitoring and Checking (MaC) [12]
provides a framework for runtime monitoring of real-time
systems written in Java. Besides, Monitoring-oriented pro-
gramming (MOP) [2, 4] is an approach that allows formal
property specifications to be added on top of a target pro-
gramming language and to generate monitoring code from
the formal specification. A Java-MOP [3, 5] prototype has
been implemented as a client-server application. In our ap-
proach, rather than generate monitoring code from the for-
mal specification, the formal specifications of the system
are animated to exhibit the expected behaviorial properties
of the specified system. The information obtained from the
specification animation will serve as the base for the judge-
ment on the correctness of the concrete implementation.

7 Conclusions and future work

In this paper, we presented an AOP-aided software evo-
lution approach. First, the old and new versions of the
formal specification of a software system are compared to
identify the differences. Second, aspects are constructed to
achieve the expected modifications. After weaving the con-
structed aspects with original classes, the required evolu-
tion will be accomplished. Moreover, we present a runtime
monitoring technique based on the animation of the for-
mal specification of software systems for AspectJ programs.
Our runtime monitoring technique analyzes the behavior of
the target system and checks the correctness of each single
execution based on the information from the animation of
formal specification and the program debugging of the im-
plementation. It can be used not only to dynamically verify
the behaviors observed in the target system, but also to ex-
plicitly recognize undesirable behaviors in the target system
with respect to given formal requirement specifications.

For now, we only consider the evolution of core classes
in an object-oriented programming language. In the future,
we will try to extend our technique so that it will be capable
of handling the evolution of the cross-cutting aspects1.

References

[1] Aspectj. http://www.eclipse.org/aspectj.
[2] F. Chen, M. D’Amorim, and G. Roşu. A formal monitoring-

based framework for software development and analysis. In
Proceedings of the 6th International Conference on For-
mal Engineering Methods (ICFEM’04), pages 357–373.
Springer-Verlag, 2004.

[3] F. Chen, M. D’Amorim, and G. Roşu. Checking and correct-
ing behaviors of java programs at runtime with java-mop.
In Proceedings of Fifth Workshop on Runtime Verification,
(RV’05), pages 3–20, 2005.

1More detailed information about the techniques presented in this paper
can be found at http://www.comp.nus.edu.sg/∼lianghui/thesis.pdf.

[4] F. Chen and G. Roşu. Towards monitoring-oriented pro-
gramming: A paradigm combining specification and imple-
mentation. In Proceedings of Third Workshop on Runtime
Verification (RV’03), pages 108–127, 2003.

[5] F. Chen and G. Roşu. Java-mop: A monitoring oriented
programming environment for java. In Proceedings of the
Eleventh International Conference on Tools and Algorithms
for the construction and analysis of systems (TACAS’05),
pages 546–550. Springer-Verlag, 2005.

[6] P. Greenwood, L. Blair, N. Loughran, and A. Rashid. Dy-
namic framed aspects for dynamic software evolution.

[7] K. Havelund and G. Roşu. An overview of the runtime ver-
ification tool Java PathExplorer. Formal Methods in System
Design, 24(2):189–215, 2004.

[8] D. Hazel, P. Strooper, and O. Traynor. Requirements en-
gineering and verification using specification animation. In
ASE ’98: Proceedings of the Thirteenth IEEE Conference
on Automated Software Engineering, page 302. IEEE Com-
puter Society, 1998.

[9] M. A. Hewitt, C. O’Halloran, and C. T. Sennett. Experiences
with PiZA, an Animator for Z. In ZUM ’97: Proceedings of
the 10th International Conference of Z Users on The Z For-
mal Specification Notation, pages 37–51. Springer-Verlag,
1997.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In ECOOP
’01: Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 327–353. Springer-
Verlag, 2001.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings European Conference on
Object-Oriented Programming, volume 1241, pages 220–
242, 1997.

[12] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokol-
sky. Java-MaC: A run-time assurance approach for Java
programs. Formal Methods in System Design, (2):129–155,
2004.

[13] R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT,
USA, 2003.

[14] H. Liang, J. S. Dong, J. Sun, R. Duke, and R. E. Sev-
iora. Formal specification-based online monitoring. In Pro-
ceedings of the 11th IEEE International Conference on En-
gineering of Complex Computer Systems, pages 152–160,
2006.

[15] T. Mens, J. Buckley, M. Zenger, and A. Rashid. Towards a
taxonomy of software evolution. Journal of Software Main-
tenance and Evolution: Research and Practice (Special Is-
sue on USE), 17(5), 2005.

[16] S. C. Previtali and T. R. Gross. Dynamic updating of soft-
ware systems based on aspects. In ICSM ’06: Proceedings of
the 22nd IEEE International Conference on Software Main-
tenance, pages 83–92, 2006.

[17] M. Utting. Data structures for Z testing tools. In Proceedings
of FM-TOOLS, 2000.

[18] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice-Hall International, 1996.

348

On Modern Debugging For Rule-Based Systems

Valentin Zacharias
FZI Karlsruhe

Haid-und-Neu Strasse 10-14
76131 Karlsruhe, Germany

zacharias@fzi.de

Andreas Abecker
FZI Karlsruhe

Haid-und-Neu Strasse 10-14
76131 Karlsruhe, Germany

abecker@fzi.de

Abstract

With the growing interest in rule languages in the Seman-
tic Web and the Business Rule community it is time to look
again at the issue of debugging rule bases. New challenges
have arisen since the time most concepts for today’s de-
buggers where created: end user programming has grown
in importance, graphical editors have become more com-
mon and programs are increasingly interconnected. Today
there is no debugger for rule-based systems that takes into
account the declarative nature of rules and that addresses
these challenges.
This paper proposes Explorative Debugging as a

paradigm for building debuggers that truly take into ac-
count the declarative nature of rules. The Inference Ex-
plorer is presented as an implementation of the explorative
debugging ideas.

1. Keywords

Rule-based systems, debugging, F-logic, explorative de-

bugging

2. Introduction

Locating bugs is an inevitable part of any software devel-

opment activity. Technical support for the finding of bugs

can speed up the debugging process tremendously - good

debugging support is an important ingredient for the effi-

cient creation of software. These statements are equally

true for all programming paradigms, debugging may look

different and may be needed less often for rule-based sys-

tems, but it is just as indispensable as it is for imperative

programming.

Recently, with the large scale practical use of business

rule systems [20] and the interest of the Semantic Web com-

munity in rule languages [12] there is an increasing need

for tools supporting the development of rule-based systems.

This alone would warrant a fresh look at the debugging of

rule-based systems. Moreover, the computer science field

has changed considerably since the days when most of the

concepts for debuggers for rule-based systems where cre-

ated; in particular the development of rules for the Semantic

Web is posing new challenges.

This paper starts with a look at these new challenges for

software development and the requirements for debuggers

that follow from that. It then gives a short overview of past

and current debuggers for rule-based systems and discusses

whether they can satisfy these requirements. It goes on to

describe Explorative Debugging as a novel concept for the

debugging of rule bases and shortly sketches the Inference

Explorer - an explorative debugger for F-logic.

3. Challenges And Requirements

Tools for the development of rule-based programs have

seen relatively little development in the past years; the most

sophisticated debugging systems are still often those that

are more than 10 years old. At the same time, however, the

computer science landscape has changed, changing the en-

vironment a debugger has to work in. This section describes

the challenges for a debugger in a modern environment and

the requirements that follow from that.

3.1. End User Programmers

The amount of software in society increases continually,

and more and more people are involved in its creation. The

creation of software artifacts used to be the very specialized

profession of a few thousand experts worldwide, but has

now become a set of skills possessed to some degree by tens

of millions of people. For the US it is estimated that there

are at least four times as many end user programmers as

professional programmers [19]; with estimates for the num-

ber of end user programmers ranging from 11 million [19]

349

up to 55 million [4]. At the same time, however, this devel-

opment means that the average programmer is not trained as

well as the knowledge engineers that created the first expert

systems. An end user programmer is usually trained for a

non-programming area and just needs a program, script or

spreadsheet as a tool for some task. End user programmers

usually can’t justify making an investment in programming

training comparable to that of professional programmers.

End user programmers are particularly important for the

Semantic Web[3]. Because for the Semantic Web to suc-

ceed a large number of current web developers need to start

building Semantic Web applications and it is known that

web developers have a particularly high percentage of end

user programmers [16, 10]

End user programming is posing many challenges to

software engineering, software development tools (see [2]

for an overview) and debugging tools (e.g. [17, 18])). Of

particular importance are simplicity and interactivity. For a

debugger to be simple it has to be usable without (much)

training. Simplicity also means that the debugger for a
declarative system needs to work on the declarative seman-

tics and not on the procedural nature of the inference engine.

A debugger that works on the procedural nature of the infer-

ence engine forces the user to understand its inner workings

as well and thereby becomes difficult to use.

Interactivity means that the debugger needs to be inte-
grated with the rest of the development system to support

the trial and error way of knowledge formulation of end user

programmers. End users often incrementally build their

software system by experimenting with it; during this pro-

cess, they expect debugging support to be always available

[17].

3.2. High Level Editors

High level editors are tools that allow creating programs

at an abstraction level above the source code. Usually these

editors create the source code as output. The most common

forms of high level editors are visual editors, but they can

also be based on forms or (constraint) natural language.

Today computer programs are still created mainly by

writing source code, however, the role of high level, graph-

ical interfaces is increasing. For instance UML support has

found its way into many IDEs and is used particularly in the

early stages of a software development process. In Seman-

tic Web tools and in business rule systems, graphical editors

are even more common than in today’s IDEs for object ori-

ented development. A 2004 survey found that 73 of the in-

vestigated 94 ontology tools included or planned graphical

tool support [7]. All of the currently availabe commercially

Semantic Web Editors (TopBraid Composer [22], Semantic

Works [1] and OntoStudio [15]) include full fledged graph-

ical editors. Protégé 2000 [13], probably the most well

known open source editor for Semantic Web data, utilizes

form like, high level editors instead of source editors. The

state of the art business rule system Common Knowledge

3.0 [14] offers seven different editors to formulate business

knowledge, including tables, trees and workflow diagrams.

Developers and researchers in the Semantic Web and

Business Rule communities hope that this non-source code,

higher level editors will make it easier to create programs in

their respective formalism. It is assumed that higher level

editors free the user from worrying about syntactic goals,

allow her to pursue the necessary steps in a more natural or-

der and reduce the need for awkward combinations of prim-

itives [9].

Graphical and non-source code editors are a challenge

for the debugging support. Such editors make it more diffi-

cult to relate the program execution to the entities the user

works with and to display it in a way that is understandable

to the user.

In a source code oriented programming environment the

source files and line numbers form the relatively simple ba-

sis for the instrumentation of the program by the debugger

and for communication between debugger and the user. On

the one side the debugger can add information about the

files and line numbers to the compiled program and use this

information to communicate with the runtime environment.

At the same time the debugger can then directly utilize this

information to communicate the current state of program

execution to the user.

In an environment with graphical and high level editors

the running program is usually created in a two step pro-

cess: first a source code representation is created from the

visual representation in the editor and then this source code

is compiled. Both the source code and the nature of the

translation from visual representation to source code are

usually hidden from the user. In such an environment the

debugger must either support a more complex program in-

strumentation based on the visual elements of potentially

many different editors or translate line based data on the

execution of the program into a user understandable repre-

sentation. At the same time the debugger must ensure that

these translations preserve enough information to enable the

user to debug all or at least the most common problems.

3.3. Interfaces to other systems

Almost no large computer program today is built from

ground up without interfaces to other systems. Systems

use databases, connect to web services over the internet or

at least access fast subroutines written in other languages.

Most of the other systems that a rule base will use will not

themselves be rule bases. Any large rule-based application

will involve non rule-based elements.

Consider for example the OntoBroker inference engine

350

[6]. It supports so called builtins as mechanisms to access
databases, string processing or fast math processing from

inside a rule language. These builtins can be used like nor-

mal predicates in rules, but are evaluated by calling a Java

program. The variable bindings created by these builtins

are determined by an object oriented program outside the

scope of the inference engine. Another example is again

the business rule system Common Knowledge [14] that al-

lows a relatively free mixing of procedural and rule-based

program parts.

Modern debuggers for rule-based systems must take into

consideration these interfaces to other systems, in particu-

lar since it can be expected that the transitions between the

paradigms will be particularly problematic. The user must

be able to investigate these transitions, learn about the non-

rule-based elements of her program and ideally be able to

do at least black box tests on that parts.

4. Current Debugging Support For rule-based
Systems

All deployed debugging tools for rule-based programs

known to the authors are based on the procedural or imper-

ative paradigm. This debugging paradigm is well known

from the world of procedural and object oriented program-

ming and characterized by the concepts of breakpoints, step,

step-into and step-over1. A procedural debugger offers a

way to indicate a position in the program where the pro-

gram execution is to stop (a breakpoint or spypoint) and has

to wait for commands from the user. When the program

execution stops at such a point, the user can look at the cur-

rent state of the program and give commands to execute a

number of the successive instructions. In rule-based sys-

tems the breakpoint is usually attached to a rule, a predicate

or a part of a rule. The state of the program execution is

characterized by current variable bindings, which parts of

the proof succeeded already and which failed. Depending

on the exact debugger not all of that state may be visible.

More sophisticated debuggers for declarative programs use

an explicit model of procedural workings of the inference

engine (usually the Byrd box model[5]) as basis for their

explanation of the programs working.

Procedural Debuggers for rule-based systems are avail-

able as purely textual tracers[24], with a simple graphical

user interface[24] or integrated into graphical knowledge

acquisition tools[14]. The most sophisticated of these sys-

tems was probably the Transparent Prolog Machine[8] that

offered carefully crafted graphical representations of the in-

ference process at different abstraction levels. All but the

debugger for the business rule system [14] fail to satisfy all

1In rule-based systems the analog concepts are also called spypoint,

creep, skip, abort and retry

of the requirements stated in the previous section. They are

not simple to use; force the user to learn about the execution

model of the inference engine. These systems also assume

a monolithic, unconnected knowledge base and are not in-

tegrated with graphical or high level editors. The debugger

of the business rule system common knowledge studio [14]

is an exception, because it is integrated with graphical edi-

tors. It is, however, very limited it its support for debugging

of more complex problems where the problem lies in the

interaction between rules or parts of the program.

Many other debugging paradigms have been proposed

in research, the most notable ones being algorithmic

debugging[21]2, methods to automatically find and possi-

bly correct problems in the knowledge base and debugging

through a textual dialog between user and system[23]. So

far, however, none of these systems has proven to be robost

and effective enough for large scale pratical use. No sys-

tems implementing these paradigms is easily available to

today’s developer of rule-based systems.

5. Explorative Debugger

We propose explorative debugging as a better debugging

paradigm for rule-based systems. Explorative debugging

works on the declarative semantics of the program and lets

the user navigate and explore the inference process. It en-

ables the user to use all her knowledge to quickly find the

problem and to learn about the program at the same time.

An Explorative debugger as we understand it is not only a

tool to identify the cause of an identified problem but also a

tool to try out a program and learn about its working.

Explorative Debugging puts the focus on rules (or other

high level entities the user manipulates3). It enables the user

to check which inferences a rule enables, how it interacts

with other parts of the rule base and what role the different

rule parts play. Unlike in procedural debuggers the debug-

ging process is not determined by the procedural nature of

the inference engine but by the user who can use the logi-

cal/semantic relations between the rules to navigate. A cor-

nerstone of explorative debugging is the explicit showing

of logical relations between rules and how the interaction

between rules creates the results. These connections are of

particular importance because they are usually not visible

anywhere else in tools for the development of rule bases.

An explorative debugger is a tool that:

• Shows the inferences a rule enables.
2Similar works has also been published under the terms declarative de-

bugging, declarative diagnosis, guided debugging, rational debugging and

deductive debugging
3For the sake of clarity we will speak only of rules, rule parts and rule

bases in the following sections; however, the concepts of explorative de-

bugging could easily be applied to other kinds of declarative knowledge

351

• Visualizes the logical/semantic connections between
rules and how rules work together to arrive at a result.

It supports the navigation along these connections.

• It allows to further explore the inference a rule enables
by digging down into the rule parts.

• Is integrated into the development environment and
can be started quickly to try out a rule as it is formu-

lated.

6. Inference Explorer

We created the prototype Inference Explorer - an F-

logic4 [11] debugger integrated into the ontology develop-

ment suite OntoStudio [15] - as a first attempt to realize the

explorative debugging paradigm.

Rules form the center element for the Inference Explorer.

The debugger is always focused on one rule. It displays this

rule, whether this rule’s body is satisfiable given the current

knowledge base and what it can conclude. The debugger is

also able to display justifications for the conclusions a rule

draws. The debugger supports the user in understanding the

current rule, why the current rules allows to infer something

or why not.

A screenshot of the debugger is shown in Figure 1. The

interface consist of three main parts: the rule details in the

top, the result view bottom left and the details view in the

bottom right. Both the result view and the details view

change depending on what the user has selected.

The rule details view shows a textual description of the

currently selected rule (in stylized English). The rule dis-

played is a ’user level rule’ that may in fact be represented

by more than one rule in the knowledge base. The user can

select parts of the rules to get more information about these

and the rule parts are sometimes shown in different colors

to highlight unsatisfiable parts or builtins (predicates whose

results are computed by a java program outside the infer-

ence engine).

The result view to the bottom left of the debugger shows

the variable bindings for which the current rule infers some-

thing, the values that satisfy the rule body. When the user

selects a rule part in the rule details view the result view

changes to display the variable bindings that satisfy this rule

part.

The details view to the bottom left changes greatly in

response to the currently selected element in the debugger.

• When nothing or a rule part is selected, the details view
shows the other rules in the knowledge base the current

4F-logic or Frame Logic was developed as an object oriented approach

to first order logic. It defines syntax and semantic of an object oriented de-

ductive database. Main features of F-logic include object identity, complex

objects, inheritance, polymorphic types, query methods and encapsulation.

rule (part) may depend on; i.e. rules for which a head

atom unifies with one of the (selected) body atoms of

the current rule. The user can click on any rule listed

there to open it in the debugger.

• When a builtin rule part is selected, the rule details
view shows a documentation for it.

• When a result line is selected in the result view, the de-
tails views shows the prooftree/derivation tree for this

result. The derivation tree is a translated/user level ver-

sion of the derivation tree returned by the inference en-

gine. This configuration is shown in the screenshot

in Figure 1. The user can click on any rule in the

prooftree to open the debugger for it.

The Inference Explorer can be used to debug queries as

well as rules - after all a query is just a rule without a head.

The Inference Explorer is integrated with a graphical rule

editor. The inference explorer can be opened directly from

the graphical editor and the user can easily jump from the

debugger to the editor. Furthermore when a user clicks on a

rule part in the debugger this part is also highlighted in the

graphical editor.

The Debugger also has some support for rule bases that

call programs outside of the inference engine. These extra-

logical parts are represented in F-logic as builtins - special

predicates whose results are not inferred by the inference

engine but computed by other programs. Builtins are used

to realize for example database access or a query to a web

service. The inference explorer detects these builtins in the

rules and displays the documentation for each. For the fu-

ture it is planned to also include a simple way to try out

these builtins.

The Inference Explorer shows the connection and inter-

actions between rules in two different ways: as prooftree

and as depends on links. The prooftrees for results show

how the entities in the knowledge base interacted to com-

pute an actual result. Depends-on links show the static con-

nections between rules that make it likely that two rules

could interact - if the knowledge base contained the right

facts. The static links are particular important in a case

when a query does not return a result because a rule it de-

pends on isn’t satisfiable. In such case the user can use the

static depends-on links to quickly navigate to the faulty rule.

The showing of the connections between rules in these two

ways is arguably the most important part of the debugger

because the interactions between the rules and the actual

structure of the whole program is shown nowhere else.

7. Conclusion

The growing importance of end user programming, the

increasing use of graphical/high level editors and intercon-

352

Figure 1. Screenshot of the Inference Explorer

nected nature of todays programs are challenges most cur-

rent debuggers for rule-based systems fail to address. One

of the main reasons for this failure is the use of the proce-

dural debugging paradigm that makes these debuggers hard

to use.

Explorative debugging is a new paradigm for building

debugging tools for rule-based programs. It stipulates that

debuggers should work on the declarative semantics of a

rule base instead of the procedural nature of the inference

engine. Debuggers should show which inferences the cur-

rent rule enables and how it relates to other rules in the

knowledge base. An explorative debugger allows the user to

further explore the inferences enabled by a rule by focussing

on rule parts. It needs to be integrated with a development

environment to allow the user to quickly try out a rule as it

is created.

Explorative debugging is applicable not only to F-logic

but to most declarative languages. Examples are horn logic

programs, normal logic programs, queries and view defi-

nitions in relational databases and even description logics

such as OWL. The exclusive focus on the declarative prop-

erties of rules, however, makes Explorative Debugging less

useful for debugging Prolog programs - the Prolog cut state-

ment influences the imperative evaluation of the program

and hence makes it hard to debug a program only on the

declarative level.

The Inference Explorer presented in this paper imple-

ments the explorative debugging paradigm, is also inte-

grated with a graphical editor and offers some support for

the debugging of non-rule-based program parts. It adresses

the challenges faced by modern debuggers and is by far the

most sophisticated debugger available for F-logic. In our

day-to-day work it has already proven to speed up the cre-

ation of rule bases considerably.
For the future we plan to extend the Inference Explorer

to support other rule languages. We also plan to investigate

the applicability of the Explorative Debugging paradigm for

other declarative languages, in particular OWL, the web on-

tology language.

References

[1] Altova. Semanticworks. http://www.altova.com/,

2007. (accessed 2007-02-27).

[2] Myers B., Ko A., and Burnett M. Invited research

overview: End-user programming. In ACM Con-
ference on Human-Computer Interaction (CHI’06),
2006.

[3] T Berners-Lee, J. Hendler, and O. Lassila. The seman-

tic web. Scientific American, 20:34–43, 2001.

[4] Barry Boehm. Software Cost Estimation with CO-
COMO II. Prentice Hall PTR, 2000.

[5] L. Byrd. Understanding the control flow of prolog pro-

grams. In Proceedings of the Workshop on Logic Pro-
gramming, 1980.

[6] S. Decker, M. Erdmann, D. Fensel, and R. Studer.

Ontobroker: Ontology-based access to distributed and

semi-structured unformation. In Database Semantics:
Semantic Issues in Multimedia Systems, pages 351–
369, 1999.

[7] Michael Denny. Ontology tools survey, revisited.

XML.com, 2004.

[8] M. Eisenstadt, M. Brayshaw, and J. Paine. The Trans-
parent Prolog Machine: visualizing logic programs.
Intellect Books, 1991.

353

[9] R.R.G. Green and M. Petre. Usability analysis of vi-

sual programming environments: a ’cognitive dimen-

sions’ framework. Journal of Visual Languages and
Computing, 1996.

[10] Warren Harrison. The dangers of end-user program-

ming. IEEE Software, July/August:5–7, 2004.

[11] M. Kifer, G. Lausen, and J. Wu. Logical foundations

of object-oriented and frame-based languages. Jour-
nal of the ACM, 42(4):741–843, 1995.

[12] Michael Kifer, Jos de Bruijn, Harold Boley, and Dieter

Fensel. A realistic architecture for the semantic web.

In RuleML, pages 17–29, 2005.

[13] N.F. Noy, M. Sintek, S. Decker, M. Crubezy, R.W.

Fergerson, and M.A. Musen. Creating semantic web

contents with Protégé-2000. IEEE Intelligent Systems,
2(16):60–71, 2001.

[14] ObjectConnections. Common knowledge.

http://www.objectconnections.com/, 2007. (ac-

cessed 2007-02-13).

[15] Ontoprise. Ontostudio. http://www.ontoprise.de/,

2007. (accessed 2007-02-27).

[16] M. B. Rosson, J. Balling, and H. Nash. Everyday pro-

gramming: Challenges and opportunities for informal

web development. In Proceedings of the 2004 IEEE
Symposium on Visual Languages and Human Centric
Computing, 2004.

[17] J. Ruthruff and M. Burnett. Six challenges in sup-

porting end-user debugging. In 1st Workshop on End-

User Software Engineering (WEUSE 2005) at ICSE
05, 2005.

[18] J. Ruthruff, A. Phalgune, L. Beckwith, and M. Bur-

nett. Rewarding good behavior: End-user debug-

ging and rewards. In VL/HCC’04: IEEE Symposium
on Visual Languages and Human-Centric Computing,
2004.

[19] C. Scaffidi, M. Shaw, and B. Myers. Estimating the

numbers of end users and end user programmers. In

L/HCC’05: Proceedings of the 2005 IEEE Symposium
on Visual Languages and Human-Centric Computing,
pages 207–214, 2005.

[20] Kristen Seer. The 2005 business rules awareness sur-

vey. Business Rule Journal, 2005.

[21] E. Y. Shapiro. Algorithmic program debugging. PhD
thesis, Yale University, 1982.

[22] TopQuadrant. Topbraid composer.

http://www.topbraidcomposer.com/, 2007. (accessed

2007-02-27).

[23] William van Melle, Edward H. Shortliffe, and

Bruce G. Buchanan. Emycin: A knowledge engineer’s

tool for constructing rule-based expert systems. In

Rule-based expert systems. Addison-Wesley, 1984.

[24] J. Wielemaker. An overview of the swi-prolog pro-

gramming environment. Technical report, University

of Amsterdam, The Netherlands, 2003.

354

Truth Eliciting Mechanisms for Trouble Ticket Allocation in Software
Maintenance Services

Karthik Subbian
IBM R© India Software Laboratory
Embassy Golf Links Business Park

Bangalore 560 071
ksubbian@in.ibm.com

Y. Narahari
Indian Institute of Science

Computer Science and Automation
Bangalore 560012

hari@csa.iisc.ernet.in

Abstract

Ticket allocation or problem allocation is a key problem
in the software maintenance process. Tickets are usually
allocated by the manager or the technical lead. In allo-
cating a ticket, the manager or technical lead is normally
guided by the complexity assessment of the ticket as pro-
vided by the maintenance engineers, who are entrusted with
the responsibility of fixing the problem. The rationality of
the maintenance engineers could induce them to report the
complexity in an untruthful way so as to increase their pay-
offs. This leads to non-optimal ticket allocation. We address
the problem of eliciting ticket complexities in a truthful way
from the maintenance engineers, using a mechanism design
approach. In particular, the problem is modeled as that of
designing an incentive compatible mechanism and we offer
two possible solutions. The first one, TA-DSIC, is a dom-
inant strategy incentive compatible solution which ensures
that truth revelation is optimal for each maintenance engi-
neer irrespective of what the other engineers report. The
second solution, TA-BIC, is a Bayesian incentive compati-
ble mechanism which only guarantees that truth revelation
is optimal for a maintenance engineer whenever all other
engineers are also truthful. We show that the proposed
mechanisms outperform conventional allocation protocols
in the context of a representative software maintenance or-
ganization.

1. Introduction

A trouble ticket (or synonymously a ticket) is a software
problem as reported by a customer to be analyzed and fixed
by a team of maintenance engineers. The process of al-
locating the ticket to one of the maintenance engineers is
called as a Ticket Allocation Problem. The challenge in this
problem is to identify the right person to solve the problem

Figure 1. Typical Software Maintenance Work
flow

guaranteeing a specified service level. A typical software
maintenance process to assign and resolve trouble tickets
is shown in Figure 1. A few analytical approaches have
been explored to improve the efficiency of this process. For
example, the work by Kulkarni et al. [6] models the main-
tenance process using queueing theory and determines the
optimal number of engineers to be allocated for the task of
maintenance during a specific time period. The work by
Antoniol et al. [5] models the maintenance organization as
a queueing network to assess staffing, evaluate service level,
and finds the probability of meeting the maintenance dead-
lines. Many authors also use statistical techniques [1] and
empirical techniques [4] to analyze and improve the soft-
ware maintenance process.

The thrust of the above relevant papers has been primar-
ily on analyzing the maintenance data for improving the
maintenance process. However, all the above papers im-
plicitly make a crucial assumption, namely, that the data is
truthfully reported by all the agents and the agents are loyal
to the organization. However, the rationality of the main-

355

tenance engineers may induce them to report the complex-
ity of a ticket in an untruthful way so as to increase their
payoffs. This leads to non-optimal ticket allocation. This
paper addresses the problem of truthful elicitation of ticket
complexities using a game theoretic and mechanism design
approach.

The paper offers the following contributions:

• We model the ticket allocation process in software
maintenance organizations as a strategic form game
involving rational and intelligent players (namely the
lead and maintenance engineers). The problem of
ticket allocation is modeled as that of designing an in-
centive compatible mechanism, that is a mechanism
which makes truth revelation an optimal strategy for
the players. This is the subject of Section 2.

• In Section 3, we propose two possible solutions to the
ticket allocation (TA) problem with rational players.
The first one is a dominant strategy incentive compat-
ible (DSIC) solution based on the classical Vickrey-
Clarke-Groves (VCG) mechanisms [7][2]. We call this
ticket allocation mechanism as TA-DSIC. This ensures
that truth revelation is optimal for each maintenance
engineer irrespective of what the other engineers re-
port. The second solution is a Bayesian incentive com-
patible mechanism which only guarantees that truth
revelation is optimal for a maintenance engineer when-
ever all other engineers are also truthful. We call this
mechanism TA-BIC. This second solution is based on
the dAGVA mechanism [7][2].

• We discuss a stylized case study of a software mainte-
nance process and carry out a variety of experimen-
tation using the proposed mechanisms and also us-
ing conventional protocols for ticket allocation. We
demonstrate the efficacy of the proposed mechanisms
through the experiments. We do this in Section 4.

2. The Model

In this section, we describe the ticket allocation problem
and its characteristics, and model it as a mechanism design
problem.

2.1. The Problem

Every software maintenance organization as described in
Figure 1 has a set of maintenance engineers with a set of
queues which each of these engineers own. Whenever a
problem arrives at the product queue, the product lead as-
signs this ticket to one of the maintenance engineers. This
ticket assignment is completely based on the experience of
the product lead. The problem of allocating the ticket that

has arrived into the product queue to one of the engineers is
called Ticket Allocation Problem.

2.2. Some Characteristics of the Problem

A ticket or a maintenance request can be characterized
by three important parameters [3]. They are service time,
waiting time, and probability of fix.

1. Service time (sti): This is the amount of time that en-
gineer i would need to fix the ticket.

2. Waiting Time (wti): This is the amount of time the
ticket waits in the queue of engineer i.

3. Probability of Fix (fi): This is the probability with
which engineer i can fix the ticket. A typical fix ra-
tio would be (number of tickets fixed in a time period)
divided by the (number of tickets assigned to the engi-
neer in that time period).

Each engineer announces a service time, a waiting time,
and a probability of fix, which is (sti, wti, fi), to the lead.
Then using the set of such announcements from all engi-
neers the lead assigns the ticket to one of the queues and
allocates a payment for fixing the ticket. This is very much
like an auction where the bids are ((sti, wti, fi))i∈N and
the allocation, payments represent the outcome of the auc-
tion. This is illustrated using Figure 2.

Figure 2. Ticket Allocation Problem

2.3. Ticket Allocation as a Mechanism Design Prob-
lem

Mechanism design is the problem faced by a social plan-
ner who seeks to make a socially desirable decision based
on the collective inputs from all the players participating

356

in the mechanism. In our problem, the social planner is
the lead who makes the decision of allocation and payment.
The players participating in the mechanism are maintenance
engineers. From now, on the word players will be used in-
terchangeably with maintenance engineers. A more formal
description of the problem follows.

1. Players (N): The maintenance engineers or the players
are indexed by i = 1, 2, ..., n, who will announce their
types to the social planner or the product lead.

2. Multidimensional Type Set (Li): The type of a player
is a triple that consists of a service time, waiting time,
and a probability of fix. The type set of a player de-
scribes the set of all possible values that can be taken
by the types of a player.
Li = {(sti, wti, fi) : sti ∈ [sti, sti] ⊂ ,

wti ∈ [wti, wti] ⊂ , fi ∈ [0, 1] ⊂ }
3. Single Dimensional Type Set (Θi): We define a func-

tion qi(.) which maps each type (which is a triple)
into a single dimensional type (for the sake of conve-
nience). In the sequel of this paper, we will work with
these single dimensional type sets.

Θi = {(θi) : θi = q (li)∀li ∈ Li},∀i ∈ N
q : Li → Θi

q (li) = q((sti, wti, fi)) = − sti∗wti
fi

The negative sign in this function q(.) denotes the
amount of effort spent by the engineer to fix the prob-
lem. We can also use weights in order to give higher or
lower importance to either of these factors. The func-
tion q′(.) below uses weights α, β, γ for this purpose.

q′ (li) = q′((sti, wti, fi))

= −
(
(sti)

α(wti)
β

(fi)
γ

) 1
(α+β−γ)

, α > 0, β > 0, γ > 0

Throughout this paper, we have used function q(.) for
conversion to single dimensional type.

4. Outcome set (X): This denotes the set of all possi-
ble outcomes (allocations and payments) that a social
planner can choose from,

X = {(k, t1, t2, ..., tn) : k = (y1, y2, ..., yn),

yi ∈ {0, 1},
n∑
i=1

yi = 1,
n∑
i=1

ti ≥ 0, ti ≥ 0,∀i ∈ N}

where k is the project choice. The vector k =
(y1, y2, ..., yn) denotes the allocation rule; if yi = 1
then the ticket is allocated to player i, otherwise it is
not allocated to player i. The vector (t1, t2, ..., tn) de-
notes the amount of payment that player i would re-
ceive for fixing the problem. If ti > 0, then player i

receives a positive sum of money (to fix the problem),
otherwise pays a positive sum of money.

5. Valuation function vi(.): Valuation of the ticket for a
player i is the amount of effort spent by the engineer,
when the ticket is allocated to the engineer, otherwise
the valuation is zero. Formally we have considered the
valuation function to be linear and it is defined as,

vi(k, θi) = vi(y1, ..., yn, θi) = θiyi,∀i ∈ N, ∀θi ∈ Θi

6. Utility Function ui(.): Utility function for each player
i denotes the amount of utility that each player receives
by participating in the game. Typically, utility is pay-
ment minus valuation. If the utility is positive for a
player, then the payment made for fixing a problem is
greater than the valuation of effort made by the player
for the ticket. Thus, we define the utility function as,

ui(x, θi) = vi(k, θi) + ti,∀i ∈ N, ∀θi ∈ Θi

7. Belief Function φi(.): Every player i knows his own
type and has a belief about the type preferences of
the other players. This type preference is expressed
in the form of a belief function φi(.), which is a
probability distribution function over the type set Θi

of player i. Φi(.) denotes the cumulative distribu-
tion function for the probability distribution function
φi(.). The belief of each player is independent of the
other players, hence we assume the set of distribution
functions (φ1, φ2, ..., φn) are statistically independent.
Formally,

φ : Θ → [0, 1]
φ = φ1(.)× φ2(.)× ...× φn(.)

We assume that the distribution φi(.) for every player
i follows uniform distribution over all types of that
player, and we will use this assumption in our case
study.

8. Social Choice Function f(.): The decision made by
the social planner is depicted in terms of a social
choice function. A social choice function chooses an
outcome from the outcome set depending on the set of
all individual types of players (engineers in our case).
The social choice function is,

f : Θ → X

where
Θ = ×

i∈N
Θi

357

3. Incentive Compatible Mechanisms for
Ticket Allocation

In this section, we describe two incentive compatible so-
lutions, TA-DSIC and TA-BIC, that elicit truthful informa-
tion from the players.

3.1. The TA-DSIC Mechanism

The payment rule we use here is the well known Clarke’s
payment [7], which is a special case of the Groves payment
scheme [8]. If the social choice function is allocatively ef-
ficient (i.e., allocating the good to the person who values it
the most) and uses Clarke’s payment rule then the SCF is
DSIC [7].

The following optimization problem determines the al-
locatively efficient project choice for the ticket allocation
problem.

max
k∈K

n∑
i=1

θiyi

s.t,
n∑
i=1

yi = 1, yi ∈ {0, 1}∀i ∈ N

θi = − sti∗wti
fi

∀i ∈ N

Following is the Clarke’s payment rule that we will use in
our social choice function,

ti(θ) =
∑
j∈N
j �=i

vj(k∗(θ), θj)−
∑
j∈N
j �=i

vj(k∗−i(θ−i), θj),∀i ∈ N, ∀θi ∈ Θi

where k∗(θ) is an allocative efficient project choice when
player i plays the game and k∗−i(θ−i) is the allocative ef-
ficient project choice when player i does not participate in
the game. The formulated social choice function has the
following properties other than the DSIC property.

1. Allocative Efficiency: Allocates the ticket to the per-
son who values it the most (with minimum service
time, minimum waiting time and maximum probabil-
ity of fix)

2. Ex post Individual Rationality: Every agent will vol-
untarily participate as he/she may get at least as equal
to what he/she may get by not participating in the
game. So, every player finds it in his best interest to
voluntarily participate in the game. Formally,

ui(f(θ), θi) ≥ 0,∀θ ∈ Θ,∀i ∈ N

Example:
Consider three engineers who are asked to submit bids for

Players sti wti fi θi
1 10 8 0.5 -160
2 5 8 0.5 -80
3 9 7 0.6 -105

Table 1. Example for TA-DSIC

a ticket. Table 1 specifies the bids submitted by each player
1,2 and 3. In this example, player 2 is the winner and will
be allocated the ticket. The payments for the players are
computed as shown below,

t1 = −80− (−80) = 0; v1 = 0;u1 = 0;
t2 = 0− (−105) = 105; v2 = −100;u2 = −80 + 105 = 25;
t3 = −80− (−80) = 0; v3 = 0;u3 = 0;

In this case, player 2 gets a payment of 25 for fixing the
ticket, and this is paid as an incentive to induce truth revela-
tion. All other agents get zero utility by participating in the
game which is not worse than all of them not participating
in the game. This property corresponds to ex post individual
rationality.

The disadvantage with this mechanism is that the cost
spent by the lead (105 in the example) to induce truth revela-
tion is quite high. This is because the DSIC property is very
strong (truth revelation is a best response for each player
irrespective of what the other players report) and the incen-
tives to be given to satisfy this property are consequently
bound to be quite high. This motivates us to explore the next
mechanism TA-BIC, where the SCF is constrained by a re-
laxed form of incentive compatibility, which is Bayesian In-
centive Compatibility. The TA-BIC mechanism is based on
the expected externality mechanism or the dAGVA mecha-
nism [7].

3.2. The TA-BIC Mechanism

The dAGVA theorem [7]. confirms that in quasi-linear
environments, there exist social choice functions which are
both Ex post Efficient (that Allocatively Efficient as well as
Budget Balanced) and truthfully implementable in Bayesian
Nash equilibrium (Bayesian incentive compatible). The
payment rule in this case is,

ti(θ) = Eθ−i

⎡
⎣∑
j �=i

vj(k∗(θi, θ−i), θj)

⎤
⎦ + hi(θ−i) ∀ i

We can always choose hi(θ−i) such that the SCF is
strictly budget balanced [7]. The strict budget balanced
property ensures that there is no need for any injection of
money from external sources into the system. So, based
on the truthful revelations of individuals participating in the

358

Players sti wti fi θi
1 10 8 0.5 -160
2 5 8,12 0.5 -80,-120
3 9 7 0.6 -105

Table 2. Example for TA-BIC

game, some of them pay and some of them receive, the sum
of payments and receipts is perfectly balanced, that is,

∑
i∈N

ti = 0

The hi(θ−i) in our case is,

hi(θ−i) = −
(

1
n− 1

) ∑
j �=i

ξj(θj) ∀ i = 1, . . . , n

where,

ξi(θi) = Eθ−i

⎡
⎣∑
j �=i

vj(k∗(θi, θ−i), θj)

⎤
⎦ ∀ i = 1, . . . , n

where,
Θ−i = {θ−i : θ−i ∈ ×

j∈N
j �=i

Θj}

Example: We will extend the same example provided for
this purpose in Section 3.1, by adding one more type value
for some player. Say, we add a type value of 12 for waiting
time for player 2. We will assume uniform distribution for
φi(.),∀i ∈ N . The data for the example is provided in Table
2,

As we have not changed the allocation rule, the winner is
still player 2 for the auction. But the amount of payment to
each player varies from the previous mechanism as the pay-
ment rule is changed in this case. Here we list the payment
computations for all players.

ξ1(θ1) = −92.5; ξ2(θ2) = 0; ξ3(θ3) = −40;
h1(θ−1) = +20;h2(θ−2) = +66.25;h3(θ−3) = +46.25;
t1 = −92.5 + 20 = −72.5; t2 = 0 + 66.25 = 66.25
t3 = −40 + 46.25 = 6.25

The total payment made in this case is 72.5 and player 2
receives 66.25. Interestingly, player 3 receives money 6.25
for just participating in the game and promoting the com-
petition among the players. Due to the BIC property of the
SCF the total payment has come down from 105 from the
previous mechanism (TA-DSIC) to 72.5.

The disadvantage with this mechanism is that, the mech-
anism is not individually rational. In this example, we

find player 2 gets utility of (-80+66.25=) -13.75 and player
1 gets utility of (0-72.5=) -72.5 for revealing types truth-
fully. It is not necessary for the maintenance organization
to have individual rationality property in their SCF, as they
can force all players to participate in the game. Yet, if the
nature of inflow of tickets is such that it favors only a sub-
set of engineers in the team (consistently), then it is highly
likely that the motivation levels of the other set of engineers
would be lost over time.

4. A Case Study

In our case study, we consider a maintenance organiza-
tion with three maintenance engineers, a lead and a cus-
tomer. Once the ticket is created by a customer, the lead
requests bids (in the form of service time, waiting time and
fix ratio) from these three engineers for the reported prob-
lem. The lead then decides the engineer and payment for
the engineer for fixing the problem using either TA-DSIC
or TA-BIC mechanism. For the TA-BIC mechanism the en-
gineers report the type set and their belief functions. We
assume the reported belief functions to follow uniform dis-
tribution for this case study purpose.

We model the real world allocation using a simple
scheme called regular allocation. These allocations are pri-
marily based on the experience of the lead where the new
ticket is allocated to one of the engineers based on some
(random) rational decisions as chosen by the lead. Also, we
assume no players report truth consistently in regular allo-
cation.

We try to address the following two questions in our
analysis. (1) Does the customer prefer truth revealing
mechanisms? (2) Do all engineers prefer truth revelation
in such mechanisms?. We address these two questions in
Scenario 1 and 2 respectively.

Scenario 1 - Total Payment Analysis: In this sce-
nario we analyze the total sum of money paid to all
engineers for solving 100 tickets using regular, TA-DSIC
and TA-BIC mechanisms. In Figure 3, the (y-axis) shows
the cumulative sum of money paid to all engineers for the
total number of tickets resolved at any instant of time in the
organization. It is evident from Figure 3 that the amount
of money paid by customer for TA-DSIC and TA-BIC
mechanisms is less than the regular allocation scheme.
Also, due to the Bayesian Incentive Compatibility nature
of the dAGVA mechanism, the payments in TA-BIC are
far less than that in TA-DSIC. As the two mechanisms
TA-DSIC and TA-BIC outperforms regular allocation in
terms of the total payment, customer prefers these incentive
compatible mechanisms.

Scenario 2: - Truth Revelation Analysis: Every player

359

Figure 3. Total Payment Analysis

prefers truth revelation, if there is no effect of lie of other
player on their own individual utility. Hence, in this
scenario we analyze the impact of utility for all players
in the TA-DSIC mechanism when one player (say player
1) does not reveal true valuations. Figure 4 shows the
cumulative utility for each player for the total number of
tickets resolved at any instant of time in the organization.
There are two utility curves for each player i. The first
curve ui denotes the utility of player i when player 1 reveals
truth and the other curve liar ui denotes the utility of player
i when player 1 does not reveal truth. We find that the
utility of player 1 (liar u1) when he acts as a liar is less than
when he reveals truth (u1). Also, it is in the best interest of
other players (2 and 3) to continue revealing truth, when
player 1 acts as a liar, as it does not decrease their utility.
So, apparently every engineer prefers to reveal truth in this
mechanism. We can similarly show that in the TA-BIC

Figure 4. Truth Revelation Analysis

mechanism when all other players reveal truth, there is no

(incentive) increase in utility for any individual player i to
lie.

5. Conclusion and Future Work

In this paper we have shown that truth eliciting (or incen-
tive compatible) mechanisms outperform regular allocation
schemes and are more suited for software maintenance or-
ganization with rational and intelligent maintenance engi-
neers. We see this work can be extended further in the fol-
lowing directions:

1. Construct a mechanism which is optimal in a sense that
it does a fair trade-off between the TA-DSIC and TA-
BIC mechanisms. This mechanism will be individu-
ally Rational and Bayesian incentive compatible. So,
it brings in all the good properties of the TA-DSIC and
TA-BIC mechanisms.

2. Expand the horizon to cooperative scenarios, where
we can allow the players to collaborate and solve a
problem. The payments and allocations in such set-
ting would be very different from the non-cooperative
setting defined here.

3. Build a sophisticated tool for auctioning tickets in soft-
ware maintenance using defined allocation and pay-
ment rules.

References

[1] L. Arfa, A. Mili, M. Alaya, H. Amor, and K. Ketata. Software
maintenance management in Tunisia - a statistical study. Pro-
ceedings of the IEEE International Conference on Software
Maintenance, pages 192–195, 1990.

[2] D.Garg and Y.Narahari. Foundations of mechanism design.
Technical Report, Department of Computer Science and Au-
tomation, IISc, Bangalore, India, 2006.

[3] E.B.Swanson. The dimensions of maintenance. Proceedings
of the 2nd International Conference on Software engineering,
pages 492–497, 1960.

[4] E.Burch and H.J.Kungs. Modeling software maintenance re-
quests: A case study. Proceedings of the IEEE International
Conference on Software Maintenance, pages 40–47, 1997.

[5] G.Antoniol, G.Casazza, G. Lucca, M. Penta, and F.Rago. A
queue theory-based approach to staff software maintenance
centers. Proceedings of the IEEE International Conference
on Software Maintenance, pages 510–519, 2001.

[6] V. Kulkarni and S. Sethi. Optimal allocation of effort to soft-
ware maintenance: A queuing theory approach. Working
Paper, The School of Management, University of Texas, TX,
USA., 2005.

[7] A. Mas-Colell, M. Whinston, and J. Green. Microeconomic
Theory. Oxford University Press, New York, 1995.

[8] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard
University Press, Cambridge, Massachusetts, 1997.

360

GRAPHICAL NOTATION FOR
NATURAL LANGUAGE AND KNOWLEDGE REPRESENTATION

Magda G. Ilieva

Dept. of Computer Science and Software Engineering
Concordia University, Montreal, Canada

magda@cse.concordia.ca

ABSTRACT
This article describes graphical language for the representation of
textual user requirements. We need such a language in order to
approach the automatic construction of graphical software engi-
neering (SE) models (in particular UML diagrams) as a translation
from one graphical language into another. In order to fulfill this
goal, we have included universal notation in graphical language,
which is equally valid for the presentation of linguistic knowledge
and the problem domain knowledge. Using unified graphical pres-
entation of natural language and knowledge, we are literally able
to draw text as a picture. This process is based on a deep analysis
and a clear representation of the text, using a limited set of mean-
ingful graphical symbols. As a result, we achive a methodology
for mining a huge volume of knowledge about relations and struc-
tures between entities: words in the text and objects/concepts in
the problem domain. The extracted relations generalize knowledge
and can be formulated in a presentation appropriate for different
purposes. In our case - many target SE models.

KEY WORDS
Modelling, Knowledge systems, NLP, UML, Semantic Network

1. INTRODUCTION
The graphical language (GL) notation came up in our at-
tempt to automatically translate textual user requirements
into Unified Modeling Language (UML) diagram [14]. In
order to resolve this issue, we face two tasks: the first is to
understand the problem in the description and the second is
to solve it using established or novel methods. The first task
– “understanding the problem” – can be divided in two sub-
tasks: understanding the language and understanding the
knowledge expressed (presented) through it. If we juxta-
pose presentation and understanding we will obtain two
types of presentation – presentation of the language, and
presentation of the knowledge it carries. Although the lin-
guistic knowledge serves as a basis for obtaining knowl-
edge related to the problem, very often these two types of
knowledge are presented differently and distinctly: linguis-
tic knowledge with the corresponding presentation, and
problem knowledge with the corresponding presentation.
The gap between these two types of presentations is over-
come by restricting Natural Language (NL) in such a man-
ner that a limited volme of specific knowledge is arranged
in a predefined structure. That is time consuming, leads to
loss of information and limits the applicability of the SE
model. The question arises: would it not be easier to con-
sider the language, and the knowledge it carries, through a
single graphic presentation? Then, the automatic construc-
tion of UML diagrams would change from translation of

one graphic language into another. It is precisely this idea
that is developed in the present article. To begin with, sec-
tion 2 reviews related works. In section 3 a particular
graphic notion is described, which presents the language
and the knowledge it carries simultaneously. Text rewritten
through GL notion is Semantic Network (SN), and in sec-
tion 4 there is an example of that. In section 5 we compare
our semantic network with the semantic networks summa-
rized in [12], and we indicate future tasks as well.

2. RELATED WORK
 Fig.1 presents the scheme which summarizes “understand-
ing and representation” of textual knowledge. It consists of
three different parts based on knowledge and processing
procedures. First, we are concerned with Domain Knowl-
edge (DK) in the text, but its automatic extraction cannot be
effected without considering Linguistic Knowledge (LK).
At this stage some systems offer processing for simplifying
text and reducing ambiguity. Second, the central part gath-
ers processings which make a model of NL and the knowl-
edge carried in it. These are: syntax (Sy), logical form (LF)
and Intermediate Model (IM). Third part of the scheme
includes processings that transform the language model and
the knowledge (general and domain) it contains into an
application specific model. According to this scheme we
can categorize the published systems into two types:
The first type of systems follows the upper road of the
schema in Fig.1. They prefer to analyse controlled NL be-
cause domain knowledge inside a form can be extracted
easily and reliably. At each step of the processing they con-
sider domain knowledge and obtain specific final models
for specific domain knowledge.
In [5] for example, the controled text consists of knowledge
about the types of data, operations over them and relations
between them. For the presentation of this knowledge an
intermediary graphic form (IM) is chosen which looks like
tree data structure, with three types of nodes: data,
functionality and context. This graphical model is trans-
lated into an end OO model, presented within VDM (Vi-
enna Development Method) notation.

Fig1. Phases of automatic NL Requirements analyzing

361

In [8] the UCDA (Use Case driven Development Assistant)
is presented, which uses as knowledge intermediate presen-
tation (IM) – graph with four types of behaviour: request,
validation, change, and response. This type of intermediary
presentation fits well into the end graphic UML OO dia-
gram.
In ProCasor project [6], the IM consists of three types of
activity (emitted, absorbed and internal) and three types of
connections (sequencing, alternative, repetition). The final
presentation is a type of activity diagram.
In [7] linguistic patterns are extracted, which are subse-
quently presented into IM - conceptual patterns for an ob-
ject model. The IM consists of nine graphic conceptual
patterns from which is built a diagram of classes and the
relations between them.
Among the second type of systems are those that attempt to
make models more universal and independent from DK and
the text. These systems follow the lower road of the
scheme. They process unrestricted NL from which are ob-
tained two consequative models: the first model obtained is
LF, which adheres more closely to the text and the general
knowledge (GK); the second model is IM which adheres
more closely to SE model and DK.
The KCPM (Klagensfurt Conceptual Predesign Model)
described in [3,4], in the part for the LF presentation con-
tains 12 distinct verb classes, from which are extracted 5
phrase categories. In the part for the IM presentation, these
5 phrase categories assign 3 types of primitives: condition,
operation, and cooperation. From the graphic elements
which presents these primitives a cooperation type scheme
is built, which later is mapped into the UML activity dia-
gram. KCPM is a basic model of the system NIBA [2].
However, in order to make an OO class diagram, NIBA
transfers LF into another IM, namely Semantic Network.
This graphic consists of things types and connection types.
The translation from SN into OO class diagram is not en-
tirely automatic – the designer chooses potential candidates
for the conceptual scheme.
Colour-X [1] builds LF as conceptual prototype language
which replaces “three central representations, i.e. (struc-
tured) natural language sentences, lexicon knowledge and
conceptual models”. This system doesn’t aim to obtain
UML or a similar final model. The philosophy of the Col-
our-X project is to provide the user with a static view and a
dynamic view of general knowledge.
Our approach differs from the two approaches described
above. We resemble the systems from the second type, ob-
taining more general and independent information from text
and DK presentation. We differ, however, by creating a
common model of linquistic and domain knowledge in or-
der to achieve one general graphical IM which aims to
reach different target UML diagrams. Colour-X remains on
stage LF; it has a unique presentation of different knowl-
edge extracted from the text, which needs to be additionally
processed to obtain target SE model. KCPM and NIBA use
different IM for different target models. Our approach aims
to be more universal. It analyses uncontrolled NL by build-
ing a common presentation of LF and IM, which we use for

building various final models. The following section de-
scribes the notation of our graphic representation.

3. GRAPHICAL LANGUAGE NOTATION
Our graphical language is based on tabular presentation of
sentences, built after syntax analysis. We divide the sen-
tence into three basic groups (columns in the table) accord-
ing to the function each one performs: Su(bject),
Pr(edicate) and Ob(ject). The subject and the object are
noun groups; they can be simple (nouns and attributes) or
complex (consisting of simple nouns connected with opera-
tors – prepositional, conjunctional). The predicate is a verb
group consisting of a main verb, and its corresponding ad-
verb, modality, infinitive, and auxiliary verbs. These three
basic types form a sentence. Several sentences can be con-
nected with conjunctions or relative pronouns in order to
produce a complex/compound sentence. It is vital that each
main and subordinate sentence contains this triplet (Su, Pr,
Ob). Some of the positions in it can be left unfilled for
various reasons: i) syntactic peculiarity (inverse phrase,
relative phrase following the predicate), ii) understanding
from the context or iii) use of the passive verb form. To fill
the empty positions we use heuristics (see section
4/Heuristics) or the help of an analyst in interactive mode.
Concepts: The basic building blocks of our graphic lan-
guage are concepts (entities) and the relations between
them. The concepts are nouns/names in NL taking on the
role of subject or object. They are characterised by name,
gender, singular/plural, definite/indefinite article. In the
graph we present only the name of the concept, while the
other information is kept in the tabular presentation of the
text, which serves us as a knowledge base (KB) for all
kinds of syntax and semantics knowledge extracted during
the analysis. The concepts are presented in the manner of
an oval form containing the name (see Tab.1 line 1), while
the relations between the concepts are presented as a
pointed and labelled arc. The following paragraphs describe
different relations in which concepts are involved.
Predicative: This relation connects two concepts with a
verb. It is presented by an arc labelled with the verb, which
points from the subject towards the object (Tab.1 line 6).
When the action is transferred from the object (Ob) towards
the indirect object (iOb) the label of the connecting arrow
also contains the preposition which transfers the action. For
example: RTPS charge driver at a gate (Tab.1 line 8). We
use the active voice of verbs (already changed and saved
into KB). Attributes of verbs are adverbs, modality, and
time. They can be added in brackets to the label of the arc.
This information is contained in the tabular KB, but is not
used for all applications.
Prepositional: This relation is between two concepts con-
nected with a preposition. Unlike the predicate arc, the
prepositional arc is a dashed line (Tab.1 line 7).
Attributive: This type of relation presents two kinds of
grammatical constructions: “adjective(s) followed by noun”
or “noun is adjective/s”. For example: nice blue car or the
car is blue. More adjectives can be connected through
commas or conjunctions. This information we define dur-

362

ing the phase of syntax analysis. The graphic presentation
of the attributive relation is presented in the form of a solid
line oval for the concept (noun) and an oval with a dashed
line for the attributes (adjectives) attached to the noun
(Tab.1 line 9). One concept can enter into predicative rela-
tions alone or with some of its attributes. In the first case
the arc of the relation connects to the concept and in the
second case to the attribute.
Compositional: This relation type presents the following
syntax constructions:
Compound noun (noun-noun modifiers), for example: “ac-
count statement” or “toll gate sensor”. The other reading
of a compound noun is: the account has a statement; the
statement belongs to an account; statement of account. We
present the compound noun as an oval for each concept
participating in the combination, and we place the ovals
adjacent to one another (Tab.1 Line 9). With experience,
however, we have developed heuristics to keep the graphic
simple and clear. Thus, if a part of the compound noun does
not participate on its own in relations, we prefer to express
all parts within a single oval, for example, special line
(Tab1 line 9). If different parts of the compound noun par-
ticipate in different relations, the arc of the relation is at-
tached to the last concept of the combination, for example:
“toll gate” – attached to gate or “toll gate sensor” – to sen-
sor (see SN in fig2). In that way we keep the order of in-
heritance.
Noun - verb_be - noun, for example: the man is the owner
or Smith is a professor. We express the noun in the role of
an object as a concept (oval form), attached to the main
concept (subject) (Tab1, line9a).
Key-word structure: There is one characteristic category
key word in the texts, which present structures from data or
objects. Such as: type, kind, consists, include, part,
have…etc. The concept related to the key word forms the
head of the structure, while the concept/s (after verb be or
enumeration) - its body. In the example: There are three
types of toll gates: single toll, entry and exit toll, the head is
toll gate, and the body - single toll, entry and exit toll.
Graphically the head of this structure is depicted as a con-
cept, and the body in two ways: i) rectangular callouts, with
label the key word and content the concepts from the body
of the structure. This representation is used when the con-
cepts from the body don’t participate in other relations in
the SN (Tab.1 line 11); ii) fork in the tips of which are
placed the concepts from the body of the structure. This
representation is used when the concepts from the body
participate in other relations in the SN (Tab.1 line 10).
Compression info: In order to achieve precision and
eliminate ambiguity, often in written language are used
clarifications and redefinitions. This is reached through the
use of punctuation, explicatory relative sentences, apposi-
tion, etc. We extract this information during the syntax
analysis and through heuristics we decide whether or not to
include it in the semantic network, and if so in what form.
The compressed form is depicted through a numbered pin
attached to the concept, which it is related to, and under this

number in a legend we write the “compressed” text (Tab. 1
line 17).
Synonyms: For example: device (gizmo). We recognize by
the punctuation that a synonym is introduced. We write the
synonym after the name of the main concept in the oval
form, and divide the two names with a perpendicular line
(Tab.1 line 3).
Relations between relations: Graphically these relations
are defined with an arc which is between the concept and
arc or between two arcs.
 IF – THEN – ELSE. In technical texts are often seen con-
ditional sentences which have the following syntax struc-
ture: if Re1 then Re2 else Re3. In place of IF one can use:
when, whenever, etc; In place of THEN: comma, etc. Re1,
Re2 and Re3 can be any of the relations described above,
concept or attribute, as the presence of Re1 is a condition
for the presence of Re2, while the failure of Re1 leads to
Re3. This dependence is expressed through two arcs: one
connects Re1 with Re2 as in IF-THEN, the other – Re1
with Re3 as in IF-ELSE (Tab.1 line 15). In order to distin-
guish the two conditional connections, the beginning of one
of them (truth) is shaded diamond, and the other (false) is
empty. One of the relations can be a result of various condi-
tions, coming from various sentences in various parts of the
texts.
Result of the predicative relation. Let’s consider the follow-
ing two sentences, which are consequential in a given text:
The sensor reads the gizmo. The information read is stored
by the system. We notice that the verb from the first sen-
tence becomes an attribute of concept in the next sentence,
which most probably means that the concept in the second
sentence is a result of the action of the first. This relation is
graphically expressed with a pointed arc from the predicate
of the first sentence to the resulting concept, as shown in
Tab.1 line 12.
Predicative relations connected with conjunctions or rela-
tive pronouns. Often one and the same subject fulfils two
actions in a single sentence. We can present this as we unite
the two predicative arcs with a graphic sign for conjunc-
tion/disjunction attached to the subject (Tab.1 line 13).
Let’s also consider the example: Sue thinks that Bob be-
lieves that a dog is eating a bone. The graphic of this sen-
tence is as in Tab.1 line 16.
Other examples demonstrating predicative relations: The
client activates a gizmo using an ATM; the system used
read info to debit account (Tab.1 line 14).

4. CASE STUDY
In order to demonstrate the application of our graphic lan-
guage we propose a solution for an example taken from
[18]. In the source, that example is chosen to show extrac-
tion of statistical information helping the work of the ana-
lyst, and not an automatic analysis of NL. The example is
interesting in that the text is uncontrolled and contains vari-
ous language constructions. The text of the case study fol-
lows; the semantic network with described notation of
Table 1 is presented in Fig.2.

363

Table 1. Basic graphical notations with examples

� Notation Meaning Examples
1

Concept with name driver Nouns, proper nouns

2

Attribute with name authorized Adjectives
3

Gizmo is synonym of device Device(gizmo); device named gizmo;

device called gizmo
4

Predicate with name store All verbs

5 Prepositional connection at All prepositions
6

Predicative relation debit between sys-
tem and account

Subject Verb Object – sentence “sys-
tem debit account”

7

Prepositional relation at between driver
and gate

Noun preposition Noun
“driver at gate”

8

The action charge is transited from
driver to gate

Su Ve Ob iOb – sentence
RTPS charges driver at gate

9

Compositional relations: i)compound
noun containing 3 nouns ii)attribute +
noun (grouped and ungrouped)

i) Tool gate sensor
ii) Authorized vehicle
 Spacial lane

9a

Compositional relations:
Noun- verb be –noun

The man is an owner
 Smith is a professor

10

Key word structure - fork representation
kind of, type of, has a, consist, include,
sort of...

There are three types of tool gates:
single, entry and exit.

11

Key word structure - callout representa-
tion

Registration includes: owner’s per-
sonal data, bank account number, ve-
hicle details

12

One relation gives a result i) The sensor reads a gizmo. Read
info...
ii) Client activates a gizmo. Gizmo
activation...

12a

Prepositional phrase attached to the
predicate

(He booked a flight to the city) for me

13

Conjunction/disjunction of 2 relations
with the same Su

System turns on yellow light and takes
a photo.

14

One relation causes another System used read info to debit account.

15

Conditional relation: If rel1 then rel2 If vehicle passes green lane, system
turn on green light.

16

Relative sentence connections Sue thinks that Bob believes that a dog
is eating a bone.

17

Compression info photo, used to find the owner of the
vehicle

364

In a road traffic pricing system, drivers of authorized vehi-
cles are charged at toll gates automatically. The gates are
placed at special lanes called green lanes. A driver has to
install a device (a gizmo) in his/her vehicle. The registra-
tion of authorised vehicles includes the owner’s personal
data, bank account number and vehicle details.The gizmo is
sent to the client to be activated using an ATM that informs
the system upon gizmo activation. A gizmo is read by the
toll gate sensors.
The information read is stored by the system and used to
debit the respective account. When an authorised vehicle
passes through a green lane, a green light is turned on, and
the amount being debited is displayed. If an unauthorised
vehicle passes through it, a yellow light is turned on and a
camera takes a photo of the plate (used to fine the owner of
the vehicle). There are three types of toll gates: single toll,
where the same type of vehicles pay a fixed amount, entry
toll to enter a motorway and exit toll to leave it. The
amount paid on motorways depends on the type of the vehi-
cle and the distance traveled.
Syntax analysis of the text precedes the building of a se-
mantic network. We use the following processing stages of
the text: Part-of-Speech (POS) tagger [15] to obtain syntax
category of words; morphological analysis in order to iden-
tify inflextion of the words; parser [16] and syntactic
chunking [17] in order to identify the three main groups in
the sentence – Su, Pr, Ob; general knowledge glossaries for
key words; heuristics.
Algorithm for defining the triplet Su, Pr, Ob: The sen-
tences with the verb in a passive form are processed by
transfering the verb into active form and changing the posi-
tions of the object and the subject. For example: The gates
are placed at special lanes; A gizmo is sent to the client.
After turning the passive form into active this sentences
becomes: Someone places the gates at special lane; Some-
one sends the gizmo to the client. Since the examples lack a

subject we can keep the position of the subject empty and
the analyst will fill it in interactive mode. However, we use
heuristics and propose a solution. The heuristics are based
on: i) knowledge for agent (system is an agent by default);
ii) “head” of the phrase (prepositional, passive or active);
iii) patterns; iv) the principle of the closest neighbour.
There are three main algorithm steps:
Step 1: Filling in the empty Su positions in passive sen-
tences. We explored many examples of complex sentences
with sub sentences in passive voice of the verb. We sum-
marized the cases of using verbs in passive voice into the
following three categories: i) conjunction ‘and’ between
two ‘passive’ sub sentences introduces repetitiveness which
leads us to assume that the subject from the first sentence is
repeated in the second; ii) be+passive in the second sub
sentence takes the subject from the previous sentence; iii)
pure passive verb is attached to the nearest neighbour (ei-
ther subject or object from the previous sentence) that it
supports. In this case the neighbour is accepted as subject.
Step 2: We transfer the passive sentences into active.
The concept from the subject position becomes direct ob-
ject, Su position remains empty, indirect object preserves
its position, the verb transforms from passive into active.
Step 3: We fill in all Su positions that are left empty.
The possible candidates to fill in the empty Su position are:
i) an agent, if any is introduced in the previous sentence; ii)
system by default. We support the glossary with possible
agents. Application example of the algorithm follows.

1 The gizmo is sent to the client
2 The gizmo to be activated
3 using an ATM that
4 informs the system upon

gizmo activation
.

Fig. 2. Semantic Network of textual requirements specification

365

Step1 ii) defines the subject position of the second sen-
tence, the gizmo. Step 2 transforms the passive voice into
the active voice and we obtain:

1 sent the gizmo to the client
2 activate gizmo
3 using an ATM that
4 informs the system upon

gizmo activation .
Step3: An agent is introduced in the first sub sentence –
client, which becomes the subject of the second and third
sentences. ‘ATM’ becomes Su of the fourth sentence since
it is introduced by a relative pronoun. The only position left
empty is the Su position in the first sentence which by de-
fault becomes ‘system’. The processed sentences become:
1System sends gizmo to the client; 2Client activates gizmo;
3Client uses ATM; 4ATM informs the system upon gizmo
activation.
In tabular view similar to the example illustrated above we
inscribe the entire text, from which we later build a SN.
Constructing table and its advantages are described in [9].
Heuristics for knowledge compression: In order to pre-
serve a clear picture of SN we prefer to compress some
parts of the sentences. Good candidates for compression
are explanations to concepts: 1) Business rules. In order to
find them we seek i) key words, e.g. possible, request, ex-
cept, depends, only…ii) modality of the verb: must identify,
can be performed…iii) quantifiers: all, every, nobody… 2)
Appositions and inversion 3) explanation attached to the
enumeration by brackets or relative pronoun (see the sec-
ond to last sentence in the case study).
We continue to develop and improve the graphic language
for presentation of textual user requirements. We seek the
most appropriate and readable graph, as well as heuristics
for extraction and presentation of all relations.
POS and referential ambiguity: Table presentation of text
gives good visualization of text for easy verification of
these two problems. The position of the concept/word in
the table must correspond to its syntax category. For exam-
ple, a common mistake is considering verb as a noun and
vice-versa. With a quick proofread of the predicate column
this mistake can be identified. Similar is the resolution for
substitution of reference with real concept – it is found in
close proximity in the Su or Ob column.

5. CONCLUSION
Summary: The goal of our project “graphical language for
presentation of textual user requirements” is to create a
universal graphic model of NL text and the knowledge it
carries. We consider this model to be a basis for obtaining
graphical models for requirements specification, for exam-
ple UML models. Instead of developing
a unique graphic presentation of the
knowledge appropriate for each different
UML model we follow this approach:
NL is universal as a method for presenta-
tion. If we have a graphic model of the
language, we can extract necessary
knowledge from it and proceed to other
graphic models through automatic trans-

lations. We present this idea through the following
scheme: NL� GL � UML models.
The transitions between the different phases of the trans-
formation of NL into UML diagrams can contain different
treatments according to the chosen technologies for imple-
mentation, but in our system the treatments follow the or-
der: NL � POS tagging/parsing/chunking � Table
presentation (visualisation, verification) � XML presenta-
tion � Visualisation � Semantic Network � Translation
into other graphical models.
Until now we have proposed translation of GL into the fol-
lowing UML models: OO model in [9], and domain model,
activity diagram, use case path in [10]. The translation is
based on finding the correlation between the graphic tem-
plates from source GL and target models.
Comparison with the other Semantic Networks: Our
graphic language is a type of semantic network [11, 12].
It has graphical power to present all examples given in [12]
which demonstrates the possibilities of a different SN. The
philosophy of our graphical model is that there is a relation
between the basic building blocks of language and knowl-
edge. This relation consists of 3 elements; it has direction
and can influence or is influenced by other relations. For
example, Definitional Network [12] is a hierarchy of con-
cept that is easily presented in GL notation through compo-
sitional relation.
Implications are the basic elements in the Existential Graph
of Peirce [13] and Implicational Networks [12]. Implica-
tions are presented easily in GL notation as shown in line
15, Tab.1. Fig. 3 illustrates three types of SN for the exam-
ple: If a farmer owns a donkey, then he beats it. Our GL
graph is in the central position.
However, our graphic language is an Assertional Network
[12]. Our representation of asserton differs from the rela-
tional graph (RG) of Peirce in the sense that we consider
entities independently, while in RG they are united around
lines of identity. Assertion for us is not an indivisible unit,
but a relation built by the entities/concepts, which can par-
ticipate in more than one assertion.
 This independence of concepts allows us the possibility to
connect them in different relations and in this way to pre-
sent a text as a whole, rather than different sentences. This
independence of the concepts differentiates our SN from
Dependency Graph [12], and other graphs similar to it
(SNePS, Schank’s conceptual dependencies, Conceptual
graphs of Sowa) [12], which present one sentence/relation
as a frame; while one entity enters into different relations it
is repeated in each of them. Fig. 4 presents the example Sue
thinks that Bob believes that a dog is eating a bone realized
in 3 different SN. Our GL graph is in the central position.

366

The advantage of our SN is in attaching to each entity all
relations which it participates in, and this is of major impor-
tance for the construction of various models. For example,
in OO model it is very important to have for some ob-
ject/concept all actions which it executes, the attributes it
possesses. Through GL presentation of text we have the
possibility to compare superficial graphic characteristics,
which leads to the discovery of different heuristics for pos-
sible inclusion of different concepts in different roles in the
SE models. For example: the active nodes (the ones which
send more predicate arcs than they receive) are serious can-
didates for objects in OO models. The passive nodes can
have different “swimming lanes” in the sequence message
chart, if they receive messages (predicate arcs) from more
participants in the network, or else they can be presented as
an addition to the activity of a basic/active “swimming
lane”. Our SN is unique also because it uses different
graphic notations and positions for different language ele-
ments and roles, and in this way implicitly includes seman-
tics without having to use apparent semantic labels. For
example, agent is this concept, which gives the beginning
of an arc. However, one and the same entity can play a dif-
ferent role in different relations – that of an agent and that
of a patient as well. Knowledge supporting and aiding the
semantics is saved in tabular presentation, which can in-
clude different numbers of columns for the different knowl-
edge appropriate for different applications. The tabular
presentation also maintains the order of different assertions
(sentences) in the way they appear in the text. In other
words the tabular presentation is nothing other than the text
kept in full, but structured in three basic columns
(Su,Pr,Ob) and with sentences transformed from the pas-
sive into the active voice. Other examples of tabular
presentation can be seen in [9, 10].
GL can also be considered as Executable Networks [12],
because it easily maps into an activity or Use Case Path
diagram, which is nothing else but a series of actions and
conditions, executed by actors. Finally, our GL can be
called Hybrid Networks [12], because it presents different
knowledge with different syntax constructs. Its main pur-
pose is to automatically translate textual user requirements
written in uncontrolled NL into UML, or other types of SE
diagrams.
Future work: We continue to develop and improve our
graphic language, seeking the most precise and readable
graphic presentation of linguistic, general and domain
knowledge all together. We are working on automatic
transformation of GL into different types of SE models. We

are working on the visualisa-
tion and improvement of the
interface with the analyst. We
are developing a prototype of
Integrated Framework for
Automatic Analysis of Textual
User Requirements, to which
GL serves as a basic module.

REFERENCES
[1] Burg, J.F.M. and van de Riet, R.P.: Analyzing Informal Re-

quirements Specifications: A First Step towards Conceptual
Modeling, Proc.2 nd International Workshop on Applications of
Natural Language to Information Systems, 1996.

[2] Fliedl, G.; Kop, Ch.; Mayerthaler, W.; Mayr, H.C.; Winkler
Ch.: The NIBA workflow: From textual requirements specifica-
tions to UML-schemata In: ICSSEA '2002.

[3] Fliedl, G.; Kop, Ch.; Mayr, H.C. From Scenarios to KCPM
Dynamic Schemas: Aspects of Automatic Mapping. In:
NLDB'2003 pp. 91 - 105.

[4] Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements:
From Natural Language to Conceptual Schemata, In Proc. of
SEA 2002.

[5] Lee, B.-S., Bryant, B.R.: Automated conversion from require-
ments documentation to an object-oriented formal specification
language. In Proc. of SAC 2002.

[6] Mencl, V.: Deriving Behavior Specifications from Textual Use
Cases. In Proceedings of WITSE04.

[7] Moreno A.: Object-Oriented Analysis from Textual Specifica-
tions, In Proc. of SEKE 97.

[8] Subramaniam K., Liu D., Far H. B. and Eberlein A.: UCDA:
Use case driven Development Assistant Tool for Class Model
Generation, In SEKE 2004, 324-329

[9] Ilieva M., Ormandjieva O.: Automatic Transition of Natural
Language Software Requirements Specification into Formal
Presentation, NLDB 2005, pp. 392-397

[10] Ilieva M., Ormandjieva O.: Models Derived from Automati-
cally Analyzed Textual User Requirements. In Proc. of SERA
2006, pp. 13-21.

[11] John F. Sowa, Knowledge Representation: Logical, Philoso-
phical, and Computational Foundations, Brooks Cole Publish-
ing Co., Pacific Grove, CA, ©2000

[12] John F. Sowa, Semantic Networks http://www.jfsowa.com/
pubs/semnet.htm

[13] Peirce, Ch. S.: “Manuscript 514”, with commentary by J. F.
Sowa, www.jfsowa.com/peirce/ms514.htm

[14] Unified Modeling Language (UML 2) http://www.uml.org/
[15] MBT tagger: http://ilk.uvt.nl/~zavrel/tagtest.html
[16] W.Daelemans, S.Buchholz, J.Veenstra: Memory-based shal-

low parsing. In Proceedings of Computational Natural Lan-
guage Learning, 1999.

[17] Veenstra J.: Memory-Based Text Chunking. In Proceedings
of ACAI, Chania, Greece, 1999.

[18] A.Sampaio, N.Loughran, A.Rashid, P.Rayson: Mining
Aspects in Requirements. Workshop on Early Aspects
2005.

367

A Hybrid Approach for Natural Language Query Translation

Pornpimon Teekayuphun1 and Ohm Sornil2

1,2 School of Applied Statistics, National Institute of Development Administration
118 Seri Thai Road, Bangkapi, Bangkok, Thailand 10240

1ponpimon.t@grads.nida.ac.th, 2 osornil@as.nida.ac.th

Abstract

 Natural language interface to database allows users to
access information stored in a database by supplying
requests expressed in some natural language to the
database system. In this paper, an approach for
translating queries into Structured Query Language
(SQL) is presented in the context of an injury surveillance
database, where queries and data are expressed in Thai
language. The process consists of three major phases:
keyword formation, keyword sense disambiguation, and
SQL query formulation. Each phase as well as the overall
process are evaluated in details. The results show that the
overall query translation achieves an accuracy of 87%.

1 Introduction

Natural language interface to database (NLIDB) [1] is a
system that allows a user to access information stored in a
database by typing requests expressed in some natural
language. The user query is then translated into a query
language suitable for the database system, e.g., SQL.
Previous works are classified according to query
translation techniques: syntax-based, semantic grammar,
logical form, and pattern matching approaches.

In syntax-based systems [7, 13], the user input is parsed,
and the resulting parse tree is directly mapped to an
expression in a query language through mapping rules.
The main difficulty for the syntax-based approach is to
devise mapping rules that will transform a parse tree
directly into the query language.

In semantic grammar systems [11, 12], the output of
this system is a semantic tree that can be easily
transformed to the query language. Each node in the parse
tree may correspond to a semantic object in the database,
so this approach heavily relies on the knowledge domain.
For this reason, systems based on this approach are very
difficult to apply to other knowledge domains.

In logical form systems [5, 14], a natural language
question is transformed into an intermediate logical query,
expressed in some internal representation language. The
logical query is then translated to an expression in the
query language. In systems based on the logical form
approach, a question undergoes tokenization, tagging,
parsing and semantic analysis. The entire process is
vulnerable to ill-formed sentences.

Pattern matching approach [6] is proposed as an
alternative to grammar based system. In these systems,

question patterns are associated with database query
patterns. The patterns are created to correspond to the kind
of information needed, and the system attempts to
recognize these patterns in the input question. Although
this approach does not require elaborated parsing and
interpretation modules, its shallowness often leads to
failures.

In this paper, we present a Thai language interface to a
database system which does not rely on syntactic grammar.
The system operates on the Injury Surveillance database.
The proposed approach extracts the needed information
for query translation by attempting to determine all
keywords in the user’s query. Keywords represent
particular database objects (i.e., tables, attributes and
attribute values) and components of SQL statement.
Prediction by Partial Matching (PPM) is employed to
create keywords from the input. However, it is possible
for a keyword to have multiple meanings within a domain.
This system uses the random walk with restart (RWR)
algorithm to help disambiguate keyword meanings.
Finally, an SQL query is formulated based on a semantic
graph.

The rest of the paper is organized as follows. Section 2
introduces the Injury Surveillance database. Section 3
describes the proposed natural language query translation
approach, consisting of the keyword formation, the
keyword sense disambiguation, and the query formulation
processes. Section 4 presents the performance evaluation.
Finally, Section 5 provides concluding remarks for the
research.

2 Injury Surveillance Database

The Injury Surveillance (IS) database collects data of
patients injured from accidents. The data contained in the
IS database are patients’ data, accident locations, causes
of injuries, first aids, injured organs and treatment
outcomes. All database objects are labeled with natural
language terms. Besides database objects, components of
SQL statements such as operators and functions are also
labeled with natural language terms. These terms are used
as keywords which represent particular database objects
and SQL components.

For SQL formulation purpose, the EER model is
transformed to a semantic graph to be used as the
knowledge source. The semantic graph is a weighted,
undirected graph. A node in the graph represents a
database table, and an edge corresponds to a relationship

368

between relational tables as shown in Figure 1. Edge
weights are computed from relative frequencies of the
relationships used as join condition in the queries as:

c
crP ab

ab
, (1)

where rab is a relationship between node a and node b, cab
is the number of times that rab is used as join condition in
the queries, and c is the total number of times that all
relationships are used as join condition in a set of training
queries. Then the weight of the edge between node a and
node b is calculated as:

w(rab) =
abrP log

1 . (2)

Figure 1. A semantic graph

3 Query Translation and Disambiguation

The proposed natural language query translation process
is divided into four phases, as shown in Figure 2: Thai
word segmentation, keyword formation, keyword sense
disambiguation and SQL formulation.

Figure 2. Architecture of the query translation process

3.1 Thai Word Segmentation

A query for the IS database is expressed in Thai

language, whose characters are written continuously
without space. It is first segmented using a technique
described in [10] which employs Prediction by Partial
Matching (PPM) to segment a Thai natural language
query into syllables. Then, the syllables are combined into
words by an application of logistic regression, according
to contextual information.

3.2 Keyword Formation

A keyword is defined as a word or phrase that holds a
particular meaning within a database domain or a
component of SQL statement. This phase is to group
words from a user’s input to form keywords. Besides
extracting keywords from the user’s query, this phase
attempts to solve the ambiguities of words or phases in the
query by grouping them to form keywords which
correspond to only one database object.

In order to achieve the above results, first the system
maps synonymous words to the same code in order to
reduce the number of words processed in further steps.
Then, words are grouped into keywords by using
Prediction by Partial Matching (PPM) technique. PPM
[3], a symbolwise compression scheme, generates a
prediction for each input symbol based on its previous
contexts. The prediction is encoded in terms of a
conditional probability, conditioned on the preceding
context. PPM contains predictions, computed from the
training data, for the largest context (k) as well as all
shorter contexts in a set of context tables.

In the light of PPM, we turn the keyword forming
process into the problem of inserting spaces between pairs
of words in the query. A training corpus is used to
calculate the probabilities of each word based on its
previous contexts. Queries in the corpus are manually
grouped into phrases or word groups, each represents a
specific meaning, by inserting “*” between pairs of words.
The probability of each word in the corpus are estimated
based on the previous context and maintained in context
tables, as shown in Figure 3.

k=0 k=2
Count Prob Count Prob
47.5 0.0002 * * 32.5 0.203

825.5 0.0040 * 123.5 0.772
106.5 0.0005 * prov 2.5 0.016
92.5 0.0004 Esc 1.5 0.009

Wname 364.5 0.0018 month 107.5 0.995
Esc 182.5 0.0009 Esc 0.5 0.005

k =1
Count Prob

 month 107.5 0.82
22.5 0.17

Esc 1 0.01

Figure 3: PPM Context Tables

Given an order of k, the algorithm computes the
probability of each possible next word (i.e., the next word
in the user’s query or a space) by considering a context of
size k at a time and then proceeds to the next word in the

369

query. The process is repeated until it reaches the end of
the query.

We illustrate the insertion of spaces between words
using a query “ ” (“How many
traffic accidents are there?”). PPM is employed to predict
the next possible word by trying to find the context of
length k (k=2 in this example) for words in the context
table (i.e. ->). If the context is not found, it
passes the probability of the escape character at this level
and goes down one level to the (k-1) context table to find
the current context of length k-1 (i.e., ->). The
process is repeated until a context is found. If it continues
to fail to find a context, it may go down to order (-1)
corresponding to equiprobable level for which the
probability of any next word is 1/|A|, where A is the
number of distinct words.

If, on the other hand, a context of length q, 0<=q<=k, is
found, then the probability of this next word is estimated
to be the product of probabilities of escape characters at
levels k, k-1, …, q + 1, multiplied by the probability for
the context found at the q-th level.

The model for space insertion becomes a tree-like
structure, as shown in Figure 4. To make Figure 4 easy to
understand, we transform Thai words in the example
query (“ ”) into the symbols, “A
B C D”. After a tree-like structure is created, the
algorithm selects as the final result the path with the
highest probability at the lowest node. The highest
probability path for this example is “AB * C * D” or
“ * * ”

Figure 4. A keyword forming model

To improve the efficiency of the algorithm, the structure
can be pruned by the following set of rules 1) Adjacent
spaces are not allowed and 2) There must be no space
between continuing words. A continuing word is a pair of
words appearing in the context table of order 1, but not
appearing in that of order 2, and has * between the words.
Figure 4 is pruned according to the above rules, thus it
does not generate further sub-trees. The nodes surrounded
by dotted ellipses and dotted rectangles correspond to
rules 1 and 2, respectively.

3.3 Keyword Sense Disambiguation

After the keyword forming process, some keywords are
ambiguous, such as ‘ ’ (date) which may correspond to
three attributes: “ADATE”, “HDATE”, “RDATE”. In the
keyword sense disambiguation, we attempt to map
ambiguous keywords to relevant database objects. Before
starting this process, stopwords which do not hold any
significant meaning in the database are first excluded from
this process. We turn the keyword sense disambiguation
into a graph ranking problem. The graph (context graph)
is constructed from a training set of data. The training
query “s”, database object “o” and user’s query “q” are
represented as nodes in the graph, as shown in Figure 5.
To solve keyword ambiguities, we have to find
relationships between node q and every node o which
corresponds to the ambiguous keyword in the user’s query.
Then, the random walk with restart (RWR) algorithm [8]
is exploited to estimate the affinity of node o with respect
to node q.

Figure 5. A context graph

3.3.1 Context Graph Construction
The information used for the construction of the context

graph is extracted from the training queries. A training
query is composed of a set of keywords. Each query must
be mapped to a collection of objects in the database. The
training queries and database objects are represented as
nodes in the graph. All nodes are connected together by 3
types of weighted links:

Object-Object Link: Connects nodes corresponding
to two objects together. Its weight based on the co-
occurrence relation of the objects in the training queries.
Given two objects, x and y, with probabilities P(x) and P(y)
respectively, their mutual information, I(x,y), is calculated
as:

)()(
),(, log2 yPxP

yxPyxI . (3)

In our application, object probabilities P(x) and P(y), are
estimated by the number of observations of object node x
and y in the training corpus and normalizing it by N, the
size of the corpus. Joint probability, P(x,y), are estimated
by the number of times that x and y appear in the same
queries. If I(x,y) is greater than a threshold, a link is
placed between x and y.

Object-Query Link: Object-Query link is the link
between an object and a query whose keyword refers to
that object. The weight for the link between an object

370

node o and a query node s is estimated from the number of
times that the individual object is referred by keywords in
the query s, normalized by the total number of observation
of that object in the corpus. Any pair of object and query
nodes whose weight is greater than the threshold is
connected with an edge.

Query-Query Link: Query-Query link is based on a
similarity relation between the queries. A pair of query
nodes will be connected if they are close enough. The
distance measure between queries can be computed by the
cosine similarity between the vectors of queries [2]. The
training query qi and qj are represented as keyword vectors.
The vector model can estimate the degree of similarity of
these queries as the correlation between the vectors qi and
q j. This correlation can be quantified by the cosine of the
angle between these two vectors. That is,

ji

ji

ji qq

qq
sim qq ,

. (4)

If the score of any pair of query nodes is greater than a
threshold, a link is placed between them with weight equal
to sim(qi, qj).

3.3.2 Random Walk with Restart
To solve keyword ambiguities, we have to determine

how relevant the object node o is, with respect to the
user’s query node q. We use the random walk with restart
(RWR) algorithm to estimate the affinity of node o to
node q. RWR is able to bias toward the restart node. The
percentage of time an RWR walker spends on an object
node is proportional to the closeness of the object node to
the user’s query node.

For keyword disambiguation, we want to rank the
object node with respect to the user’s query node, so we
set the user’s query node as the restart node. At each node,
RWR walker chooses randomly and moves to the next
node among the available links with an exception to return
to the restart node with probability c. To estimate the
affinity of node o with respect to node q, we need to find
uq(o), the steady-state probability that the random walker
will reach node o from node q. The object node which
corresponds to an ambiguous keyword and owns the
highest probability is chosen as the sense of the keyword.

When the user enters a query which contains ambiguous
keywords, a query node q is added to the context graph
and then is linked to the training query nodes s which are
close to it. The distance between node q and node s is
measured by the cosine similarity [2] between the query
vectors. We set q as the restart node, conduct RWR from
node q, and compute the steady-state probability vector q
= (uq(1), uq(2), …, uq(N)), where N is the number of nodes
in the graph, by using the following equation.

.1 qqq vcuAcu (5)

Where A is the column-normalized adjacency matrix of
the graph; vq is a column vector with its entire N elements
zero, except for the entry that corresponds to node q, set
this entry to 1; and c is the probability of restarting the
random walk from node q. At initial state q = vq, and the

equation is evaluated iteratively until q has not converged.
For a given keyword k, the candidate object with the
highest value is chosen as the sense of k.

3.4 Query Formulation

To form an SQL query, the system extracts semantic
components of keywords. The semantic components of
each keyword are composed of type, description, and
body [9]. Type defines the kind of the database objects or
SQL components to which the keywords are mapped. For
this research, there are 10 types: table, attribute, attribute
value, half interval operation (e.g. >10), interval operation
(e.g. >5 and <7), aggregation operation (count, sum),
group by, predicate (a combination of components of type
attribute, half interval and interval), group by function (a
combination of components of type group by and type
table which follow the group by components), and
function (a combination of type aggregate and type table
or attribute). Description defines name of a specific
database objects (e.g. table name) to which this object
belongs. Body represents a fragment of SQL statement.

To illustrate this process, we use an example of natural
language query “How many referred patients are there,
group by discharge date?”. The resulting keywords after
the keyword forming process with their corresponding
semantic components are ‘count’ (Aggregate, -, -),
‘aTable’ (Table, R2, ‘R2’), ‘groupby’(Group by, -,-) ,
‘rdateC’ (Field, R8.rdate, ‘R8.rdate’), and ‘otherHosp’
(Value, R6.htohosp, ‘R6.htohosp <> “” ’). First, ‘count’ is
combined with ‘aTable’ to form a function component.
Next, ‘groupby’ is combined with ‘rdateC’ to form a
group by function component. The results of all
combinations are: ‘count aTable’(Function, R2,
‘count(R2.*)’), ‘aTable’ (Table, R2, ‘R2’), ‘groupby
rdateC’ (Group by, R2.rdate, ‘group by (R2.rdate)),
‘rdateC’ (Field, R8.rdate, ‘R8.rdate’), ‘otherHosp’ (Value,
R6.htohosp, ‘R6.htohosp <> “ “’).

The components of types table, attribute and function
represent data requested by the user and correspond to the
SELECT clause. The description component, which
indicates the table name, defines the data source and
corresponds to the FROM clause. The components of type
predicate and attribute value define selection criterions
and correspond to the WHERE clause. The resulting SQL
statement of the above example query is shown below.

SELECT R8.Rdate, Count(R2.HN)
FROM R2, R8, R6
WHERE R6.Hprov <> “ ” and R2.hn = R6.hn and

R2.hn = R8.hn
GROUP BY R8.Rdate

4 Performance Evaluation

In this section, the proposed method is evaluated against
the IS database.

4.1 Performance of the Keyword Formation

371

Three measures (recall, precision, and error rate) are
used to evaluate the effectiveness of the keyword forming
technique. Keywords in the test data have been identified
manually and are used to measure the performance.

Let N be the number of keywords manually identified,
e be the number of keywords incorrectly identified,
c be the number of keywords correctly identified,

 thus n = c+e be the number of keywords identified.
The three measures are defined as follows:

Recall = c/N (6)
Precision = c/n (7)
Error rate = e/n (8)

In order to calculate the above measures, we manually
record the starting and ending word positions of each
phrase in each test query. Then, the test queries are put
into the keyword forming process and again the word
positions of the resulting phrases are recorded. For
example, for a given sentence, “W1W2W3W4W5W6W7”,
the starting and ending positions of the hand segmented
phrases in the test queries, “W1 W2W3 W4 W5W6 W7”, is
recorded as (1,1) (2,3) (4,4) (5,6) (7,7) and that of the
phrases derived from the keyword forming process, “W1
W2W3 W4W5W6 W7”, is recorded as (1,1) (2,3) (4,6) (7,7).
The number of correctly and incorrectly segmented
phrases are counted by comparing these two sets of
positions, indicated by matched and mismatched pairs,
respectively – three correct and two incorrect, in this
example.

First, we study the effects of PPM orders on the
correctness of the keyword forming phase. The size of the
corpus is 19,296 words. The results, in Table 1, show that
the higher the order, the better the results, however, with
more memory and time required in computation,
especially with a large corpus.

Table 1. The effects of PPM orders on the performance of
the keyword forming phase

Order 1 Order 2 Order 3 Order 4 Order 5
Recall 0.88 0.93 0.98 0.99 0.99
Precision 0.85 0.90 0.95 0.97 0.98
Error Rate 0.11 0.10 0.05 0.03 0.02

The results in Figure 6 reveal that the average time used
by order 3 is 2.5 seconds, order 4 and order 5 is 6.6 and
14.9 seconds respectively. Since order 3 yields
reasonably high values for all three measures which are
not much lower than those of order 4 and 5 and takes the
least time, PPM order 3 is used in further experiments.

Table 2 shows the performance on three data sets, each
with 500 natural language queries. We can see that the
results are at least 97.4% in recall, 93.7% in precision, and
at most 6.5% in error rate.

99.1

98.3

99

2.5

6.6

14.9

84

88

92

96

100

0

4

8

12

16

Recall
Time

Recall 98.3 99 99.1

Time 2.5 6.6 14.9

order 3 order 4 order 5

Recal
l (%)

Time
(seconds)

Figure 6: Recall and time taken by order 3, 4 and 5

Table 2. Results of the keyword forming phase

First
Dataset

Second
Dataset

Third
Dataset

Recall 0.974 0.983 0.977
Precision 0.937 0.954 0.941
error rate 0.065 0.047 0.061

4.2 Performance of Keyword Sense Disambiguation

We evaluate the keyword sense disambiguation by
measuring the accuracy that the ambiguous keywords in
test queries are correctly mapped to relevant database
objects, by measuring whether output objects from this
process are really relevant to the intent of the user as
specified in the query. We evaluate this phase by using
three datasets, each with 100 queries containing at least
one ambiguous word. The score of accuracy is computed
as following equation,

1 if the keyword mapped to the
relevant object,

Score(qi) =
0 otherwise.

Then,

Overall Score =
n

i
iqScore

1
)((9)

Let qi be a test query i.
Let Score(qi) be the accuracy score of each test query.
Let n be the number of test query.
We compare the performance of the RWR algorithm

with the performance of PageRank [4], a popularly used
graph-based ranking algorithm, and a baseline method
assigning each ambiguous keyword the most frequently
mapped sense in the training data. The results in Table 3
show that the accuracy rate of the proposed method is
higher than those of baseline and PageRank. The results
demonstrate the suitability of RWR for this task.

Table 3. The keyword sense disambiguation performance
of RWR, baseline (BL), and the PageRank algorithm (PR)

First Dataset Second Dataset Third Dataset

RWR BL PR RWR BL PR RWR BL PR

Accuracy rate 76.0 57.4 54.2 75.5 59.1 55.3 75.5 55.1 52.2

372

4.3 Performance of Query Formulation

To evaluate the query formation process, 259 queries
are randomly selected and translated, assuming perfect
keyword forming and keyword sense mapping. 253
queries are formed correctly which account for 97.6%.

4.4 Performance of Overall Process

Finally, we study the overall process and analyze at
which steps errors begin. We analyze in details 100
random queries. The performance at each step is the
following.

4.4.1 Keyword Formation
For these test queries, Number of keywords manually

identified (N), correctly identified (c), incorrectly
identified (e), and number of all keywords identified (n)
are 1,223, 1,211, 27 and 1,238 respectively. Therefore, the
recall, precision and error are 0.99, 0.94, 0.02 respectively.

4.4.2 Keyword Sense Disambiguation
Due to errors from the previous phase and those of this

phase, the performance after completing this phase is
89%.

4.4.3 Query Formulation
From errors cascaded from all previous phases, there

are only 89 queries which are valid to form the SQL
statement. There are 87 out of 89 queries which are
formed correctly according to the details in Table 4.
Therefore, the overall performance of query translation is
87%.

Table 4. Results of the query formulation

SQL Correct Incorrect

Select From 4

Select From Where 9

Select From Join 6

Select From Where Join 38 1

Select From Where Group by 4

Select From Group by 9

Select From Join Group by 1

Select From Where Join Group by 2

Select Count From Where 4

Select Count From Where Join 8 1

Select Count From Where Join Group by 1

Select Count From Where Group by 1

5 Conclusions

Natural language interface to database allows users to
access information stored in a database by supplying
requests expressed in natural language to the database
system. In this paper, an injury surveillance database is
used with queries expressed in Thai language. Three
major phases are performed to construct an SQL statement

from a natural language query: keyword forming, which
attempts to group words in a user query to form keywords
whose meanings are relevant in the database context;
keyword sense disambiguation, which attempts to map the
ambiguous keywords to relevant database objects; and
query formulation, which forms SQL queries from the
database objects identified in the user query and the
database schema. The proposed approach is evaluated
with the overall accuracy of 87%.

References

 [1] Androutsopoulos. I., Ritchie. G.D., and Thanisch. P., 1995. Natural
language interfaces to database – an introduction. Natural
Language Engineering, 1(1), 29-81.

[2] Baeza-Yates. R., and Ribeiro-Neto. B., 1999. Modern Information
Retrieval. ACM Press. New York.

[3] Bell. T.C, Cleary. J.G., and Witten. I.H., 1990. Text Compression.
Prentice Hall. NJ.

[4] Brin. S., and Page. L., 1998. The Anatomy of A Large-Scale
Hypertextual Web Search Engine. Computer Networks and ISDN
Systems, 30, 1-7.

[5] Grosz. B.J., et al., 1987. TEAM: An experiment in the design of
transportable natural-language interfaces. Artificial Intelligence,
32(2), 173-243.

[6] Johnson. T., 1985. Natural Language Computing : The Commercial
Applications. Ovum Ltd. London.

[7] Lee. H.D., and Park. J.C., 2002. Interpretation of Natural Language
Queries for Relational Database Access with Combinatory
Categorial Grammar. International Journal of Computer Processing
of Oriental Language, 15(3), 281-304.

[8] Pan. J.Y., Yang. H.J., Faloutsos. C., and Duygulu. P., 2004. GCap:
Graph-based Automatic Image Captioning. In Proceedings of the
4th International Workshop on Multimedia Data and Document
Engineering (MDDE'04), Washington DC, USA.

[9] Samsonova. M., Pisarev. A., and Blagov. M., 2003. Processing of
Natural Language Queries to a Relational Database. Bioinformatics,
19 (1), 241-249.

[10] Sornil. O., and Chiwanarom. P., 2004. Combining prediction by
partial matching and logistics regression for Thai word
segmentation. In Proceedings of COLING 2004, Geneva,
Switzerland.

[11] Waltz. D.L., 1978. An English language question answering system
for a large relational database. Communications of the ACM, 21(7),
526 – 539.

[12] Wang. S., Meng. X.F., and Liu. S., 1999. Nchiql: A Chinese
natural language query system to databases. In Proceedings of 1999
International Symposium on Database Applications in Non-
Traditional Environments (DATE’99). Kyoto, Japan, 453 – 460.

 [13] Woods. W.A., Kaplan. R.M., and Webber. B.N., 1972. The lunar
sciences natural language information system. Final Report. BBN
Report 2378. Bolt Beranek and Newman Inc., Cambridge.
Massachusetts.

[14] Wu. X., and Ichikawa. T., 1992. KDA: A knowledge-based
database assistant with a query guiding facility. IEEE Transactions
on Knowledge and Data Engineering, 4 (5), October, 443-45.

373

Effective Fault Localization using BP Neural Networks

W. Eric Wong1, Lei Zhao1, 2, Yu Qi1, Kai-Yuan Cai2, and Jing Dong1

1 Department of Computer Science, University of Texas at Dallas, USA
2

1Email: {ewong, yxq014100, lxz064000, jdong}@utdallas.edu
 2 Department of Automatic Control, Beijing University of Aeronautics and Astronautics, China

Abstract
Fault localization is the most expensive activity of program
debugging. It identifies the exact locations of program faults.
Finding these faults using an ad-hoc approach or based only on
programmers’ intuitive guesswork can be very time consuming.
A better way is to use a well-justified technique, supported by
case studies for its effectiveness, to automatically identify and
prioritize suspicious code for an examination of possible fault
locations. To do so, we propose the use of a back-propagation
(BP) neural network, a machine learning model which has been
successful applied to software risk analysis, cost prediction, and
reliability estimation, to help programmers effectively locate
program faults. A BP neural network is suitable for learning the
input-output relationship from a set of data, such as the inputs
and the corresponding outputs of a program. We first train a BP
neural network with the coverage data (e.g., statement coverage)
collected from executing a program, and then we use it to
compute the risk of each statement, in terms of its likelihood of
containing faults. Suspicious code is ranked in descending
order based on its risk. Programmers will examine such code
from the top of the rank to identify faults. A case study using
the seven programs in the Siemens suite is conducted. Our
results suggest that a BP neural network-based fault localization
method is effective in locating program faults.
Keywords: fault localization, program debugging, BP
(Back-Propagation) neural network, risk of code, execution
slice, successful test, failed test

1. Introduction
During program debugging, fault localization is the activity of
identifying the exact locations of program faults. It is a very
expensive and time consuming process. Its effectiveness
depends on developers’ understanding of the program being
debugged, their ability of logical judgment, past experience in
program debugging, and how suspicious code, in terms of its
likelihood of containing faults, is identified and prioritized for
an examination of possible fault locations. It is very often that
programmers have a huge amount of data collected from
program testing available in hand while they are performing
program debugging. The challenge is how to use such data to
help them effectively locate program faults.

In this paper we propose a fault localization method based
on a Back-Propagation (BP) neural network which is one of the
most popular neural network models in practice [3]. A BP
neural network has a simple structure, which makes it easy to
implement by computer programs or circuits. At the same time,
BP neural networks have the ability to approximate
complicated nonlinear functions [5]. They have been
successfully applied in software engineering. For example,
Neumann [10] proposes a technique for combining principal
component analysis and BP neural networks for software risk
analysis. Tadayon [14] presents a BP neural network approach
for software cost estimation. Su and Huang [13] report a BP
neural network-based study for software reliability estimation.
Anderson, Mayrhauser and Mraz [1] apply BP neural networks
to predicate the severity levels of program faults that are likely
to be uncovered, if any, by each test case. However, to our best
knowledge, no studies have used BP neural networks for fault
localization.

Using code-based coverage testing tools such as �Suds [16],
we can report the test coverage for each test execution. In our

proposed method, the coverage data of each test case is focused
on the statement coverage in terms of which statements are
executed by which test case.1 The execution result of each test
case is also collected. Together, the coverage data and the
execution result are used to train a BP neural network so that
the network can learn the relationship between them. We also
use a set of virtual test cases that each covers only one
statement in the program. When these coverage data are input
into the network, the outputs can be regarded as the likelihood
(i.e., risk) of each statement of containing the fault. Suspicious
code is ranked in descending order based on its risk.
Programmers can examine the statements from the top of the
rank one by one in order of their risk. A case study using the
programs in the Siemens Suite [12] is conducted to demonstrate
the effectiveness of our method. The results when compared
with those from other studies are very promising.

The reminder of this paper is organized as follows. Section
2 gives an overview of the back-propagation neural networks.
Section 3 explains the proposed fault localization method. In
Section 4 we report a case study and the comparison of
effectiveness between our method and others. Discussions
about the proposed method appear in Section 5. Section 6 lists
some related studies. The conclusion and future work are
presented in Section 7.
2. An overview of the BP neural networks
A neural network is made up of many simple elements called
neurons or nodes. Neurons are connected together with weights
on the connections so that they can process information
collaboratively and store the information on these weights.
Neural networks have many advantages over other models,
such as:
1) They have the ability to learn unknown models.
2) They are fault tolerant. Because the information is

distributed among the weights on the connections, a few
faults in the training data have little influence on the
model.

3) They have the ability to adapt themselves to time-variant
models.

A BP neural network is a kind of feed forward neural network.
Neurons in a BP neural network are connected only with the
neurons in adjacent layers. A BP network can learn a
complicated nonlinear input-output relationship from a set of
sample data (including inputs and the corresponding expected
outputs). Figure 1 shows the structure of a three-layer BP neural
network. The data flow in a BP neural network is delivered
from the input layer, through hidden layer(s), to the output layer,
without any feedback.

An error back-propagation algorithm is used in the
training of a BP neural network. After the neural network is set
up, the BP algorithm uses a set of sample data to train the
network by the following steps:
1) Input the sample inputs to the neural network to generate

the actual outputs. This is a forward processing.
2) Calculate the errors between the actual outputs and the

expected outputs given in the sample data. Then, propagate
the errors backward to the input layer. In the backward
process, the weights on connections are changed such that
the errors are reduced.

1 Coverage with respect to other criteria such as decision, c-uses, and
p-uses are also collected and available for program debugging.

374

The training will be repeated several times in order to ensure
the errors are small enough.

Hidden
Layer

Output
Layer

wH11 wH12

wH22 wH31

wH42

wH41

wH32wH21

wO12

wO13 wO21

wO22

wO23

Input
Layer

i1 i2 i3 i4

o3o2o1

wI1 wI3wI2 wI4

wO11

Figure 1. Structure of a BP neural network

In this paper, we use a BP neural network for fault
localization for the following reasons:
1) BP neural networks have been proved to be broadly

applicable models and have been successfully used in the
solutions of several problems such as software risk
analysis [10], reliability estimation [13], software cost
prediction [14], and severity levels of program faults that
could be detected [1].

2) BP neural networks have the ability to approximate
complex nonlinear functions. For example, they can be
used to simulate the relationship between test coverage
(e.g., the statement coverage with respect to each test case
in our case) and execution results (e.g., succeed or fail).

3) BP neural networks are trained by a supervised training
algorithm (e.g., an error back-propagation algorithm).
When expected outputs are known, a supervised training
algorithm can train the network more accurately and
efficiently than an unsupervised training algorithm can.
Since in program debugging, we know the expected output
of each sample input (i.e., whether the program execution
succeeds or fails with respect to each sample input), a
supervised neural network is more suitable for the fault
localization problem.

3. Proposed Method

3.1.Fault localization with a BP neural network

Suppose we have a program P with m executable
statements2 and exactly one fault. Suppose also P is executed
on n test cases of which k tests are successful and n-k are failed.
Table 1 lists notations that are used for the rest of the paper.

Figure 2 gives an example of coverage data (statement
coverage in this case) and execution results that we need for the
proposed fault localization method. Each row contains the
statement coverage (1 means the statement is covered and 0
means not covered) and the execution result (0 means the
execution is successful and 1 means failed) of a test case. For
example, statement s6 is covered by a successful test t1, and
statement s5 is not covered by a failed test t6.

2 All the comments, blank lines, non-executable statements (e.g.,
function and variable declarations) are excluded for analysis.

Table 1 Symbols used in this section
m number of executable statements
n number of test cases
t a test case executed on P
ct the coverage vector of t

S(t) the set of the executable statements covered by the execution of t
rt the execution result of t (“successful” or “failed”)
si the ith executable statement of the program

Figure 2. Sample coverage data and execution results

Vector
it

c denotes the coverage data obtained from the

execution of test case ti. For example,
1t

c = (1, 1, 1, 1, 0, 1, 0, 0,

1) extracted from the first row in Figure 2 gives the statement
coverage of the execution of t1. We refer to

it
c as the coverage

vector of ti.
Assume there is a set of virtual test cases v1, v2, …, vm

whose coverage vectors are
mvv cc ,,

1
� , where

�
�
�
�

�

�

�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

100

010
001

2

1

�
����

�
�

�

mv

v

v

c

c
c

 (1)

The execution of virtual test case vi (i=1, 2, …, m) covers only
one statement si. If the execution of vi fails, the probability that
the fault is contained in si is high. This implies that during the
fault localization, we should first examine the statements whose
corresponding virtual test case fails. However, we cannot find
v1, v2, …, vm in the real world. In order to estimate the
execution results of these virtual test cases, we build a
three-layer BP neural network with m input-layer neurons and
one output-layer neuron, and train it using

it
c and

it
r (i=1,

2, …, m) as the input data and corresponding expected output,
respectively. The structure of a BP neural network is shown in
Figure 3. The transfer functions of the neurons are set to the
sigmoid function y=1/(1+e-x).

Figure 3. The BP neural network used in our method

375

When the coverage vectors
ivc (i=1, 2, …, m) of a virtual

test case vi are input to the trained neural network, the output of
the neural network (denoted by

ivr′) is an estimation of the

execution result of vi. The value of
ivr′ is between 0 and 1. The

larger the value of
ivr′ , the more likely it is that si contains the

fault. We can treat
ivr′ as the risk of si in terms of its likelihood

of containing the fault.

(a)

(b)
Figure 4. (a) train a BP neural network and (b) estimate the risk of

each statement using a trained BP neural network

Figure 4 shows the process of computing suspicious statements
using a BP neural network. We summarize this part as follows:

Procedure I
1) Build up a BP neural network with m input-layer neurons,

three hidden-layer neurons, and one output-layer neuron.
The transfer function of each neuron is set to the sigmoid
function y=1/(1+e-x).

2) Train the neural network using
it

c and
it

r (i=1, 2, …, m)

as the input data and the corresponding expected output
data, respectively.

3) Input
mvv cc ,,

1
� in Equation (1) into the trained neural

network and get the outputs
1 2
, , , .

mv v vr r r′ ′ ′�
4) Rank s1, s2, …, sm based on

mvvv rrr ′′′ ,,,
21
� in descending

order and examine the statements one by one from the top
until the fault is located.

Let’s demonstrate our method through an example.
Suppose we have a program with nine statements (m=9) and
one fault in statement s8. We executed seven test cases (n=7) on
it, in which two of them failed. Figure 2 shows the coverage
data and execution result of each test case. We do the following:
• Build up a BP neural network with nine inputs neurons,

one output neuron and three middle-layer neurons. The

transfer functions of neurons are set to the sigmoid
function.

• Train the BP neural network with the coverage data. The
first input vector is (1, 1, 1, 1, 0, 1, 0, 0, 1) and the
expected output is 0. The second input vector is (1, 0, 0, 0,
1, 1, 1, 1, 0) and the expected output is 0, and so on.
Repeat training the network with these data until the errors
between expected outputs and actual outputs are small
enough (e.g., all are less than 10-3).

• Input the coverage vectors of the virtual test cases into the
trained neural network. The output with respect to each
statement is shown in the Table 2.

Table 2. Actual output with respect to each statement
statement output statement output statement output

s1 0.0011 s2 0.9322 s3 0.9976
s4 0.9821 s5 0.0151 s6 0.0119
s7 0.3984 s8 0.8257 s9 0.0058

• After ranking the statements based on their risk, we get s3,
s4, s2, s8, s7, s5, s6, s9, s1. That is, s3 is most likely to contain
the fault.

• Examine the statements one by one in order of s3, s4, s2, s8,
s7, s5, s6, s9, s1. The fault will be found when s8 is
examined. In this example, we examined 4 statements
before we found the location of the fault.

3.2. Reduce the number of suspicious statements
Our proposed neural network-based fault localization method
can be further improved by considering execution slices of
failed tests. An execution slice with respect to a given test case
in our study contains the set of statements executed by this test.
Similarly, it can be the set of all blocks, decisions, c-uses, or
p-uses executed by this test, if necessary [15]. Since many of
the statements are unrelated to the faults, we can develop
additional heuristics to reduce the number of suspicious
statements.

In general, the fault should be covered by failed tests, or at
least related to the statements covered by failed tests. This
implies the most suspicious statements are the statements
covered by all the failed executions. Let SI denote the set of the
statements covered by all failed executions. We have

IS =)()()(
21 kfff tStStS ���� ,

where
kfff ttt ,,,

21
� are the failed test cases and ()ifS t is the

execution slice of
ift , i.e., the set of statements covered by ift .

In special cases, SI does not contain the faulty statement(s). A
good solution to this problem is to find a failed test

Mf
t which

covers the fewest statements and examine the un-checked
statements covered by

Mf
t (i.e., those in the execution slice of

Mft but not in IS). For simplicity, let us use SM as the set of the

statements covered by
Mf

t (i.e. SM= ()).MfS t Based on the

above discussion, when we are looking for a fault, the
statements in SI should first be examined; if the faulty statement
is not there, the statements in SM - SI should be examined next.
For example, with respect the sample in Figure 2, SI = S(t6)�
S(t7)={s3, s6, s8}, SM = S(t6)={s3, s6, s7, s8 }, and SM - SI={s7}.
We should first search for the fault in s3, s6, s8. If the fault is not
in these three statements, s7 is the next statement that should be
examined.

Integrating this execution-based heuristic with the neural
network-based method discussed in Section 3.1, we summary
our fault localization method as follows:

376

Step 1. Get the intersection of all failed execution slices (SI)
and the minimum failed execution slice (SM).

Step 2. Apply Procedure I (in Section 3.1) to the statements
in SI to examine whether the fault is in these
statements. If the fault location is found, go to Step 4.

Step 3. Apply Procedure I to the statements in SM -SI to
examine these statements one by one until the fault is
found.

Step 4. Stop.

For discussion purposes, we refer to this method as “BPNN
method” in the following sections.

4. Case Study
In this section, we present our case study to show the
effectiveness of the BPNN method.

4.1.Programs, test cases and defects

Seven programs in the Siemens Suite were used in our study.
These programs are widely used as a benchmark for comparing
different fault localization methods [6]. All these seven
programs are implemented in the C language. Table 3 gives the
information of the seven programs, including number of faulty
versions, number of executable statements, number of test cases,
and number of functions. There are 132 faulty versions of these
seven programs. One faulty version contains only one defect.
Some of the defects involve more than one statement. We
instrumented and compiled these programs using �Suds. All test
cases were re-executed on a SunOS (v5.9) server to collect
coverage data and execution results. All the data shown in this
section were collected in the executions.

Table 3. Programs in the Siemens suite
Program No. of

faulty
versions

No. of
executable
statements

No. of
test cases

No. of
functions

Description

print_tokens 7 344 4130 20 Lexical analyzer
print_tokens2 10 355 4115 21 Lexical analyzer
schedule 9 292 2650 18 Priority scheduler
schedule2 10 262 2710 16 Priority scheduler
replace 32 512 5542 21 Pattern replacement
tcas 41 135 1608 8 Altitude separation
tot_info 23 273 1052 16 Information measure

Eleven of the 132 versions were not used in our case study. No
test case can reveal the fault in version 10 of “printtokens2,”
version 32 of “replace,” and version 9 of “schedule2”. The
faults in versions 4 and 6 of “print_tokens” are in the header
file instead of in the C file. In versions 19 and 27 of “replace,”
and versions 1, 4, 6 and 9 of “schedule,” all the failures are due
to a “segmentation fault.” Since our instrumentation tool
(χSuds) may lose some coverage data when a segmentation
failure occurs, these six versions are also excluded from our
study. After removing these versions, we have 121 faulty
versions.

4.2.Experiment results

We applied the proposed method, BPNN method, to
localizing the faults in these faulty programs. The effectiveness
of BPNN method was compared with another method -
“Tarantula” which is proposed by Jones and Harrold [6]. Its
performance is shown to be better than other fault localization
methods (such as set-union, set intersection, nearest-neighbor,
and cause-transitions) with respect to the Siemens suite [11,2].
Hereafter, we only focus on the comparison between the
effectiveness of the Tarantula technique and that of our method.

In reference [6], the percentage of un-examined code is
defined as a score to evaluate the performance of a fault
localization method. The percentage of faulty versions in which

the method’s scores are higher than 99%, 90%, 80%, 70%, 60%,
50%, 40%, 30%, 20%, 10%, and 0 are collected. We notice that
when we use Tarantula in a program, some statements have the
same rank with the faulty statements. Two curves (Tarantula
Best and Tarantula Worst in Figure 5) are used to show the
performance of Tarantula. Tarantula Best is obtained by
assuming the faulty statement is the first one to be examined
among those statements with the same rank. Correspondingly,
Tarantula Worst is obtained by assuming the faulty statement is
the last one to be examined among those statements with the
same rank. The actual performance of Tarantula is between
Tarantula Best and Tarantula Worst. The BPNN method can
avoid this problem. In most cases, the BP neural network will
assign a different risk to each statement. Figure 5 shows that the
performance of the BPNN method is much better than Tarantula
Worst. With respect to Tarantula Best, BPNN is better in some
situations and worse in other situations. However, we must
point out in general, it is impractical to assume Tarantula Best
will occur. In fact, our intuition suggests that when the size of
the program being debugged increases, it is more likely for
Tarantula to group more statements with the same
suspiciousness. This also makes it even less likely to have the
faulty statement to be the first one to be examined among all
the statements with the same suspiciousness.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0%10%20%30%40%50%60%70%80%90%100%

% of program that need not be examined

Cu
m

ul
at

iv
e

pe
rc

en
tag

e
of

 th
e

fa
ul

ty
 v

er
sio

ns

Tarantula Best

Tarantula Worst

BPNN Method

Figure 5. Comparison between BPNN and Tarantula

2150
2394

3244

0

500

1000

1500

2000

2500

3000

3500

BPNN method Tarantula Best Tarantula Worst

To
ta

l n
um

be
r o

f e
xa

m
in

ed
 st

at
em

en
ts

 in
 a

ll
fa

ul
t

ve
rs

io
ns

Figure 6. Number of examined statements
in all 121 faulty versions

An alternative measure of the performance of a fault
localization method is the number of examined statements in all
faulty versions. Since the number of examined statements is
closely related with the cost of fault localization, more
examined statements imply a higher cost for fault localization.
So it is reasonable to use this simple measure to compare the
effectiveness of BPNN method and Tarantula. The total number
of examined statements in the 121 faulty versions using the
BPNN method and Tarantula are shown in Figure 6. The bars
labeled as Tarantula Best and Tarantula Worst give the

377

minimum and maximum number of statements to be examined
using Tarantula. We need to examine 2150 statements to locate
the faults in all 121 versions using BPNN. The actual number
of examined statements using Tarantula is between 2394 and
3244. This means we can examine 10.19% ~ 33.72% fewer
statements if we use BPNN instead of Tarantula.

5. Discussion
In this section, we discuss several issues about the BPNN
method based on the results of our study.

5.1.The number of hidden-layer neurons

To the best of our knowledge, there is no theoretical study
which provides an algorithm to help us decide how many
hidden-layer neurons should be used. Three neurons in hidden
layer are used in the BPNN method. This neural network
configuration works well in our study. We have also tried
different number of neurons in the hidden layer. The results are
similar to those obtained when using three hidden-layer neurons,
but the training of the BP neural network takes much more
time.

5.2.The time complexity

The time complexity of training a neural network is an
important aspect when we use neural network models. Leung et
al. [7] present an estimation of the time complexity of the BP
training algorithm which is in the order of O(mnh), where h = 2
~ 4 for different programs, m is the number of statements and n
is the number of test cases. The average time spent in our study
to find the fault location with respect to each of the seven
programs is listed in Table 4. All the times were measured on a
machine with a 1.86 GHz Core 2 Duo CPU. The time listed in
the table does not include the time required for examining the
suspicious statements.

Table 4. Average time for locating a fault

Program Number of
Statements$

Number of
test cases

Average Time
(in seconds)

print_tokens 177 4130 165.48
print_tokens2 179 4115 158.19
replace 218 2650 238.63
schedule 125 2710 79.03
schedule2 111 5542 294.99
tcas 55 1608 36.50
tot_info 124 1052 41.36

$The number of statements of each faulty version may vary slightly.
Here we use the number of statements in the correct version of each
program.

The time required by the BPNN method is acceptable in
the fault localization of the programs in Siemens Suite. When
the size of the program increases, we may need another
approach to reduce the size of the neural network to make the
time complexity acceptable. One possible solution is to use
function coverage data or module coverage data instead of
statement coverage data to find which suspicious
functions/modules the fault may be in. After that, statement
coverage data can be used to locate faults within those
suspicious functions/modules.

5.3.Expandability of the proposed method

An important advantage of the proposed BPNN method is
its expandability. The proposed method is based on a neural
network, which does not depend on a particular mathematic
model. Given the coverage data and the execution results of
testing, the BPNN method can identify the relationship between
the input and output and thus the suspiciousness of each
statement.

The coverage data used in our method can be changed to
block coverage data, function coverage data, or module
coverage data. Execution count data (the number of times each
statement is executed by a test) can also be used in the BPNN
method to localize the fault by replacing the 0/1’s in the
coverage data with the execution counts.

Other program spectra [4] are also feasible to be used in
our proposed method, such as Branch Hit Spectra, Branch
Count Spectra, Path Hit Spectra, Path Count Spectra,
Data-dependence Hit Spectra, and Data-dependence Count
Spectra.

6. Related Studies
In this section, we discuss four different fault localization

methods: Tarantula, set-intersection, set-union, and nearest
neighbor. All these studies use coverage data and execution
results of test cases to find the locations of program faults.

Jones and Harrold present a fault localization method
named Tarantula in [6]. Tarantula ranks all the statements by
their suspiciousness of containing the fault, which is estimated
by an experimental formula based on statement coverage data.
Developers can examine the statements one by one in
descending order of their suspiciousness.

Renieris and Reiss [11] propose a nearest neighbor
debugging method. They propose a method to find the most
similar successful execution to a given failed execution by the
distance between two executions. The code in the difference set
between the failed execution and its most similar successful
execution should first be examined. If the fault is not there, the
code in the adjacent node of the examined nodes in the program
dependence graph need to be examined until the fault is
localized.

Set union method and set intersection method are also
presented in [11]. Set union method tries to find and examine
the code that is executed by failed tests but not executed by
successful tests. Set intersection method reduces the size of the
code that needs be examined by excluding the code that is
executed by all successful tests but not by failed tests.

We focus on these four methods because they use the same
information as the BPNN method, such that we can compare
the performance of BPNN with them. We notice that there are
several other studies using other information for fault
localization, such as the cause transition method proposed by
Cleve and Zeller [2,17,18], the statistical debugging method
proposed by Liblit et al. [8], and the SOBER method proposed
by Liu et al. [9]. In future work, we need to design an
experiment to compare the performances of all the fault
localization methods.

7. Conclusion and Future Work
We proposed a neural network-based method for fault

localization in this paper. Execution slices are used to reduce
the number of suspicious statements, which can improve the
performance of the proposed method. Empirical study shows
that the proposed method is effective.

In future work, we will further investigate the following
problems: 1) how to reduce the size of the BP neural network
used in fault localization, 2) how to combine the information of
different program spectra to improve the performance of fault
localization, and 3) how to cluster the failed test executions to
help the proposed method deal with multiple faults in a
program.

References:
1. C. Anderson, A. Mayrhauser, and R. Mraz, “On the use of

neural networks to guide software testing activities,” in

378

Proceedings of the IEEE International Test Conference on
Driving Down the Cost of Test, pp. 720-729, October
1995.

2. H. Cleve and A. Zeller, “Locating causes of program
failures,” in Proceedings of the 27th International
Conference on Software Engineering, pp. 342-351, St.
Louis, Missouri, May 2005.

3. L. Fausett, Fundamentals of neural networks:
architectures, algorithms, and applications, Prentice-Hall,
1994.

4. M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, L. Yi, “An
empirical investigation of the relationship between
spectra differences and regression faults,” Journal of
Software Testing, Verification and Reliability,
10(3):171-194, September 2000.

5. R. Hecht-Nielsen, “Theory of the backpropagation neural
network,” in Proceedings of 1989 International Joint
Conference on Neural Networks, Washington DC., pp.
593-605, June 1989.

6. J. A. Jones and M. J. Harrold, “Empirical evaluation of
the Tarantula automatic fault-localization technique,” in
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE
2005), pp. 273-282, Long Beach, California, November
2005.

7. W. K. Leung, R. Simpson, “Neural metrics-software
metrics in artificial neural networks,” in Proceedings on
the Fourth International Conference on
Knowledge-Based Intelligent Engineering Systems and
Allied Technologies, pp. 209-212, Brighton, UK, August
2000.

8. B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable statistical bug isolation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp.
15-26, Chicago, Illinois, June 2005.

9. C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff,
“Statistical debugging: a hypothesis testing-based

approach,” IEEE Transactions on Software Engineering,
32(10):831-848, October 2006.

10. D. E. Neumann, “An enhanced neural network technique
for software risk analysis,” IEEE Transactions on
Software Engineering, 28(9):904-912, September 2002.

11. M. Renieres, S. P. Reiss, “Fault localization with nearest
neighbor queries,” in Proceedings of 18th IEEE
International Conference on Automated Software
Engineering, pp. 30-39, Montreal, Canada, October 2003.

12. The Siemens Suite, http://www-static.cc.gatech.edu/
aristotle/Tools/subjects/, January 2007.

13. Y. S. Su and C. Y. Huang, “Neural-network-based
approaches for software reliability estimation using
dynamic weighted combinational models,” Journal of
Systems and Software, 80(4):606-615, April 2007.

14. N. Tadayon, “Neural network approach for software cost
estimation,” in Proceedings of International Conference
on Information Technology: Coding and Computing, pp.
815- 818, April 2005.

15. W. E. Wong and Y. Qi, “Effective program debugging
based on execution slices and inter-block data
dependency,” Journal of Systems and Software,
79(7):891-903, July 2006.

16. �Suds User’s Manual, Telcordia Technologies, 1998.
17. A. Zeller, “Isolating cause-effect chains from computer

programs,” in Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp.
1-10, Charleston, South Carolina, November 2002.

18. A. Zeller, R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software
Engineering, 28(2):183-200, February 2002.

19. A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A.
Aiken, “Statistical debugging: simultaneous identification
of multiple bugs,” in Proceedings of the 23rd
international Conference on Machine Learning, pp.
1105-1112, Pittsburgh, Pennsylvania, June 2006.

379

Temporal Software Change Prediction Using Neural Networks

Mehdi Amoui, Mazeiar Salehie and Ladan Tahvildari
Software Technologies Applied Research Group

Department of Electrical and Computer Engineering
University of Waterloo, Ontario, Canada

{mamouika, msalehie, ltahvild}@uwaterloo.ca

Abstract

Software change prediction plays a key role in software
maintenance and evolution. It is primarily utilized to know
“where” the most change-prone entities are, and how the
change will be propagated through a system. The results
of the prediction are used to plan different tasks in mainte-
nance and evolution, such as re-factoring operation. This
paper argues that knowing “when” the changes may hap-
pen can give more insight to managers and developers for
planning the maintenance activities. To address this is-
sue, a Neural Network-based Temporal Change Prediction
(NNTCP) framework is proposed. Such a novel framework
determines “where” the changes would be applied (as hot
spots), and then adds time dimension to predict “when” it
may occur. As a proof of concept, the NNTCP framework
is applied to Mozilla as a large-scale open source software.
We provide a short discussion on obtained prediction re-
sults.

1 Introduction
Software systems are continuously being changed during
their lifecycle. The changes may stem from different cate-
gories of maintenance/evolution, as discussed in IEEE stan-
dard [5]. Corrective for fixing bugs, adaptive for adapt-
ing the software to new environments, perfective for updat-
ing the software according to requirements’ changes, and
finally preventive for making the software more maintain-
able. Moreover, a key characteristic of the evolution of large
software systems is that changing becomes increasingly dif-
ficult over time, the code degrades, and maintenance be-
comes increasingly hard and expensive through time. These
problems are well-known as software aging and code de-
caying, which have gained increasingly importance both in
academia and industry.

Change prediction can be performed for different pur-
poses like reverse engineering and cost estimation [1]. It
often ends up to determining the change-prone entities and

change propagation patterns of the product [17]. This can
be used for future resource allocation, cost estimations as
well as specifying where maintenance/evolution tasks are
“better” to start. This issue in large-scale systems is crucial
in order to detect early the potential changes that may occur
in future, and consequently reduce the costs and the risks of
applying those changes.

The motivation for this work is that knowing where the
change-prone entities are, may not be enough for the pre-
diction objectives. Knowing when the changes would occur
can help managers and developers better to plan for later
revisions of change-prone entities, which can result in pri-
oritization of changes for those entities. This paper sets out
to propose a framework to predict the future change date
of a system’s entities. To achieve this goal, the proposed
framework uses the history data of software changes from
the software repository to measure applicable development
metrics. These metrics after manipulation is fed in to an ar-
tificial neural network which has the output of future change
date of the given entity. As a proof of concept, the frame-
work has been tested on Mozilla open source project.

The rest of this paper is organized as follows. Section
2 reviews some works related to main theme of this paper.
Section 3 overviews the proposed framework for software
change prediction. Section 4 describes our case study and
discusses on the obtained results. Section 5 draws several
conclusions and discusses on some future works.

2 Related Works

Related works can be classified based on what they try to
predict and how they perform it. In the “what” facet, there
are two main categories, namely: i) prediction of the num-
ber of changes, bugs or faults, and ii) prediction the prob-
ability or rate of the change for software entities. In the
“how” facet, prediction models are either stateless or state-
ful. The former relies only on the current state of the sys-
tem, while the latter is based on the past history of the
system besides of the current state. In addition the predic-

380

Software Repository

Measure
Development

Metrics

Generate
Training Set

Train/Test
Neural Network

Build
Neural Network

Model

Prediction
Model

Generating Training Set Building Prediction ModelLocating Hot Spots

Select
Hot Spots

Initial Parameters

Figure 1. Neural Network-based Temporal Change Prediction (NNTCP) Schema

tion of time-series facts (like software change/fault predic-
tion) can be measured through two approaches: mathemat-
ical/statistical models, and AI/soft computing techniques.

For mathematical/statistical approaches there exist sev-
eral prediction models. Some of these works are based
on regression or extended models; among others [2]. One
drawbacks for these models is sensitivity to input data. Sev-
eral works aim to predict probability of change in OO sys-
tems using product metrics [11, 15].

There are quite remarkable number of works on software
prediction using AI and soft computing methods. These ad-
dress prediction of quality indicators for example on main-
tainability and reliability. Khoshgoftar et al. [7] use neu-
ral networks to predict the number of software develop-
ment faults for Ada applications by using software metrics
as their predictors. In another research, Huang et al. [4]
proposed a novel neuro-fuzzy constructive cost model (CO-
COMO) for software cost estimation, or Ramanna [13] used
neural networks to predict the number of required changes
in a file or a module to achieve the quality assurance stan-
dards.

Beside the technique of prediction, the predictors play an
important role in an effective prediction. Prior works have
identified important predictors for software change predic-
tions (e.g. Khoshgoftaar et. al. [6], and Mockus et. al.
[10]). The categories of predictors used in prior works are
product metrics, development metrics, deployment and us-
age (DU) metrics, and software and hardware configura-
tions (SH) metrics [9]. In another research, Shepperd [14]
compared four prediction techniques: regression, rule in-
duction, nearest neighbor, and neural nets using simulation.
Girba et al. [1] proposed a meta-model which adds a time
layer to structural information to facilitate combining his-
torical data from changelog with other information.

3 Proposed Framework
For addressing the problem, we propose a change prediction
framework based on a neural network. We will show how
the framework: Neural Network-based Temporal Change
Prediction (NNTCP) can support the change prediction in

a flexible and easy tuning environment. The high level
schema of NNTCP is illustrated in Figure 1. This frame-
work is composed from three high-level processes: locat-
ing hot spots, generating training data, and building predic-
tion model. The first process, locating hot spots, finds the
software entities which are probably change-prone. Gener-
ating training data, as the second process, sets out to pro-
cess change log data of the hot spots and make the appro-
priate training data set. The last process, building predic-
tion model, is the heart of the prediction framework. This
process is responsible to build a neural network prediction
model for each hot spot.

Prediction Model
Revision (t+1)Revision (t)

Figure 2. Time-Series based Change Predic-
tion Model

The input of the framework is the software repository.
The repository may contain a large set of data that may be
useful for locating hot spots as well as prediction. Usually
the software repository contains the source code history, the
change logs, and the release bundles of the software. On the
other hand the output of the framework is a set of prediction
models that can predict the revision date of a specific revi-
sion for a hot spot entity (See Figure 2). The rest of this
section describes the components of this framework in de-
tails.

3.1 Locating Hot Spots
Hot sport are software system entities that we are inter-
ested to predict their change manner. These entities can be
selected by an expert, based on a various implicit proper-
ties they have. For example the entities which are recently
edited by a new developer, or the ones communicate with
a new external interface. But, we are usually interested to

381

put ’hot spot’ label on those entities that are proven to have
high probability of change.

Probability of change can be measured using wide range
of techniques. These techniques address two main ap-
proaches. Those which analyze software product metrics
(like object oriented design metrics) of the last software re-
lease, and those that analyze software history data (software
development metrics) derived from repository logs. For sure
we can also think of a third approach which is a combina-
tion of both. In our framework, the hot spots will be se-
lected based on development metric values for entities at
each level. Pareto law is used to find the change-prone en-
tities based on change-log. This method has been validated
by Koru et al. [8] for two large-scale case studies including
Mozilla, our case study. By Pareto law, we select 20% of
entities which have 80% of changes. These entities are hot
spots which will be focused for the prediction phase.

3.2 Generating Training Set

In practice, the most valuable information to assist software
change prediction is hidden in changelog. It has some sim-
ilarities with the weather forecast process. We can predict
tomorrow’s weather based on recent weather changes and
the history data of the same day’s weather in previous years.
In this kind of problems, we are trying to predict a time se-
ries based on the retrospective data.

In case of software change prediction, fortunately, the
modern source code versioning systems store the source
codes and all their corresponding changelog histories. For
example, CVS stores the revisions of each file attached by
the supporting information on each revision. This support-
ing information includes the author of each file revision, the
date and time stamp, the number of lines added/subtracted
from the previous revision, the revision state, and the text
description which is provided by the author.

However, considering whole retrospective change in-
formation of an entity can decrease the prediction perfor-
mance. This phenomena is due to the fact that software
change rate (software entities, to be more specific) can vary
during its lifecycle. There are usually several identical
stages in a lifecycle, and each stage has its own change
pattern. In addition these stages and their corresponding
change patterns are unique for each entity.

Although, we can think of a prediction model that can
learn all historical change patterns and predict the current
changing pattern, this prediction model will be too complex.
To reduce this complexity, we can ignore previous unrelated
changing patterns, and narrow down the historical data to
the current occurring change pattern and the patterns of the
same kind that occurred in the past.

Now the question is how to identify current change pat-
tern and its starting point to cut down the historical data.
The most simple and practical answer is to have it as a

parameter to be set by a domain expert. The second ap-
proach is to analyze the whole software change pattern and
be hopeful that the entity we want to predict its changes fol-
lows the change pattern of the whole software. This range
will be constant for all the entities (hot spots). The final
approach is to test the prediction performance (cross vali-
dation) with a set of logical training data ranges. The age of
the last software release or the average age of all releases is
a good example of the value of length parameter.

23/04/2004

22/07/2004

20/10/2004

18/01/2005

18/04/2005

17/07/2005

15/10/2005

13/01/2006

1 1501 3001 4501 6001 7501 9001 10501 12001

Rev ision Number

R
ev

is
io

n
D

at
e

Figure 3. Hibernate3 Change History

As an example, Figure 3 illustrates revision dates of Hi-
bernate open source project1. By observing the slope of this
function, we can determine the change rate of the software
through the time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001

Revision Number

N
o

rm
a

li
z

e
d

 F
ir

s
t

O
r
d

e
r

D
e

r
iv

a
ti

v
e

Figure 4. Hibernate3 Consistency Rate

Figure 4 shows the consistency rate as the first derivative
of the same function that is normalized and smoothed using
a moving average function. The areas with small average
values of this function indicate the high change rate periods
of software and the high average values indicate the low
change rate. For example from Figure 4 we can conclude
that the period of time ranging from revision number 5000
to 8500 had a very high change rate. This analysis can assist
the user of NNTCP to select the range of revisions for the

1http://www.hibernate.org/

382

training set from a revision number greater or equal to 8500.
Moreover, in case of adequate revision numbers the user can
set the range from the revision number 11500, where the
most recent low change rate state of the software begins.

3.3 Building Prediction Model

The prediction model of NNTCP is based on artificial neu-
ral networks. The neural networks are proven to have good
performance as prediction models [3, 12]. Although other
prediction models, especially the statistical models, can be
used for time series prediction, but as we are dealing with
a dynamic prediction model for each hot spot, the manual
formulation of those approaches is frustrating. On the other
hand, the notable strength of neural network lies in its abil-
ity to represent both linear and non-linear relationships of
input-output sets, and the ability to learn these relationships
directly from the data.

The neural network model in NNTCP is called Time-
Lagged Feedforward Network (TLFN) [3]. It is a Multi-
Layer Perceptron (MLP) with memory components to store
past values of the data in the network. The memory compo-
nents allow the network to learn relationships over time. It
is the most common temporal supervised neural network. It
consists of multiple layers of neurons connected in a feed-
forward fashion.

The training algorithm we used with TLFNs is the Back-
propagation Through Time (BPTT) which is more advanced
than the standard Backpropagation [3]. In BPTT the net-
work has to be run forward in time until the end of the tra-
jectory and the activation of each neuron must be stored lo-
cally in a memory structure for each time step. Then the
output error is computed, and the error is backpropagated
across the network (as in static backpropagation) through
time. This error is used to adjust the weights such that the
error decreases with each iteration and the neural model gets
closer and closer to producing the desired output. This pro-
cess is known as “training”. The error between the network
output and the desired output is computed and fed back to
the neural network. The neural network uses this error to
adjust its weights such that the error will be decreased. This
sequence of events is usually repeated until an acceptable
error has been reached or until the network no longer ap-
pears to be learning.

Beside the network topology and its training algorithm,
there are several other parameters needs to be set for the
network. Some of these parameters and their corrsponding
values in NNTCP are as bellow:

• Activation Function: The BPTT training algorithm
requires differentiable, continuous nonlinear activation
functions. In our model we use sigmoid function:

o = σ(s) = 1/(1 + e−s) (1)

where:

s =
d∑

i=0

wixi (2)

for weights wi and the inputs xi.

• Hidden Layers: The number of hidden units to use is
far from clear. It is suggested to start with a single hid-
den layer and if the performance was not satisfactory
increase the number of hidden layers.

• Prediction Length: To use the current and past in-
puts to predict future desired outputs we have to set
the number of samples ahead we want to predict the
desired output. In NNTCP we test the prediction per-
formance with prediction length ranging from 2 to 10.
In all tests the best performance achieved with the pre-
diction length is set to 2, the minimum valid value.

4 Case Study
As a proof of concept, a case study with a rich CVS history,
an open source license, and fairly large-scaled is needed. In
order to choose the right case study, we analyze the CVS
history of several large scale open source applications. Fi-
nally we select the Mozilla Project as our case study.

4.1 Mozilla Overview

The Mozilla project primarily was founded on the basis of
Netscape source release, but later on made a new applica-
tion suite from scratch. The current version of the Mozilla
suite has many differences from the initial efforts both in
architecture and roadmap. It is now a platform for develop-
ers to build new applications, and a modern design in terms
of using an advanced architecture for rendering, networking
and a general XML-based user interface language. We used
Mozilla CVS checkout of 25 Feb. 2007, which includes
111,093 files with 1,033,041 revisions since 1998 (average
9.3 revisions per file).

4.2 Obtained Results

According to NNTCP architecture, the prediction process
is based on three main stages. In the first stage we have
to identify and select the entities that we are interested to
build the prediction model for them. In our case study we
perform this task using the Maximum Likelihood Estima-
tion (MLE) model. MLE can be treated as a development
metric that uses the counts from the sequences to estimate
the distribution. In the MLE model, we compute (predict)
the relative frequency of each new event based on the pre-
ceding sequence. So, the calculated MLE value for each
entity is a good indicator of possible hot spots in a software.

383

Training Data Range Train Data Count From Rev. Train MSE Bias Pred. MSE (Day)
3 Month 54 1.1278 1.54E-03 4.109 16.0
6 Month 115 1.1110.6.40 6.41E-04 2.985 13.0
12 Month 235 1.1186 2.49E-04 2.367 7.0
24 Month 405 1.1036.6.2 2.69E-04 0.466 4.7
48 Month 632 1.824 7.37E-05 3.223 2.5

96 Month (All) 1455 1.1 2.50E-04 13.900 2.7

Table 1. Prediction Results for ’mozilla/layout/base/nsCSSFrameConstructor.cpp’ Entity

we computed our MLE probability distributions [16] using
this formula:

PMLE(E = fi) = (Count(fi) + 1)/(N + d) (3)

In (3), fi ∈ D, N is the size of sequence, Count(fi)
is the number of occurrences of fi and d is the size of do-
main D. The proportion of times a certain event fi occurs
is called the relative frequency of the event.

We will mark an entity as a hot spot if its PMLE proba-
bility exceeds the defined threshold. After detecting the hot
spots, we are ready to generate the training data set based
on the change history (revision data) of each hot spot. The
training set can cover the complete revision history or just a
recent part of it. The length of the history data to train the
prediction model is arbitrary, but we should make sure that
we have enough data to train the network. We also reserve
the recent 5% samples of the training data set as a testing
data for performance evaluation.

We train and test the prediction model of the hottest de-
tected spot of Mozilla for various data ranges. The results
of the change date prediction for this entity using several
training data ranges are available in Figure 5 and Table 1.
Here we start with full data range using all revision history
(96 months), and then shrink the data range to half until
there were not enough data to train the network. The re-
sults show that for all training data ranges, the calculated
train Mean Square Error (MSE) of the desired and the pre-
dicted change dates are small. Hence, the neural networks
are trained successfully, the trained time series function is
not fully overlapped with the actual time series. This results
in a shift error between the actual prediction starting point
(current date) and the prediction model’s starting point. In
order to fix this shift error we add a constant bias of this
deference to all predicted change dates. The bias value indi-
cates the perception accuracy of the model from the current
date, and does not effect the predicted change pattern. The
smallest bias value in our test cases was measured for the
case of 24 month training data range.

Here we try to predict the next month change dates. The
best performance is achieved with the training data of all
previous revisions. Though as we shorten the prediction
range, we observe that the models based on shorter train-
ing sets perform better. We can infer that there should exist
an equilibrium date for each entity that minimize the pre-
diction error for a specific range on the training and testing

data sets. Although, as far as we meet the required predic-
tion performance, we can set this length to the pre-advised
values described in previous section.

2007-01-26

2007-02-02

2007-02-09

2007-02-16

2007-02-23

2007-03-02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Future Revision Number
P

r
e

d
ic

te
d

 R
e

v
is

io
n

 D
a

te

 Desired 3m 6m 12m 24m 48m All

Figure 5. Prediction Results for Mozilla’s
Hottest Spot Using Various Training Data
Ranges

Table 2 lists the current top 10 hot spots of Mozilla de-
tected by MLE. We divide these entities into two sets, and
train them using all or the last 24 months change data of
Mozilla CVS repository. The results show that in all cases
the prediction models follow the change history of the ref-
erence entity with a reasonable MSE.

The length of the predictions are set to one month for
each entity. This range of test data enables us to count the
number of actual and predicted future changes within the
range. Therefore, we can also use this model to predict the
number or the rate of changes occurred in a specific date
range. Here, the prediction range is considered limited, be-
cause as we try to predict the change dates farther the error
of each change prediction accumulates for the next change
prediction. This observation is trivial due to the fact that we
are using iterative prediction, and the prediction is based on
the previous predicted values which may contain errors.

5 Conclusion
This research presents the Neural Network-based Temporal
Change Prediction (NNTCP) to predict the future change
dates of software entities. The prediction approach has been
performed on a set of hot spots selected based on change-
proneness determined by the change history. This selection
process relies on the fact that entities (e.g. files) which have

384

Entity Name Revision
Head

Total
Rev.

Training
Data
Range

MLE Train
Time
(sec)

Train
MSE

Pred.
Bias

Future
Change

Pred.
Change

Pred.
MSE
(Day)

layout/base/nsCSSFrameConstructor.cpp 1.1317 1473 All 2.92E-03 72 7.97E-05 36.69 17 36 15.29
layout/html/style/src/nsCSSFrameConstructor.cpp 1.1023 1316 All 2.61E-03 62 2.38E-04 26.03 21 36 6.45
dom/src/base/nsGlobalWindow.cpp 1.911 1273 All 2.52E-03 61 3.05E-04 49.79 13 19 4.33
content/html/document/src/nsHTMLDocument.cpp 3.713 913 All 1.81E-03 40 4.29E-05 26.23 15 18 8.72
layout/html/base/src/nsPresShell.cpp 3.796 962 All 1.91E-03 46 3.14E-04 22.71 18 25 4.40
docshell/base/nsDocShell.cpp 1.829 1077 24 M 2.16E-03 13 2.29E-04 28.79 2 4 4.31
layout/base/nsPresShell.cpp 3.971 1036 24 M 2.05E-03 11 2.82E-04 2.05 6 13 8.31
content/xul/document/src/nsXULDocument.cpp 1.749 965 24 M 1.91E-03 9 2.03E-04 9.61 3 5 4.26
layout/generic/nsBlockFrame.cpp 3.818 946 24 M 1.86E-03 13 1.91E-04 21.33 8 22 5.64
mailnews/imap/src/nsImapMailFolder.cpp 1.750 941 24 M 1.87E-03 7 2.98E-04 3.60 10 16 9.49

Table 2. Prediction Results for Mozilla’s Top 10 Hot spots

been changed the most recently can be considered for po-
tential changes in the near future.

The proposed framework generates a prediction model
which augments time dimension to the information related
to hot spots. This is, similar to a time-series prediction
model used in weather forecast and stock-market behavior
prediction. The predicted temporal information indicates
the pattern of changes, which can give a better picture of
the future changes to be planned to managers. This results
in prioritizing of tasks and allocating more effectively the
resources.

Similar to weather and climate forecasts, respectively for
short- and long-term prediction, we may need different pre-
dictors and parameters. Our obtained results show clearly
this fact for the near and the far future revisions. Another
notable point is that a major re-engineering/refactoring
stage has a severe impact on the time-based prediction. So,
the temporal predicted facts, in their current form, can not
be useful in comparison with a regular stage of mainte-
nance/evolution.

Hot spots can be selected using both development and
product metrics. Numerous studies have been accomplished
for measuring the change-proneness of OO software en-
tities based on product metrics. For instance, Koru et
al. show that size including lines of code and number of
attributes/methods have a remarkable impact on change-
proneness [8]. So, one potential extension to the current
work is filtering the current set of hot spots using product
metrics.

References
[1] T. Gı̂rba and S. Ducasse. Modeling history to analyze soft-

ware evolution: Research articles. J. Softw. Maint. Evol.,
18(3):207–236, 2006.

[2] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, 2000.

[3] S. Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall PTR, 1998.

[4] X. Huang, L. F. Capretz, J. Ren, and D. Ho. A neuro-fuzzy
model for software cost estimation. In Proc. of Int. Conf. on
Quality Software (QSIC), page 126, 2003.

[5] IEEE standard for software maintenance, 1998.
URL = http://standards.ieee.org/catalog/olis/se.html.

[6] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and
N. Goel. Predictive modeling of software quality for very
large telecom. systems. In Proc. IEEE Int. Conf. on Com-
munications, 1996.

[7] T. M. Khoshgoftaar, A. S. Pandya, and H. B. More. A neu-
ral network approach for predicting software development
faults. In Proc. of Int. Symposium on Software Reliability
Eng., pages 83–89, 1992.

[8] A. G. Koru and H. Liu. Identifying and characterizing
change-prone classes in two large-scale open-source prod-
ucts. J. Syst. Softw., 80(1):63–73, 2007.

[9] P. L. Li, J. Herbsleb, and M. Shaw. Finding predictors of
field defects for open source software systems in commonly
available data sources: A case study of openbsd. In Proc. of
IEEE Int. Software Metrics Symposium (METRICS), unpag-
inated, 2005.

[10] A. Mockus, P. Zhang, and P. L. Li. Drivers for customer
perceived quality. In Proc. of Int. Conf. on Software Eng.
(ICSE), 2005.

[11] G. S. Nikolaos Tsantalis, Alexander Chatzigeorgiou. Pre-
dicting the probability of change in object-oriented systems.
IEEE Trans. Softw. Eng., 31(7):601–614, 2005.

[12] D. Patterson. Artificial Neural Networks. Prentice Hall, Sin-
gapore, 1996.

[13] S. Ramanna. Rough neural network for software change pre-
diction. In Proc. of Int. Conf. on Rough Sets and Current
Trends in Computing (TSCTC), pages 602–609, 2002.

[14] M. Shepperd and G. Kadoda. Comparing software predic-
tion techniques using simulation. IEEE Trans. Softw. Eng.,
27(11):1014–1022, 2001.

[15] A. Sherafat and L. Tahvildari. A probabilistic approach to
predict changes in object-oriented software systems. In Pro-
ceedings of the European Conference on Software Mainte-
nance and Reengineering (to appear), page TBA, 2007.

[16] F. Stulajter. Predictions in Time Series Using Regression
Models. Springer Verlag, 2002.

[17] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Trans. on Software Eng., (6):429–445, 2005.

385

Do Neural-Network Question-Answering Systems Have a Role to Play in the
Deployment of Real World Information Systems?

Antonio Juarez Alencar, Renata Chaomey Wo, Eber Assis Schmitz and Armando Leite Ferreira
Institute of Mathematics, Electronic Computer Center and The COPPEAD School of Business

Federal University of Rio de Janeiro
P.O. Box 68530 - 21941-590 - Rio de Janeiro - RJ, Brazil

juarezalencar@br.inter.net, renata wo@yahoo.com.br, eber@nce.ufrj.br, armando@coppead.ufrj.br

Abstract

This article presents a stepwise approach to the con-
struction of web-based hybrid question-answering systems
based upon neural-network technologies and natural lan-
guage processing. These intelligent information systems not
only provide high speed answers to questions posed by cus-
tomers, but also allow customers to receive answers to their
questions on a 24/7 basis, provide well conceived standard
answers to those questions, and simplify the management of
customer support services.

1. Introduction

As Internet users become more numerous, experienced
and skillful, and the number of companies embracing e-
commerce activities increases worldwide, so does the de-
mand for on-line information about products and services.
The nature of information required by Internet customers
is varied, ranging from basic technical support to the de-
scription of product features, location of outlets and autho-
rized repair services, product warranty coverage, requests
for contact with commercial representatives, current status
of suggestions and complaints made etc [13].

In order to maintain the balance between the increasing
demand for information and the capacity to supply it, com-
panies have resorted to a number of different on-line and
off-line strategies, such as: expanding and outsourcing ex-
isting customer call centers, installing voice response units
(VRUs), making lists of frequently asked questions avail-
able to customers, setting up web sites with information
about products and services, and providing customer sup-
port services over a variety of computerized means of com-
munication such as e-mail, chat services, voice over internet
protocol (VOIP) etc [1].

However, recent advances in applied computational in-

telligence and natural language processing have allowed for
the development of question-answering systems (QAS’s),
i.e. computer systems that automatically detect the exis-
tence of requests for information, correctly identify their
related content and, using a knowledge base, provide ad-
equate answers to these requests [4]. When a question-
answering system seeks human assistance to answer ques-
tions that fall beyond its knowledge base, it becomes a hy-
brid human-machine question-answering system, or hybrid
QAS for short.

This article presents a stepwise approach to the con-
struction of web-based hybrid question-answering systems
based upon neural-network technology and natural lan-
guage processing. These systems may be used to meet cus-
tomers’ needs for on-line information when conditions al-
low, with many advantages over other alternative options.
All of this is exemplified by a case study about the construc-
tion of a hybrid question-answering system for the “SE-
BRAE Challenge”, a business game involving over 50,000
undergraduate students in five South American countries
[12].

2 Conceptual Framework

2.1 Question-Answering Systems

Since Allan Turing (1912-1954) introduced the concept
of artificial intelligence while working as a leading crypt-
analyst in Bletchley Park, England, during World War II,
researchers have passionately pursued the goal of develop-
ing computer systems to which one could speak in natural
languages and obtain proper answers to questions [5].

However, among the multitude of computer-related sub-
jects that give rise to research and commercial development,
QAS has proved to be a particularly challenging topic,
where progress has not been made easily. This is partly
due to the fact that QAS builds upon the advancements of

386

several scientific fields, including natural language process-
ing, information retrieval and human-computer interaction.
Nonetheless, Maybury [11] has identified over ten differ-
ent types of QAS’s that are currently being deployed or re-
searched upon.

2.2 Artificial Neural Networks

Unlike most of the QAS’s that one may find in today’s
commercial and academic world, the QAS proposed in this
article makes extensive use of artificial neural network in
its inferential reasoning mechanism. In the artificial neural-
network paradigm, a mathematical structure composed of
values and functions provides a general model for the neu-
ron, a cell that serves as the basic construction block of the
human brain and also the brain of many other living beings.

However, while the human neuron receives electrical im-
pulses through its dendrites, deals with them and propagates
these impulses to connected neurons, depending on the oc-
currence of specific neurological conditions, the artificial
neural-network neuron receives numerical values through
its input nodes, processes these values using a combination
of a summation and an activation function, and yields an
output, depending on the input values themselves and the
weights associated with them.

Figure 1 presents the mathematical structure underly-
ing an artificial neural-network neuron. In the figure,
x1, · · · , xn are numerical values that represent input sig-
nals, w1, · · · , wn are the weights associated with each
input, and f is the activation function that receives the
weighted sum of the input signals, i.e.

∑n
i=1 xi wi as its

parameter

� � f

w1

w2

x1

x2

xn-1

xn

wn-1

wn

�

�
�
�

�
	

� �

�

n

i
iiwxfy

1

Inputs

and

Weights

Summation

and

Activation Function

Output

Value

Figure 1. The mathematical structure under-
lying an artificial neural-network neuron.

Figure 2 presents a feed-forward neural network that re-
ceives four input signals, i.e. x1, · · · , x4. Each signal has a
corresponding input node, whose function is simply to for-
ward the input signals to the nodes in the next layer. In

the hidden node layer, the three neurons H1, H2 and H3

process the input signals and send a corresponding output
to the next layer. In the output layer the single node O1

processes the signals sent by the nodes in the hidden layer
and generates an output y.

I1

I2

I3

I4

H1

H2

H3

O1

y

x1

x2

x3

x4

Figure 2. A symbolic representation of an ar-
tificial neural network.

The most frequently used mechanism to train an artifi-
cial neural network is to randomly choose the weights used
by the neurons and present the network to a set of observa-
tions about a specific event, together with its corresponding
outcome. The difference between the outcome of each ob-
servation and the result yielded by the network can then be
successively used to adjust the weights in the hidden layers
of neurons until an acceptable result is reached.

In this training strategy, called “back-propagation”, the
change in the weight w connecting unit i to unit j is given
by Δwj←i = η ej yi, where a unit is either an input, hid-
den or output node, η is an arbitrarily chosen learning rate,
ej is the error derivative for unit j, and yi is the out-
put from unit i. The error derivative for unit j is given
by ei = f ′(yi)

∑n
j=1 ej wj←i, where f ′ is the derivative

of the activation function. A detailed discussion of back-
propagation and other network architectures and training
strategies is found in [8]

By choosing the right inputs, number of hidden layers,
number of neurons in each layer, number of outputs, kind
of activation function and training strategy, one may design
an artificial neural network that can precisely approximate
any types of function, hence the great usefulness of artificial
neural networks. A comprehensive introduction to neural-
network technology is provided by Ardib [2].

2.3 The SEBRAE Challenge

The “SEBRAE Challenge” is a virtual business game
that simulates decisions that executives face on a daily ba-
sis, including the last word on the purchase of raw material,
price formation, production, competition analysis, research

387

& development etc . The game is played in rounds over the
Internet by college students of seven different countries in
South America, i.e. Brazil, Argentina, Paraguay, Uruguay,
Chile, Colombia and Peru. In each round the participants
have the opportunity to consider the current situation of
their virtual companies, as well as the different forces that
act upon the market where they sell products and services
[12].

Despite the extensive educational material made avail-
able by SEBRAE, participants are free to contact, via e-
mail, the team of professionals responsible for the game’s
execution at any time to resolve questions, make complaints
and offer suggestions. To deal with the inflow of e-mails,
SEBRAE has brought together a telemarketing service that
answers these e-mails as quickly as possible, during office
hours. This obviously falls short of satisfying the need for
prompt answers to questions that might decide the fate of
participants in the game, especially if these questions are
addressed to SEBRAE outside office hours.

3 The Method

With a view to providing answers to questions posed by
the participants in the SEBRAE Challenge whenever nec-
essary, a hybrid neural-network based question-answering
system was built. Figure 3 presents the general structure of
this system.

Figure 3. General structure of the SEBRAE
Challenge hybrid neural network question
answering system.

It should be noted that there are circumstances in which
the neural-network question-answering system does not an-
swer questions posed by the participants in the SEBRAE
Challenge. Questions that are unlikely to be answered cor-
rectly are redirected to a telemarketing operator, who be-
comes responsible for providing adequate answers.

3.1 The Data

The results presented in this article are based upon a ran-
dom sample of 1,531 messages sent by the Brazilian par-
ticipants in the 2004 edition of the SEBRAE Challenge, to-

gether with the corresponding reply provided by the tele-
marketing operators. All messages were written in Por-
tuguese.

The vast majority of these messages contained only a
single question posed by participants of the SEBRAE Chal-
lenge, while a small number contained double questions, 77
to be precise. These double questions e.mails were later
manually transformed into 142 single question messages
that became part of the data set used to train the neural
network. Therefore, the final training data set consisted of
1, 454 + 142 = 1, 596 messages.

When closely examined, the 1, 596 replies provided by
the telemarketing operators could be grouped together into
141 distinct answers without any loss of information. Fur-
ther sample data observation revealed that the 141 distinct
answers could be properly replaced by 24 new more gen-
eral answers and that 5 of these new answers could be used
to reply 91.3% of all messages received. Tables 1 and 2
summarize these figures.

Replies Quantity Messages Properly
Replied

Originally provided by SEBRAE 1,596 100%
Manually created 24 100%

Table 1. Coverage of the replies to the emails
provided by SEBRAE.

Quantity Messages Properly Replied
5 91.3%

19 8.7%
Total 100.0%

Table 2. Coverage of the replies manually
crated.

3.2 Data Transformation

Before an e-mail can be presented to a neural network for
both training and classification, it must go through a process
of transformation. The reasons for this are quite simple:
although e-mails are frequently composed of sequences of
alphanumeric characters, neural networks are able to deal
with numbers only. Moreover, data transformation helps to
reduce the complexity involved in the problem of identify-
ing the content of an e-mail.

The data manipulation process to which the e-mails pro-
vided by SEBRAE were subjected is composed of six dif-
ferent activities that are executed sequentially, as follows:
(a) token separation, (b) translation of abbreviations and
foreign language words, (c) translation of words into their

388

phonetic forms, (d) stop-words removal, (e) election of the
most relevant words, and (f) codification of words into bi-
nary numbers. Figure 4 places these activities into perspec-
tive.

Figure 4. General structure of the SEBRAE
Challenge hybrid neural network question
answering system.

3.2.1 Token Separation

This consists in separating the different tokens that compose
an e-mail, i.e. different sequences of alphanumeric charac-
ters without spaces from which the punctuation marks have
been removed.

3.2.2 Translations

Although the ability to express the same idea in different
forms may initially make a text more interesting to be read,
it does add complexity to its understanding. For exam-
ple, words in a foreign language and abbreviations are fre-
quently used to convey the cultural aspect of a situation and
to shorten the text respectively. However, in these circum-
stances, readers are required to master not only the meaning
of words outside their natural tongue, but also the meaning
of a considerable range of abbreviations.

Moreover, despite the wide availability of spell-check
software on the market, the misspelling of words in e-mails
(even those sent by undergraduate students) is not an un-
common event. One way to reduce the extra complex-
ity of having to identify the meaning of words with non-
standardized spellings is to translate them into their pho-
netic form. In this context, for example, “range”, “rrange”,
“rannge” etc., may all be translated into “reind�”, its com-
mon phonetic form.

3.2.3 Stop-Words Removal

Stop words are either functional or connective words that
lack discrimination power when used to search for informa-
tion in a data base, classify texts, infer the meaning of elec-

tronic messages etc. The following are examples of words
that are customarily listed as stop words in English: “a”,
“an”, “the”, “in”, “of”, “on”, “are”, “be”, “if”, “into” and
“which”. See [6] for lists of stop words in a variety of west-
ern languages, including the English language.

3.2.4 Selection of the Most Relevant Words

Despite all the transformations to which the e-mails pro-
vided by SEBRAE have been subjected so far, they are
likely to contain words with different discrimination power
when it comes to the identification of which reply each e-
mail requires. While some words may be highly relevant to
the task, others will be almost as irrelevant as stop words.

In order to ascertain the discrimination power of a word
regarding a specific reply, it suffices to determine how well
this word can separate messages that should be properly an-
swered with that reply from the others. This can be achieved
with the support of the widely used Gini diversity index.
The index was initially proposed by Corrado Gini [7] and
later adapted by Breiman et al. [3] for the development of
classification methods.

In formal terms, for a given set of observations O and
a class J of n objects, Gini is given by I(O) = 1 − S,
where S =

∑n
i=1 P (ji|O)2 for ji ∈ J , and P (ji|O) is the

probability of occurrence of objects ji in O. Rokach and
Maimon examine both Gini and other alternative ways of
estimating the discrimination power of objects in a variety
of different circumstances [14].

3.3 The Neural Network

With the support of Neural Dimensions’ Neural Solu-
tions software [9] a series of experiments where carried out
in order to provide an adequate neural network to be used as
the inferential engine that powers the SEBRAE Challenge’s
hybrid QAS.

All the networks used in these experiments share some
common properties. For example, they are all feed-forward
networks and have exactly one fully-connected hidden layer
of neurons, i.e., every neuron in the hidden layer are con-
nected to all inputs and outputs. Also, following advice
from both Sinha [15] and Jefferson et al. [10], the num-
ber of neurons in the hidden layer is set to be the integer
immediately greater or equal to the geometric mean of the
number of inputs and outputs1. The back-propagation train-
ing strategy is used in all experiments.

To offer an unbiased estimation of the error incurred by
the neural network in each experiment, the e-mails provided
by SEBRAE are divided into two different sets. While the
first and larger set is used to train the network, the second
and smaller set is used to estimate the number of correct

1If p e q are numbers, than
√

p× q is the geometric mean of p and q.

389

answers yielded by the network. Table 9 presents the corre-
sponding figures.

Training Set Test Set Total
Qtd. % Qtd. % Qtd. %

1,117 70.0 479 30.0 1,596 100.0

Table 9: Quantity of e-mails used to train and test the neural network.

Because only five standard replies can be used to answer
the vast majority of all the e-mails provided by SEBRAE
(see Table 4) and one can rely on the support of a telemar-
keting operator to answers messages for which a standard
reply has not been properly provided, in all experiments the
neural network was trained to deal with e-mails requiring
six different kinds of standard replies.

While five of these replies are precisely those used to an-
swer 91.3% of the e-mails provided by SEBRAE, the sixth
provides a pseudo standard reply to the remaining 8.7% of
the e-mails. The idea behind the use of a pseudo reply is
that the actual reply to certain questions posed by partici-
pants of the SEBRAE Challenge should be provided by a
telemarketing operator in a customized manner. Therefore,
when one of these remaining e-mails is detected, instead of
indicating which standard reply should be used by the QAS,
the neural network concedes that a telemarketing operator
should be called in.

4 The Experiments and Related Results

In the same manner that a human being can still un-
derstand the meaning of a sentence from which words or
sounds have been removed, an artificial neural network can
be trained to identify which reply should be used to answer
an e-mail from a reduced subset of its contents. Therefore, a
question that developers of neural-network QAS’s face is to
determine the smallest set of words that hold sufficient dis-
crimination power to allow e-mails to be properly replied
to.

With regard to the development of the SEBRAE hybrid
QAS, five different experiments have been carried out bear-
ing this objective in mind. In each experiment, the set of
most relevant words were gradually enlarged until no fur-
ther improvement in the performance of the network could
be reached.

In order to avoid bias towards certain standard replies
to the detriment of others, the same number of most rele-
vant words has been selected for each of the six replies the
network was trained to recognize when to use. Table 10
contains the total number of relevant words used in each
experiment.

For example, in the first experiment, the twenty-three
most relevant words were selected to train the network. In
the fifth and last experiment, the fifty most relevant words

Experiment Most Relevant Words
Per Standard Reply Total

1 5 23
2 8 33
3 10 38
4 12 44
5 15 50

Table 10: Quantity of most relevant words used in each experiment.

have been selected. However, because some words have
discrimination power to recognize the need to use more than
one standard reply, the total number of relevant words in
each experiment is smaller than six times the number of rel-
evant words per standard reply.

It should be noted that because each most relevant word
corresponds to a neural-network input, the number of inputs
used in each experiment varies accordingly. However, the
number of outputs is always the same, i.e. the number of
replies the network is trained to recognize (six in this case).

Table 3 presents the accuracy of the answers provided
by the neural network in the different experiments. While in
the first experiment the network was able to properly answer
91.9% of the e-mails in the test set, this figure rose to 93.8%
in the last experiment, in which a larger set of most relevant
words was used. Unfortunately, neither further increase in
the number of most relevant words nor in the number of
hidden neuron layers was followed by an increase in the
number of properly answered e-mails.

Replies
Experiment Correct Incorrect Total

Qtd. % Qtd. % Qtd. %
1 397 91.9 35 8.1 432 100.0
2 405 92.5 33 7.7 438 100.0
3 412 93.2 30 6.8 442 100.0
4 414 93.7 28 6.3 442 100.0
5 421 93.8 28 6.2 449 100.0

Table 3. Precision of the answers provided by
the neural network in each experiment.

In addition, the data presented in Table 5 reveal two im-
portant pieces of information. First, the accuracy of the an-
swers provided by the network increases much more slowly
than the increase in the number of most relevant words. This
is due to the fact that words with decreasing discrimination
power were added to the set of most relevant words as the
experiments proceeded.

Second, not all e-mails were answered by the network.
Only the e-mails to which an actual standard reply has been
provided are directly replied by the network. E-mails that
do not fit into this category are forwarded to a telemarketing
operator, who becomes responsible for providing the right
answer. In the last experiment, for instance, the telemar-
keting operator was required to answer 30 e-mails, i.e. out

390

of the 479 e-mails used for testing, the neural network an-
swered 449 and the telemarketing operator only 30. Figure
5 summarizes these statistics.

Figure 5. Summary of the last experiment in
the pursue of a suitable inferential engine.

5 Conclusions

One of the major differences between the traditional
mortar and brick market of products and services we have
been accustomed to and the virtual market created with the
introduction of the Internet is the easiness with which cus-
tomers may compare the benefits of acquiring products and
services from a multitude of different providers. In the very
competitive virtual market, where many products and ser-
vices are offered in a global scale, it is becoming increas-
ingly difficult for organizations to avoid providing services
on any other basis but 24/7. After all, one of the main char-
acteristics of the Internet is its around-the-clock availability.

During the process of product acquisition over the Inter-
net, it is natural that potential buyers may want to get in
touch with customer support services virtually in search of
information that they could not find in a web site. Failure
in promptly providing such information may lead to cus-
tomer dissatisfaction and cognitive dissonance, which may
adversely impact the customer-to-business relationship and,
as result, sales.

In this article, we have demonstrated the viability of
building hybrid question-answering systems that are able to
properly answer questions posed by customers via e-mail in
natural language. These systems, that use artificial neural
networks as their inferential engine, are not difficult to be
built and maintained, yielding accurate results even in the
presence of noise. If the necessary data is available, there
is no major obstacle preventing companies from enjoying
the benefits of hybrid question-answering systems, but their
desire to do so.

References

[1] J. Anton and M. Murphy. Managing Web-Based Customer
Experiences: Self-Service Integrated with Assisted-Service.

The Anton Press, August 2003.
[2] M. A. Arbib. The Handbook of Brain Theory and Neural

Networks. The MIT Press, 2nd edition, November 2002.
[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.

Classification and Regression Trees. Chapman & Hall/CRC
Press, January 1984.

[4] C. Champion. Taking advantage of web self-care to meet
client needs. Customer Interaction Solutions, 22(5):48–50,
November 2003.

[5] J. Copeland. A brief history of comput-
ing. Information avalibale on the Internet at
www.alanturing.net/turing archive/pages/Reference%20Articles/
BriefHistofComp.html, June 2000. Site last visited on
January 20th, 2007.

[6] I. I. d’Informatique - University of Neuchatel. Have a
look at the CLEF site (european languages) or NTCIR
(asian languages) providing other information about mul-
tilingual retrieval. Information available on the Internet at
www.unine.ch/info/clef/, Switzerland, 2005. Site last vis-
ited on February 8th, 2007.

[7] C. Gini. Memorie di Metodologica Statistica, volume I,
chapter Variabilità e concentrazione, pages 359–408. Dott.
A. Giuffrè, Milano, Italy, 1939. Article written in Italian.

[8] M. M. Gupta, L. Jin, and N. Homma. Static and Dynamic
Neural Networks: From Fundamentals to Advanced Theory.
John Wiley & Sons-IEEE Press, 1st edition, April 2003.

[9] N. Inc. NeuroSolutions. Information available on the inter-
net at www.nd.com, 2006. Site last visited on March 16th,
2007.

[10] M. F. Jefferson, N. Pendleton, S. B. Lucas, and M. A. Horan.
Artificial Neural Networks in Cancer Diagnosis, Prognosis,
and Patient Management, chapter 5: The Use of Genetic
Algorithm Neural Network (GANN) for Prognosis in Sur-
gically Treated Nonsmall Cell Lung Cancer, pages 39–53.
CRC, 1st edition, June 2001.

[11] M. T. Maybury. New Directions in Question Answering,
chapter 1: Question Anserwing: An Introduction, pages 3–
14. AAI Press / The MIT Press, 2004.

[12] SEBRAE – The Brazilian Micro and Small Business Support
Service. Desafio sebrae 2005. Information available on
the internet at www.desafio.sebrae.com.br, 2005. Site last
visited on February 14th, 2007. Text written in Portuguese.

[13] S. Negasha, T. Ryanb, and M. Igbariab. Quality and effec-
tiveness in web-based customer support systems. Informa-
tion & Management, 40:757–768, 2003.

[14] L. Rokach and O. Maimon. Top-down induction of decision
trees classifiers: A survey. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews,
35(4):476–487, November 2005.

[15] A. K. Sinha. Short term load forecasting using artificial
neural networks. In IEEE International Conference on In-
dustrial Technology 2000, pages 548–553, Mumbai, India,
19-22 January 2000. Jaico Publishing House.

391

Knowledge Conversion in Software Development

Olivier Gendreau, Pierre N. Robillard
Computer engineering department
École Polytechnique de Montréal

Montréal, Québec, Canada
{olivier.gendreau, pierre-n.robillard}@polymtl.ca

Abstract

Software processes can be categorized in two types of
approach: engineering-based processes, criticized for
restraining creativity, and agile methodologies, criticized
for being often unpredictable. This paper proposes a
conciliatory view of software processes by analysing
human cognitive activities. Our approach, based on the
SECI knowledge conversion process, defines eight
knowledge conversion types. The approach is then tested on
a project developed by a team of undergraduate students
enrolled in a capstone project during the 2006 winter
semester at École Polytechnique de Montréal. The
knowledge perspective of the capstone project mainly
stresses the importance of creativity and information
sharing in collaborative projects.

1. Introduction

Software processes can be categorized in two types of
approach. First, there are engineering-based processes such
as Rational Unified Process (RUP), Unified Process for
EDUcation (UPEDU) or Model-Based Architecting and
Software Engineering (MBASE). These processes are
mainly criticized for restraining creativity [1]. Second, there
are agile methodologies such as Extreme Programming
(XP), Scrum, Dynamic Systems Development Method
(DSDM), Adaptive Software Development (ASD), Crystal
Methodologies, Lean Development (LD), Feature Driven
Development (FDD) and Agile Modeling (AM). These
methodologies are mainly criticized for being often
unpredictable [2]. In an effort to conciliate these two
software process views, an hybrid approach as emerged
mainly by mixing known advantages of the two approaches,
OpenUP [3] being an example.

The elaboration of a software process implies
conformance to different standards, conventions and best
practices of the software field. Metamodels such as

Software Process Engineering Metamodel (SPEM), OPEN
Process Framework (OPF), Software Process Improvement
Capability dEtermination for Object-Oriented/Component-
Based Software Development (OOSPICE) and LiveNet can
be used to assure uniform representation between
processes. But in order to assess software quality or
maturity, reference models such as ISO 9001, Software
Capability Maturity Model (SW-CMM), Capability
Maturity Model Integration (CMMI) and ISO/IEC 15504
can be used. Also, software process improvement (SPI)
models are available such as Personal Software Process
(PSP), Team Software Process (TSP) and Initiating,
Diagnosing, Establishing, Acting and Learning (IDEAL).

The SPI field can also be categorized in two approaches :
blueprints and recipes [4]. We can see similarities between
traditional processes and blueprint SPI as between agile
methodologies and recipe SPI. In fact, traditional processes
and blueprint SPI insist on process and prescription while
agile methodologies and recipe SPI insist on people and
adaptation.

By reviewing the software process literature, we can
conclude that most of the processes stand in the engineered-
based process/agile methodologies debate continuum. Since
we know that software development is knowledge-
intensive [5], in order to manage this duality, the integration
of some knowledge engineering concepts should be a
valuable avenue. Recurring problems of feedback loops
could be corrected by improving and adding software
practices in order to achieve an integrated knowledge
management. Of course, some software disciplines are
more subject to benefit from this type of approach. In
particular, software design is a discipline particularly
involved with cognitive synchronisation. This knowledge-
centered activity is intended to assure that team-mates share
the same mental model, the same representation of
concepts [6].

This paper proposes a conciliatory view of software
processes by analysing human cognitive activities. To
achieve this purpose, we suggest analysing knowledge

392

conversion in software processes. For now, there is not
much literature on that matter which leads us to believe in
the originality of the approach.

Section 2 presents useful knowledge concepts related to
knowledge conversion. Section 3 details the proposed
approach to analyze knowledge conversion in software
development and section 4 presents the observations from a
capstone project.

2. Knowledge concepts

More than two decades ago, Alvin Toffler [7] predicted
the imminence of a society based on knowledge as a source
of power. Nowadays, we can state that knowledge actually
is a strategic tool for enterprises seeking improved
profits [8]. Therefore, knowledge management is clearly an
important matter.

Information and knowledge are vital forces in today’s
organizations [9] and particularly software organizations. In
fact, information and knowledge are essential during
software development lifecycle, predominantly during
design. In this regard, Kahkonen and Abrahamsson [10]
demonstrated the link between software processes and
knowledge creation.

Knowledge is context-specific, meaning it depends on
time and space [11]. Information becomes knowledge when
it is interpreted by someone, associate to a context and
anchored to one’s commitments [12]. We can categorize
knowledge in two types: explicit and tacit [13]. Explicit
knowledge can be expressed in formal and systematic
language. It can be processed and stored relatively
easily [14], contrarily to tacit knowledge which is highly
personal and hard to formalise. It is deeply rooted into
one’s actions, experience and values [15].

Nonaka, Toyama and Konno [12] developed a dynamic
process enabling an organization to create, maintain and
exploit knowledge. The Unified Model of Dynamic
Knowledge Creation includes three elements: the SECI
process, which is a knowledge creation process through
tacit and explicit knowledge conversion; Ba, which is the
knowledge creation context; and knowledge assets
including every organization-specific resources essential to
value creation.

An organization creates knowledge from the interaction
between tacit and explicit knowledge, called knowledge
conversion. There are four types of knowledge conversion:
socialisation (from tacit knowledge to tacit knowledge);
externalisation (from tacit knowledge to explicit
knowledge); combination (from explicit knowledge to
explicit knowledge); and internalisation (from explicit
knowledge to tacit knowledge) [12]. Socialisation relates to

the conversion of new tacit knowledge from past
experiences. Externalisation is the process of crystallising
knowledge by making tacit knowledge explicit.
Combination relates to converting explicit knowledge to
more complex or systematic explicit knowledge.
Internalisation happens when someone embodies explicit
knowledge into tacit knowledge.

In an organizational perspective, in order to create
knowledge, it is crucial to put strategies in place. Regarding
that matter, Choi and Lee [8] found links between
knowledge management and SECI knowledge creation
process. They conclude that a human strategy is more
appropriate for socialisation while a system strategy is more
appropriate for combination. As for externalisation and
internalisation, a balanced human-system strategy is more
appropriate.

Von Krogh, Nonaka and Aben [16] developed four
knowledge management strategies depending on knowledge
domain and knowledge process. A knowledge domain
includes data, information, explicit knowledge and tacit
knowledge. A knowledge process can either be knowledge
creation or knowledge transfer.

A knowledge gap is a problem without any known
solution. When that occurs, key resources are responsible of
gathering data and information and to create the necessary
knowledge in order to solve the problem. We can easily
relate knowledge gap resolution to software design.

A knowledge strategy consists of using knowledge
processes (transfer or creation) to knowledge domains
(existing or new) in order to achieve strategic goals such as
efficiency or innovation. The optimisation strategy is used
to transfer knowledge domains already existing in the
organization. The expansion strategy is used to create
knowledge based on data, information and knowledge
already existing. The appropriation strategy is used to build
new knowledge domains with external sources. The
exploration strategy gives to one or many teams the
responsibility to build new knowledge domains from
scratch.

To conclude, as said earlier, literature regarding
knowledge management application to software processes
is sparse which demonstrates the originality of this paper.

3. Proposed approach

We propose to analyse software development by using
an approach based on the SECI process developed by
Nonaka, Toyama and Konno [12]. Table I specifies eight
knowledge types which will allow describing knowledge
conversion in software development projects.

393

TABLE I. KNOWLEDGE TYPES

Knowledge
type Conversion details Description

KH No conversion
involved Know-how

CTT Tacit to tacit Information sharing

TE Tacit to explicit Knowledge
crystallisation

CTE CTT and
 tacit to explicit

Collaborative
knowledge

crystallisation
EE Explicit to explicit Combination, review

CEE CTT and
explicit to explicit

Collaborative
combination

ET Explicit to tacit Learning

CET CTT and
explicit to tacit Collaborative learning

In table I, we can see that each of the four SECI types of
knowledge conversion can either occur in individual or
collective contexts with the exception of CTT. In our view,
tacit to tacit knowledge conversion can not be done
individually in software development. This is because such
a thing involves “philosophical thinking” which is not
relevant in software development. Another particularity is
that KH (know-how) does not involve any knowledge
conversion because it is related to procedural activities.
CTT is a team activity used to exchange or synchronize
information. TE and CTE involve knowledge
crystallisation, which means that information is formalised
such as when structured information is written in a
document. EE and CEE are related to activities not
requiring much creativity (tacit knowledge) such as
reviewing artefacts or coding from a detailed design.
Finally, ET and CET are related to learning activities, such
as training.

Table II specifies both engineering-based and agile
software activities knowledge types.

TABLE II. KNOWLEDGE TYPES AND PROCESSES ACTIVITIES

Knowledge
Type

Engineering-based
activity

Agile
activity

KH Execute tests, Manage working environment,
Integrate system

CTT Conduct a meeting, Discuss

TE and
CTE

Design components,
Define architecture, Fix
major code defect, Plan
project’s development,

Write an artifact

Code,
Refactor (major),

Plan project’s
development

EE and
CEE

Code, Review, Fix minor
code defect, Debug

Refactor (minor),
Review, Debug

ET and
CET Attend a training, Learn

An important concern with knowledge type determination
is that knowledge types are not orthogonal. In other words,
process activities can be associated with more than one
knowledge type. Consequently, the strategy is to determine,

for a given activity, the dominant knowledge type. For
instance, coding, depending on the process used, can be
perceived as a TE or an EE knowledge type. For
engineering-based processes, coding mostly involves
translating detailed design into code. Therefore, the
dominant knowledge type is TE during the design activity
and EE during the coding activity. However, in most agile
processes, coding is considered a creative activity involving
both design and coding. In such a process, the dominant
knowledge type is TE and EE is less important than in
engineering-based processes. Consequently, for projects
needing massive artefacts production, such as in critical
systems development, engineering-based processes are
more adequate than agile methodologies.

4. Observations from capstone project

The knowledge type approach is tested on a project
developed by a team of five undergraduate students
enrolled in a capstone project during the 2006 winter
semester. It is an optional project-oriented course offered to
senior-year students in computer engineering at École
Polytechnique de Montréal. The course’s particularity is
that the project is defined by an industrial partner, this time
an international aeronautic company. The project is based
on a business needs document supplied by the industrial
partner. An engineer from the participating organization
meets the students once a week to guide them in developing
the software product. The students follow an engineering-
based software process derived from the UPEDU.

The methodology used to measure developers effort is a
more elaborate version of the effort time slip method
popularized by Perry, Staudenmayer and Votta [17] and
improved afterwards by Germain and Robillard [18]. Each
time a team member executes a task, she/he must log
information in a time slip token containing the date, start
and end time, participants involved in the task, process
details and task description. The aeronautic project
contained about 1500 tokens for a total effort of over one
thousand hours.

Table III presents the knowledge type distribution for the
project undertaken by the students based on their time slips.

TABLE III. KNOWLEDGE TYPE DISTRIBUTION

Knowledge type %
KH 7
CTT 14
TE 19

CTE 4
EE 23

CEE 19
ET 12

CET 2

394

Table III provides some insight into three types of
activities that are basic to any software development
processes: collaborative activities, creativity and learning.

First, the importance of the collaborative activities spent
on this project is obtained by summing up the four
knowledge types that involve information exchange: CTT,
CTE, CEE, and CET. It is found that although it is an
engineering-based project, almost 40% of the team effort is
spent on collaborative activities.

Second, creativity is a major endeavour in a software
development project. A first level evaluation of the amount
of team effort involved in creative activities in this project
is to consider all knowledge types that are initiated by tacit
knowledge, which are CTT, CTE and TE. These three tacit
knowledge types count for 37% of the total team effort.
Interestingly, almost half of the creativity effort is done
collaboratively.

Finally, in most projects, some learning is needed unless
team members are already expert in the field. Learning is
characterised by the conversion of explicit knowledge into
tacit knowledge. Some of the learning occurred during
discussion (CTT) but it is difficult to evaluate its
importance. Consequently, for this project, learning
activities count for at least 14% (TE and CTE) of the total
team effort.

5. Conclusions and future work

Knowledge type approach, based on the SECI process,
provides a cognitive perspective to software engineering
activities. It defines eight knowledge conversion types (KH,
CTT, TE, CTE, EE, CEE, ET, and CET). By recording
effort for each process activities, it is possible to evaluate
the knowledge type distribution in a project’s development.

The knowledge perspective of the capstone project
stresses the importance of creativity and information
sharing in collaborative projects. More detailed analyses
could provide enough insight to enable the design of
practices that will be tailored to the creativity needed in
projects. Ongoing researches are aiming at refining our
approach and at applying it to different software projects in
order to analyze correlation between knowledge type
distribution and project or software process type.

References

[1] A. J. Bailetti and J. Liu, "Comparing software
development processes using information theory,"
presented at Portland International Conference on
Management of Engineering and Technology
(PICMET'03), Portland, OR, USA, 2003.

[2] M. C. Paulk, "Extreme programming from a CMM
perspective," Software, IEEE, vol. 18, pp. 19-26,
2001.

[3] Eclipse Foundation, "Eclipse Process Framework
Project (EPF)," 2006.

[4] I. Aaen, "Software process improvement:
Blueprints versus recipes," IEEE Software, vol. 20,
pp. 86-93, 2003.

[5] P. N. Robillard, "The Role of Software in
Software Development," Communications of the
ACM, vol. 42, pp. 87-92, 1999.

[6] P. N. Robillard, "Opportunistic Problem Solving
in Software Engineering," Software, IEEE, vol. 22,
pp. 60-67, 2005.

[7] A. Toffler, Powershift: Knowledge, Wealth and
Violence at the Edge of the 21st Century. New
York: Bantam Books, 1990.

[8] B. Choi and H. Lee, "Knowledge management
strategy and its link to knowledge creation
process," Expert Systems with Applications, vol.
23, pp. 173-187, 2002.

[9] E. Trandsen and K. Vickery, "Learning on
demand," Journal of Knowledge Management, vol.
1, pp. 169-80, 1998.

[10] T. Kahkonen and P. Abrahamsson, "Digging into
the fundamentals of extreme programming
building the theoretical base for agile methods,"
presented at 29th Euromicro Conference, Belek-
Antalya, Turkey, 2003.

[11] F. A. Hayek, "The Use of Knowledge in Society,"
The American Economic Review, vol. 35, pp. 519-
530, 1945.

[12] I. Nonaka, R. Toyama, and N. Konno, "SECI, ba
and leadership: a unified model of dynamic
knowledge creation," Long Range Planning, vol.
33, pp. 5-34, 2000.

[13] M. Polanyi, "The Tacit Dimension," in Knowledge
in Organizations. Boston: Butterworth-
Heinemann, 1997, pp. 135-146.

[14] R. Williams, "Narratives of knowledge and
intelligence ... beyond the tacit and explicit,"
Journal of Knowledge Management, vol. 10, pp.
81-99, 2006.

[15] D. A. Schon, The Reflective Practitioner. New
York: Basic Books, 1983.

[16] G. Von Krogh, I. Nonaka, and M. Aben, "Making
the most of your company's knowledge: A
strategic framework," Long Range Planning, vol.
34, pp. 421-439, 2001.

[17] D. E. Perry, N. A. Staudenmayer, and L. G. Votta,
"People, organizations, and process improvement,"
IEEE Software, vol. 11, pp. 36-45, 1994.

[18] E. Germain and P. N. Robillard, "Engineering-
based processes and agile methodologies for
software development: a comparative case study,"
Journal of Systems and Software, vol. 75, pp. 17-
27, 2005.

395

A LANGUAGE FACILITATING
INFORMAL REASONING ABOUT PROGRAMS

J. Nelson Rushton and Dwayne Towell
Computer Science Department

Texas Tech University

Acknowledgment: This research was conducted under funding from NASA grant 1314-44-C522

Abstract: It is argued that traditional programming languages are not designed to be verifiable. A new language is
described, L, which is deliberately designed to facilitate reasoning about its programs, and, in particular, informal reasoning
as customarily practiced in the discipline of mathematics. Formal and informal logics are discussed for reasoning about L
programs, and several properties of the language are proven.

1. Introduction

This paper introduces L, a functional language designed
to facilitate informal reasoning about programs written in
it. Section 2 draws a comparison, first attributed to
Dijkstra [4], between programming and program
verification -- noting that they are essentially the same
activity. Section 3 points out that most programming
languages are either not designed with verifiability in
mind, or are designed for formal verifiability, leaving an
open opportunity for languages designed deliberately for
informal verifiability, which in practice is the most likely
to be used. Section 4 argues that well known high level
languages, in particular Lisp, Haskell, and Prolog, do not
have a semantics, nor a methodology of use, which
facilitates reasoning about programs in a precise way.
Section 5 defines the language L, and Section 6 discusses
formal and informal logics for reasoning about its
programs. The resulting language can be used as a
specification language, and can be implemented as a
server for performing computation and inference, in much
the same way SQL acts as a database server. It can also be
used as a meta-language for more highly sugared
functional languages. It is not intended to grow into a
language for writing executable programs, like Common
Lisp or LPA Prolog, which would invalidate its
quintessential properties of verifiability.

2 . Programming as theorem proving.

Computer programming is hard. In 2001 the Standish
Group estimated that around 30% of commercial software
projects were successful -- defined as being completed
within 10 percent of the committed cost and schedule and
delivering all of its intended functions. 50% of projects
were substantially over budget or schedule, or

compromised in functionality -- while the remaining 20%
delivered nothing at all. Moreover, it is not just large
programs that are difficult. The rates of success, failure,
and total failure for commercial projects are about the
same, in our experience, as for freshmen students, on
programs requiring one or two pages of code and
comments. Generally speaking, a person writing a
program essentially different from any they have written
before often they finds that they are in for more work than
it first appears -- or, not infrequently, that the task turns
out to be infeasible.

This section presents a perspective which helps
explain why computer programming is so deceptively
difficult. The perspective is not a new one; it goes back at
least to a paper of Dijkstra [4], but it bears refreshing. In a
nutshell the explanation is this: a program appears as an
encoding of an algorithm, along with comments which
(hopefully) specify the desired behavior of that algorithm.
Neither the code nor the specification may look
particularly daunting. But as Dijkstra noted, the code and
specification together constitute a mathematical prop-
osition -- namely, that a certain algorithm has a certain
property. The real complexity of such a proposition, if it
is claimed to be a true one, lies not in its statement but in
the reasoning which convinces us of its truth. That is, the
real complexity if a program lies not in the code, not in
the specification, but in the logic which bridges the two.
In the current practice of programming, this logic is
usually not explicit. This is why programs are deceptively
complex. It may be imagined that the complexity which
meets the eye in the code and comments of a program,
compared with that which is hidden in the logical
connection between the two, is analogous to the
complexity of the statement of a mathematical theorem
compared with its proof.

Moreover, the reasoning which connects code with
its specification cannot be thought of as an ornament, or

396

an ivory tower ideal. On the contrary, this reasoning, with
the implicit complexity surrounding it, is inescapably at
the heart of a programmer's thought process. Code, after
all, is not written at random. The programmer's job begins
with a desire to encode an algorithm certain properties --
and is finished if and when it is reasonably believed to
have these properties. This is simply what it means to
program. Explicit program verification may not be
practiced much, but reasoning about computation is the
essence of the activity of programming. The associated
task of typing code which results from this reasoning is an
indispensable, but comparatively trivial part of the
process.

3. Verifiability of programming languages.

In the early days of computer programming, there was
little choice on how computations were represented – it
was necessary to meet the machine on its own terms.
Over time, technology afforded more flexibility in
representations, and consequently more and more work
was done using "high level" languages – that is, languages
more centered around the human's reasoning process, as
opposed to the machine. However, the mainstream
languages have evolved in small, ad-hoc steps, with each
resembling its predecessor, from machine code to
assembly, to FORTRAN, C, C++, and Java. Each step in
this evolution appeared to its proponents to simplify the
encodings of algorithms; but we claim less attention, if
any, was paid to the properties of these languages for
explicit, precise reasoning about those algorithms. Not
surprisingly, programs in these languages are difficult to
reason about, as argued by Cooke et. al. [3]

While mainstream languages were evolving in small
steps from machine code, a smaller group of scholars was
taking a different approach to language design, centered
from the outset around functional and logical notation --
time tested methods for writing human-understandable
calculations. Notable efforts in this direction have
included Lisp, Prolog, and Haskell. Again, however,
attention to the proof theories associated with these
languages appear to have been side issues, and largely if
not entirely post hoc. None of the original papers on Lisp,
Prolog, or Haskell, for example, mentions the verification
of programs written in the respective languages. In an
often-cited paper [5], John Hughs argues, for example,
that modularity is the key advantage of functional
programming, but makes no explicit connection between
modularity and explicit verification. In Section 4, we will
argue that this lack of attention has resulted in barriers to
reasoning about code in these languages, some related
inherently to the syntax and semantics of the languages,
and some related to the methodology of their use.
 Recently, yet a third group languages has been
developed, paying deliberate concern to the formal
verifiability of their programs. Notable efforts in this

direction include PVS and ACL21. These lines of
research have yielded valuable practical results in the
design of safety-critical (or, generally, correctness-
critical) hardware and software.

At the same time, the use of formal verification for
arbitrary software properties is not likely to catch on in
general practice, because the discovery of nontrivial
formal proofs -- by man, machine, or cooperation of the
two -- is grindingly slow. PVS and ACL2, for example,
require a great deal of expertise in formal logic to even
begin learning. Functions in both languages by default fail
to compile absent a formal proof they are well-defined
and total on their domains. PVS disallows mutual
recursion, for reasons related to this.

For such reasons, formal logic is scarcely used, for
the actual discovery and verification of properties of
computations, even by experts in formal logic. Gödel's
famous theorem of incompleteness, for example, is about
formal logic, but was originally stated and proven
informally. A formal proof followed eight years later by
Chwistek [1], which was an interesting development, but
not because it seriously boosted peoples' confidence in the
theorem. The well-checked informal proof was good
enough. As a rule, when people -- even logicians -- want
to understand the properties of computations, they reason
about them informally.

All off the above points to a gap in technology, in
terms of programming languages deliberately designed
for explicit, precise, but informal reasoning about defined
functions -- of the sort customary in the profession of
mathematics. The goal of this paper is to define such a
language. The following section points out how the
paradigms of existing well known functional and logical
languages can be improved on in this respect.

4. On traditional functional and logical languages.

We will say that a language is declarative to the extent
that its primary components (functions, clauses, etc.)
resemble propositions which characterize the behavior of
the programs in which they appear. Obviously, procedural
and procedural/OO languages do not come close to
having this property. Lisp is declarative in some cases, for
example, the following function

1 We mention ACL2 as a separate language from Lisp
because (1) it has some special syntactic features distinct
from pure Lisp, and (2) it is restricted to a subset of Lisp
and a programming methodology substantially different
from Lisp employed in practically all in other contexts.

397

 (defun f (m n)
 (cond (and (>= m 0) (> n 0) (< m n))
 (cond
 ((eq m 0) n)
 (t (f (mod n m) m))
)))

maps simply to a formal proposition

 m N & n N & m>=0 & n>0 & m<=n ->
 (
 (m=0 -> f(m, n) = n)
 &
 (~(m=0) -> f(m,n) = f(m, n mod m))
)

which, along with axioms for built in operations,
characterizes the function well enough to deduce its
essential property (viz., that under suitable assumptions it
returns the greatest common divisor of m and n.) For
functions written in pure Lisp (without side effects), the
mapping is practically trivial, with two exceptions:

(1) Unlike logical statements, guarded expressions
appearing as arguments of Lisp's cond operator
are tested and used in a particular order. Thus
associated conditional propositions are
systematically, though usually only slightly,
more complex than the Lisp definitions.

(2) Lisp functions often in practice omit the types of
their arguments, which must be included in the
associated propositions to assure correct
behavior.

Regarding (1), McCarthy [7] is to be credited with
introducing conditionals into formal functional
languages. They were, however, introduced with a syntax
and semantics that shrinks code at the expense of making
the language less declarative, in the sense defined above.
Also, in this respect, Lisp's conditionals differ from those
of traditional mathematics. Ordinary mathematical
conditionals are written, for example, as follows:

 For x in R, let
 f(x) =
 x+5 , when x<= 0
 x-5, when 0< x < 10
 x-1, when x >= 10

When evaluating, say, f(21) using this definition, the
reader is not obliged to read the branches of the definition
in any particular order. If a branch is found whose guard

is satisfied, other branches can be ignored even if they
are written first. The author of a function, on the other
hand, is obligated to write a function which is well
defined, in the sense that the value computed is
independent of the order in which branches are
examined. For example, if someone wrote the following:

 For x in R, let
 f(x) =
 x+5 , when x <= 1
 x-5, when x >= -1

then he would be violating his agreement to play the game
of mathematics! A syntactically analogous Lisp
expression using cond is syntactically valid, yields a
genuine function, and, in fact, would not be unusual. The
conventions of mathematics, it seems, accept the risk of
ill-defined functions in trade for a higher level of
declarativeness.
 The second issue is largely methodological. Our
premise is that if one seriously intends to reason about a
function definition, then it must be accompanied by
conditions on its arguments which guarantee that it
returns a value -- that is, a domain must be specified on
which the function is total. Both PVS and ACL2 enforce
this requirement. The reason is that even the most basic
platitudes of formal and informal reasoning, such as
f(x)=f(x), fail when applied to terms which do not have
values. For example, if the Lisp function f defined above,
the term (= (f 1 (2 3)) (f 1 (2 3))) returns not
true, but an error. Normally, using typed variables takes
much of the nuisance out of specifying domains. But
because Lisp variables are untyped, one must either leave
the functions partial, which impedes reasoning, or
explicitly insert the missing type information using
Boolean functions as types, which tends to clutter the
code.

Haskell, in contrast with Lisp, uses type signatures for
functions, which helps manage the complexity of keeping
up with their domains. Haskell's conditionals, like those
of Lisp, are ordered; and moreover Haskell allows
multiple definitions of a function symbol, which are
again ordered. For example, in the definition shown here

 factorial(0) = 1

factorial(n) = n * factorial (n-1)

the second equation is ignored in computing factorial(0).
On its face, it says something which is false about the
behavior of the program, but its real meaning can be
extracted considering the fact that the equations are tried
in order. Thus the semantics of the equations appearing in
a Haskell program depend implicitly on their preceding
context. The dependency is simple, and by itself not

398

likely to cause confusion. Moreover, it saves keystrokes
in the definition. But we claim the savings in code size is
just what is paid back as a cognitive load when reasoning
about the code, considering the context dependency of
the equations. This explains why mathematicians have
never adopted the same convention, despite the more
succinct definitions it affords.
 Another attribute of Haskell is lazy evaluation. This
goes hand in hand with the deliberate use of partial
functions, which can be used to do things that might
requite more code otherwise. Given Dijkstra's analogy
that the code is "half a proposition", and the real
complexity is in verification, this raises the question of
the effect of deliberate use of Lazy evaluation on the
resulting verification logic. Early research in this area
was done by Simon Thompson [8]. As usual, this work
was after the fact with respect to development of
language being reasoned about, in this case Miranda. The
resulting logic was both sophisticated and bulky, and
Thompson as well as later authors (e.g., [6]) have
commented on the degree of complexity added to the
logic by lazy evaluation. Even if the formal verification
logic were only equally complex with, say, predicate
calculus, the mere fact that it is highly nonstandard would
have serious consequences for informal verification.

Prolog, the best known logical language, is used in
practice with side effects, including assert and cut,
which require dynamic logic to be reasoned about --
much as a program in FORTRAN or Java. If we consider
the pure form of the language, Prolog is quasi-declarative
in the sense that inferences actually made by the
interpreter are sound with respect to the prima facia
interpretation of the code as a set of propositions (modulo
only the absence occurs-check in unification algorithm of
most implementations). However, the use of depth first
SLDNF resolution is incomplete, so that the Prolog
programmer must keep the evaluation mechanism in
mind while coding, rendering the language largely a
procedural one. This is not unexpected since the choice
of depth first SLDNF was largely motivated by a desire
to allow side effects to be predictably deployed.

5. The language L.

We now define a language which builds on the traditions
of functional languages, but incorporates some of the
insights above in being designed from the ground up to
facilitate informal verifiability. We begin with the syntax.
Nonterminal symbols appear in italics. Meta-symbols are
::= () * |. Formal symbols in the target language
resembling meta-symbols are enclosed in single quotes.

identifier ::= letter (letter | digit)*
functionName ::= identifier (^ identifier)*
naturalNumber ::= digit digit*

integer ::= naturalNumber | - naturalNumber
rational ::= integer | integer / naturalNumber
scalar ::= identifier | functionName | rational
variable ::= ? identifier
head ::= functionName '(' variable (,variable)* ')'

term ::= variable | scalar
 | functionName'(' term (,term)* ')'
equation ::= equals(term, term)
guard ::= equation
body ::= term
programRule ::= rule(head, body, guard)
program ::= programRule*
derivedRule ::= rule(term, term, term)
rule ::= programRule | derivedRule

 We consider the following function symbols built in.
Numbers following the function names indicate their
arities. The following have their usual interpretations on
rational numbers:

add/2 subtract/2
minus/1 multiply/2
divide/2 modulus/2
floor/1 less/2
greater/2 lessEq/2
greatEq/2

For every nonnegative integer n, and terms a1,…,an,
roster(a1,…,an) is interpreted as the set {a1,…,an}.

The following have their usual interpretations on sets:

 union/2 setDifference/2 memberOf/2

The following Boolean operators have their classical
interpretations on the identifiers true and false:

and/2 or/2 not/1

The function symbol equals/2 has its usual
interpretation on rational numbers, identifiers, and finite
sets formed from these. The unary functions

rational/1 set/1 natural/1 int/1

return true if their argument is a rational number, set,
natural number, or integer respectively. Otherwise they
return false.

The semantic value of a program is a set of equations
which are its "consequences", as defined below.
Consequences of a program P of the form equals(T, D),
where D is a "literal" (defined below), are thought of as
defining the value D which an interpreter must return
when querying the program P with the term T.

399

A literal is a term written using only scalars and the
roster function symbol. For any set S of rules and
equations, define (S) to be the closure of S under the
substitution law of equality for literals -- precisely, (S)
is the smallest set T of equations and rules containing S,
such that if equals(a,b) or equals(b,a) appears in T,
where either a or b is a literal, and X is an equation or rule
appearing in T, then Y appears in T where Y is obtained
from X by substituting one or more instances of a for b.

An instance of a program rule R is the term obtained
by replacing all variables occurring in R consistently with
literals. For a program P and a set S of equations and
rules, define (P,S) as the closure of S under application
of rules of P -- that is, (P,S) is the smallest set T of rules
and equations containing S such that if rule(H,B,true)
appears in T, equals(H,B) appears in T.

An axiom of L is an equation whose first argument is
written with a single built-in function symbol whose
arguments are literals, whose second argument is a literal,
and which is true in the usual interpretation of the
function symbol. If P is a program, the set C(P) of
consequences of P is the closure of the axioms of L under
substitutivity of equality and the rules of P. That is, C(P)
smallest set T of rules and equations containing P, as well
as all axioms of L, and such that (T) = T and (P,T) = T.

6. Properties of L

If R = rule(head, body, guard) is a rule in language L,
let (R) be the formula (x1,…,xn)(guard ->
equals(head, body)) of first order logic with equality,
where x1,…,xn are the variables appearing in R. If P is a
program in L, (P) = { (R) : R P}. We are now
prepared to state

Theorem 1: Let P be an L program. If equation E is a
consequence of P, then E is entailed under first order
logic with equality2 by (P), together with the axioms of
L.

This result gives some of the formal verification
properties of the language L, relating them to a simple,
well known formal system. But there is a subtlety
involved in the analogous informal reasoning. Informally
we would like to write simply 6<9 for, say
equals(less(6,9),true), and, of course a=b for
equals(a,b). This means that the formal terms
equals(a,b) and equals(equals(a,b), true) have
the same informal translation a=b. The problem is that in
some cases, the consequences of a program P may contain
an equation of the form equals(a,b), without containing

2 as expounded in, e.g., Cohen [2].

the corresponding term equals(equals(a,b), true).
Therein lies the rub.
 It turns out that this unfortunate occurrence happens
precisely when one of the function symbols occurring in a
or b is a symbol f for a partial function. That is, the guard
conditions for the rules defining f are satisfied for
arguments for which f cannot be inferred to have a literal
value. For example, consider a program attempting to
defining a factorial function by

rule(factorial(0), 1, true)

rule(
 factorial(n),
 times(n, factorial(minus(n,1))),
 not(equal(n,0))
)

In this case, factorial is a partial function since the
guard condition of its second rule admits the argument -1,
for example, while factorial(-1) cannot be inferred to
have a literal value.
 Here is where L departs most substantially from pure
Lisp, but resembles traditional mathematics, in its
methodology and its semantics. First, methodologically,
we insist that partial functions never be written
knowingly. These errors cannot be caught by a syntax
checker, which would be equivalent to solving the halting
problem; but they are to be considered harmful. Second,
when evaluating terms, an L interpreter is not required to
behave deterministically when evaluating partial
functions outside of their domains. We next give the
precise specification for an L-interpreter.

For any set S of rules and equations, define (S) to be
the closure of S under the substitution law of equality for
literals and non-literals-- precisely, (S) is the smallest
set T of equations and rules containing S, such that if
equals(a,b) or equals(b,a) appears in T, and X is an
equation or rule appearing in T, then Y appears in T
where Y is obtained from X by substituting one or more
instances of a for b. The operator differs from only in
that substitution may be made for both literals and
expressions (that is, nonliteral terms).

Now, if P is a program, define the set Q(P) of quasi-
consequences of P is the smallest set T of rules and
equations containing P, as well as all axioms of L, and
such that (T) = T and (P,T) = T. Essentially, in
inferring quasi-consequences of a program, we are
allowed to make substitutions of arbitrary terms which
have been inferred to be equal, without having inferred
that those terms have literal values. From the standpoint
of functional language theory, quasi-consequences of a
Program are all results obtainable by arbitrary
combinations of strict and lazy evaluation.

A program P is said to be denotational if (1) for
every rule rule(h,b,true) which is a consequence of P,
there is a unique literal x such that equals(h,x) is a

400

consequence of P, and (2) there is a mapping rank from
terms to ordinals such that whenever rule(head, body,
guard) is an instance of a rule appearing in P, and
equals(guard, true) is a consequence of P, then every
subterm of body has lower rank than head. It turns out
that denotational programs are the formal analog of the
informal mathematical notion of well definedness. We are
now prepared to state

Theorem 2: If P is a denotational L program, then the
consequences of P are precisely the quasi-consequences
of P.

and,

Theorem 3: Let P be a denotational L program. Then
equation E is a consequence of P if and only if E is
entailed under first order logic with equality by (P),
together with the axioms of L. Moreover, equals(a,b) is
a consequence of P if and only if equals(equals(a,b),
true) is.

We now define an L interpreter to be an algorithm which,
given a denotational program P and a term T such that
equals(T,x) is a consequence of P for some literal x,
halts and returns x. Unlike Lisp and Haskell, we do not
specify the results of the interpreter on non-denotational
programs. Because the consequences and quasi-
consequences of denotational programs are identical, we
may use arbitrary inferences of predicate calculus to
evaluate and analyze such programs; and we may do so
informally, counting on the equivalence of equals(a,b)
with equals(equals(a,b), true).

7. Conclusions

The semantics of L may be described, from a
functional programming standpoint, as nondetermin-
istically strict or nonstrict. The downside is that non-
denotational programs may behave differently on
different platforms. For many purposes, however, this is
not a big worry. Nondeterminism results from a non-
denotational program, which is considered a
programming error. The error results either from a
misunderstanding of the solution, or from a typo; and
there is no reason to suppose that the misunderstanding,
or the typo, would manifest itself more benignly in a
language with strict semantics, such as Lisp,. It may, for
example, result in a Lisp runtime error or non-
termination, where in L it produces a misunderstood, but
non-crashing, result in finite time. Another apparent
downside is that L's supposed verification logic cannot be
used to reason about programs which are not known to be
denotational. It must be realized, however, that this is in

effect the case in reasoning about programs in strict
languages as well, such as Lisp.

An upside is that the L interpreter is free to deploy
optimizations at runtime which do not adhere entirely to
strict semantics, or entirely to lazy semantics. Like a
human performing mathematical computation, but unlike
a Lisp or Haskell interpreter, the L interpreter may
perform arbitrary, prima facia valid operations and term
substitutions in searching ways to optimize a calculation.

We submit that L fills what is currently a gap in
programming language approaches, suiting application
areas where programmers intend to reason seriously and
precisely, but informally, about the properties of
programs.

8. References

[1] Chwistek, Leon (1940). "A formal proof of Gödel's
Theorem.", The Journal of Symbolic Logic, Vol. 5, (Mar.,
1940), pp. 28-30

[2] Cohen, P. (1966). Set Theory and the Continuum
Hypothesis. Addison-Wesley; 4th edition (August 1966)

[3] Cooke, D.E, Rushton JN, Watson R (2006) : The
Evolutionary Role of Variable Assignment and Its Impact
on Program Verification. In the proceedings of SEKE
2006 315-320

[4] Dijkstra (1989) "On the Cruelty of really teaching
computer science". Communications of the ACM,
December 1989.

[5] Hughs, John (1984). "Why functional programming
matters." The computer Journal. Volume 32.

[6] Kieburtz, R.B (2002) "P-logic: property verification
for Haskell Programs. Available at. citeseer.ist.psu.
edu/kieburtz02plogic.html

[7] McCarthy (1960) Recursive functions of symbolic
expressions and their computation by machine.
Communications of the ACM, 7:184-195.

[8] Thompson, Simon (1989). "A logic for Miranda".
Formal Aspects of Computing 1, 1989.

401

Plenary Talk: Towards Seamless Business Process and Dialogue Specification

Dirk Draheim

Software Competence Center Hagenberg
Softwarepark 21, 4232 Hagenberg, Austria

E-mail: draheim@acm.org

Executable specification or automatic programming [12]

has always been a major strand of research to improve de-

velopment and maintenance of Software systems. In the

domain of enterprise applications the issue of executable

specification is currently addressed by business process exe-

cution initiatives. We have seen steady efforts to make busi-

ness process specifications executable, both in academia [5]

and industry [10]. There are two non-mutual and converg-

ing research areas that foster this trend, i.e., business pro-

cess modeling, e.g., [11], and workflow management [7].

Business processes are an issue in enterprises, e.g., [6],

even without executable semantics of processes. And there-

fore, the subject of investigation in the business process

modeling community is business process excellence, i.e.,

understanding best business processes, rather than exact se-

mantics. Business process modeling languages are usually

no more than visualizations of spoken language with all

its ambiguities. Using a business process modeling lan-

guage does not guarantee at all an improved exactness of the

system description. However, it clearly eases communica-

tion between stakeholders and therefore fosters requirement

elicitation substantially. Paradoxically, the vague seman-

tics of typical business process modeling languages might

be a reason for that. However, the gap remains; there is

no canonical mapping between the components that are un-

der the control of workflow technology and the entities ad-

dressed by business process modeling. Furthermore, the

view of business process modeling is rather a global one,

i.e., the net of business activities and exchanged informa-

tion entities. The view of workflow control is also a local

one, looking at the human computer interaction and having

a concrete work list paradigm at hand for processing work-

flows.

Workflow control has its origins in concrete technologies

for computer-supported collaborative work based on docu-

ment processing [2] like Palo Alto’s OfficeTalk [4] or Poly-

mer [9] on the one hand and in more general rapid develop-

ment frameworks based on a work list paradigm like Flow-

Mark [8] on the other hand. A lot of today’s commercial

so-called BPM (Business Process Management) suites [10]

actually started as workflow management products. How-

ever, we expect more from business process orientation than

rapid development and better system maintainability. Sup-

port for advanced techniques like business process monitor-

ing and business process simulation is desired.

Current BPM and workflow technologies are not fully in-

tegrated with the application programs that make up the di-

alogues of an enterprise application. This means that BPM

technology controls the workflow states and not the dia-

logues that bridge the workflow states. The dialogue states

are not seen by BPM technology. This means, most impor-

tantly, that the dialogues are not amenable to advancedBPM

techniques like business process monitoring and business

process simulation. Today, BPM technology is success-

fully used in enterprise application projects in the following

sense: some rules in the interplay of existing enterprise ap-

plications are identified and these rules are then automized

by a BPM product. On the other hand, if a workflow-

intensive system should be built with BPM technology from

scratch it is not obvious any more how to design the human

computer interaction. The problem is to fix the right gran-

ularity of workflow versus dialogue states. Unfortunately,

despite some heuristics [13] it still lacks a systematic treat-

ment of this question. We follow a different, fundamental

approach: we want to unify workflow states and dialogue

states so that the aforementioned problem simply does not

appear any more. An immediate major benefit of this is

that advanced BPM techniques are no longer artificially re-

stricted to some coarse-grained workflow states, they be-

come pervasive. Furthermore, the business logic is parti-

tioned naturally into services of appropriate granularity this

way. The decision which parts of the supported business

process is subject to workflow technology and which parts

make the dialogues is orthogonal to the specification of the

business process. The definition can be changed allowing

for more flexibility in business process specification.

In order to unify workflows and dialogues it is neces-

sary to investigate advanced role-model concepts from a

workflow patterns perspective. There has been a rigorous

discussion of workflow patterns in the workflow commu-

402

nity [14] that helped in the investigation and analytical com-

parison of existing workflow technology. We will broaden

the workflow pattern discussion by the consideration of dif-

ferent users and roles, because user and role models are at

the heart of the workflow paradigm. This way, a human

computer interaction viewpoint is brought to the discussion

of workflow patterns that refines the current global, i.e., ob-

servational viewpoint of an overall action flow. In these ef-

forts the findings of form-oriented analysis [3] serve as a

basis. Here, the single user session of a submit/response-

style system is defined as typed, bipartite state machine.

The human-computer interaction is form-oriented - it con-

sists of an ongoing interchange of report presentations and

form submissions. We identified the notion of work list as

an interaction pattern in single user session scenarios [1]

and want to generalize the defined semantic apparatus to a

form-oriented workflow definition language.

References

[1] Sandrine Balbo, Dirk Draheim, Christof Lut-

teroth, and Gerald Weber. Appropriateness of

User Interfaces to Tasks. In (Alan Dix, Anke

Dittmar, Eds.): Proceedings of TAMODIA 2005

- 4th InternationalWorkshop on TaskModels and

Diagrams for User Interface Design – For Work

and Beyond, ACM Press, 2005.

[2] Dines Bjørner. Documents: A Domain Anal-

ysis. Retirement Lecture at The Techni-

cal University of Denmark, available at:

http://www2.imm.dtu.dk/ db/, 27th March 2007,

pp. 1-23.

[3] Dirk Draheim, Gerald Weber. Form-Oriented

Analysis - A New Methodology to Model Form-

Based Applications. Springer, 2005.

[4] Clarence A. Ellis and Marc Bernal. Officetalk-D:

An Experimental Office Information System.

ACM SIGOA Newsletter, vol. 3, no. 1-2, June

1982.

[5] Diimitrios Georgakopoulos,Mark Hornick, Amit

Sheth. An Overview of Workflow Management.

Distributed and Parallel Databases, 3, pp. 119-

153, 1995.

[6] Michael Hammer and James Champy. Reengi-

neering the Corporation: A Manifesto for Busi-

ness Revolution. Harper Business Essentials,

2004.

[7] David Hollingworth. The Workflow Reference

Model. Technical Report TC00-1003, Work-

flow Management Coalition, Lighthouse Point,

Florida, USA, 1995.

[8] Frank Leymann and Dieter Roller. Business Pro-

cess Management with FlowMark. Proceedings

of IEEE Compcon, March 1994.

[9] Dirk E. Mahling, Noel Craven and W. Bruce

Croft. From Office Automation to Intelligent

Workflow Systems. IEEE Intelligent Systems

19(3), 41-47, 1995.

[10] Derek Miers, Paul Harmon, Curt Hall. The 2006

BPM Suites Report. Business Process Trends,

2006.

[11] Object Management Group. Business Process

Modeling Notation Specification. OMG Final

Adopted Specification, dtc/06-02-01, Object

Management Group, February 2006.

[12] David L. Parnas. Software Aspects of Strategic

Defense Systems. Software Engineering Notes,

ACM Sigsoft, vol. 10, no. 5, ACM Press, October

1985.

[13] Bob Stegmaier, Mike Ebbers, Tomislav Begovac.

Image and Workflow Library: FlowMark V2.3

Design Guidelines. IBM International Technical

Support Organization, 1998.

[14] W.M.P. van der Aalst, A.H.M. Hofstede, B. Kie-

puszewski, A.P. Barros. Workflow Patterns. Dis-

tributed and Parallel Databases 14: 5-51, 2003.

403

Evaluating the Efficiency of Retrieval Methods for Component Repositories

Oliver Hummel, Werner Janjic & Colin Atkinson
Chair of Software Technology, University of Mannheim

{hummel, wjanjic, atkinson}@informatik.uni-mannheim.de

Abstract
Component-based software reuse has long been seen

as a means of improving the efficiency of software
development projects and the resulting quality of software
systems. However, in practice it has proven difficult to set
up and maintain viable software repositories and provide
effective mechanisms for retrieving components and
services from them. Although the literature contains a
comprehensive collection of retrieval methods, to date
there have been few evaluations of their relative
efficiency. Moreover, those that are available only study
small repositories of about a few hundred components.
Since today’s internet-based repositories are many orders
of magnitude larger they require much higher search
precision to deliver usable results. In this paper we
present an evaluation of well known component retrieval
techniques in the context of modern component
repositories available on the World Wide Web.

1. Introduction
The basic motivation for software reuse is simple. It is

about “creating software systems from existing software
rather than building software systems from scratch” as
Krueger [1] put it in 1992. It is expected to reduce the
time needed to developed software applications and
improve the quality of delivered software products.
Krueger’s definition includes the potential reuse of any
kind of asset during a software development process.
Approaches like product line engineering [3] and design
patterns [4] have proven particularly successful in this
regard. However, the original vision presented by
McIlroy [5] in 1968 focussed on the reuse of software
components obtained from so-called component markets.
The availability of components has clearly grown over the
years but component markets have yet to make a
significant impact on practical software development.
This is for example demonstrated by the limited number
of component vending sites available on the Internet and
last year’s surprising shutdown of the Universal Business
Registry for web services [6].
Some successful “in-house” implementations of the
component market concept have been reported by
companies like IBM [9] or GTE [10] in the past.
However, the size of their component repositories was
limited to a few hundred components - the same
approximate size as the component repository prototypes
that were investigated in the 1990s (e.g. [7], [8]). Some

experts like Poulin [19] have identified a size of about
200 components as the upper limit for manually
maintained component repositories since the content of
larger repositories tends to degenerate (the UBR is a good
example for this hypothesis). However, researchers have
long tried to exceed this limit and automatically populated
repositories [20] with more than one hundred thousand
assets have been reported more recently [2]. One rationale
for this approach is to try to improve the chances of
finding a suitable component. Another is the enormous
size of publicly available class and function libraries,
which often exceed thousands of components, and
company version control systems which often contain
hundreds of thousands of components. It is obvious that
only automatically populated repositories will be able to
cope with the numbers of reusable assets available today.
The reuse of open source software from the web presents
even more challenges to the reuse community and there
has been general pessimism in some quarters that the so-
called component storage and retrieval problem will be
solved in the near future [13] [16].
Very recently however, some commercial search engines
focusing on (open) source code from the Internet have
demonstrated that repositories with millions of
components are now technically feasible. The four major
players in this segment are, in the order of appearance on
the market: Koders.com, Krugle.com, merobase.com and
Google’s new code search engine (google.com/
codesearch). We believe that repositories of this size
require a shift of priorities in component retrieval
research. Where the main problem used to be to find any
kind of matching (or at least a similar) component in a
small repository, today the problem has shifted to finding
the “best” matching component from a variety of
candidates. This can only be achieved by improved
retrieval techniques. Because of the previous lack of real
world reuse repositories there are only a few publications
examining the efficiency of these techniques. Even the
authors of an often cited survey [16] admitted that their
data about retrieval efficiency was largely estimated from
common sense and the few meager studies accessible to
them at the time. Even worse, the few viable results that
are obtainable (e.g. [7]) are all based on repositories with
far less than one thousand components. It is questionable
whether these results will be scaleable for larger
collections and will hold for repositories with millions of
assets. The following small example illustrates why.

404

Consider the interface of a simple stack component that
might have the following form in Java:

 public class Stack {
 public void push(Object o) {}
 public Object pop() {}
 public int size() {}
 }

Using signature matching [15], a classic and well known
retrieval technique the component could be represented as
follows:

 Object -> void
 void -> Object
 void -> int

In a collection of about 1000 components such a signature
might appear less then ten times and a stack could be
identified with relative ease amongst them. However,
performing the same query with the data pool of the
merobase search engine (containing almost 10 million
components) delivers more than 40.000 results.
Given these new developments it has become apparent
that new analyses of the effectiveness of classical
retrieval techniques, and combinations thereof, are
required to improve the theoretical foundation for
component repositories. In section 2 we provide a more
detailed overview of the state of the art in component-
based software reuse, component retrieval techniques and
known evaluations. In section 3 we present our own
evaluation of retrieval techniques based on modern code
search engines from the web and discuss the results in
section 4. Finally, we summarize and conclude our
contribution in section 5.

2. Component Retrieval Background
Many attempts have been made to solve the problem

of effectively storing large numbers of potential reuse
candidates in a component repository. However, not only
has this so-called “repository problem” [13] proven hard
to solve, the question of how a component should best be
represented (called the “reuse representation problem” by
[7]) has also been a stumbling block. Given that the
existing component repositories on the web are almost all
source code centric and offer only basic text-search
capabilities (see next subsection) it is difficult to use them
for more sophisticated reuse approaches than just “code
scavenging” [1]. This practice describes the copying and
pasting of small code snippets into the system under
development and is discouraged in many publications
such as the Anti-pattern book [21]. It requires a lot of
effort to find appropriate snippets and their use is more
likely to degenerate the design of the system under
development than to improve its quality. Although
software reuse has been the subject of research for almost

four decades, there is still no clear picture of when and
how components should be used in a development
process and how they should be stored in a repository.
Even modern development methodologies contain only
very abstract guidelines to select components based on
their interface. Kratz et. al. [22] have recently shown that
there is indeed some relation between the interface and
the functionality of a component. However, since
candidates might not match perfectly, a feedback loop
may be necessary in which either the design or the
candidate have to be adapted. This idea is best described
in [11] so far.
Our own experience with reuse repositories indicates that
the best kind of component search to use in a
development process depends on the point of time at
which the search is performed rather than on the nature of
the process itself. The earlier reusable components are
searched during a system’s development the less design
work is likely to have been carried out. Hence a general
text-based search is more useful in early development
phases and can feed back valuable information about
potential components and their interfaces into the design
process. On the other hand, if component search is carried
out at a relatively late point in the development process an
interface-driven search approach is required.
Furthermore, if binary components or web services are to
be discovered there is no source code and thus the search
has to use interface descriptions in any case. Considering
these differing requirements, a component search engine
must be very flexible. However, most of the first
generation search engines available today are only able to
support keyword-driven searches.

2.1. Component Representation Methods
 A repository’s component representation format

determines the possibilities for searches on this structure.
Frakes and Pole [7] identified four basic representation
methods briefly explained in the following. Enumerated
classification originates from library science and
separates an area into mutually exclusive, typically
hierarchical classes. Ontologies in the semantic web
community might be considered a modern synonym for
this approach. Facetted classification [10] and the slightly
more general attribute value classification approaches are
very similar and use a number of facets (resp. attributes)
to describe an asset. Each facet comprises a finite set of
terms from which one is chosen to describe the asset. In
contrast an attribute can contain any arbitrary value.
Finally, free text indexing approaches extract textual
information from an asset, i.e. the component or its
documentation in our context.
There have been a lot of attempts to develop efficient
component retrieval techniques for all four approaches.
These are best summarized in the well-known survey by
Mili et al. [16], but as the authors conclude, “most

405

solutions are either too inaccurate to be useful or too
intractable to be usable”. Since the representation
methods are rather intuitive we turn our attention towards
component retrieval techniques that more directly
influence the query formulation techniques available to
users in the next subsection.

2.2. Component Retrieval Techniques
Mili et al [16] distinguish the following fundamental

techniques for component retrieval in five (originally six)
not fully orthogonal groups:

 1. Information retrieval methods
 2. Descriptive methods
 3. Operational semantics methods
 4. Denotational semantics methods

5. Structural methods

Since software retrieval is grounded on information
retrieval, a natural first step was to transfer the methods
of the latter to the former and to apply a simple textual
analysis to software assets. Descriptive methods go one
step further and rely on additional textual descriptions of
assets like a set of keywords or facet definitions [10].
Operational semantics methods rely on the execution or
so-called sampling [8] of the assets. Denotational
semantics methods use signatures [15] or specifications of
components for retrieval. Finally, structural methods do
not deal with functional properties of components but
with their structure (i.e. act-alike vs. look-alike). Most of
these mechanisms were initially developed for functional
languages with an underlying type theory (i.e. type
hierarchies) and no implicit variable passing as is
common in today’s programming languages. Only a few
of these ideas (such as (1) and (2)) are easily transferable
to object-oriented languages like Java or C#.
Mili et al. describe a sixth group – the so-called
topological methods – as an approach to minimize the
“distance” between query and reusable candidates. This
approach relies on an underlying, “measurable” retrieval
technique and hence we prefer to consider it as an
approach for ranking the results of a query. The authors
assessed these groups according to a scheme with five
discrete rates ranging from very low (VL), low (L)
through medium (M) to high (H) and very high (VH).
Detailed explanations may be found in the referenced
source itself. Due to space constraints, we only reproduce
a table containing the three technical aspects that are
interesting for the remainder of this paper. Precision is a
measure from information retrieval (IR) theory that
describes the ratio of relevant retrieved assets to the total
number retrieved, see e.g. [14]. The recall also originates
from IR and is the ratio of retrieved relevant assets to the
total number of relevant assets in the collection. The
meaning of the automation potential should be obvious.

Method Precision Recall Automation
Potential

1. Information Retrieval M H H

2. Descriptive H H VH

3. Operational Semantics VH H VH

4. Denotational Semantics VH H M

5. Structural VH VH VH

Table 1. Overview of retrieval techniques.

It is important to note that Mili et al. themselves state that
due to the low number of publications on this topic their
values are largely best effort estimations. Moreover, since
there were no large component repositories at that time
the data is only based on experience with smaller
collections of a few hundred components.

2.2.1. Previous Results
Information Retrieval (IR) typically uses recall and

precision as defined previously to evaluate the
performance of retrieval systems. Since it is important to
know the number of relevant documents in a collection,
the IR community has created a number of so-called
reference collections (again with about 1000 documents,
[20]) over the years. These collections are built by experts
and hence it is known which documents can be
considered relevant for a given query. Consequently, it is
simple to test retrieval algorithms and to calculate recall
and precision for them. One of the first authors who
investigated the efficiency of their retrieval technique
(called “behaviour sampling”) in that way were Podgurski
and Pierce [8]. They used a small library (around 100
components) of C functions where examples could be
retrieved by randomized sampling, i.e. input and output
values were provided and functions that delivered the
expected outputs for given inputs were considered
acceptable. The system delivered a precision of 100
percent if exactly the right number of samples (>= 12)
was provided. However, it is clear that this technique is
too time consuming for repositories with millions of
assets. Frakes and Pole performed an evaluation of
retrieval efficiency with UNIX commands [7]. Although
it is one of the few publications that focused on this topic
it is very domain specific and UNIX commands do not
have an interface in the sense of components in modern
programming languages. Hence, although these
experiments can provide some general insights it is
questionable whether they can be generalized and applied
to today’s retrieval systems. Inoue et al. presented and
evaluated a retrieval system [2] that was considerably
larger (about 120.000 components) than all previous
systems. The authors realized that the classic recall
measure cannot be calculated for repositories of that size
since it is not possible to find all components potentially

406

relevant for a query. Their examination focused on
keyword-based searches (e.g. “clock applet”) for Java but
unfortunately the authors did not make their relevance
criterion explicit. However, they claimed precision rates
of about 70 percent for their system. One possible
approach to estimate the recall for a large repository is
injecting known components into it. However this is not
feasible for third party search engines on the web.
Moreover, results can easily become biased as they
require examples that are known to work well with a
given configuration.
To briefly summarize the main issues arising in this
context: at present, no reference collections of software
components are available. Moreover, even if one were
available it could not come anywhere near the size and
complexity of today’s software repositories. It is therefore
questionable whether its results would be scaleable to real
world situations. Without the knowledge of how many
components are relevant for a query it is not possible to
calculate the recall of a search engine. Fortunately, it is
feasible to calculate the precision by examining a given
number of results and determining whether they do what
they are supposed to do. We adopted these insights in our
experimental design that we describe in more detail in
section 3.

2.3. Component Search Engines
Most of the component search engines available today

only offer keyword-based search capabilities based on a
free-text representation of components (i.e. they use an IR
method). The following table lists the most prominent
component search engines that we were aware of at the
time of writing.

Name

L
an

gu
ag

es

C
om

po
ne

nt
s

R
ep

re
se

nt
at

io
n

M
et

ho
ds

 U
se

d

Su
pp

or
t f

or

In
te

rf
ac

e-
D

ri
ve

n
Se

ar
ch

es

merobase 45 ~10 M all yes
Google Codesearch
(GCS)

44 ~5 M text,
facetted

partially via
regular expr.

Krugle 37 ~5 M text,
facetted

limited,
name-based

Koders 32 ~1M text,
facetted

limited,
name-based

Table 2. Popular code search engines.

To date, only merobase is able to fully support searches
on interface descriptions based on a combination of IR-
and denotational methods. Koders and Krugle are able to
constrain searches to method or class names (we call this
name-based) and interface-driven searches can be widely
imitated with regular expressions on Google Codesearch.

The large number of programming languages supported
by the engines in table 2 can be explained by the fact that
they not only support usual programming languages such
as Java and C#, but also index scripting languages like
Javascript or PHP and other artifacts such as makefiles
etc. We do not consider other search engines such as
Codase.com, Planetsourcecode.com, ucodit.com,
jsourcery.com, Codehound.com etc. due to their limited
size, range of languages or different search focus. As we
have shown in [12], it is also possible to use regular
Google or Yahoo for source code searches.

3. Experimental Evaluation
Due to the limitations discussed in section 2.2.1 we

focused our investigation on the precision of search
engines and retrieval techniques. We reused some of our
previous work [12] where we collected query examples
from the reuse literature. We derived interface-driven
queries from them and inspected the first 25 results for
Java (as it is most widely supported) from each query in
two different experiments. First we evaluated the retrieval
performance of various search. The results are presented
in section 3.1. Our second experiment performed a more
academic comparison of some retrieval techniques and is
discussed in section 3.2.
Our matching criterion was that the required interface was
contained verbatim or with simply a change of case in a
candidate component. In order to finally decide whether
such a candidate component is functionally appropriate
and thus relevant we improved the sampling approach of
[8] and manually defined meaningful JUnit test cases for
each interface. We have already experimented with this
technique before and found that interfaces and test cases
can be used to describe and retrieve components in a very
precise manner. Due to its affiliation with test-driven
development we have called this approach “Extreme
Harvesting”. A proof of concept is also presented in [12].

3.1. Comparison of Search Engines
We limited our comparison to the three component

search engines shown in table 3 below since only they
offered an API for programmatic access at the time of
writing. Additionally, we compared them with the general
web search versions of Google and Yahoo which we
enhanced with special filetype constraints to better utilize
them for software component retrieval. To our
knowledge, we made the optimal use of each search
engines facilities for mimicking interface-driven retrieval.
For instance, requiring the term “randomString” to appear
only in method names should deliver more precise results
with Koders than allowing it anywhere in the source
code. Table 3 below summarizes our results for this
experiment.

407

Query

G
oo

gl
e

Y
ah

oo

G
C

S

K
od

er
s

m
er

ob
as

e

copyFile(String,
 String): void 1 / 25 2 / 25 7 / 25 0 / 25 18 / 25

gcd(int,int):int 10 / 25 7 / 25 12 / 25 2 / 25 17 / 25
isLeapYear(int):
 boolean 8 / 25 12 / 25 3 / 25 2 / 25 14 / 25

md5(String):String 0 / 25 0 / 25 4 / 22 0 / 25 12 / 25
isPrime(int):
 boolean 6 / 25 15 / 25 7 / 25 4 / 25 5 / 25

randomNumber(int,
 int):int 0 / 25 3 / 25 2 / 7 0 / 7 14 / 25

randomString(int):
 String 4 / 25 2 / 25 6 / 25 4 / 16 5 / 25

replace(String,
 String, String):
 String

2 / 25 8 / 25 14 / 25 3 / 25 22 / 25

reverseArray(
 int[]):int[] 1 / 10 3 / 23 1 / 1 0 / 4 5 / 7

sort(int[]):int[] 0 / 25 0 / 25 5 / 20 0 / 25 20 / 25
sqrt(double):
 double 5 / 25 4 / 25 4 / 25 1 / 25 11 / 25

getMinMax(int[]):
 int[] 0 / 15 0 / 22 0 / 0 0 / 25 2 / 4

Stack(
 push(Object):void
 pop():Object
 size():int
)

1 / 25 2 / 25 0 / 0 1 / 25 6 / 25

Average Precision 12.2% 17.9% 29.5% 5.9% 53.7%
Standard Deviation 13.3% 18.9% 26.5% 7.8% 22.4%

Table 3. Comparison of code search engines.

We calculated the mean value and the standard deviation
of each engine’s precision. Furthermore, we performed t-
tests for = 0.05 to measure the statistical difference of
the results. Only the results provided by merobase show a
significant improvement over the other engines. Google
Codesearch (GCS) is also significantly better than
Koders; but all other pairwise comparisons reveal no
statistically significant difference. It is interesting that the
general versions of Google and Yahoo tend to deliver
more precise results for code searches than the specialized
engine of Koders. However, we believe this can be
explained by the different expressiveness of the queries
offered by the different search engines. We will support
this with more evidence in the next subsection where we
directly compare retrieval methods.

3.2. Comparison of Retrieval Techniques
This subsection presents the results of our experiments to
compare four retrieval techniques on the component pool
of merobase. The experimental process is identical to that
used in the last subsection. Since we had access to the
data pool of merobase and could implement some
dedicated support for these experiments we used this
engine for a comparison of the retrieval techniques shown
in table 4. However, it would not have been possible to

test other known retrieval techniques or the representation
models on their own without major changes to index
structure. Hence we compared interface-driven search
capabilities with pure signature matching and simple
keyword-based searches in two distinct forms. Namely,
an algorithm that searches keywords in the complete
source code of components and a name-based algorithm
that is able to constrain searches to method or class names
(cf. table 2).

Query

si
gn

at
ur

e
m

at
ch

in
g

te
xt

-b
as

ed

na
m

e-

ba
se

d

in
te

rf
ac

e-

dr
iv

en

copyFile(String,
 String): void 0 / 25 3 / 25 16 / 25 18 / 25

gcd(int,int):int 0 / 25 20 / 25 11 / 25 17 / 25
isLeapYear(int):
 boolean 0 / 25 9 / 25 7 / 25 14 / 25

md5(String):String 0 / 25 0 / 25 0 / 25 12 / 25
isPrime(int):
 boolean 0 / 25 4 / 25 5 / 25 5 / 25

randomNumber(int,
 int):int 0 / 25 0 / 25 0 / 25 14 / 25

randomString(int):
 String 0 / 25 4 / 25 6 / 25 5 / 25

replace(String,
 String, String):
 String

1 / 25 6 / 25 0 / 25 22 / 25

reverseArray(
 int[]):int[] 0 / 25 0 / 25 2 / 25 5 / 7

sort(int[]):int[] 1 / 25 0 / 25 0 / 25 20 / 25
sqrt(double):
 double 0 / 25 2 / 25 4 / 25 11 / 25

getMinMax(int[]):
 int[] 1 / 25 2 / 25 2 / 25 2 / 4

Stack(
 push(Object):void
 pop():Object
 size():int
)

0 / 25 3 / 25 3 / 25 6 / 25

Average Precision 0.9% 16.3% 17.2% 53.7%
Standard Deviation 1.8% 21.9% 19.3% 22.4 %

Table 4. Comparison of retrieval techniques.

We again performed statistical t-tests for = 0.05 on
these results and found all pairwise comparisons
significantly different, except for text-based vs. name-
based. The results demonstrate that interface-driven
searches are far more precise than plain keyword-based
queries. This might also explain why Koders tends to be
weaker then the general versions of Google and Yahoo
where interface-driven searches can be better “simulated”
with quoted queries. Google Codesearch and merobase
consequently deliver significantly better results when
their capabilities for regular expressions or interface-
driven searches are used. However the precision remains
still roughly between 30 and 60 percent and given the fact
that sometimes thousands of results are returned a further
increase of the precision is still required. This can be
obtained by the use of a final semantic validation as

408

integrated in our Extreme Harvesting approach where we
use standard JUnit tests to check the dynamic behavior of
components.
Another important requirement for precise searches are
so-called search constraints that allow queries to be
enhanced with additional metadata (such as the
programming language) as is common in most general
web search engines today. Thus, we believe it is not only
necessary to combine various of the retrieval techniques
proposed in the literature to reach acceptable precision on
today’s component collections, but also to combine a
number of representation methods.

4. Conclusion
In the last year or so there has been an explosion in the

number of search engines focusing on the discovery of
software. However, their search algorithms and degree of
precision are generally too weak to deliver a valuable
service. One retrieval technique alone is typically not
sufficient to guarantee high precision searches on a large
repository and hence it makes sense to develop a
combination of various techniques as we proposed for
Extreme Harvesting [12]. However, this idea has so far
been largely based on our intuition since we had no
adequate repository at hand to compare the retrieval
techniques proposed in the past. The results presented in
this paper demonstrate that interface-driven searches
deliver significantly better results than simple keyword-
based approaches. Furthermore they deliver better
candidates that can be checked with a more time
consuming retrieval technique such as behavior sampling
or the more advanced Extreme Harvesting. Testing of the
form advocated in Extreme Harvesting seems to be able
to push the precision close to 100%. However, to make
Extreme Harvesting practicable we still have to overcome
a number of practical problems (such as security and
performance concerns). We are currently working on this
challenge and will elaborate on further experiments on
another occasion.

5. References
[1] C.W. Krueger, “Software reuse“, ACM Computing

Surveys, Vol. 24, Iss. 2, 1992.
[2] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,

M. Matsushita, S. Kusumoto, “Ranking Significance
of Software Components Based on Use Relations”,
IEEE Trans. on Software Eng., Vol. 31, No. 3, 2005.

[3] Clemens, P., Northrop, L.: Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] D. McIlroy, “Mass-Produced Software
Components”, Report of a conference sponsored by
the NATO Science Committee, Garmisch, 1968.

[6] Microsoft’s UBR shutdown FAQ, 2006,
http://uddi.microsoft.com/about/FAQshutdown.htm

[7] W.B. Frakes, T.P. Pole, “An empirical study of
representation methods for reusable software
components”, IEEE Transactions on Software
Engineering, Vol. 20, Iss. 8, 1994.

[8] Podgurski, A., L. Pierce: “Retrieving Reusable
Software by Sampling Behavior”, ACM
Transactions on Software Engineering and
Methodology, Vol. 2, Iss. 3, 1993.

[9] M. Lenz, H. Schmid, P. Wolf, “Software reuse
through building blocks”, in W. Tracz (ed..):
Software Reuse: Emerging Technology, Computer
Society Press, 1987.

[10] R. Prieto-Diaz, ”Implementing Faceted
Classification for Software Reuse”. Communications
of the ACM, Vol. 34, Iss. 5, 1991.

[11] I. Crnkovic, M. Chaudron, S. Larsson, ”Component-
based Development Process and Component
Lifecycle”, Proceedings of Int. Conf. on Software
Engineering Advances, 2006.

[12] O. Hummel, C. Atkinson, “Using the Web as a
Reuse Repository”, Proceedings of the International
Conference on Software Reuse, Torino 2006.

[13] R. Seacord: “Software Engineering Component
Repositories”, Proceedings of the Int. Workshop on
Component-Based Software Engineering, 1999.

[14] R. Baeza-Yates, B. Ribeiro-Neto, Modern
Information Retrieval. Addison-Wesley, 1999.

[15] A.M. Zaremski, J.M. Wing: “Signature Matching: A
Tool for Using Software Libraries”, ACM
Transactions on Software Engineering and
Methodology, Vol. 4, No. 2, 1995.

[16] Mili, A., R. Mili and R. Mittermeir: “A Survey of
Software Reuse Libraries”, Annals of Software
Engineering, Vol. 5, 1998.

[17] K. Beck, Extreme Programming Explained:
Embrace Change, Addison-Wesley, 1999.

[18] Y. Ye., G. Fischer, “Reuse-Conducive Development
Environments”, Journal of Automated Software
Engineering, Vol. 12, No. 2, 2005.

[19] J. Poulin, “Populating Software Repositories:
Incentives and Domain-Specific Software”, Journal
of Systems and Software, Vol. 30, Iss. 3, 1995.

[20] Y.S. Maarek, D.M. Berry, G.E. Kaiser, “An
information retrieval approach for automatically
constructing software libraries”, IEEE Trans. on
Software Engineering, Vol. 17, Iss 8, 1991.

[21] W.J. Brown, R.C. Malveau, H.W. McCormick, T.J.
Mowbray, AntiPatterns: refactoring software,
architectures, and projects in crisis, Wiley, 1998.

[22] B. Kratz, R. Reussner, W.J. v.d. Heuvel, ”Empirical
Research on Similaritiy Mertrics for Software
Component Interfaces”, Journal of Integrated
Design and Process Science, Vol. 8, Iss. 4, 2004.

409

Benchmarking the RDF(S) Interoperability of
Ontology Tools

Raúl Garcı́a-Castro
Asunción Gómez-Pérez

Ontology Engineering Group, Departamento de Inteligencia Artificial.

Facultad de Informática, Universidad Politécnica de Madrid, Spain

York Sure
Institut AIFB, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Abstract—The number of ontology tools, such as ontology
editors and repositories, is constantly rising. Ideally, one could use
them all seamlessly and thus benefit from all the functionalities
they offer. As shown in previous EON workshops, interoperability
among different development tools is not straightforward since
ontology editors rely on specific internal knowledge models which
are translated into common formats such as RDF(S). This paper
addresses the urgent need for interoperability by providing an
exhaustive set of RDF(S) benchmarks and demonstrating in
an extensive field study the state-of-the-art of interoperability
among six ontology tools. From the field study we have compiled
a comprehensive set of best practices which may serve as
guidelines. Tool developers benefit from having guidelines to
design their import and export functionalities and a concrete
set of benchmarks against which they can evaluate their import
and export functionalities. Ontology engineers benefit from our
work by having an overview to which extend interoperability is
ensured for combinations of specific tools.

I. INTRODUCTION

Ontologies enable interoperability among heterogeneous

applications. The development and deployment of ontolo-

gies and ontology-based applications follows methodological

guidelines and is supported by ontology tools such as ontology

editors and repositories. Ideally one could use all existing

ontology tools seamlessly and thus benefit from all the func-

tionalities they offer. As shown in previous workshops on

Evaluation of Ontology-based Tools (EON), interoperability

among different ontology tools is not straightforward. For

instance, ontology editors usually rely on specific internal

knowledge models which are translated more or less into

common formats such as RDF(S)1. Finding out why interoper-

ability fails is cumbersome and non-trivial as any assumption

made for the translation within one tool may easily prevent

successful interoperability with other tools.

This paper addresses the urgent need for interoperability.

We provide an exhaustive set of RDF(S) benchmarks which

have been developed as part of the EU IST Knowledge Web

Network of Excellence2. The benchmarks were designed to

support evaluation and improvement of ontology tool in-

teroperability. In an extensive field study we explored the

state-of-the-art in interoperability among six ontology tools.

1http://www.w3.org/RDF/
2http://knowledgeweb.semanticweb.org/

Three of the participating tools are ontology editors (KAON,

Protégé, WebODE) and three are repositories (Corese, Jena,

Sesame), thus tool support for ontology development as well

as deployment is covered. The field study helped us gain a

deep understanding of the import and export functionalities

of ontology tools. Our findings may serve as guidelines for

developing tools and are summarized in comprehensive best

practices on interoperability.

Tool developers benefit by having guidelines to design their

import and export functionalities and by having a concrete set

of benchmarks against which they can (automatically) evaluate

their import and export functionalities. Ontology engineers
benefit from our work by having an overview to which extend

interoperability is ensured for combining specific tools. We

hope that future generations of ontology tools will offer

smooth interoperability and thus fulfil the key promise of

ontologies.

This paper is structured as follows: Section II presents the

motivation behind benchmarking software rather than evalu-
ating it and other evaluation initiatives that have taken place.

Section III examines how the RDF(S) interoperability bench-

marking was conducted and how the RDF(S) benchmarks

were designed. Sections IV and V summarize the results of

executing the export, import and interoperability benchmarks.

Section VI provides the recommendations extracted from

benchmarking for ontology and software developers, and for

anybody interested in carrying out a benchmarking activity.

Finally, Section VII presents the conclusions derived from this

work and future lines of work.

II. RELATED WORK

A. Evaluation vs. Benchmarking

Software evaluation, according to the ISO 14598 standard

[1], is defined as the systematic examination of the extent to
which an entity is capable of fulfilling specified requirements;

considering software not just as a set of computer programs

but as the procedures, documentation and data produced.

Software benchmarking is a continuous process for improv-

ing software products, services and processes by systemati-

cally evaluating and comparing them to those considered to

be the best. This definition, adapted from the definition given

by the business management community [2], is followed by

410

some authors in the Software Engineering community while

others consider benchmarking as a software evaluation method

[3].

The reason for benchmarking software products instead of

just evaluating them is to obtain several benefits that cannot

be obtained from evaluations. A software evaluation shows

the weaknesses of the software or its compliance to quality

requirements. If several software products are involved in the

evaluation, we also obtain a comparative analysis of these

products and recommendations for users. When benchmarking

several software products, besides all the benefits commented,

we gain continuous improvement of the products, recommen-

dations for developers on the practices used when developing

these products and, from these practices, those that can be

considered best practices.

B. Related Evaluations

We now briefly present two evaluation initiatives closely re-

lated to our work. The first is a benchmark suite for evaluating

RDF(S) usage, and the second is a previous evaluation of the

interoperability of ontology development tools.

The RDF Test Cases [4] were created by the W3C RDF

Core Working Group. These tests check the correct usage of

the tools that implement RDF knowledge bases and illustrate

the resolution of different issues considered by the Working

Group. The RDF Test Cases could also be used for evaluating

RDF(S) importers but, while they provide examples for, and

clarification of, the normative definition of the language,

our approach aims for an exhaustive evaluation of RDF(S)

importers. Another difference is that we distinguish between

the benchmarks that depend on the RDF(S) knowledge model

and those that depend on the RDF syntax used. Moreover, we

take into consideration valid input ontologies only, whereas

the RDF Test Cases take erroneous input ontologies and

entailment benchmarks.

The Second International Workshop on Evaluation of
Ontology-based Tools (EON 2003) had as main topic the

evaluation of the interoperability of ontology-based tools [5].

The results of the workshop led to significant improvements

in various well-known ontology editors. The main reasons for

benchmarking the interoperability of ontology tools again are:

• Interoperability is a great problem in the Semantic Web

which is still unsolved.

• The workshop experiments (and those of its successors)

involved only few tools and focused on editors.

• Some experiments evaluated export functionalities, others

import functionalities and only a few evaluated interop-

erability.

• No systematic evaluation on a technical level was per-

formed because ontology tool developers were just asked

to model and interchange a domain ontology and report

about findings. Each experiment used different test strate-

gies and interchange languages, and also different prin-

ciples for modelling ontologies. Therefore, only specific

comments and recommendations were made.

We learnt many lessons from the results of the initial EON

experiments which enabled us to do a systematic evaluation

on a technical level such as the one presented in this paper.

III. RDF(S) INTEROPERABILITY BENCHMARKING

The RDF(S) interoperability benchmarking started in

Knowledge Web as an effort to improve the interoperability

of ontology tools and to provide comprehensive recommenda-

tions for industry on how to use these tools. The benchmarking

was organized and carried out following a generic software

benchmarking methodology developed in Knowledge Web

[6]. We now present the main decisions and outcomes of

instantiating such methodology.

The goals for benchmarking the interoperability of ontology

tools are related to the benefits pursued through it, and these

are: to evaluate and improve their interoperability, to acquire

a deep understanding of the practices used to develop the

importers and exporters of these tools and to extract from these

practices those that can be considered the best practices, to

produce recommendations for users, and to create consensual
processes for evaluating their interoperability.

These goals involve different communities that are related

to the ontology development tools, namely, the research and

industrial communities, and tool developers.

Participation in the benchmarking was open to any organi-

sation irrespective of being a Knowledge Web partner or not.

To involve other organisations in the process, with the goal

of having the best-in-class tools participating, several actions

were taken:

• The benchmarking proposal, a document being used as

a reference along the benchmarking, was published as

a public web page3, which includes all the relevant

information about the benchmarking: motivation, goals,

benefits and costs, tools and people involved, planning,

related events, and a complete description of the experi-

mentation and the benchmark suites.

• Research was performed on the existing ontology devel-

opment tools, both freely available and commercial ones,

which could export and import to and from RDF(S), and

their developers were contacted. In the future, any tool

capable of importing and exporting RDF may participate

in the benchmarking or benefit from the benchmarks.

• The interoperability benchmarking was announced with a

call for participation through the main mailing lists of the

Semantic Web area and through lists specific to ontology

development tools.

Six tools took part in the benchmarking, three of which are

ontology development tools: KAON, Protégé (using its RDF

backend), and WebODE; the other three are RDF repositories:

Corese, Jena and Sesame. These six tools do not share a

common knowledge model and benchmarking was not always

performed by tool developers.

The experimentation over the tools aimed to obtain results

for interoperability improvement. Therefore, other quality at-

3http://knowledgeweb.semanticweb.org/benchmarking interoperability/

411

tributes such as performance, scalability, robustness, etc. were

not considered. However, an approach for benchmarking the

performance and scalability of ontology development tools can

be found in [7].

The experimentation took into account the most common

way of interchanging ontologies that ontology tools provide,

that is, by exporting ontologies from a tool into an interchange

language and then importing ontologies into the other tool,

using RDF(S) as interchange language and serializing the

ontologies into RDF/XML syntax. A future benchmarking

activity inside Knowledge Web will cover the case of using

OWL4 as interchange language.

Interoperability of ontology tools using an interchange lan-

guage depends on the capabilities of the tools to import and

export ontologies from/to this language. Therefore, the exper-

imentation included not only the evaluation of interoperability

but also that of the RDF(S) import and export functionalities

of the tools.

The evaluation criteria must describe in depth the import,

export and interoperability capabilities of the tools, whereas

the experiments to be performed in the benchmarking must

provide data informing how the tools comply with these

criteria. Therefore, to obtain detailed information about these

capabilities, we need to know: the elements of the internal
knowledge model of an ontology development tool that can be

imported from RDF(S), exported to RDF(S), and interchanged

with another tool using RDF(S) as interchange language; the

secondary effects of importing, exporting and interchanging

these components, such as insertion or loss of information;

and the subset of elements of the internal knowledge models

that these tools may use to interoperate correctly.

To obtain these experimentation data, we defined three

benchmark suites for evaluating the import, export and in-

teroperability capabilities of the tools [8], which are common

for all the tools. As the quality of the benchmark suites to be

used is essential for the results of the benchmarking, the first

step was to agree on the definition of these suites. Then, we

decided to perform the import and export experiments before

the interoperability ones, as the results of the first influence

those of the second.

The steps to follow for executing the three benchmark

suites are similar, and these are: the definition of the expected

ontology resulting from importing, exporting or interchanging

the ontology described in the benchmark; the import, export,

or interchange of the ontology defined in the benchmark; and

the comparison of the expected ontology with the ontology

imported, exported or interchanged, checking whether there is

some addition or loss of information.

The benchmark suites were intended to be executed man-

ually but, as they contain many benchmarks, it is highly

recommended to execute them (or part of them) automatically.

In the cases of Corese, Jena, Sesame, and WebODE, most of

the experimentation was automated. In the other cases, it was

performed manually.

4http://www.w3.org/TR/owl-features/

The benchmarking web page3 contains a detailed descrip-

tion of the benchmark suites, all the files to be used in

the experiments, templates for collecting the results, and the

experimentation results obtained.

A. Benchmark Suites

The benchmark suites check the correct import, export and

interchange of ontologies that model a simple combination

of ontology components (classes, properties, instances, etc.).

Because one of the goals of the benchmarking is to improve

the tools, the benchmark ontologies are kept simple on purpose

so as to isolate problem causes and to identify problems.

As the ontology tools participating in the benchmarking

have different internal knowledge models, both the exper-

imentation and the analysis of the results are based on a

common group of ontology modelling primitives, available

in RDF(S) and in these tools. However, since tackling this

common group exhaustively would yield a huge number of

benchmarks, we have only considered the components most

used for modelling ontologies in ontology development tools:

classes, instances, properties with domain and range, literals,

and class and property hierarchies. The rest of the components

have not been dealt with so far.

1) The RDF(S) Import Benchmark Suite: contains 82

benchmarks, which define a simple RDF(S) ontology serial-

ized in a RDF/XML file that must be loaded into the ontology

development tool.

To isolate the factors influencing the correct import of an

ontology, we have defined two types of import benchmarks:

those that evaluate the import of the different combinations of

components of the RDF(S) knowledge model, and those that

evaluate the import of the different variants of the RDF/XML

syntax, as stated in the RDF/XML specification.

2) The RDF(S) Export Benchmark Suite: comprises 66

benchmarks, which define an ontology that must be modelled

in the tool and saved to a RDF(S) file.

We have defined two types of benchmarks for isolating

the two factors influencing the correct export of an ontology.

One group of benchmarks evaluates the correct export of the

combinations of components of the ontology development tool

knowledge model and the other group evaluates the export of

ontologies with concepts and properties whose names include

characters restricted by RDF(S), such as those not allowed for

representing RDF(S) or XML URIs.

3) The RDF(S) Interoperability Benchmark Suite: evaluates

the interchange of ontologies from one source tool to a

destination one and vice versa. Each benchmark defines an

ontology that must be modelled in the origin tool, saved to a

RDF(S) file, and loaded into the destination tool.

Since the factors influencing the correct interchange of an

ontology (besides the correct functioning of the importers

and exporters) as well as the knowledge model used for

defining the ontologies are the same as those in the RDF(S)

Export Benchmark Suite, the ontologies defined in the RDF(S)

Interoperability Benchmark Suite are identical to those of the

RDF(S) Export Benchmark Suite.

412

The evaluation criteria are common for the three benchmark

suites and are defined as follows:

• Modelling (YES/NO). The ontology tool can model the

ontology components described in the benchmark.

• Execution (OK/FAIL). The execution of the benchmark

is carried out without any problem, and the tool always

produces the expected result. In the case of a failed

execution, the following information is required: reasons

for the failure of the benchmark execution and, if the tool

had been corrected to pass a benchmark, the corrections

performed.

• Information added or lost. The information added or

lost in the ontology interchange.

In the export and interoperability benchmark suites, if a

benchmark defines an ontology that cannot be modelled in

a certain tool, this benchmark cannot be executed in the

tool, being the Execution result N.E. (Non Executed). In the

import benchmark suite, even if a tool cannot model some

components of the ontology, it should be able to import

correctly the rest of the components.

IV. IMPORT AND EXPORT RESULTS

The results obtained when importing from and exporting to

RDF(S) depend mainly on the knowledge model of the tool

that executed the benchmark suite. The tools that natively sup-

port the RDF(S) knowledge model (Corese, Jena and Sesame,

essentially the RDF repositories) do not need to perform any

translation in the ontologies when importing/exporting them

from/to RDF(S). The RDF repositories import and export

correctly from/to RDF(S) all the combinations of components,

as these operations do not require any translation.

In the case of tools with non-RDF knowledge models

(KAON, Protégé and WebODE, the ontology development

tools), some of their knowledge model components can also

be represented in RDF(S) whereas some others cannot; on

the other hand, tools do need to translate ontologies between

their knowledge models and RDF(S). Besides, not all the

combinations of components of the RDF(S) knowledge model

that have been taken into account in the benchmarking can be

modelled into all the tools.

We present an analysis of the import and export results of

the participating ontology development tools.

A. Import Results

In general, ontology development tools import correctly

from RDF(S) all or most of the combinations of components

that they model, rarely adding or losing information. The only

exceptions are: Protégé, which poses problems only when

importing classes or instances that are instances of multiple

classes, and WebODE, which causes problems only when

importing properties with a XML Schema datatype as range.

When the ontology development tools import ontologies

with combinations of components that they cannot model, they

lose the information about these components. Nevertheless,

they usually try to represent partially these components using

other components from their knowledge models. In most cases,

the import is performed correctly. The only exceptions are:

KAON, which poses problems when it imports class hierar-

chies with cycles, Protégé poses problems when it imports

class and property hierarchies with cycles and properties with

multiple domains, and WebODE, which causes problems when

it imports properties with multiple domains or ranges.

When dealing with the different variants of the RDF/XML

syntax, ontology development tools import correctly resources

with different URI reference syntaxes and with different

syntaxes (shortened and unshortened) of empty nodes, of

multiple properties, of typed nodes, of string literals, and of

blank nodes. The only exceptions are: KAON when imports

resources with multiple properties in the unshortened syntax;

and Protégé when imports resources with empty and blank

nodes in the unshortened syntax. The tools do not import

language identification attributes (xml:lang) in tags.

B. Export Results

In general, ontology development tools export correctly to

RDF(S) all or nearly all of the combinations of components

that they model without losing information, though KAON

poses problems only when exporting to RDF(S) datatype

properties without range and datatype properties with multiple

domains and with an XML Schema datatype as range, whereas

Protégé causes problems only when exporting to RDF(S)

classes or instances that are instances of multiple classes and

template slots with multiple domains.

When these tools export components that are present in their

knowledge model but cannot be represented in RDF(S), such

as their own datatypes, they usually insert new information in

the ontology though some information is lost.

When dealing with concepts and properties whose names

do not fulfil URI character restrictions, each ontology devel-

opment tool behaves differently. When names do not start

with a letter or ” ”, some tools leave the name unchanged

while others replace the first character with ” ”, spaces in

names are replaced by ”-” or ” ”, depending on the tool, and

URI reserved characters and XML delimiter characters are left

unchanged, replaced by ” ”, or encoded.

V. INTEROPERABILITY RESULTS

The RDF repositories (Corese, Jena and Sesame) interop-

erate correctly among themselves as they always import and

export from/to RDF(S) correctly. This causes that interoper-

ability between the ontology development tools and the RDF

repositories depends only on the capabilities of the former to

import and export from/to RDF(S) and, therefore, the results

about this interoperability are identical to those presented in

the previous section.

The import and export results presented in the previous

sections showed that few problems arise when importing and

exporting ontologies. Nevertheless, the interoperability results

present more problems.

As a general comment we can say that interoperability

between the tools depends on: a) the correct working of their

413

RDF(S) importers and exporters; and b) the way selected for

serializing the exported ontologies in the RDF/XML syntax.

Furthermore, we have observed that some problems in any

of these factors affect the results of not just one but of several

benchmarks. This means that, in some cases, correcting a

single import or export problem or changing the way of

serializing ontologies can cause significant interoperability

improvements.

Next, we list the components that can be interchanged

between the tools.

1) Interoperability using the same tool: Ontology develop-

ment tools seem to have no problems when the source and the

destination of an ontology interchange are the same tool. The

only exception resides in Protégé when interchanges classes

that are instances of multiple metaclasses and instances of

multiple classes, since Protégé does not import resources that

are instances of multiple metaclasses.

2) Interoperability between each pair of tools: Interoper-

ability between different tools varies according to the tools.

Besides, as the detailed interoperability results show, in some

cases the tools are able to interchange certain components from

one tool to another, but not the other way round.

When KAON interoperates with Protégé, both can inter-

change correctly some of the common components that they

are able to model. But the problems arise with classes that are

instances of a single metaclass or of multiple metaclasses, with

datatype properties without domain or range, with datatype

properties whose range is String, with instances of multiple

classes, and with instances related via datatype properties.

When KAON interoperates with WebODE, they can in-

terchange correctly almost all the common components that

these tools can model. The only exception occurs when they

interchange datatype properties with domain whose range is

String.

When Protégé interoperates with WebODE, they can inter-

change correctly all the common components that these tools

can model.

3) Interoperability between all the tools: Interoperability

between KAON, Protégé and WebODE can be achieved

with nearly all the common components that these tools can

model. The only components that these tools cannot use are:

datatype properties with domain and whose range is String,

and instances related through datatype properties.

Therefore, interoperability can be achieved among the tools

that have participated in the benchmarking using classes, class

hierarchies without cycles, object properties with domain and

with range, instances of a single class, and instances related

through object properties.

4) Interoperability regarding URI character restrictions.:
Interoperability is low when tools interchange ontologies con-

taining URI character restrictions in class and property names.

This is mainly due to the fact that tools usually encode some

or all the characters that do not comply with these restrictions,

which provokes changes in class and property names.

VI. RECOMMENDATIONS

A. Recommendations for ontology engineers

This section offers recommendations for ontology engineers

which use more than one ontology tool to build ontologies.

Depending on the tools used, the level of interoperability may

be greater or lower, as can be seen in Section V.

If the ontology is being developed bearing in mind interop-

erability, the ontology engineers should be aware of the com-

ponents that can be represented in the ontology development

tools and in RDF(S). Also, they should try to use in their

ontologies the common knowledge components of these tools

in order to avoid the knowledge losses known already.

Ontology engineers should also be aware of the semantic

equivalences and differences between the knowledge models

of the tools and the interchange language.

It is not recommended to name resources using spaces or

any character that is restricted in the RDF(S), URI or XML

specifications.

In the case of interoperability in the RDF repositories,

although these repositories export and import correctly to

RDF(S), ontology engineers should consider the limitations

that other tools have when exporting their ontologies to

RDF(S) with the aim of interchanging them.

B. Recommendations for tool developers

This section includes general recommendations for improv-

ing the interoperability of the tools when developing them.

In [9], we offer more detailed recommendations to improve

each of the participating tools according to the results and

practices found. Although it is not compulsory to follow these

recommendations, they help correct interoperability problems

as we could observe when analysing the results.

Interoperability between ontology tools using RDF(S) as

interchange language depends on how the importers and

exporters of these tools work, whereas the way they work

depends on the development decisions made by tool develop-

ers, who are different people with different needs. Therefore,

it is not straightforward to provide general recommendations

for developers. Nevertheless, some comments can be extracted

from the analysis of the benchmarking results.

Seldom, a development decision will produce an interoper-

ability improvement with some tools but a loss with others.

For example, when exporting classes that are instances of

a metaclass, some tools require that the class be defined as

instance of rdfs:Class while some others require the opposite.

The collateral consequences of the development decisions

should be analysed by the tool developers.

Tool developers should be aware of the semantic equiva-

lences and differences between the knowledge models of their

tool and the interchange language; on the other hand, the tools

should notify the user when the semantics is changed.

The first requirement for achieving interoperability is that

tool importers and exporters are robust and work correctly

when dealing with unexpected inputs. Although this is an

evident comment, the results show that this requirement is

414

not fulfilled by the tools and that some tools even crash when

importing some combinations of components.
Above all, tools should deal correctly with the combinations

of components that can be present in the interchange language

but that cannot be modelled in them. For example, cycles in

class and property hierarchies cannot be modelled in ontology

development tools. Nevertheless, these tools should be able to

import these hierarchies by eliminating the cycles.
To export components commonly used by ontology devel-

opment tools, they should be completely defined in the file.

This means that metaclasses and classes in class hierarchies

should be defined as instances of rdfs:Class, properties should

be defined as instances of rdf:Property, etc.
Exporting complete definitions of other components can

cause problems if these are imported by other tools. Not every

tool deals with datatypes defined as instances of rdfs:Datatype
in the file or with rdf:datatype attributes in properties.

Every exported resource should have a namespace if the

document does not define a default namespace.

C. Recommendations for benchmarking

This section offers recommendations to perform benchmark-

ing activities that were extracted from the lessons learnt while

instantiating the methodology.
Benchmarking is not about comparing the results of the

tools but the practices leading to these results. Therefore,

experimentation should be designed to obtain these practices

as well as the results.
Resources are needed mainly in three tasks: benchmarking

organisation, experimentation definition and execution, and

results analysis. It should be ensured that enough resources

are allocated to each of these tasks.
Benchmarking is an activity that takes long time as it

requires tasks that are not immediate: announcements, agree-

ments, etc. Therefore, benchmarking activities should start

early in time and the benchmarking planning should consider

a realistic duration of the benchmarking.
Benchmarking needs the participation of relevant experts

in the domain together with the best-in-class tools. Although

it is not required that the tool developers participate in the

benchmarking and perform the experiments over their tool,

their involvement facilitates the execution and analysis of the

experimentation results to a large extent. In all the cases where

tool developers performed the experimentation on their own

tools, they were able to detect problems and improve their

tools while executing the benchmark suites.

VII. CONCLUSIONS AND FUTURE WORK

Seamless interoperability among ontology tools greatly fa-

cilitates the development and deployment of ontologies. In this

paper we present a set of concrete RDF(S) benchmarks and

results and best practices obtained after applying them in an

extensive field study on a number of well-known ontology

tools.
Our benchmarks may be used by any ontology tool devel-

oper to improve import and export functionalities and to ensure

interoperability with other tools on a very fine-grained level.

Our field study wants to show ontology engineers to which

extent state-of-the-art tools are interoperable right now. How-

ever, ontology engineers may use the benchmarks themselves

to benchmark relevant tools, e.g. in early ontology develop-

ment project stages to facilitate the selection of appropriate

tools.

During this benchmarking activity, tool developers some-

times automated the execution of the benchmark suites, but

the experimentation was mainly done by hand. Carrying out

experiments manually and analysing the results is expensive

since both tasks depend on the expertise of the people perform-

ing them, and can be influenced by human errors. Therefore,

these tasks should be automated as much as possible and

mechanisms should be set up to detect human errors.

Future work mainly includes the development of means

to automatize experimentation as much as possible and the

development of appropriate OWL benchmark suites to be

used in a future benchmarking activity that will consider

interoperability using OWL as interchange language.

ACKNOWLEDGMENTS

This work is partially supported by a FPI grant from the

Spanish Ministry of Education (BES-2005-8024), by the IST

project Knowledge Web (IST-2004-507482) and by the CICYT

project Infraestructura tecnológica de servicios semánticos

para la web semántica (TIN2004-02660). Thanks to all the

people that have participated in the RDF(S) interoperability

benchmarking: Olivier Corby, Jesús Prieto-González, Moritz

Weiten, and Markus Zondler. Thanks to Rosario Plaza for

reviewing the grammar of this paper.

REFERENCES

[1] ISO/IEC, ISO/IEC 14598-1: Software product evaluation - Part 1: Gen-
eral overview, 1999.

[2] M. Spendolini, The Benchmarking Book. New York, NY: AMACOM,
1992.

[3] R. Garcı́a-Castro, “Keynote: Towards the improvement of the Semantic
Web technology,” in Proceedings of the Second International Workshop
on Scalable Semantic Web Knowledge Base Systems (SSWS2006), Athens
GA, USA, November 2006.

[4] J. Grant and D. B. (eds.), “RDF test cases. W3C recommendation 10
february 2004,” W3C, Tech. Rep., February 2004.

[5] Y. Sure and O. Corcho, Eds., Proceedings of the 2nd International Work-
shop on Evaluation of Ontology-based Tools (EON2003), ser. CEUR-WS,
vol. 87, Florida, USA, October 2003.

[6] R. Garcı́a-Castro, D. Maynard, H. Wache, D. Foxvog, and R. González-
Cabero, “D2.1.4 Specification of a methodology, general criteria and
benchmark suites for benchmarking ontology tools,” Knowledge Web,
Tech. Rep., December 2004.

[7] R. Garcı́a-Castro and A. Gómez-Pérez, “Guidelines for benchmarking
the performance of ontology management APIs,” in Proceedings of the
4th International Semantic Web Conference (ISWC2005), ser. LNCS, no.
3729. Galway, Ireland: Springer-Verlag, November 2005, pp. 277–292.

[8] ——, “Benchmark suites for improving the RDF(S) importers and
exporters of ontology development tools,” in Proceedings of the 3rd
European Semantic Web Conference (ESWC2006), ser. LNCS 4011.
Budva, Montenegro: Springer-Verlag, June 2006.

[9] R. Garcı́a-Castro, Y. Sure, M. Zondler, O. Corby, J. Prieto-González,
E. P. Bontas, L. Nixon, and M. Mochol, “D1.2.2.1.1 Benchmarking
the interoperability of ontology development tools using RDF(S) as
interchange language,” Knowledge Web, Tech. Rep., June 2006.

415

A Deep Classification of Temporal Versioned Integrity Constraints for Designing
Database Applications

Robson Leonardo Ferreira Cordeiro∗, Renata de Matos Galante+†,
Nina Edelweiss+ and Clesio Saraiva dos Santos+

∗Computer Science Department (ICMC) - University of São Paulo (USP) - São Carlos - Brazil
+Informatics Institute (II) - Federal University of Rio Grande do Sul (UFRGS) - Porto Alegre - Brazil

E-mail: (rlfcordeiro, galante, nina, clesio)@inf.ufrgs.br

Abstract

The version concept was initially proposed for control-
ling design evolution on computer aided design and soft-
ware engineering. Time concept has been widely used in
software engineering for real-time systems and the ones that
need to register historical data together with their validity
periods. Recent researches have proposed the use of both
concepts in databases, in order to automatically control the
storage and retrieval of historical data and project alter-
natives. However, integrity constrains on this kind of data
still represent an almost unexplored research area. This
paper proposes a classification for constraints considering
the use of time and version concepts in the data and in the
constraints themselves. Constraints are deeply analyzed in
the paper, considering their origin, substance, specification,
application, temporality and versioning aspects. The clas-
sification completeness is also analyzed and a case study is
presented. The proposed classification is more expressive
than others found in literature and, at the same time, sim-
plifies the task of designing database applications that have
to deal with historical and evolving data. This work serves
as a base for new researches on the definition, specification
and optimized maintenance of these constraints.

1. Introduction

The concept of version was proposed for controlling de-

sign evolution and co-authoring on computer aided design

[11] and software engineering [17]. In those environments,

versioning is applied to files, such that different alternatives

or revisions of a document are stored on different files han-

dled by the operating system. One of the most common tool

for handling this type of versions is the CVS (Concurrent

Version System). The time concept has been widely used

∗Work performed while studying at UFRGS.
†This work has been partially supported by Fapergs under grant No.

0412264, CNPq No. 550.845/2005-4 and CNPq No. 475.743/2004-0.

in software engineering for real-time systems (specially for

embedded systems) [3] and database applications that have

to deal with historical data and their validity periods [16].

A glossary of temporal database concepts is found in [10].

Recent work have proposed the use of time and ver-

sion concepts in database applications, named temporal

databases with versions support [4, 5, 15]. They use the

time concept to control and store historical data while the

version concept allows managing several project alterna-

tives and the evolution of different elements of the data.

Considering that any database application represent

some part of the real world, it is possible to affirm that, in

order to make a faithful representation of reality, the data

managed by these applications must obey several integrity

constraints provided by the modeled reality [5, 4].

There are many researches and implementations on the

integrity maintenance for snapshot databases. These work

usually classify constraints based on their common charac-

teristics, in order to define different maintenance methods

for constraints in each class, trying to take advantage of

this fact. Recent work on constraints for XML (eXtensi-

ble Markup Language) and spatial snapshot databases have

been made [12, 6]. However, constraints concerning time

and versions still represent an almost unexplored research

area that must be deeply analyzed [5, 4].

This paper proposes a detailed integrity constraints clas-

sification for database applications, considering the use of

time and version concepts in data and in the constraints

themselves1. The classification particularities are presented

and its completion is analyzed by comparing it with some

other classifications found in literature. A case study that

illustrates its applicability is also provided.

The proposed classification is more expressive than oth-

ers found in literature and, at the same time, simplifies the

task of designing database applications that have to deal

with historical and evolving data. By grouping constraints

with common characteristics in classes, this classification is

1The first ideas of this work were shown in [5].

416

important in several software engineering areas, since it can

be seen as a main step for the specification and, specially,

for the automatic maintenance of constraints that still must

be validated by user applications or auditing trail tools.

The rest of this paper is organized as follows. The second

and main Section presents the constraints classification. In

Section three a case study that illustrates the classification

use and applicability is presented. Section four presents re-

lated work analyzing the classification scope. Finally, Sec-

tion five shows conclusions and ideas for future work.

2. Integrity Constraints Classification

This Section presents a classification of constraints for

temporal databases with versions support. Constraints are

deeply analyzed, based on their characteristics, in order to

provide an important base for their specification and auto-

matic maintenance, making it easier the design of database

applications through software engineering processes.

A constraint specification must have the following com-

ponents: (i) restrictive, a set of components, present or not
in the database, used to build restrictions on the database

data; (ii) restricted, a set of database components whose
contents are restricted by the constraint; (iii) restrictive con-
dition, a generic logic expression relating the restricted and
restrictive components; (iv) verification points, that define
the starting points of its validity verification, and (v) vio-
lation actions, possible actions executed over the database
immediately after the constraint violation in order to estab-

lish again the data integrity. Thus, the data integrity main-

tenance related to a constraint is based on the validity veri-

fication of its restrictive condition on its verifying points.

Based on these components, constraints are analyzed by

the aspects: origin, substance, specification, application,
temporality and versioning. Each one of these aspects, de-
scribed in the following Sections, has several criteria and

sub-criteria in order to make possible all classes definition.

Due to the space limitation, aspects not related to time or

versions (origin, substance and application) are briefly de-
scribed in a unique Section. Only time and versions aspects

are detailed, since they are more important to this paper.

2.1. Origin, Substance and Application

The origin aspect defines that the possible generating
agents of integrity constraints are the environment, the en-
terprise, the data model, and the implementation.
The substance aspect allows anyone to classify con-

straints based on the kind of condition imposed on data.

It has several criteria commented as follows. The com-

ponents of the restrictive and restricted sets of a constraint

are classified by their kind. This kind can be schema, en-
tity, relationship or domain. Also the scope of these sets
is considered to evaluate the database parts related to the

constraint. Through the aspect criterion, constraints can re-
strict a database by its data cardinality, internal composi-
tion, temporality or versioning, besides schema behavior or
structure. Also, by the completion criterion, a constraint
can be complete, when it completely represents a constraint
of the modeled reality, or incomplete, when it represents,
in conjunction with others, a single real constraint. Ac-

cording to [1, 4], the state scope criterion classifies static
constraints, when they use only one database state during
their verification processes, or dynamic constraints, when
they use more than one state. The last ones can also be

transition or non-transition constraints. Diverging of other
work [2, 13], here static constraints can be temporal, refer-
ring to a unique instant in the past, present or future time.

Dynamic constraints are always temporal, because, even if
time is not referenced explicitly, its concept is implicitly

used when distinct database states are analyzed.

The application aspect takes into account the possible
integrity maintenance forms related to the existent con-

straints. Its criteria are commented as follows. The veri-
fication points of a constraint can be based on update op-
erations executed over the database or based on the occur-
rence of events related to temporal or non-temporal facts.
The first ones are divided in immediate and postponed, re-
spectively related to the execution of individual operations

or complete ACID transactions. The verification of a con-
straint can be ordered, when it must respect some ordina-
tion, based on the verification of other(s), or free, on the
contrary way. Constraints can also be active and demand
data to respect it or, inactive, temporarily, not influencing
the integrity maintenance. Moreover, the activation and
deactivation of some constraints can be dependent, occur-
ring obligatorily together, or independent [7]. The possible
treatments received by constraints in order to maintain the
data integrity are: (i) prevention, based on the execution
of actions to prevent violations; (ii) detection, that only ac-
cuses the violations; (iii) complementation, executing viola-
tion actions after any violation, or (iv) reconstitution, rolling
back the database to a valid state not influenced by the vi-

olation operation or transaction. Finally, the possible vehi-

cles used to maintain the data integrity are: operational sys-
tem, database management system, application programs
and auditing trail tools.

2.2. Specification

The specification of a constraint is the process that incor-
porates it in the database schema. After that, the constraint

must be respected in an unconditional way [4].

It is important to notice that this aspect classifies a con-

straint according to the temporality and versioning of the

constraint itself, without considering any data characteris-

tic. These ones are considered by the following aspects.

A constraint declaration can be: implicit, when it is in-

417

herent in the data model, explicit, when it is explicitly rep-
resented on the specification, or derived, when it is partially
inherent in the data model and complemented by explicit

statements. According to its self-temporality scope, a con-
straint can be global, when it must be respected during the
whole database lifetime, or local, when it is considered only
in some part of this lifetime. The local scope can also be re-
lated to moments in the past, present or future. Details are
found in Figure 1a. The self-temporality type (Figure 1b) of
a constraint can be: (i) non-temporal, for constraints classi-
fied as global in the last criterion; (ii) temporal determina-
tion, for the ones that use time referring to exact moments,
or (iii) temporal indetermination, when they use time refer-
ring to moments in an inaccurate way. Constraints on these

two last classes store their update history and may be valid

only in specific periods. Also, a constraint can have a non-
versioned self-versioning type, having no versioning control
over itself, or versioned, on the contrary way (Figure 1c).

Figure 1. Part of the Specification aspect.

2.3. Temporality

The temporality aspect groups constraints based on the
temporality of their restricted and restrictive sets. The tem-

porality of the constraint itself is not considered here. Thus,

a constraint can be non-temporal, enclosing non-temporal
restrictive and restricted sets, or temporal, when these sets
use the temporality in an implicit or explicit way. The lat-

ter are sub-classified by several sub-criteria. Temporal con-

straints depend on the existence of a “clock” whose flow is
independent of any action executed on the database. Thus,

when directly related to the time, their violations are irre-

versible due to the irreversibility of the flow of time [2].

References in restrictive conditions relate restricted sets
to restrictive ones limiting the range of possible values on

the first set, based on the second one. These references (Fig-
ure 2a) can use two distinct time notions: (i) absolute time,
when there is a quantitative relation between both sets and,

absolute values are defined for events duration or for their

temporal distances, and (ii) relative time, defining a qualita-
tive relation by the use of special operators like the follow-

ing ones: before, into and after [7, 10]. The temporal gran-
ularity (Figure 2b) of constraints can be homogeneous or
heterogeneous, according to the metric unit (chronon) used
in their temporal references.

The sub-criteria restrictive and restricted temporality
types are classified as the self-temporality type (Section
2.2), but considering only data characteristics. Non-
temporal components can be schemas, entities or relation-
ships, defined as non-temporal in the data modeling, or do-
main kind components (only for restrictive sets) that do not
explicitly relate the database to the time. All other compo-

nents are temporal. Figure 2c shows a detailed description
of this criterion. Finally, in order to make possible the scope

analysis of many database states during its whole lifetime,

the sub-criteria restrictive and restricted temporality scopes
(Figure 2d) are defined. They classify constraints as the self-
temporality scope (Section 2.2), except for not being related
to a constraint itself, but for its restrictive and restricted sets.

Also, the restrictive one considers the indefinite temporal
scope, for restrictive domain kind components not related
to the time and, the possibility of a local temporal scope
independent on the current time.

2.4. Versioning

Besides the self-versioning, considered in the specifi-
cation aspect, restrictive and restricted sets can also make
use of the version concept. Thus, the versioning aspect
classifies non-versioned constraints, with restrictive and re-
stricted sets that do not use this concept, and versioned ones,
on the opposite way. Versioned constraints are classified by
the sub-criteria described as follows.

Considering their restrictive and restricted versioning
types (Figure 3a), versioned constraints have components
defined as versioned on the data model or explicitly refer-

ring to the versioning of a database part. All other con-

straints are non-versioned. The restrictive and restricted
versioning scopes (Figure 3b, divided, due to the space lim-
itation) of a constraint are classified as global, enclosing all
versions of database components, or local, enclosing only
part of these versions. The indefinite scope is also possi-
ble for restrictive sets with components of the domain kind,
not directly related to the database versioning. Also, the

local scope is sub-classified considering the number and
the states of the enclosed versions. These sub-criteria con-

sider the scope of different versions of database components

418

Figure 2. Temporality aspect.

making it possible, together with the other (binding) scope
criteria described before, a complete scope classification of

constraints for any temporal database with versions suport.

3. Case Study

The main goal of this Section is to present a case study

in order to illustrate the classification use and applicability

in temporal databases with versions support.

The system of a software production company is consid-

ered here. Actual constraints on this reality are specified

in colloquial language and classified according to their time

and versions characteristics. The Temporal Versions Model

(TVM) [15] is used in the case study. TVM is an object ori-

ented data model for temporal databases with versions sup-

port. Time, represented by transaction and valid times, can

be related to objects, versions, attributes and relationships.

Figure 4 presents the UML class diagram used by the

application example2, based on the TVM model and on the

minute granularity. In this diagram, the classes analyst and
programmer inherit by extension (a special TVM relation-

ship) all characteristics of the employee class. The salary of
an employee and the base salary of his/her category are de-

fined by temporal relationships with the salary_level class.
All software projects must be coordinated by an analyst and

managed by a workgroup, composed by analysts and pro-

grammers. Temporal relationships are used in order to reg-

ister the historical updates on these relations.

Based on the presented reality, the following constraints

are classified: (i) the salary of an employee cannot be
2In the diagram, the template T V represents temporal versioned

classes. Temporal attributes and relationships are defined, respectively,

by the labels << T >> and << T emporal >>.

lower than the base salary of his/her category, after three
months of employment, and (ii) the analyst that coordinates
a project must participates in the workgroup that manages
it. The classifications for the specification, temporality and
versioning aspects are shown in Figure 5, through trees
whose leaf nodes (in bold) represent classes of constraints.

Considering that the first constraint depends on legal as-

pects that can be easily changed in time (specially the “three
months”), its self-temporality was defined as bitemporal
(transaction and valid times) with local scope, in order to
control its validity periods and change history. Also, con-

sidering the possibility of different experience periods for

employees in distinct categories, the self-verisoning type of
this constraint is versioned, in order to have different con-
straint versions related to the employee categories at the

same time. The self-temporality of the other constraint is
non-temporal with global scope and its self-versioning is
non-versioned, since it is considered stable. Finally, the
classifications for the temporality and versioning aspects are

based on the components in the constraints restrictive and

restricted sets, defined in the data modeli.

4. Related Work and Classification Scope
Analysis

Work related to constraints for temporal databases with

versions support are rare and the existing ones usually con-

sider only one of the analyzed features: time or versions. An

exception is the paper [4], were Cordeiro et al. propose an

specification language (TVCL) for constraints considering

both time and versions. However, a classification was not

defined and, since it lacks a deep inspection on constraints

419

Figure 3. Versioning aspect.

characteristics, no maintenance process was proposed.

From the best of the authors knowledge, there is no in-

tegrity constraints classification that considers the applica-

tion of time and version concepts in data and in constraints

themselves. Thus, the main goal of this research is to define

a complete classification for any temporal database with

versions support. Ideally, formal methods should be used

to prove the completeness of the proposed classification.

These methods are usually used to define semantics of sys-

tem and languages. However, there is no specific language

or system in the classification to be evaluated by a mathe-

matical model that describes its behavior. Thus, although

the advantages of a formal treatment, its use is not possible

in order to prove the classification completeness.

The alternative way used to analyze the completion of

the classification was to compare our proposal with other

found in literature. To compare these classifications we

mapped the equivalent classes of each one of the classifica-

tions found in literature to the classification proposed here.

This analysis is briefly described as follows.

In the paper [8], Doucet et al. classify temporal con-

straints according to their scope and binding on objects,
classes and versions. The state scope and reference are
also considered. However, important characteristics are

not treated, as the self-temporality, self-versioning types

Figure 4. Modeling example.

and scopes, temporality scope, temporality and version-
ing types, temporal granularity, and others. Dayal et al.
[7] present a good classification, considering the treat-
ment, activation and deactivation type, state scope, verifi-
cation points, precedence order, reference, restrictive and
restricted scopes and binding scopes only of temporal con-
straints. Böhlen and Martín [1, 13] present a classification,

considering restrictive and restricted temporality scopes
and types, state scope and reference of temporal constraints.
In [2], Chomicki analyzes the state scope, reference and
treatment of real-time constraints. Medeiros, Jomier and
Cellary [14] present a good classification according to the

origin, vehicle, state scope, restrictive and restricted as-
pects and scopes, considering only versioning characteris-
tics. Finally, Goonetillake et al. [9] classify versioned con-

straints by their origin and treatment.
The result of this experience was that our classification

contains, besides others, all the classes represented in the

classifications proposed in these work. This result does

not prove the classification completeness, but it shows that

our classification is more complete than any other analyzed,

since it takes into account features that were never consid-

ered before, besides all aspects analyzed by these work.

Thus, future work on these constraints will have several

benefits using this classification as a base.

5. Conclusions and Future Work

This paper presented a detailed classification of integrity

constraints considering the application of time and ver-

sion concepts in data and in constraints themselves. By

grouping constraints in classes, based on constraints com-

420

Figure 5. Example constraints classification.

mon characteristics, this work is a base for researches re-

lated to integrity maintenance processes for any tempo-

ral database with versions support, independently of other

DBMS (Databases Management System) or data model

characteristics. Moreover, due to the existence of specific

aspects for temporality and versioning, this classification

can be easily adapted and used for snapshot, temporal or

versions databases. As shown in Section four, this classifi-

cation is more complete than others already published since

it contains all the classes represented in these work, adding

aspects not considered before.

It is crucial to notice that this work provides an impor-

tant base for the automatic maintenance of constraints that

still must be validated by user applications or auditing trail

tools, making it easier the definition of software engineer-

ing processes for designing database applications that have

to deal with historical and evolving data.

In order to get a good integrity maintenance process,

based on this classification, the next step consists on the

definition of optimized methods for the verification of con-

straints with common characteristics. Hence, experiments

and implementations are being made using the TVM model

[15] and the TVCL specification language [4], based on

triggers and on a layer to emulate a TVMDBMS under a re-

lational DBMS. The main problem faced is to define an op-

timized algorithm to verify constraints with event based ver-

ification points (Section 2.1). Finally, researches to demon-

strate the minimalism of the classification are being made.

References

[1] M. Bohlen, “Valid time integrity constraints,” Univer-

sity of Arizona, Tucson, AZ, Tech. Rep. 94-30, 1994.

[2] J. Chomicki, “Real-time integrity constraints.” in

PODS. ACM Press, 1992, pp. 274–282.

[3] J. E. Cooling and J. Cooling, Software Engineering
for Real-Time Systems. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002.

[4] R. L. F. Cordeiro and et al., “Tvcl - temporal ver-

sioned constraint language.” in SBBD, C. A. Heuser,
Ed. UFU, 2005, pp. 55–69.

[5] R. L. F. Cordeiro, C. S. Santos, and N. Edelweiss, “In-

tegrity constraints for temporal versions model: clas-

sification, modeling and verification,” in Workshop de
Teses e Dissertações em Banco de Dados, Brasília,
DF, Brazil, 2004, in conjunction with SBBD.

[6] C. A. Davis and et al., “Deriving spatial integrity con-

straints from geographic application schemas.” in En-
cyclopedia of Database Tech. and Applications, L. C.
Rivero and et al, Eds. IG, 2005, pp. 176–183.

[7] U. Dayal and et al., “The hipac project: Combin-

ing active databases and timing constraints.” SIGMOD
Record, vol. 17, no. 1, pp. 51–70, 1988.

[8] A. Doucet and et al., “Using database versions to im-

plement temporal integrity constraints.” in CDB, ser.
Lecture Notes in Computer Science, V. Gaede and

et al., Eds., vol. 1191. Springer, 1997, pp. 219–233.

[9] J. S. Goonetillake and et al., “An integrity constraint

management framework in engineering design,” Com-
put. Ind., vol. 48, no. 1, pp. 29–44, 2002.

[10] C. S. Jensen and et al., “The consensus glossary of

temporal database concepts - february 1998 version.”

in Temporal Databases, Dagstuhl, 1997, pp. 367–405.
[11] R. H. Katz, “Toward a unified framework for version

modeling in engineering databases,” ACM Comput.
Surv., vol. 22, no. 4, pp. 375–409, 1990.

[12] A. T. Lazzaretti and R. dos Santos Mello, “A do-

main integrity constraint control for xml documents.”

in SBBD, 2005, pp. 115–129.
[13] C. Martín, “Analyzing temporal integrity constraints

to obtain the minimum number of transition rules,”

Department of Llenguatges i Sistemes Informàtics,

Tech. Rep. LSI-01-52-R, 2001.

[14] C. B. Medeiros and et al., “Maintaining integrity con-

straints across versions in a database,” in SBBD. PB:

SBC, 1993.

[15] M. M. Moro and et al., “A temporal versions model for

time- evolving systems specification.” in SEKE, 2001,
pp. 252–259.

[16] R. Snodgrass and C. Jensen, Temporal Databases.
Morgan Kaufmann Publishers, 2006.

[17] B. Westfechtel and et al., “A layered architecture for

uniform version management,” IEEE Trans. on Soft-
ware Eng., vol. 27, no. 12, pp. 1111–1133, 2001.

421

���������� 	�����
������ 	��� ������� �� ������������� ������������

������� �������� ����	
 ��	���	��� ��� ��� �� ����

���� �� ������� ��	��� ��	���	�� �� � �� �� !� "���

!� "���� �# $%%&'� ���

	�������� ����	
� ��� �(���)������

��������

�������� 	��	���
 ����������� ��� 	������� ����� �����

����� ���������� ���� ������� 	������ ��������� ����

���� ��� �� ��� 	����������� �� 	����
��� 	��	������

��� �	���������� ������� �
��� ����� 	������ �����	�

���� �� � ���������� �� 	������� ���� 	������ � �����

���� ���� � ��	� ���� ����� ��� � ���� �� 	������ � ��

������ ���� ����� � 	��	���
 	������ � ���������� !���

�� � ������� 	������� ��� 	������ � 	���������� ��� ����

�
	� �� ��	� �� �����	�� ������ �������� ��������� "���

��� ���	���� "���� �"�"�� ��� ���	���
 �	���������� ����

����	��� � ���� ��� �
 ����������� ��� ������ �� #���

	���� ���	������ �#��� ���� �����
 �$������� ��� ����

������� �������� ���� 	������ ��� ��	� 	���������

%� ��� ���&� �� 	����� �� �		����� �� �		��� ��� ���

������� ���������� �� "����� ���	���� "���� �"�"� ������

�� ��� ���	�� 	����������� ������� 	���������� ����

�� #�� '� ����� ������� "�" ������� ��� ��� (�	���

	������� ��� 	������ ������ �����	���� �� ��� ��������� #�

����� %� ��������� �� �������
 ������� ��� (�	��� 	���

���� ��� ��� ��������� ��	� ���� �� #��

� 	
��������
 �
� ���������

�������� ��	
�� �	��������
����� ���� ��
���

������� ���� ���	
 �	����� ����� ��� 	����

�����	�

��� ���� ��� �� ����� �� �
�	�� �� ���������� ��

�	��	�
�� ������	 �����
�� �	���������� ��� � ��

����� ��
! "� 	����� ��	 ���� ������� ������ �� ����

��� ��
���
������ �������������� 	#��	� ��	 	�����

��� �	����� ��	
�� ������������ ��� ��	 �� �� �� ���

���	����� �$�!

%���	 "
��	�� %���� &%"%' �� � �	�
���� ��	
��

����������� �������! %"%(� ������	�� ��
� �	�
 ��

���� ���� �� �� �����)�	���� ��� ���� �� �� ���� ���

�� ��	
�� �	�������� �����! *��� ����� ������� �� �����

��	
��� ����	 *+,- ��� ���� ��� �� ��� �� �� �	��

������� �� � ��	�� �� � ��
� ���� �� ���	�� �	�������

��� ��� .���� ������	 �/�! ,� ��������� %"% �� ��� �

�� 0��� ����	� -�*01 ��� ��� 2��� +����3���	 �4�!

%"% �� ���� ��� �� �� 	����
 �	�������� �� 2��� �	��

�	�
� ����!

����������	
 ������
 ����� ������ "� �	���
 ��

��	����� ��	
�� ����������� �� ��������� ��� �� �
��	��

����	 �� %"%
��� �� �� ��	�	 �� �	�� ������������!

"� *���������� +���	� * ��
 �5� ���� ����	�� ���

����� �� ������ �� �	��������	 �� ��	
��� ����� ��� �����

��	 �	��	���!

������� �����	 ��)�	��� �� �����	� � ���	���

��� ��������� �� 	��		�� �	���
�! 6��� ����	� ���	���

�� ��	����	 �� ������ ������	� ���� �� ����	�(� 	�

���������� ���� ���	 ����	��� ��� ���� �� ���� ��	

����� �� �	��	� �����!

"�
��� ����	�� ���� � *+* �	7)��������

��
���� *��������� � ���������� �������������+�� ��� (��

	������+�! Universality(P) ����� ���� P �� �	� �� ��

	 ����� �� ��)������8 Absence(P) ����� ���� P ��

��	 �	� ��	��� ��)������8 Existence(P) ����� ����

P �� �	� �� ��
 ����� �� ��)������8 Precedence(P,Q)
����� ���� �� P ������ ��� Q
��� ���� ���	 P 8 ���

Response(P,Q) ����� ���� �� P ������ ��� Q
��� ����

�� � ����	 ����! 9����� �	��	��� 	�	��� � �
��	��

	������ ����� ��������� ���� ��� �	����������! *+*

	��	���� �� ����������� �� �#���� �� �	���� ���

	����� ����	��!

,� *+*� ��� ����	� �� ��������� ���� � ���	� ���� ��

��� ��)��� �� �	��	�
)������ ��	 ����� � �	��	�

����	� �� ������	�! "�	 �	 �� � �� �� ����� ����

�� *+*7 Global� Before R� After L� Between L And R�
��� After L Until R! Global ����� �� ���	 �	��	�

)������8 Before R ����� ��)������ ���	 �� �	��

��
 9 ����	�� �!!� R �����8 After L �����)������ ���

�	 �� �	�� ��
 L ����	�8 Between L And R ����� ��

)������ ���� ���	���� ���� � L ���R8 ���After
L Until ����� ��)������ ���� ���	���� ���� �
L ��� R ���� �� �� ��� ��� R ��� ��� ����	� ����� ��

�� ��)������!

422

��� ��� ����	
��� ����	��� � ������ �����	�
	�� ��

��

���� ��� ������ 	� ������� ����	���
	�� ��������� 	��

����	�� �	���� �������� ���	� ����� !����
�
	���� ����

���	� �!��� ��� "����	��� #�
����� ���	� �"#��$ �����

�������� ��� ����	��� ��� ��

���� ��� ������ 	�����	�� ����

��� �	
�
����
�� 	$�$ ��

���� ��� ������ 	� ��	�� P Q L

��� R ���� ����� �
 � �	���� �����
 ��
	��$ ��� ����

����	��� �������� ���
�� ����� �� ���
	��� ����� ��� �	����

�����
 ����� P 	� ���� �� ���
	��� ������	
	��� ��� Q 	�

�	����� ��� �� �	���� �����
 ��� ���
	��� ����� ����� P 	�

�	���� ��� Q 	� �������� �� ���
	��� ������	
	����$

��������� 	
���������� ��	� #� ����
	��� ����	��
	���

�� ��
�� ����
� �����	�� ������
	�� ����� ��� �� ���� ��

�� ��

��� �� ����� ������
��� ��� ���� �� ���
	��� ������

�	
	��� 	$�$ ������	
� ������	
	��� �!��$ %�� �&�����
��

������
'
��
 ����'
	�� ��
� 	� ���
 �
 �����
 ti
�� ��
�

	� ���� �
 �����
 t1 ≥ ti
�� ��
� 	� ��������� �
 �����

t2 ��� ��
� 	� �
���� �
 �����
 t3$ ��	� ������
' ��� ��

�����	��� ��	��
�� (������� ��

��� ����� P �
���� ���

)*�
� 	� ���
+ ��� Q 	� �������� �� q1, q2, ��� q3 ���
� 	�

���� ��
� 	� ��������� ��� ��
� 	� �
���� ������
	���'�$

�� �����	�� ���� ��

���� ,�������� �
 ��$ �-. �&�

����� ��� �' 	�
�����	�� � �����	���
	�� ��� ����	�� ���

/���
	�� ��� ���������
 �����	��
� �����	�� ��

���� ���

������ ������
���$ ����	�����'
�� ���0 �������' ���

���	��� �������
'��� �� ������	
� ������	
	��� �!�� ���

������ ���
���� �����	�
	��� ��� ��
������
�� 	�
� ���$

���� ��
�� ����������	�� ��

���� ��� �� �����	��� 	�

� %�
��� #�
����� ���	� �%#�� �������� � �������� ��	��

	� �	�	���
� ��� ��
 ���� �&�����	��
��� ���$ %�� �&���

��� 	� %#� �� �����
 �����	�� � ����
	����' 	����
��
 �����

��
'
��
 �� ����
 p ���
 ���� �

�� ��&
 �����
 ��
	��$

��� ����������	��
������
	��� ���� ���� 	�������
�� 	�

�� ������
' ����	���
	��
��� ��������� �1
��
 ���� ��
�

���� ��� ������ 	�����	�� ������	
� ������	
	���
� ����

���
� ������ ����	���
	��� 	� %#�$ �	�	����'
� ��� �����

	���
	��� %#� ����	���
	��� ��� ���� �� ����
� �������'

���	�' ���
����$ 2������ 	� ������	���
� ��� %#� ���

�� �	�	
�
	���3 ���
 ���
�
�� �	�	
�� �&�����	������ ��

%#� ��
 ��� ��

���� ��� ������ 	�����	�� ������	
� ������

�	
	��� ��� �� ��������
��4 ������ %#� 	� ��
 �� �	���'

���� 	� ������ ���	���
	��
���� ��
�� ��� �� %#� ���
�	�
�

�� ���
���� ���	����+� ��	�	
'
� ���
�� �����
	�� ����	��

��
	���$

#
 	�
�������� 	����
��

� ����	�� �
������
	�� �� ���

����	��� ��

���� ��� ������ 	�����	�� ������	
� ������	�

	��� 	�
�
�� ���� �&�����	�� ���� ���� �	���' ����� ����

����� ���$ #
 	� ���� 	����
��

� ����
��

����
�������

	��� ��� 	����� ������
 ��� ��� ��

���� ��� ������$ #�
�	�

����� ���
� ���� �	�	
�
	��� �� ������
��
� ��
�� ����

��
�� ���
 �	���' ���� Response ��

��� �5$ ��� ��

��

�� ����	��
�� ������
���� ��
����
������
	��� 	� ���
 �� �

��
��� ���0$

��� ���
 ��
�� ����� 	� ��
�	��� �� �������$ 6� �
��

�	
� � ��	�� �����	�
	�� �� ���$ ���
	�� 5 ����	��� � ������

�����	�
	�� ��
�� �	������
 !� �������$ ���
	�� � �������'

�����	���
�� Response ��

��� ��� ���
	�� 7 ����	���
��

�����	�
	�� ��
�� ��� �������� ���
�� Response ��

���

�	
�	�
�� Global �����$ ���
	��� 8 ��� 9 ����	�� ������

����	
	�� ��
�� �
��� ������ ��� �����	��
�� ��� ��������

���
�� Response ��

��� �	
�	�
���� ������$

� ���� � ���	
 �	���	�

%������� �� ��� ��� ����
���
�� 	����
	���' ���� ����

���
��' ������	
	��� p1, p2, . . . �' ����'	�� :������ ����

���
	��� ¬ ∨ ��� ∧ ���
������� �����
��� X ������ U
������ � ����������� ��� � ��������$ ����� �������� ���

���� �	����
�
	�� 	$�$ �����
� t = 0, 1, 2, . . . ��� �����

	�� ��
��
������� �����
��� 	� �
��	��
�������$ ��� ����

���� XP ����� �

�� �����
 t �����
��
 P ����� �

��

��&
 �����
 ��
	�� t + 1$ �� ����0 ���
��� P U Q �����

�

�� �����
 t �� ���
 ���
�� ���
 �����
 ��
	�� s ≥ t
�
 ��	�� Q 	�
���4
���
��
��
� �� P U Q �����
��
 P
	�
��� �
 ��� �����
� ��
	�� t′ ��� ��	�� t ≤ t′ < s �	�

Q ����� ������� �
 �����
 t �� ��
��
��� P U Q 	� ������$

��� ������� �P ����� �
 �����
 t ����� P 	�
��� �
 ����

�����
 ��
	�� t′ ≥ t$ %	����'
�� ������� �P ����� �

�����
 t 	� P 	�
��� �
 ��� �����
� ��
	�� t′ ≥ t$

� ��������	 ������������ � ������ �	�

��������

6� ����	���
�� ������	�� ; !� �������3 AtLeastOneC

AtLeastOneE ParallelC ParallelE ConsecutiveC

ConsecutiveE EventualC ��� EventualE $!� �������

��
'�� TC ������� �
�����
� ����� ��� ������ �� �������3

• AtLeastOneC(p1, . . . , pn) �����
��
 �
 ����
 ��� ��

pi ����� �
 � �	��� �����
 ��
	�� t 	$�$
��

p1 ∨ . . . ∨ pn �����4

• ParallelC(p1, . . . , pn) �����
��
 ��� pi ���� �

	��

t 	$�$ p1 ∧ . . . ∧ pn4

• ConsecutiveC(p1, . . . , pn) �����
��
 p1 ����� �

�����
 t1 = t p2 ����� �
 �����
 t2 = t + 1 $ $ $

��� pn ����� �
 �����
 tn = t + (n − 1)4
�� ������

�����	�� ��� ������� ConsecutiveLTLC (p1, . . . , pn)
	� (p1 ∧X(p2 ∧X(. . . ∧X(pn)) . . .))4

• EventualC(p1, . . . , pn) �����
��
 p1 ����� �
 t1 = t
p2 ����� �
 ���� �����
 t2 > t1 $ $ $ ��� pn �����

�
 ���� �����
 tn > tn−14
�� ����������	�� ���

������� EventualLTLC (p1, . . . , pn) 	�

p1∧X(¬p2 U (p2∧X(¬p3 U (. . .∧X(¬pn U pn)) . . .))).

423

�� ������� �	
��
�� TE ������� ����� ����� ��� ��

������ ��
���� �	 � ��� ����� �	 ��������� 	�������

TH(p1, . . . , pn)� ��� ���� ��
���
��� 	�� TH ��
��
 �� TC
�� ���� �������� ���� pi
� ���� �
 � ���
��� �����
 �	

��� ti� ��� �� �� ��
 ���� ��� �����
���� ����
 �
���

�����
���� pj �j 	= i� �

��� �����
 ti� � ���� ���
����

�����
����� �
 �� ����
��

� �������
��
 pi ������
���

��
�� ��������� ������ �����
��
 ��
 ���� pi �������
���

�
 �����
 ti� ��

��
 �
 ���� ������� 	���� ��
��
���� �

������
����� �� ����
�� 	�������!"

��������� �

• �� � �� �����	
� ���� ��� � ��� ����
��� ���

������ AtLeastOne	 Parallel	 Consecutive	 ���
Eventual�

• �� �
�� �	 �����
���	
�
��� ���� C	 E	 �� H�
��� ����H
��� �� ������ ����������

• �� � ������
� �����
��� P 	
� ���� �� ����������
� ��� ���� Ty(p1, . . . , pn)	
���� T �� � �� �����	 y
�� � ���� � �����������	 ��� p1, . . . , pn ��� ��������

�������������

��������� 	

• �� ! " #�$����%�� ��� �� ! " ���&

�����	 TH(p1, . . . , pn) ����� ��� ���� ��

TC(p1, . . . , pn)	 ��� TLTL
H (p1, . . . , pn) �� ��'��� ��

TLTL
C (p1, . . . , pn)�

• �� T = Consecutive ��� �� T = Eventual	
TH(p1, . . . , pn) �����

TC(p1∧¬p2∧. . .∧¬pn, p2∧¬p3∧. . .∧¬pn, . . . , pn),

��� TLTL
H (p1, . . . , pn) �� ��'��� ��

TLTL
C (p1∧¬p2∧ . . .∧¬pn, p2∧¬p3∧ . . .∧¬pn, . . . , pn).

#�� ������� ConsecutiveH(p1, . . . , pn) ����� �

��

�����
 t �	"

• �

�� �����
 �	
��� t�
�� �����
��� p1 ����� ���

���
�� 	��
��� �����
���� p2, . . . , pn ��� 	����$

• �

�� ���
 �����
 �	
��� t + 1�
�� �����
��� p2
����� ��� ���
�� 	��
��� �����
���� p3, . . . , pn ���

	����$ � � � � ���

• �

�� �����
 t + (n− 1)�
�� �����
��� pn ������

 � �
��� ������ ConsecutiveH(p1, . . . , pn) ����� �

��

�����
 t �	
�� 	�������! 	������ 	�� TLTL
H ����� �
 ��%

���
 t"

(p1 ∧ ¬p2 ∧ ¬p3 ∧ . . . ∧ ¬pn∧
X(p2 ∧ ¬p3 ∧ . . . ∧ ¬pn∧

X(. . . ∧X(pn−1 ∧ ¬pn ∧X(pn)) . . .)))

���������
 (� ��� ���� � ��������� �����������

TE(p1, . . . , pn) ����� �� ��� ������ t � �� ��� ��&

���� t	 ��� ������������ pi ��� ����	 ��� ���� ������ ����
����� ���� ������ t′
��� ��� ��������� �����������

TH(p1, . . . , pn) ������� �����

#�� ������� � ������
� �����
���

AtLeastOneE(p1, . . . , pn) ����� �
 �����
 t �	 ���

�� �����
���� p1, . . . , pn ��� 	���� �

�� �����
 t� ���

�
 ����
 ��� �	
���� �����
���� p1, . . . , pn ��
��� �
 ����

	�
��� �����
 �	
��� t′ > t�

��������� � �� �� &�& 	������ TLTL
E (p1, . . . , pn) ��

TE(p1, . . . , pn)	
� ���� ��� ������

(¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)U TLTL

H (p1, p2, . . . , pn)).

������ � �� ����� ��������� ����������� P ��� �� ��&

��� ������ � ���� t	 P ����� �� ��� ������ t � ��� ����
� ��� ������������� $!$ ������ PLTL ����� �� ���� ��&

���� t�

�������� '��
� �!� ����
�
����� ��
����� ���	� ��� !����

�� ()*+�

� �������� �	

��� �
�� ����	� ������

�	�� �� ������
� ������
���

��

���� ���� �� Response ���� ��
������� �� (*+ 	��

���!�� �����
����� � ��
������� ,q �������
� p ��
���

!����� ����- �����
��
 �����
���
�� ����
� p ������

�� ����
� q ���
 ���� ��
��� �	
�� �
 �� �

��� ����

�����
 �	
���� �� ��
���
��� ������
���
� ������
�

�����
����� ��
����	��� ����
� ��
���
�� ��
��� ,�	
��-

� ���� �����
�����

.��!�� �����
���� �������� � ���!�� �����
 �	
����

 � !������� ������
� �����
���� ���� ��
� �
��� ��
�����

���
���!�� �	 �������
���
��� ��
����� ��� �� ��!�����
��

����� �
 ��� ������
 �	 � ���!�� �����
 �	
����� .����������

	�� ����� ������
� �����
��� P = T (p1, . . . , pn)�
����

�� � �
��
��! �����
 bP /
�� ���
 �����
 �	
��� ���� ���

�	
�� �����
���� pi �������
���� ���
�� �����! �����

eP /
�� ���
 �����
 �	
��� ����
�� �����
��� T �� 	��%

������ ����� �����
� ��� �� ������ �� 	�������

��������� �

• �� � ��������� ����������� P � ��� ����

AtLeastOneC(p1, . . . , pn) ���� ����� �� ��� ��&

���� t	
� ��)� bP (t) = eP (t) = t�
• �� � ��������� ����������� P � ��� ����

AtLeastOneE(p1, . . . , pn) ���� ����� �� ��� ��&

���� t	
� ��)�	 �� eP (t)	 ��� '��� ������ � ����
t′ > t ��
���� ��� � ��� ������������ pi �������
����	 ��� bP (t) = eP (t)− 1�

424

• ��� � ������	
� �
�
����
 P �
��
���

ParallelC(p1, . . . , pn)
��
 ����� �

�� �����

t� ��
��� bP (t) = eP (t) = t�
• ��� � ������	
� ������	
	�� P �
��
���

ParallelE(p1, . . . , pn)
��
 ����� �

�� �����

t� ��
���� �� bP (t) = eP (t)�
�� ���
 �����
 �
	��
t′ > t �
 ��	�� ���
�� ������	
	��� pi ������
����

• ��� � ������	
� ������	
	�� P �
��
���

ConsecutiveC(p1, . . . , pn)
��
 ����� �

�� ���

���
 t� ��
��� bP (t) = t ��� eP (t) = t + (n− 1)�
• ��� � ������	
� ������	
	�� P �
��
���

ConsecutiveE(p1, . . . , pn)
��
 ����� �

�� ���

���
 t� �� ���
�� ���
 �����
 �
	�� t′ > t �

��	�� p1 �������
���� ���
��� bP (t) = t′ − 1 ���
eP (t) = t′ + (n− 1)�

• ��� � ������	
� ������	
	�� P �
��
���

EventualC(p1, . . . , pn)
��
 ����� �

�� �����
 t�
��
��� bP (t) = t� ��� �� eP (t)� ��
���
�� ���

�����
 �
	�� tn > t �
 ��	��
�� ���
 ������	
	��
pn 	�
��� ���
�� ����	��� ������	
	��� p2, . . . , pn−1

����
��� �

�� ����������	�� �����
� �
	��

t2, . . . , tn−1 �� ��	�� t < t2 < . . . < pn−1 < tn�
• ��� � ������	
� ������	
	�� P �
��
���

EventualE(p1, . . . , pn)
��
 ����� �

�� ���

���
 t� �� ���
�� ���
 �����
 �
	�� t1 �
 ��	��
p1 �������
���� ���
��� bP (t) = t1 − 1� �� eP (t)�
��
���
�� ���
 �����
 �
	�� tn �
 ��	��
�� ���

������	
	�� pn �������
����

��������� � ��
 P ��� Q �� ������	
� ������	
	���� ��

���
��
 Q �������� �� P 	
��
� ���� ����� 	 ���� P
����� �
 ���� �����
 t�
���Q ���� ����� �
 ���� �����

t′ �� ��	�� bQ(t′) ≥ eP (t)�

� ��� �����	
� ��� ������ �
����

������ �	��
	 ����� �
� �� ��������

������������

�� �����
�� ��� ������� PLTL ����������
�� �� ����

����� P 	
�� ������
�� ������
�
���� 	� ���� �� �����
��
��	 ����� ������
���� �� 	� ����
��� � ����������� ����

��� A �� � ����
���� ���� �� ��� �������� ���� A �����
�
��� ���� ��� ��������� A ���� �� ��� �
��� ������ ��
�
��� ��� ��� ������ A∧B ����� ���� ���� A ��� B ���
�� ��
� ���� ������ �� �
���

��� � ������ ��� ������ A� ��� ���� ���� A ���� �� �
������ �� �
�� t����� ���� ���� ������������ ��A ���
�� ��
� ���� ������ �� �
��� 	�
� ���� ����� ����������

��� ��� �� �
������� ������� �� �
��� ��� ������� ���

������ p1∧Xp2 ����� ���� p1 ���� �� ��� ������ t	�
�
p2 ���� �� ��� ������ t + 1� ��
� ��������� ���
���� ��
���� �� 	
�� � �
������� ����� ������
�� ���� 	��� ������

���� B ���� �� � ��� ������� �� �
�� �� 	�
�� �
�������

������������ �� A ���� ��� ������� ��� ��
� ��	 �����
������
��� (p1∧Xp2) and B 	��� ���� ����B ���� ����
�� ��� ������ t ��� �� ��� ������ t + 1�
 � 	
 ������ ��
� ��	 ����� ������
�� �� &r� � 	

��� ���� ��� ������
�� A&lB� 	�
�� 	

��
���� ���� B
���� �� ��� ���
 �� A�������� ������� �� �
��� ��� �� �
��
����� ��!�
�
��� �� ����� ������
���� � ��� �
�� ���

��!�
�
�� ��� ��� ����
���� ����� ������
� ��� ���������

��������� 	

• ���� P 	� �
��
��� TC(p1, . . . , pn) ��

TH(p1, . . . , pn)� �	
� � !������� �� � "
����

�
#���
��� P &r A 	� ������ �� P ∧A.
• ���� P 	� �
��
��� TC(p1, . . . , pn)� �	
� T =
Consecutive �� T = Eventual�
��� P &r A 	� ���

���� �� TC(p1 ∧A, . . . , pn−1 ∧A, pn ∧A).
• ���� P 	� �
��
��� TH(p1, . . . , pn)� �	
� T =
Consecutive �� T = Eventual�
��� P &r A 	� ���

���� ��

TC(p1∧¬p2∧. . .∧¬pn∧A, . . . , pn−1∧¬pn∧A, pn∧A).

• ���� P 	� �
��
��� TE(p1, . . . , pn�
��� P &r A 	�

������ ��

(¬p1 ∧ . . . ∧ ¬pn ∧A)∧

((¬p1 ∧ . . . ∧ ¬pn ∧A)U (TH(p1, . . . , pn ∧A)))).

���������

• ���� P 	� �
��
��� TC(p1, . . . , pn) ��

TH(p1, . . . , pn)� �	
� � !������� �� � "
����

�
#���
��� P &lA 	� ������ �� P ∧A.
• ���� P 	� �
��
��� TC(p1, . . . , pn)� �	
� T =
Consecutive �� T = Eventual�
��� P &lA 	� ���

���� �� TC(p1, . . . , pn−1, pn ∧A).
• ���� P 	� �
��
��� TH(p1, . . . , pn)� �	
� T =
Consecutive �� T = Eventual�
��� P &lA 	� ���

���� ��

TC(p1 ∧ ¬p2 ∧ . . . ∧ ¬pn, . . . , pn−1 ∧ ¬pn, pn ∧A).

• ���� P 	� �
��
��� TE(p1, . . . , pn)�
��� P &lA 	�

������ ��

(¬p1 ∧ . . . ∧ ¬pn)∧
((¬p1 ∧ . . . ∧ ¬pn)U (TH(p1, . . . , pn) &lA)).

��������� � "� ��� ������ ����������	��
� Response
(P,Q) 	�

�(PLTL → (PLTL &l �QLTL)).

425

��� �����	�
 �� P � �� ���� ConsecutiveC(p1, p2) ��� Q
� �� ���� ParallelE(q1, q2)
 ���� PLTL

1 ��

�((p1 ∧Xp2) → (p1 ∧X(p2 ∧ �

((¬q1 ∧ ¬q2) ∧ ((¬q1 ∧ ¬q2)U (q1 ∧ q2))))))

������� � ��� ��� ����	
� �Q ������ �� P ������ �

�
���
 ������ ��� ����	
� ��
� �� ��� ������ t �� ���

��
� �� ��� ������������ ��� ����	
� ��
� �� ��� ���

���� t�

�������� ����	�� ���	� ��	� ��� �		 ����� ������� ����

������� ����

� ����� ��	
��� 	������	�� ��� �������	��

�� ��� ������� ����
 �� ��������� �		 ��� ����������

�� ��� ��	���	 �����
 ����
 ����
 ��� �������� �� P ����

���� P ��	� ��� ��� ������ �� ���� t� �� ��������
 ��

��� ����� ��	� ��������� �� ������ �� ���� ���� ����� ��

���� �� ����� � ������� ������ ��� ���	� ����������
 ���

��		����� ���� ���� ������� �� !"#� ������� R�
 ������

L�
 �������� L ��� R�
 ��� ������ L ����	 R��

$� ���� �� ������ ��� ����� ��%������ �� ������� ��

��� ��� �� ����� ��� �����	�
 �� ���� �� ��%�� �Q ���

���� P ������ � ���� s�
 ������� ���� ����� ���� P ��	�

������ ��� ���� s
 Q ���	� ��	� �� � ��������� ������ ��

���� ������ ��� ��� �����

�� ������	
 � �������� ���������� P ��	� �� � ������

t �� �����	 ���	� ���������� ��	� �� ��������� ������ ��

����� �� � ��������� �������	� �� �� ���� P ����� ������

� ���� �� �		 ���� ���	� ���������� ����� ������ ���

����
 ����
 �� ��� ���	� ���� �������	 [t, eP (t)] � ������ ���

���� s� &�� � �����		� ������� ���� ��� �����

����� �� ������� �������� ���������� P
 �� � ����

��	 �� �		�� L ��� R �� �� �������� ���������� � ��		�

' �������� ���������� P
 �� ������	
 ��� ��� ����� ��

� ���	� ������ �� ����
 �� ���		� �� � ������� ������

bP ��� ��� ������ ������ eP � ��
 ��� �������� �����

�����
 ������� R� ��� �� ������		� ����������� � �������

��� ������� ������ �� R�
 ��� ������ L� ��� �� ������		�

����������� � ������ ��� ������ ������ �� L�� (� �������

��� �����		�
 �� ��		 �� ��� ����� ��%������)�� ������

*+ �� ��� ������� ��� ������ �������

��	
����
 � �� � ���� ��������� �� ���� � ��������

�� ��� ���� �������R�� ������ L�� �������� L ���R�� ���

������ L 	���
 R�� ����� L ��� R ��� �������� �������

�����

��	
����
 �� � ���� ������������ �� ��� ���� �����

����� �� ���� ��� ��

����� ���� �������

• ��� � ���� �������� ������� R�� ����� � �!���
� ���

���� " ��� �������
 [0, bR(tf))� ����� tf � ��� #��

������ �� ���� ���� R ������ ��	��
• ��� � ���� �������� ������ L�� ����� � �!���
� ���

���� " ��� �������
 [eL(tf),∞)� ����� tf � ��� #��

������ �� ���� ���� L ������ ��	��
• ��� � ���� �������� �������� L ��� R�� � ����

� �� �������
 [eL(tL), bR(tR))� ����� tL � � ������

�� ���� �� ����� L ��
� ��� tR � ��� #�� ������ ��

���� > eL(tL) ���� R ������ ��	��
• ��� � ���� �������� ������ L 	���
R�� �� �������� ��

���� ������������ �� �������� L ��� R�� �� �
�

�

�� � ���� [eL(tL),∞)� ����� tL � � ������ ��

���� �� ����� L ��
� ��� ��� ����� R ��� ��� ��
�

�� ��� ������ t > eL(tL)�

��	
����
 � ��� P ��� Q �� �������� ����������� ���

�� s �� � �����

• $� �� ���� P s ��	� �� � ������ tP ∈ s �� P ��
� ��

��� ������ tp ��� ��� ������ ������ �� ���� eP (tp)
��
��� �� ��� ��� ���� s�

• $� �� ���� Q ������ �� P ������ ��� ���� s �� ����

P s���
� �� ��� ������ t� ���� Q �
� s���
� ��

��� ������ t′ ��� ����� bQ(t′) ≥ eP (t)�

��	
����
 � $� �� ���� � ������� ��	� ������ � ����

�������� �� �� ��
� ������ ���� ���� ������������ �� ���

���� ���������

,�� ���� �� ���� ��%��� ���� �� ���� ��� � �������

�� ��	� ������ ��� ��������� ���� �� ����
 �� ��� �����

�� ������� ��� &(& ���������� �� ��� %�� ������� ������

��� ����)������� R�
 ������ L�
 �������� L ��� R�
 ���

������ L ����	 R�+�

� ���
	��� ������� �	� ��	
�� ����� ����

��	���� ���� 	� �	�
	���� ��	
	����	��

��	
����
 � ��� P �� � ������ �������� ����� �Q ���

���� �� P�� ���
�� P<R ������ ��� ������� �� ��� ����

������� R�� ����� � ������� �Q %����� �� P ������ R��

����� ��� ������������ ��������	
� PLTL
<R �� ��� ��
�

����� ����

• ���� R � �� ��� ���� TC(r1, . . . , rn)� ���� PLTL
<R �

¬((¬RLTL)U ((PLTL&r¬RLTL)

&l((¬(QLTL&r¬RLTL))U RLTL)));

• ���� R � �� ��� ���� TE(r1, . . . , rn)� ���� PLTL
<R �

¬((¬((¬r1 ∧ ¬r2 ∧ . . . ∧ ¬rn) ∧X(RLTL
H)))U

((PLTL&r¬RLTL
H)&l

((¬(QLTL&r¬RLTL
H))URLTL

H))).

426

��� �����	�
 ��� ����	� PLTL
2 �� Q �������� ��

P Before R ����� R �� AtLeastOneC(r1, r2)
 P ��

ConsecutiveC(p1, p2)
 ��� Q �� ParallelC(q1, q2) ���

¬((¬(r1∨r2))U (((p1∧(¬(r1∨r2))∧X((p2∧¬(r1∨r2))

∧(((¬((q1 ∧ q2 ∧ ¬(r1 ∨ r2))))U (r1 ∨ r2))))))))

������� ����	�� �� ��� ������ ����� L�
 �������� L
��� R�
 ��� ����� L ����	 R� ��� �� ��������� ����� ���

����	� PLTL �� ��� �	���	 ����� ��� ��� ����	� PLTL
<R

�� ��� ����� ������ R��

��������� �	 ��� � ������� P �� ��� �����	 L
 ����� ���

�		�������� ��� �	���� ���

¬((¬LLTL)U (LLTL&l¬PLTL)).

��������� �	 �	 � �����	� P �� ��� �������� L And R

����� ��� �		�������� ��� �	���� �� �� ������

• �((LLTL&l¬RLTL) → (LLTL&lPLTL
<R) �� R �� �

���� C�

• �(LLTL → (LLTL&lPLTL
<R))) �� R �� � ���� E�

��������� �
 �	 � �����	� P �� ��� �����	 L ����� R

����� ��� �		�������� ��� �	���� ���

• �� R �� � ���� C� ����

�((LLTL&l¬RLTL) →

(LLTL&l((PLTL
<R ∧ ((¬ �RLTL) → PLTL)))));

• �� R �� � ���� E� ����

�(LLTL →

(LLTL&l((PLTL
<R ∧ ((¬ �RLTL) → PLTL))))).

������ � �	 ���	� 	������ �	���� P ��� �	 ���	�

���� s� ��� �	���� P ���� ������ ��� ���� s �� ��� �

���� t �� ��� ��� �� ��� �		�������� ��� �	���� ����

�� ���� ����� t�

!������ ������� ���	�
� ��� ��� ��� �
��� ��

���� ����

���
��� ����

� �������	���

�� ���� ��������� ��
	�
����� ���
���� ��������
���� ���

����� ������� ����
���� ��
���� ����
� �� ����
���� �

�������
 �����
� ��
���� �	�� ��������
���� ��� �� ����

����� ������� ��
���� �� ��

���� �� ������� �������� �

������
�
���� �� �� ����
������ 	���	� �������
��� ��� ������

��� �	�� ��������
�����

��
��� ������ �� ������� � ���������� �������! �����

�� �	�� ��

�������������� ��������
����� "� �����
��

��������
���� ����
��� ����� ��� �� ������	��
� ��
����

��
�� �#	������
 ����	��� �� $����� %������� $���� $%$!�

�����
���� ����
 �������

���� ��� �������� $%$�����

��������
�����
��� ������	��
���
�	� ������� 	�
� �����

�� �������� ������� ��������
�����

���������������� %��� ���� �� �	�� �� ���
 �� &�'

����
 ()*�+,,-./+� �� %���� 0����
���
 �� %�������
��

��� ����
 &�� +�-1-2� �� ��
�� 3����)����� ���
��

	
� �� ������� �� %��������� 3)��%! ��
����
����� 3���

*������� 4���
 ,++.�+5� %�� �	
���� ���
�����	�
�
��

�������	� �������� ��� �����
��
 �	����
�����

��������

��� ������ 	
� �������� �������� ���������� ����� ������ ����

�����	
� �� �� ���� ���� ��������� ������ � !

�"� #�$����� �
� %
 #���&� '
 (����)������ ��� *
 +�,���

��-�*�. � �/ ��$����� *��� ������� �	�� ��	�� �	

������� ����� ���������	 ���� 	��� �

�0� 1/��� *
 2
� (
 �
 �,������ ��� 	
 #
 #������ �������� ��

���3��� �3��������� 4�� '���� ���� ������������ ����� ��

�� !� �	�� ��	�� �	 ���"��� #	
�	����	
� 5�� ������

#�� � � 6��76"8

�6�)��3.993������
3��:���
���
&��
��9

�!� ;���� �
� ��,�*��)� �4 '��$��*�)����� �### ���"����

�3�$�� � 8� ��<=>

�?� ;��@$��� (
 	
 $�� ���� %���� �������& ������ �	� '���

���	�� %�	���(�������AB��� ���4�������� "886

�C� ;�,����� D
� ��� E
 ���������� �*��� #)�&��� 	�,�

������$� ����� 	�,� ���)'������ �	��)� �	 ���"��� $����

��� $���	���
* $��	����� "<6>� �3��� "888

�=� (�F��&� �� +
� ��� (� 	
 ;��@$���� �-���� ���� *���

#)�&��� 4�� '���)� ��4�/�� ����������� �### ���������

��	��� *���) "88"

� � *��������� �
� �
 G
 (���� ��� �
 +���)� �����3�. ��3A

3��� 4�� %���������� ��� '��$�� �3��������� �4 ��4�/��

���3������ �� �
 ��&���&� ��� *
 ���/����)�� <%��
>�

����� �� '�	��� ���������	 ��������(#�$��� = <">�

"886

��8� *��������� �
 ��� �
 G
 (���� ���33������ %���������� ���

�3��������� �4 ��4�/�� ���3���� �)����) ������� ���

#�$3���� ���3���������� �	��)� �� ���"��� #	
�	����	

�	� +	�"���
� #	
�	����	
(�6<�>� '�
 "886

���� *����� H
 ��� �
 ������ �#�$3����� �) E$3���� ���A

����� $��������� ������� ����	��(=0<�>� � �� C7�08

��"� +��)��� 	
� �E)��$ ���,��� 4�� ������������ %������	

�	� ���������	 �� �������� ���������(�� "888

��0� ����$�)� �
 �
� ,��	�	
 -$- �������� ��� ������. ����	�

/���� ���"��� ���������� -��,����� �4 EI�� �� %� �����

13���$�� �4 #�$3��� ������ �)1 1����������� *��

"88C

��6� ����@� �
 ��� %
 2����� �E$3���� ��������� ����� ��A

3��	�� 0� �������� �	 '�	��� ���������	(��� "88!

427

Ontology Based Classification Generating Method for Browsing-Based
Component Retrieval

Ge Li, Lu Zhang, Bing Xie∗, Weizhong Shao
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Key laboratory of High Confidence Software Technologies, Ministry of Education, P. R. China
{lige, zhanglu, xiebing, wzshao}@sei.pku.edu.cn

Abstract

Reuse repository is an essential element in component-
based software development (CBSD). To facilitate reusers
to retrieve components efficiently, it is typical for reuse
repository to provide a classification to represent the com-
ponents. Based on this classification the reusers can
retrieve components by browsing the repository (called
browsing-based retrieval). Although browsing-based re-
trieval is superior to querying-based retrieval in some as-
pects, the tedious retrieval process is its main drawback,
because the classification, by which the browsing process
navigated, is usually inefficient. In this paper, we proposed
an ontology based approach to generate efficient classifica-
tion using the components’ indexing information. Accord-
ing to our experimental results on real data, the classifica-
tion can navigate the browsing-based component retrieval
efficiently.

1 Introduction

Component-based software development (CBSD) has
been widely viewed as a promising way to improve
both the productivity and quality of software develop-
ment [5],[6].During the process of CBSD, the components
are usually picked up from a reuse repository, where the
software components are stored and searched. An important
prerequisite for successful CBSD is the selection of many
suitable components from the reuse repository.

To facilitate reusers to retrieve components efficiently,
it is typical for reuse repository to provide a classifica-
tion to represent the components in them. Based on this
classification the reuses can retrieve component by brows-
ing the repository, which is called browsing-based retrieval.
Browsing-based retrieval usually works stepwise, and re-
quires no search key [3, 2], so it is helpful for an inex-

∗Corresponding author

perienced retriever, who has no precise expression of the
requirements of his or her desired components. However,
there is an obvious disadvantage for browsing-based re-
trieval: the retrieval process usually involves long retrieval
sequences and becomes tedious. This is because the classifi-
cation, by which the browsing process navigated, is usually
inefficient and can not classify the components effectively.
This paper focuses on the problem of how to build a effi-
cient classification to navigate the browsing-based retrieval.

2 Motivation

The classification in reuse repository is a hierarchical
tree structure, in which each node includes a set of com-
ponents and is labeled by a word, the parent node includes
all the components in its children nodes. Navigated by this
structure, the browsing-based retrieval process becomes a
process to follow a route in the classification.

In browsing-based component retrieval process, the later
browsing step is a refinement based on the returned result
set of the previous step, if more components are returned
in the previous step, more browsing steps may be needed
in the subsequent browsing; and if fewer components can
be returned in the previous step, fewer browsing steps may
be needed in the subsequent browsing. Thus, in an effi-
cient browsing sequence, the number of returned compo-
nents should be confined as much as possible in each of the
retrieval steps, especially the early steps.

As mentioned above, the browsing-based retrieval is
navigated by the classification in the reuse repository, if
the distribution of the components under the classification
is coarse and unbalanced, more components would be re-
turned during the browsing progress; on the contrary, if
the distribution of the components under the classification
is refined and balanced, then the number of returned com-
ponents would be confined in browsing process, and the
browsing-based retrieval would become efficiently. So, it
is necessary to build an refined and balanced classification

428

for browsing-based retrieval.

3 The Proposed Approach

As mentioned above, each node in the classification is
labeled by a word. So, a classification can be seen as a cat-
egory of words, in which a relationship between a parent
node and a child node is a representation of one kind of
relationships between two words. A words category (or a
classification) can be built if a set of words and the possible
relationships among them were predefined. Furthermore,
different word categories or classifications can be built us-
ing the same set of words and their possible relationships,
because different children words can be selected for a given
word in a certain environment.

Actually, different parent-children words groups in the
predefined set usually have different capability (which is re-
ferred to as the “importance” in this paper) in distribute the
retrieved component set. More important groups can dis-
tribute the components more refined and balanced. Thus, if
more important groups can be used earlier in the retrieval
process, the retrieved component set can be confined to be
smaller, then the number of returned components should
be confined in browsing steps, and the browsing-based re-
trieval would become efficiently. Therefore, the primary
concern of our method is how to build the classification
by using the most important parent-children words group
firstly.

In our approach, the predefined words and their possi-
ble relationships will be stored in an ontology, and then, an
optimal or sub-optimal balanced classification that can dis-
tribute the components efficiently will be generated using
this ontology. In the following sections, the definition of
the ontology and the generated classification will be intro-
duced firstly, and then we will propose our new approach.

3.1 Definition of Ontology

In our approach, the ontology, which contains the pre-
defined words and their relationships, consists of 3 ele-
ments { Words, Relations, Axioms }, where Words
represents a set of words used in the possible classifica-
tions; Relations represents a set of the relationships among
the words in Words, each relationship represents a binary
parent-child relationship between two words; Axioms rep-
resents a set of axioms, each axiom is a constraint on the
relationships between words, each constraint can be ex-
pressed like a Prolog-like rule [1]. This ontology can be
represented in any ontology representation language such
as RDF(S), DAML+OIL and others. In this paper, we will
focus on the words, relations of an ontology, the axioms will
be useful when ontology based reasoning is required.

3.2 The Generated Classification

In our approach, the classification is defined as a tree
structure, denoted as N = (V, E), where V is the set of
nodes labeled with the words in the ontology, and E={〈
v1, v2 〉 | v1, v2 ∈ V } is the set of edges. For an edge
〈v1, v2〉, it shows that the word labeled on node v1 is a par-
ent of the word labeled on v2.

3.3 Classification Generating Method

Based on the above approach, the problem of how to
generate the efficient classification can be reduced into the
problem of how to select the most important parent-children
words group from the predefined ontology. In the following,
we will present a method of building the classification based
on information entropy.

3.3.1 Parent-children Words Group’s Importance

The concept of entropy originates in physics through the
second law of thermodynamics [4]. Information entropy [8,
9, 7] is a measure of how much information the answers
for a specific question can provide. For a given question
Q, if there are n possible answers for the question, and the
probability of the occurrence of the ith answer is pi, the
information entropy of Q is defined in formula 1.

E(Q) = −
n∑

i=1

pi log2(pi) (1)

Accordingly, supposing c is a word with n distinct chil-
dren in the predefined ontology, and there are s components
that can be represented by word c. Supposing subci is the
ith(i = 1, 2, . . . , n) child of c, and denote the relationship
between the subci and the jth component as viRcj , which
shows that word subci represents the jth component. Sup-
posing the probability of each component being requested
is pj(j = 1, 2, . . . , s). Thus, the entropy of the parent-
children words group (denoted as A) can be calculated us-
ing formula 2.

E(A) = −
n∑

i=1

∑
subciRcj

pi∑s
j=1 pi

log2(

∑
subciRcj

pi∑s
j=1 pi

) (2)

In this paper, we assume the probability of each compo-
nent being the requested component is the same. Supposing
the ith(i = 1, 2, . . . , n) child-word can represent Ci com-
ponents, we have

∑n
i=1 Ci = s , the entropy E(A) can be

defined as formula 3.

E(A) = log2 s−
n∑

i=1

Ci

s
log2 Ci (3)

429

Table 1. Classification Generating Algorithm
Input: R, Ontolgoy
Output: the Classification
Step 1: Set Classification to be empty;

Create a node N;
Set N as the root of Classification;

Step 2: BuildSubNodes(R, Ontolgoy, N, Classification);

Table 2. The Algorithm of BuildSubNodes
Input: R, Ontology, N, and Classification
Step 1: A′ ← Ontology.Words;
Step 2: Find the route r from the root of Classification to N;
Step 3: CurrentComponents ← ∅;

For each element R[i] in R
If all the relations in r are in Ontology
CurrentComponents ← CurrentComponents ∩ {i};

Step 4: If CurrentComponets is empty
Return;

Step 5: Find the most important word a in A′ using CurrentComponents;
A′ ← A′ − {a};
N.concept ← a;

Step 6: If A′ is empty
Return;

Step 7: Find the children of word a in Ontology, denoted as words;
For each element c in words
Begin
Create a node N ′;
Link N ′ to N as a sub-node of N ;
BuildSubNodes(R, A′, Ontology, N ′, Classification);

End

From formula 3, we know that if a parent-children words
group has more children and the distribution of the compo-
nents under these children is less skewed, the more impor-
tant the group is. When there is no component under the
ith child-word (i.e. Ci = 0), we should assign the value
0 to Ci

s log2 Ci in formula 3, otherwise formula 3 will be
meaningless.

3.3.2 Classification Generating Algorithm

Supposing there are n components in the repository, R
is a set of (w, componentnum) pairs, in which the
componentnum shows the number of the components rep-
resented by the word w. The algorithm of calculating the
classification is depicted in Table1, and the algorithm of re-
cursive procedure BuildSubNodes is depicted in Table2.

4 EXPERIMENTAL STUDY

We selected 445 components from SourceForge, and
used all the key words related to these components to
set up an experimental repository. As in SourceForge,
each component in this experimental repository is labeled
with eight words: “Development Status”(DS), “Environ-

ment”(En), “Intended Audience”(IA), “License”(Li), “Nat-
ural Language”(NL), “Operating System”(OS), “Program-
ming Language”(PL) and “Topic”. The ontology about the
components in our experimental repository can be repre-
sented according to the ontology definition in 3.1, the fol-
lowing is part representation of this ontology. Based on this
ontology and the words in the experimental repository, we
generated a classification using the algorithm depicted in
Table1.
Ontology = {Words, Relations, Axioms}

• Concepts = {DevelopmentStatus, Environment,

IntendedAudience, License, NaturalLanguage,

OperatingSystem, ProgrammingLanguage, Topic,

OS, Desktop OS, Handheld OS,

Workstations OS, Windows9.X, WindowsCE, OS/2,

Provider, Microsoft, Apple, IBM, . . .}

• Relations = {IsaKindof(Topic, System),

IsaKindof(Topic, DataBase), . . . ,

IsaKindof(DevelopmentStatus, 5 − Production/Stable),

IsaKindof(DevelopmentStatus, 6 − Mature), . . . ,

IsaKindof(Environment, Handhelds/PDA′s),

IsaKindof(Environment, WebEnvironment), . . . ,

IsaKindof(IntendedAudience, InformationTechnology),

IsaKindof(IntendedAudience, Developers), . . . ,

IsaKindof(License, OSIApproved),

IsaKindof(License, PublicDomain), . . . ,

IsaKindof(NaturalLanguage, English),

IsaKindof(NaturalLanguage, Spanish), . . . ,

IsaKindof(ProgrammingLanguage, V isualBasic),

IsaKindof(ProgrammingLanguage, Java), . . . ,

IsaKindof(OperatingSystem, Desktop OS),

IsaKindof(OperatingSystem, Handheld OS),

IsaKindof(OperatingSystem, Workstations OS),

IsaKindof(Desktop OS, MacOSX),

IsaKindof(Desktop OS, Windows9.X),

IsaKindof(Handheld OS;WindowsCE),

IsaKindof(Workstations OS;Solaris),

IsaKindof(Provider, Apple),

IsaKindof(Provider, IBM),

IsaKindof(Provider, Microsoft), · · ·}

• Axioms = {∃ri(cp, cq) =⇒ ¬∃ri(cq, cp)}

The classification generated in this experimental study is
depicted in Fig. 1. Due to the limited space, some nodes
and/or edges of the classification are omitted and replaced
by an ellipsis. As shown in Fig. 1, each node in the classi-
fication is labeled by a word; and each outgoing edge of a
node is labeled by a relation between the parent-word and
the child word. So every path from the root node to the leaf
node represents a browsing sequence.

To evaluate the performance of our approach, we com-
pare it with random generated classifications, which always
randomly selects a relevant word in the algorithm of recur-
sive procedure BuildSubNodes. We use all the compo-

430

nents in the experimental repository to test the performance
of our classification and that of random generated classifi-
cations. When locating each component in the experimen-
tal repository, the classification is used one time, while 100
different random generated classifications are used as com-
parison. The information of the browsing process for each
component are recorded, including the number of brows-
ing steps using our classification and the average number of
browsing steps of the 100 random generated classifications.
Based on the performance data of retrieving each compo-
nent, we can compare the overall performance of these two
approaches. In this experiment, once the number of re-
trieved components is under the threshold 5, we will regard
the retrieval is completed or the component is located. The
results of experimental study are presented in the following
figures.

Fig. 2 demonstrate the relationships between the num-
ber of browsing steps and the number of components which
can be retrieved in each step. It shows that, guided by our
classification, the retriever can find the same desired com-
ponents using shorter retrieval sequences, then have fewer
numbers of browsing steps. Fig. 3 shows the relationships
between the number of retrieval steps and the average num-
ber of components resulted in each browsing step. It shows
that, guided by our classification, fewer components can be
returned in the previous step, also the number of returned
components can be confined as much as possible in each
of the retrieval steps, and then the retriever can pay more
attention to fewer components in each retrieval step. In
conclusion, the experimental study support our claim that
the classification generated by our method can navigate the
browsing-based component retrieval efficiently.

5 ACKNOWLEDGMENTS

This research was sponsored by the National Grand Fun-
damental Research 973 Program of China under Grant No.
2005CB321805, the National Key Technology R&D Pro-
gram of China under Grant No.2006BAH02A02, and the
National Natural Science Foundation of China under Grant
No.60473059,60473064 and 90412011.

References

[1] I. Bratko. PROLOG Programming for Artificial Intelligence.
Pearson Education Limited, third edtion edition, 2000.

[2] B. Fischer. Specification-based browsing of software com-
ponent libraries. Journal of Automated Software Engineer,
7(2):179–200, 2000.

[3] M. Hertzum and E. Frokjaer. Browsing and querying in online
documentation: A study of user interfaces and theinteraction
process. ACM Transaction on Computer-Human Interaction,
3(2):136–161, 1996.

Componets

Apple

Workstation

EmbededOS

6-Mature

System

Desktop

C++

Office/Business

C POSIX

Unix Shell

Perl

Assembly

C#

X11 Applications

Sociology

OS Is

IA Is

DS Is

Topic Is

OS Is

IA Is

OS Is

OS Is

PL Is

OS Is

PL Is OS Is
Developers

PL Is

PL Is

PL Is

PL Is

Topic Is

Topic Is

Web Environment
En Is

En Is

Custom ServiceEmbededOS

WindowsXP
IsaKindof

Topic Is

5-Production/Stable
DS Is

WindowsNT
OS Is

En Is
Console (Text Based)

DataBase

Information Technology
IA Is

EmbededOS

OS Is

5-Production/Stable

Desktop

OS Is

Workstation
OS Is

.

Microsoft
Provider Is

IBM
Provider Is

Apple
Provider Is

IBM
Provider Is

Windows9.X
IsaKindof

Microsoft
Provider Is

Apple
Provider Is

WindowsNT
IsaKindof

Microsoft
Provider Is

IBM
Provider Is

Custom Service
IA Is

MS DOS
IsaKindof

5-Production/Stable
DS Is

DS Is

Custom Service
IA Is

Custom Service
IA Is

Figure 1. Generated Classification

311

11

173.27

111.62
104

19

130.91

17.14
12.06

0

30

60

90

120

150

180

210

240

270

300

330

360

1 2 3 4 5
Number of Browsing Steps

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts
 W

h
o

s
e

 B
ro

w
s

in
g

P
ro

c
e

s
s

 i
s

 C
o

m
p

le
te

d

Classification Generated by Our Method

Classification Generated by Random Method

Figure 2. Browsing Steps Comparison

26.96

37.28

5.72

0.91

120.73

2.1

7.17

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 2 3 4

Number of Browsing Steps

N
u

m
b

e
r

o
f

R
e

tu
rn

e
d

 C
o

m
p

o
n

e
n

ts
 I

n
 E

a
c

h
 S

te
p

Classification Generated by Our Method

Classification Generated by Random Method

Figure 3. Components Numbers Comparison

[4] J. C. Maxwell. Theory of heat. 2001.
[5] H. Mili, E. AhKi, R. Godin, and H. Mcheick. An experiment

in software component retrieval. Information and Software
Technology, 45(10):633–649, 2003.

[6] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and re-
search directions. IEEE Transactions on Software Engineer-
ing, 21(6):528–562, 1995.

[7] A. Renyi. Probability theory. Springer Verlag, 1970.
[8] C. E. Shannon. A mathematical theory of communication.

Bell System Technical Journal, 27:379–423, 623–656, 1948.
[9] R. C. Tolman. The principles of statistical mechanics. Dover,

1979.

431

A Context-Dependent Semantic Distance Measure

Ahmad El Sayed, Hakim Hacid, Djamel Zighed
ERIC laboratory – University of Lyon 2

{asayed, hhacid, dzighed}@eric.univ-lyon2.fr

Abstract

A major lack in the existing semantic similarity mea-
sures is that they don’t take into account the context
or the considered domain. However, two concepts sim-
ilar in one context may appear completely unrelated
in another context. We propose a Context-Dependent
method that takes the taxonomy as a principal knowl-
edge resource and a text corpus as a similarity adapter
pattern to the target context. Experiments have shown
a very interesting correlation ratio of 86% with human
similarity ratings.

1 Introduction

The end-goal of any computational model is to achieve
a certain degree of ”intelligence” that makes it compa-
rable to humans intentions over objects. Thats obvi-
ously a hard task especially that two objects sharing
any attribute(s) in common may be related by some
abstract human-made relation. The same problem re-
mains for text. Beyond managing synonymy and pol-
ysemy, many applications need to measure the degree
of semantic similarity between 2 words; lets mention:
Information retrieval, question answering, automatic
text summarization and translation, etc...Taxonomies
are widely used for that purpose. Their success came
essentially from the fact that they represent the ul-
timate tool to reflect human intention over instances
since most of them are an expert-handicraft resources.

On the other hand, a major lack in the existing se-
mantic similarity methods is that no one takes into
account the context or the domain under study. How-
ever, two concepts similar in one context may appear
completely unrelated in another context. A simple ex-
ample for that: While blood and heart seem to be very
similar in a general context, they represent two widely
separated concepts in a domain specific context like
medicine.

We propose a taxonomy-based method that depends
essentially on the target context detected from a text
corpus. We suggest also to combine it with a feature-

based measure in an attempt to take profit from the
whole ’knowledge package’.

Section 2 provides a quick overview on the existing
taxonomy-based semantic similarity measures. In sec-
tion 3, we describe our context-dependent approach.
Experimental results are shown in section 4 and then
compared to other results in section 5. We conclude in
section 6.

2 Semantic Similarity Between
Concepts

A number of successful projects in computational lin-
guistic have led to the development of some widely
used taxonomies like Wordnet[1] (generic taxonomy)
and Mesh1 (for the medical domain). Since their ’se-
mantic’ structure, these taxonomies offer a reliable way
to calculate semantic similarities between concepts2.
Taxonomy-based measures can be grouped into edge-
based measures and node-based measures.

2.1 Edge-based Measures

First, calculating similarities simply relied on counting
the number of edges separating two nodes by an ’is-a’
relation [2]. While this approach can work well in a do-
main specific taxonomy, its limitations was clear since
it can give results such ’person/animal’ closer than
’cat/dog’. Since specific concepts may appear more
similar than abstract ones, the depth was taken into
account by calculating either the maximum depth in
the taxonomy [3] or the depth of the most specific con-
cept subsuming the two compared concepts [4]. Hirst
[5] considers that two concepts are semantically similar
if they are connected by a path that is not too long and
that does not change direction too often. The problem
with edge-based measures is that they consider the tax-
onomy as a simple structure with uniform distances.

1http://www.nlm.nih.gov/mesh/
2In this article, we’ll use the term concept instead of words

since we consider that taxonomy-based measures deal practically
with the concept associated to a word, and not the word itself.

432

2.2 Node-based Measures

These measures came to overcome the unreliability of
edge distances and based its similarities on the informa-
tion associated with each node. This information can
be either a node description (Feature based measures)
or a numerical value augmented from a text corpus (In-
formation content measures):

2.2.1 Feature based measures

A part of their simple conceptual structure, taxonomies
like Wordnet provide users with additional resources
which describe most entities. Information in Wordnet
is organized around logical groupings called synsets.
Each synset is attached to a description set, a list of
synonyms, antonyms, etc...[6] proposes a measure that
considers that the more common characteristics two
objects have and the less non common characteristics
they have, the more similar the objects are. This mea-
sure, if applied on rich resources like Wordnet, can pro-
vide very good results:

sim(c1, c2) =
|C1
⋂
C2|

|C1
⋂
C2| + k |C1/C2| + (k − 1) |C2/C1|

(1)

2.2.2 Information Content measures

The Information content (IC) approach was first pro-
posed by Resnik[7]. It considers that the similarity be-
tween two concepts is ”the extent to which they share
information in common”.

Information content for a concept c is actually cal-
culated by the probability p(c) of encountering an in-
stance of c in a corpus C. An instance of c could
be a word w representing c or any subconcept of c
3. Then, IC is calculated by the log likelihood :
IC(c) = − log p(c)

Thus, as frequency increases, informativeness de-
creases, so the more abstract a concept, the lower its
information content. After assigning IC values for each
concept, Resnik defines the similarity between two con-
cepts as the IC value of their Most Informative Sub-
sumer (MIS). Thus, the more informative parent two
concepts share in common, the more similar they are.
By using this theory, Resnik have outscored the edge-
based methods by attaining a success rate of 79%4.

Nevertheless, this method have shown some impre-
cisions. In practice, it would be enough for two cou-

3In rich taxonomies like Wordnet a concept is represented by
a set of words.

4The success rate is evaluated by means of correlation with
human ratings on a well-defined set of words pairs

ple of concepts to share the same MIS, to obtain the
same similarity, which is irrelevant in many cases. The
Jiang[8] model came next in order to overcome the
Resnik limitations. It is is derived from the edge-based
notion by adding the information content as a deci-
sion factor. [8] assigns a link strength (LS) for each
is-a link in the taxonomy. An LS is simply the dif-
ference between the IC values of two nodes. LS takes
into account another factors like the local density and
the node depth. Then, the distance between two con-
cepts is obtained by summing the edges weights along
the shortest path linking two nodes. Jiang has reached
a success rate of 84.4% which led it to outperform all
the other taxonomy-based measures. Another effective
measure was proposed by Lin[9] which reached a 82.1%
of precision. As Jiang, Lin doesn’t only consider the
IC of the most informative subsumer but the IC of the
compared concepts too.

3 A Context-Dependent Ap-
proach

3.1 Context: a Decisive Factor for Sim-
ilarity

Context definition varies from one research area to an-
other. Similarity judgments are made with respect to
representations of entities, not with respect to entities
themselves [10]. Thus, having a changeable represen-
tation, one can make any two items similar according
to some criteria. To prevent this, a context may be
used in order to focus the similarity assessment on a
certain features of the representation excluding irrele-
vant information. Barsalou[11] presents a nice example
supporting the context-dependency; it explains the in-
stability of similarity judgments.

In text similarity, comparing two words/terms
doesn’t make any sense if we ignore the actual con-
text. Let’s take the example of heart and blood. In a
general context, these two concepts can be judged to be
very similar. However, if we put ourselves in a medical
context, heart and blood define two largely separated
concepts. They will be even more distant if the context
is more specifically related to anatomy.

Our context-dependent approach suggest to adapt
semantic distances5 to the target corpus since it’s the
entity representing the context in the target applica-
tions. It is inspired from the information content the-
ory [7] and from the Jiang[8] measure seen in the above
section.

5Our method deals with distance which is the inverse of sim-
ilarity.

433

3.2 Problems with Information Con-
tent Measures

As we’ve seen earlier, IC measures are mainly based
on the concept frequency in a text corpus. Accord-
ing to the measure’s purpose, we can show two main
difficulties for that approach:

On concept informativeness We believe that it’s
imprecise to consider infrequent concepts as more in-
formative than frequent ones. We follow Nuno’s [12]
point of view assuming that the taxonomic structure
in WordNet is organized in an enough meaningful way
to measure IC. We can simply say that the more hy-
ponyms a concept has the less information it expresses.
Nuno have shown that at least similar results can be
obtained without using a text corpus.

On context-dependency If the motivation behind
measuring the IC from a text corpus is to consider the
actual context, we argue that the probability of encoun-
tering a concept in a corpus is not an enough adaptive
way to determine whether it’s representative for a given
context. Thus, IC cannot significantly reflect the tar-
get context.

3.3 A New Context-Dependency Based
Measure

Our approach tends to compute semantic distance6.
In order to represent the context, we assign weights
for taxonomy’s concepts according to their Context-
Dependency CD to a corpus C. The goal is to obtain a
weighted taxonomy, where ’heavier’ subtrees are more
context representative than ’lighter’ subtrees.

As we said earlier, it’s clear that a concept’s fre-
quency alone is not enough to determine its context-
dependency. A very frequent concept in some few doc-
uments and absent in many others cannot be consid-
ered as ”well” representative for the corpus. Thus,
the number of documents where the concept occurs
is another important factor that must be considered.
In addition to that, frequency distribution for a con-
cept over a set of documents can be another important
factor for dependency decisions. Suppose we have 2
concepts c1 and c2 sharing the same frequency over a
corpus C (20 occurrences for instance) and present in
the same number of documents (5 documents). Let
the frequency of c1 over the 5 documents be perfectly
distributed where 4 occurrences are found in each doc-
ument (4 − 4 − 4 − 4 − 4); and let the frequency of c2

6We consider distance by its dissimilarity which is the inverse
of similarity

have this distribution (2−5−9−3−1). It’s most likely
that c2 -with its heterogeneous distribution among doc-
uments - is more discriminative than c1, whose mono-
tone repartition can reveal less power of discrimination
over the target domain (Experimentations made assess
our thesis).

Consequently, we introduce our CD measure which
is an adapted version of the standard tf.idf . Given a
concept c , CD(c) is a function of its total frequency
freq(c), the number of documents containing it d(c),
and the variance of its frequency distribution var(c)
over documents in C :

CD(c) =
log(1 + freq(c))

log(N)
.
log(1 + d(c))

log(D)
.(1+log(1+var(c)))

(2)
Where N and D denote respectively the total num-

ber of concepts in C and the total number of documents
in C. The log likelihood seems adaptive to such pur-
pose as it provides understandable normalized values
by reducing big margins. This formula ensures that if
a concept has a 0 frequency, its CD will equals 0 too.
It ensures also that if c has an instance in C, its CD
will never be 0 even if var(c) = 0.

Note that the CD of a concept c is the sum of its
individual CD value with the CD of all its subconcepts
in the taxonomy. The weights propagation from the
bottom to the top of the hierarchy is a natural way to
ensure that a concept even with a low individual CD
will be considered as highly context-dependent if its
children are well represented in the corpus(see Figure
1). In other terms, if a corpus C is more specialized in
domain D1 than D2, we’ll most likely encounter more
specific concepts related to D1 in text than to D2; thus,
the subtree S1 representing D1 will be more weighted
than S2 representing D2.

Figure 1: A taxonomy extract showing CD values as-
signed in the context ctx1

434

Figure 2: A taxonomy extract showing CD values as-
signed in the context ctx2

That is, to compare two concepts using the CD val-
ues, we assign a Link Strength (LS) to each ’is-a’ link
in the taxonomy. Assume that c1 subsumes c2, the LS
between c1 and c2 is then calculated as follows:

LS(c1, c2) = CD(c1) − CD(c2)

Then our Context-Dependent Semantic Distance is
calculated by summing the log likelihood of LS along
the shortest path separating the two concepts in the
taxonomy.

Dist(c1, c2) =
∑

c∈SPath(c1,c2)

log(1 + LS(c, parent(c)))

Where SPath denotes the shortest path between c1
and c2.

The method is best illustrated with an example.
Consider the taxonomy extract shown in Figure 1. The
related context ctx1 for a corpus C1 is represented by
the subtree where CD values are greater than 0. In
ctx1, we can notice that the corpus is likely ’general’
(talking about persons, professionals, carnivores,etc.).
Let’s consider the semantic distance between Cat and
Dog in ctx1 given the previous formula:

Distctx1(Cat,Dog) = 2.7 + 2.2 = 4.9

Now, consider the context ctx2 illustrated in Fig-
ure 2 where it seems to be more specialized in animals.
Let’s calculate the distance between the same two con-
cepts:

Distctx2(Cat,Dog) = 5.6 + 4.8 = 10.4

This states that Cat and Dog are closer in ctx1 than
in ctx2 which respect human intuitions given the two
different contexts.

4 Evaluation and Results

4.1 Implementation

In this study, Wordnet is used as the main semantic
knowledge base for evaluating the distances. A text
corpus have the role to adapt distances to its target
context. We’ve built a corpus of 30,000 web pages using
a crawler found on the net. The web pages were mostly
taken from News web sites (reuters.com, cnn.com, ny-
times.com...). The corpus was then analyzed using
Natural Language Processing (NLP) techniques along
with WordNet to detect concepts. Evaluation is done
next on the basis of the computed CD values.

4.2 The Benchmark

The most intuitive way to evaluate a semantic similar-
ity/distance is to compare machine ratings and human
ratings on a same data set. A very common set of 30
word pairs is given by M&C [13]. M&C asked 38 un-
dergraduate students to rate each pair on a scale from
0 (no similarity) to 4 (perfect synonymy). The aver-
age rating of each pair represents a good estimate on
how similar the two words are. The correlation be-
tween individual rating of human replication was 0.90
which led many researchers to take 0.90 as the upper
bound ratio. For our evaluations, we’ve chosen a M&C
subset of 28 words pairs which is the most commonly
used subset for that purpose. Note that since our mea-
sure calculates distance, the M&C distance will be:
dist = 4−sim where 4 represents the maximum degree
of similarity.

4.3 Evaluation Strategies

When comparing our distance results with the R&C
human ratings, the context-dependency CD method
gave a correlation of 0.83 which seems to be a very
promising rate (See table 2).

In view of further improvements, we investigate to
combine our context-dependent method with a feature-
based measure. The lexical taxonomy, till now, is
used basically as a semantic network with ’is-a’ rela-
tions. It’s obvious that by ignoring all the other infor-
mation(description, synonym, antonyms, meronyms,
holonyms...), we’re not fully exploiting the knowledge
resource and we’re missing a reliable source that can
improve our measure. That’s why, we study the uti-
lization of concept’s features as a complementary mea-
sure. Stop words are eliminated first, then the number
of common words is computed using the Tversky for-
mula 1. The distance will be : dist = 1 − sim since
Tversky’s similarity interval is [0,1].

435

With our implementation, the feature-based mea-
sure used alone gave us a correlation rate of 0.619 over
the data set. In order to combine it with the CD mea-
sure, we’ve tried three non linear strategies:

S1: Dist = CD.Feat Gave a correlation of 0.83. No
amelioration is noticed in the CD rate.

S2: Dist = log(1 + CD).log(1 + Feat) We obtain a
considerable amelioration with a correlation of 0.868.

S3: Dist = Feat.
√
CD A comparable ratio with

the previous strategy is obtained with a correlation of
0.867.

5 Comparison and Discussion

Our method show an interesting results whether on
an individual or on a combination scale (See table
1). A part of its interesting correlation coefficient of
0.83, our CD method has the advantage to be context-
dependent, which means that our results varies from
one context to another. We argue that our values could
perform better if we ’place’ human subjects in our cor-
pus context. In other terms, our actual semantic dis-
tance values reflect a specific context that don’t nec-
essarily match with the context of the human subjects
during the R&C experiments.

By considering the different aspects of the taxonomy
(its hierarchical structure and its nodes information),
an optimal correlation was reached with a rate of 0.868
which is not too far from human correlations of 0.901.

6 Conclusion and Future Work

We have shown the importance of considering the con-
text when calculating semantic similarities between
words/concepts. We’ve proposed a Context-Dependent
method that takes the taxonomy as a principal knowl-
edge resource and a text corpus as a similarity adapter
pattern to the target context. The results obtained
from the experiments show the effectiveness of our ap-
proach. A much better way to evaluate the method and
compare it with others is to perform a context-driven
human ratings, where human subjects will be asked to
rank a same set of words pairs in different contexts.
The machine correlation computed next according to
each context will be able to show more significantly the
added-value of our approach.

References

[1] G. A. Miller, “Wordnet: A lexical database for
english.” Commun. ACM, vol. 38, no. 11, pp. 39–
41, 1995.

[2] R. Rada, H. Mili, E. Bicknell, and M. Blettner,
“Development and application of a metric on se-
mantic nets,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 19, no. 1, pp. 17–30,
1989.

[3] C. Leacock, M. Chodorow, and G. A. Miller, “Us-
ing corpus statistics and wordnet relations for
sense identification,” Computational Linguistics,
vol. 24, no. 1, pp. 147–165, 1998.

[4] Z. Wu and M. Palmer, “Verb semantics and lexical
selection,” in 32nd. Annual Meeting of the Associ-
ation for Computational Linguistics, New Mexico
State University, Las Cruces, New Mexico, 1994,
pp. 133 –138.

[5] G. Hirst and D. St-Onge, “Lexical chains as rep-
resentation of context for the detection and cor-
rection malapropisms,” 1997.

[6] A. Tversky, “Features of similarity.” Psychological
Review, vol. 84, pp. 327–352, 1977.

[7] P. Resnik, “Semantic similarity in a taxonomy: An
information-based measure and its application to
problems of ambiguity in natural language.” J. Ar-
tif. Intell. Res. (JAIR), vol. 11, pp. 95–130, 1999.

[8] J. J. Jiang and D. W. Conrath, “Semantic simi-
larity based on corpus statistics and lexical taxon-
omy,” 1997.

[9] D. Lin, “An information-theoretic definition of
similarity,” in Proc. 15th International Conf. on
Machine Learning. Morgan Kaufmann, San Fran-
cisco, CA, 1998, pp. 296–304.

[10] D. Medin, Psychological essentialism. Cambridge
University Press, 1989.

[11] L. Barsalou, Intraconcept similarity and its ap-
plication for interconcept similarity. Cambridge
University Press, 1989.

[12] N. S. And, “An intrinsic information content met-
ric for semantic similarity in wordnet.”

[13] G. A. Miller and W. Charles, Contextual Corre-
lated of Semantic Similarity, 1991, vol. 6.

436

Similarity method Type Correlation with M&C
Human replication Human 0.901
Rada Edge-based 0.59
Hirst and St-Onge Edge-based 0.744
Leacock and Chodorow Edge-based 0.816
Resnik Information Content 0.774
Jiang Information Content 0.848
Lin Information Content 0.821
CD Context-Dependent 0.830
Combined(CD + Feat) Combination 0.868

Table 1: Comparison between the principal measures and their correlation with M&C human ratings

Word Pair M&C CD Feat S1 S2 S3
car-automobile 0,08 1 0,52 0,52 0,29 0,52
gem-jewel 0,16 1 0,768 0,768 0,395 0,768
journey-voyage 0,16 3,783 0,847 3,203 0,96 1,647
boy-lad 0,24 1,635 0,81 1,325 0,575 1,036
coast-shore 0,3 1,426 0,862 1,229 0,551 1,03
magician-wizard 0,5 1 0,768 0,768 0,395 0,768
midday-noon 0,58 1 0,554 0,554 0,305 0,554
furnace-stove 0,89 14,182 0,886 14,182 1,885 3,766
food-fruit 0,92 8,489 1 8,489 1,56 2,914
bird-cock 0,95 3,606 0,858 3,094 0,946 1,629
bird-crane 1,03 4,286 0,86 3,687 1,034 1,781
tool-implement 1,05 2,01 0,85 1,708 0,678 1,205
brother-monk 1,18 1,473 0,905 1,333 0,583 1,098
crane-implement 2,32 8,982 1 8,982 1,595 2,997
lad-brother 2,34 12,745 0,842 12,643 1,694 3,262
journey-car 2,84 25,653 1 25,653 2,276 5,065
monk-oracle 2,9 13,64 1 13,64 1,86 3,693
food-rooster 3,11 13,53 1 13,53 1,855 3,678
coast-hill 3,13 7,24 1 7,24 1,462 2,691
forest-graveyard 3,16 21,004 0,902 18,939 1,987 4,133
shore-woodland 3,37 15,095 0,903 13,635 1,788 3,509
monk-slave 3,45 11,302 1 11,302 1,74 3,362
coast-forest 3,58 14,736 0,898 13,235 1,766 3,448
lad-wizard 3,58 11,853 1 11,853 1,77 3,443
chord-smile 3,87 15,701 1 15,701 1,952 3,963
glass-magician 3,89 17,276 1 17,276 2,014 4,156
noon-string 3,92 16,53 1 16,53 1,985 4,066
rooster-voyage 3,92 24,853 1 24,853 2,254 4,985
Correlation 0.905 0.830 0.619 0.830 0.868 0,867

Table 2: Distances Results from the different strategies and their correlation to M&C Means.

437

A Semantical Change Detection Algorithm for XML

Rodrigo Cordeiro dos Santos
Universidade Federal do Parana, Brazil
rodrigosantos@celepar.pr.gov.br

Carmem Hara
Universidade Federal do Parana, Brazil

carmem@inf.ufpr.br

Abstract
XML diff algorithms proposed in the literature have fo-

cused on the structural analysis of the document. When
XML is used for data exchange, or when different versions
of a document are downloaded periodically, a matching
process based on keys defined on the document can generate
more meaningful results. In this paper, we use XML keys de-
fined in [5] to improve the quality of diff algorithms. That is,
XML keys determine which elements in different versions re-
fer to the same entity in the real world, and therefore should
be matched by the diff algorithm. We present an algorithm
that extends an existing diff algorithm with a preprocessing
phase for pairing elements based on keys.

1. Introduction
XML has become the standard format for data exchange

on the Web. It helps the process of publishing data, es-

pecially when the underlying information is constantly be-

ing updated. The data consumer, on the other side, may be

interested not only on the current contents of a web site,

but also on the updates that have been made since his last

access. As an example, one may want to know what are

the new products in a catalog, or which products had their

prices changed. To help the task of comparing two versions

of XML documents, a number of diff algorithms have been

proposed in the literature [1, 2, 15, 16].

The majority of these algorithms are based on a struc-

tural analysis of the documents. Similar to diff algorithms

on strings, their main strategy is based on finding large frag-

ments of data that are identical in both versions of a doc-

ument and match them. After finding these matchings, a

sequence of operations that transforms the old version of

the document to the new one is generated. This is called

an edit script or delta. In many applications, XML docu-

ments are not arbitrary tree structured data, but have well

defined structure and semantics. A strategy based solely

on structural and value similarities can generate erroneous

matchings of elements.

We have conducted an experimental study to analyze the

results of two diff algorithms: XyDiff[1], and X-Diff[15].

The experiments consisted of modifying an XML tree by in-

serting, deleting, modifying, and moving both internal and

leaf nodes in the tree, and then analyzing how semantically

meaningful the changes detected by these algorithms were.

The results showed the following: 1) both algorithms are

extremely sensitive to changes in the structure of the doc-

ument, especially when they involve insertion and removal

of internal nodes; 2) the existence of several similar or iden-

tical subtrees in a document may induce the algorithms to

erroneously match them, and these erroneous matchings are

propagated to their ancestors and descendants. We illustrate

these problems below.

Example 1: Consider the two XML documents, repre-
sented as XML trees, depicted in Figure 1. They contain in-

formation about university professors. Each professor
has a name, an office, and optionally a phone or

email. Comparing the old version with the new one, we
can observe that both John and Mary have their offices
changed, and moreover, that Mary has moved to John’s
former office. If the strategy of the diff algorithm is to find

the largest common subtree in both versions, it will match

John’s old office (node 9) with Mary’s new one (node 49).
This matching can then be propagated upwards by match-

ing professor elements (nodes 4 and 45). That is, the
professor element node that corresponds to John is
matched with the one that corresponds to Mary. As a con-
sequence, the edit script contains an update on the name of
the professor who works in the matched office, while
our expected result is an update on professor’s office.
In particular, if we know that name uniquely identifies a
professor in the document, that is, name is a key for
professor, then it is always the case that matches of
professor elements based on their names produce more
meaningful results than matches based on similar subtrees.

Observe that not only values have been modified, but the

structure of the document has also changed. In the old ver-

sion, professors are organized by their universities, while in

the new one, they are placed under their departments. In

our experimental study, the edit scripts generated by both

XyDiff and X-Diff consisted of operations that remove all

subtrees rooted at professor elements, followed by in-

438

root

university

John

phone

212

professor

scieng

building

office

Mary building

office

professor

root

university

department

professor

John

phone

212

professor

adm eng

building

office

Mary
building

officename

name

1

ufpr

2

3

304

@email

500

@number @number
20

19

18

1716

15

14

12

11

10

9

8

7

6

5

4 13

(a) old version T1

ufpr

cis

(b) new version T2

604

31

32

37

38 40

43

44

46

47 50

51

52

36

39
41

42

45

49

500

@email

33

48

@number @number

35

34

@name

@name

@name

m@ufpr
name

name
m@ufpr

Figure 1. Two versions of XML trees

sertions of the same subtrees under the new department
node. This is because in both algorithms only nodes reached

by following exactly the same path from the root can be

matched. Clearly, this is not the expected results from the

semantical point of view, which is the creation of a new

level in the tree. Similar to the previous case, if we know

that name uniquely identifies a professor no matter
where the professor node occurs in the tree then the cor-
rect matchings of professor elements would be found,
avoiding their removals in the edit script. �
In this paper, we propose an algorithm, called XKey-

Match, that uses XML keys[5] to guide the comparison of

XML documents. That is, first elements in the two versions

are matched based on their key values, and then a struc-

tural analysis is performed to determine their differences.

In Example 1 we would give as input to the diff algorithm

that name uniquely identifies a professor in the entire
document. A strategy based on keys is natural when com-

paring two relational databases. Since XML has become a

standard for data exchange, it is natural to apply the same

strategy for this format.

One area in which matchings based on semantics is es-

pecially important is data cleansing[11]. One of the main

goals of data cleansing is to detect inconsistencies on in-

put data. As an example, consider a datawarehouse that

maintains data imported from external sources. Periodically

these external sources update and publish new versions of

their database. In order to keep the datawarehouse up-to-

date, it is necessary to determine what are the differences of

the new version compared to the previous one. If the pre-

vious version had been through data cleansing, one would

like to know if previously detected mistakes have been cor-

rected, either to prevent redoing the cleansing process, or to

report the error to the external source. Ideally, a diff algo-

rithm for helping this task should first identify which pieces

in the two versions of imported data refer to the same entity

and then determine what has been changed.

Contributions. The main contributions of this paper are:
• A proposal of a semantical approach in the context of
diff algorithms for XML;

• An algorithm for matching elements in two versions of
XML documents based on XML keys.

To the best of our knowledge this is the first algorithm that

introduces keys in the context of XML diff algorithms, and

that generates semantically meaningful results when there

are changes in the structure of the document.

Related Work. A number of diff algorithms have been

proposed in the literature both for text documents[8] and

for tree structures[13, 14, 17]. XyDiff[1] is one of the

earliest algorithms proposed for XML. It was designed for

datawarehouses that store huge amounts of data, and there-

fore it was designed to be efficient, both in time and space.

The algorithm is based on an ordered tree model. When

the documents are accompanied with a DTD[4], attributes

defined as identifiers (ID) are used to match elements ac-

cording to their values. X-Diff[15] is an algorithm based

on an unordered tree model. The distinguishing feature of

diffX algorithm[2] is that it looks for matches in isolated

fragments of the XML tree, instead of pairing nodes along

a tree traversal. A different strategy for finding matches is

applied by KF-Diff[16]. It is based on defining unique paths

starting from the root for each node in the tree. Whenever

such a path cannot be found, which happens when a node

has more than one child with the same label, these labels

are replaced by key fields. Key fields are values contained
in the subtrees rooted at these nodes that can distinguish

them among those with the same label. Although the idea

of key fields is used in this algorithm, it is applied as a tech-

nique for deriving unique paths. They are not defined by

the user, and therefore are not meant to capture the seman-

tics of the document. Comparative studies of existing XML

diff algorithms can be found in [7] and [12].

Organization. The rest of the paper is organized as fol-

lows. Section 2 defines XML keys, and presents definitions

related to diff algorithms. Section 3 describes our proposal

of a semantical diff algorithm, followed by our conclusions

in Section 4.

2. XML Keys and Diff Algorithms

This section presents some definitions used throughout

the paper.

Tree model and XML keys. XML documents can be mod-
eled as trees. Nodes in the tree can be of three types: ele-

ment, attribute, and text, where attribute labels are prefixed

by “@”. Based on node types, we define function lab(n),
and val(n) as follows: if n is an element node then lab(n)

439

denotes the name of the element and val(n) is undefined; if
n is an attribute node then lab(n) denotes the name of the
attribute and val(n) is its associated string value; if n is a
text node then lab(n) = “S”, and val(n) is its string value.
Two examples of XML trees are illustrated in Figure 1.

To define a key we specify three things: 1) the context
in which the key must hold; 2) a target set on which we are
defining a key; and 3) the values which distinguish each el-
ement of the target set. For example, the key specification

of Example 1 has a context of the root (the entire docu-
ment), a target set of professor, and a single key value,
name. Specifying the context node and target set involve
path expressions.

The path language we adopt is a common fragment of

regular expressions [10] and XPath [6]:
Q ::= ε | l | Q/Q | //

where ε is the empty path, l is a node label, “/” denotes
concatenation of two path expressions (child in XPath), and
“//” means descendant-or-self in XPath. To avoid confusion
we write P//Q for the concatenation of P , // and Q.
Following the syntax of [5] we write an XML key as:

K : (C, (T, {P1, . . . , Pp}))
where K is the name of the key, path expressions C and T
are the context and target path expressions respectively, and

P1, ..., Pp are the key paths. For the purposes of this paper,
we restrict the key paths to be simple paths (without “//”). A

key is said to be absolute if the context path C is the empty
path ε, and relative otherwise.

Example 2: Using this syntax, some constraints on XML
trees in Figure 1 can be written as follows:

• k1 : (ε, (university, {@name})): within the con-
text of the entire document (ε denotes the root), a
university is identified by its name.

• k2 : (university, (//professor, {name, phone})):
within the context of each subtree rooted at a

university element, a professor is uniquely
identified by the values of its subelements name and
phone. The professor can appear anywhere in the
subtree rooted at university.

�
To define the meaning of an XML key, we use the follow-

ing notation: in an XML document (tree), n[[P]] denotes
the set of node identifiers that can be reached by following

path expression P from the node with identifier n. [[P]] is
an abbreviation for r[[P]], where r is the root node of the
tree. As an example, in Fig. 1(a), [[university]] = {2},
2[[professor]] = {4, 13} and [[//name]] = {5, 14}.
The formal definition of the meaning of an XML key is

given next.

Definition 1 An XML tree satisfies an XML key (Q,
(Q’,{P1,. . .,Pn})) iff for any n in [[Q]], and any n1 and
n2 in n[[Q′]], if for all i, 1 ≤ i ≤ n there exists z1 in n1[[Pi]]
and z2 in n2[[Pi]] such that z1 =v z2, then n1 = n2.

The definition above involves value equality on trees

(=v), so we formalize this notion below.

Definition 2 Given an XML tree T , and two nodes n1 and
n2 in T , we say that they are value equal, denoted as
n1 =v n2 iff the following conditions are satisfied: 1)
lab(n1) = lab(n2); 2) if n1 and n2 are attribute or
text nodes then val(n1) = val(n2); 3) if n1 and n2 are
element nodes then: an attribute A is defined for n1 iff it
is also defined for n2, and val(n1.A) = val(n2.A); more-
over, if [d1,. . .,dk] are subelements of n1 then n2 has
subelements [d′1,. . .,d

′
k], and for all i ∈ [1, k] there ex-

ists j ∈ [1, k] such that di =v d
′
j .

For example, XML tree of Fig. 1(a) satisfies key

(//professor, {name}) since [[//professor]] = {4, 13},
and 4[[name]] �=v 13[[name]].

Diff Algorithms. The essential goal of a diff algorithm

is to find an edit script such that given a version of a doc-

ument in time t − 1 and the edit script, it is possible to
obtain its version in time t. The number of operations in
a edit script is called the edit distance. Although the edit
distance is often used to define the cost of the transforma-

tion, finding a minimum edit script is not always the best

strategy for generating semantically meaningful results. In

the next Section, we propose using XML keys to guide the

node matching process of a diff algorithm.

3. A Semantical Diff Algorithm

In this section we present XKeyMatch, an algorithm for

matching elements in two versions of XML trees based on

XML keys. This algorithm is designed to be executed be-

fore a diff algorithm that compares the contents in both ver-

sions. The architecture of the system is depicted in Figure

2.

XML Keys
Edit
Script

Diff
Algorithm

version
(t−1)

version
(t)

Matched
Nodes

XKeyMatch

Figure 2. A diff algorithm with a preprocessing phase
with XKeyMatch

Algorithm XKeyMatch receives as input two versions,

vt−1 and vt, of XML trees, and a set of XML keys Σ that

are known to be satisfied by both versions. The output is

a set Γ of node pairs [n1, n2], where n1 is a node in vt−1

that refers to the same entity as node n2 in vt according to
Σ. The set Γ is then given as input to a diff algorithm that,

440

based on these matchings, compares versions vt−1 and vt
and generates an edit script.

Algorithm XKeyMatch is based on the construction of

a deterministic finite automaton (DFA) from the set Σ of

XML keys, denoted as KeyDFA(Σ). Using this DFA, it is
possible to process all keys in Σ at the same time, and all

matchings based on Σ can be generated with a single pre-

order traversal on vt−1 and vt. More specifically, each state
of the DFA represents a set of paths, and it stores infor-

mation on all keys that can be defined on nodes reached by

following these paths. Therefore, each step of the XML tree

traversal corresponds to a change of state in the automaton;

information on keys stored at each state is used to collect

nodes that are candidates for matchings based on these keys.

After collecting all candidates, algorithm XKeyMatch

pairs nodes in both versions according to their key values.

These steps of the algorithm are depicted in Figure 3. Given

XML trees T1 and T2, and a set of XML keys Σ, the algo-
rithm first builds KeyDFA(Σ) (Line 1). Then candidates are
selected by calling function get candidates for both
trees (Lines 2 and 3). The resulting set of matches is com-

puted by function match, which compares the candidates
previously collected (Line 4). Next, we present each of

these steps in detail.

Function XKeyMatch
Input: XML trees T1, T2, and a set of XML keys Σ
Output: a set of matched node pairs
1. KeyDFA:= DFA(Σ);
2. candidates(T1):= get candidates(T1,KeyDFA);
3. candidates(T2):= get candidates(T2,KeyDFA);
4. return (match(candidates(T1), candidates(T2), T1, T2);

Figure 3. Algorithm XKeyMatch

DFA Construction. Given a set Σ of XML keys, this

step of algorithm XKeyMatch generates a deterministic fi-

nite automaton, denoted as KeyDFA(Σ), where each state
stores information for processing every key in Σ with a sin-
gle traversal on an XML tree T .
Let Σ = {σ1, . . . , σn}, where each σi is of the form

(Qi, (Q′
i, {P 1

i , . . . , P
ni
i })). We first describe the construc-

tion of a non-deterministic finite state automaton (NFA) as-

sociated with each key σi in Σ. We start with the construc-
tion of a NFA for each path p in {Qi, Q

′
i, P

1
i , . . . , P

ni
i },

defined asM(p) = (Np, Lp ∪ {other}, δp, Sp, Fp), where
Np is a set of states, Lp is the alphabet, δp is the transi-
tion function, Sp is the start state, and Fp is the set of final
states. Here, “other” is a special character that can match
any character. These automaton have “linear structure”;

that is, if p = l1/ . . . /lm then δp(Sp, l1) = q1, for each
j, 1 ≤ j < m, δp(qj , lj+1) = qj+1, and qm = Fp. If
p contains “//” then there exists a transition from a state

back to itself with “other”. That is, if p = . . . //lj . . .

for some j then δp(qj−1, other) = qj−1, where q0 = Sp.
The final states of these NFAs carry information about the

key considered for its construction, denoted as keyInfo.
Let F = {FQi

, FQ′
i
, FP 1

i
, . . . , FPni

i
}. For each f ∈ F ,

keyInfo[f] contains the following information:

• keyId: σi’s identifier;

• type: the value of this field is context if f = FQi ,

target if f = FQ′
i
and keyPath otherwise;

• keyPathId: a identifier for each key path. This field
is defined only when keyInfo[f].type = keyPath; in
this case, if f = FP j

i
then keyInfo[f].keyPathId =

j.

The NFA for key σi is obtained by making the final
state of M(Qi) coincide with the start state of M(Q′

i),
and the final state of M(Q′

i) coincide with start states
of M(P k

i), 1 ≤ k ≤ ni. The NFA for all keys in

Σ, M(Σ) is finally obtained by creating a new start state
with ε-transitions to the start states of all M(σi), 1 ≤
i ≤ n. An example of the resulting NFA for Σ =
{k1 :(university, {name}), k2 :(university,
(//professor, {name, phone}))} is depicted in
Figure 4(a), and the corresponding keyInfo structure is given
in Figure 4(c).

2 3 4

5 7

8

9

6

1

university @name

name

phoneother

university professor

Ε

Ε

−−
−−

−−
−−

3,6

4,6

6
other

6,8

6,9

6,7

(b) KeyDFA

(c) keyInfo

(a) NFA

type
context
target

context
target

keyPath

keyPath
keyPath

1

1
2

keyId keyPathId
k1
k1
k1
k2
k2
k2
k2

[3]
[4]
[6]
[7]
[8]
[9]

[2]

university

other

other
professor

professor

professorname

professor

professor

phone
professor other

other

other

@name

1,2,5

Figure 4. DFA construction

Given NFA M(Σ), KeyDFA(Σ) is obtained applying
standard subset construction algorithm[10]. The resulting

automaton for our running example is shown in Figure 4(b).

Observe that, although in M(Σ) each state contains infor-
mation of at most one key in Σ, after the conversion, each
state q′ in KeyDFA(Σ) contains information from all origi-
nal states represented by q′. As an example, in Figure 4(b),
keyInfo({3, 6}) = {keyInfo[3], keyInfo[6]}.
The automaton construction described in this section is

similar to that defined in [9] for XML stream processing,

which evaluates the effectiveness of processing a large num-

ber of XPath expressions on streams when the DFA is con-

structed ”lazily”. Although the number of states in a DFA

can grow exponentially on the number of input path expres-

sions, the number of keys for a given document is usually

441

small. Moreover, since changes on keys are not frequent,

if versions of the same document are periodically down-

loaded, KeyDFA(Σ) can be locally stored, instead of being
recomputed at each execution of the diff algorithm.

Selection of Candidates. Given KeyDFA(Σ), algorithm
XKeyMatch process each of the XML trees given as in-

put using this automaton, gathering information on possible

candidates for matchings according toΣ. Let T be one these
trees, and KeyDFA(Σ) = (Q,A, δ, q0, F). Starting with the
root of T and start state q0, T is traversed in preorder, and
each step in the tree traversal corresponds to a step in its

processing with the automaton. During the traversal, infor-

mation about key values are collected using data stored at

each state q visited. That is, suppose the current state is q
when processing a node n in T . If keyInfo[q] contains in-
formation on a key path of a key k, then n is a key value for
some node nt, and therefore we can associate nt with the
value of n. Observe that k may contain more than one key
path. If this is the case, then nt is identified as a candidate
for matching only if it is associated with values for all key

paths of k, and we say that nt is ”keyed” on k.
To keep track of the information needed to determine

whether a node is a candidate for matching along the

tree traversal, we associate the following with each key

k = (Q, (Q′, {P1, . . . , Pn})) in Σ, in a structure called
keyVal [k]:
• contextNodes: a set of nodes in [[Q]];

• targetNode: last node visited in n[[Q′]] for some n in
contextNodes;

• keyNode: last node visited in targetNode[[Pi]].

• keyPathId: key path identifier i, 1 ≤ i ≤ n;

Recall that a node in the tree may play different roles

(as context, target, or key path) for different keys in Σ, and
this information is given by keyInfo[s], where s is a state in
KeyDFA(Σ). Suppose that the current state of KeyDFA(Σ)
is s when processing node n in T . Then for each element
v in keyInfo[s] we obtain the value of v.keyId = k, and
values in v are used for filling up fields in keyV al[k]. As
an example, consider tree T1 in Figure 1(a). Let the cur-
rent node in T1 be 2 (a university node), and the cur-
rent state of KeyDFA(Σ) be {3, 6}. Then the algorithm sets
keyVal [k1].targetNode = 2, since keyInfo[3] states that
the current node is the target of k1. Moreover, node 2 is
inserted in keyVal [k2].contextNodes, based on the value
of keyInfo[6]. That is, structure keyVal [k] is a placeholder
for information gathered along the tree traversal. Whenever

values for all key paths of k are found, values in keyVal [k]
contain data on a candidate for matching based on k. The
result of function get candidates on T1 and T2 is given
in Figure 5.

The first line in the table of Figure 5(a) has been col-

lected according to the XML key k1 : ((university,

keyId contextNodes targetNode [keyNode, keyPathId]

k1 1 2 {[3,1]}
k2 2 4 {[5,1], [7,2]}

(a) get candidates(T1, keyDFA)

keyId contextNodes targetNode [keyNode, keyPathId]

k1 31 32 {[33,1]}
k2 32 36 {[37,1], [39,2]}

(b) get candidates(T2, keyDFA)

Figure 5. Selection of candidates on T1 and T2

{@name})), while candidate 2 has been collected ac-
cording to key k2 : ((university, (//professor,
{name, phone}))). Observe that node 13 (a

professor node) has not been included in the set, since
it does not have values for key path phone. Similarly, in
Figure 5(b), line 1 has been collected using key k1, while
line 2 has been collected according to k2.

Matching. Given the set of candidates for matching from
both versions of XML trees T1 and T2, function match
looks for candidates in these sets with the same key val-

ues. That is, we search for nodes n1 in candidates of T1
and n2 in candidates of T2 that are keyed on the same key
k and coincide on the values of all key paths. When k is
a relative key, we can only conclude that n1 matches n2
if the contexts in which n1 and n2 are defined also match.
Consider again the XML keys in our running example. If

both candidates contain professor-nodes with the same
name and phone, we can only conclude that they are in-
deed the same professor if the university (the context)
in which they are defined also match. After finding a pair

of target nodes [n1, n2] that match, this matching is propa-
gated downwards. That is, if they have been matched based

on the values of some key paths, these key path nodes can

also be matched.

In function match, all pairs of nodes that are candidates
for matching are collected in a data structure containing the

following information: the key identifier k (keyId); the
context node in T1 (contextNode1); the target node in T1
(targetNode1); the context node in T2 (contextNode2);
the target node in T2 (targetNode2); a set of records
[keyPathId, keyNode1, keyNode2], where keyNode1 and
keyNode2 are key nodes in T1 and T2, respectively, with the
same value.

As an example, consider again XML trees T1 and

T2 depicted in Figure 1 and the output of function

get candidates on T1 and T2 given in Figure 5. Af-
ter comparing the values of candidates for matching, the

resulting set contains the values shown in Figure 6. The

first candidate is included in the set because nodes 2 and 32

are university nodes in T1 and T2, respectively, with
the same @name value. Similarly, the second candidate is

442

inserted because nodes 4 and 36 are professor nodes
that coincide on the values of both name and phone. To
compute the resulting set of matches, we start by inserting

the pair [1, 31], the roots of T1 and T2, in the set. When
processing the first candidate [2, 32] it is checked whether
their context has already been matched. Since this is the

case, [2, 32] is inserted in the result. This matching is prop-
agated downwards and pair [3, 33] (@name nodes) are also
inserted in the result. For the second candidate [4, 36], it
is checked whether their context [2, 32] has already been
matched. Since this is also the case, we can conclude the it

is indeed a match and insert the pair in the resulting set. The

propagation of matches includes in the result the follow-

ing pairs: [5, 37], [6, 38] (name nodes), [7, 39] and [8, 40]
(phone nodes).

keyId context target context target [keyPathId, keyNode1 , keyNode2]
node1 node1 node2 node2

1 1 2 31 32 {[1,3,33]}
2 2 4 32 36 {[1,5,37], [2,7,39]}

Figure 6. Candidates for matching

Implementation. Algorithm XKeyMatch has been imple-
mented in C++, using DOM [3]. XyDiff is the algorithm

chosen to take as input the set of matches resulting from

XKeyMatch, find additional matchings, and generate the

edit script. Some libraries from XyDiff have been used

by XKeyMatch to implement the communication between

them. We have conducted some experiments to evaluate the

effectiveness of our proposal, and to determine if it indeed

solves the problems detected in other diff algorithms and

reported in Section 1. The results are very encouraging.

In particular, for Example 1, the definition of a single key

(//professor, {name}) prevents both problems described
in the introduction. A final remark is that, although our

proposal can have an impact on the performance of the diff

algorithm to which algorithm XKeyMatch is applied to pre-

process the input XML documents, many applications favor

the quality of the result rather than the efficiency of the al-

gorithm.

4. Conclusion

We have proposed a new approach in the context of diff

algorithms for XML. As opposed to previous works, that are

based solely on the structural analysis of XML documents,

our technique takes into consideration their semantics. Our

approach consists of extending the structural analysis with

a preprocessing phase which uses XML keys to match el-

ements that refer to the same entity in two versions of the

document. Although XKeyMatch requires the user to be

familiar with the documents being compared, when the in-

put keys faithfully capture their semantics, our algorithm al-

ways generates more meaningful results than others based

solely on structure and value similarities. One topic for fu-

ture work is to perform an experimental study using large

amounts of data, especially real ones, in order to determine

the impact of the preprocessing phase in practice. Possible

test beds are scientific databases, since they present appro-

priate structure and behavior.

References

[1] S. Abiteboul, G. Cobna, and A. Marian. Detecting changes

in XML documents. ICDE’02, 2002.
[2] R. Al-Ekram, A. Adma, and O. Baysal. diffx: an algorithm

to detect changes in multi-version xml documents. In CAS-
CON ’05: Proceedings of the 2005 conference of the Centre
for Advanced Studies on Collaborative research, pages 1–
11. IBM Press, 2005.

[3] V. Apparao et al. Document Object Model (DOM) Level 1

Specification. W3C Recommendation, Oct. 1998.
[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible

Markup Language (XML) 1.0. W3C Recommendation, Feb.

1998.
[5] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.

Keys for XML. Computer Networks, 39(5):473–487, Aug.
2002.

[6] J. Clark and S. DeRose. XML Path Language (XPath). W3C

Working Draft, Nov. 1999.
[7] G. Cobena, T. Abdessalem, and Y. Hinnach. A comparative

study for xml change detection, 2002.
[8] FSF. Gnu diff. Available at

http://www.gnu.org/software/diffutils/diffutils.html.
[9] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Su-

ciu. Processing xml streams with deterministic automata and

stream indexes. ACM Trans. Database Syst., 29(4):752–788,
2004.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley,

1979.
[11] J. Maletic and A. Marcus. Data Cleansing: Beyond In-

tegrity Analysis. Proceedings of The Conference on Infor-
mation Quality (IQ2000), Massachusetts Institute of Tech-
nology, Boston, MA, USA, pages 200–209, 2000.

[12] L. Peters. Change detection in xml trees: a survey. Technical

report, University of Twente, 2005.
[13] S. M. Selkow. The tree-to-tree editing problem. Information

Processing Letters, 6:184–186, 1977.
[14] K. Tai. The tree-to-tree correction problem. Journal of the

ACM, 3(26):422–433, 1979.
[15] Y. Wang, D. J. DeWitt, and J. Cai. X-Diff: an effective

change detection algorithm for XML documents. ICDE,
pages 519–530, 2003.

[16] H. Xu, Q. Wu, H. Wang, G. Yang, and Y. Jia. Kf-diff+:

Highly efficient change detection algorithm for xml docu-

ments. In On the Move to Meaningful Internet Systems,
2002 - DOA/CoopIS/ODBASE 2002 Confederated Interna-
tional Conferences DOA, CoopIS and ODBASE 2002, pages
1273–1286, London, UK, 2002. Springer-Verlag.

[17] K. Zhang, R. Stgatman, and D. Shasha. Simple fast algo-

rithm for the editing distance between trees and related prob-

lems. SIAM Journal on Computing, 18:1245–1262, 1989.

443

XML Schema Evolution by Context Free Grammar Inference

Júlio C. T. da Silva
Federal University of Paraná
juliocesar@inf.ufpr.br

Martin A. Musicante
Federal Univ. of Rio Grande do Norte

mam@dimap.ufrn.br

Aurora T. R. Pozo
Federal University of Paraná

aurora@inf.ufpr.br

Silvia R. Vergilio
Federal University of Paraná

silvia@inf.ufpr.br

Abstract - XML has become one of the most usual
technologies for data storage, manipulation and
transference. Schema languages for XML allow defining
application-specific formats (or schemas) for XML
documents. Schemas are easily verifiable. However, as
the application life-cycle goes on, schemas need to be
changed in accordance to any new requirement of the
data they define. For this reason it is useful to create
mechanisms to automatically produce these changes. In
this work, we explore the correspondence between
schemas and context-free grammars. We focus our
attention on the automatic induction of context-free
grammars which, in turn, will be translated to schemas
for XML documents. An algorithm of grammatical
inference is proposed. Our work extends the well-known
LL Parsing algorithm to perform grammar inference.

1. Introduction

XML (eXtensible Markup Language) has become one of
the most important technologies to the storage,
manipulation, and transference of data. Very simple and
strict formation rules allow XML data to be easily defined
and verified with respect to a given schema [15]. Schemas
for XML are languages for the definition of specific formats
of XML documents. They define a set of rules according to
which it is legal to create valid XML documents. Some
examples of schema languages and validators are DTD
(Document Type Definition) [5] and XML Schema [14].

Often, schemas need to be modified in order to match
new requirements of the applications (which manipulates
the data they define). These modifications are usually
application-domain dependent and they are promoted by
data administrators whose domain of expertise is not
computer science. Moreover, schema extensions are usually
conservative; the new version of the schema must be able to
validate previous versions of the XML data.

In [4], Bouchou et al propose a method to dynamically
evolve schemas for XML databases by means of inducing
the regular expressions contained in DTD documents. Only
one modification can be made in the schema per run of the
algorithm. It is interesting to study methods that allow more
modifications per run, for example, methods based on
grammar inference. These methods are particularly suitable,
because an XML schema validator defines a language (a set
of strings or trees); in this case, a set of XML documents
and there is a correspondence between XML schema

validators and other formal models to specify languages,
like regular expressions and context-free grammars.

Some works on grammar inference are found in the
literature. A strategy to induce context-free grammars using
Genetic Programming (GP) [8] is proposed in [10]. ICYK,
an inductive algorithm based in CYK [7], is presented in
[11] and [12]. However, neither the GP approach nor the
ICYK algorithm was designed to work with schemas for
XML. They do not worry about keeping the structure of the
induced grammars similar to a schema. The GP algorithm
generates and changes the grammars randomly. ICYK
works only with grammars in a specific normal form, where
the production rules must have a fixed, short size. To keep
the proximity between grammars and schemas, it is not
interesting to manipulate grammars randomly, but using an
auxiliary structure, like in ICYK. In addition to, it is useful
to use a parsing algorithm which works with grammars in a
more flexible form.

LL Parsing algorithm [1] is an alternative to CYK and
presents some desired characteristics. It uses some
structures (a table, and a stack) to control the parsing and it
works with production rules very similar to schemas, with
different sizes, and of any length. Further, the complexity of
LL is O(n), while CYK is O(n³).

Considering these aspects, in this paper, we introduce an
algorithm, named ILLA (Inductive LL Algorithm) and based
on the ideas of ICYK. Given an initial grammar G, new
productions to be added in G are generated by using a
parsing table. G becomes capable to recognize the new
desired word and keeps recognizing the same words as
before. It can be used in the context of XML schemas and to
evolve context-free grammars that can be manipulated by
LL. If no grammar is available, we extended ILLA to infer
grammars only from set of samples, similarly to works
based on GP. This extension, named SILLA, is also
described and evaluated in an experiment.

The paper is organized as follows. Section 2 describes
ILLA and illustrates how it works for evolving a XML
schema. Section 3 presents the algorithm SILLA and
contains results of its evaluation. Section 4 shows related
work. Section 5 discusses conclusions and future works.

2. Inductive LL Algorithm

 In this section, we introduce ILLA, an inductive
algorithm based on LL(1) (ILLA). To do this, we first
present how LL works.

2.1 LL Parsing algorithm

444

 LL is a predictive, non recursive parsing algorithm
described in [1]. It uses a parsing table and a stack to control
the grammatical derivation (Fig. 1). The parsing table is a
bi-dimensional table, of non-terminal by terminal symbols.
Each cell [X, a] keeps which production rule must be
consumed when X is on the top of the control stack and a is
the next input symbol. The parsing table is constructed with
the aid of two functions: First and Follow.

Figure 1 –LL Parser

Given a context-free grammar, the function First
receives a sequence of grammar symbols as its argument. It
returns the set of terminal symbols that can start strings
derived from that sequence. The function Follow receives a
non-terminal symbol and returns the set of terminal symbols
that can appear immediately to the right of that non-terminal
symbol in any derivation of the grammar.

2.2 Inductive LL Algorithm (ILLA)
ILLA is an iterative-deepening search algorithm. The

search space is created by the generation of new production
rules that can be added to the grammar. When the LL Parser
detects that the example being parsed is not derived by the
grammar, ILLA creates new production rules based on the
parsing table used in the derivation. Fig. 2 shows the main
function of ILLA:

ILLA(grammar G, string w, integer n, nMax): returns grammar;
 Try to derive w using LL Parser;
 If it is well-succeeded, then return G;
 Else,
 If n <= nMax, then
 TS := Create_TS_Set(G, P, a),
 where P is the stack used in LL, and
 a is the terminal symbol of w
 that was being read when the parsing failed;
 Return Test_TS(G, w, TS, n, nMax);

Fig. 2 – Main function of ILLA

ILLA function verifies if G derives w. If not, it calls the
function Test_TS (Fig. 3), which adds to G production rules
of a set of options TS, created by the function
Create_TS_Set (Fig. 4), and verifies if the resulting
grammar derives w.

Test_TS(grammar G, string w, set TS, integer n, nMax): returns grammar;
 repeat
 Choose an element TS[i];
 NG := G added with the production rules in TS[i];
 Remove element i from TS;
 Return ILLA(NG, w, n + 1, nMax);
 until NG derives w, or TS is empty;

Fig. 3 – Function Test_TS

The function Test_TS adds an element of TS to G, and
calls recursively the main function ILLA, with the adjusted
parameters. The function Create_TS_Set estimates,
according to the error occurred in the parsing, how the
production rules must be created, in sense of filling
correctly the parsing table of LL. Given a combination of
parameters, the function Create_TS_Set can call the
functions Create_Optional_Terminal and
Create_Options_From (Figs. 5 and 6).

The function Create_Optional_Terminal is called when
the symbol on the top of P is a terminal symbol. This
function makes this terminal symbol optional in the
production rules that it appears.

Create_TS_Set(grammar G, stack P, terminal symbol a):
 returns a list of sets of production rules;
 If a = $ (that is, if w was derived until the last symbol, but there was still
non-terminal symbols on P), then
 If the symbol on top of P is a terminal symbol, then
 Returns Create_Optional_Terminal(P[top], G);
 Else
 Returns the set { Y ::= ε | Y is a non-terminal in P };
 Else
 Let TS be a set of sets of production rules;
 For each X in P, do
 If X is a terminal symbol, then
 Add Create_Optional_Terminal(X, G) to TS;
 Else,
 Add Create_Options_From(X, a, G) to TS;
 From the second element X on, if the production rule ‘X ::= ε’
doesn’t belong to G, it is added to all sets generated from X;
 Return TS;

Fig. 4 – Function Create_TS_Set

Create_Optional_Terminal(terminal symbol a, grammar G):
 returns a set of sets of production rules;
 Let TS := ∅; // TS is a set of sets of production rules
 For each ‘X ::= αaβ’ in G, do
 TS = TS - { X ::= αaβ } ∪ { X ::= αAβ, A ::= a | ε }
 Return TS;

Fig. 5 – Function Create_Optional_Terminal

Create_Options_From(non-terminal X, terminal a, grammar G):
returns a set of sets of production rules;
 Let TS := ∅; // TS is a set of sets of production rules
 //a) Add a simple production rule TS:
 TS = TS ∪ { X ::= a };
 //b) optional
 For each rule ‘Y ::= αXβ’ of G, do
 TS = TS - { Y ::= αXβ } ∪ { Y ::= αXZβ, Z ::= a | ε }
 //c) zero or more
 For each ‘X ::= aβ’ of G, do
 TS = TS - { X ::= aβ } ∪ { X ::= aβX | ε }
 //d) one or more
 For each ‘X ::= aβ’ of G, do
 TS = TS - { X ::= aβ } ∪ { X ::= aZ, Z ::= βX | ε }
 Let F := ∅; // F is a set of sets of terminal symbols
 If ε ∈ First(X), then F := First(X) U Follow(X);
 Else, F := First(X);
 For each x ∈ F, do
 For each ‘Y ::= αxβ’ of G, do
 //e) concatenation
 TS = TS - { Y ::= αxβ } ∪ { Y ::= αZ, Z ::= xβ | axβ }
 //f) or TS = TS ∪ { X ::= αZ, Z ::= xβ | aβ }
 Return TS;

Fig. 6 – Function Create_Options_From

445

The new test set (TS) is formed by substituting the
production rule ‘X ::= αaβ’ by a pair of rules, to make the
symbol ‘a’ optional. This rule replacement is conservative,
in the sense that all strings that can be generated using the
old rule will be generated using the new ones. The function
Create_Options_From creates new production rules for the
grammar when the error on the parsing process occurs
because the cell [X, a] in parsing table is empty. The options
are generated according to the properties of context-free
grammars, aiming to fill correctly the Parsing Table. ILLA
only generates new non-terminal symbols when necessary,
to avoid left recursion or ambiguity.

2.3 Evolving schemas
 Now we illustrate how ILLA works for evolving
schemas. Consider the following DTD document:

 That schema corresponds to the following grammar G.

A number is associated to each rule of G to ease
reference on Tables 1 and 2. Now, consider the following
XML document as the positive sample w.

<contact>
 <name>John Winston</name>
 <email>johnwinston@wch.com</email>
 <telephone>
 <homephone>555-5555</homephone>
 <celphone>999-9999</celphone>
 <officephone>123-4567<officephone>
 </telephone>
</contact>

The first call to ILLA generates the parsing table shown
in Table 1. When the algorithm tries to read the cell
[officephone, #PCDATA] in the parsing table, LL fails
because this cell does not exist. That means grammar G
does not derive w.
Table 1 – Parsing table to the first calling of ILLA

 #PCDATA #PCDATA #PCDATA #PCDATA $

contact 1
name 2
Email 3 4
telephone 5
homephone 6
celphone 7

Then, ILLA has the task of adding production rules to G
until w be derived. When the parsing fails, ILLA calls the
function Create_TS_Set, which creates the set TS bellow.

TS[1] = [cellphone ::= #PCDATA6]
TS[2] = [telephone ::= homephone.celphone.officephone,
 officephone ::= #PCDATA6, officephone ::= ε]

ILLA chooses randomly an element of TS and adds to G
the production rules contained in it. For demonstration, it is
chosen the element TS [2]. The resulting grammar G’ is
shown below:

1) contact ::= name.email.telephone
2) name ::= #PCDATA
3) email ::= #PCDATA.email
4) email ::= ε
5) telephone ::= homephone.celphone.officephone
6) homephone ::= #PCDATA
7) cellphone ::= #PCDATA
8) officephone ::= #PCDATA
9) officephone ::= ε

ILLA is called recursively with G’, w, and the increased
iterator as input parameters. The parsing table of the second
calling to ILLA is shown in Table 2.

Table 2 – Parsing table to the second calling of ILLA

#PCDAT
A

#PCDAT
A

#PCDAT
A

#PCDAT
A

#PCDAT
A $

contact 1

name 2

Email 3 4

telephone 5
homephon
e 6

celphone 7
officephon
e 8 9

When ILLA tries to parser w in grammar G’, the parsing
is successful. Then, G’ is returned as the inferred grammar.

A DTD document that can be generated from the
inferred grammar is shown below.

<?xml version="1.0"?>
<!DOCTYPE contact [
 <!ELEMENT contact (name,email*,telephone)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT telephone
 (homephone,celphone,officephone?)>
 <!ELEMENT homephone (#PCDATA)>
 <!ELEMENT cellphone (#PCDATA)>
 <!ELEMENT officephone (#PCDATA)>
]>

2.4 Inferred grammars
The language recognized by the inferred grammar

contains the set of strings that was recognized by the old
grammar. However, adding new production rules can give
to the grammar a power of derivation much bigger than it is
necessary. For this reason, ILLA accepts as parameter a set
of negative samples, and during the inference process, the
algorithm discards any grammar that derives at least one of
these negative samples.

<?xml version="1.0"?>
<!DOCTYPE contact [
 <!ELEMENT contact (name,email*,telephone)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
 <!ELEMENT telephone (homephone,celphone)>
 <!ELEMENT homephone (#PCDATA)>
 <!ELEMENT cellphone (#PCDATA)>]>

1) contact ::= name.email.telephone
2) name ::= #PCDATA
3) email ::= #PCDATA.email
4) email ::= ε
5) telephone ::= homephone.celphone
6) homephone ::= #PCDATA
7) cellphone ::= #PCDATA

446

The procedure for generation of production rules attends
the requirements of LL grammars. An ambiguous grammar
can not be manipulated by LL. Because of this, if such
grammar is generated it will be discarded.

2.5 Limitations of ILLA
ILLA generates new production rules based on the

existent rules in the grammar. So, grammars with large
number of rules result in a large number of new production
rules, and it makes the algorithm performance worse. The
search of ILLA, in an average case, has the exponential
complexity O(aⁿ), where a is the average number of
production rules generated per iteration, and n is the depth.
If either a or n is large, the search will be intractable.
However, the number of production rules generated is quite
reduced if the grammar has not empty production rules,
which is usual for grammars representing schemas for
XML.

3. Synthesis with ILLA

For the purpose of inferring a grammar only from sets of

samples, we propose an extension to ILLA, an algorithm
called SILLA. It generates an initial population of grammars
based on the structure of the positive samples. Then, it uses
ILLA to infer grammars for each positive sample.
SILLA uses concepts of the Evolutionary Computation

(EC) [2], like population, fitness, and selection of
individuals. However, it does not use gene combination and
mutation, because this would result in losing the LL
properties of the synthesized grammars. SILLA gets as input
parameters sets of positive and negative samples, and
returns the grammar of the final generation with best fitness.
The used fitness function is:

correct positive samples correct negative samples
all positive samples + all negative samples

2

SILLA creates the initial population, evaluates the fitness
of every individual, and verifies if there is a complete
solution (a grammar which classifies correctly all the
samples). If not, it starts the evolutionary process:
- For each positive sample, and for each grammar of the
population, SILLA calls ILLA, and keeps the resulted
grammars in a list of candidates to the next generation;

- The candidates in the list are evaluated and, if there is no
complete solution, the selection of individuals is
performed, resulting in the new generation. So, the
process restarts;

- SILLA ends when a complete solution is found, or when
the maximum number of generations is reached.

The main function of SILLA is presented in Fig. 7. It
controls the evolution of the grammars, by means of calling
the functions Create_Initial_Population, Evaluate_Fitness,
Select_Next_Population (Figs. 8 and 9), and ILLA.

The function Create_Initial_Population creates
grammars based on positive samples in two ways: with large
number of production rules, in Chomsky Normal Form and

grammars that, seen as trees, have the leaf nodes in the
deepest level.

SILLA(set of positive samples P, set of negative samples N, integer
nMax): returns a grammar;
 Let Population and Candidates be sets of grammars;
 Population := Create_Initial_Population(P);
 Let i := 1;
 Loop
 If Population includes is a complete solution, then
 Return the complete solution;
 If i > nMax, then
 Return the grammar in Population with best fitness;
 Else,
 Population = Evaluate_Fitness(Population, P, N);
 For each sample w ∈ P, do
 For each grammar G ∈ Population, do
 Candidates := Candidates ∪ ILLA(G, w, n, nMax);
 Evaluate_Fitness(Candidates, P, N);
 Population:= Select_Next_Population (Population,
 Candidates);
 i++;
 End;

Fig. 7 – Main function of SILLA

Create_Initial_Population(set of positive samples P):
 returns a set of grammars;
 result := ∅; // a set of sets of production rules
 For each sample w ∈ P, such that | w | = n, do
 result := result ∪ { { S ::= AB, A ::= w[1], B ::= CD,
 C ::= w[2], ... X ::= YZ, Y ::= w[n-1], Z ::= w[n] } }
 Let Avg, Deep and i be integers;
 Add to result a grammar with the following form:
 For Avg := 1 to average size of production rules, do
 Deep := ⎣ logAvg (|w|) ⎦;
 For i = 1 to Deep, generate the production rules:
 - ‘S ::= A1A2...AAvg’
 - ‘A1 ::= B1B2...BAvg’
 - ‘A2 ::= C1C2...CAvg’
 - (...)
 For every non-terminal symbol X in right side of the production
rules generated in last iteration of the previous loop, generate ‘X ::= w[i]’
until consuming all the symbols of w. For the remaining non-terminal
symbols, generate ‘X ::= ε’;

Fig. 8 – Function Create_Initial_Population

Notice that when SILLA is used in the context of XML
schema evolution, the initial population is given only by the
original schema. The function Create_Initial_Population is
not called.

The function Evaluate_Fitness updates the set of
grammars received, calculating the parameters fitness,
correct_positive, and correct negative of every grammar.

The function Select_Next_Population fills the new
population according to the parameters fitness,
correct_posivite, and correct_negative, and their respective
weights (previously configured) F_Weight, P_Weight, and
N_Weight.

3.1 Experiment using SILLA
In this section, we evaluate the use of SILLA and present

some results of an experiment accomplished to compare
SILLA with the GP approach. To do this, we repeated the
experiment described in [9] and summarized in Table 3.

447

Select_Next_Population(set of grammars S1, set of grammars S2):
returns a set of grammars;
 U := S1 ∪ S2;
 Fill F_Weight% of result with the grammars of U that have the best
fitness, and remove them from U;
 Fill P_Weight% of result with the grammars of U that have the best
correct_positive, and remove them from U;
 Fill N_Weight% of result with the grammars of U that have the best
correct_negative, and remove them from U;
 Fill the rest of result with grammars chosen randomly in U;

Fig. 9 – Function Select_Next_Population

 We used the same training set, 7 languages extracted
from the benchmark called “Tomita Language Set” (TLS).
Column TL indicates which set of TLS was used. Avg. Evals
is the average number of evaluations per run before a
solution to the training set was found. Gen. Accuracy is the
percentage of strings correctly classified, calculated as
shown below:

Correct positive examples + correct negative examples
All positive examples + all negative examples

In our experiment, 50 runs of SILLA were performed for
each set of strings from TLS. Each run has a population of
50 individuals. The deepness limit is 50 generations. Our
results are presented in Table 4:

The general average of accuracy in the experiment using
SILLA (89,6%) was better than in the experiment using GP
(76,6%). The worst average in experiment with GP is
65,25% and with SILLA is 77%. While the experiment with
GP has no 100% of accuracy for any set, 2 sets of TLS were
100% correctly classified using SILLA. For more complex
samples, that is, grammars with a large number or rules, the
metrics using SILLA were worse.

Table 3 – Results of the experiment

Gen. Accuracy TL Avg.
Evals.

Avg. (%) Variation Best (%)

1 30 88,39 0,0391 100
2 1010 84,00 0,0232 100
3 12450 66,28 0,0174 100
4 7870 65,25 0,0324 100
5 13670 68,65 0,0147 82,94
6 2580 95,94 0,0269 100
7 11320 67,69 0,0221 100

 Hence, it can be said that GP explores a large search
space, where the GP algorithm not always converges to
complete solutions, even in simple cases, but gets good
solutions in the end. In other hand, for these simple cases,
SILLA always converged. The space searched by SILLA is
not as large as the one searched by GP. We observed in the
experiment that in more complex cases, its search was
limited in local maximums and SILLA did not find a good
solution to the inference. We are now working on this
problem.

4. Related Work

With the goal of evolving XML schemas, Bouchou et al
[4] proposes an algorithm, named GREC. Regular

expressions of a DTD document are transformed in
automata that will be induced by GREC. This algorithm
allows only one modification per run and during the
maintenance of the schemas, different updates are usually
necessary to the schema validate the new data. To do this,
we propose in this paper the study of the new field of
grammar inference. It can be explored, by exploring the
correspondence existent between schemas and grammars

Table 4 – Results of the experiment using SILLA
SILLA Accuracy TL

Avg.
Evals.

Avg
(%)

Var. Best
(%)

1 53,91 100 0 100
2 109 100 0 100
3 1425,99 86,10 1,252 92
4 2072,53 89,67 1,701 91,33
5 2539,20 77 2,081 84,08
6 2517,34 83,11 1,390 87
7 3011,33 91,43 1,563 93,94

Grammatical Inference (GI) (or induction) is a process

of learning a grammar from a set of training data. The most
traditional field of GI is pattern recognition and other areas
such as gene analysis, sequence prediction, cryptography
and information retrieval [3,6,13]. These works do not
address evolution of schemas.

Two works on GI and mentioned before are the basis of
our study. The first work is the inductive algorithm based on
CYK Parsing algorithm [7], described in [11] and [12]. This
algorithm, named Inductive CYK (ICYK) is a component of
an inductive grammar inference system called Synapse.
ICYK adds new production rules to the grammar when it
does not derive a positive sample.

At first, the system has no production rules. For a given
positive sample string, it generates minimum production
rules to derive this string. Then it checks that the rules do
not derive any given negative samples. This process
continues until the system finds a rule set which derives all
the positive samples and none of the negative samples. For
generating production rules, the system uses Inductive CYK
algorithm, which generates sets of rules required for parsing
positive samples. The inductive inference is based on
incremental search, or iterative deepening, in the sense that
the rules sets are searched within the limits of the minimum
numbers of non-terminal symbols and rules. When the
search fails, the system iterates the search with larger limits.

The second work uses Evolutionary Computation
techniques [2], particularly Genetic Programming [8], to
induce context-free grammars [9,10]. The grammars are
represented as programs constructed by sets of terminal and
non-terminal symbols. The positive and negative samples
are used to calculate the fitness function of the algorithm.
Besides the basic operators of GP, heuristic operators are
proposed in [10]. Also a better initial population is created
instead of random generation. As it is noticed in [10], this
algorithm infers only grammars that have a small number of
productions rules.

448

In [9], another Genetic Programming-based method is
presented. It induces a classification mechanism for positive
and negatives samples of a language. The individuals are
represented by finite-state automata, and the fitness function
is defined according to the classification of a training set.
Neither the GP approach nor the ICYK algorithm was

designed to work with schemas for XML. They do not
worry about keeping the structure of the induced grammars
similar to a schema. The advantage of ICYK is to
implement a control and structures to manipulate the
grammars during the search. Its advantage is to work with
only grammars in a specific normal form that is not similar
to schemas. Beside this, the parsing algorithm CYK is
O(n³). The advantage of the GP algorithm is to allow
induction from positive and negative samples.

The algorithms described in this paper combine the main
ideas and advantages of abovementioned works and present
characteristics that make them suitable to the context of
XML schemas evolution. ILLA uses LL to control the
parsing and it works with production rules very similar to
schemas, with different sizes, and of any length. Further, the
complexity of LL is O(n). SILLA allows evolution from
samples if no initial grammar is available.

5. Concluding Remarks

This paper proposes a method of grammatical inference
based on LL Parser. Grammars can be inferred from a
grammar and a positive sample (ILLA), or from sets of
samples (SILLA).

One contribution of this method to researches in
grammatical inference area is the use of a Parser with linear
complexity. The Parser used in ICYK, for example, has
cubic complexity. Furthermore, ICYK works with context-
free grammars in a rigid normal form, while ILLA is more
flexible with the grammars form. It is a contribution to
evolution of schemas for XML area, for allowing that
schemas be represented by grammars more similar with
them.

Another contribution in this area is that ILLA can
perform various modifications in a grammar per run, while
the method proposed in [4] performs only one. This paper
presented the results of an experiment that used SILLA to
infer the grammars that describes the languages of the
samples in a benchmark of samples. The results were
compared with a similar experiment, using GP. From the
comparison, it can be observed that the search space
examined by SILLA is not as large as in GP. However,
SILLA was more efficient to infer grammars from simpler
samples.

Some improvements can be done in the future on the
algorithm proposed in this paper. One of the most
significant improvements is the proposition of a useless
production rules identifier, to be used during the process of
new production rules generation. This can reduce the search
space without lose the convergence to solution. The
proposition of a heuristic method to evaluate the production

rules fitness is a useful improvement. This allows the
elaboration of a strategy that mixes learning machine and
evolutionary computation. Still in this context, SILLA can be
extended to work with all the concepts of evolutionary
computation, mainly gene combination. A better generation
of the initial individuals is also recommended.

The use of a LL(n) parsing algorithm, with n > 1, is
another interesting improvement, in the sense of helping to
predict what production rules must be created to infer a new
grammar.

In the context of evolution of schemas for XML, an
interesting future work is the integration of ILLA with an
algorithm that generates grammars from schemas. It will
enable evaluation experiments with actual XML schemas.

References
[1] Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffrey D. Compilers,
principles, techniques, and tools. 1942, reprinted with corrections
in March, 1998. Addison-Wesley.
[2] Back, T., Urich, H., and Schwefel, H. P. Evolutionary
Computation: Comments on the History and Current State. IEEE
Trans. on Soft. Engin., Vol 17, pp. 3-17, 1991.
[3] Basu, M. Introduction to Biological Sequence Analysis,
Tutorial Presentation, World Congress on Computational
Intelligence, Hawaii, May, 12-17, 2002.
[4] Bouchou, B., Duarte, D., Alves, Mírian H. F., Laurent, D.,
Musicante, Martin A., Schema Evolution for XML: A
Consistency-Preserving Approach, Lecture Notes in Computer
Science, Volume 3153, Jan 2004, pp 876 - 888.
[5] DTD Tutorial. W3Schools Online Web Tutorials:
http://www.w3schools.com/dtd/, visited in 26/02/2006.
[6] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. Biological
Sequence Analysis, Cambridge University Press, New York, 2000.
[7] Hopcroft, John E., and Ullman, Jeffrey D., Introduction to
Automata Theory, Languages, and Computation. 1979. Addison-
Wesley.
[8] Koza, R. John. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge,
1992.
[9] Luke, S., Hamahashi, S., and Kitano, H. "Genetic"
Programming. In GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, Banzhaf, W. et al, eds. San
Fransisco: Morgan Kaufmann, 1999.
[10] Mernik, M., Crepinsekj, M., Gerlic, G., Zumer, V., Bryant, B.,
and Sprague, A. "Learning Context-Free Grammars Using an
Evolutionary Approach", Technical Report, University of Maribor
and University of Alabama at Birmingham, 2003.
[11] Namakura, K., and Ishiwata, Y., Synthesizing context free
grammars from sample strings based on inductive CYK algorithm,
Fifth International Colloquium of Gramatical Inference, LNAI
1981 Springer-Verlarg, 2000.
[12] Namakura, K., and Matsumoto, M., Incremental Learning Of
Context Free Grammar. School of Science and Engineering,
Tokyo, Japan.
[13] Paun, G. (Ed.), Mathematical aspects of natural and formal
languages, World Scientific Series In Computer Science, vol. 43,
World Scientific, Singapore, 1994.
[14] XML Schema Tutorial. W3Schools Online Web Tutorials:
http://www.w3schools.com/schema/, visited in 26/02/2006.
[15] XML Tutorial. W3Schools Online Web Tutorials:
http://www.w3schools.com/xml/, visited in 26/02/2006.

449

Software Tradeoff Assistant: An Integrated Framework for Analytical
Decision Making and Tradeoffs in Software Development

Rattikorn Hewett and Vikram Patankar
Department of Computer Science, Texas Tech University

rattikorn.hewett@ttu.edu, vikram.patankar@ttu.edu

Abstract
In current software practices, tradeoffs are typically per-
formed in isolation using specific techniques at various
stages of software development. Software practitioners
lack the ability to share common knowledge about soft-
ware development factors, select different tradeoff mecha-
nisms, and integrate results from various stages. Further-
more, most existing tradeoff techniques in software engi-
neering do not explicitly resolve conflicts from multiple
stakeholders.

This paper presents Software Tradeoff Assistant (STA),
an integrated framework that provides decision aids for
enhancing understanding and resolving complex tradeoffs
at various stages of software development. By integrating
various analytical decision making techniques and ontol-
ogy of software characteristics into tradeoff analysis, STA
provides a structured process for reasoning about trade-
offs systematically. STA also includes a tradeoff methodol-
ogy that facilitates a sound quantitative evaluation of al-
ternatives along with integration of preferences from mul-
tiple stakeholders. We describe a preliminary design of
STA with an illustrated case study.

1. Introduction
A tradeoff refers to losing one quality or aspect of some-
thing in return of gaining another quality or aspect. It im-
plies a decision to be made with full comprehension of both
the upside and downside of a particular choice. Most real
world problems involve multiple objectives, or a wide
range of factors for a single objective. Because of limited
resources, it may not be possible to achieve all of the ob-
jectives or satisfy all constraints without sacrificing some
others.

Tradeoffs are pervasive throughout the software de-
velopment life cycle irrespective of the size, nature, and
complexity of the software project. These tradeoffs made
by different roles at different phases of software develop-
ment change with the progress of the project. During the
planning phase of the project, a tradeoff between resource
allocation, project cost, and delivery time has to be per-
formed. During the requirement specification phase, there
is a tradeoff between the choice of technology, quality re-

quirements, and the development time. Design phase has its
own tradeoffs like selecting the suitable architecture satis-
fying security, maintainability, and performance attributes.
After implementation is complete, the testing phase brings
its tradeoffs in selecting testing mechanisms, testing depth,
and time to stop testing. Software release management
again involves tradeoff decisions regarding different fea-
tures to be included in the product release satisfying the
precedence constraints and in the expense of time-to-
market. Thus, tradeoffs are ubiquitous in software devel-
opment and therefore must be tackled explicitly in a judi-
cious manner.

Analyzing tradeoffs is essential and extremely diffi-
cult. It is also a knowledge intensive and time-consuming
process. Tradeoffs in software development are complex
and difficult due to following issues:

Uncertainty: Software development is inherently uncer-
tain because of incomplete information causing unavoid-
able changes (e.g., staff leaves, uncertain resources or
customers do not know exactly what they want software
to do leading to changes in requirements and design).
Complexity of the decision problems: Software develop-
ment often deals with decision problems of multiple ob-
jectives, multi-leveled strategies and criteria that involve
a large number of decision factors. Making such deci-
sions require a thorough understanding of all aspects of
the problem. For example, selecting appropriate tech-
nology for application development requires a good bal-
ance between technical and management impacts includ-
ing schedule, cost, resource utility, and quality. There is
a need for a principled method for making informed de-
cisions for complex constrained problems.
Multiple Stakeholders: Different decision processes usu-
ally involve multiple stakeholders, each of which may
contain a different set of needs, preferences, and con-
straints, which may be in conflict with one or another. It
is impossible to satisfy all stakeholders especially when
resources are limited. In software development, a num-
ber of stakeholders can be large making a simple nego-
tiation inadequate.

To overcome the above difficulties, a systematic
tradeoff analysis that offers means to allow rational and in-
formed decisions would be useful. Although many organi-
zations have independent tradeoff analysis methods, these

450

analyses are typically performed in isolation at different
stages of software development life cycle [1, 2, 8, 9]. In
addition, they mostly rely on manual processes that tend to
be ad-hoc and extremely time-consuming. Current prac-
tices also suffer from the lack of the ability to provide shar-
ing and reuse of common knowledge about software devel-
opment factors, selection of different tradeoff mechanisms,
and integration of results from various stages of a software
development life cycle. Furthermore, most existing trade-
off techniques in software engineering do not explicitly re-
solve conflicts from multiple stakeholders (e.g., [9, 11,
13]). Our research aims to alleviate the above issues to as-
sist software developers and managers in analyzing trade-
offs in complex decision problems during various software
development activities.

This paper presents Software Tradeoff Assistant
(STA), an integrated framework for tradeoff analysis that
provides semi-automatic decision aids for enhancing un-
derstanding and resolving complicated tradeoffs throughout
the software development life cycle. STA includes a trade-
off methodology that facilitates a sound quantitative
evaluation of alternatives along with integration of prefer-
ences from multiple stakeholders. The paper is organized
as follows. Section 2 describes the components of the STA
framework and Section 3 provides more details of tradeoff
analysis followed by its illustrated case study in Section 4.
Section 5 presents related work of tradeoff analysis applied
to software development. Section 6 concludes with sum-
mary and future work.

2. STA Framework

Fig 1. The STA overall framework.

Figure 1 shows an overall framework of STA, which can be
divided into two main modules: the tradeoff architecture
and the decision support toolkit. The former provides basic
core for tradeoff functionalities, whereas the latter gives
supplementary analysis and utilities to support the tradeoff
reasoning. We describe each of them in more details be-
low.

2.1. Tradeoff Architecture
The tradeoff architecture module can be viewed in three
tiers: Presentation, Logic, and Information. The presenta-
tion tier includes a user interface component that interacts
with entities external to the tradeoff module. The logic tier
includes two components: tradeoff agent and multi-
perspective strategic resolution. Finally, the information
tier includes ontology of attributes and concepts relevant to
various stages of software development. These compo-
nents work in an integrated manner with the Decision Sup-
port Toolkit. They are described in more details below.
User Interface: This component provides a means to ac-
cess and manipulate the data resulting from the logic com-
ponents or relevant ontology in the presentation tier. By
exploiting components in the decision support toolkit (e.g.,
the Interactive Visualization Tool), STA can present the
display and depict relevant features of different tradeoff
methodologies to the users. User Interface can be imple-
mented in various forms (e.g., web-based, station-based).
Tradeoff Agent: This logic component provides the core
mechanisms for tradeoff analysis. The tradeoff agent sys-
tematically specifies the decision problem and then per-
forms the tradeoffs. Tradeoff agent has two constituent
units:
(i) Problem Specification
This unit is responsible for acquiring and specifying prob-
lems for the Tradeoff Analysis. The user provides informa-
tion about the problem in form of goals (with respect to the
software project), objectives (with respect to the stake-
holders), decision criteria, alternatives and constraints
along with preferences for the criteria.
(ii) Tradeoff Analysis
Once the problem is specified and likely alternatives are
identified, this unit provides the tradeoff strategy required
to objectively evaluate the options and ultimately to assist
decision makers in selecting the best alternative. It in-
cludes a variety of Multiple Attribute Decision Making
(MADM) methods that are well established and have been
successfully used for various tradeoff applications [7]. The
Tradeoff Analysis recommends the most suitable technique
for analysis by using knowledge about application con-
straints including the software development phase in which
the tradeoff is made, number of criteria and alternatives,
and the objectives of the decision makers. Some generic
tradeoff analysis methods incorporated in STA include the
following MADM methods:

User
Interface

Tradeoff Architecture
Decision Support

ToolkitPresentation

Information

Ontology

Requirement Design Release
 Ontology Ontology Ontology

Logic

Interactive
Visualization

Tool

Sensitivity
Analysis

Tool

Tradeoff Agent

Tradeoff
Analysis

Problem
Specification Document

Generation
Tool

Multi-perspective
 Strategic
 Resolution

Severity
Analysis

…

451

AHP (Analytical Hierarchical Process) uses a hierarchi-
cal structure to define and organize criteria. AHP deter-
mines scores of each criterion by making pairwise com-
parisons, and the result of their aggregation gives a rank-
ing that facilitates comparison of alternatives. See [12].
ELECTRE (ELimination and (Et) Choice Translating
REality) is an outranking type technique used between
every pair of alternatives to arrive at preferred solutions
based on two sets of comparisons called ‘concordance
and discordance’ tests [10].
SMART (Simple Multi-Attribute Rating Technique) is
based on a linear additive model in which the overall
value of an alternative is calculated as the total sum of
the performance value of each criterion multiplied with
the weight of that criterion. See more details in [4].
TOPSIS (Technique for Order Preference by Similarity
to Ideal Solution) relies on the principle that the prox-
imity of the alternative to the ideal solution and the nega-
tive-ideal solution is measured as basic for tradeoff. The
ideal solution is composite of the best performance val-
ues exhibited by any alternative for each criterion. The
negative-ideal solution is the composite of the worst per-
formance values [7].
NCIC (Nontraditional Capital Investment Criteria) per-
forms pair-wise comparisons of the performance gains
among the criteria, for a given alternative. One of the at-
tributes must be measured in monetary units. These
comparisons are combined to estimate the monetary
value attributed to each performance gain, and these val-
ues are summed to yield the overall implied value of
each alternative. See more details in [3].

The details of each of the above analytical methods are be-
yond the scope of this paper. However, in this paper, we
employ the popular AHP method to illustrate its use in the
context of the STA framework for supporting tradeoff
analysis in software development. Of course, there may be
more than one method in the STA that is appropriate for
the same decision problem.

Multi-perspective Strategic Resolution: Often stake-
holder perceptions conflict during the decision making
process because of the differences in the priorities of the
stakeholders. Such conflicting stakeholder interests are a
significant impediment to the realization and success of
tradeoff decisions. The Multi-perspective Strategic Resolu-
tion provides means to correlate and integrate the rankings
from all stakeholders. Depending on the tradeoff analysis
methodology used, the user is presented with a set of effec-
tive techniques that incorporate inter-perspective relation-
ships. Examples of resolution techniques include aggrega-
tion methods described in Section 3.1. Severity Analysis
[6] can also be applied to combine the rankings by measur-
ing the consequences and impacts of each of the decision
criteria particularly to compensate with those that have not
been satisfied. Which multi-perspective resolution method

to use depends upon the general strategy that the decision
maker perceives best fits the tradeoff at hand.

Ontology: Ontology is a specification of conceptualization
[5]. It describes concepts and relationships that exist for
knowledge sharing. In the context of tradeoff analysis, on-
tology can be a repository containing a precisely defined
set of hierarchies of decision criteria and alternatives. In
the context of software development, ontology can repre-
sent knowledge about the factors contributing to various
stages of software development. In STA, ontology in-
cludes generic concepts about software development activi-
ties and tradeoff processes. Ontology can be used as a
primary source for acquisitions of inputs required by the
Problem Specification. Examples of ontology include tax-
onomy of designs (e.g., object-oriented, real-time, and user
interface), hierarchical structures of non-functional and
functional requirements, and taxonomy of criteria (e.g.,
technical, management). Decision makers can create cus-
tomized specifications of ontology instances for specific
needs through the User Interface. Ontology serves as a
generic guide for reasoning about tradeoffs. This is espe-
cially useful for novice decision makers.

2.2. Decision Support Toolkit
The decision support toolkit module is designed to provide
supplemental support for the basic tradeoff analysis func-
tionality provided by the Tradeoff Architecture. There are
at least three basic tools provided in the toolkit as de-
scribed below.
Interactive Visualization Tool: This component includes
graphical user interface for an interactive visual analysis. It
allows decision makers to navigate through the solution
space in order to gain insight about the decision and in-
crease understanding of complicated tradeoff interactions
and dependencies.

Sensitivity Analysis Tool: Sensitivity Analysis is crucial
for tradeoff decisions. It evaluates the extent to which
varying of the criteria weights and alternative scores affect
the position of the alternative in the preference ranking. If
the sensitivity check reveals that small changes could re-
verse a decision, the decision maker must reconsider
his/her priorities to make the decision insensitive.

Document Generation Tool: This component provides
automated documentation of the entire tradeoff activity in-
cluding rationales, alternatives, decision criteria used,
weight factors, option scores, and the results of sensitivity
and severity analysis.

3. Tradeoff Analysis
Because tradeoff analysis is at the heart of the proposed
framework, this section describes steps for tradeoff analysis
provided in the STA framework.

452

3.1. Ranking and Aggregation
Ranking of importance and aggregation of ratings from
various sources are basic necessities in decision-making
techniques including negotiation and tradeoff analysis.
There is a wide range of these techniques from very simple
to rather sophisticated ones that are commonly used in de-
cision science [7, 8]. Techniques for simple aggregation in-
clude arithmetic mean, geometric mean and weighted aver-
age mean. STA employs these aggregation techniques and
several ranking techniques, some of which are summarized
below.

Direct Subjective Evaluation: directly assign weights to
items to be ranked subject to expert opinions.
Geometric Progression: assign the most important item
to a weight of one, and the rest of 0.5, 0.25, and so on.
The SMART method: assign the least important item a
weight of one, and assign relative weights representing
multiples of importance for each of the other items.
Ratio Pairwise Comparison: items are compared in pairs
using a range of weighting scale.

More details of the above techniques can be found in [8].
For an illustration in this paper, we use the weighted aver-
age mean for aggregation and the ratio pairwise compari-
son, a popular ranking method in AHP [12], which will be
described in more details later.

3.2. Tradeoff Mechanisms
The following describes basic steps provided in the STA
framework for analyzing tradeoffs in general. Each step on
the tradeoff process is driven by a corresponding relevant
component of STA as described in Section 2.
Step 1: Problem Specification
Acquire and specify a decision problem. In particular,
identify A, a set of alternatives, C, a set of evaluation crite-
ria for evaluating each alternative, and S, a set of stake-
holders.
Step 2: Rating Criteria
Obtain a rating Ri

j, for each criterion i C and stakeholder
j S. This can be done by any of the ranking techniques
described in Section 3.1.

For example, if the user selects the ratio pairwise com-
parison for the AHP analysis, STA will guide a stakeholder
to create a table (matrix) T = (tij) for i, j S, where tij is as-
signed to a number k in a range of scales (e.g., [1,…,9] for
the AHP’s scale [12]) to signify that criterion i is k times
more important than criterion j. (Note that T is reversed
symmetric in the sense that tij = 1/tji.) Thus, we can obtain
ri, an average rating of criterion i over all criteria below.
For each criterion i C,

ri t ij
j C

C normalized to

This is actually a rating based on one stakeholder. Thus,

for each stakeholder j S, we have obtained a normalized
rating Ri

j of criterion i C.
Step 3: Multi-perspective Resolution
Resolve conflicting criteria ratings (obtained in Step 2)
based on different stakeholders by applying any of the ag-
gregation methods described in Section 3.1. For example,
if the decision maker selects to use the weighted average
mean method by supplying pj, a priority (influential degree)
of stake holder j, then the aggregated rating of criterion i,
can be specified by a weight of wi, where

wi p j
j S

i
jR for each i C.

In addition, severity analysis [6] can be performed to assess
impacts of each criterion. The resulting severity rating of
each criterion can be incorporated into the aggregated rat-
ing of the each criterion similarly.
Step 4: Rating Alternatives against Criteria
Obtain a score Sk

i, for each criterion i C and alternative k
 A. This can be done by any of the ranking techniques de-

scribed in Section 3.1. For example, if the ratio pairwise
comparison for the AHP analysis is applied on a set of al-
ternatives then, for each alternative k A, a normalized rat-
ing score Sk

i for criterion i C can be obtained, similarly
to Step 2. Score reflects the degree to which an alternative
satisfies the criterion.
Step 5: Ranking Alternatives
Perform a final ranking score RANKk, for alternative k A,
based on the weight of each criterion (Step 3) and its corre-
sponding rating score for the alternative (Step 4). Thus, we
can compute RANKk wi

i C
Sk

i.

4. Case Study
This section illustrates STA’s tradeoff mechanisms by ap-
plying the AHP method to a case study of a web applica-
tion development that has several stakeholders with diverse
goals. The scenario has been extrapolated from [14], which
focuses on tools to facilitate requirements negotiation as
opposed to making tradeoff decisions.

4.1 Tradeoff Scenario
The web application development involves three stake-
holders: (1) a marketing manager (MM) who wants the ap-
plication to have an attractive graphical user interface, fast
response, and be developed in a short time, (2) a systems
developer (SD) who wants the application to be user
friendly, secure, able run on any browser, and easy to main-
tain, and finally (3) a programmer (P) who wants to use the
latest technology and needs sufficient time for develop-
ment. Based on these agendas, six decision criteria are
identified: short time to market (TTM), fancy effects (FE),
high performance (HP), easy to maintain (EM), ease of use
(EU), and browser independence (BI). The technology al-
ternatives available for the development include static

R i ri rj
j C

.

453

HTML (SH), Flash (FL), and JavaScript (JS). SH offers
fast development and a large degree of browser independ-
ence. FL is a new technology for this company and offers
attractive graphic effects but it is hard to maintain, whereas
JS, a dynamic HTML that can have problems with some
browsers.

This presents a tradeoff situation where the decision
criteria are in conflict. For example, implementation of
fancy effects and high performance will decrease the
chance of having short time to market. So while selecting
the alternative, the criteria have to be balanced carefully so
as to select the best possible option.

4.2 Web Application Tradeoff Analysis
Applying Step 1 of the proposed tradeoff mechanisms, we
can identify a set of alternatives A = {SH, FL, JS}, a set of
criteria C = {TTM, FE, HP, EM, EU, BI}, and a set of
stakeholders S = {MM, SD, P}.

In Step 2, by using the ratio pairwise comparison
method, Table 1 shows the criteria ratings for the market-
ing manager (MM). For example, the table entry on the
TTM row and EM column of five represents the fact that
the rating of TTM is five times of the EM rating. In other
words, the marketing manager places importance of short
time to market (TTM) as five times of the ease of software
maintenance (EM). The last column of Table 1 (or first
row of Table 2) gives normalized average rating of each
criterion over all criteria. As expected, here the marketing
manager (MM) rates time to market (TTM) the highest cri-
terion and high performance (HP) the lowest.

C
i C TTM FE HP EM EU BI Ri

MM

TTM 1 2 5 5 3 4 0.40
FE 1/2 1 3 3 2 2 0.20
HP 1/5 1/3 1 1 1/2 1/2 0.06
EM 1/5 1/3 1 1 1/2 1/2 0.12
EU 1/3 1/2 2 2 1 1/2 0.12
BI 1/4 1/2 2 2 2 1 0.16

Table 1. Criteria ratings of Marketing Manager (MM).

Similarly, criteria ratings from the other two stake-
holders (SD and P) can be obtained (as shown in 2nd and 3rd

rows of Table 2). For example, the entry in the 3rd row and
6thcolumn of Table 2 shows that for the programmer (P),
browser independent (BI) and fancy effect (FE) are top two
equally important criteria with a (normalized average pair-
wise) rating of 0.26.

C
S TTM FE HP EM EU BI

MM 0.40 0.20 0.06 0.12 0.12 0.16
SD 0.07 0.07 0.12 0.41 0.22 0.11
P 0.07 0.26 0.15 0.10 0.16 0.26

Table 2. Criteria ratings of each stakeholder (Ri
j
’s).

TTM FE HP EM EU BI
0.235 0.192 0.099 0.142 0.152 0.180

Table 3. Criteria Weights (wi’s).

By applying Step 3, Table 3 shows aggregated mean of
ratings of each criterion over all stakeholders, given the
fact that the stakeholder priority pMM, pSD, and pP is 0.5,
0.2, and 0.3, respectively. For example, wTTM can be ob-
tained by 0.4 0.5 + 0.07 0.2 + 0.07 0.3 = 0.235.

 A
k A SH FL JS Sk

FE

SH 1 1/5 1/2 0.12
FL 5 1 4 0.67
JS 2 1/4 1 0.21

Table 4. Alternatives’ score for Fancy Effect (FE).

By applying the ratio pairwise comparison method in
Step 4, Table 4 shows alternatives’ score for Fancy Effect
(FE) criterion. Similarly, alternatives scores for all the cri-
teria are calculated as shown in Table 5.

TTM FE HP EM EU BI
SH 0.65 0.12 0.65 0.23 0.12 0.65
FL 0.12 0.67 0.12 0.14 0.23 0.12
JS 0.23 0.21 0.23 0.63 0.65 0.23

Table 5. Alternatives’ score against all criteria (Sk
i
’s)

By applying Step 5, the final ranking for each alterna-
tive can be computed from results in Table 3 and Table 5.
For example, RANKSH is obtained from 0.65 0.235 +
0.12 0.192 + 0.65 0.099 + 0.23 0.142 + 0.12 0.152
+ 0.65 0.180 = 0.40804. Similarly, RANKFL and RANKJS
is 0.24516 and 0.34680, respectively. Thus, we can infer
that Static HTML (SH) is the best alternative, satisfying the
project criteria and preferences from different stakeholders.

During the analysis, STA is designed to facilitate
“what-if” analysis by allowing users to iterate through dif-
ferent inputs including ratings, or scorings and also to mod-
ify the analysis with different alternatives. The intent is for
STA to support interactive tradeoff mechanisms.

5. Related Work
Tradeoffs in various stages of software development have
been studied including negotiation in requirements, devel-
opment, planning, and management [2, 8, 9, 11, 13, 14].
Most have focused on the need to resolve conflicts during
requirements [8, 11, 13, 14]. Several techniques have been
proposed. For example, the Multi-criteria Preference
Analysis Requirements Negotiation (MPARN) uses prefer-
ence function analysis to assess requirement conflicts
amongst the stakeholders [8]. The Quantitative WinWin
[11] is a similar requirement prioritization techniques based
on Analytical Hierarchical Process (AHP) [12]. A tradeoff
technique based on Qualitative Function Deployment
(QFD) [14] is applied to resolve tradeoffs in web applica-
tion development. However, it is restricted to requirement
prioritization. These studies do not address tradeoff proc-
ess in a structured systematic manner and mostly rely on
meetings among involved parties to use tradeoffs to help
negotiate and resolve conflicts as opposed. Unlike the

454

above work, our work aims to facilitate tradeoff analysis
systematically to support semi-automation.

 At architectural design level, a notable Architecture
Tradeoff Analysis Method (ATAM) [9] employs a risk
methodology to evaluate software architecture. ATAM
largely leaves tradeoff decisions to requirements negotia-
tion. It does not aim to advance a tradeoff methodology or
assist tradeoff analysis but rather to promote use of trade-
offs to select an appropriate architecture early in the soft-
ware development. Thus ATAM does not share the same
objective as our work. Finally, most existing techniques
handle tradeoffs specific to software development decisions
in an isolated manner. Each tradeoff analysis in different
stages is performed separately. This makes it hard to share,
reuse or integrate analysis results for a comprehensive pic-
ture. To the best of our knowledge, no integrated frame-
work like STA has been developed to support decision
making in software development.

6. Conclusion and Future Work
This paper presents a preliminary design of Software
Tradeoff Assistant (STA), an integrated framework for
tradeoff analysis that provides semi-automatic decision aids
for enhancing understanding and resolving various compli-
cated tradeoffs throughout the software development life
cycle. Tradeoff analysis can be viewed as an optimization
problem that involves multiple objectives or single objec-
tive with various factors and constraints. To support trade-
off analysis, STA offers a variety of analytical multi-
attribute decision making methods that facilitate a sound
quantitative evaluation of alternatives along with integra-
tion of preferences from multiple stakeholders. Future
work includes exploring the application of artificial intelli-
gence techniques for qualitative tradeoff analysis. By inte-
grating various analytical decision making techniques and
ontology of software characteristics into tradeoff analysis,
STA offers several advantages.

First, it provides a structured process for reasoning
about tradeoffs and makes tradeoff process more systematic
and explicit. This helps decision makers understand com-
plicated tradeoff interactions and dependencies to arrive at
their decisions. Second, by encoding software ontology
and employing generic tradeoff methodologies, STA pro-
vides tradeoff mechanisms that can be applied and reused
in multiple contexts (e.g., different stages of software de-
velopment) and multiple domains (e.g., medical or engi-
neering software applications). Finally, having an inte-
grated environment for analyzing tradeoffs at various
stages of software development, STA provides flexibility in
choosing appropriate techniques and facilitates integration
of results from different tradeoff methods. Currently, addi-
tional issues on control mechanisms in STA and the devel-
opment of a prototype based on the STA framework are our
ongoing study.

References
[1] Amandeep A., Ruhe G., and Stanford M. Intelligent

support for software release planning. In Product Fo-
cused Software Process Improvement, PROFES 2004,
volume 3009, pp. 248–262, 2004.

[2] Boehm B. Value-Based Software Engineering: Over-
view and Agenda. USC-CSE-2005-504, University of
Southern California, Dept. of Computer Science, 2005.

[3] Boucher T. and MacStravic E. L. Multi-attribute
evaluation within a present worth framework and its
relation to analytic hierarchy process, The Engineering
Economist, 37(1): 1–32, 1991.

[4] Edwards W. How to use multiattribute utility meas-
urement for social decision making, IEEE Transac-
tions on Systems, Man and Cybernetics, volume SMC-
7, pp. 326–340, 1977.

[5] Gruber T. A translation approach to portable ontology
specifications, Knowledge Acquisition, 5(2):199–220,
1993.

[6] Haimes Y. Risk Modeling, Assessment, and Manage-
ment. John Wiley & Son, Inc., Hoboken, New Jersey,
2004.

[7] Hwang C. and Yoon K. Multiple Attribute Decision
Making. Springer-Verlag, Berlin, 1981.

[8] In H., Olson D., and Rodgers T. Multi-criteria prefer-
ence analysis for systematic requirements negotiation,
Computer Software and Applications Conference,
COMPSAC2002, pp. 887– 892, 2002.

[9] Kazman R., Klein M., Barbacci M., Longstaff T.,
Lipson H., and Carriere J. The architecture tradeoff
analysis method. In Engineering of Complex Computer
Systems. ICECCS ’98, pp. 68–78, 1998.

[10] Roy B. The outranking approach and the foundations
of ELECTRE methods, Theory and Decision,
31(1):49–73, 1991.

[11] Ruhe G., Eberlein A., and Pfahl D. Quantitative win-
win: a new method for decision support in require-
ments negotiation. In SEKE ’02: Proceedings of the
14th international conference on Software engineering
and knowledge engineering, pp. 159–166, 2002.

[12] Saaty T. The Analytic Hierarchy Process. McGraw
Hill, New York, 1980.

[13] Yen J. and Tiao W. A. A systematic tradeoff analysis
for conflicting imprecise requirements. In RE ’97:
Proceedings of the 3rd IEEE International Symposium
on Requirements Engineering, pp. 87–96, 1997.

[14] Ziemer S. and Stålhane T. The use of trade-offs in the
development of web applications. In ICWE Work-
shops, pp. 269–281, 2004.

455

Improving Separation of Concerns in the Development of
Scientific Applications

S. M. Sadjadi*, J. Martinez, T. Soldo, L. Atencio
School of Computing and Information Sciences

Florida International University, Miami, FL, U.S.A
{sadjadi,ftrig001}@cs.fiu.edu

R. M. Badia, J. Ejarque
Barcelona Supercomputing Center

Barcelona, Spain
{rosa.m.badia, jorge.ejarque}@bsc.es

Abstract

High performance computing (HPC) is gaining popularity
in solving scientific applications. Using the current
programming standards, however, it takes an HPC expert
to efficiently take advantage of HPC facilities; a skill that a
scientist does not necessarily have. This lack of separation
of concerns has resulted in scientific applications with rigid
code, which entangles non-functional concerns (i.e., the
parallel code) into functional concerns (i.e., the core
business logic). Effectively, this tangled code hinders the
maintenance and evolution of these applications. In this
paper, we introduce Transparent Grid Enabler (TGE) that
separates the task of developing the business logic of a
scientific application from the task of improving its
performance. TGE achieves this goal by integrating two
existing software tools, namely, TRAP/J and GRID
superscalar. A simple matrix multiplication program is
used as a case study to demonstrate the current use and
capabilities of TGE.

Keywords
Grid Enablement, Transparent Shaping, GRID superscalar

1. Introduction

The advent of cluster and grid computing has created a
remarkable interest in high performance computing (HPC)
both in academia and industry, especially as a solution to
complex scientific problems (e.g., hurricane path
prediction). To efficiently utilize the underlying HPC
facilities using the current programming models and tools,
however, a scientist is expected to develop complex parallel
programs; a skill that she might not necessarily have and is
better done by an HPC expert.

Current standards for cluster and grid programming such as
MPI [8], OGSA [9], and WSRF [10] (and their
implementations such as MPICH2 [11], Globus Toolkit
[12], Unicore [13], and Condor [14]; to name just a few)
have provided scientists with higher levels of abstraction.
Noteworthy, these approaches have been successful in
hiding the heterogeneity of the underlying hardware
devices, networking protocols, and middleware layers from
the scientist developers. However, the scientists are still
expected to develop complex parallel algorithms and
programs. Moreover, as the code for parallel algorithms

would typically crosscut the code for business logic of the
application, the resulting code will be an entangled code
that is difficult to maintain and evolve.

In this paper, we introduce Transparent Grid Enabler (TGE)
that addresses these problems by enabling a separation of
concerns in the development and maintenance of the non-
functional concerns (i.e., the parallel code) and the
functional concerns (i.e., the business logic) of scientific
applications. TGE achieves this goal by integrating two
existing programming tools, namely, a Grid framework,
called GRID superscalar [2], and an adaptation-enabling
tool, called TRAP/J [6].On one hand, GRID superscalar
enables the development of applications for a
computational Grid by hiding details of job deployment,
scheduling, and dependencies and enables the exploitation
of the concurrency of these applications at runtime. On the
other hand, TRAP/J supports automatic weaving of
alternative parallel code (including the corresponding calls
to GRID superscalar runtime) into the sequential code
developed by the scientist.

TGE increases the level of modularity of code by separating
crosscutting grid related code from the business logic of the
application. This allows scientists to continue focusing only
on the core logic of the scientific applications, leaving the
parallel code and its complexity to the HPC experts. In
TGE, the grid enablement or weaving of parallel code into
the original application is called to be transparent, because
all the grid enablement process occurs automatically with
no manual modifications to the business logic of the
application and hence “transparent” to the scientist and her
sequential code. This way, TGE supports transparent grid
enablement of existing scientific applications also.

The rest of this paper is organized as follows. In Section 2,
we provide a short background on GRID superscalar and
TRAP/J. In Section 3, we introduce a simple case study,
called “Matmul”, which is a matrix multiplication program.
In Section 4, we show how TGE works by adapting Matmul
to run on a computational grid. In Section 5, we provide
some experimental results and demonstrate the speedup
gained because of grid enablement. In Section 6, we discuss
some related works and in Section 7, we provide some
future research directions. Currently, TGE enables only
static grid enablement of Java programs by means of
configuration files at startup time. We are planning to

456

public static void main(String[] args)

{ . . .

Multiply_Matrices(size, args[1], args[2],
args[3]);

//args[] contains the names of the files

//containing the input matrices

}

public static void Multiply_Matrices(int
size, fileC, fileA, fileB)

{ Block A = new Block(fileA, size);

 Block B = new Block(fileB, size);

 Block C = new Block(size);

 C.Multiply(A,B);

 C.blockToDisk(fileC);

}

provide dynamic grid enablement as well as self-
management behavior to scientific applications at run time.
Finally, we finish the paper in Section 7 after providing
some concluding remarks.

2. Background

Transparent grid enablement is achieved by the
combination of TRAP/J and GRID superscalar. Therefore,
as a first step, we present a brief background information
about both technologies. For more detail, please refer to
the references.

2.1 GRID superscalar

Inspired by the superscalar processors, GRID superscalar
provides an easy programming paradigm for developing
parallel programs [2]. Similar to superscalar processors that
provide out-of-order and parallel execution of machine
instructions by bookkeeping their dependencies, GRID
superscalar provides parallelism to the functions of a
program written in a high-level programming language such
as Java. Using GRID superscalar, a sequential scientific
application developed by a scientist is dynamically
parallelized in a computational Grid. GRID superscalar
hides the details such as resource mapping, staging input
data files, cleaning temporary data files, task deployment,
task scheduling, exploiting instruction-level parallelism,
and exploiting data locality. We note that for many of its
responsibilities, GRID superscalar depends on other grid
computing toolkits such as GT4 [12], Condor [14], and
others.

2.2 TRAP/J

TRAP/J is a tool that enables static and dynamic adaptation
in Java programs at startup and runtime, respectively [6]. It
consists of two GUI-based interactive tools as follows: (1)
Generator, which generates an adapt-ready version of an
existing application by inserting generic hooks into a previ-
ously selected subset of classes in the application; and (2)
Composer, which allows insertion of new code at the ge-
neric hooks both at startup or runtime. We note that only
the pre-selected classes are capable of being adapted and
they are called adaptable classes. Adaptable behavior is
provided through alternative implementation of adaptable
classes, which are called delegate classes. To replace alter-
native parallel algorithms developed using the GRID super-
scalar codes, we use the Generator to make the classes with
sequential code adaptable, and then we use the Composer to
weave in the parallel code.

3. Case Study: Matmul

Our case study is a simple application, called Matmul,
which is a matrix multiplication program written in Java. It

uses a sequential matrix multiplication algorithm, which
computes C = A.B, where A, B, and C are matrices of size
NxN. It uses the classic algorithm of “rows by columns”
multiplication. This algorithm involves O(N3) operations.

Figure 1: Hyper-Matrix Multiplication.

We will use TGE to make this application grid enabled.
First, we use GRID superscalar to develop alternative
hyper-matrix multiplication algorithms by splitting the
original matrices into a number of sub-matrices or blocks as
shown in Figure 1 (a). Then we multiply these sub-matrices
accumulatively as shown in Figure 1 (b). GRID superscalar
will exploit the task-level parallelism by resolving the
dependencies of the tasks as shown in Figure 1 (b).
Therefore, instead of just one task as in the original
approach, using hyper-matrix multiplication and GRID
superscalar, up to 4 tasks can be active at the same time.
Similarly, if we split the matrix into 9 blocks, then up to 9
tasks can be executed at the same time and so on and so
forth.

4. Grid Enablement of Matmul

We begin with the snippet code of the simple sequential
matrix multiplication program that is shown in Figure 2.
The bold method method in Figure 2 performs a
conventional row by column matrix multiplication. The
statement underlined saves the result of the multiplication in
the specified file.

Figure 2: Original Matrix Multiplication Code

457

public class Matmul_Del implements Delegate
Interface

{ public static void Multiply_Matrices(int
size, fileC, fileA, fileB)

 { . . .

 GSMaster.On();

 for(int i=0;i<num_of_pieces;i++)

 { //Split in 4 pieces-

 for(int j=0; j<num_of_pieces;j++)

 {

 for(int k=0; k<num_of_pieces;k++)

 { //Sending to Grid

 Matmul.multiply_acc(C[i][j],
A[i][k],B[k][j],size/
num_of_pieces);

 }

 GSMaster.Off();

 . . .

 MergeFiles();

}

interface MATMUL

{ void multiply_acc(inout File f3,
in File f1, in File f2, in int size);

};

In order to run this application on the grid we will use
TRAP/J to weave in the parallel code developed at startup
time into this application and use GRID superscalar to run
the grid enabled adapted program. We select the
Multiply_Matrices method to become adaptable since this
method has been identified as the computationally intensive
part of the original application. Therefore, a delegate class
is developed that re-implements this method using the hyper
matrix multiplication algorithm and GRID superscalar.

As shown in Figure 1 (b), since the calculation of each
block in the resulting matrix (C) is independent of the other
ones, they can be executed in parallel, potentially on
different processors of a grid computing environment.
Figure 3 displays the code for a delegate class,
Matmul_Del.java, that was implemented for this case study
and includes the Multiply_Matrices method. The beginning
of the method (not shown here for simplicity) takes care of
splitting the original matrix operands A and B into blocks,
creating files where each block is saved, and creating the
files that will store the result of matrix multiplication for
each block.

Figure 3: Delegate Class for Multiply_Matrices method

The underlined section of the code calls the matrix
multiplication method, Matmul.multiply _acc() for each
pair of corresponding blocks. This is the method that
allows for parallelism by being executed in separate tasks
(possibly running on different nodes). In order for GRID
superscalar to know that Matmul.multiply_acc() is the
method to be deployed on worker nodes, several steps must
be taken. First, an IDL file must be created as shown in
Figure 4 to specify the signature of this method.

Figure 4: Matmul IDL file

This part is much like a CORBA IDL file that is used to
generate stubs and skeletons to be used for a remote
procedure call. The IDL uses the special keywords “in”,
“out”, and “inout” to specify the type of the parameters to
be read, written or both, respectively. Using this IDL as
input to GRID superscalar, we generate the “worker”
versions of Matmul; and using the selected adaptable
method as input to TRAP/J, we generate the “master”
version of Matmul.

When we execute the master program, it calls the Multiply_
Matrices method, which will be intercepted by the TRAP/J
runtime and will forward the control to the code in Figure
3; effectively the parallel code will be executed instead of
the original sequential code. As a first step, GRID
superscalar will be started with a call to GSMaster.On(),
basically to initialize resources in the grid, like for example
Globus services. Later, each multiplication of the sub-
matrices will be sent to the nodes in the grid using the
Matmul_multiply_acc(…). After all the calls to this method
for all the multiplications are done, GRID superscalar is
disabled by the call to GSMaster.Off(). Finally GRID
superscalar runtime will collect the results using the
mergeFiles() method, which is in charge of merging the
individual output files obtained from the different block
multiplications into one matrix file representing the result
of the matrix multiplication.

The class Matmul on which the static method
Multiply_Accumulative() is invoked is actually provided by
GRID superscalar when deploying the application.
Basically what it does is to call the GRID superscalar
runtime in order to execute the method,
Multiply_Accumulative() already defined in the IDL we
created at startup. As mentioned before, all the issues
related to file handling, concurrency problems, and
interactions with the grid (middleware like Globus in this
case) are handled by GRID superscalar.

Finally, the obtained grid-enabled application offers the
choice for the user to choose among different alternative
parallel-computing algorithms; for example, choosing
between an algorithm which uses 4 blocks or 9 blocks. The
decision of choosing one algorithm or another can be made
based on the number of resources available and therefore,
taking advantage of the grid infrastructure properly.
Moreover, this new grid-enabled application is transparent
to the user in the sense the way it was originally executed
remains the same.

458

5. Experimental Results

The case study we discussed on the sections above left us
with some interesting results that we present in this section.

First, we should point out that even though our approach
takes advantage of parallel programming when using the
computational grid, we also face the problem of delays
caused by the network traffic, coordination of tasks, and the
middleware software services used (Amdahl’s law).
Therefore, it is reasonable to predict that when the matrices
to multiply present a relatively small dimension, the
original sequential application will perform faster than the
grid-enabled one. As the matrix size increases we will be
able to see that this difference in time shortens
progressively.

Matrix
Size (N)

Sequential
(ms)

Parallel with 4
blocks (ms)

Speedup
(S/P)

144 674 61512 0.010957212

288 2031 66096 0.030728032

576 9527 69365 0.137345924

1152 62269 172787 0.360380121
Table 1: Initial time results

Figure 5: Speedups of the experiments

Table 1 shows the initial experiments we ran, and there you
can compare the results obtained by both the original
sequential program versus our approach using four nodes of
the grid and therefore having a level of parallelism of 4. In
this first set of experiments, we noticed that the sequential
code always ran faster than the grid-enabled one; however,
as the matrix size increased, we could notice that the
difference in time between the two approaches became
smaller and smaller.

One of the main problems we had by then with the
performance was due to the way GRID superscalar works.
The method GS_Off(), mentioned in section 4 and in figure
3, is in charge of freeing resources and deleting temporary
files after finishing the calls to the grid method and since all
the data is distributed along the nodes, then a cleanup was
needed everywhere causing our application to take extra
time.

Since we wanted to get a more optimized grid-enabled
application, we took the GRID superscalar source code and
optimized it, removing the cleanup but keeping the main
functionality so that we can still get consistent results.
Applications that benefit from HPC are usually scientific
applications like, for example, those related to hurricane
prediction and monitoring. In such cases, temporary left
over data is irrelevant if the application provides us with the
correct results quickly. Therefore, the approach we took at
this stage seems proper.

With this optimization in hand, we also decided to
implement a new algorithm in which we handled a
parallelism of 9. Due to infrastructure reasons at the time,
the number of nodes available for this experiment was at
most 6. The results in terms of times consumed for this set
of new experiments are shown in Figure 6 and 7.

Matrix
Size
(N)

Seq.
(ms)

Par. w/ 4
blocks and
2 workers

(ms)

Par. w/ 4
blocks and
4 workers

(ms)

Par. w/ 9
blocks and
6 workers

(ms)

144 5576 79221 57656 145331

288 14934 86259 62013 146744

576 44755 108107 78096 148240

1152 19318 176464 133058 176464

2304 79837 643925 441891 474215
Table 2: Final time results

Time Consumed by Different Approaches

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

144 288 576 1152 2304

Matrix Size

T
im

e
(m

s)

Sequential

Parallelism (4) - 2 w orkers

Parallelism (4) - 4 w orkers

Parallelism (9) - 6 w orkers

Figure 6: Chart of the times for each approach

With the results (time in ms) obtained in Table 2 and Figure
6 we were able to build a table and a graph showing the
Speedups of each algorithm as shown in table 3 and figure
7.
In Figure 7 we see that as the matrix size increases, the
speedup improves and finally when the size of the matrix is
1152 (number of rows = number of columns = 1152), all of
the algorithms for the grid-enabled application perform
better than the original sequential application. Furthermore,
when the size of the matrix is 2304, all of the algorithms
perform even much better than the sequential one. As a
result, we notice that the algorithm with best performance is
the one that uses parallelism of 4 and 4 nodes which for a
matrix of size 2304 performs almost twice faster than the

459

sequential one. This is because we have more CPU power
and we are using all of it because of the parallelism of 4.
Besides that, having only 4 nodes, reduces the number of
file transfers among the nodes, which in turn reduces time
of execution.

Matrix
Size

Seq Parallelism
(4)

2 workers

Parallelism
(4)

4 workers

Parallelism
(9)

6 workers
144 1 0.0703858 0.09671153 0.03836759
288 1 0.1731298 0.24082048 0.10176907
576 1 0.4139879 0.57307673 0.30190907

1152 1 1.0947502 1.45187813 1.09475020
2304 1 1.2398462 1.80670799 1.68355704

Table3: Speedups of each approach

Algorithms Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

144 288 576 1152 2304

Matrix Size

S
p

ee
d

u
p

Sequential

Parallelism (4) - 2 w orkers

Parallelism (4) - 4 w orkers

Parallelism (9) - 6 w orkers

Figure 7: Speedups of each approach

We emphasize that the experiments are part of our ongoing
research activities and by no means they are meant to be
representative and conclusive with respect to providing a
quantitative metric for speedup of sequential applications.
The main purpose of these experiments is to show that we
were able to use the current prototype of TGE to
transparently adapt an application to run on a grid
computing environment.

6. Related Work

Other approaches that enable programming parallel
applications for computational Grids are Satin, HOCS,
ProActive or ASSIST.

Satin [7] is a Java based programming model for the Grid
which allows to explicitly expressing divide-and-conquer
parallelism. Satin uses marker interfaces to indicate that
certain invocation methods need to be considered for
potentially parallel (spawned) execution. Moreover,
synchronization is also explicitly marked whenever it is
required to wait for the results of parallel method
invocations.

HOCS [5] is a component oriented approach based on a
master-worker schema. Higher-Order Components (HOCs)
express recurring patterns of parallelism that are provided

to the user as program building blocks, pre-packaged with
distributed implementations.

ASSIST [1] is a programming environment aimed at
providing parallel programmers with user-friendly,
efficient, portable, fast ways of implementing parallel
applications. It includes a skeleton based parallel
programming language (ASSISTcl, cl stands for
coordination language) and a set of compiling tools and run
time libraries. The ensemble allows parallel programs
written using ASSISTcl to be seamlessly run on top of
workstation networks supporting POSIX and ACE (the
Adaptive Communication Environment, which is an extern,
open source library used within the ASSISTcl run time
support).

ProActive [3] is a Java GRID middleware library for
parallel, distributed and multi-threaded computing. With a
reduced set of simple primitives, ProActive provides a
comprehensive API to simplify the programming of Grid
Computing applications: distributed on Local Area Network
(LAN), on clusters of workstations, or on Internet GRIDs.
ProActive is only made of standard Java classes, and
requires no changes to the Java Virtual Machine, no
preprocessing or compiler modification, leaving
programmers to write standard Java code. Architected with
interception and reflection, the library is itself extensible,
making the system open for adaptations and optimizations.
Current implementation is focusing of the CoreGRID NoE
specification of the Grid Component Model (GCM) [4].

None of the above mentioned approaches provide an
explicit separation of concerns identifying separate tasks for
scientist developers and HPC expert developers. TGE can
be extended to use these works instead or in complement to
GRID superscalar and can be used as an enabler for
supporting interoperation among the above mentioned
approaches.

7. Future Work

As we mentioned before, we have been able to achieve
static adaptation. Our next task will be to extend TGE in
support of more autonomic behavior and include adaptation
at runtime (dynamic) in response to high level system
policies such as the addition of more nodes to the grid,
process scheduling, etc, or application level policies such as
different blocking algorithms, faster algorithms, etc.

At present, dynamic adaptation of Java programs with
TRAP/J has been achieved and tested. However, running an
application in a grid environment inherently introduces a lot
more challenges than just running the program in one node
or virtual machine. If we take Matmul as an example, we
can clearly see that switching the blocking algorithm
dynamically requires us to save the present state of

460

calculations, adapt it to the new algorithm, and continue
executing.
Furthermore, moving towards building a more autonomic
self adapting and self configuring system, we can take TGE
to provide context-aware adaptation. In other words, by
invoking the Globus Toolkit monitoring service we can
keep track of the state of the runtime environment and
retrieve information about resource allocation, scheduling,
etc.

8. Conclusion

In this paper we have presented an innovative approach to
transparent grid-enablement of scientific applications. We
achieved this goal by combining TRAP/J and GRID
superscalar. Each tool provided us with the necessary
features for transparent software adaptation from a
sequential code to a grid-enabled one as Figure 8 briefly
sums up.

Figure 8: TGE Flow Diagram

The matrix multiplication shown as a case study in this
paper is just a simple example to show how our approach
works. In fact, this matrix multiplication, for example,
could be just one part of a whole application and be the
portion of the code that consumes most of the execution
time and in that sense, applying our approach would
considerably benefit the whole application’s performance.
In a similar fashion, we could take an existing application
and just modify the part of the algorithm that is in charge of
the most cpu utilization and just parallelize that logic
without having to modify the total original code.

Another important issue to mention is that the optimization
discussed in the paper is not targeted only to improve the
performance of our case study, in fact, since this
optimization has been done to the Grid Superscalar library,
any application built from now on will benefit for these
improvements. Moreover, even though we took Java as the
programming language to describe our case study, other
programming languages could be used following the same
approach since for example C and Perl are also supported
by Grid Superscalar.

Finally, we are aware that we cannot guarantee that in all
applications we will be able to separate the parallelism of a
portion of the algorithm from the business logic of it;
however, there many existing applications that do offer this
facility.

9. Acknowledgement

This work was supported in part by IBM (SUR and Student
Support awards), the National Science Foundation (grants
OCI-0636031, REU-0552555, and HRD-0317692), the
Spanish CICYT (contract TIN2004-07739-CO2-01), and
the BSC-IBM Master R&D Collaboration agreement. This
work is part of the Latin American Grid (LA Grid) project.

References

[1] Marco Aldinucci, Massimo Coppola, Marco Danelutto,
Marco Vanneschi, and Corrado Zoccolo. Assist as a
research framework for high-performance grid
programming environments. In Jose C. Cunha and Omer F.
Rana, editors, Grid Computing: Software environments and
Tools. Springer-Verlag, 2004.

[2] Rosa M. Badia, Raül Sirvent, Jesus Labarta, and Josep
M. Perez. Programming the GRID: An Imperative
Language Based Approach. book chapter in Engineering
the Grid, Section 4, Chapter 12 , January 2006.

[3] Laurent Baduel, Françoise Baude, Denis Caromel,
Arnaud Contes, Fabrice Huet, Matthieu Morel, and Romain
Quilici. Programming, Composing, Deploying for the Grid
(the reference to be used to cite ProActive), in "GRID
COMPUTING: Software Environments and Tools", Jose C.
Cunha and Omer F. Rana (Eds), Springer Verlag, January
2006.

[4] CoreGRID Deliverable D.PM.02, 2006, Proposal for a
Grid Component Model.

[5] Sergei Gorlatch and Jan Dünnweber. From Grid
Middleware to Grid Applications: Bridging the Gap with
HOCs. In Future Generation Grids, Springer Verlag, 2005.

[6] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C.
Cheng, and R.E. Kurt Stirewalt. TRAP/J: Transparent
generation of adaptable Java programs. In Proceedings of
the International Symposium on Distributed Objects and
Applications (DOA'04), Agia Napa, Cyprus, October 2004.

[7] Rob van Nieuwpoort, Jason Maassen, Thilo Kielmann,
and Henri E. Bal. Satin: Simple and efficient Java-based
grid programming. Scalable Computing: Practice and
Experience, 6(3):19-32, September 2005.

[8] http://www-unix.mcs.anl.gov/mpi/

[9] http://www.globus.org/ogsa/

[10] http://www.globus.org/wsrf/

[11] http://www-unix.mcs.anl.gov/mpi/mpich2/

[12] http://www.globus.org/toolkit/

[13] http://www.unicore.org/

[14] http://www.cs.wisc.edu/condor/

461

Pattern-based J2EE Application Deployment with Cost Analysis

Nuyun ZHANG, Gang HUANG, Ling LAN, Hong MEI
Institute of Software, School of Electronics Engineering and Computer Science, Peking University

Key laboratory of High Confidence Software Technologies (Peking University) Ministry of Education
Beijing, 100871, China

zhangny04@sei.pku.edu.cn, huanggang@sei.pku.edu.cn, lanling@pku.edu.cn, meih@pku.edu.cn

Abstract1

The most challenging problem of J2EE application
deployment is to determine which components should be
deployed onto which servers in terms of non-functional
properties. This paper proposes an empirical approach
with some mathematic enhancement. It does two
contributions to J2EE application deployment: 1)
patterns are adopted to specify why, when, where and
how to deploy so that the empirical approach becomes
more comprehensible and operational; 2) a mathematic
framework to analyze the deployment cost is defined for
helping the selection of the best-of-breed pattern. We
experiment several patterns on a J2EE benchmark
application and evaluate the cost analysis framework.

1 . Introduction

Deployment of J2EE application is the process to
deploy application clients, applets, web components and
Enterprise JavaBeans components into specific
operational environments [6].

The most challenging problem of deployment is
component arrangement, namely which components
should be deployed onto which servers in terms of
performance, reliability, cost and other non-functional
properties. Existing approaches for the problem can be
summarized as: mathematics, artificial intelligence (AI)
and empirical methods.

The mathematics methods build delicate models about
the system and solving it to find the optimal deployment
plan [4]. They require precise parameters, such as
memory consumption of each component and reliability
of each node. The AI methods use AI technology to
reduce the complexity of the search space that is
involved in finding an optimal plan [5]. They need a
number of parameters, too. The empirical methods try to
conclude some guidelines from experiences or best
practices for deployments.

The math and AI methods neglect some details of the
running of the application system. In addition, some of
the parameters they need are difficult to measure or their
precision cannot be guaranteed. Totally depending on

1 This work has been supported by the National Grand

Fundamental Research 973 Program of China under Grant
No.2005CB321805, the National Natural Science Foundation
of China under Grant No. 90412011, 90612011, 60403030.

them is usually impractical. On the other hand, when
turning to the empirical methods, we find their carrying
out is seriously depend on the deployers’ understanding
and manual operations.

This paper proposes a pattern based approach for J2EE
application deployment. It is an empirical method but
more formal and specific than the traditional ones. It
includes clear operational steps and can be carried out
automatically. However, there are 2 problems in the
approach: how to choose a pattern to execute from
several useful patterns and how to map the deployment
solutions onto physical machines. We again propose a
deployment cost analysis framework to meet the
problems.

The contribution of this paper is: it not only brings
forward a pattern based approach to J2EE application
deployment but also makes it practical. It makes use of
patterns to describe deployment guideline and gives a
quantitative cost analysis framework to support the
execution of patterns. It implements the pattern based
deployment process and validates the effectiveness of the
approach and the framework by experiments.

2 . Approach Overview

2.1 Description of Deployment Pattern

The description of deployment patterns contains
several sections which are shown in Table 1.

2.2 Pattern based Deployment Process

We divide J2EE deployment process into seven stages
that are release, installation, update, adaptation,
activation, deactivation, and uninstallation. The pattern
based J2EE deployment adds some steps between the
stages as shown in Figure 1.The execution of pattern
starts after the configuration step. Then it goes on as
follows:

Firstly, the pattern execution tool identifies the pattern
candidates by checking the goal sections and context
sections of all patterns.

Secondly, the pattern execution tool picks out one of
the pattern candidates to execute. It follows the solution
section to make a deployment plan, the implementation
section to make a physical deployment plan.

462

Table 1 Description of Deployment Pattern

Figure 1. Pattern based deployment process

Thirdly, the deployment tool packages the components
and transfer them to their destinations according to the
physical deployment plan.

Fourthly, the application servers install the packages
and start them. If this is a redeployment, the application
servers will stop and uninstall the old components before
the installation and starting.

Finally, after a period of running, the tools check
whether the deployment has the expected results and
adjust the parameters in the patterns. The tools may start
a new round of pattern based deployment process to
improve the deployment.

3 .Deployment Cost Analysis Framework

The challenges in pattern based deployment process
are: 1) in the implementation section of a pattern, we
should map the solution to the physical machines. 2) If
useful patterns are more than one, we should select one
for execution under circumstances that we do not know
which pattern will make the system work most well.

There could be many kinds of solutions to the
challenges. We consider in an enterprise application like
J2EE application that the Cost/Benefit is most important.
Since we have no idea of how many benefits deployment
will bring, we try to make the cost of deployment
minimum. In the deployment process, the service is
stopped and that adds to the cost. Therefore, we proposed

a framework to evaluate the cost of J2EE application
deployment process.

We define the deployment cost as the time deployment
takes. In the deployment or redeployment process, loses
are brought by the system down time. So we care about it
instead of the other expenses such as memory or network
occupation.

Our goal is to find the pattern whose deployment time
is the least. For this purpose, the cost analysis framework
only care about the cost differences in deployment
processes, not their absolute values. Some constants will
be neglected to simplify the framework.

Packaging and transferring do not interrupt the running
of the application system. We do not include them in
deployment cost analysis.

The analysis framework is as follows:
First, we define a package as a group of components

placed on the same node. The deployment process of an
application system is composed of the concurrent
deployment processes on all the nodes in the system. The
deployment time is determined by the slowest sub-
process. We describe it as:

CostOfApplication = max{costOnEachNode}

The deployment cost on a node is composed of
undeploy time of old packages and deployment time of
the new ones, as shown in equation .

Section Purpose Content Examples
Name Unique identification for

the pattern
A meaningful name Components collocating pattern

Goal For automatic recognition
of the pattern

WHY: The goal of deployment short response time.

Context For automatic checking of
the pattern

WHEN: Preconditions for using
the pattern

Workloads, resource constraint of nodes.

Solution For automatic execution
of the pattern

WHERE: Relationships between
components and nodes

Component A is on node n.
Component B is on node m.

Implement
ation

For automatic execution
of the pattern

HOW: Relationships between
components and physical

machines

Component A is on node n. Component B is
on node m. Node n is Dell PC 1. Node m is

Dell PC 2.

463

costOnEachNode = deploymentTime +
undeploymentTime

1. The deployment time is closely related with the
implementation of application server. We have done
some experiments on Peking University Application
Server (PKUAS) [3] try to find some rules in deployment
time.

The deployment time is composed of installation time
and starting time. The following hot color map is a
contour figure showing the installation time of JAR
packages. The 20 colors evenly ranged from 3396 to
17626 ms. The darkest red in the upper right area of the
map represents the longest time that is 17626 ms. The
darkest blue in the lower left represents the shortest time
that is 3396 ms. There is a blank area in the right lower
part of the figure, because when package number is small,
the package size can hardly be very large.

Figure 2. Contour map of installation time of JAR

From figure 4 we can see the installation time has
something to do with package size and number of JARs.
The more JARs are, the longer the time is. The larger the
size is, the longer the time is. Because the contour lines
are almost vertical, we know the size of package plays a
more important role in the installation time and their
relationship can be approximately described by linear
equation.

In our cost analysis problem, what we want is only a
comparable result, not the absolute number. To simplify
the comparison, we give each installation time a
reasonable value instead of its real value. The given
value can reflect its real value in proportion. The
simplified expression of installation time of EJB package
should be in a linear form, and we omit the constant to
get the following expression:

()
100

ejbpackageSize kB installationTimeEJB

 If necessary, by curve fitting and further analysis of the
sub deployment time we can get the exact relationship
of installation time, the JAR number and the package size.
 We can give a set of test packages. In another specific
environment, by deploy the test packages, we can figure
out the relationship of installation time, the JAR number
and the package size automatically.

2. We do the same kind of experiments to figure out the
installation time of WAR packages. In our experiments,
the installation time of WAR differs from 282 to 33829
ms as the package size ranges from 41 to 64634 kB. The
installation time of WAR is about ten times less than that
of JAR of the same size.

We find that no matter how many html, JSP, and
images are in the package, the installation time is the
same if the whole package size is the same and the Java
class number is the same. Figure 3 shows the installation
time of WAR when there are a fix number of Java classes.
We can see that the installation time has a linear
relationship with the size of WAR package.

installationTimeWAR = c*WARsize

where c is a constant that has something to do with the
implementation of the application server and the Java
classes in the package.

Figure 3. Installation time of WAR

For the purpose of comparison, consulting the
experiment results of the installation time of EJB
package, we give a simplified expression for WAR
installation time:

= 0.1*
WARsize

WAR
JARsize

installationTime

where JARsize represents the size of all the JARs in
the system.

Integrating the expression and we get the
installation time of a package as:

0.1*
100

WARsize

JARsize

ejbpackageSize installationTime

3. By experiments we know the starting time is really
small and can be neglect.
4. The undeployment time is composed of the
uninstallation time and the stopping time. By
experiments we know the stopping time is very small and
can be neglected.
5. In our experiments, the uninstallation time of WAR
varies from 188 to 781 ms as the package size ranges
from 41 to 64634 kB. It plays a so trifling part in the
whole deployment time that we neglect it.

464

Figure 4. Uninstallation time of JAR

6. Figure 4 is the contour map of uninstallation time of
JAR packages by experiments. Because the contour line
is almost horizontal, we know the number of JAR is the
most important factor in uninstallation time. Using the
same analysis method of the installation time, we get the
following expression:

= 0.2* uninstallationTimeJAR JARnumber
In conclusion, applying the expression and to
, we obtain the deployment cost on each node.

Applying the expression to , we obtain the cost of
the whole deployment process.

In different implementations of J2EE deployment
process, the cost analysis methods may need adjustment
in detail, but the framework is still applicable and it is
our future direction of research.

4 .Case study

In this section, we use cost analysis based deployment
patterns to redeploy RUBiS [7], which is an auction site
prototype modeled after eBay.com that is used to
evaluate application design patterns and application
server performance scalability. First, we give an entire
redeployment process of RUBiS. Then, we verify our
cost analysis framework by comparing experimental
deployment time and its estimated values. The process is
aided by CADTool, which is a J2EE deployment tool [2].

The environment of experiments is shown in Table 2:

Table 2. Deployment environment

Node Software Database CPU Memory
Aster0 Windows XP

+ PKUAS none 2.79G 504M

Aster2 Windows XP
+ PKUAS MySQL 4.0.15 2.99G 504M

Aster3 Windows XP
+ PKUAS none 2.79G 512M

Client Windows XP none 2.79G 512M

4.1 Redeployment of RUBiS

4.1.1 Initial Deployment of RUBiS

In the given environment, there are 318 2592
deployment plan of RUBiS, where 18 is the component
number and 3 is the node number. We make an initial
deployment randomly, as shown in Table 3. We assume
the number of concurrent clients is 500.

Table 3. An initial deployment plan

Node Deploys
Aster0 WAR(241kB), 4 JARs(262kB)
Aster2 MySQL DB, 7 JARs(569kB)
Aster3 6 JARs(369kB)

4.1.2 Identification of Pattern Candidates

1. Deployment goal recognition. The deployment
goal is to achieve a good performance in average
client session time, as mentioned in section 2.We find
out 5 patterns have the goal. They are in Table 4.

Table 4. Pattern Candidates

ID Key elements in
context

Main idea of Solution

1 Client Number<1000 Collocating WAR and JARs
2 Client Number<1000 Centralized deployment of EJB
3 Client Number>1000 Separate WAR and JARs
4 Client Number>1000 Distributed deployment of EJB
5 Separate Resource consuming servers

2. Initial context verification. In the experiment
environment, the logic expressions in the contexts of
Pattern 1 and 2 are true. Pattern 1 and 2 are useful.

4.1.3 Cost Analysis Aided Pattern Execution

1. Selecting an implementation for each pattern
candidate.

We use the cost analysis framework to estimate the
every possible implementation of the candidate pattern1
and 2. We use the following formulae mentioned in
section 3 to make the estimation:

0.1*

 = max{ }

= 0.2*
100

WARsize

JARsize

CostOfApplication costOnEachNode

installationTime

undeployTimeJAR JARnumber

ejbpackageSize

465

Table 5. Costs of the implementations of candidate

The estimation processes and results are in Table 5.
Taking pattern 1 for example, it has 3 implementations.
They are to put all the components on Aster0, Aster2 and
Aster3. By cost analysis we know the deployment cost
on Aster0 is the least, therefore we take it as the
implementation of Pattern 1. By the same way we take
deployment on Aster0 again as the implementation of
Pattern 2. The last column in

5 is the experiment result for the 6 implementations.
We can see our cost analysis framework do find the
implementation with least deployment cost for each
pattern.
2. Selecting a pattern to execute.

 From Table 5 we know the costs of the two
implementations are the same, so we are free to choose
any one of them. As a matter of fact, they happen to be
the same deployment, which is shown in Table 6.

Table 6. Implementation of the two Patterns

Node Deploys
Aster0 WAR, 17 JARs
Aster2 MySQL DB
Aster3 none

3. Executing the redeployment.
We carry out the redeployment by CADTool and

monitor the system running to know that the average
session time of the redeployed system is reduced by 627
ms.

4.2 More Experiments on Cost of Deployment

We apply more patterns and their different
implementations to make redeployments.

Table 7. Experiment results of redeployments

No initial
deployment

ID

Applied
pattern

ID

Redeploy
ment ID

Cost Time by
experiment

(ms)
1 1 1 2 13.42 15695
2 1 2 3 13.4 14640
3 3 1 2 15.42 15297
4 2 5 4 7.4 7693
5 2 5 5 8.42 8532

Table 7 depicts the results of our experiments. The last

two columns show the estimated deployment cost is
approximately in proportion to the real deployment time.
The relationships of the deployment cost can be reflected
by that of the estimated costs.

5 .Conclusions

This paper proposes a pattern based approach of J2EE
application deployment and make it practical by a
quantitative method to evaluate deployment cost. It gives
experiments to validate them.

The idea of deployment pattern is not novel, but there
is little attention paid in using of them, especially from
the deployment cost point of view. To our best
knowledge, there is no other work that does the same
thing as we do, i.e., giving a deployment cost analysis
framework of J2EE application by time.

The current weaknesses of the approach are: lacks of
tool support and more analysis experiments on other
kinds of application servers. The future work can be on
studying more implementation of J2EE deployment
process to find more common rules about the deployment
cost. In our study of PKUAS deployment, an
enhancement of the cost analysis precision is also needed.

References

[1] Gamma et al. Design patterns: elements of reusable object-
oriented software, Addison Wesley Longman, 1995.
[2] Ling LAN, Gang HUANG et al. Architecture based
Deployment of Large-Scale Component based Systems: the
Tool and Principles, CBSE, Lisbon, Portugal, 2004..
[3] Mei, H. and G. Huang. PKUAS: An Architecture-based
Reflective Component Operating Platform, invited paper, 10th
IEEE International Workshop on Future Trends of Distributed
Computing Systems, Suzhou, China, 2004.
[4] Marija Mikic-Rakic, Sam Malek, and Nenad Medvidovic.
Improving Availability in Large, Distributed Component-Based
Systems Via Redeployment, Component Deployment, Grenoble,
France, 2005.
[5] T. Kichkaylo et al. Constrained Component Deployment in
Wide-Area Networks Using AI Planning Techniques,
International Parallel and Distributed Processing Symposium,
Nice, France, 2003.
[6] SUN Microsystems, Java 2 Platform Enterprise Edition
Specification, Version 5.0, SUN Microsystems, 2005.
[7] SUN Microsystems, Java 2 Enterprise Edition Deployment
API Specification, Version 1.1, SUN Microsystems, 2002.
[8]http://msdn2.microsoft.com/en-us/library/ms998478.aspx
[9] http://rubis.objectweb.org

Cost on Aster0 Cost on Aster2 Cost on Aster3 Pattern Implementation

Deploy cost Undeploy
cost

Deploy
cost

Undeploy
cost

Deploy cost Undeploy
cost

Maximu
m Cost

Time by
experiment

(ms)

Put all on Aster0 12+0.02 0.2*4 0 0.2*7 0 0.2*6 12.82 14496
Put all on Aster2 0 0.2*4 12+0.02 0.2*7 0 0.2*6 13.42 15695

1

Put all on Aster3 0 0.2*4 0 0.2*7 12+0.02 0.2*6 13.22 15476
Put all EJBs on Aster0 12+0.02 0.2*4 0 0.2*7 0 0.2*6 12.82 14496
Put all EJBs on Aster2 0 0.2*4 12 0.2*7 0 0.2*6 13.4 14663

2

Put all EJBs on Aster3 0 0.2*4 0 0.2*7 12 0.2*6 13.2 15278

466

Exploratory Design of Derivation Business Rules Using Query Rewriting

Roman Krenický, David Willmor and Suzanne M. Embury
School of Computer Science, University of Manchester,
Oxford Road, Manchester, M13 9PL, United Kingdom

sembury@cs.manchester.ac.uk

Abstract

In the context of the WiABRproject, we have been ex-
ploring a new form of hypothetical reasoning which allows
users to explore the consequences of making changes to
their business rules before they expend cost and effort in
applying them to their organisation. We focus in this paper
on techniques to support querying over hypothetical collec-
tions of one kind of business rule, namely, derivation busi-
ness rules. Rules of this kind would ordinarily be managed
through a materialised view mechanism. However, in our
context, where updates to both rules and data are expected
to occur as frequently as queries, this approach is not suit-
able. We explore an alternative approach based on query
rewriting, and show how the semantics of data access in the
context of hypothetical changes to derivation business rules
are more complex than might first be thought.

1. Introduction

Designing new sets of business rules is a challenging task
for modern organisations. In addition to being correct and
coherent within themselves, any new business rules must
also fit well with the organisation’s existing rules. Even a
small business typically has hundreds, if not thousands, of
business rules that describe their policies and practices, as
well as statutory behaviours imposed by governments and
other public bodies. Assessing the effects of modifications
to even small subsets of the overall body of rules can be
challenging, and obscure anomalous interactions can easily
be overlooked.

In the WiABR project1, we set out to investigate sup-
porting technologies that would assist business managers in
assessing the impact of changes to business rules, before
money and effort has been put into implementing them (at
which point they become even more difficult to change). We

1WiABR stands for “‘What-If Analysis based on Business Rules”. It’s
development was supported by a grant from the UK Engineering and Phys-
ical Sciences Research Council.

have been constructing a tool that sits on top of the organ-
isation’s existing databases, and allows the user to explore
the effects of making changes to rules without risking any
damage to these important operational data sets. Through
WiABR, the user makes hypothetical changes to both data
and business rules, in order to construct a variety of hypo-
thetical states, each representing a different possible way
forward for the organisation. The states can be queried, in
order to explore their properties, and comparisons can be
made between them. This is illustrated by the screen shot in
Figure 1, which shows the main query interface to WiABR,
as well as an overview of the hypothetical states the user has
created so far, and the relationships between them.

Hypothetical database access is not a new idea. The no-
tion was proposed by Stonebraker et al. [1] in the early 80s,
and has since been explored and developed by a small num-
ber of researchers. Notable among these are: Kulkarni et
al., who generalised Stonebraker’s original concept into the
independently updated view (IUV) and proposed both eager
and lazy approaches to the materialisation of the hypothet-
ical views [2]; the members of the Heraclitus project team,
who promoted data deltas to first class citizens to support
more flexible forms of hypothetical querying [3, 4]; and the
members of the SESAME project team, who employed the
hypothetical queries of Heraclitus in an OLAP context to
support decision making [5].

In our context, we need support for hypothetical addi-
tions and deletions of business rules, as well as standard hy-
pothetical querying in the presence of changes to rules and
data [6]. Existing hypothetical database mechanisms did
not support this. In this paper, we describe one part of our
exploration of the techniques that are best suited to imple-
menting hypothetical changes to business rules. Business
rules come in a variety of different forms, each of which
presents different implementation challenges for hypotheti-
cal reasoning. Here, we focus on one type of rule, derivation
business rules (DBRs). We show how existing approaches
to implementing DBRs are not appropriate for our hypo-
thetical context (Section 2), and present instead an alterna-
tive approach based on query rewriting (Section 3). The

467

Figure 1. Main Screen of WiABR Showing Hypothetical States

algorithm for applying the rewriting rules in the presence
of multiple DBR changes is presented (Section 4). Finally,
we draw conclusions and outline the options for future work
(Section 5).

2. Hypothetical Changes to DBRs

Business rules are commonly classified into: constraint-
based rules, which describe valid or legal states of an organ-
isation; event-based rules, which describe the actions that
must be taken in certain circumstances; and derivation busi-
ness rules, our focus in this paper, which describe how to
compute or infer some quantity or value from other organ-
isational data [7]. Classic examples of DBRs are rules that
describes how to compute the sales tax due on orders, and
the discount a customer may receive on a specific product.

We consider a DBR to define a new attribute on a rela-
tion, based on a query over existing attributes, and use the
following simple extension to SQL to express them:

<defBR> ::= "DEFINE" <rel> "." <attr>
"AS" <unary-query>

Here, <rel> denotes the name of a relation, <attr>
an (unqualified) attribute name and <unary-query> a
SELECT expression which has exactly one attribute (the
derived attribute) in its select-list. This command re-
quests the addition of a new attribute to the given re-

lation. The attribute cannot be updated directly by the
user, but receives its value from the embedded query (i.e.
<unary-query>). Thus, the query must specify at most
one result for each tuple in <rel>; where no result is spec-
ified, the derived attribute is assumed to be NULL. DBR
queries may make use of other derived attributes, provided
that there are no cycles in the dependencies.

To allow us to link each derived value to the tuple to
which it belongs, we require each tuple in <rel> to be
accessed in the DBR query. This allows us to use tuple
identifiers (as supported by all the major DBMSs — for ex-
ample, the rowid column in Oracle, OID in PostgreSQL)
to link derived values to their associated tuple. Thus, the
<unary-query> that defines the DBR attribute is trans-
formed by the query processor so that it returns two values:
the derived attribute value and the (stored) <rel>.rowid
attribute. This relation can then be equi-joined with <rel>
to produce the original relation extended with the new de-
rived attribute2.

It is possible for the DBR relation to appear more than
once in the <unary-query> (with aliases), provided that
it appears in the FROM clause of the query without an alias
exactly once. The query processor will treat this occurrence

2The need to preserve tuple identifies in the DBR query means that
we cannot use operators that do not have a deterministic semantics for
tuple identifiers (such as duplicate elimination or grouping operators) in
producing the query result.

468

of the relation as the significant one for attribute derivation,
and will make use of its tuple identifier in joining the de-
rived values to the main relation.

DBRs can be removed with the command:

<dropDBR> ::= "DROP" "DERIVATIONBR"
<rel> "." <attr>

which has the effect of deleting <attr> from the schema
of <rel>.

In WiABR, these commands are executed against indi-
vidual states. Two kinds of state are distinguished: histor-
ical states, which correspond to the contents of one of the
organisation’s existing databases, and hypothetical states,
which describe hypothetical scenarios based on making
changes to other states. A hypothetical state is therefore
defined in terms of two properties, the origin state from
which it is created and the delta which describes the set
of hypothetical changes that were made to the origin state
in order to produce this hypothetical state. As the state
overview panel in Figure 1 shows, hypothetical states (such
as state H1) can be created from historical states (such as
product) or from other hypothetical states (such as state
H3, which is an extension of state H2). A delta is a hy-
pothetical change (or a sequence of such changes) to either
data or business rules. So, each hypothetical state represents
a possible scenario for change in the organisation.

Users can explore the network of hypothetical states they
have created, to see the effects of the hypothetical changes.
For example, a user might create a hypothetical state based
on changes to the business rules controlling the discounts
offered on profits. Several further hypothetical states could
be created from this, one of which assumes the new dis-
counts increase sales by 10%, another assuming an increase
of 20%, a third assuming a decrease of 10%, and so on. A
query can be issued to each of these states to calculate the
profits expected in each scenario, and thus to highlight risks
and potential benefits of changing the business rules in this
manner in the real organisation.

To support this, we need a mechanism for query an-
swering against hypothetical states that takes into account
the changes to data and business rules that define the state.
DBRs are commonly implemented using materialised views
[8], in which the current values for the derived attributes are
stored in a relation, ready for access on querying. Whenever
an update occurs, the materialised view is updated to bring
it back into consistency with the updated data.

Materialised views have been studied extensively, and
have been shown to be an excellent and efficient solution
when query rates are high and update rates are low. Be-
cause the data is stored, there is no overhead in accessing
derived attributes at query time. But, when a new view is
added, then there is a significant overhead while the mate-
rialised tables are initially populated, and a further (though

hopefully reduced) cost when changes occur to the base data
and the effects must be duplicated on the materialised view.
In ordinary database applications, this is a good trade off,
since we expect queries to be occurring frequently, updates
slightly less frequently and the creation of new views very
rarely. Unfortunately, in the context of exploratory rule de-
sign, the situation is reversed. The user typically needs to
create many hypothetical states, and the view will need to
be rematerialised from scratch for each one that modifies
the business rule in question or data stored in its relation.
We also expect there to be roughly equal numbers of up-
dates and queries for each state, but that no single state will
need to answer a great many queries (certainly not as many
as a typical OLTP query).

For all these reasons, we need a different strategy for
handling DBRs in hypothetical states. Since queries occur
relatively infrequently in our context, this suggests that it
may be better to impose the major DBR cost at query time,
by folding the DBR definition into the query and comput-
ing the attribute values only for such tuples as are directly
involved in the query. In the following section, we discuss
the ramifications of this approach for exploratory business
rule design in hypothetical databases.

3. DBR Deltas through Query Rewriting

Given a DBR with query uq that adds an attribute a to
a relation r, whenever a query q is posed against a state in
which the DBR is active, we must rewrite q so that all ref-
erences to r.a are replaced with an equivalent expression
which describes how to compute the attribute value. The
necessary rewritings are summarised in Figure 2. For con-
sistency within this paper, we will also adopt this rewrit-
ing approach to handle data deltas, so there are four cases
to consider, though in our implementation we make use of
stored hypothetical relations for this purpose [2].

More precisely, we apply the following rewrite rules, to
translate a query q applied to a hypothetical state s. Our
implementation is based on Oracle, and the peculiarities of
SQL for this DBMS have an occasional impact on the de-
tailed form of the rules. We also assume the existence of
a relation called singleton, which contains exactly one
tuple.

Data Insertion Deltas: for a delta INSERT INTO <R>
(<cols>) VALUES (<ivals>) replace each
<R> in q with:

(SELECT <cols> FROM <R>)
UNION ALL
(SELECT <ivals> FROM singleton)

Here, we use the singleton relation to produce a single-
tuple relation with the values to insert into <R>. Any

469

Figure 2. Overview of Delta Rewritings

attributes of <R> not mentioned in <cols> are also
selected in the first SELECT statement and NULL-
values are inserted for them by adding “NULL” to the
selection list of the second SELECT statement

For a delta of the form INSERT INTO <R>
(<cols>) <iquery> replace each <R> with:

(SELECT <cols> FROM <R>)
UNION ALL <iquery>

with the same treatment of unselected attributes.

Data Deletion Deltas: for a delta of the form DELETE
FROM <R>, replace each <R> in q with:

SELECT * FROM <R> WHERE 1=0

to create an empty relation with the correct schema3.
An alternative is to rewrite the query so that it no
longer contains <R>, but this is a much more com-
plex rewriting and unconditional deletions are compar-
atively rare in practice.

For a delta of the form DELETE FROM <R> WHERE
<dcond>, all occurrences of <R> should become:

SELECT * FROM <R> WHERE rowid
NOT IN (SELECT rowid FROM <R>

WHERE <dcond>)

3The SQL standard allows the explicitly unsatisfiable selection condi-
tion “WHERE FALSE”, but this is not supported by Oracle.

Various other rewritings look superficially plausible
for this case, but they are either not supported by Or-
acle, behave incorrectly in the case of NULL values
or else introduce undesirable duplicate elimination ef-
fects. The rewrite given here has the advantage that
tuple identities (so important for later application of
DBRs) are preserved.

Data Modification Deltas: for a delta of the form
UPDATE <R> SET <ucol1>=<uexpr1>, ...
we replace each <R> in q with:

SELECT <uexpr1> AS <ucol1>, ...,
<Rcols - ucols> FROM <R>

where <Rcols - ucols> are the attributes of <R>
which are not updated by the delta.

For a delta of the form UPDATE <R> SET
<ucol1>=<uexpr1>,...WHERE <ucond>,
we need to select the updated versions of the tuples
that satisfy the given condition and union them with
the (unchanged) tuples which don’t. In Oracle SQL,
this can be achieved by the expression:

(SELECT <uexpr1> AS <ucol1>, ...,
<Rcols - ucols> FROM <R>

WHERE <ucond>)
UNION ALL
(SELECT <ucol1>, ...,

<Rcols - ucols> FROM <R>
WHERE rowid NOT IN

(SELECT rowid FROM <R>
WHERE <ucond>))

New DBR Deltas: as might be expected, the rewriting
rules for DBR deltas is more complicated than those
for data deltas. DBRs take the form:

DEFINE <R>.<a> AS
SELECT <expr> <from-where-etc>

where <from-where-etc> is the remainder of the
defining query for the new attribute, i.e., the FROM
clause and the optional WHERE and ORDER BY
clauses). In the context of such a delta, we replace
every occurrence of <R> in q with:

<R>
LEFT OUTER JOIN
(SELECT <expr> AS <a>, <R>.rowid
<from-where-etc>) Tmp
ON (<R>.rowid=Tmp.rowid)

470

This rewriting takes advantage of the assumption men-
tioned earlier that the DBR query will always include
a single non-aliased occurrence of <R>. As discussed,
the rowid attribute is added to the SELECT clause
of the DBR query, and the resulting binary relation is
joined with <R>. We use a left outer join so that tuples
for which a derived attribute value is not computed by
the DBR query remain in the result with <R>.<a>
equal to NULL.

Delete DBR Deltas: if we have a delta which deletes a de-
rived attribute <R>.<a> from a state, we must replace
each <R> in q with a projection on all of the attributes
of <R> excluding <a>, i.e.

SELECT <Rcols - a> FROM <R>

A further complicating factor which applies to all the rewrit-
ing rules mentioned here is that any replacement expression
for a relation must preserve its original name. This is so that
hypothetical queries can be expressed in terms of the ba-
sic schema, rather than having to be rewritten to use differ-
ent relation names for each hypothetical state, which would
be unintuitive and awkward for the user. We can achieve
this using aliasing, but only at the expense of wrapping the
rewritten expression in a further SELECT clause. For ex-
ample, the replacement expression for <R> in the presence
of a new DBR delta would be enclosed in the following ex-
pression:

SELECT <R>.*, Tmp.<a> FROM <ReplExpr>

There are also certain cases in which special handling of
tuple identifiers is required, which space does not allow us
to discuss. The full set of rewrite rules are given elsewhere
[9].

4. Application of the Rewrite Rules

The previous section described the rewrite rules to be ap-
plied for application of a single delta to a query being eval-
uated against a hypothetical state. In general, of course, we
will have a sequence of deltas describing the difference be-
tween this hypothetical state and its origin state. The effects
of all of these must be absorbed into the query in the correct
order before it can be evaluated against the root (historical)
state, as a normal query. Since each delta must be applied
in the context of those which precede it, we work through
the sequence of deltas in reverse order, applying the rewrite
rules as we go. However, the presence of DBR deltas com-
plicates this process significantly, since the application of
each delta may also imply a change to one or more of the
derived attributes currently in scope. Thus, in between each
delta application, we must reapply the deltas for each of the
derivation business rules currently in scope.

This point is best explained with an example. Suppose
we have a sequence of deltas < δ1, δ2 > which together
describe a hypothetical state s1 derived from another state
s2. Suppose further that the state s1 “inherits” two DBRs
(r1 and r2) from s2 and that δ1 is a data delta while δ2 adds
a new DBR (r3) to the state. If we were building up s1 as a
true database state, rather than a hypothetical one, we would
need to apply the deltas in the following order:

δ1 ; applyDBRs ; δ2 ; applyDBRs

Therefore, if we wish to convert a hypothetical query q ex-
pressed against state s1 into a query that can be executed
against the base state s2, we must apply the rewrite rules
for the “inverse” of this set of changes to q. Furthermore,
since the DBRs are themselves queries, they are also subject
to the effects of subsequent DBR deltas, which may change
the schema elements referenced in each. Therefore, they
must also be rewritten, before being applied to the hypo-
thetical query, but in a forward order rather than the reverse
order described here.

These considerations yield the following algorithm for
query rewriting in the presence of a sequence of data and
DBR deltas:

1. Apply all (derivation) business rule deltas in forward
order to the inherited set of business rules.

2. Apply all derivation business rules to the query (i.e.,
replace each occurrence of each rule’s relation by the
appropriate rewriting expression)

3. Apply the last delta of the sequence to the rewritten
query, as follows:

• if it is a DBR delta, apply it in reverse to the set
of business rules, or

• if it is a data delta, apply it to the query by replac-
ing each occurrence of its relation by the appro-
priate rewriting expression.

4. Apply the current set of derivation business rules to the
rewritten query.

5. Repeat from step 3 with the next delta in the (reverse)
sequence.

6. When all deltas are processed, apply the initial (inher-
ited) set of DBRs to the query that result.

This algorithm is considerably more complex, and involves
far more rewriting steps, than might have been predicted
for the rewriting approach. Since some of the rewritings in-
troduce several copies of the affected relation, the repeated
application of the rewriting rules can very quickly explode,
resulting in a highly nested query with many occurrences of

471

the relations involved in DBRs. Some of these will be han-
dled elegantly by the DBMS’s query optimiser, which may
be able to spot the repeated expressions and cache them, to
avoid continually re-evaluating them. In our trials with even
relatively simple examples, however, we have found that
the complexity of the rewritten queries quickly becomes too
much for the Oracle query processor to handle elegantly. It
is therefore vital that we do not apply rewritings that are un-
necessary. One optimisation step that we have implemented
in our hypothetical query engine is to check that the derived
attributes involved in the deltas are actually used within the
query before applying them. This is done by pushing a pro-
jection on all attributes down through the relational algebra
tree for the query, collecting restrictions on the attributes of
interest as we go. Any attribute not restricted by this pro-
cess is unused by the query, and DBRs relating to it can be
ignored for the purposes of query rewriting.

5. Conclusions

We have described how we can support hypothetical rea-
soning over collections of derivation business rules, using
a query rewriting approach. This allows the user to experi-
ment with different combinations of new and existing rules,
and to apply them to hypothetical scenarios based on the
historical data stored in the organisation’s databases. The
ability to change one’s business rules rapidly and reliably is
important for any agile organisation, wishing to keep pace
with and advance over its competitors. WiABR provides a
sandbox environment in which potential new business rules
can be explored and examined, before an organisation em-
barks on the often risky and expensive process of rolling out
the changed business rules to staff and information systems.

We chose to explore query rewriting approaches to hy-
pothetical reasoning due to the unsuitability of materialised
solutions for this context. And, in simple cases, the rewrit-
ing approach does provide the benefits we expected of it.
However, when many hypothetical states are chained one
on top of another, or when delta sequences are long, the ex-
plosion in the complexity of the rewritten query mean that
performance becomes unacceptable for an exploratory style
application. One possible solution to this would be to ex-
plore a combination of materialised and query rewriting ap-
proaches, based on the stability of the individual hypotheti-
cal states and the patterns of querying experienced.

A further aspect that is still to be explored in our work
is the issue of explanations for the results of hypothetical
queries. For example, if a query predicting the profit to
be obtained in a given hypothetical scenario gives a much
lower result than expected, the user might reasonably ask
the system to provide some help in explaining the root cause
of this surprising data. This is a form of data lineage prob-
lem [10], and further work is required to understand how it

would operate in the WiABR context.

References

[1] Stonebraker, M.: Hypothetical Data Bases as Views.
In: Proceedings of the ACM-SIGMOD Conference on
Management of Data, Ann Arbor, Mich, US (1981)

[2] Kulkarni, U.R., Ramirez, R.G.: Independently Up-
dated Views. IEEE Transactions on Knowledge and
Data Engineering 9 (1997) 798–812

[3] Ghandeharizadeh, S., Hull, R., Jacobs, D.: Heracli-
tus: Elevating Deltas to be First-Class Citizens in a
Database Programming Language. ACM Transactions
on Database Systems 21 (1996) 370–426

[4] Griffin, T., Hull, R.: A Framework for Implement-
ing Hypothetical Queries. SIGMOD Record 26 (1997)
231–242

[5] Balmin, A., Papadimitriou, T., Papakonstantinou, Y.:
Hypothetical Queries in an OLAP Environment. In
El Abbadi, A., Brodie, M., Chakravarthy, S., Dayal,
U., Kamel, N., Schlageter, G., Whang, K.Y., eds.:
Proceedings of 26th International Conference on Very
Large Data Bases, Cairo, Egypt, Morgan Kaufmann
(2000) 220–231

[6] Embury, S., Willmor, D., Dang, L.: Assessing Im-
pacts of Changes to Business Rules through Data Ex-
ploration. In: Proceedings of the International Confer-
ence on Software Engineering Advances, IEEE Com-
puter Society Press (2006)

[7] Shao, J., Pound, C.: Reverse Engineering Business
Rules from Legacy Systems. BT Technology Journal
17 (1999) 179–186

[8] Chaudhuri, S., Krishnamurthy, R., Potamianos, S.,
Shim, K.: Optimizing queries with materialized
views. In Yu, P., Chen, A., eds.: Proceedings of the
Eleventh International Conference on Data Engineer-
ing, Taipei, Taiwan, IEEE Computer Society (1995)
190–200

[9] Krenický, R.: A Hypothetical Querying Approach
for What-If Analysis Based on Business Rules. Stu-
dent Research Project Report, University of Manch-
ester/Universität Karlsruhe (2006)

[10] Cui, Y., Widom, J.: Lineage Tracing for General
Data Warehouse Transformations. VLDB Journal 12
(2003) 41–58

472

Classification of Design Pattern Traits

Jing Dong, Yajing Zhao
Department of Computer Science

University of Texas at Dallas, Richardson, TX 75083, USA
{jdong, yxz045100}@utdallas.edu

Abstract
Design patterns describe good solutions to common and

recurring problems. The applications of design patterns
may vary in different layouts, which pose challenges for
recovering and changing these design pattern instances
since essential characteristics of each design pattern are
described implicitly. In this paper, we categorize different
characteristics of each design pattern as its traits in form of
predicates. We classify different predicates into groups and
levels. In this way, the significant characteristics of each
design pattern are explicitly specified in predicates that can
be used for design pattern recovery and evolution analysis.

1. Introduction
Design patterns [9] which describe good solutions to

recurring problems have been widely accepted and applied
in industry. The descriptions of each design pattern
typically are high-level design guidelines, such as intent,
structure, behavior, participants, and collaborations. Each
design pattern describes flexible designs that may be
applied in various ways. This poses critical challenges on
design pattern recovery and evolution.

Existing approaches [1][2][6][12] for design pattern
recovery generally match essential characteristics of each
design pattern with the system design. However, different
approaches render different result when matching the same
design pattern with the same software system. We found
several possible reasons. First, each design pattern typically
includes a group of classes, each of which plays some role.
Some approaches choose partial (rather than full) matches
of the roles. Second, the relationships, such as association,
generalization, and delegation, between classes are normally
important parts of a design pattern, which have been missed
by some approaches. Third, there are several ways to
implement the delegation relationship in object-oriented
programming languages. Some approaches may not
consider all these variations. Fourth, existing OO
programming languages provide library classes, such as
LinkedList, ArrayList, HashMap, and Hashtable, which
facilitate the implementation of some design patterns
including aggregation relationship, such as the Composite
pattern. On the other hand, it complicates the pattern
recovery processes [13]. All these possible reasons for
result discrepancies from different approaches can be boiled
down to one critical issue, which is the lack of explicit

specification of essential characteristics of each design
pattern.

Design patterns encapsulate future evolutions and
changes which will not affect other part of the design. When
multiple design patterns are applied and composed,
nevertheless, the interactions among them may cause design
patterns loose essential characteristics so as to incur an
error. Thus, it is important to check whether all essential
characteristics of a design pattern still hold when an
instance evolves. Such checking also requires explicit
specification of the essential characteristics of each design
pattern.

In this paper, we categorize the characteristics of each
design pattern as its traits, which are specified as predicates.
Each predicate is also classified into different groups and
levels. In this way, we can use a list of predicates to specify
the essential characteristics of a design pattern.

The remainder of this paper is organized as follows. The
next section presents a classification of different kinds of
predicates to specify essential characteristics of each design
pattern. Section 3 discusses the applications of our
specification of design pattern traits in pattern discovery and
evolution. The last two sections are related work and
conclusions.

2. Design Pattern Traits
In this section, we present predicates to specify essential

characteristics of each design pattern. In particular, we
define two groups of predicates, entity and relationship.
Each entity predicate is further categorized as “HAS” or
“IS” predicates. Each predicate category includes three
levels (class, element, and implementation) of predicates
and negation predicates. In each level, we define root and
derived traits. Negation predicates are also necessary, as
explained in Section 2.3.4.

2.1 Entity Predicates (HAS)
Predicates in this section define whether a design pattern

has a specific class, whether a class has a specific operation,
whether an operation has a particular parameter, etc.

2.1.1 Class Level
Predicates in this level define whether a piece of design

has a class playing a particular role. For example, Figure 1
shows a class diagram of the Composite pattern, which has
Component, an abstract class, Composite and Leaf, two
concrete classes. To specify these pattern characteristics, we

473

define the following root and derived class level HAS
predicates, and their usage is explained by Example 2.1.
Trait 2.1 (Root class level HAS predicate)

hasClass (D, C): Design D includes Class C.
Trait 2.2 (Derived class level HAS predicates)

hasAbstractClass (D, C) = hasClass (D, C) isAbstract (C):
Design D includes abstract class C.
hasConcreteClass (D, C) = hasClass (D, C) isConcrete (C):
Design D includes concrete class C.

Example 2.1 (Composite pattern HAS traits)
hasAbstractClass (CompositePattern, Component)
hasConcreteClass (CompositePattern, Composite)
hasConcreteClass (CompositePattern, Leaf)

+Operation()

+Add(in Component)

+Remove(in Component)

+GetChild(in int)

Component

+Operation()

Leaf

+Operation()
+Add(in Component)
+Remove(in Component)
+GetChild(in int)

Composite

1

+children

*

for all g in Children, g.Operation()

Figure 1 Class Diagram of Composite Pattern

2.1.2 Element Level
Predicates in this level define the required attributes and

operations in a class. Their usage is illustrated in Example
2.2.
Trait 2.3 (Root element level HAS predicates)

hasOperation (C, O): Class C has operation O.
hasAttribute (C, A): Class C has attribute A.

Trait 2.4 (Derived element level HAS predicates)
hasAbstractOperation (C, O) = hasOperation (C, O)
isAbstract (O): Class C has abstract operation O.
hasConcreteOperation (C, O) = hasOperation (C, O)
isConcrete (O): Class C has concrete operation O.
hasPublicOperation (C, O) = hasOperation (C, O) isPublic
(O): Class C has public operation O.
hasPrivateOperation (C, O) = hasOperation (C, O) isPrivate
(O): Class C has private operation O.
hasProtectedOperation (C, O) = hasOperation (C, O)
isProtected (O): Class C has protected operation O.
hasPublicAttribute (C, A) = hasAttribute (C, A) isPublic (A):
Class C has public attribute A.
hasPrivateAttribute (C, A) = hasAttribute (C, A) isPrivate
(A): Class C has private attribute A.
hasProtectedAttribute (C, A) = hasAttribute (C, A)
isProtected (A): Class C has protected attribute A.
operationSet (OS, C) =

iOpr OS , hasOperation (C, Opri):
each operation Opri in OS is a method of Class C.

Example 2.2 (Composite pattern HAS traits)
hasAbstractOperation (Component, Operation)
hasAbstractOperation (Component, Add)
hasAbstractOperation (Component, Delete)
hasAbstractOperation (Component, GetChild)
hasConcreteOperation (Composite, Operation)
hasConcreteOperation (Composite, Add)

hasConcreteOperation (Composite, Delete)
hasConcreteOperation (Composite, GetChild)
hasConcreteOperation (Leaf, Operation)

2.1.3 Implementation Level
Predicates in this level define the behavior of operations.

For example, the Add() and Delete() operations shall have
one parameter of type Component. To specify these
characteristics, we define the following predicates:
Trait 2.5 (Root implementation level HAS predicates)

hasStmt (O, S): Operation O has a statement S.
hasReturnValue (O, Ob): Operation O has Ob as return value.
hasReturnType (O, T): Operation O has T as return type.
hasParameter (O, T, k): T is the type of the kth parameter of
Operation O. If k=1, then k can be omitted.

Example 2.3 (Composite pattern HAS traits)
hasParameter (Add, Component)
hasParameter (Delete, Component)
hasParameter (GetChild, int)

2.2 Entity Traits (IS)
Predicates in this section define the constraints for

classes, attributes, and operations.

2.2.1 Class Level
Predicates in this level define the types of classes, for

example, abstract or concrete.
Trait 2.6 (Root class level IS predicates)

isAbstract (C): Class C is an abstract class.
isConcrete (C): Class C is a concrete class.

2.2.2 Element Level
Predicates in this level define the characters of attributes

and operations, for example, whether an operation is
abstract or not.
Trait 2.7 (Root element level IS predicates)

isAbstract (O): Operation O is an abstract operation.
isConcrete (O): Operation O is a concrete operation.
isPublic (O): Operation O or attribute O is public.
isPrivate (O): Operation O or attribute O is private.
isProtected (O): Operation O or attribute O is protected.
equal (A, B): A and B is equal to each other. For example, equal
(name (O1), name (O2)).
isType (Ob, T): Object Ob is of type T.

2.3 Relation Traits
Predicates in this section define the relation between

classes, attributes, and operations.

2.3.1 Class Level
Predicates in this level define the constraints for the

relations between classes.
Trait 2.8 (Root class level relation predicates)

generalize (C1, C2): Class C1 is a subclass of class C2.
associate (C1, C2): Class C1 keeps a reference to class C2.
aggregate (C1, C2): Class C1 maintains a reference to C2, and
class C2 is a part of C1 semantically.
oneToMore (C1, C2): The multiplicity of association or
aggregation relationship from class C1 to class C2 is 1:m.
oneToOne (C1, C2): The multiplicity of association or
aggregation relationship from class C1 to class C2 is 1:1.

474

moreToMore (C1, C2): The multiplicity of association or
aggregation relationship from class C1 to class C2 is m:m.
create(C1, C2): Class C1 is responsible for creating Class C2.
correspondingRelated (P (SET1, SET2)): E1 SET1,

E2 SET2, s.t., P (E1, E2). This predicate is used specially
in the Abstract Factory pattern where there shall be at least one
create method for each family of products.

Trait 2.9 (Derived class level relation predicates)
childrenSet (CS, C) = iClass CS , generalize (Classi, C):
each class Classi in CS is a subclass of C.

Example 2.4 (Composite pattern relation traits)
generalize (Composite, Component)
generalize (Leaf, Component)
aggregate (Composite, Component)
oneToMore (Composite, Component)
The usage of create(C1, C2) and correspondingRelated (P

(SET1, SET2)) can be illustrated with the Abstract Factory
pattern in the following partial specifications.
Example 2.5 (Partial Abstract Factory pattern relation traits)

correspondingRelated (create (S, Si))
childrenSet(CS, AbstractFactory)
childrenSet(Si, AbstractProducti)

2.3.2 Element Level
Some of the relationships can be detailed in element

level, such as create.
Trait 2.10 (Root element level relation predicates)

create (C1, M, C2): method M in class C1 creates class C2.

2.3.3 Implementation Level
Predicate in this section describes relations between

classes at the implementation level.
Trait 2.11 (Root implementation level relation predicate)

delegate (C1, O1, C2, O2): Operation O1 in class C1 forwards
request to Operation O2 in class C2.

Example 2.6 (Composite pattern relation traits)
delegate (Composite, Operation, Component, Operation)

2.3.4 Negation Relationships
It is mandatory that some relations shall not exist between

classes, attributes, or operations. In the Composite pattern,
for example, there is a generalization relationship from
Composite to Component. Hence, there shall not be a
generalization relationship from Component to Composite,
to avoid a circular generalization relationship. Negation
relationship is used to guarantee this kind of characteristics.
Trait 2.12 (Root negation relation predicates)

noDirectAccess (C1, C2): Class C1 does not have direct access
to class C2, the attributes or the operations of C2

Trait 2.13 (Derived negation relation predicates)
differentInterface (C1, O1, C2, O2) = ¬ (i hasParameter(O1,
Ti, i) hasParameter(O2, Ti, i) hasReturnType(O1, Tr)
hasReturnType(O2, Tr)): Operation O1 in class C1 has different
interface from Operation O2 in class C2.
noGeneralize (C1, C2) = ¬ (generalize (C1, C2)): There shall
not be a generalization relationship from class C1 to C2.
noAggregate (C1, C2 = ¬ (aggregate (C1, C2))): There shall not
be an aggregation relationship from class C1 to C2.

Example 2.7 (Composite pattern relation traits)
noGeneralize (Component, Composite)
noGeneralize (Component, Leaf)

noAggregate (Component, Composite)
The usage of differentInterface (C1, O1, C2, O2) and

noDirectAccess (C1, C2) can be illustrated with the Adapter
pattern [9].
Example 2.8 (Partial Adapter pattern relation traits)

differentInterface (Adapter, Request, Adaptee,
SpecificRequest) noDirectAccess (Client, Adaptee)

3. Applications
The predicates introduced in the previous section have

many practical usages. In this section, we discuss two
applications, one on design pattern recovery and the other
on design pattern evolution.

3.1 Design Pattern Recovery
Design pattern recovery from source code is a popular

research topic [1][2][6][12]. There are many tools
developed. As discussed previously, however, different
tools may generate different results when discovering the
same pattern from the same system. The main reason is that
each approach defines its own set of pattern characteristics
and embeds the knowledge in their tools. In the previous
section, we present an approach to explicitly specify the
pattern characteristics as traits. There are several benefits of
our approach. First, it makes explicit the pattern
characteristics to be discovered. Second, different
approaches may share the same set of characteristics of each
design pattern. Third, it allows different approaches to be
compared based on the same standard. Fourth, the pattern
characteristics described by our predicates can be the input
of pattern recovery tools such that the algorithms for pattern
matching can be separated from the definition of patterns.
We introduced our design pattern recovery approach in [6].
We will extend our tool to accept design pattern traits
defined in this paper. We will transform the predicates
defined in the previous section into XMI format so that they
can be the input of our tool in the future.

As an example, the traits of the Composite pattern can be
described by combining the predicates listed in Example
2.1, 2.2, 2.3, 2.4, 2.6, and 2.7.

3.2 Design Pattern Evolution
Each design pattern typically documents possible future

changes that may only affect limited part of the pattern. The
evolution process of design patterns can be achieved by
adding or removing design elements in existing design
patterns. A classification of possible ways of pattern
evolution has been presented in [7]. When a design pattern
evolves, a group of modeling elements may be added or
removed from the original design. However, such
information on pattern evolutions is generally implicit in the
description of each design pattern. Missing part of this
group of modeling elements may result in inconsistencies in
the design. Thus, it is important to specify the essential
characteristics to be added into or removed from a design
pattern when the pattern evolves. Our approach presented in
the previous section can be used to explicitly define such
essential characteristics of each design pattern evolution.
After a design pattern instance evolves, thus, a group of

475

predicates corresponding to the group of modeling elements
can be added or removed. For example, an initial instance of
the Composite pattern may have one leaf class and one
composite class, as shown in Figure 1. The traits of this
instance are already described in the previous sections.
When the pattern instance evolves by adding another leaf
class, Leaf1, new traits are to be included correspondingly.
The following predicates are added to the original one to
form the new traits of evolved Composite pattern instance.

hasConcreteClass (CompositePattern, Leaf1)
hasConcreteOperation (Leaf1, Operation)
generalize (Leaf1, Component)
noGeneralize (Component, Leaf1)

4. Related Work
Eden et al. [8] describe a precise method to specify how a

design pattern can be applied into existing code in a meta-
programming language. They presented a prototype to
support the specification of design patterns and automatic
applications of patterns. Balanced Pattern Specification
Language (BPSL) [11] considers incorporates First Order
Logic (FOL) to describe the structural aspect and Temporal
Logic of Actions (TLA) to depict behavioral aspect of
design patterns. In contrast to the above two approach, we
consider all kinds of traits of patterns that are important in
various applications, such as recovery and evolution. Our
specification includes low-level implementation
information, rather than only high-level design knowledge.

Design Pattern Markup Language (DPML) is defined in
[2]. It provides an easy way for users to modify pattern
descriptions to suit their needs, or define their own patterns.
Contrast to their approach, our approach defines not only
normal traits but also negation predicates that ensure the
pattern traits by excluding certain characteristics.

Dietrich [3] introduces an approach using the web
ontology language (OWL) to document design patterns
found. They build uniform resource identifiers (URIs) for
pattern artifacts. In contrast, we use simple predicates to
define each pattern characteristics. We also classify all the
predicates into different categories and levels.

Montero et al. [10] propose a semantic ontology-based
representation for domain specific patterns based on the
domain knowledge for which they were written. Instead of
focusing on the domain specific patterns, we deal with
general design patterns that help software design and
improve software adaptability and extensibility.

Our previous work [4][5] on formalizing design patterns
and reasoning about their compositions also focuses on
high-level design structure and behavior of design patterns.
Different from our previous goals of formal specification
and verification of design patterns and their compositions at
design level, our approach in this paper aims at pattern
recovery and evolution based on a light-weighted
formalism.

5. Conclusions
In this paper, we present our approach of explicitly

specifying essential characteristics of a design pattern using
predicates. We classify predicates into several groups, e.g.,

entity and relation, and levels, e.g., class, element, and
implement. Each level includes root and derived predicates.
We plan to incorporate this work into design pattern
recovery and evolution. In particular, our tools will separate
the pattern specifications from its recovery and evolution so
that our tools can accept any pattern descriptions in the
format defined in this paper. Besides, the theory can also
help automatic application of design patterns.

References
[1] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design pattern

recovery in object-oriented software.” Proceedings of the 6th
IEEE International Workshop on Program Understanding
(IWPC), pp 153-160, 1998.

[2] Z. Balanyi and R. Ferenc, “Mining design patterns from C++
source code.” Proceedings of the 19th IEEE International
Conference on Software Maintenance (ICSM), pp. 305-314,
September 2003.

[3] J. Dietrich and C. Elgar, “A formal description of design
patterns using OWL.” In Proceedings of the Australian
Software Engineering Conference (ASWEC), 2005.

[4] J. Dong, P. Alencar, and D. Cowan, A Behavioral Analysis
and Verification Approach to Pattern-Based Design
Composition, the International Journal of Software and
Systems Modeling, Springer-Verlag, Volume 3, Number 4,
December 2004, Pages 262-272.

[5] J. Dong, P. Alencar, and D. Cowan, Automating the
Analysis of Design Component Contracts, International
Journal of Software - Practice and Experience (SPE), Wiley,
Volume 36, Issue 1, pages 27-71, January 2006

[6] J. Dong, D. S. Lad and Y. Zhao, “DP-Miner: Design Pattern
Discovery Using Matrix.” The Proceedings of the Fourteenth
Annual IEEE International Conference on Engineering of
Computer Based Systems (ECBS), Arizona, USA, March
2007.

[7] J. Dong, S. Yang, and K. Zhang, “A model transformation
approach for design pattern evolutions.” Proceedings of the
Thirteenth Annual IEEE International Conference on
Engineering of Computer Based Systems (ECBS), p.p. 80-89,
Germany, March 2006.

[8] A. H. Eden, A. Yehudai, and J. Gil, “Precise specification and
automatic application of design patterns.” In International
Conference on Automated Software Engineering, IEEE Press,
pp 143–152, 1997.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[10] S. Montero, P. Diaz, and I. Aedo, “A semantic representation
for domain-specific patterns.” In International Symposium on
Metainformatics, U. K. Wiil, Ed., Springer-Verlage, LNCS
3511, pp. 129-140, 2005.

[11] T. Taibi and D. Ngo, “Formal Specification of Design
Patterns – A Balanced Approach.” In Journal of Object
Technology, 2(4), pp 127-140, July-August, 2003.

[12] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.
Halkidis, “Design Pattern Detection Using Similarity
Scoring.” IEEE transaction on software engineering, Vol. 32,
No. 11, November 2006.

[13] R. J. Wirfs-Brock, "Refreshing Patterns," IEEE Software,
vol.23, no.3, pp. 45-47, May/Jun, 2006.

476

Abstract— Data warehouses are considered a cornerstone of a
decision support system, since they provide the adequate
information resources for decision making in an integrated
manner. Therefore, the quality of a data warehouse is a key issue
in any business organization, and several works have pointed out
the importance of measuring the quality in data warehouse
domain. However, to the best of our knowledge, the current
approaches that deal with the quality aspects of data warehouses
only consider isolated quality metrics, without being part of a
comprehensive quality model that allows designers to assess the
quality of a data warehouse in a systematic and objective way.
Having considered this limitation in current data warehouse
research, in this paper we present a quality model for the data
warehouse domain. This model allows designers to state the
meaning of quality in the data warehouse domain, thus
measuring the quality of a data warehouse conceptual model in a
systematic and objective way. We have used a well-known
methodology to build this quality model, and we have related the
elements of this quality model to our previously defined and
validated quality metrics for conceptual models of data
warehouses.

Index Terms— Data Warehouse, Quality, Quality Model

I. INTRODUCTION

owadays, data warehouses have become one of the most
crucial components of decision support systems, since
they efficiently and effectively allow the integrated

management of data in order to provide information resources
that support effective problem and opportunity identification,
critical decision-making, and strategy formulation,
implementation, and evaluation. Therefore, data warehouse
technology has become an adequate solution, providing such
resources in an environment where increasing competition,
sophisticated and informed costumers, unpredictable market

Manuscript received March 8, 2007. This work was supported in part by
the CALIA Project supported by the University of Castilla – La Mancha and
the DIMENSIONS Project (PBC-05-012-1) supported by Consejería de
Educación y Ciencia – Junta de Comunidades de Castilla – La Mancha. Jose-
Norberto Mazón is funded by the Spanish Ministry of Education and Science
under a FPU grant (AP2005-1360)

Manuel Serrano (corresponding author, Phone: +34 926295300) and Mario
Piattini are with the Alarcos Research Group, University of Castilla – La
Mancha, Ciudad Real, Spain (e-mail: Manuel.Serrano@uclm.es and
Mario.Piattini@uclm.es).

Rafael Romero, José-Norberto Mazón and Juan Trujillo) are with the
Department of Software and Computing Systems, University of Alicante,
Alicante, Spain (e-mail: romero@dlsi.ua.es, jnmazon@dlsi.ua.es and
jtrujillo@dlsi.ua.es).

fluctuations, and changing regulatory environments are
putting much pressure on business organizations [1].

As a result of this importance, companies are increasing
their investment in the development of data warehouses. In
fact, the investment in this kind of systems is around several
millions a year and increases by 20% per year [2]. However,
despite the potential of data warehouses and the huge amount
of money invested, success is not necessarily guaranteed. As
stated by several authors, a data warehouse project is a real
risk [3] and more than 60% of data warehouses do not meet
the user expectations [4]. Therefore, designers have to deal
with quality issues to avoid these pitfalls and guarantee the
success of the data warehouse project [5].

Dealing with quality issues is not an easy task, since quality
is an abstract and subjective aspect, for which there is no
universal definition: it is usually said that there is a quality
definition for each person. In this way, it is very complex to
measure or assess the quality of a software product in an
objective way. Several guides have been proposed to address
the complexity of data warehouse quality, but most of the
time, guides are not enough, since they can help designers in
their work, but they imply rather subjective decisions, and this
can lead to “not-so-good” products.

In order to overcome this inherent subjectivity of quality in
data warehouse projects, in this work we introduce a quality
model that helps designers to assess the quality of a data
warehouse in an objective way, thus guaranteeing success in
designing a good data warehouse. In this paper, we focus on
the quality of conceptual data warehouse models and we
present the first steps towards building a data warehouse
quality model. We focus on the quality of the conceptual
models, as a good design may (or may not) lead to a good
system, but a bad design will surely render a bad product of
low quality. Thus, it is important to focus on the quality of the
product from the first steps of its development, i.e. the
conceptual model.

The remainder of this paper is structured as follows. The
next section shows related work regarding data warehouse
quality and models. In Section 3, a method for developing
quality models based on ISO 9126 [6] is presented. In Section
4, the method is applied to the building of a data warehouse
quality model. The last section presents some conclusions and
future work arising from this work.

II. RELATED WORK

From the beginnings of data warehousing, quality has been
an important issue, from the perspectives of both data and

A Proposal for a Conceptual Data Warehouse
Quality Model

Manuel Serrano, Rafael Romero, José-Norberto Mazón, Juan Trujillo, and Mario Piattini

N

477

schema. This interest in quality is motivated by the importance
of the information quality in the decision support systems.

Several techniques have been used in an attempt to improve
the quality of data warehouses, such as software process
improvement models. Among these techniques we can find
the Capability Maturity Model [7] or SPICE [8], which relies
on the belief that “good processes deliver good software”, but
unfortunately good processes do not guarantee good software.
Good processes only increase the probability that good
software may be obtained.

In this search for quality, several quality standards have
been applied to data warehouse development (such as ISO
9126 [6] and IEEE 1061 [9], usually complemented by GQM
techniques [10, 11]) to attempt to measure the quality of the
data warehouse. These standards are too general and complex
and are usually not concrete enough to be useful in assessing
the quality of the system.

With regard to data warehouse quality measurement we can
find several proposals for measuring some quality dimensions
of data warehouses such as the metrics proposed by [12] and
[5]. These proposals are good approaches to data warehouse
measurement but they are not complete, since they are not part
of a quality model that allows designers to use them in a
systematic and objective way.

Lastly, we can find the proposal of a data warehouse quality
model, named DWQ [13] which attempted to assure the
quality of the data stored inside the data warehouse to improve
the data warehousing experience; this project had some
quality dimensions and focused on data quality. We think that
data warehouse quality should not only be assessed in terms of
data quality and that schema quality is as important an issue as
data quality. In this paper we propose a quality model for
conceptual data warehouse models, based on the ISO 9126
standard.

III. QUALITY MODEL DEVELOPMENT METHOD

Developing a quality model is not an easy task. Several
aspects should be considered and the whole process should be
carried out in an objective and methodological way. For this
purpose, Franch and Carvallo [14] proposed a method to build
quality models based on the ISO 9126-1 standard [6]. This
method is now briefly described.

The proposed methodology comprises of six steps and also
considers a preliminary activity (step 0). A graphical view of
the methodology is shown in Figure 1. Although the steps
seem to be sequential, these steps can be intertwined and
repeated if needed.

Fig. 1. Franch and Carvallo [14] six steps methodology

Step 0. Defining the domain
Previous to the application of the methodology, it is

necessary to carefully examine and describe the domain of
interest, with the help of experts. In order to describe the
domain the use of conceptual modelling to keep track of
relevant concepts is recommended.

Step 1. Determining quality subcharacteristics
The decomposition of characteristics into subcharacteristics

that appear in the ISO standard is quite reasonable and should
be used unless good reasons for not doing so emerge during
domain analysis. In this case, new subcharacteristics are
added, some of them are refined and it is even permisable to
remove some of the subcharacteristics that do not apply to the
domain.

Step 2. Defining a hierarchy of subcharacteristics
 Typically, further decomposition of subcharacteristics with
respect to some factors is needed. In this way, we obtain a
hierarchy of subcharacteristics.

Step 3. Decomposing subcharacteristics into attributes
 Quality subcharacteristics provide a comprehensible
abstract view of the quality model. But we need to decompose
these abstract concepts into more concrete ones - the quality
attributes. An attribute keeps track of a particular observable
feature of the packages in the domain. Attributes should be
precisely defined to clarify the underlying quality concepts
that they represent and to link them with the appropriate
subcharacteristics.
 As the standard itself mentions, it is not possible, from a
practical point of view, to measure all the subcharacteristics in
the entirety of a software product, but we can create a
complete list of those which are most relevant.

Step 4. Decomposing derived attributes into basic ones
 Some of the attibutes obtained in Step 3 can be directly
measured, but others may be so abstract that they require more
decomposition. In this way, attributes are classified as being
‘derived’ and ‘basic’. Derived attributes should be
decomposed until they are completely expressed in terms of
those which are basic.

478

Step 5. Stating relationships between quality entities
 If we wish to obtain a complete quality model, we must
state the relationships between quality entities. The model
becomes more exhaustive and the implications of quality
requirements become clearer.
 We can classify the relationships into three types:

Collaboration: Growing the first quality entity
implies growing the second quality entity.
Damage: Growing the first quality entity implies
decreasing the second quality entity
Dependency: Some values of the first quality
attribute require that the second one fulfils certain
conditions.

Step 6. Determining metrics for attributes.
 It is not only necessary to identify the attributes but also to
select metrics for all the attributes. For this task, we can use
the general theory of metrics.

IV. DATA WAREHOUSE QUALITY MODEL

In this section, we explain how to apply the method
described in the previous section to develop a quality model
for data warehouse domain. We have developed each of the
proposed steps, and we have even related our previously
defined metrics to this quality model.

Step 0. Defining the domain
In this step we define the domain for which we want to

build a quality model, in this case the conceptual data
warehouse schemata. Next, we outline an approach to data
warehouse conceptual modeling, based on the UML (Unified
Modeling Language). This approach has been specified by
means of a UML profile1 which contains the stereotypes
necessary to carry out conceptual modeling successfully [15].
This profile contains the stereotypes which are necessary to
elegantly represent main multidimensional (MD) properties at
the conceptual level (see Table 1). Specifically, the structural
properties of MD modeling are represented by means of a
UML class diagram in which the information is clearly
organized into facts and dimensions. These facts and
dimensions are respectively represented by Fact and
Dimension classes. Fact classes are defined as composite
classes in shared aggregation relationships of n Dimension
classes. The minimum cardinality in the role of the Dimension
classes is 1 to indicate that every fact must always be related
to all the dimensions. A fact is composed of measures or fact
attributes. These are represented as attributes with the
FactAttribute stereotype By default, all measures in the Fact
class are considered to be additive. For non-additive measures,
additive rules are defined as constraints and are included in
the Fact class. Furthermore, derived measures (indicated by /)
and their derivation rules can also be explicitly represented as
tagged values of a FactAttribute.

1 A profile is a set of improvements that extends an existing UML type of
diagram to a different use. These improvements are specified by means of the
extendibility mechanisms provided by UML (stereotypes, properties and
restrictions) in order to be able to adapt it to a new method or model.

Our approach also allows the definition of degenerate
dimensions, thereby representing other fact features in
addition to the measures for analysis. These degenerated
dimensions are represented as stereotyped attributes of the
Fact class (DegenerateDimension stereotype).

The many-to-many relationships between a fact and a
specific dimension are specified by means of the cardinality
1...n in the role of the corresponding Dimension class. In this
case, we usually need to describe specific attributes to provide
further features for every instance combination in this
particular relationship. In doing so, the provided attributes are
usually called degenerate facts. These degenerate facts are
represented as an association class attached to a many-to-
many aggregation relationship between a Fact class and a
Dimension class. This DegenerateFact class may contain
FactAttributes and DegenerateDimensions.

With respect to dimensions, each level of a classification
hierarchy is specified by a Base class. Every Base class may
contain several dimension attributes (DimensionAttribute
stereotype), an identifying attribute (OID stereotype), and
must also contain a Descriptor attribute (D stereotype). An
association (represented by a stereotype called Rolls-UpTo)
between Base classes specifies the relationship between two
levels of a classification hierarchy. The only prerequisite is
that these classes must define a Directed Acyclic Graph
(DAG) rooted in the Dimension class (the DAG constraint is
defined in the stereotype Dimension). The DAG structure can
represent both multiple and alternative path hierarchies. A
Dimension class contains a unique first hierarchy (or
dimension) level called a terminal dimension level. A roll-up
path is a subsequence of dimension levels, which starts in this
terminal level (lower level of detail) and ends in an implicit
level (not graphically represented) that represents all the
dimension levels.

We use roles to represent the way in which the two Base
classes see each other in a Rolls-UpTo association: role R
represents the direction in which the hierarchy rolls-up,
whereas role D represents the direction in which the hierarchy
drills-down. Moreover, we use roles to detect and avoid cycles
in a classification hierarchy, and therefore, to help us to
achieve the DAG condition.

Due to the flexibility of UML, we can also consider non-
strict hierarchies (an object at a hierarchy's lower level
belongs to more than one higher-level object) and complete
hierarchies (all members belong to one higher-class object and
that object consists of those members only). These
characteristics are specified, respectively, by means of the
cardinality of the roles of the associations and by defining the
stereotype Completeness in the association between Base
classes. Lastly, the categorization of dimensions is considered
by means of the generalization/specialization relationships of
UML.

Our profile is formally defined and uses the Object
Constraint Language (OCL) to express well-formed rules of
the new defined elements (see Table 1), thereby avoiding its
arbitrary use. We refer the reader to [15] for a further
explanation of this profile and its corresponding OCL
constraints.

479

TABLE 1.
MAIN STEREOTYPES OF OUR UML PROFILE FOR MD MODELING OF DW.

Stereotype Notation

Fact

Dimension

Base

DegenerateFact

FactAttribute

DegenerateDimensio

n

DimensionAttribute

OID

Descriptor

Rolls-UpTo <<Rolls-UpTo>>
Completeness <<Completeness>>

Step 1. Determining quality subcharacteristics
In this step the quality characteristics are decomposed into

subcharacteristics following the ISO 9126 standard and the
characteristics of the domain we are working with.

The ISO 9126 proposes the decomposition shown in Table
2.

TABLE 2.
ISO/IEC 9126-1 CHARACTERISTICS AND SUBCHARACTERISTICS

Characteristics Subcharacteristics

Functionality Suitability
Accuracy
Interoperability
Security

Reliability Maturity
Fault Tolerance
Recoverability

Usability Understandability
Learnability
Operability
Attractiveness

Efficiency Time behaviour
Resource utilization

Maintainability Analyzability
Changeability
Stability
Testability

Portability Adaptability
Installability
Coexistence
Replaceability

In our domain, data warehouse conceptual models, we
firmly believe that some of the dimensions of the ISO 9126
model are not applicable, since the quality of a conceptual
data warehouse schema is related to the correctness,
completeness, understandability, security and stability of that
schema. Those dimensions that are not related to these
characteristics have been removed. In Table 3 we can find the
subcharacteristics that are taken into account after removing
those that are not applicable to our domain.

TABLE 3. FINAL SET OF QUALITY SUBCHARACTERISTICS
Characteristics Subcharacteristics

Functionality Suitability
Accuracy
Security

Usability Understandability
Learnability

Maintainability Analyzability
Changeability
Stability

Step 2. Defining a hierarchy of subcharacteristics
In our context (quality of conceptual data warehouse

models), there is no need to decompose the subcharacteristics
stated in the previous step into smaller ones.

Step 3. Decomposing subcharacteristics into attributes
As we have previously stated, quality subcharacteristics

provide a comprehensible abstract view of the quality model,
but they are too abstract and difficult to measure. In this step,
the abstract concepts are descomposed into attributes. For
each relevant characteristic and subcharacteristic we provide a
set of attributes that are related to that characteristic (see Table
4).

TABLE 4. ATTRIBUTES RELATED TO EACH QUALITY SUBCHARACTERISTIC
Characteristics Subcharacteristics Attribute

Suitability Adequacy of data modelled to
requirements
Completeness
Well-Specified
Semantic correctness

Accuracy Accurate to requirements
Semantic correctness

Functionality

Security Presence of security constraints
Adequacy of security rules

Understandability Ease of understanding
Schema Complexity
Schema Size
Schema Depth

Usability

Learnability Ease of understanding
Schema Complexity
Schema Size
Schema Depth

Analyzability Ease of understanding
Schema Complexity
Schema Size
Schema Depth
Coupling
Cohesion
Normalization
Modularity

Changeability Ease of understanding
Schema Complexity
Coupling
Cohesion
Normalization
Modularity

Maintainability

Stability Schema Complexity
Coupling
Cohesion
Normalization
Modularity

Step 4. Decomposing derived attributes into basic ones
After Step 3 we may find that some attributes are too

abstract to be easily measured and we should decompose them
into more concrete ones. However, the attributes presented in
Table 4 are concrete enough, so it is therefore unnecessary to
further decompose them.

Step 5. Stating relationships between quality entities
In this step we state the relationships between quality

entities, so the model becomes more exhaustive and its
implications become clearer. Table 5 shows the relationships
between quality attributes. In this table ‘COL’ means
Collaboration, ‘DEP’ means Dependency and ‘DMG’ means
Damage.

480

TABLE 5. RELATIONSHIPS BETWEEN QUALITY ATTRIBUTES

Completeness COL

Well-Specified COL COL

Semantic correctness COL COL COL

Accurate to requirements COL COL COL COL

Presence of security
constraints DEP COL COL COL COL

Adequacy of security rules COL COL DEP

Ease of understanding DMG DMG COL COL DMG

Schema Complexity DMG DMG DMG DMG DMG DMG COL DMG

Schema Size DMG DMG DMG DMG DMG DMG

Schema Depth DMG DMG DMG DMG DMG DMG COL

Coupling DMG DMG DMG

Cohesion DMG DMG DMG DMG

Normalization DMG DMG COL COL COL

Modularity DMG COL COL COL COL COL COL

C
oupling

C
ohesion

N
orm

alization

Adequacy of
data m

odelled
to

requirem
ents

S
chem

a C
om

plexity

Schem
a S

ize

S
chem

a D
epth

Accurate to requirem
ents

P
resence of security constraints

A
dequacy of security rules

E
ase of understanding

C
om

pleteness

W
ell-S

pecified

S
em

antic correctness

For example in Table 5, we can see that the Modularity
collaborates with the Ease of understanding because if the
system is modular it is probably easier to understand. This
table is a summary of all the relationships between the quality
attributes.

Step 6. Determining metrics for attributes.
After identifying the attributes, we must assign metrics to

each attribute. Table 6 shows the proposed metric for each
attribute.

TABLE 6.
METRICS ASSOCIATED TO EACH QUALITY CHARACTERISTIC.

Characteristics Subcharacteristics Attribute Metric

Adequacy of data
modelled to
requirements

Number of
redundant
requirements
Number of
requirements
mapped into the
model

Completeness Number of missing
requirements

Number of missing
attributes

Number of missing
elements

Number of missing
relationships

Number of
requirements not
mapped into the
model

Well-Specified Number of wrong
specifications

Number of
redundant
specifications

Suitability

Semantic
correctness

Number of
requirements
mapped into the
schema

Adequacy to
requirements

Functionality

Accuracy Accurate to
requirements

Number of missing
requirements

Number of elements
that are not
represented in the
requirements

Semantic
correctness

Number of
requirements
mapped into the
schema

Adequacy to
requirements

Presence of security
constraints

Number of security
constraints

Ratio of security
constraints

Security

Adequacy of security
rules

Number of security
rules

Complexity of
security rules

Ease of
understanding

Number of classes
Number of
relationships
Ratio of
relationships
Adequacy of names

Schema Complexity Number of
relationships
Ratio of
relationships

Schema Size Number of classes

Number of
relationships

Understandability

Schema Depth Length of schema
Depth of hierarchy
tree

Ease of
understanding

Number of classes
Number of
relationships
Ratio of
relationships
Adequacy of names

Schema Complexity Number of
relationships
Ratio of
relationships

Schema Size Number of classes
Number of
relationships

Usability

Learnability

Schema Depth Length of schema
Depth of hierarchy
tree

Ease of
understanding

Number of classes
Number of
relationships
Ratio of
relationships
Adequacy of names

Schema Complexity Number of
relationships
Ratio of
relationships

Schema Size Number of classes
Number of
relationships

Schema Depth Length of schema
Depth of hierarchy
tree

Maintainability Analyzability

Coupling Schema coupling

481

Cohesion Schema cohesion

Normalization Normalization
complaint

Modularity Number of modules
Ratio of modules

Ease of
understanding

Number of classes
Number of
relationships
Ratio of
relationships
Adequacy of names

Schema Complexity Number of
relationships
Ratio of
relationships

Coupling Schema coupling

Cohesion Schema cohesion

Normalization Normalization
complaint

Changeability

Modularity Number of modules
Ratio of modules

Ease of
understanding

Number of classes
Number of
relationships
Ratio of
relationships
Adequacy of names

Schema Complexity Number of
relationships
Ratio of
relationships

Coupling Schema coupling

Cohesion Schema cohesion

Normalization Normalization
complaint

Stability

Modularity Number of modules

Ratio of modules

V. CONCLUSIONS AND FUTURE WORK

Nowadays, data warehouses have become an important
software product used in decision support systems. Due to the
environment in which data warehouses are used, assuring the
quality of these systems is a crucial issue. When dealing with
data warehouse quality, it is important to assess the quality of
both data and schemas, as the quality of the data and also the
whole system is affected by the quality of the model that
supports them.

In order to assess the quality of the data warehouse schema,
it is necessary to define a quality model in order to help
designers in assuring the quality of the final system as it is
being developed in a systematic and objective way.

In this paper we have reviewed a method for creating a
quality model based on the ISO 9126 standard and we have
applied its six steps to create a first proposal of a conceptual
data warehouse quality model.

As a result of this method we have obtained a set of
important quality characteristics which are broken down into
sub-characteristics and quality attributes. As a final step we
have proposed a set of initial metrics for assessing those
quality attributes, and we have related them to our previously
defined and validated metrics.

The next step in this process of proposing a quality model is
to validate it. We are planning to begin with the validation of
the proposed metrics in order to assure their usefulness and
adequacy. After, we believe that we should attempt to validate
the whole quality model in an industrial environment.

REFERENCES

[1] B. Shin, "An Exploratory Investigaction of System Success Factors
in Data Warehousing," Journal of Association for Information
Systems, vol. 4, pp. 141-170, 2003.

[2] T. Chenoweth, D. Schuff, and R. St. Louis, "A method for
developing Dimensional data marts," Communications of the ACM,
vol. 46, pp. 93-98, 2003.

[3] P. Vassiliadis, "Gulliver in the land of data warehousing: practical
experiences and observations of a researcher," presented at
International Workshop on Design and Management of Data
Warehouses (DMDW'2000), Stockholm (Sweden), 2000.

[4] C. Stedman, "Warehousing Projects Hard to Finish,"
Computerworld, vol. 32, pp. 29, 1998.

[5] N. Prat and S. S.-S. Cherfi, "Multidimensional Schemas Quality
Assessment," presented at The 15th Conference on Advanced
Information Systems Engineering (CAiSE '03) Workshops,
Klagenfurt/Velden (Austria), 2003.

[6] ISO/IEC, "9126-1: Software Engineering - Product quality - Part 1:
Quality model.," 2001.

[7] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, "The
Capability Maturity Model for software," Software Engineering
Institute, Carnegie Mellon University CMU/SEI-93-TR-024,
February 2003 1993.

[8] K. El Emam, J. N. Drouin, and W. Melo, "Spice: The Theory and
Practice of Soft-ware Process Improvement and Capability
Determination," IEEE Computer Society 1998.

[9] IEEE, "IEEE Std 1061-1998 IEEE Standard for a Software Quality
Metrics Methodology," 1998.

[10] V. Basili and D. Weiss, "A Methodology for Collecting Valid
Software Engineering Data," IEEE Transactions on Software
Engineering, vol. 10, pp. 728-738, 1984.

[11] V. Basili and H. Rombach, "The TAME project: towards
improvement-oriented software environments," IEEE Transactions
on Software Engineering, vol. 14(6), pp. 728-738, 1988.

[12] M. Serrano, "Definition of a set of metrics for assuring data
warehouse quality," Univeristy of Castilla - La Mancha (Spain),
2004.

[13] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis,
Fundamentals of Data Warehouses, second edition ed: Springer-
Verlag., 2002.

[14] X. Franch and J. P. Carvallo, "Using Quality Models in Software
Package Selection," IEEE Software, vol. 20, pp. 34-41, 2003.

[15] S. Luján-Mora, J. Trujillo, and I.-Y. Song, "A UML profile for
multidimensional modeling in data warehouses," Data &
Knowledge Engineering (DKE), vol. 59, pp. 725–769, 2006.

482

Integrating Complex Data into a Data Ware-
house

F. Ravat(2), O. Teste(1), R.Tournier(1), G. Zurfluh(2)

(1) IRIT, SIG/ED, Université Toulouse 3,
118 route de Narbonne,

F-31062 Toulouse Cedex 9, FRANCE

(2) IRIT, SIG/ED, Université Toulouse 1,
2 rue du doyen G. Marty,

F-31042 Toulouse Cedex 9, FRANCE

Abstract— This paper deals with decision support systems.
Nowadays, analysts whish to directly integrate documents into
their analyses, in order to improve the reliability of the decision-
making process. Thanks to the XML exchange format, unstruc-
tured data are now available in a auto descriptive and semi-
structured format. In this paper, we provide an approach in
order to integrate XML data into a data warehouse. As case
study, we propose the multidimensional analysis of XML docu-
ments that represent scientific articles. In order to analyse such
documents we define a new approach that consists in considering
textual data as analysis indicators.

Index Terms—Decision support systems, OLAP, Document
Warehouse, XML, Non-additive measure.

I. INTRODUCTION

OLAP (On-Line Analytical Processing) systems allow ana-
lysts to improve decision-making process by consulting and
analysing aggregated business data. These analyses rest on a
centralized data management system: a data warehouse [7].

The use of Multidimensional Databases (MDB) on data
warehouse data enables decision-makers to gain insight into
enterprise performance. MDB Multidimensional modelling [7]
represents data as points in a multidimensional space with the
use of the cube metaphor. MDB are modelled through subjects
of analysis, named facts, and analysis axes, named dimensions
[7]. These structures are grouped into a star schema [7]. In
Fig. 1, the number of keywords used in scientific publications
is analysed according to three axes: Authors, Dates and
Keywords of the publications. A slice of the cube has been
extracted and corresponds to the usage of keyword: “OLAP”.

Fig. 1 – Cube representation of an MDB.

According to [12] 20% of corporate information system
data is transactional and may be processed within OLAP sys-
tems. The remaining 80%, namely “paperwork”, stays out of
reach of OLAP technology due to the lack of tools for non-

numeric data or text-rich data. Text is not as structured as a
data warehouse would tolerate. But recently XML1 technology
has provided a wide framework for working with documents.
XML stores data with an auto-descriptive formalism: a DTD
(Document Type Definition). Thus, documents stored as semi-
structured data were integrated within repositories and docu-
ment warehousing [13] emerged, e.g. Xyleme2. Structured or
semi-structured documents are now becoming a conceivable
data source for multidimensional analysis.

We argue that, to provide more exhaustive multidimen-
sional analyses, OLAP decision support systems should pro-
vide the use of a 100% of corporate information system data.
Analysts should be able to integrate text-rich documents into
the analysis process along with more traditional business data.
Not taking into account these data sources would inevitably
lead to the omission of relevant information during an impor-
tant decision-making process or the inclusion of irrelevant
information and thus producing inaccurate analyses [12].

Amongst the problems due to the integration and processing
of complex data within a data mart, this paper focuses on how
to feed a multidimensional conceptual schema with complex
XML data. In this study we work on the integration of XML
documents representing scientific articles in order to assemble
a data mart to provide analysis of these documents.

As in [3], we distinguish two types of XML documents:
data-centric documents which are transactional data stored
within documents, such as spreadsheets, logs, transactions
(…); and document-centric documents which are text-rich
documents such as reports, articles, e-books (…).

The integration of data-centric documents in MDB has been
introduced in several works such as [4]. See [15] and [16] for
examples and a more complete list of works. In [1], the au-
thors focus on the integration of complex data [2], but remain
in the domain of data-centric documents. None of these
propositions focus on the integration of complex data as fac-
tual data.

In [6], the authors describe a document warehouse [13],
where documents are grouped by similar structure. In [9], the
authors use the xFACT framework [8] for the analysis of
document-centric documents. The authors suggest the use of
text mining techniques for the aggregation of textual data,

1 XML, Extended Markup Language from http://www.w3.org/XML
2 Xyleme server from http://www.xyleme.com

483

(heart of OLAP analyses). In [11] we defined such a function,
providing qualitative analysis. These propositions are limited
concerning loading XML document-oriented documents
within an MDB.

Complex data warehousing is a recent term [2]. But up to
now the most advanced propositions offer filtering and clean-
ing solutions in order to obtain traditional data that allow
quantitative analyses based on numeric measures. In order to
provide a more complete OLAP framework that goes further
than the analysis of numeric data, our objective is to provide
an enriched OLAP framework with increased analysis capa-
bilities. Amongst the numerous problems to be tackled, this
paper focuses on loading data in an MDB. To answer to our
objectives, we modify the star schema [7]. In [10], the authors
present a tool for integrating XML data within a relation data-
base. In the same way, we whish to allow a user integrate
XML data within an MDB. We also propose an approach for
the integration of complex data as factual data.

The rest of the paper is organised as follows: section 2 de-
fines the conceptual model on which rests our proposition;
and section 3 deals with the approach to integrate complex
data within multidimensional structures.

II. CONCEPTUAL MODEL: TEXTUAL CONSTELLATION

For analysis purpose, data are organised multidimension-
nally in an MDB. We propose to extend the star schema [7]
into a textual constellation.

A. Formal Definition
A textual constellation schema TS is defined by

TS = (FTS, DTS, StarTS) where FTS = {F1,…,Fm} is a set of
facts; DTS = {D1,…,Dn} is a set of dimensions and
StarTS: FTS is a function that associates each fact to its
linked dimensions

TSD2
3. If FTS is a singleton, TS is called a textual

star schema.
A fact F is defined by F = (MF, IF, IStarF) where

MF = {M1,…, Mw} is a set of measures; IF = {iF
1,…, iF

q} is a
set of fact instances; and IStarF: IF ID1 … IDn is a function
which respectively associates fact instances to their linked
dimension instances.

A measure M is defined by M = (m, fAGG) where m is the
measure and fAGG = {f1,…,fx} is a set of aggregation functions
compatible with the measure’s additivity type. Measures may
be additive, semi-additive or non-additive [7], [5]. In contrast,
where the standard framework has only one type of measure,
we define two measure types: numeric and textual measures.
A numeric measure is exclusively composed of numeric data
and is either additive or semi-additive. With an additive meas-
ure, all traditional aggregation functions may be used. Semi-
additive measures represent snapshot measures (e.g. tempera-
tures, stock quantities…) and only certain aggregation func-
tions may be used. A textual measure is a measure composed
of text and is always non-additive. This text may represent a
word, a paragraph or even a whole document. With non-

additive measures, only generic aggregation functions may be
used (such as COUNT and LIST). In [9], the authors suggest the
use of specific aggregation functions, such as
TOP_KEYWORDS that returns the major keywords of a text and
SUMMARY that generates the summary of a text. AVG_KW,
defined in [11], combines several keywords into an “average”
keyword.

3 The notation 2D represents the powerset of D.

A dimension D is defined by D = (AD, HD, ID) where
AD = {aD

1,…,aD
u} is a set of attributes (parameters and weak

attributes); HD = {HD
1,…,HD

x} is a set of hierarchies that rep-
resent the attribute organisation and ID = {iD

1,…,iD
p} is a set of

dimension instances.
A hierarchy H is defined by H = (ParamH, WeakH) where

ParamH = <pH
1,…, pH

np, > is an ordered set of attributes,
called parameters (with k [1..np], pH

k AD, and H HD a
common root parameter to all hierarchies of D: pH

1 = aD
1,);

and WeakHi : ParamHi is a function that possibly
specifies associations of parameters to other attributes called
weak attributes, which complete the parameter semantic.

HiD ParamA2

B. Example
A decision-maker analyses a collection of scientific articles.

This analysis integrates two indicators: the acceptance rate
and the textual content of the articles. This analysis is done
according to the date of publication, the conference or journal
where it was published, the authors and the structure of the
document. See Fig. 2 for the representation of the constella-
tion. Note that the Text measure corresponds to the content of
the fact, i.e. a scientific article. Although slightly different
from one another, all these articles are composed of sections,
possibly sub-sections and paragraphs (described by the Struc-
ture dimension).

Fig. 2 –Example of a conceptual schema with a textual measure.

III. INTEGRATION OF COMPLEX DATA

To integrate XML data within a MDB, we use a mixed ap-
proach. It consists in 1) a top-down approach, e.g. [7], that
consists in designing MDB from user requirements; and 2) a
bottom-up approach, e.g. [15] that consists in building a MDB
according to data sources.

A. Conceptual Design of the MDB
User requirements are expressed through a multidimen-

sional conceptual schema. We use a textual constellation to
that end. Fig. 2 shows a textual constellation for scientific
publication analysis. The resulting schema is then adapted to
be compatible with the XML sources.

484

Sources are composed of XML documents homogeneously
structured. Structures are specified by a DTD (Fig. 3) which
defines the different elements that compose XML documents.
These elements are hierarchically structured and may have
different granularities (e.g. one-to-many relationships repre-
sented by “+”). We display the DTD as a tree (see Fig. 4).

<?xml version="1.0" encoding="UTF-8"?>
<!--file Article.dtd-->
<!--Root element-->
<!ELEMENT Article (PUBLICATION, AUTHOR+, ARTICLE_CONTENT)>
<!ELEMENT PUBLICATION (Year, Month, Publisher, Publication_Title)>
<!ELEMENT AUTHOR (Name, Institute, Country)>
<!ELEMENT ARTICLE_CONTENT (Title_A, Section+, References)>
<!ELEMENT Section (Title_S, Sub_Section+)>
<!ELEMENT Sub_Section (Title_Sub, Paragraph+)>
<!ELEMENT References (Entry_Ref+)>
<!--Leaves of the XML document tree structure -->
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Month (#PCDATA)>
<!ELEMENT Publisher (#PCDATA)>
<!ELEMENT Publication_Title (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Institute (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT Title_A (#PCDATA)>
<!ELEMENT Title_S (#PCDATA)>
<!ELEMENT Title_Sub (#PCDATA)>
<!ELEMENT Paragraph (#PCDATA)>
<!--for simplification reasons Entry_Ref is not detailed-->

Fig. 3 – Example of a DTD that defines a collection of XML documents.

XML source analysis allows the identification of available
factual and dimensional data. Thus, it is easy to verify con-
formity and viability of the conceptual schema derived from
user requirements. The conceptual schema is revised when
incompatibilities are detected, adapting elements to be com-
patible or deleting them (e.g. due to the absence of data).

Fig. 4 – Tree-like representation of the previous DTD (leaves content are not
presented).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ARTICLE SYSTEM "Article.dtd">
<ARTICLE>
<PUBLICATION>

<Year>2006</Year>
<Month>September</Month>
<Publisher>Springer</Publisher>
<Publication_Title>DaWaK Proceedings</Publication_Title>

</PUBLICATION>
<AUTHOR>

<Name>Author1</Name>
<Institute>Institue1</Institute>
<Country>France</Country>

</AUTHOR>
<AUTHOR> ... </AUTHOR>
<ARTICLE_CONTENT>

<Title_A>Title of the article</Title_A>
<Section>

<Title_S>Title of section 1</Title_S>
<Sub_Section>

<Title_Sub>Title of subsection 1.1</Title_Sub>
<Paragraph>text of paragraph</Paragraph>
<Paragraph> text of paragraph </Paragraph>

</Sub_Section>
<Sub_Section> ... </Sub_Section>

</Section>
<Section>

<Title_S>Title of section 2</Title_S>
<Sub_Section> ... </Sub_Section>

</Section>
<References>

<Entry_Ref>First reference</Entry_Ref>
<Entry_Ref>Second reference</Entry_Ref>

</References>
</ARTICLE_CONTENT>

</ARTICLE>
Fig. e of an XML document respecting the previous DTD.

B.
ts of the schema to XML

so

finest

 5 – Exampl

Integration: Loading the MDB
To link multidimensional elemen
urce data, the analyst follows a set of identification rules.

Contrarily to other works, such as [1], XML sources are not
transformed as this would: 1) cost time; and 2) require com-
plex extraction and transformation rules. Our approach is
based on the integration of application-oriented XML docu-
ments rather than OLAP-oriented documents. In our context
factual information is held in leaves of XML structure.
Rule 1.Factual data is one of the elements with the
granularity within the XML document.

E.g. the leaf nodes paragraph represent all the text of an ar-
tic

nal data is disseminated within the XML

le and are factual data (see Erreur ! Source du renvoi
introuvable.).
Rule 2.Dimensio
document with a coarser granularity than factual data.

In our example, the node paragraph has a finer granularity
th

may be found within

an any other node (year, section…). For one article there is
one date record but many paragraphs.
Rule 3.Hierarchical parameter data
nodes with one-to-many relationships. All nodes with a
coarser granularity than a node defining factual data may
correspond to a hierarchy of parameters of a dimension.

In our example, the hierarchy of nodes below
AR

fine
TICLE_CONTENT represent the Structure dimension.

Rule 4.Some nodes at the same granularity level may de
hierarchical data. This is done with semantic constraints.

E.g. the parameters of the Dates dimension (Year and
M

tween
no

o-
ci

e not linked to an XML node is

onth) are at the same level within the DTD tree. Their hier-
archical order may only be determined by semantic of the
nodes and the knowledge of the analyst. As this represents a
date, the user will designate that years include months.

Following these rules, the analyst establishes links be
des representing the XML elements of the data sources and

the elements of the conceptual schema (measures, parameters
and weak attributes). Fig. 7(a) shows the association between
nodes of the XML arborescence that correspond to dimen-
sional data and the conceptual elements that correspond to the
dimensions (for simplicity reasons only the elements that
correspond to the Dates and Structure dimensions are repre-
sented). Fig. 7(b) shows the association for the factual data.

Once conceptual elements and XML nodes have been ass
ated, the system follows a series of cleaning rules to validate

the conceptual schema.
Rule 1.Any weak attribut
removed.

Rule 2.Any parameter not linked to an XML node is removed,
except if a weak attribute linked to it is linked to a source
node. The parameter will be filled with key data.

For example, in Fig. 7(a)-grey circle, the lowest granularity
for the Dates dimension is Month. No link was established to
integrate data in the root parameter: IdD. This parameter being

485

Fig. 6 – Integration of XML source data with a constellation schema (not all elements are represented): (a) dimensional data and (b) factual data.

useless is removed. Month becomes the new root parameter,
once the user has confirmed the removal of the element.

[2] Darmont J., Bousaid O., Complex Data for Decision Support, Idea
Group Publishing , ISBN: 159140655-2, 2006.

[3] Fuhr, N., Großjohann, K., “XIRQL: A Query Language for Information
Retrieval in XML Documents”, 24th int. ACM conf. on research and de-
velopment in Information Retrieval (SIGIR), ACM Press, pp. 172–180,
2001.

IV. CONCLUSION

In this paper we ha roach for the integra-
tio

of

SE tool (Com-
pu

adays, OLAP systems do not provide a complete envi-
ro

REFERENCES

[1] Boussaid B., Messaoud R nthoard S., “X-
omplex

ve presented an app
n of complex data within an MDB. We have modified the

traditional star schema [7] and introduced within a constella-
tion the concept of textual measure in order to handle the
analysis of documents-centric documents. Due to lack of
space, we invite the reader to read [11] for more details on
textual measures. A set of rules allows a user to load complex
data within the MDB and specially to integrate complex fac-
tual data. Contrarily to other works, this approach is based on
the absence of pre-processing of XML text-rich data sources.

As 80% of corporate information system data is composed
document-centric documents that may not be managed by

current decision support systems [12]. We believe that, asso-
ciated to adapted aggregation functions [11], this will allow
the combination of qualitative analysis to quantitative analysis
and open a new window on decision support.

We are currently implementing a Java CA
ter-Aided Software Engineering) based on a ROLAP data

warehouse for storing multidimensional data and XML files
for storing complex data. An SQL engine associated to an
XQuery engine are in charge of linking relational and XML
data.

Now
nment for textual or complex data; we consider as future

work to continue the specification of adapted aggregation
functions.

[4] Golfarelli M., Rizzi S., Vrdoljak B., “Data Warehouse Design from
XML Sources”, 4th ACM Int. Workshop on Data Warehousing and
OLAP (DOLAP), ACM Press, pp. 40–47, 2001.

[5] Horner J., Song I-Y., Chen P.P., “An analysis of additivity in OLAP
systems”, in ACM 7th Int. Workshop on Data Warehousing and OLAP
(DOLAP), ACM, pp. 83–91, 2004.

[6] Khrouf K., Soulé-Dupuy C., “A Textual Warehouse Approach: A Web
Data Repository”, Intelligent Agents for Data Mining and Information
Retrieval, Masoud Mohammadian (Eds.), Idea Publishing Group, ISBN:
1-59140-277-8, pp. 101–124, 2004.

[7] Kimball R., 1996. “The data warehouse toolkit”, Ed. John Wiley and
Sons, 1996, 2nd ed. 2003.

[8] Nassis V., Rajugan R., Dillon T.S., Rahayu J.W., “Conceptual Design of
XML Document Warehouses”, 6th Int. Conf. on Data Warehousing and
Knowledge Discovery (DaWaK), LNCS 3181, Springer, pp. 1–14, 2004.

[9] Park B-K., Han H., Song I-Y., “XML-OLAP: A Multidimensional
Analysis Framework for XML Warehouses”, 6th Int. Conf. on Data
Warehousing and Knowledge Discovery (DaWaK), LNCS 3589,
Springer, pp.32–42, 2005.

[10] Popa L., Hernández M.A., Velegrakis Y., Miller R.J., Naumann F., Ho
C-T., “Mapping XML and Relational Schemas with Clio”, 18th Int. Conf.
on Data Engineering (ICDE), IEEE Computer society, pp.498–499,
2002.

[11] Ravat, F., Teste, O., Tournier, R.. “OLAP Aggregation Function for
Textual Data Ware-house”, 9th Int. Conf. on Enterprise Information Sys-
tems (ICEIS), INSTICC Press, June 2007 (to appear).

[12] Ravat, F., Teste, O., Tournier, R., Zurfluh, G., “Algebraic and graphic
languages for OLAP manipulations”, Int. j. of Data Warehousing and
Mining (ijDWM), IDEA Group Publishing, 2007 (to appear).

[13] Sullivan D., Document Warehousing and Text Mining, Wiley John &
Sons, ISBN: 0471399590, 2001.

[14] Tseng F.S.C., Chou A.Y.H, “The concept of document warehousing for
multi-dimensional modeling of textual-based business intelligence”, J. of
Decision Support Systems (DSS), vol.42(2), Elsevier, pp. 727–744, No-
vember 2006.

[15] Vrdoljak B., Banek M., Skocir Z., “Integrating XML into a Data Ware-
house”, 2nd Int. Workshop on Data Engineering Issues in E-Commerce
and Services (DEECS 2006), LNCS 4055, Springer, pp. 133–142, 2006..B., Choquet R., A

Warehousing: An XML-Based Approach for Warehousing C
Data”, 10th East European Conference Advances in Databases and In-
formation Systems (ADBIS), LNCS 4152, Springer, pp. 39–54, 2006.

[16] Yin X., Pedersen T.B., “Evaluating XML-extended OLAP queries based
on a physical algebra”, 7th ACM Int. Workshop on Data Warehousing
and OLAP (DOLAP), ACM, pp.73–82, 2004.

486

Learning from Software Quality Data with Class Imbalance and Noise

Andres Folleco
Taghi M. Khoshgoftaar∗

Jason Van Hulse
Chris Seiffert

Abstract
The objective of this study is to provide an empirical

analysis of the effects of learning from imbalanced and
noisy software measurement data. We observe the impact of
four levels of imbalance and three levels of class noise on
the performance of 11 learning algorithms using real-world
software quality data. Analysis of the results demonstrate a
significant relationship between learner performance, level
of class imbalance, and class noise.
Keywords: class noise, class imbalance, software quality
classification.

1 Introduction

The objective of software quality classification initia-
tives is to categorize instances (program modules) as fault-
prone (fp) or not fault-prone (nfp) by inferring a ‘model’
from previously labeled examples. The timely application
of classification models can assist in directing quality im-
provement efforts to modules that are likely to be fault-
prone during operation, thereby utilizing the software qual-
ity testing and enhancement resources in a cost-effective
manner. One commonly-encountered difficulty in software
quality classification is that the difference in the number of
instances belonging to each class can be severe. In binary
classification (the only type studied in this work), classes fp
and nfp are imbalanced if πfp �= πnfp, where πnfp and
πfp are the proportion of class nfp and fp examples. In
general, πfp < πnfp, and fp is called the minority class,
while nfp is called the majority class. Little emphasis
within the software quality classification domain has been
placed on studying the relationship between learning (clas-
sification) algorithms, class imbalance, and class noise in
software measurement data, despite the fact that these are
critical issues. In particular, many software measurement

∗Readers may contact the authors through Taghi M. Khoshgof-
taar, Empirical Software Engineering Laboratory, Department of Com-
puter Science and Engineering, Florida Atlantic University, Boca Raton,
FL 33431 USA. Phone: (561)297-3994, Fax: (561)297-2800, Email:
taghi@cse.fau.edu.

datasets heavily favor the nfp class, such as datasets col-
lected from high-assurance software systems [8]. Standard
classification algorithms may not perform optimally when
learning from skewed data. Therefore, in this work, we ad-
dress the following research questions:
• Which learners are robust in the presence of class

noise? Increasing the level of class noise shows signif-
icant performance impacts on most learners. The im-
pact depends heavily on the learner used: some learn-
ers, such as Naive Bayes, are relatively unaffected by
class noise, while other learners perform worse with
noisier data.

• Is learner performance impacted by class imbalance?
In other words, as the class imbalance becomes more
severe, what happens to the performance of the classi-
fiers?

• How do learners perform when confronted with dif-
ferent levels of class imbalance and class noise? Our
experimental results have led us to conclude that some
learners that are robust to noise are also good at han-
dling more severe class imbalance.

The contribution of this work is to address the above
three research questions, and in particular to empirically
study classification performance using imbalanced and
noisy software measurement data. To the best of our knowl-
edge, this important topic has not been examined previ-
ously.

1.1 Related Work

Most related work addresses class imbalance and class
noise separately without considering their simultaneous ef-
fects. Weiss and Provost [13] address the optimal class dis-
tribution for decision tree construction when the amount of
training data must be limited. Although they consider var-
ious levels of imbalance, they use a single learner, C4.5,
while varying the number of positive and negative exam-
ples. Other work has focused on learning from imbalanced
datasets [2, 4, 5, 6], comparing two or more procedures and

487

proposing new techniques. Zhu and Wu [16] conducted a
study using class and attribute noise concluding that both
have significant impact on classification, while the former
had a more severe impact. A related study [17] investigated
the impact of noisy data in cost-sensitive learning. Recent
work by our research group has included the use of frequent
itemsets to detect noisy examples in software measurement
data [12]. While our group has recently performed tests
in the domain of class imbalance [10], we now present a
systematic analysis of different levels of class imbalance
and class noise in combination with a significant number
of learners applied to software measurement data.

The paper is organized as follows: Section 2 describes
the 11 learners used. The experimental methodology are
provided in Section 3. Experimental results are in Sec-
tions 4, with the conclusions provided in Section 5.

2 Classifiers

All learners were implemented in the WEKA tool [14].
Default parameter changes were done only when experi-
mentation showed a general improvement in the classifier
performance based on preliminary analysis.

Naive Bayes (NB) utilizes Bayes’s rule of conditional
probability and is termed ‘naive’ because it assumes in-
dependence of the features. Logistic regression (LR) is
a statistical regression model for categorical prediction.
RIPPER (Repeated Incremental Pruning to Produce Error
Reduction) is a rule-based learner and is named JRip in
WEKA. The random forests (RF) classifier [3] uses bagging
and the ‘random subspace method’ to build an ensemble
of randomized decision trees which are combined to pro-
duce the final prediction. The default WEKA parameters
for these four learners were not changed.

C4.5 is a benchmark decision tree learning algorithm.
Two different versions of the C4.5 classifier were used.
C4.5 (D) uses the default parameter settings in WEKA,
while C4.5 (N) uses no decision-tree pruning and Laplace
smoothing [13]. For a Multilayer perceptrons (MLP)
learner (a type of neural network), the ‘hiddenLayers’ pa-
rameter was changed to ‘3’ to define a network with one
hidden layer containing three nodes, and the ‘validationSet-
Size’ parameter was changed to ‘10’ to cause the classi-
fier to leave 10% of the training data aside to be used as a
validation set to determine when to stop the iterative train-
ing process. Radial basis function networks (RBF) are an-
other type of artificial neural network. The only parame-
ter change for RBF was to set the parameter ‘numClusters’
to 10. Two K nearest neighbors [1] (kNN) learners were
built with changes to two parameters. The code implement-
ing this was also changed so that it chooses the number of
nearest neighbors which maximizes the average of the ac-
curacies on each class, rather than the overall accuracy. The

Independent Variables
Logical Operators
Total Lines of Code
Executable Lines of Code
Unique Operands
Total Operands
Unique Operators
Total Operators
Cyclomatic Complexity
Dependent Variable
nfaults

Table 1. CCCS Dataset Software Metrics

‘distanceWeighting’ parameter was set to ‘Weight by 1/dis-
tance’. Two different ‘kNN’ learners were built using k = 2
and k = 5 and were denoted ‘2NN’ and ‘5NN’. The sup-
port vector machine (SVM) learner called SMO in WEKA
had two changes to the default parameters: the complexity
constant ‘c’ was set to 5.0 and ‘buildLogisticModels’ was
set to ‘true’.

3 Experimental Design

We tested the effects of four levels of class imbalance
and three levels of class noise on classifiers created us-
ing C4.5(D), C4.5(N), NB, MLP, 2NN, 5NN, RIPPER, LR,
RBF, RF, and SVM learners.

3.1 CCCS Dataset

The CCCS dataset is a military command, control and
communications system [7]. CCCS has 282 instances (pro-
gram modules), where each instance is an Ada package con-
sisting of one or more methods. CCCS has eight software
metrics which are used as independent variables. An addi-
tional attribute nfaults (the dependent variable) indicates
the number of faults attributed to a program module. Ta-
ble 1 lists the software metrics in CCCS. Additional studies
may consider different software metrics, and the objective
of our experiments is not to analyze the viability of these
particular metrics. CCCS is denoted Co in this study. The
natural distribution of nfaults in Co has over 50% of the
program modules with no faults (i.e., nfaults = 0), and
approximately 19% of the program modules had one fault.
The median value of nfaults is 0, the largest value is 42
and the mean is 2.369.

3.2 Cleansing CCCS

Since Co is a real-world dataset, it has some instances
which have a natural occurring noisy value for nfaults,
so-called inherent noise. Injected noise is noise that is ar-
tificially introduced into the dataset. Generating realistic
examples of noise in a domain-sensitive manner is a diffi-
cult research issue, and is critically important because mea-

488

suring the results of any technique using unrealistic noise
can be misleading since it may not represent the types of
noise found in real-world datasets. Using a hybrid proce-
dure introduced for cleansing noise from a continuous de-
pendent variable [9], a software engineering expert oversaw
the cleansing of Co. The hybrid procedure also determined
a clean value for nfaults (denoted nfaultsc) for the in-
stances deemed to be noisy. 81 instances were identified as
having inherent noise in nfaults (denoted nfaultsn). A
detailed description of the cleansing process is presented in
our previous work [9].

3.3 Injected Noise

Two additional datasets were derived from Co, denoted
C5p and C10p. Note that all three of these datasets have the
same number of instances (282) and the same number of
attributes (9). These datasets were created as follows:

C5p : Starting with the original dataset Co, the software en-
gineering expert inspected the dataset and identified 14
instances (or 5% of the instances in Co) that were rel-
atively clean. These 14 instances were then corrupted
(with respect to nfaults) in an expert-supervised man-
ner such that the noise was reasonable for the given
dataset and that the noisy value was different than the
clean value1.

C10p : In addition to the 14 clean instances with injected
noise in the dependent variable in C5p, the software
engineering expert identified 14 more relatively clean
instances for corruption. Noise was injected in a man-
ner similar to that of the first 14 instances, resulting in
the C10p dataset. C10p therefore has 28 instances (or
10% of the dataset) with injected noise in nfaults.

Co has 81 noisy examples with respect to nfaults, and
for these 81 instances both the noisy value nfaultsn and
clean value nfaultsc are known [9]. C5p has 81 inher-
ently noisy examples in addition to 14 instances with in-
jected noise. For the injected noise, nfaultsc is the value
that was originally in the dataset, and nfaultsn is the cor-
rupted value. Therefore relative to nfaults, C5p has a total
of 81 + 14 = 95 noisy examples. The situation for C10p is
similar, however there are a total of 81+28 = 109 noisy ex-
amples. For the remaining examples in each of these three
datasets, we set nfaultsn = nfaultsc. Therefore, both a
noisy value nfaultsn and a clean value nfaultsc are avail-
able.

1In other words, the noise injected into the dataset was such that it
might realistically occur in real-world measurement data. This is in con-
trast to randomly corrupting nfaults to a possibly unrealistic value for
the given domain.

Dataset #fp #nfp %fp %nfp

C∗
4 56 226 19.86 80.14

C∗
6 35 247 12.41 87.59

C∗
8 27 255 9.57 90.43

C∗
12 19 263 6.74 93.26

Table 2. CCCS Levels of Imbalance in Lc

3.4 Level of Imbalance

From Co, C5p, and C10p a total of twelve new datasets
with a binary class L are derived. Let C∗ denote any of
the three initial datasets, and let λ ∈ {4, 6, 8, 12} denote a
threshold on the dependent variable nfaults in C∗. C∗ is
transformed to the dataset C∗λ by replacing nfaults with a
binary class attribute L according to the following rule:

L�

λ(x) =
{

nfp If nfaults�(x) < λ
fp otherwise

where � ∈ {c, n} with (c = clean, n = noise) and
L�

λ(x) is the class label of instance x using the clean value
nfaultsc(x) or the noisy value nfaultsn(x). From the
perspective of software quality modeling, instances are di-
vided into two classes, fp and nfp. Since the purpose of
software quality modeling is to identify modules likely to
have more faults, classifiers are constructed to correctly cat-
egorize as many fp (true positive) and nfp (true negative)
instances as possible. Resources can then be directed to-
ward at-risk software modules (true positives) with minimal
wasted effort on modules with few or no faults that were in-
correctly predicted as fault-prone (false positives).

Since an instance x is labeled as fp only when
nfaults(x) ≥ λ, increasing the value of λ reduces the
number of instances labeled as fp in the dataset. There-
fore, increasing the value of λ also increases the level of
imbalance in L. Four values of λ are used in our ex-
periments, resulting in four levels of imbalance in 12 de-
rived datasets. Co

4 , Co
6 , Co

8 , and Co
12 are the four datasets with

a binary class label derived from Co using the threshold
λ ∈ {4, 6, 8, 12}. C5p

4 , C5p
6 , C5p

8 , and C5p
12 were derived from

dataset C5p, while C10p
4 , C10p

6 , C10p
8 , and C10p

12 were derived
from dataset C10p. Table 2 shows the number of fp and
nfp instances in the data with respect to Lc (the clean class
value). Since this table is based on Lc, the number of fp
and nfp instances are the same for the three datasets with
a given λ. In other words, nfaultsc, and hence Lc

λ, is the
same for Co, C5p, and C10p for a fixed value λ. The num-
ber of fp and nfp instances with respect to Ln at a given
λ varies in the three datasets because nfaultsn changes for
some instances significantly (not shown due to space lim-
its).

489

Data %n→p/p %n→p/n %p→n/n %p→n/p %noise
Co

4 25.45 6.19 6.61 26.79 10.28
Co

6 22.86 3.24 3.24 22.86 5.67
Co

8 29.63 3.14 3.14 29.63 5.67
Co

12 37.5 2.28 3.38 47.37 5.32
C5p

4 38.1 10.62 7.76 30.36 14.54
C5p

6 41.86 7.29 4.18 28.57 9.93
C5p

8 45.45 5.88 3.61 33.33 8.51
C5p

12 50 3.42 3.79 52.63 6.74
C10p

4 49.32 15.93 9.09 33.93 19.5
C10p

6 56.6 12.15 5.24 34.29 14.89
C10p

8 57.89 8.63 4.51 40.74 11.7
C10p

12 59.09 4.94 3.85 52.63 8.16

Table 3. Dataset Class Noise Characteristics

3.5 Class Noise

The number of noisy instances in the datasets prior to the
transformation of nfaults to the class label L is not neces-
sarily the same as the number of noisy instances in the post-
transformation datasets. A class L for an instance x will
only be noisy if the value of λ falls between nfaultsn(x)
and nfaultsc(x). For example, if an instance x with
nfaultsn(x) = 7 and nfaultsc(x) = 10 will not be identi-
fied as noisy for λ = 6, since Lc

6(x) = Ln
6 (x) = fp. Since

both nfaultsn(x) and nfaultsc(x) are greater than 6, x
will be correctly labeled as fp even though nfaultsn(x) �=
nfaultsc(x). However, if λ = 8 this same instance will be
incorrectly labeled as nfp (since nfaultsn(x) < λ) when
it should be labeled as fp (since nfaultsc(x) ≥ λ). Lastly,
this instance would be correctly labeled as nfp for λ = 12,
since both nfaultsn and nfaultsc are less than 12.

Table 3 shows the class noise percentage in each of the
12 datasets. Noisy instances are denoted as x→y, where x
and y indicate whether Lc and Ln, respectively, belong to
the negative (n) or positive (p) class. Column %n→p/p has
the percent of instances labeled fp that should have been la-
beled nfp. Column %n→p/n has the percent of instances
with Lc = nfp, but Ln = fp. Column %p→n/n has the
percent of instances labeled nfp that should have been la-
beled fp. Column %p→n/p has the percent of instances
with Lc = fp, but Ln = nfp. Column %noise has the
percent of all instances incorrectly labeled:

%p→n/p =
#p→n

#p→p + #p→n
(1)

%p→n/n =
#p→n

#n→n + #p→n
(2)

%n→p/n =
#n→p

#n→n + #n→p
(3)

%n→p/p =
#n→p

#p→p + #n→p
(4)

3.6 Classifier Evaluation

We utilize a widely-known performance metric called
the area under the ROC curve (AUC) to evaluate learner
performance in our experiments. The ROC curve graphs the
true positive rate on the y-axis versus the false positive rate
on the x-axis, and therefore measures the tradeoff between
detection rate and false alarm rate. The AUC ranges from
zero to one, with higher values denoting a classifier with
generally better performance (in general, a higher AUC im-
plies a higher true positive rate with a lower false positive
rate, which is preferred in most applications). Two different
classifiers can be evaluated by comparing their AUC val-
ues. Provost and Fawcett [11] give an extensive overview
of ROC curves and their potential use for optimal classifi-
cation.

3.7 Summary of the Experimental Design

Performance is measured using 10-fold cross validation
(CV) with 30 independent replications for each experiment,
making all experiments performed in this work very com-
prehensive and statistically significant. With 10-fold CV,
nine folds are used as a training dataset and one fold is the
hold-out (test) dataset. When constructing a classifier us-
ing the training dataset, the noisy label Ln was used, as
the objective of our study is to examine the impact of noise
on learning. In other words, class noise is in the training
dataset, but not in the test dataset. Therefore for the hold-
out partition in 10-fold CV, the classifier’s predictions are
compared to Lc. So for each dataset C∗, nfaultsc and
nfaultsn were transformed using λ to create two class at-
tributes, Lc

λ and Ln
λ. A classifier is constructed using 10-

fold CV, with Ln
λ as the class label in the training dataset

(nine folds of CV), and evaluated against Lc
λ in the test

dataset (the hold-out fold of CV). A total of 39,600 learners
(= 12 datasets× 10-fold CV× 30 repetitions× 11 learning
algorithms) were constructed in these experiments.

4 Experimental Results

4.1 Effect of Imbalance and Noise on AUC

The mean AUC, calculated from all 12 datasets, is pro-
vided in Table 4. The two best learners were NB and SVM
(rank of one and two, respectively). MLP also performed
very well, and 5NN obtained a higher AUC than 2NN. RBF
obtained the worst performance of all learners, and RIPPER
and C4.5 (D) also performed very poorly.

Table 5 shows the percent change of the mean AUC cal-
culated between Co and C10p by each level of imbalance
λ ∈ {4, 6, 8, 12}. NB has one of the smallest changes in
AUC across all levels of class imbalance. The change in
AUC for NB from Co to C5p at each level of class imbalance

490

Learner Mean AUC Rank
5NN 0.9493 4
MLP 0.9744 3
SVM 0.9843 2
2NN 0.9397 7
NB 0.9925 1
LR 0.9451 5
RF 0.9424 6
C4.5 (N) 0.9159 8
RIPPER 0.8847 9
C4.5 (D) 0.8606 10
RBF 0.7089 11

Table 4. AUC by Learner

AUC

Learner λ = 4 λ = 6 λ = 8 λ = 12

2NN 10.47 8.32 3.09 1.56
5NN 10.94 9.18 3.01 0.95
C4.5 (D) 0.84 8.52 10.29 0.77
C4.5 (N) 3.99 8.49 11.24 8.56
LR -1.96 3.02 0.26 1.14
MLP 0.72 1.85 1.74 -0.48
NB 0.12 0.05 0.00 0.02
RBF 11.69 28.46 11.69 19.13
RF 12.15 9.44 3.77 1.41
RIPPER 6.93 4.24 4.09 -1.37
SVM 1.63 3.62 0.32 0.89

Table 5. (%) change in AUC from Co to C10p

(not shown due to space limits) is also the lowest among all
learners. Some learners had negative rates of change in their
AUCs because their values increased at higher noise lev-
els. In other words with more noise in the training dataset,
the learner performed slighly better. For example, with
λ = 4, LR had a slightly higher AUC when constructed
using dataset C10p compared to dataset Co. However for
the few cases (LR with λ = 4 and MLP and RIPPER with
λ = 12) that do perform better at higher levels of noise,
the difference is close to zero and hence most likely a sta-
tistical anomaly. It is clear that in general, regardless of the
level of imbalance, the learners achieve lower AUCs when
the training dataset contains more noise. RBF suffers the
most when the level of noise is increased, with the AUC
decreasing by 11.69% or more regardless of λ. Both 2NN
and 5NN are more impacted by noise with less severe im-
balance (λ = 4 or 6), while C4.5 (D) and C4.5 (N) suffer
the largest decrease in AUC with λ = 8. The SVM and
MLP learners are also relatively robust to noise across dif-
ferent levels of imbalance.

Figures 1 and 2 present the rankings of the learners by
different levels of imbalance (for a fixed dataset C10p) and
noise (for a fixed level of imbalance λ = 12), respectively.
In Figure 1, the mean AUC was calculated for each learner
separately for the four datasets C10p

4 , C10p
6 , C10p

8 , and C10p
12

Figure 1. Performance Ranking by Imbalance
Level

(for each of these datasets, each learner was run using 10-
fold cross validation 30 times, so each learner has 30 AUC
values for a given dataset). The learners were then ranked
from one to 11 based on the mean AUC for the given
dataset, with the learner obtaining the highest AUC given
a rank of one, and the learner with the lowest AUC given a
rank of 11. The trend of the learner rankings for a fixed level
of noise (C10p) but different levels of imbalance is given in
Figure 1. Figure 2, on the other hand, fixes the level of im-
balance (λ = 12) but varies the dataset (and hence the level
of noise) from Co to C5p to C10p.

From Figure 1, NB is the top performer using the
datasets with the highest level of class noise (C10p) re-
gardless of the level of class imbalance, demonstrating un-
matched robustness when dealing with both class imbalance
and class noise. SVM is the second most robust learner,
only dropping its ranking one place at C10p

6 . 5NN has the
largest ranking improvement from seventh to third as the
level of class imbalance became progressively more severe
with dataset C10p. LR, C4.5(D), and C4.5(N) each had a
loss of ranking equal to four positions as the level of im-
balance increased. RBF performed the worst at all levels of
imbalance for dataset C10p.

Figure 2 shows the effect of class noise on the rankings
for each learner with a level of class imbalance held con-
stant at λ = 12. The two best learners across all three
class noise levels are SVM and NB. At C10p, NB switched
ranking positions with SVM and became the best learner.
This indicates that NB is more robust to the highest levels
of class imbalance and class noise. MLP has the largest
improvement in rank (four rank positions) between Co

12 and
C5p
12 datasets with a slight decrease at C10p

12 . RBF performed
the worst at all levels of noise, followed by C4.5 (D) and
RIPPER.

491

Figure 2. Performance Ranking by Noise
Level

4.2 Noise Reduction as Imbalance Worsens

Figure 3 shows three separate plots of the percent of
overall noisy (NOISE) instances and p → n-type noisy in-
stances in each of the 12 derived datasets from Co, C5p, and
C10p. p → n-type noisy examples are important because
they indicate instances labeled as negative (from majority
class nfp) but are actually positive (belong to minority class
fp). The figure shows the change in NOISE and p → n-
type noise on the y-axis, as the level of class imbalance in-
creases, shown on the x-axis.

In all four datasets derived from Co located at the left
side of Figure 3, the levels of NOISE and p → n-type noise
drop between imbalance levels λ ∈ {4, 6} down to about
50% of the highest NOISE level at Co

4 and about 53% of the
highest p → n-type noise level at Co

4 . For the rest of the
class imbalance levels, the levels of NOISE and p → n-type
noise changed little. For the datasets derived from C5p at the
center of Figure 3, the levels of NOISE drop continuously
as the level of class imbalance increases. The net reduction
in the level of NOISE was about 55% from the highest level
at C5p

4 . The levels of p → n-type noise between λ = 4 to
λ = 6 decreased by about 50% from the highest level at
C5p
4 , elsewhere the noise distribution remained stable.

For the datasets derived from C10p at the right side of
Figure 3, NOISE and p → n-type noise both dropped con-
tinuously as the class imbalance increased from λ = 4 to
λ = 12. In summary, all twelve derived datasets experi-
enced a reduction in noise as the class imbalance worsened.
In other words, the datasets became progressively cleaner
but more imbalanced as the threshold λ increased from four
to 12. This effect is attributed to the noise injection process
used in this study.

Figure 4 shows the changes in mean AUC values calcu-
lated from all the learners at each level of class noise for all
levels of class imbalance. The AUC from C10p has the low-
est values, while the AUC from Co has the highest values.

Figure 3. Relationship Between Noise and Im-
balance

Figure 4. AUC by Level of Imbalance

With datasets C5p and C10p, the learners are affected by the
class imbalance at λ = 6, but at λ = 8, the performance is
improved compared to λ ∈ {4, 6}. The effect of class im-
balance on the AUC of all learners was not as significant as
originally expected. As the level of imbalance became more
severe, the AUC remained relatively stable. This effect can
be attributed to the reduction in the amount of noise in our
data that naturally occurs as we increase the value of λ. In
other words, for our study, imbalance and class noise were
inversely correlated. With more severe class imbalance, the
level of noise decreased, and therefore the effects of these
factors to some degree offset one another.

4.3 Threats to Validity

Experimental work in the domain of empirical software
engineering often includes two common types of threats to
validity [15]: threats to internal validity and external va-
lidity. Threats to internal validity are unaccounted influ-
ences that can impact the empirical results. Learners were
constructed using a publicly available, high quality, and

492

commonly-used data mining tool called WEKA [14]. All
results were verified for accuracy by our group and the soft-
ware engineering domain expert.

External validity considers the generalization of the re-
sults outside the experimental setting, and what limits, if
any, need to be applied. A significant amount of experi-
mentation was performed in this study, with 39,600 learn-
ers constructed from 12 datasets derived from the CCCS
dataset. The CCCS dataset has been carefully analyzed and
used in many studies by our group and by our software
engineering domain expert. The emphasis of this study is
centered towards the software engineering domain. Future
work could use datasets from other software projects. This
study is unique in that we have constructed many carefully
controlled experiments under the supervision and guidance
of a domain expert with a deep understanding of the data.

5 Conclusions

This study highlighted the significant relationship be-
tween classification algorithms, class imbalance, and class
noise in software quality data. A summary of the conclu-
sions discussed in Section 4 is presented next:

1. The performance of the learners at different levels of
class noise was significantly affected when the noise
levels increased. The impact depends heavily on the
learner used: some learners, such as NB are relatively
unaffected by class noise, while other learners such as
RIPPER or RBF perform worse when the data is noisy.
When using data of unknown quality for classification
purposes, it is critical to consider the base learner.

2. Naive Bayes was the most robust learner with respect
to class noise and class imbalance. This is clearly
demonstrated in the AUC values for each learner in
Table 4. In addition, from Table 5, NB has a much
lower change in AUC than any other learner as the
noise level increases, demonstrating its unmatched ro-
bustness to class noise in our experiments.

3. The effects of class imbalance on the mean AUC at
each level of class noise was not as significant as origi-
nally anticipated. This observation is illustrated in Fig-
ure 4. The largest change in AUC between any two
levels of class imbalance occurred at imbalance levels
of λ ∈ {6, 8} for the C10p datasets. As mentioned, this
is due to the inverse correlation between imbalance and
class noise. At higher levels of imbalance, the dataset
is cleanest relative to the class, and hence the effect
of imbalanced classes is offset by a relatively cleaner
class label.

Future work will consider extending the scope of
our research by exploring the cross-effects of depen-

dent/independent variables with class imbalance, noise, and
missing values. In addition, as with any empirical work,
more carefully designed experiments should be performed
to verify the conclusions obtained in this work.

References

[1] D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[2] R. Barandela, R. M. Valdovinos, J. S. Sanchez, and F. J. Ferri. The
imbalanced training sample problem: Under or over sampling? In
Joint IAPR International Workshops on Structural, Syntactic, and
Statistical Pattern Recognition (SSPR/SPR’04), Lecture Notes in
Computer Science 3138, (806-814), 2004.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[4] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer.

Smote: Synthetic minority oversampling technique. Journal of Arti-
ficial Intelligence Research, (16):321–357, 2002.

[5] C. Drummond and R. C. Holte. C4.5, class imbalance, and cost sen-
sitivity: why under-sampling beats over-sampling. In Workshop on
Learning from Imbalanced Data Sets II, International Conference on
Machine Learning, 2003.

[6] N. Japkowicz and S. Stephan. The class imbalance problem: a sys-
tematic study. Intelligent Data Analysis, 6(5):429–450, 2002.

[7] T. M. Khoshgoftaar and E. B. Allen. Classification of fault-prone
software modules: Prior probabilities, costs and model evaluation.
Empirical Software Engineering, 3:275–298, 1998.

[8] T. M. Khoshgoftaar, E. B. Allen, and J. Deng. Using regression trees
to classify fault-prone software modules. IEEE Trans. Reliability,
51(4):455–462, 2002.

[9] T. M. Khoshgoftaar, J. Van Hulse, and C. Seiffert. A hybrid approach
to cleansing software measurement data. In Proceedings of the 18th

IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2006), pages 713–722, Washington, D.C., November 13-15
2006.

[10] A. Napolitano. Alleviating class imbalance using data sampling: Ex-
amining the effects on classification algorithms. Master’s Thesis,
Department of Computer Science and Engineering, Florida Atlantic
University, Boca Raton, FL USA, December 2006. Advised by Taghi
M. Khoshgoftaar.

[11] F. Provost and T. Fawcett. Robust classification for imprecise envi-
ronments. Machine Learning, 42:203–231, 2001.

[12] J. Van Hulse and T. M. Khoshgoftaar. Class noise detection using fre-
quent itemsets. Intelligent Data Analysis: An International Journal,
10(6):487–507, 2006.

[13] G. M. Weiss and F. Provost. Learning when training data are costly:
the effect of class distribution on tree induction. Journal of Artificial
Intelligence Research, 19:315–354, 2003.

[14] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, California,
2nd edition, 2005.

[15] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering: An Introduc-
tion. Kluwer International Series in Software Engineering. Kluwer
Academic Publishers, Boston, MA, 2000.

[16] X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative
study of their impacts. Artificial Intelligent Review, 22(3-4):177–
210, November 2004.

[17] X. Zhu and X. Wu. Cost-guided class noise handling for effective
cost-sensitive learning. In 4th IEEE International Conference on
Data Mining (ICDM 2004), pages 297–304, November 2004.

493

Architectural Elements Recovery and Quality Evaluation to Assist in
Reference Architectures Specification

Aline Pires Vieira de Vasconcelos1,2

Cláudia Maria Lima Werner1

1COPPE/UFRJ/ Systems Engineering and Computer Science Program
P.O. Box 68511 – ZIP 21945-970 - Rio de Janeiro – RJ – Brazil

2CEFET Campos (Federal Center for Technological Education of Campos)
Dr. Siqueira, 273 – ZIP 28030-130 - Campos dos Goytacazes - RJ - Brazil

 (aline, werner)@cos.ufrj.br

Abstract

Reference architectures are the basis for
application instantiation in both Domain Engineering
and Product Line contexts. They are created based on
domain requirements, commonalities, and variability.
Considering that one of the essential sources of
information in this context is the existing systems
available in the domain, reverse engineering becomes
a key activity to assist in reference architectures
specification. Although many approaches consider
reengineering existing systems to help in reusable
components extraction and variability identification,
they do not propose an approach, with well-defined
activities and criteria, to support reference
architectures specification from existing systems. In
this context, this paper describes an approach to help
in this task covering three macro-activities, namely:
reverse engineering focusing on architectural elements
recovery; recovered architecture quality evaluation;
and domain commonalities and variability
identification. These activities are guided by general
criteria, which can be reused across domains, and are
supported by a tool set integrated to a reuse based
software development environment, i.e. the Odyssey
environment. The results of experimental studies
conducted to evaluate the first two macro-activities are
described in this paper.

1. Introduction

Domain reference architectures are architectures for
application families (i.e. domains) that must be in
conformance with the functional and non-functional
requirements of the domain [1]. Domain reference

architectures (or DSSAs – Domain Specific Software
Architectures) were first introduced in the context of
Domain Engineering (DE) approaches [2], but are also
the basis for product instantiation in the context of
Product Line (PL) approaches [3], also being called
Product Line Architectures (PLA). Reference
architectures are built upon domain requirements,
commonalities, and variability.

According to Kang [2], existing systems are one of
the most meaningful domain information sources.
Although many DE and PL approaches do emphasize
the importance of analyzing existing systems during
domain modeling and design, they do not provide a
method, with well-defined activities, criteria and tool
support to guide this analysis.

In this context, this paper presents a three-phase
process, encompassing three macro-activities, to assist
in domain reference architectures specification from
existing systems, namely: reverse engineering and
architectural elements recovery, performed through the
proposed ArchMine approach; recovered architecture
quality evaluation, performed through an extended
version of an existent approach, i.e. ArqCheck [10];
and domain commonalities and variability
identification, performed through the proposed
ArchToDSSA approach. It is important to emphasize,
however, that for specifying domain reference
architectures, the architecture of some existing systems
in the same domain must be recovered and compared.
According to [4], a common number is 3-4 systems.
Besides assisting in reference architectures
specification, the proposed approach supports program
comprehension by recovering updated documentation
for existing systems, which, in general, is outdated. The
proposed activities and criteria are general, and can be
applied for reference architectures specification in
different domains.

494

In order to represent domain commonalities and
variability, we follow the Odyssey environment [5]
notation, Odyssey-FEX, in which a domain design
element can be: mandatory, i.e. common to all domain
applications, or optional; and invariant, i.e. it can not
be adapted, or variation point, i.e. it can be adapted
through the selection of variants. These classifications
are orthogonal, and Odyssey-FEX encompasses their
representation in all domain models, e.g. features, use
cases, classes. In this work, domain variability is
represented in a UML class model, but this
representation is mapped to other domain models
according to the mapping heuristics of Odyssey.

The paper is organized as follows: Section 2
presents the approach to assist in reference
architectures specification; Section 3 describes the
results of experimental studies that evaluated the first
two macro-activities; Section 4 presents meaningful
related work; and Section 5 outlines some conclusions.

2. Proposed approach to assist in reference
architectures specification

The following sub-sections describe the three

macro-activities composing our approach, together
with their supporting techniques, criteria, and tool set.
An example concerning a school domain is provided
along the explanations. Although the approach is
application independent, its supporting tool set was
designed to analyze Java applications. As mentioned
before, it is integrated to Odyssey [5], a reuse based
software development environment.

2.1 Reverse engineering and architectural
elements recovery

Architectural elements recovery is performed

through our reverse engineering approach, i.e.
ArchMine, that is mainly based on dynamic analysis
and data mining techniques. Its focus is on clustering
source code classes into architectural elements based
on the functionality they support. These architectural
elements indicate domain concepts or reusable
component candidates. Reusable components are self-
contained artifacts that perform specific functions and
have clear defined interfaces [6]. The recovered
reusable component candidates must be further
evaluated and reengineered to generate components.

In order to detect classes that must be clustered,
dynamic analysis generate execution traces (i.e.
sequences of method calls that implement a use case

scenario or system functionality) that are mined for the
discovery of functionally related classes. We apply a
data mining algorithm based on Apriori [7] to mine the
generated execution traces. Figure 1 depicts ArchMine
architecture recovery process. All the described
processes are represented following OMG SPEM
(Software Process Engineering Metamodel) notation.

In order to perform dynamic analysis, use case
scenarios to guide application execution must be
defined. This activity is performed in parallel with
Static Structure Extraction, which extracts a low-
abstraction level class model from Java source code.

A use case is a description of sequences of actions,
including variants, that an entity (e.g. a system)
performs to produce an observable result of value to an
actor [8]. It represents a functional requirement of a
system. Each sequence of actions in a use case is called
a use case scenario and represents one means for
obtaining that functional requirement [8]. For example,
in a school domain, a use case could be "Inform
Students Grade", and two use case scenarios "Inform
Graduate Students Grade" and "Inform Undergraduate
Students Grade". ArchMine proposes a set of heuristics
to derive use case scenarios, such as: derive one use
case scenario for each main menu and popup menu
option; consider the last level of the hierarchy for
nested menus; derive one scenario for each tool bar
button; options semantically equivalent may derive
only one scenario; login must derive a scenario; tabs in
tabbed panes and buttons in panels may derive
scenarios if they correspond to a distinct functionality
in respect to the functionality of their container panes.
Dynamic Analysis is performed with the support of

the Tracer tool [9], that uses AspectJ technology to
trace application execution and generates XML
execution traces related to use case scenarios. The
greater the coverage achieved in use case scenarios
monitoring, the higher is the amount and quality of
architectural elements recovered. Coverage can be
inferred by comparing classes in the static and dynamic
models, and by interviewing a system stakeholder (i.e.
programmer, designer, developer).
Architectural Elements Reconstruction involves

mining the gathered execution traces, by applying an
Apriori-like algorithm, and discovering related classes
based on the functionality they support. Classes that
appear together in a "X" number of execution traces,
i.e. classes that together support a set of related system
functionalities, are indicated to compose an
architectural element. This "X" number is the minimum
confidence value that must be provided to the
algorithm, which is based on the following concepts:

495

Figure 1. Reverse engineering and architectural elements recovery activities.

• Association rule: an implication of the form X ⇒
Y, where X and Y are items of the database and X
∩ Y = ∅. X is the antecedent of the rule, while Y
is its consequent.

• Apriori requires two threshold values: minimum
support and minimum confidence. Support “s”
means that s% of the transactions in the database
contains X and Y. Confidence “c” implies that c%
of the transactions that contain X also contain Y.
Given a set of transactions τ, the problem of
mining association rules is to generate all rules
that have support and confidence equals or greater
than the user specified minimum support and
minimum confidence.

In order to mine association rules, some concepts
from the database domain are mapped to the dynamic
analysis context (Table 1). Our Apriori-like algorithm
incrementally queries specific antecedents discovering
classes that must be clustered.

Mining is semi-automated and supported by the
TraceMining tool, an Odyssey plug-in, which can
randomly suggest mining antecedents from higher to
lower support values. Therefore, architectural elements
generation starts from more general to more specific
architectural elements. Minimum support value must
be 0% since all the monitored classes must be clustered
into architectural elements, even if it appears in only
one use case scenario. Minimum confidence, on the
other hand, must be tuned along the mining process
with a system stakeholder, although 60% proved to be
a good value along the experimental studies.

Table 2 presents an example set of execution traces
for a school domain and Table 3 presents the cycles
followed in the incremental mining approach, based on

the explained mining principles, with their results.

Table 1: Mappings of database concepts to
dynamic analysis

Data Mining
Concepts Mapping to Dynamic Analysis

Transaction A use-case scenario implemented by an
execution trace.

Data Item A class supporting a use case scenario.

Support Percentage of use case scenarios in which the
classes in an association rule appear together.

Minimum
Support

The minimum percentage of use case scenarios in
which the classes in an association rule must
appear together.

Confidence Percentage of use case scenarios of class X in
which a class Y also appears.

Minimum
Confidence

The minimum percentage of use case scenarios
of class X in which the class Y must also appear
for them to be included in an association rule.

Antecedent The class that is used as input to discover the
association rules.

Consequent
The classes that are associated to the antecedent
with support and confidence greater or equal to
the minimum percentages.

As presented in Table 3, classes are mined from
higher to lower support values, i.e. starting from class
Student which has 100% of support, and finishing with
class PrinterUtils that has 33,3% of support. Already
grouped classes are filtered from subsequent mining
cycles. The minimum confidence used was 60%,
therefore GraduateStudent and UnderGraduateStudent
were suggested for clustering with Student. At the end,
three architectural elements were recovered, namely:
Student (classes: Student, GraduateStudent, and
UndergraduateStudent), ClassesSubscription (classes:
Classes and Subscription), and Printer (classes:
PrinterUtils and PrinterConfig). Architectural element
names are derived based on the most common

496

substrings in their class names. Class Grade was not
covered by any element and can be manually clustered.

The reconstructed architectural elements are
exported to the Odyssey environment, and represented
through UML packages. Relationships among them are
derived based on the relationships among their
constituent classes. Whenever there is a relationship
between classes of distinct architectural elements, a
dependency is derived between them. Intermediate
results can be discussed with a system stakeholder,
leading, in some cases, to the need of re-defining
current or identifying new use case scenarios.

Table 2: Execution traces for a school domain
Use Case scenario Supporting Classes
1. Inform Graduate Students
Grade

Student, GraduateStudent,
Grade

2. Inform Undergraduate
Students Grade

Student,
UndergraduateStudent, Grade

3. Print Students Grade Student, GraduateStudent,
UndergraduateStudent,
PrinterUtils, PrinterConfig,
Grade

4. Subscribe Graduate Students Student, GraduateStudent,
Classes, Subscription

5. Subscribe Undergraduate
Students

Student,
UndergraduateStudent,
Classes, Subscription

6. Print Students Subscriptions Student, GraduateStudent,
UndergraduateStudent,
Classes, Subscription,
PrinterUtils, PrinterConfig

Table 3: Mining results
Cycle Antecedent Support Association

Rules/Confidence
1 Student 100% Student ⇒

GraduateStudent,
UndergraduateStudent –
66,7%

2 Classes 50% Classes ⇒ Subscription
– 100%

3 PrinterUtils 33,3% PrinterUtils ⇒
PrinterConfig – 100%

Finally, Dynamic View Reconstruction involves

generating UML sequence diagrams in the Odyssey
environment, associated to the monitored use case
scenarios and showing the system behavior in its
architecture. Further details can be obtained in [9].

2.2 Architecture evaluation

Architecture evaluation is performed with an

extended version of ArqCheck [10]. ArqCheck is an
architecture evaluation method based on inspection
which uses a checklist as the defect detection

technique. ArqCheck identifies three kinds of
architectural defects, namely: architectural
representation inconsistencies, functional and non-
functional requirements conformance.

Concerning non-functional requirements, ArqCheck
originally identified conformance to Availablity,
Performance, Modifiability, Usability, Security, and
Testability. We extended ArqCheck to evaluate
conformance to Reusability, since reusing recovered
architectural elements in domain reference
architectures specification is our main goal. Reusability
questions in the checklist are mainly based on
functional cohesion and low coupling among
architectural elements.

ArqCheck follows a traditional inspection process
[11] and adapt some activities, e.g. Inspection
Planning which also covers the configuration of the
checklist to the architectural representation and non-
functional requirements of interest. After evaluation by
system experts, who apply ArqCheck, recovered
architectural elements are corrected for domain
reference architectures specification.

2.3 Domain variability identification

Domain commonalities and variability identification

encompasses three activities (Figure 2), being
supported by the ArchToDSSA tool, an Odyssey plug-
in. Optionality Detection takes as input the recovered
and corrected architectural models, and identifies
mandatory and optional architectural elements.
ArchToDSSA tool compares the architectural elements
through their names and creates a match whenever
there is a correspondence in at least two architectures.
The comparison is performed in both levels: at the
architectural level and at the detailed design level, in
which internal classes of architectural elements are also
compared and indicated as optional or mandatory.

Whenever an architectural element is found in all
the architectures, it is indicated as a mandatory
candidate element. On the other hand, if it is found in
only some of the compared architectures, it is identified
as an optional candidate element.

In order to provide semantics to this comparison,
ArchToDSSA tool encompasses a domain dictionary in
which synonyms are stored. The goal of this domain
dictionary is to allow identifying semantic equivalent
architectural elements that have different names. For
example, Teacher and Professor should be identified as
the same element in a hypothetical school domain.

497

Figure 2. Domain commonalities and variability identification activities.

Besides providing a synonym dictionary,

ArchToDSSA tool allows the user to inform some
filters, eliminating strings that do not help in the
comparison, such as: manager, mgr, controller, utils
etc., which don't have meaningful semantics. Finally,
comparisons can be performed at the substring level,
i.e. architectural element names can be broken into
substrings and if the architectural elements have the
same amount of substring in common in their names,
the tool indicates that they compose a matching. All
options can be configured by the user.
Variation Points Detection involves identifying

inheritance and interfaces in the architectural models.
These constructions are indicated as variation point
representations in the Odyssey-FEX notation [5].
Variation points can be mandatory or optional,
according to the optionality previously identified.

Finally, in the Reference Architecture Generation
activity, the user must choose one of the compared
architectures to serve as the basis to generate a domain
reference architecture. This choice is not currently
supported by the ArchToDSSA tool. The selected
architecture is exported to Odyssey, to be reused in
domain applications instantiation. Before exportation,
the user can select optional elements from the other
architectures to compose the selected reference
architecture. However, the tool doesn't export the
relationships among these new optional elements and
the ones in the selected architecture, once the structures
in which they were originally developed may diverge.
These optional elements are marked as "not completely
defined", and must be further specified by the user.

3. Evaluation studies

In order to evaluate ArchMine approach, two case

studies involving applications of different sizes and
domains were conducted. The approach was refined
along the case studies, and its final version was

applied in a third case study, in which the main goal
was to evaluate the feasibility of evaluating and
correcting the recovered architectures by applying an
extended version of ArqCheck.

In the first study, one system expert agreed that
ArchMine could correctly recover the whole
application architecture, and for the other two system
experts it could only recover some architectural
elements. In the second case study, ArchMine
performance had improved. Performance was evaluated
by comparing precision, i.e. correctness of the
recovered architectural elements, and recall, i.e.
coverage of the recovered architectural elements,
against the values obtained in the first study and against
values available in the literature [12]. Precision and
recall were computed with the system expert who
evaluated the recovered architectural elements by
comparing it to the original ones. We also compared
precision and recall with the values obtained by
applying another architecture recovery approach [13],
obtaining better results.

In these studies, architectural evaluation was
performed in an ad-hoc fashion and required a huge
human effort. Therefore, extended ArqCheck was
incorporated to architecture evaluation. In the final
evaluation study, the results showed that ArqCheck
could reduce the recovered architectures evaluation
effort and improve architecture quality for reuse.

4. Related work

In [3], Gomaa emphasizes the importance of making

the consistency among existing system models in order
to determine the kernel, optional, and alternative PL
elements. Although some guidelines are provided,
legacy models recovery is not encompassed by the
approach and important issues, like name divergences
among existing systems, are not considered.

498

In [14], PL variabilities are refactored from existing
products and represented through aspects. The main
focus of the work is on variability refactoring and
representation, not on variability detection. Stoermer
and In [4] the MAP (Mining Architectures for Product
Lines) method for migrating individual products to a
PL is proposed. Although MAP proposes a more global
process, including, for example, a preparation phase in
which product candidates are selected, there are no
well-established criteria for architectural elements
recovery and comparison that can be applied to
different application domains.

In [15], PL variation points are identified by
comparing execution traces gathered from different
product versions. In [16], application reusable domain
components are extracted by applying metrics that
indicate components quality attributes adequacy.
Quality attributes that indicate Reusability are
functional utility, correctness, adaptation cost etc. In
our work, Reusability is evaluated through a systematic
method (i.e. ArqCheck), which evaluates architectural
elements functional cohesion and coupling.

5. Conclusions

In this paper we presented an approach to assist in

domain reference architectures specification, by
performing three macro-activities, i.e. architectural
elements recovery, architecture evaluation, and domain
variability identification. Its main contributions are a
set of systematic activities, with general supporting
criteria and tool set, that can guide existing systems
evaluation during a DE or PL process. Moreover, it can
assist in program comprehension by recovering
updated documentation for existing systems.

 However, some limitations are also outlined, such
as the impact of the selected use case scenarios,
minimum confidence and mining antecedents in the
recovered architecture quality. Moreover, it is
necessary to identify commonalities and variability also
in the other models, i.e. use case and dynamic models.
As future work, experimental studies to evaluate the
feasibility of the whole process, including domain
commonalities and variability identification, will be
performed.

6. References

[1] M. Shaw and D. Garlan, Software Architecture:
Perspectives on an Emerging Discipline, New Jersey:
Prentice-Hall., 1996.
[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A.
Peterson, Feature-Oriented Domain Analysis (FODA):

Feasibility Study, Software Engineering Institute,
Pittsburgh CMU/SEI-90-TR-21, 1990.
[3] H. Gomaa, Designing Software Product Lines with
UML: from Use Cases to Pattern-Based Software
Architectures, Addison-Wesley Professional, 2004.
[4] C. Stoermer and L. O’Brien, "MAP: Mining
Architectures for Product Line Evaluations," In: 3rd
Working IFIP Conference on Software Architecture,
Amsterdam, Holland, August, 2001, pp. 35-44.
[5] Odyssey, "Reuse Infrastructure based on Domain
Models", In: http://reuse.cos.ufrj.br/odyssey.
[6] J. Sametinger, Software Engineering with Reusable
Components, Springer-Verlag, New York, Inc., 1997.
[7] R. Agrawal and R. Srikant, "Fast Algorithms for
Mining Association Rules," In: 20th VLDB, Santiago,
Chile, September, 1994, pp. 487-499.
[8] G. Booch, J. Rumbaugh, and I. Jacobson, The
Unified Modeling Language User Guide, 1st ed:
Addison-Wesley, 1998.
[9] A. Vasconcelos, R. Cepêda, and C. Werner, "An
Approach to Program Comprehension through Reverse
Engineering of Complementary Software Views," In:
1st International Workshop on Program
Comprehension through Dynamic Analysis, Pittsburgh,
PA, USA, November, 2005, pp. 58-62.
[10] R. Barcelos and G. Travassos, "Evaluation
Approaches for Software Architectural Documents: A
Systematic Review," In: 9º Workshop Iberoamericano
de Ingenieria de Requisitos y Ambientes de Software,
La Plata, Argentina, 2006, pp. 433-446.
[11] M. Fagan, Design and Code Inspection to Reduce
Errors in Program Development, IBM Systems
Journal, vol. 15, pp. 182-211, 1976.
[12] K. Sartipi, Software Architecture Recovery based
on Pattern Matching, PhD Thesis, School of Computer
Science: University of Waterloo, 2003.
[13] B. Mitchell and S. Mancoridis, On the Automatic
Modularization of Software Systems Using the Bunch
Tool, IEEE Transactions on Software Engineering, vol.
32, pp. 193-208, 2006.
[14] V. Alves, P. Matos, L. Cole, et al., "Extracting and
Evolving Mobile Games Product Lines," In: 9th
International Software Product Line Conference,
Rennes, France, September, 2005, pp. 70-81.
[15] B. Cornelissen, B. Graaf, and L. Moonen,
"Identification of Variation Points Using Dynamic
Analysis," In: 1st International Workshop on
Reengineering Towards Product Lines (R2PL),
Pittsburgh, PA, USA, November, 2005, pp. 9-13.
[16] D. Ganesan and J. Knodel, "Identifying Domain-
Specific Reusable Components from Existing OO
Systems to Support Product Line Migration," In: 1st
R2PL, Pittsburgh, PA, USA, November, 2005, pp. 16-
20.

499

EvoSpaces: 3D Visualization of Software Architecture

Sazzadul Alam, Philippe Dugerdil
HEG - Univ. of Applied Sciences, Geneva, Switzerland

Sazzadul.Alam@hesge.ch, Philippe.Dugerdil@hesge.ch

Abstract
This paper presents the Evospaces reverse-engineering
tool that represents the architecture and metrics of
complex software systems in a 3D virtual world. The main
goal of our project is to exploit familiar metaphors
(analogical representations borrowed from another
domain) and sophisticated interactions modes to help the
user understand complex systems. First, we present the
general architecture of the Evospaces tool. Second, we
show the metaphors we have implemented to help the user
to quickly get an overview of a complex system. Then we
present the interaction mode we designed to let the user
explore such a complex system. Finally, we show an
example of a virtual space we have designed to represent
the architecture of Mozilla. We conclude with an account
of our current research directions. The main
contributions of this paper are the metaphors that we
have used and the types of interaction modes we have
implemented. They represent a real contribution to the set
of tools that can help a maintenance engineer to
understand a large system such as Mozilla.

1. Introduction

Since software is a formal and abstract construct, there
is no “natural” representation for it. On the other hand a
visual representation is an appealing way to represent lots
of information simultaneously. Today’s industrial
software systems are tremendously complex, with size
counting in millions of lines of code. One way to cope
with complexity is to represent information hierarchically
in several levels of abstraction [17]. Fortunately, software
systems are often structured hierarchically as systems,
subsystems and components located in packages and/or
directories. However containment information does not
tell us much about the complexity of the contained
elements. Then, metrics can be used to attach measures to
the software elements. But metrics are most useful if one
can compare their values among several components
located in different parts of the system. Then, we must
find ways to represent structural and metrics information
on the system in the same visual space [10]. Moreover
these visual representations should be easily interpretable

by the user, to let him decide what components to
investigate further. However, if the unsophisticated
display of a few dozen of classes in a diagram can provide
some insight to the structure and behavior of a system, we
must find way to meaningfully represent hundreds of
classes or components. This is a complexity one cannot
avoid for industrial-size systems. Although it is clear that
a good drawing can replace a thousand words, it all
depends on the drawing. Then, the central research
questions are, first: how can we exploit familiar visual
metaphors (analogical representations borrowed from
domain of which the user has direct sensible experience)
to help the user grasp a myriad of information in a single
view? Second, how can we provide the user with powerful
navigation and interaction techniques to let him dig the
system and discover information as needed while staying
aware of the context? Third, how can we meaningfully
represent relationship between software objects?

Our system basically rests on the representation of a
3D landscape in which the user can navigate and
investigate software objects. It is implemented in Java and
JOGL (OpenGL) [13] under Eclipse. As a test bench, we
investigated the source code of Mozilla that contains
about eleven thousand of files in its latest release. This
paper is organized as follow. Section 2 presents the
general architecture of our platform called “Evospaces”.
Section 3 presents the interaction mechanisms with the
virtual landcape we have built. Section 4 presents an
example where Mozilla is displayed in a virtual world. As
a conclusion, section 5 presents an outlook of the future
work.

2. Evospaces tool architecture

2.1 Introduction

To allow our tool to display systems written in
different programming paradigms and to be able to
quickly integrate new visualization metaphors we have
built it in five layers (fig 1). Because of the well-defined
interfaces between modules, changes made inside a given
layer have a limited impact on the other layers. For
example, the rendering engine will not be affected when
changing the programming language of the program to

500

analyze provided it follows the same paradigm (object
oriented for example).

2.2 Source code layer

This layer represents the raw source code of the
software under investigation, structured as files. Those
files are parsed off-line to fill the database of code
elements. Since we do not know at parsing time what
information the users will look for, we have chosen to
extract as much structural information as possible from
the source code. In particular, a set of widely used metrics
is computed on the target system while the database is
loaded. This layer is also used when displaying the source
code corresponding to some selected element in the views.

Rendering
The 3D engine that displays the virtual
environment and let the user interact
with it.

ModelView
Object model containing the elements to
be displayed and the parameters of the
visual representations.

Model
Object model representing source code
elements with all the related information

Database of
Code

Elements

Raw data on the source code elements
and precomputed metrics stored as
database tables.

Source
code

Source code of the analyzed software
represented as files. This layer is external
to our architecture. It is used to display
the original source code of some selected
element.

Figure 1. The Evospaces’ layered architecture

2.3 Database layer

At the database level, the source code elements are
represented in the entity - relationship paradigm. Elements
like classes, methods, variables, attributes, packages, files
or modules are entities. The way those entities are
structured (containment relations and programming-
language level relations), communicate or work together
is represented as relationship. The database contains one
table per software entity and one table per “relationships”
between software entities. Then, at this level, the software
under investigation is modeled as a huge entity-
relationship diagram like the one presented in figure 2.
Moreover, all entities and relationships have extra
properties like source level information (names, labels,
parameters) and metrics values. These properties depend

on the type of the entity or relationship considered. The
classes in the Database layer implement a generic access
to the tables. Basically they consists of “builders” [6], that
instantiate the objects representing entities and
relationships.

Figure 2. Source code data structure

2.3 Model layer

The Model layer implements the object representation
of the loaded entities and relationships in the Evospaces
system. Each kind of entity or relationship is represented
by its own class. Consequently, this layer contains two
hierarchies of classes, one for the entities and one for the
relationships, following the Famix metamodel for object-
oriented programming languages [1]. For example, in
figure 3, we show the Famix model for entities.

Figure 3. Famix model for entities

2.4 ModelView layer

This layer is the first to deal with visualization issues.
It contains all the values and parameters used for the 3D
rendering of the entities and relationships. Each object in
the ModelView layer has a counterpart in the Model layer.
Then, the ModelView layer contains two hierarchies of
classes, one for the entities and one for the relationships
that are similar to the hierarchies in the Model layer.
However the entities and the relationships of the
ModelView layer only contain visualizable data. The
ModelView layer works as a visual abstraction of the raw
data stored in the model layer: it maps the data of the

A
bs

tr
ac

ti
on

 le
ve

l

501

model layer to displayable elements. In particular, this is
where :
• The glyphs (graphical objects representing data

through visual parameters [1]) are mapped to a given
type of entity or relationships;

• The values of the metrics are mapped to some visual
scale (saturation of colors for example) and positions
in the 3D space (layout).

Moreover since we wish our system to let us experiment
with different representations of the same set of entities
and relationships, a given entity or relationship in the
Model layer may me mapped to different visual objects in
the ModelView layer. This makes it possible to maintain
several concurrent views of the same set of software
elements. However, at any given time, only one view will
be displayed. This layer, which represents the largest part
of our system, also contains the classes that control the
interaction with the user. Any entity or relationship in this
layer is associated with four objects: a shape, a color, a
layout and a list of “reactions” to user actions. The
“shape” defines how the element will look like in the 3D
view (the glyph). It can be as simple as a fixed size
geometric volume, like a cube or a cylinder, or be a much
more sophisticated visual element, using transparency
effects and textures. The dimensions of the glyphs are set
proportionally to the value of one or more metrics.

Among the metaphors we experimented one of the
most appealing is the modern city. Then, the classes and
files are represented as buildings and the relationships as
solid pipes between the buildings. On the other hands,
metrics values intervals are mapped to different textures
of buildings. For example, we split the files in three
categories depending on their number of lines of code
(LOC). Each category is represented by a different kind of
building (different texture) (fig.4). In this example we
used:
• a house for files with 0 to 50 LOC;
• an apartment block for files with 51 to 200 LOC;
• an office building for files with more than 200 LOC;
Morevoer we represented header files (.h) as a city hall
with columns and a stickman for the functions and
methods in classes and files.

 House Apartment block Office building

 Stickman City hall

Figure 4. Examples of Glyphs

Then, another metrics can be mapped to the height of the
building. We then set the number of floors to represent the
number of global variables declared in the file (fig 5). We
also split the files in three categories according to their
number of global variables:
• small building for files with 0 or 1 variable;
• medium size building for files with 2 to 4 variables;
• tall building for files with 5 or more variables.

On the other hand, the height of the city hall depends
on the number of functions in the header file. (small: 0 to
5 functions, medium: 6 to 15 functions, tall: more than 15
function).

Figure 5. Mapping of metrics to the size

The objects representing the entities are distributed in
the 3D space using a specific topology (layout). For
example we could arrange the entities in rows and
columns, in concentric circles, in spiral, etc. Since the
layout of the objects also conveys information, we must
find a good map of the chosen metrics to the layout so that
an intuitive interpretation is possible. In figure 6 we
present two layouts among those we investigated. In the
concentric layout (left), a possible mapping could be: the
older the class the closer to the center. In the chessboard
layout (right), the mapping could be the static coupling
between classes: the closer the classes the tightly coupled.

Concentric Chessboard

Figure 6. Examples of layouts

Once visualized, the user can interact with the
displayed objects. Each visual element has a list of
potential actions that the user may perform on it. For
example, the user could request to display the value of
some metrics, to change the visual appearance the object,
to load the related elements, to open the corresponding
source file, etc. The list of possible actions is defined for
each type of elements and is accessible through a
contextual menu.

2.5 Rendering layer

All classes responsible for the actual display of the
views on the screen are located in the Rendering layer.

502

The 3D rendering library used is JOGL [7], a binding of
OpenGL for Java, which has been released by Sun for
Windows, Solaris, Linux and Mac OS platforms. The
rendering engine, which is responsible for the drawing of
the 3D scene on the screen, uses the data stored in the
ModelView objects. This engine also catches the actions
of the user and executes the corresponding operations.
The Rendering layer also implements some Eclipse plug-
in features, like a property page to specify the
environment parameters for the Evospaces tool.

3. Interactions in the 3D view

3.1 Interaction with the visual objects

So far, our investigations on the interactions modes
with the tool went along three directions. First, we studied
the way to display the information retrieved from the
database and pertaining to a given element. Second we
investigated the ways to dynamically change the viewing
parameters of the entities and relationships in order to find
the best metaphors for the software elements in given
situation. Third we investigated the navigation among the
displayed software elements. As a result we implemented
a context sensitive menu in the 3D space. Almost all
actions available for an element are accessible trough its
contextual menu. For example, all the available metrics
stored in the database for a given element can be
represented as a table that is displayed by selecting an
item in the contextual menu. On the other hand, the
relationships between the elements are manifold. The user
can then select the relationship he wants to display by
selecting it in a preference window. Then, the relationship
will be displayed on demand by clicking the element in
the 3D view. The relationships are represented as a solid
pipe between the associated elements (fig.7).

Figure 7: Relationships and directionality

A colored segment moving along the pipe from the
origin to the destination of the relation represents the
directionality of the relation. This gives the impression of

an information flow between the connected elements. The
red segments drawn on the gray pipe in figure 7 are the
moving segments that represent directionality. For any
display element on the screen, the user can ask the system
to display the corresponding source code using its
contextual menu.

3.2 Interaction modes

To set up and orient the camera in the 3D scene the
user can use the buttons in a navigation panel (figure 8) or
use their mouse and keyboard counterpart. Beyond the
parameters of the camera, the navigation panel is used to
select the relationship to display in the view and ask for
the directionality of the relation to be “animated” (red
segment moving).

Figure 8. The navigation panel

3.3 Zooming inside objects

Since objects representing files of classes can contain
other objects (methods and variables), the user can zoom
into the objects to display their contents. Then the
methods and functions, which are drawn as “Stickmen” of
different colors, represent the “workforce” inside the
buildings. Each stickmen is surrounded by yellow boxes
(its resources) representing the local variables used by the
method. Like for the buildings, the user can ask the system
to display the relationships associated to a given method
(figure 9)

Figure 9. Methods, variables and relationships
inside a buildings

If some relationship is displayed at the level of the
methods, then it is also represented at the level of its
containing building building when zooming out (Figure
10).

503

Figure 10. Relationship between buildings

3.4 Navigating the city with a road map

When travelling in a big and unknown city, it is easy to
get lost. Better to have a map handy. In the Evospaces
system, such a map can be displayed in one of the corners
of the screen to show the user his current position in the
city (Figure 11). Unlike real paper maps, the user can
zoom into this road map to show it at different scales. This
idea has been borrowed from the computer game
technology where the user can display “radar views” to
get a global awareness of the environment. In this figure
we also display the name of the software elements as
labels attached to the buildings.

Figure 11: The file city and its road map.

5. Visualizing and navigating Mozilla’s city

As an experiment, we displayed the source code of
Mozilla, which is written in C/C++. The parsing and
loading of the database has been done as part of another
project [15]. Since all the versions of Mozilla are
accessible, they have also been stored in the database. We
then adapted the Database layer to access it. In its latest
release, Mozilla contains more than thirty thousands
methods, three thousands classes located in more than two
thousands of files. In figure 12 we present the header and

C++ files of Mozilla as a huge city. They are distributed
on a grid layout according to the containment metrics
(files in the same package are displayed close to each
other).

Figure 12. Mozilla as a huge city

In Figure 13 we show the contextual menu associated
to an object. Through this menu we asked for the display
of the values for all the metrics associated to the object.
They are displayed as a table on the left of the view.

Figure 13. Displaying the values for all the
metrics

6. Related work

Graphical representations of software have long been
accepted as comprehension aids. Many tools enable the
user to visualize software using static information, e.g.,
Rigi [12] , Hy+ [1], SeeSoft [4] , or ShrimpViews [18].
The PolymetricViews system of Lanza [11] was a first
step in presenting multiple metrics on the same 2D view.
On the other hand Chuah and Eick [1] were among the
firsts to use sophisticated glyphs to represent complex
information on software objects. The use of 3D views to
represent software architecture has been advocated by
Feijs L. and De Jongin [5]. However they focused on the
representation of the relations between modules,
themselves represented as Lego bricks distributed in the

504

3D space. They did not investigate the use of “familiar”
metaphors such as the city. The idea of the city metaphor
to represent software objects has been proposed recently
by Panas [14]. But, in this work the views are static i.e.
non navigable. Then, the quantity of information that can
be represented is limited. Langelier et al. [9] presented a
visualization of software quality made of 3D boxes
representing classes, whose dimensions are mapped to
quality metrics. But they did not exploit the city metaphor
to ease the interpretation of the view nor did they
implement the “vertical” navigation inside the boxes to
show their contents. Finally, they did not investigate the
visualization of the relationships between the classes. On
the other hand 3D visualizations have been used by
Jazayeri et al. [8] to represent version and release
information of software systems. Recently Pinzger et al.
showed the use of 2D Kiviat diagrams also to represent
software evolution [16]. The latter is a dimension of
software systems that we have not yet investigated nor
represented. However, since the database we are using
contains all the releases of Mozilla, we will display this
information in the future.

7. Conclusions and future work

In this paper we presented the Evospaces reverse-
engineering tool, which allows its users to investigate
large software systems by navigating through a virtual city
in a 3D space. The main contribution of this paper is in
the use of the “familiar” city metaphor with buildings and
people, the mapping of metrics value categories to the
texture of the buildings and the navigation mode we
implemented. In particular we showed how objects could
be zoomed in to represent their contents as “workers”. We
also showed the use of pipes with a simulation of the flow
of information to represent the relationships with their
directionality. Then we presented the idea of the “road
map” to keep the user informed of his global position
when traveling the city. Finally we showed how these 3D
techniques could be used to represent a substantial part of
a very large system such as Mozilla. Our current work
concentrates on the representation of the dynamic
information on a system (i.e. its working). We are then
looking for supplementary metaphors to represent the
interactions (the traffic) in between buildings when
objects are sending messages to each other.

8. Acknowledgements

We gratefully acknowledge the financial support of the
Hasler Foundation for the “Evospaces – Multi-
dimensional navigation spaces for software evolution
(project MMI-1976).

9. References

[1] Chuah, M. C., Eick, S. G. - Information rich glyphs
for software management data. IEEE Computer
Graphics and Applications, July1998.

[2] Consens, M. P., Mendelzon, A. O. - Hy+: A hygraph-
based query and visualisation system. In Proc. of the
ACM SIGMOD Int. Conf. on Management Data,
SIGMOD Record Volume 22, No. 2, 511–516, 1993.

[3] Demeyer S., Tichelaar S., and Ducasse S. - FAMIX
2.1 — The FAMOOS Information Exchange Model.
Technical report, University of Bern, 2001

[4] Eick, S. C., Steffen, J. L., Summer E. - Seesoft - a
tool for visualizing line oriented software statistics.
IEEE Trans. on Soft. Engineering 18(1), Nov. 1992

[5] Feijs L., De Jongin R. – 3D Visualizations of
Software Architectures. CACM 41(12), Dec. 1998.

[6] Gamma E., Helm R., Johnson R., Vlissides J. –
Design Patterns. Elements of Reusable Object
Oriented Software. Addison-Wesley Inc. 1995.

[7] Java binding for OpenGL, https://jogl.dev.java.net/
[8] Jazayeri M., Gall H., Riva C. - Visualizing software

release histories: The use of color and third
dimension. Proc. IEEE Int. Conf. on Software
Maintenance. ICSM, 1999.

[9] Langelier, G., Sahraoui, H., and Poulin, P. -
Visualization-based analysis of quality for large-scale
software systems. In Proc. of the IEEE Int. Conf. on
Automated Software Engineering ASE '05. 2005

[10] Lanza M. - Object-Oriented Reverse Engineering.
PhD Thesis, Univ. of Bern, Switzerland, May 2003.

[11] Lanza M., Ducasse S. – Polymetric Views – A
Lightweight Visual Approach to Reverse
Engineering. IEEE Trans. on Software Engineering
29(9):782-795, Sept.2003.

[12] Mueller, H. A. - Rigi - A Model for Software System
Construction, Integration, and Evaluation based on
Module Interface Specifications. PhD thesis, Rice
University. 1986

[13] www.opengl.org
[14] Panas Th. - A Framework for Reverse Engineering,

PhD Thesis, Växjö University, Dec. 2005
[15] Pinzger M. - ArchView : Analyzing Evolutionary

Aspects of Complex Software Systems, PhD Thesis ,
Vienna Univ. of Technology, May 2005.

[16] Pinzger M., Gall M., Fischer M., Lanza M. -
Visualizing multiple evolution metrics. Proc. of the
ACM symposium on Software visualization 2005.

[17] Simon H.A. - The architecture of complexity. In: The
Sciences of the Artificial, MIT Press, 1969.

[18] Storey, M.-A. D., Mueller, H. A. - Manipulating and
documenting software structures using shrimp views.
In Proc. IEEE Int. Conf. on Soft. Maintenance,
ICSM, 1995.

505

Ontobrowse: A Semantic Wiki for Sharing Knowledge about
Software Architectures

Hans-Jörg Happel*) and Stefan Seedorf†)

*) FZI Research Center for Information Technologies
Research Group Information Process Engineering (IPE)

Haid-und-Neu-Str. 10-14
D-76137 Karlsruhe, Germany

happel@fzi.de

†) University of Mannheim
Lehrstuhl für Wirtschaftsinformatik III

Schloss, L 5,5
D-68131 Mannheim, Germany

 seedorf@wifo.uni-mannheim.de

Abstract

The development and maintenance of a software archi-
tecture involves various stakeholders with different
interests. While developers primarily require technical
support and guidance for their implementation tasks,
architects need means for analysis and documentation.
We argue that most approaches and tools insufficiently
support the requirements of both groups appropriately,
leading to a scattering of architectural information
into different information spaces. To resolve this prob-
lem we propose Ontobrowse – a lightweight solution
which is based upon ontologies and the recent para-
digm of semantic wikis. Ontobrowse allows the combi-
nation of informal with more formal documentation
together with the integration of asserted knowledge
from external specification resources. The system ar-
chitecture and prototypical implementation are de-
scribed. To illustrate the benefits of our approach, we
introduce the case of documenting service-oriented
architectures in an enterprise setting.

1. Introduction
A software architecture is the gross organization of a
software as a collection of interacting components
[11], functioning as a bridge between requirements
engineering and system design [11, 29]. Its building
blocks are arranged in such a way that both the system
requirements and architectural constraints are met [9].

However, it is misleading to talk about the software
architecture. While every software has an architecture,
the actual representations of such an architecture mat-
ter. Those representations are a “set of structures” [4]
that provide certain “views” such as functional, physi-
cal or logical [16]. Most of those views can be as-
signed a certain purpose, such as quality, communica-
tion, analysis or reuse [4, 5, 11].
In this context, two schools of thought can be identi-
fied. The developer-centric perspective regards soft-
ware architecture as a shared mental model [13]. Its
purpose is to facilitate communication among the de-
velopers by providing a shared understanding of the
system under development and enforcing conceptual
integrity [29]. In contrast, the system-centric perspec-
tive seeks to formalize as much constraints as possible,
to allow validation and verification of the implemented
system. Various so-called architecture description lan-
guages (ADL, see e.g. [19]) have been created to mod-
el systems in form of components and connectors, and
have formally defined semantics for tool-supported
analysis.
Both perspectives are valuable, since the development
of software is a process of increasing formalization –
from fuzzy user requirements to concrete bits and
bytes. As bridge between requirements engineering
and concrete design, software architecture has to ad-
dress both issues. What is sought is thus a solution that
offers flexibility in documentation and collaboration as
well as a sound formal basis for leveraging machine-

506

interpretable semantics. Although this requirement
sounds contradictory, we are suggesting semantic wi-
kis – an extension of the well-known wiki technology
– as a candidate technology for solving this trade-off.
From our point of view semantic wikis are well-suited
to bridge the gap between technical and business do-
cumentation, since they a) provide means for collabor-
ative documentation and information exchange regard-
ing a certain subject and b) provide a formal founda-
tion for handling technical descriptions.
The remainder of this paper is structured as follows:
First, we introduce the application scenario of enter-
prise service-oriented architectures (SOA) to further
characterize the problem. Second, we describe the ba-
sic ideas and concepts behind semantic wikis. In chap-
ter 2, we present the conceptual architecture and proto-
typical implementation of Ontobrowse. In chapter 3, it
is shown how it can be applied to the aforementioned
application scenario by providing a SOA ontology for
imposing a knowledge structure and plugins for inte-
grating external specifications. After an overview of
related work in chapter 4, we conclude by summariz-
ing the potential benefits of a semantic wiki approach.

1.1 SOA Application Scenario
Before we propose semantic wikis as a solution we
first need to delve into the main issues addressed by
this work. An application scenario which nicely illu-
strates the common problems of documenting and
maintaining architectural knowledge in enterprises is
service-oriented architecture (SOA).
Service-oriented computing [14] is an emerging para-
digm which is built on the notion of enterprise applica-
tion systems being assembled from independent, loose-
ly-coupled services. It has lifted the development of
business applications to a higher level of abstraction.
Instead of thinking in design and implementation cate-
gories like components or objects, software functional-
ity is bundled in services that correspond to business
operations of the organization. Complex workflows
can be realized by aggregating functionality from sim-
ple services. A service is a coarse-grained, discovera-
ble software entity which provides its logically-
cohesive business functionality through well-defined
interfaces. A concrete software infrastructure imple-
menting this paradigm is described as SOA [14].
In an organization pursuing the realization of a SOA,
the standard working processes change for both devel-
opers and business experts. Service developers have to
think in specification terms rather than taking an im-
plementation view. Due to the black-box realization of
services, metadata describing their properties is cru-
cial. Also, the enterprise-wide deployment of services
calls for better documentation and communication

among the responsible developers. Both aspects lead to
new kinds of information needs for developers.
Business experts on the other hand are interested in
available functionality and operational efficiency.
Since service-orientation leads to a rising level of
alignment between business processes and IT imple-
mentation, it is important to monitor and guide the
development of the service landscape. Governing the
evolution of a service-oriented architecture becomes
important, because changes at the service level may
have a direct impact on business processes.
So the paradigm of service-orientation ties the individ-
ual workflows of software developers and business
experts much closer together. This situation of multiple
stakeholders results in diverse requirements for tool
support. Besides managing the appropriate technical
and business aspects this includes communication and
documentation among the various participants in-
volved in the development process. Moreover, differ-
ent tools and description formats may be used.
This heterogeneous, dynamic environment motivates
the two building blocks of our application. Unlike
tools that concentrate on specific aspects such as ser-
vice orchestration or lifecycle management, we intend
to provide an integration space for both developers and
business experts, since both worlds often maintain
their separate information set about the same subject.
Therefore we propose a semantic wiki approach which
is able to integrate both informal and formal descrip-
tions typically managed within a SOA project.

1.2 Semantic Wikis
The software genre of a “Wiki” describes a lean ap-
proach to web-based content management, allowing
multiple users to collaborate on the creation of a doc-
ument. Basically, a “small web” is imposed by the
titled wiki pages and their contained hyperlinks. How-
ever, in contrast to the World Wide Web, wikis pro-
vide editing capabilities and enforce some conceptual
coherence. Due to these characteristics, wikis have
become popular in various application areas, in partic-
ular software engineering (see e.g. [7] for an over-
view).
Although traditional wikis provide a top-level structure
by its separation in “pages”, the actual information on
a certain page is stored in an unstructured manner.
Classical wiki software does not provide a standar-
dized way to add structured information to a certain
topic. However, if some information was made availa-
ble in a machine-interpretable format, a site like the
Wikipedia could heavily benefit because its pages con-
tain a lot of potentially structured information [21].

507

Thus, several projects started to implement semantic
extensions to the wiki approach1. Because most of the
implementations are still in an experimental stage,
there is no clear definition of what a semantic wiki
exactly is. However, some shared characteristics can
be identified: Semantic wikis extend traditional wikis
in the way that they allow structured knowledge to be
described in a formal language, instead of processing
solely hypermedia-based content. This is either be
done by appending metadata to wiki pages or by in-
cluding knowledge inside the unstructured text by us-
ing extensions to the wiki markup language. The latter
approach is used by the SemanticMediaWiki project
[21], which extends the existing wiki markup to enrich
hyperlinks between wiki pages with semantic relations.
The approaches have in common that they interpret the
existing wiki pages as entities, and hyperlinks as rela-
tions among them. Adding semantics just formalizes
this implicit structure, thus transforming the know-
ledge inside the wiki into a kind of “ontology”, which
is defined as “an explicit specification of a conceptua-
lization” [12]. Since most semantic wiki implementa-
tions are rooted in the semantic web community, they
adopt existing standards for ontology representation
such as the Resource Description Framework (RDF)
and the Web Ontology Language (OWL). RDF is a
simple graph-like format for describing metadata about
resources [22] that are described using a Uniform Re-
source Identifier (URI). This makes it easy to annotate
wiki pages with arbitrary metadata. OWL is defined on
top of RDF(S) and provides a standard ontology voca-
bulary for describing ontologies based on description
logics [23].
While the knowledge representation community typi-
cally differentiates between structural knowledge, de-
scribing concepts or classes (“TBox”) and assertional
knowledge, describing instances of those concepts
(“ABox”), this distinction is rather blurred in current
semantic wikis. For application scenarios like forma-
lizing the knowledge inside Wikipedia, this is perfectly
suited, since “conceptual” knowledge may emerge as
well as “assertional” knowledge.
However, in a more focused application scenario, a
more restrained conceptual structure, specifying con-
cepts and their relations, might be useful to predeter-
mine the initial structure of the information space. In
opposite to semantic wikis supporting the emergence
of knowledge structures out of existing wiki content,
this alternative proposal results in a semantic wiki
based on a predefined knowledge structure, that pro-
vides a frame for adding further assertional knowledge
inside a limited domain. We consider this approach to

1 http://wiki.ontoworld.org

be viable for the purpose of bringing together formal
specification with informal documentation of architec-
tural knowledge. We will now describe the Onto-
browse semantic wiki and then illustrate its contribu-
tions by proposing an exemplary knowledge structure
for the SOA scenario.

2. The Ontobrowse Semantic Wiki
There are various kinds of tools and description for-
mats that can be constructed for sharing architectural
knowledge. The main purpose here is to provide a
lightweight solution that can be adapted to integrate
information from existing environments, e.g. service
descriptions managed in a SOA repository.
On top of the problem description in the chapter 1
three main requirements are identified:
R.1 Browse, search and query architectural knowledge
R.2 Manage (informal and formal) documentation
R.3 Enable consistency checking and verification
Although R.3 is not discussed in this paper, the pro-
posed ontology-based solution provides general sup-
port for it. Moreover, there are two key constraints for
a practical solution:
C.1 Combine formal and informal knowledge of a

software architecture
C.2 Enable the integration and augmentation of know-

ledge from external sources
Semantic wikis make it possible to combine unstruc-
tured and machine-interpretable knowledge (C.1), and
ontologies define a knowledge structure, which can
serve as a contract for integrating instance data from
external architectural description resources (C.2). Both
semantic wiki and ontologies therefore constitute the
building blocks of the Ontobrowse architecture.

2.1 Wiki architecture
The core of our wiki architecture consists of one or
more ontologies and a corresponding knowledge base.
While the ontologies define the knowledge structure,
i.e. the boundaries in which instances can be described;
the knowledge base holds the instances. Within the
given knowledge structure, it is possible to create or
augment instance descriptions in two different ways:
First, external tools can plug into the wiki application
and map architectural description resources to in-
stances in the knowledge base. Second, a wiki user can
use the interface to describe properties – may it be
formal or informal – about instances of concepts.
In our SOA scenario, a knowledge structure may be
described by the concepts “service” and “business ob-
ject” together with their properties and axioms. Anoth-
er example is a concept in a domain vocabulary, which
can be used to describe SOA elements with additional

508

semantics. The instances are represented by actual ser-
vices and business objects developed in a SOA project.
Each concept, relation or individual is visible to the
user as a “wiki page”. A wiki page typically consists of
unstructured content and properties that make state-
ments about this page, e.g. a business object which is
semantically described by a domain concept. We also
refer to a wiki page as an “entity”, because it is con-
tained in the knowledge base and can be requested
with a unique identifier (URI).
Following the characterization of the wiki structure,
we now introduce the key components of the system
architecture as depicted in Figure 1: a Web interface, a
wiki manager, an ontology API to access the know-
ledge base and a plugin manager.

Plugin Manager

Ontobrowse Web Interface

Ontobrowse Wiki Manager

Ar
ch

ite
ct

ur
al

K
no

w
le

dg
e

B
as

e

Ontology API & Reasoner

Documents (from file
system, SVN, CVS)

Component / Service
descriptions

Artifact Layer

Integration Layer

Import data

Ontologies Instance data

Web-Browser
(User, Admin)

Storage

Figure 1: Ontobrowse architecture

Starting with the client’s perspective, all functionality
is exposed by a Web interface to both users and admin-
istrators. In the application layer, a wiki manager bun-
dles the functions for fulfilling the requirements, such
as processing page requests, editing textual documen-
tation and instance property values, searching and de-
ductive querying, and verifying user authorizations.
Entity (page) descriptions are returned by an ontology
API, which wraps the underlying reasoner and ontolo-
gy processing tools.
Administration tasks include ontology management
and plug-in management. In most cases, ontologies are
constructed during the setup phase using an ontology
editor such as Protégé2 and then uploaded by an ad-
ministrator using the wiki manager. However, it is still
possible to add new properties to concepts or entire
ontologies throughout the operation phase.
Plug-in management refers to a distinctive feature,
which allows mapping and importing instance data

2 http://protege.stanford.edu

from external sources. To a great extent the instance
data will be embodied in applications and artifacts that
are managed outside the wiki, e.g. service specifica-
tions in the case of SOA documentation. The data thus
has to be imported from external sources, such as con-
figuration management systems (see Figure 1). There-
fore, the plug-in manager exposes standard interfaces
that allow tools to retrieve artifacts, map them accord-
ing to an ontology, and create or update instance data
in the knowledge base. As described in more detail in
the SOA case, imported instance data can be aug-
mented and referenced for further documentation.

2.2 Prototypical Implementation
The system architecture described above was imple-
mented in Java. Our main concern was to achieve a
clean separation into loosely coupled components so
that some parts can be easily substituted by other im-
plementations, e.g. using a different reasoner in the
ontology API. The application and persistence layer
were implemented with Spring3 and Hibernate4, for the
Web interface we used Java Server Faces5.
The Web Ontology Language (OWL) was employed
as knowledge representation format. For processing
OWL files and reasoning in the ontology API we
worked with the Jena 2 Semantic Web framework6.
Deductive queries with SparQL [25] are supported
accordingly. Jena also supports user defined rules for
knowledge generation and consistency checking, how-
ever, this feature is not discussed in this paper. A fea-
ture that had to be added on top of the ontology API is
full text search spanning both entity descriptions in the
knowledge base and textual descriptions.
One important aspect for the user acceptance of a Wiki
is an easy to understand Web interface. If the wiki con-
tains hundreds of concepts, the knowledge space will
quickly get too difficult to navigate. That is why ad-
ministrators can assign an OWL annotation property to
a concept in order to mark it as visible on top-level.
Moreover, annotations have been used to control edit-
ing of instance properties. In the SOA case, a service
instance could be augmented with additional metadata,
e.g. about the responsible developer. Instance proper-
ties that have been imported via plug-ins are thus
marked as “non modifiable”. This way (one-way) con-
sistency with external sources is ensured.

3 http://www.springframework.org/
4 http://www.hibernate.org/
5 http://java.sun.com/javaee/javaserverfaces/
6 http://jena.sourceforge.net/

509

3. Application to the SOA scenario
The primary goal of Ontobrowse is to provide a non-
invasive solution, which can be extended and tailored
to individual project needs. Depending on the enter-
prise setting project-specific architectural knowledge
may be distributed throughout various sources.
Concerning the SOA scenario we assume that architec-
tural descriptions are managed in a single file system
or alternatively in a service repository. A typical can-
didate artifact is the specification of a service together
with its interfaces. The services may either be specified
in a custom or standardized format, e.g. proprietary
XML or Web Service Description Language (WSDL).
Other artifacts also hold valuable knowledge. A SOA
project may use a considerable number of WS* stan-
dards, e.g. Business Process Execution Language
(BPEL4WS), WS-Policy or WS-Security, to cover
important aspects such as service orchestration and
non-functional properties.
Two steps are necessary for integrating architectural
descriptions into the wiki: First, we require a concep-
tual mapping from a description format to a unifying
SOA ontology. Since more than one format might be
used to describe a “service”, the ontology reduces con-
ceptual ambiguity and enables information integration.
Second, a plug-in has to be defined, which performs
the actual mapping of instances from a source into the
knowledge base.

3.1 SOA ontology
The purpose of the SOA ontology is to supply the ini-
tial structure to the semantic wiki enabling the docu-
mentation of services by both business experts and
developers. For this reason, it has to include central
concepts of a SOA like services, business objects and
domains concepts. Moreover, the ontology should pro-
vide a basic abstraction, in which the actual informa-
tion about SOA elements from the external data
sources is mapped onto.

is a

ServiceLayerServiceLayer ArchitectureArchitecture

ServiceService

OperationOperation

InterfaceInterface

PersonPerson Business ObjectBusiness Object

Domain ConceptDomain Concept

EndpointEndpoint

hasUpperLayer

describedBy

describedBy

hasInput

hasOutput

hasEndpoint

specifiedIn

operatesIn

hasInterface

hasOperationSOA elementSOA element

owns is a

Figure 2: SOA ontology

There exist a number of specification standards and
ontologies which provide valuable input during ontol-
ogy development. For example, the service component
model in WSDL 2.0 is partly reflected in the ontology.
Nevertheless a strict ontology mapping proposed for
WSDL [26] is not applicable here because it would
lead to scattering of the page structure. Other useful
sources are the foundational ontologies being devel-
oped within Semantic Web Web Services [2, 10, 20]
and Web services architecture [24].
The SOA ontology is visualized in Figure 2. The pre-
sented ontology is generic in the way that it incorpo-
rates common characteristics of widely-accepted stan-
dards. Figure 3 shows an example wiki page returned
for the concept “SOAElement” with its direct subcon-
cepts. Other information displayed for a concept are its
instances (or individuals), object properties (e.g. “ha-
sInterface”) and data type properties (e.g. “version”).

Figure 3: Concept hierarchy of SOA Element

It is possible to develop additional ontologies that cov-
er a particular information need in the SOA project or
organization. Instance data corresponding to the ontol-
ogy may either be maintained in the wiki or imported
from external sources by creating appropriate plugins.
This ensures high flexibility and enables to augment
SOA elements with further knowledge. This may e.g.
include domain concepts given by a domain ontology
or organizational knowledge such as persons responsi-
ble for SOA elements.

3.2 Mapping SOA artifacts
We now explain how actual service descriptions are
imported into the wiki and enriched with additional
metadata. WSDL 2.0 service descriptions serve as an
example, while the process is analogous for other for-
mats and source types. First a one-way mapping be-
tween WSDL service descriptions and the SOA ontol-

510

ogy has to be defined. We extended the WSDL format
to accommodate additional service properties such as
version and architectural layer. The actual mapping is
executed by a Java program which conforms to the
Ontobrowse plug-in interface. It takes a WSDL file as
input and produces an OWL file conforming to the
SOA ontology. A wiki administrator is then responsi-
ble for configuring input sources (CVS, file system)
and update types (manual, timer task, update event).
Based on this configuration the plugin manager com-
ponent is responsible for updating the knowledge base
automatically.

Figure 4: Service instance

Figure 4 shows a service instance imported from a
WSDL file. Wiki users can now browse and search the
information space, edit textual descriptions and assign
additional property values (metadata) to an instance,
e.g. the responsible person for a service. However,
editing is restricted to especially annotated properties.
Moreover, these property values are exclusively visible
within the wiki.
A query interface enables users to define chained que-
ries consisting of sentences with subject, predicate and
object (e.g. all services “x” defining interface opera-
tions with the output “Customer”). Matching entities
are returned for the variables defined by the query.

4. Related Work
The basic building blocks of our approach – wikis for
software documentation and ontologies as formal
models for software systems – have been used in some
earlier works. Aguiar and David present a wiki-based
approach to integrate heterogeneous software specifi-
cation resources into a single document [1], while
Bachmann and Merson investigate the advantages of

wikis compared to other architecture documentation
tools [3]. However both approaches lack a formal
model – the information is managed in an unstructured
way.
On the other hand, formal ontologies have been pre-
sented for architectural documentation [28] and for
building “software information systems”, describing
the interrelationships of domain models and source
code [8, 27]. These works either lack appropriate tool
support or follow a very strict philosophy of software
architecture.
Some aspects of a software architecture that have been
covered in this paper might also be described using an
ADL [19]. However, the case described in this paper
substantially differs from the purpose of architecture
description languages. Whereas ADLs solely focus on
the formal specification of concrete architectures, our
approach is also capable of supporting informal as-
pects of software architecture. Our model of architec-
tural description allows exchanging knowledge be-
tween different architectures and is not limited to a
fixed set of language elements. It may be extended to
support further architectural dimensions such as orga-
nizational issues or requirements traceability.
The notion of “architectural knowledge” is currently
discussed in terms of representing decisions in the ar-
chitecture development process and the “rationale”
behind them [15, 18]. While our tool is flexible enough
to incorporate such information (e.g. based on [17]) it
was not the focus of our underlying use case. Thus, the
interpretation of architectural knowledge in the context
of our work is a much broader one, incorporating un-
structured textual documentation as well as formal
architectural specifications.

5. Conclusion and Outlook
In this paper, we presented semantic wikis as a novel
approach to share knowledge about software architec-
tures. The semantic wiki architecture and functionality
was illustrated by the example of service-oriented ar-
chitectures. However, the selected application scenario
can easily be generalized to support arbitrary architec-
tural styles. It can be tailored to project-specific needs
by providing an ontology to set up the initial structure
of the wiki.
We think that the Ontobrowse semantic wiki approach
contributes to several issues in architecture documenta-
tion and knowledge sharing. First, it builds upon the
general advantages in software documentation offered
by wikis. Wikis respond well to collaborative settings
and provide a scalable way for the documentation of
large software projects.

511

Second, it bridges the gap between informal documen-
tation and technical service descriptions. We consider
this an important issue, since software architectures
operate at the intersection of user requirements and
system design. Semantic wikis enable an informal style
of documentation while also supporting to incorporate
machine-interpretable knowledge about technical de-
scriptions. Thus, they allow collecting relevant infor-
mation about a software architecture at a central place
that has so far been maintained separately.
Third, the formal model underlying the semantic wiki
supports a better searching and browsing of architec-
tural elements, ensuring semantic consistency and the
incorporation of content from external repositories.
The formal model can also be easily extended. This
may be used to include external knowledge about stan-
dards or information about organizational structure,
which is particularly important in distributed develop-
ment settings [6]. Finally, referencing specification and
implementation artifacts contributes to improving tra-
ceability throughout different stages of the software
lifecycle.

6. Acknowledgements
This work was partly supported by the European
Commission (IST-35111-TEAM), the BMBF-funded
project WAVES and by the Landesstiftung Baden-
Württemberg foundation (Project CollaBaWue). The
authors are responsible for the content of this publica-
tion.

7. References
[1] Aguiar, A., and David, G.: WikiWiki weaving heteroge-
neous software artifact. In: Proc. of the 2005 international
symposium on Wikis, San Diego, CA, 2005, pp. 67-74.
[2] Akkiraju, R., et al.: Web Service Semantics - WSDL-S,
W3C Member Submission, 7 Nov. 2005.
[3] Bachmann F., and Merson, P.: Experience Using the
Web-Based Tool Wiki for Architecture Documentation.
Technical Note CMU/SEI-2005-TN-041. September 2005.
[4] Bass, Len; Clements, Paul; Kazman, Rick: Software Ar-
chitecture in Practice. 2. Addison Wesley, 2003.
[5] Bosch, J.: Design and use of software architectures:
adopting and evolving a product-line approach. ACM
Press/Addison-Wesley Publishing Co., 2000.
[6] Cockburn, A.: The interaction of social issues and soft-
ware architecture. In: Commun. ACM 39, October, Nr. 10,
1996, pp. 40-46.
[7] Decker, B., Rech, J., Ras, E., Klein, B., Hoecht, C.: Self-
organized Reuse of Software Engineering Knowledge sup-
ported by Semantic Wikis. In: Proc. of Workshop on Seman-
tic Web Enabled Software Engineering, November 2005.
[8] Devanbu, R. J. Brachman, P. G. Selfridge and B. W.
Ballard: LaSSIE - A Knowledge-Based Software Information
System, ACM Comm., 34(5), 1991, pp. 34-49.

[9] Eden, A.H., and Kazman, R.: Architecture, design, im-
plementation. In: Proc.of the 25th International Conference
on Software Engineering (ICSE-03). Piscataway, NJ: IEEE
Computer Society, May 3-10 2003, S. 149-159.
[10] ESSI WSMO: Web Service Modeling Ontology
(WSMO). http://www.wsmo.org/, 2005.
[11] Garlan, D.: Software Architecture: A Roadmap. In:
Proceedings of the 22th International Conference on Soft-
ware Engineering (ICSE-2000), ACM Press, 2000, pp. 91-
101.
[12] Gruber, T.R.: A translation approach to portable ontol-
ogy specifications. Knowl. Acquis. 5, 1993, 199-220.
[13] Holt, R.C.: Software Architecture as a Shared Mental
Model. In: ASERC Workhop on Software Architecture, Uni-
versity of Alberta, August 2001.
[14] Huhns, M.H., and Singh, M.P.: Service-Oriented Com-
puting: Key Concepts and Principles. IEEE Internet Compu-
ting, vol. 9, no. 1, 2005, pp. 75-81.
[15] Jansen, A. and Bosch, J.: Software Architecture as a Set
of Architectural Design Decisions. In: Proc. of the 5th Work-
ing IEEE/IFIP Conference on Software Architecture (Wic-
sa'05), Washington DC, 2005, pp. 109-120.
[16] Kruchten, P.: The 4+1 View Model of Architecture. In:
IEEE Softw. 12 November, Nr. 6, 1995, pp. 42-50.
[17] Kruchten, P.: An Ontology of Architectural Design De-
cisions. In: Proc. of 2nd Groningen Workshop on Software
Variability Management, Groningen, NL, 2004, Rijksuniver-
siteit Groningen.
[18] Kruchten, P., Lago, P., van Vliet, H., and Wolf, T.:
Building up and Exploiting Architectural Knowledge. In:
Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture (Wicsa'05), Washington DC, 2005,
pp. 291-292.
[19] Medvidovic, N., and Taylor, R. N.: A Classification and
Comparison Framework for Software Architecture Descrip-
tion Languages. In: IEEE Trans. Software Eng. 26(1): 2000,
pp. 70-93.
[20] OWL Services Coalition: OWL-S Semantic Markup for
Web Services. http://www.daml.org/services/owl-s/, 2004.
[21] Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H.,
Studer, R.: Semantic Wikipedia. In: Proceedings of the 15th
international conference on World Wide Web, WWW 2006,
Edinburgh, Scotland, May 23-26, 2006.
[22] W3C: Resource Description Framework (RDF), 2004.
[23] W3C: Web Ontology Language (OWL), 2004.
[24] W3C: Web Services Architecture. W3C Working Group
Note, 11 February, 2004.
[25] W3C: SPARQL Query Language for RDF. W3C Work-
ing Draft 4 October 2006.
[26] W3C: Web Services Description Language (WSDL)
Version 2.0 - RDF Mapping, 2006.
[27] Welty, C.A.: Software Engineering. In: Description
Logic Handbook, 2003, pp. 373-387.
[28] Welty, C.A., and Ferrucci D.A.: A Formal Ontology for
Re-Use of Software Architecture Documents. ASE, 1999, pp.
259-262.
[29] Witt, B., Baker, F. and Merritt, E.: Software Architec-
ture and Design: Principles, Models and Methods, Van No-
strand Reinhold, 1994.

512

Building Business Considerations into Enterprise Application Designs

Rattikorn Hewett and Aashay Thipse
Department of Computer Science, Texas Tech University

rattikorn.hewett@ttu.edu, aashay.thipse@gmail.com

Abstract
Despite of many technology advances, enterprise applica-
tion designers are facing with organizational challenges in
customizing the application to fit with existing business
processes and rules in order to ensure effective coordina-
tion of work across the enterprise. Much research has ad-
vanced the technical aspect of the enterprise application
design and development. However, business implications
of the design products are seldom addressed or analyzed
structurally. A perfectly performed enterprise application
can still put the business of the enterprise deploying it at
risk if it does not support sound business logic. This paper
proposes building business considerations into the software
design by using a business risk as a means for evaluating
and monitoring the design of an enterprise application un-
der development. To do this, we present an analytical ap-
proach to systematically analyze business risks from char-
acteristics of an early high-level enterprise application de-
sign. The paper describes the approach and validates it
with an illustration on enterprise application design for on-
line shopping.

Keywords: risk-based software design, software risks, en-
terprise applications.

1. Introduction
Application development is driven by the demands of mod-
ern enterprises to gain competitive advantages. Enterprise
applications are the software that performs business func-
tions in order for an enterprise to obtain higher operational
efficiency, lower cost and consequently increased profit-
ability [1, 9]. Services provided by enterprise applications
include online shopping and online payment processing,
interactive product catalogue, and automated billing sys-
tems. From a system’s perspective, enterprise application
software has to work for a large number of users, on a large
amount of data, with a rapid response times. Enterprise
applications can be categorized into various types including
transaction-oriented (e.g., accounting), reporting (e.g., cus-
tomer information tracking), batch (e.g., production sched-
uling), and real-time applications (e.g., online shopping).

Real-world enterprise applications are highly complex
and rarely monolithic. They often deal with various plat-
forms and data stores both internal and external to an or-
ganization. Designing an enterprise application is intrinsi-

cally difficult since it involves complex large-scale integra-
tion of multiple applications in multiple environments with
a large number of diverse users across the enterprise. De-
spite many technological advances, enterprise application
designers are facing with organizational challenges in cus-
tomizing the application to fit in with existing business
processes and rules in order to ensure effective coordination
of work across the enterprise. Developers recognize the
need to keep up with today’s business challenges to project
enterprise systems into various client channels in a way that
is reliable, productive, and sustainable to frequent updates
[14].

Much progress has been made on the technical aspects
of enterprise application design and development including
enterprise architectures, environments (e.g. java-based
J2EE, or a Pearl-based P5EE platforms) and methodologies
for distributed application design and integration [1, 9, 10,
14]. For business challenges, efforts on incorporating busi-
ness processes into enterprise applications are mostly in a
requirement stage in order to create a design [4, 8, 12, 14].
However, business implications of the design products are
seldom addressed or analyzed structurally. A perfectly per-
formed enterprise application can still put the business of
the enterprise deploying it at risk if it does not support
sound business logic. The ability to assess this risk at an
early stage of software development life cycle can result in
cost savings.

In this paper, business risk refers to risk associated
with behavior of software that has adverse consequences to
business objectives of an enterprise. Our research proposes
building business considerations into enterprise application
design by using a business risk as a means for evaluating
and monitoring an evolving design of an enterprise applica-
tion under development. The intent of our work is to assess
quality of the design in a business context and to use the
findings to create better design. We present an analytical
approach that employs risk methodology to systematically
analyze and quantify business risks from characteristics of a
high-level early application.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 gives a motivating scenario
of cases on Business to Customer (B2C) e-commerce order
processing. Section 4 describes the proposed analysis ap-
proach. Section 5 gives illustrations on the scenario and the
paper concludes in Section 6.

513

2. Related Work
Much work in enterprise applications has focused on devel-
opment of enterprise systems [1, 9, 10, 14] including busi-
ness-oriented aspects of how to integrate business logic into
design specifications [4, 8, 12, 14]. Most of these work is
concerned with enterprise business process modeling [4,
11], requirements and design specifications using the UML
(Unified Modeling Language) [2, 6] activity diagrams or its
variants to represent enterprise workflows [12]. While we
share similar principles on design representation, our work
is different in that we focus on assessing quality of the en-
terprise application design products rather than how to
specify the design.

Risk methodologies have been employed to assess
safety and performance associated with software systems in
various application domains including industrial engineer-
ing, business and space science [7, 15, 16]. FMEA (Failure
Mode and Effect Analysis), a risk assessment approach has
been applied to gain understanding about usability of an
online enterprise system [17]. In the work in value based
software engineering Risk-based approach have been intro-
duced in software project management [5] Unlike our ap-
proach, none of these work address risks associated with
software components in business contexts. Risk concepts
are commonly used in enterprise management [13]. How-
ever, techniques for identifying likelihoods of business risks
in associated software systems are often subjective rather
than analytical and objective. Csertan et al. [8] uses an ex-
tended UML profile to design the business process and em-
ploys FMEA to assess dependability of an enterprise online
system. Unlike our proposed approach, they focus on fault
identification rather than risk quantification, which is a cru-
cial step in risk analysis.

Our work is most similar to the methodology proposed
by Yacoub et al. [16]. Both use features of design dynamic
diagrams (i.e., UML sequential diagrams, activity diagram)
to estimate likelihood of access of software components.
However, their terminating condition for risk propagation is
pre-specified, whereas ours uses the worst case estimates.
Furthermore, instead of assessing the reliability of software
components, we assess the business risks associated with
enterprise applications deployed. Their reliability risks are
estimated from the complexity of software components
whereas our business risks are based on characteristics of
software design as well as business logic to be deployed.

3. Motivating cases: Online Shopping Process
Online shopping is an important enterprise application in
e-business and e-commerce that is increasingly becoming a
necessary business function of modern enterprises.

 Typically, the online shopping business process in-
volves the following activities: browse products, see prod-
uct details, add selected products to a shopping cart, enter

payment and shipping information, and submit the pay-
ment. The business objective of an enterprise is to sell
products to the customer visiting the website. Different
organizations may have different business rules or policies
that enterprise application design must adhere to.

Case 1: A company A has a strict customer access policy
that requires a customer to register and login before he/she
can perform any online shopping activity.

Case 2: A company B has a more open access policy that
only requires a customer to provide credentials when they
are ready to purchase and make the payment.

Company A sees benefits of validating customer cre-
dentials (for identification) at an early stage in order to so-
licit sales only with previous or new serious buyers. Hav-
ing customer credentials makes it easy to keep track of the
items they are looking for. Even if they do not purchase
any item at that time, the online shopping system can re-
mind them of what they were looking for, the next time
they log in. Furthermore, if a customer looks for items in a
specific category, the system can notify him/her when that
category gets updated.

Unfortunately, while this policy has some advantages,
it also has certain disadvantages. By not allowing a cus-
tomer to perform any activity (e.g., browse, see product
details) unless he/she logs in, the company loses a chance to
sell more products. The situation can be more damaging if
the system is dealing with first time visitors, where re-
quirements for opening new accounts may not be wel-
comed. Most customers would not want to share their cre-
dentials and open the account unless they have some ideas
of what the company has to offer. As a result, these poten-
tial customers may decide to shop elsewhere resulting in a
loss of customers.

On the other hand, company B will not face the above
issue since it requires customer credentials (for login or
creating a login account) only if the customer wants to buy
products and makes a payment. Here, once a customer
knows that the company has products of his choice at a
competitive price, he/she will not mind spending time to
create an account. Thus, a policy for company B trades a
chance to increase sales to new customers with a chance to
be more selective on customers, particularly those who al-
ready know of the company's reputation.

At first, it may not be obvious for novices if such a
small difference in an access policy can make different im-
pacts on success or failures of an enterprise. Earlier designs
of online retail shopping applications tend to follow Case 1.
However, experienced designers can see that B’s policy in
Case 2 would yield better. This is evidenced by many of
today’s online retail shopping applications. They mostly
follow B’s policy and even with an option that allows cus-
tomer to purchase without creating an account.

514

An enterprise application design must support the ap-
plication’s business logic, which may have high impacts on
success or failure of the task at hand. Therefore, having the
approach to analyze business implications of the design is
crucial especially when business processes, rules, or busi-
ness logic are not identified or well understood.

4. Proposed Analytical Approach
4.1 Risks and Business Considerations in Designs
Risk refers the possibility of some undesirable event along
with the likelihood of its occurrence. Risk can be quanti-
fied by taking an estimate of the subsequent cost of the un-
desirable event and multiplying it by an assumed probabil-
ity for the event [7, 15]. We refer to business (software)
risk as risk associated with behavior of software that has
adverse consequences to business objectives of an enter-
prise. Risk analysis is a process that aims to assess, manage
and communicate risk information in order to assist deci-
sion-making. Risk assessment involves identification of
adverse situations (or hazards) and quantifying risks by
determining the likelihoods of their causes and the severity
of their impacts. The risk measures obtained can assist in
cost/benefit analysis for resource planning to prevent,
eliminate or mitigate the undesired situations. These are the
activities of risk management.

Risk analysis ties technical issues and business consid-
erations directly to the operations of the enterprise using the
application software. Thus, risk methodologies can be ap-
plied to build business considerations into the design by
using a business risk as a means for evaluating and monitor-
ing the design of an enterprise application under develop-
ment. Figure 1 gives an overview of our proposed design
process. Given a specific model of enterprise application
design at the component level, risk quantification estimates
business risks and results in a risk ranking of software
components, based on their application usage (business
processes). Risk mitigation selects a strategy and identifies
appropriate countermeasures for high-risk components. A
cost/benefit tradeoff analysis helps practitioners evaluate
the selection of technologies to mitigate risks. If the se-
lected technology is incorporated into a design, the next
cycle of risk analysis for a modified design will begin. The
cycle can loop until the design is acceptable.

Fig 1. Evolving enterprise application design.

4.2 Business Risk Quantification
Our main objective is to gain understanding of business
implications resulting directly from a given early high-
level enterprise application design. To do this, we propo-
se using business risk as an objective means for assessing
business implications. Unlike existing traditional risk meth-
odologies, our approach aims to develop a systematic
methodology for analyzing the design in an objective and
structured (as opposed to ad-hoc) manner. We also want
the results obtained to be informative in that they can pin-
point where the design deficiencies are (high risk design
component) for further examination and improvement.

Risk computation requires two factors: the likelihood
of an undesirable event along with its subsequent cost. In a
business context of an enterprise application, undesirable
events relate to failures to satisfy business objectives, which
rely on a specific task and application. Thus, the cost esti-
mates are enterprise context dependent. On the other hand,
the likelihood of an undesirable event depends on depend-
ability (i.e., integrity, reliability and availability) of the en-
terprise application as well as its underlying business logic
used in the enterprise. For simplicity, without loss of gen-
erality (of our approach), we assume that the system is de-
pendable so that we can focus on how the enterprise appli-
cation design (with underlying business logic) impacts on
success of the enterprise business. To estimate the likeli-
hood of an undesirable event objectively, we employ heu-
ristics based on relevant design attributes, in particular,
number of interactions among the design components.

An early stage of enterprise application design starts
after business processes modeling and identification of
business rules of the enterprise. Business rules govern
business structures, which include control constraints and
business policies. They can often be identified from use
case scenarios and included as parts of the data and activity
controls. Business processes of the organization are typi-
cally described in terms of workflows, which can be mod-
eled by UML activity diagrams [11]. Thus, to be specifica-
tion language independent, it is reasonable to assume that
an early high-level enterprise design is expressed in terms
of an extended activity or workflow diagram, where soft-
ware components of the enterprise applications and use case
activities in use cases are represented [3]. The software
design includes all use cases, each of which may have one
or more scenarios.

Given a high-level enterprise application component-
based design expressed in terms of an extended workflow
[3] and let sk be the likelihood of scenario k. The following
describes our proposed approach to estimate design-level
business risks.

(1) Determine interaction rates in each scenario: For
each use case, for each scenario k, for any two compo-
nents i and j, compute Iijk = nijk/Nik, where Iijk is the in-

Enterprise
design model

Risk Quantifi-
cation

Risk
Mitigation

Cost/Benefit
Tradeoff

New/Modified Design
Component

high-risk com-
ponent

counter
measures

design
characteristicsRisk Analysis

515

teraction rate from i to j in k, nijk is the number of inter-
actions from i to j in k, and Nik is the number of all inter-
actions out of i in k.

(2) Determine transition rates in all scenarios: Construct
a dependency graph whose nodes include an initial state,
final states and software components. Component tran-
sitions are based on interaction rates from all scenarios.
I.e., tij, the transition rate from components i to j, can be
calculated from skIk ijk . Normalize tij so that a total sum
of transition rates from each component is one.

(3) Compute usage likelihood estimates: The likelihood of
each component usage can be estimated by identifying
all access paths from the starting point of the application
execution to the component. For each path, estimate its
likelihood by multiplying all of the transition rates (tij’s)
along the path to the component. For conservative esti-
mates, select the maximum likelihood estimate obtained.
Specifically, we are interested in a path that leads to a
final state that does not fulfill enterprise business goals
and thus, constitutes a failure state.

(4) Severity Analysis: Determine severity of each adverse
action in each component. In particular, we are inter-
ested in analyzing consequences of a business failure
state. The analysis can help identify countermeasures
for design improvement. Quantify the severity and se-
lect the worst case in each of the failure state.

(5) Compute business risks: For each failure state, multi-
ply the resulting likelihood obtained in Step (3) by its
corresponding severity obtained in Step (4). Summation
of these products gives an estimate of business risk as-
sociated with the application software. That is, for a set
of business failure states, F, we obtain a total business
risk, R as follows:

i
Fi

i spR , where pi is the maxi-

mum likelihood to reach i and si is the severity cost of
failure in i, for a failure state i F.
Note that in Step (3), since the transition rate is no

greater than one, thus, the longer the path to reach a com-
ponent is, the less chance for the component to have influ-
ences on the business process. This is true, for examples,
for components that are never or rarely used. Furthermore,
by considering the maximum likelihood to reach a state, we
end up choosing the shortest path to the state. Therefore,
this eliminates an issue of likelihood estimates on a cyclic
path. Thus, the heuristic function we use for estimating the
likelihoods appears to be effective and consistent with intui-
tions.

In Step (4), because failure at different states has dif-
ferent implications for business, it is important to study
impact of failure at each of these states explicitly. More-
over, there can be more than one consequence associated
with each failure state. Thus, our approach considers all the
consequences associated with each failure state and selects
the most severe effect to impact the enterprise business.

5. Illustrations
This section illustrates and tests the proposed approach with
the two motivating cases described in Section 3. To focus
on the methodology, we consider a simplified application
for online shopping. To evaluate the approach, we apply
the proposed approach to the two cases, analyze and com-
pute business risks. The resulting business risks are vali-
dated with anticipated result as described in Section 3.

5.1 Case 1: Login Before Enter
Figure 2 shows a high-level application design of the online
shopping (Case 1 of Section 3), expressed in terms of an
extended activity diagram. A customer is required to login
before he can perform the online shopping activity. Some
customer may quit at this point (state q1), otherwise he/she
can carry on to login process.

Fig 2. The online shopping Case 1: login before enter.

A new customer will be directed to create a new account by
providing his/her credentials. The system validates the
login credentials of the customer who already has an ac-
count. We refer to all the above activities as “login”. Next,
the application navigates a customer to browse products,
search and view the product details. Some customer may
leave the site without buying any item (state q2) or change
his/her mind to leave even after selecting some items and

Add/Update
Shopping Cart

[yes]

[yes]

[no]

[yes]

[no]

[no]

[yes]

[yes]

[no]

[yes]

Enter

Validate Login Create Account

Browse Products

View Product
Details

Add/Edit Shipping
Address

Make
Payment

[no]

[no][yes]

Verify Order Submit Order

Change Order
Details

[yes]

[yes]

[no]

[no]

[no]

[no]

[yes]

[yes]

[no]

q1

q2

q3

q2

q3

T

q3

LL

B

D

SC

P

A

VS

VS VS

L

516

having added them in a shopping cart. Otherwise, a cus-
tomer precedes to payment, which requires customer to
enter his/her payment method and relevant financial infor-
mation. The customer continues to provide shipping infor-
mation and verifies the order before submitting and com-
pletes the transaction (state T). Any point after the payment
activity and before the submit order activity, the customer
may change his/her mind and choose to cancel and leave
the shopping application (state q3).

Each activity in Figure 2 is annotated with a corre-
sponding software component responsible to implement the
activity. For example, the submit order activity is to be
implemented by the VS component. Clearly, exit at state T
signifies business success, while exit at q1, q2 and q3 signify
failures. Each of these failing points has different implica-
tions on the business. Thus, we consider them separately
below.
Quit before enter (q1): The customer did not like the early
login compulsion (especially for a first time visitor who
will be asked to open an account), had no time or did not
have login information at hand. For business perspectives,
one counter-measure to prevent this event is by removing
the early login requirement.
Quit before payment (q2): The customer could not get
what he/she was looking for (price, or item), alternatively
the inventory could be running out of items. A counter
measure for this quit is by marketing research and in creas-
ing inventory or supply of high demand items.
Quit after payment (q3): The customer did not have suffi-
cient payment, or changed decisions (e.g., after adding
shipment cost). One strategy to counter-measure failure at
this stage could be to give customers more delivery and
shipment options including discounts on large orders.

In general, there are various other reasons for which a
customer can quit at any stage e.g. low bandwidth, lack of
time, broken internet, etc. However, these considerations
have been analyzed in the context of usability and depend-
ability [7, 16]. While our approach can be extended to in-
clude them, they are not our focus here.

Fig 3. Component graph of Case 1: login before enter.

By applying Steps (1) and (2) of the proposed approach
(Section 4.2), we obtain a dependency graph as shown in
Figure 3. For simplicity, we consider one scenario and
hence Step (2) has no effect. We also assume that all inter-
actions from a component occur equally likely. However,
if the knowledge about interaction usage is known, appro-
priate likelihoods can be assigned. As shown in Figure 2,
q1 has two incoming arrows from the L (login) component,
which has two outgoing arrows (one from Validate Login
and the other from Create Account) to Browse Products
(the B component). The L component has no interactions
with other component. Thus, each of the likelihood of us-
age from L to q1 and from L to B is 0.5 as shown in Fig-
ure 3.

By applying Step (3), we have a set of failure states,
F = {q1, q2, q3}. As shown in Figure 3, since there is only
one path from S to q1, the likelihood of usage for a cus-
tomer to reach q1 is estimated to be 1 0.5 (via S L q1).
The maximum likelihood of failure in q2 is estimated by
considering the likelihoods of each path to reach q2 (e.g.,
S L B q2, S L B D q2, S L B D SC q2).
It is clear that the maximum likelihood of failure in q2 is
0.25 (via S L B q2). Similarly, the maximum likeli-
hood of failure in q3 is estimated as 0.02.

Table 1. Severity of different stages of business failures.

Step (4) analyzes consequences of failures. Table 1
gives a summary of failure consequences in business con-
texts. Severity analysis is organization dependent and in
practice quantifying severity can be assessed from past ex-
periences (e.g., using expected loss per year). If such is
data is not available, a common practice is to categorize
severity into four standard categories: catastrophic, critical,
marginal, and minor, each of which is respectively quanti-
fied by 0.95, 0.75, 0.50 and 0.25 [7]. For example, as
shown in Table 1, quitting after payment in q3 results in loss
of one sale transaction, which is critical but not as severe as
loss of opportunity for numerous new customers by quitting
in q1.

Finally, by Step (5) using results from Steps (3) and
(4), a total business risk in this design case can be estimated
to be 0.5 0.95 + 0.25 0.5 + 0.02 0.75 = 0.62.

Failure
State Business Consequences Severity Value Max

Loose Potential Customer Catastrophic 0.95
q1 Loose Potential Order Marginal 0.5 0.95

Loose Potential Order Marginal 0.5
q2 Loose Reputation Marginal 0.5 0.5

q3 Loose Current Order Critical 0.75 0.75

0.25
0.5

0.5

0.250.33

0.25

0.5

0.25

0.5

0.5

0.50.33
0.33 0.5

0.5
0.5

0.5
1

L

SC

q2

S

q1

VS

B

D

q3 P

0.25
A

T

517

5.2 Case 2: Login Before Payment – Comparison
To test if our approach produces valid results in this online
shopping design, we repeat the same steps to a design in
Case 2, where login is not required until a customer is ready
to make a purchase. Similarly, the application design and
its corresponding dependency graph can be constructed for
the Case 2. For a fair comparison, the same failure states
and their severity analysis remain the same as in Case 1.
Thus, the only differences between the two cases are inter-
action rates that result in different failure likelihood in each
failure state. Table 2 shows a comparison of these likeli-
hoods along with business risks in both cases.

Table 2. Comparison of failure likelihoods.

Our results show that business risk in Case 1 is about
twice as much as that of Case 2. This validates our previous
hypothesis, which confirms current practices of enterprise
application design for online shopping that delay “login” till
payment or make “login” optional.

6. Concluding Remarks
We present a systematic approach to analyze business risks
and implications from a high-level enterprise application
design. The approach is inherently limited due to lack of
information on design characteristics at an early stage.
However, it serves the purpose to provide a quick and early
rough estimate of business risks by means of heuristics
based on characteristics of software design. These risks
should only be used as relative measures for assisting deci-
sion-makings on different design options. The approach is
specification independent and general in that it can be ap-
plied to any early software design other than enterprise ap-
plications. The approach is driven by design models and
thus, constitutes a structured process making our analysis
non ad-hoc and less error prone. Future work includes study
of this approach to the large-scale systems.

References

[1] Adkins, S., P5EE – Perls5 Enterprise Environment.
(http://www. officevision.com/pub/p5ee/, February,
2007).

[2] Ambler, S., The Elements of UML 2.0 Style, Cambridge
Press, 2006.

[3] Barna, P., F. Frasincar and G. Houben. A Workflow-
driven Design of Web Information Systems, in Proc. of
Inter. Conf. on Web Engineering, pp. 321-328, 2006.

[4] Bleistein, S., K. Cox and J. Verner, Integrating Jack-
son Problem Diagrams with Goal Modeling and Busi-
ness Process Modeling in e-Business System in Re-
quirements Analysis, in Proc. of the 11th Asia-Pacific
Software Engineering Conference, pp. 410-417, 2004.

[5] Boehm, B., 1991. Software risk management: Princi-
ples and practices, IEEE Software, 8:32-41.

[6] Booch, G., J. Rumbaugh and I. Jacobson, The Unified
Modeling Language User Guide, Addison-Wesley,
1999.

[7] Cortellessa, V., et al., Model-Based Performance Risk
Analysis, IEEE Transactions on Software Engineering,
31(1), pp. 3-20, IEEE Computer Society, 2005.

[8] Csertan, G., A. Pataricza, P. Harang, O. Doban, G.
Biros, A. Dancsecz, and F. Friedler, BPM Based Ro-
bust E-business Application Development, in Proc. 4th

European Dependable Computing Conference, vol.
2485 of LNCS, pp. 32-43. Springer, 2002.

[9] Fower, M. Patterns of Enterprise Application Architec-
ture, Addison-Wesley Professional, 2002.

[10] Hohpe, G. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions, the Ad-
dison-Wesley Signature Series, 2003.

[11] Molina, J., M. Ortin, B. Moros, J. Nicolas, A. Toval,
Towards Use Case and Conceptual Models through
Business Modeling, in Proc. of Conf. on Conceptual
Model./Entity Relationship Approach, pp. 281-294,
2000.

[12] Russell, N., van der Aalst, A Hofstede and P. Wohed,
On the suitability of UML 2.0 activity diagrams for
business process modeling, in Proc. of the 3rd Asia-
Pacific Conference on Conceptual Modeling - Vol 53,
Australian Computer Society, 2006.

[13] Pickett, S., Enterprise Risk Management: A manager’s
Journey, Wiley, 2006.

[14] Singh, I., B. Stearns, M. Johnson, and the Enterprise
Team, Designing Enterprise Applications with the
J2EETM Platform, Second Edition, Sun Microsystems,
Inc., 2002.

[15] Shahrokhi, M. and A. Bernard, Risk assessment/ pre-
vention in industrial design process, in Proc. IEEE
Conf. on Syst., Man and Cyber. pp. 2592-2598, 2004.

[16] Yacoub, S., B. Cokic and H. Ammar, 1999. Scenario-
based Reliability Analysis of Component-based Soft-
ware, in Proc. of the 10th International Symposium on
Software Reliability Engineering pp. 22-31.

[17] Zhang, Y., H. Zhu, S. Greenwood and Q. Huo, Quality
Modelling for Web-based Information Systems, in
Proc. of 8th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, 2001.

Failure
State

Failure Likelihood
Case 1

Failure Likelihood
Case 2

q1 0.5 0.04
q2 0.25 0.5
q3 0.02 0.02

Risk 0.62 0.30

518

Incremental effort prediction models in Agile Development using Radial Basis
Functions

Raimund MoserA, Witold PedryczB, Giancarlo SucciA

AFree University of Bolzano, Italy, BUniversity of Alberta, Canada
rmoser@unibz.it, pedrycz@ee.ualberta.ca, gsucci@unibz.it

Abstract

Despite significant investment in research, the
lightweight estimation of development effort is still an
unsolved problem in software engineering.

This study proposes a new, lightweight effort
estimation model aimed at iterative development
environments, as Agile Processes. The model is based
on Radial Basis Functions. It is experimented in two
semi-industrial projects conducted using a customized
version of Extreme Programming (XP). The results are
promising and evidence that the proposed model can be
developed incrementally and from scratch for new
projects without resorting to historical data.

1. Introduction

Effort prediction has always been perceived as a
major topic in software engineering. The reason is quite
evident: many software projects run out of budget and
schedule because of an underestimation of the
development effort. Since the pioneering work by
Putnam [12], Boehm [4], and Albrecht [2], there have
been many attempts to construct prediction models of
software cost determination. An overview of current
effort estimation techniques, their application in
industry, and their drawbacks regarding accuracy and
applicability can be found in [8]. Models such as
COCOMO II depend quite heavily on many project-
specific settings and adjustments, whose impact is
difficult to assess, collect, and quantify [11]. What
makes the situation even worse, is the fact that in agile
processes an effective collection of such metrics and the
ensuing tedious calibration of the models are quite
unrealistic. As far as we know, no specific models have
been developed for agile and iterative development
processes. Only a few studies deal with the idea of
updating or refining prediction models during project
evolution or include the effort of previous development
phases as an additional predictor variable. Closest to our
work is a recent study by Trendowicz et al. [15] who

incorporate into a hybrid cost estimation model
feedback cycles and the possibility for iterative
refinement. MacDonell and Shepperd [9] use project
effort of previous phases of development as predictor
for a simple regression model and show that it yields
better results than expert opinion. However, both studies
do not address the peculiarities of agile processes and
use a different modeling approach.

Traditional effort estimation works as follows. Some
predictor variables are collected or estimated at the
beginning of a project and fed into a model. The model,
which is usually built upon historical data using similar
projects, predicts the total development effort. While
this approach is reasonable for traditional development
processes where common predictor variables such as
function points, software size, design specifications, etc.
are known at the beginning of a project and typically do
not change too much throughout the overall project this
is not the case for agile development processes. In agile
development, a project is realized in iterations and
requirements usually change from one iteration to the
next. At the end of each iteration, developers release the
software to the customer who will eventually require
new features, and change or removal of already
implemented functionalities. Therefore, standard
predictor variables proposed in the literature, in
particular the ones derived from design documents, are
only known at the beginning of the next development
iteration and not a priori for the whole project.

Being cognizant of the existing challenges as
outlined above, the key objectives of our study are
outlined as follows:

We propose a new type of prediction model, suited
to iterative processes and referred to as incremental
model.
We carry out a thorough experimental validation of
a specific implementation of the incremental model
using Radial Basis Functions (RBF).

We aim at answering the following research
question: In agile, iterative software development
processes, are incremental effort prediction models

519

efficient for iterative effort prediction and do they
perform better than traditional models?

Our proposed incremental approach addresses a
crucial point in effort estimation as in general, managers
tend to be over-optimistic and over-confident in
estimation and scheduling, and are normally reluctant to
move from initial estimates and schedules when
progress slips [10]. An estimate should be dynamic – as
the project progresses more information becomes
available.

The remainder of the paper is organized as follows.
In Section 2, we propose and elaborate on the concept of
incremental prediction models. Section 3 discusses the
use of RBF models for effort prediction. In Section 4,
we present a case study. Finally, in Section 5 we draw
the conclusions.

2. Incremental prediction models

There are crucial issues in the development and
utilization of traditional, monolithic effort estimation
models as described earlier that have to be addressed.
First, the choice of the predictor variables is highly
demanding as at the beginning of the project we may not
know which variables of the project could prove to be
good effort estimators. While we might be tempted to
collect a lot of variables to compensate, it could be time
consuming, costly, and at the end lead to overly
complicated models. Second, in the construction of
global models we rely on historical data or/and expert
opinion. Given the unstable and highly non-stationary
environment of software development, this may lead to
models whose predictive capabilities are questionable.
Moreover, the software industry is moving in a direction
where projects are not completed but constantly
evolving with new updates and deliveries in response to
market demands. In such a scenario it is not obvious
when to freeze the project for model building purposes.

Agile software development brings another problem
for traditional effort estimation. Predictor variables
usually are not known at the beginning of a project, but
become available at the beginning of a new iteration.
Under these circumstances a long-term model of effort
estimation that naturally relies on information available
at the beginning of a project seems to be of limited
applicability.

Taking into account the limitations pointed out
above, we assume a different development position by
focusing on the incremental mode of model
development.

The main idea of an incremental prediction model is
that it is built after each iteration instead of at the end
of the project. Thus, it is able to adapt to any changes

during development in a much smoother way than a
global model. Moreover, we endow the incremental
model with a dynamic character by using the effort
determined in the previous iterations as an additional
input variable. The incremental model operates only for
iterative effort prediction as it cannot be used to predict
total development effort at the beginning of a project.

The essence of the incremental model can be
explained as follows.

Model building: At the end of each iteration a new
model is built using as input the predictor values for
that iteration and the development effort of previous
iterations.
Iterative effort prediction: At the beginning of a
new iteration predictor variables are collected and
fed together with past effort into the newly built
incremental model. The output of the model
produces an estimation of the total development
effort from project start to the end of this iteration.

Clearly, with an incremental effort prediction model
a company cannot estimate the total development effort
at the beginning of a project. This may be an important
issue for a company that is trying to decide whether or
not they want to take on a given software project.

3. An implementation using Radial Basis
Functions (RBF) and design metrics

Radial Basis Functions (RBF) provide a flexible way
to generalize linear regression functions and show some
properties, which make them suitable for modeling
software engineering data. An RBF network functions
as follows: First, input data are mapped in a non-linear
way using basis functions (we use Gaussians); then, the
final response variable is built as a linear combination of
the output of the basis functions with the network’s
weight vector. RBF’s have been used for effort
estimation showing very promising results [13]. In
general, the performance of RBF models depends highly
on the chosen network architecture (number of layers,
number of neurons, activation function, number of
receptive fields, spread etc.). While there is no general
theory behind the structural optimization of the topology
of the networks, they are developed as a result of some
trial and error process. For each set of parameters, that
specify the model, we compute the leave-one-out cross-
validation error [3]. We keep the set that produces the
lowest error and this topology of the network is deemed
optimal. We start with one receptive field and add one at
a time until the cross-validation error stops decreasing.
We repeat this procedure for a range of spread
parameters and keep the spread and number of receptive

520

fields that return the absolute smallest cross-validation
error.

As predictor variables we use the Chidamber and
Kemerer (CK) set of object-oriented design metrics [5].
The CK metrics have some nice properties, which make
them in particular attractive for the kind of prediction
model we propose:

They are widely known by practitioners and in the
research community and have been validated by
other researchers.
For the purpose of model building the CK metrics
can be extracted automatically from source code.
We do not use all 6 CK metrics as predictors but

exclude the NOC (number of children) and LCOM (lack
of cohesion of methods) metrics. We exclude NOC
because in both projects it is almost 0 in all classes and
hence does not contribute to the variation of effort data.
As for LCOM several researchers have questioned its
meaning and the way it is defined by Chidamber and
Kemerer [6].

4. Case study

The case study concerns two commercial software
projects – we refer to them as project A and project B -
developed at VTT Technical Research Centre of Finland
in Oulu, Finland. The programming language used in
both projects was Java. Project A delivered a production
monitoring application for mobile, Java enabled devices.
Project B delivered a project management tool for agile
projects. For both projects the development process
followed a tailored version of Extreme Programming
practices [1], in project A two pairs of programmers
(four people) and in project B three pairs of
programmers (six people) have worked for a total of
eight weeks. The projects were divided into five
iterations, starting with a 1-week iteration, followed by
three 2-week iterations, with the project concluding in a
final 1-week iteration.

4.1. Data collection process and data

For both case studies we used our in-house
developed tool PROM [14] for automatic and non-
invasive data collection. We adopted the following data
collection procedure. Every day at midnight various
source code metrics (among them are the CK metrics)
are extracted from a code repository. A plug-in for
Eclipse (the IDE used by developers) collects
automatically the time spent for coding on individual
classes and methods.

For project A the total coding effort recorded by the
PROM tool is about 305 hours. Project A has 1776 lines

of code (counted as Java statements in the source code)
divided in 30 classes. Project B has 3426 lines of code
and 52 classes. The total coding effort for project B is
about 664 hours. Due to space constraints we do not
report descriptive statistics and box-plots for the
different variables: They evidence that data have a few
outliers and are highly skewed - two conditions, which
would be problematic for ordinary least square
regression models but are mitigated by RBF networks.

4.2. Results

In Table 1 we present the results for effort prediction
using an incremental RBF model. For assessing
prediction accuracy we report 4 different criteria – used
exclusively none of them is reliable [7]: Two give the
error relative to the true value (MRE) respective the
estimate (MER); one criterion is the usual standard
deviation (SD). Finally, the last criterion is the
percentage of predictions, which have a relative error
less than 25% (PRED(25%)). In general, accuracy of
predicting total effort per iteration is higher than
predicting effort for single classes. This can be
explained by the fact that by summing up all classes
errors due to underestimation respective overestimation
annihilate in part.

Table 1: Prediction of effort per class and total effort
per iteration with the use of incremental RBF

models.
It. Median

MRE
Median
MER

SD PRED 25% Total
MRE

Project A
3 65% 59% 2.6 0% 54%
4 42% 66% 2.0 21% 33%
5 14% 14% 0.6 73% 6%

Project B
3 89% 98% 3.1 9% 81%
4 55% 111% 3.3 12% 54%
5 30% 37% 1.5 40% 16%

The prediction accuracy improves from iteration to
iteration indicating that the incremental model stabilizes
during development and prediction errors decrease and
converge. Already for iteration 5 the model provides, for
software engineering standards, accurate predictions
(MRE around or less than 25%).

In order to compare our proposed incremental
approach with the traditional, monolithic model we
proceed as follows. We combine both data sets (from
project A and project B) for building an RBF model
using as predictors CK metrics extracted from source

521

code at project conclusion and as dependent variable
total coding effort. Then, we apply such model for
predicting development effort for both projects in an
iterative way. The result is that the predictions provided
by the traditional model are in all cases, both at a class
and system level, less accurate, sometimes even of the
order of magnitude, than the ones obtained by the
incremental model. For project A the average relative
error for the global model is around 280%, while for
project B it is around 295%. These numbers evidence
that by using traditional models for iterative effort
prediction we do not get any useful results for our
projects.

Overall, the results enable us to answer our research
question. We can state that for the two projects in this
study the incremental model provides accurate effort
estimations for later development iterations and is
superior to the traditional, monolithic model.

5. Conclusions

In this study, we propose a new approach for
lightweight, iterative effort prediction. We have
identified a number of reasons why monolithic
prediction models are limited when dealing with agile
software development. We propose an incremental
approach and apply it - using RBF networks - to two
agile, semi-industrial development projects. The results
are promising. Incremental models are stable and
convergent in the sense that their prediction error
decreases from iteration to iteration. They can be used
from the start of development, without the need for
historical data, and improve prediction accuracy
throughout project evolution due to their iterative
nature.

References

[1] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J.
Jäälinoja, M. Korkala, J. Koskela, P. Kyllönen, and O.
Salo, “Mobile-D: An Agile Approach for Mobile
Application Development”, Proceedings of the 19th
Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA’04, Vancouver, British Columbia, Canada, 2004.

[2] A.J. Albrecht, J.E. Gaffney, “Software function, source
lines of code, and development effort prediction”, IEEE
Transactions on Software Engineering, 9(6): 639-648,
1983.

[3] C.M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, Oxford, UK, 1994.

[4] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981.

[5] S. Chidamber, C.F. Kemerer, “A metrics suite for object-
oriented design”, IEEE Transactions on Software
Engineering, 20(6): 476-493, 1994.

[6] S. Counsell, S. Swift, J. Crampton, “The interpretation and
utility of three cohesion metrics for object-oriented
design”, ACM Trans. Softw. Eng. Methodol., 15(2): 123-
149, 2006.

[7] T. Foss, I. Myrtveit, E. and Stensrud, “A comparison of
LAD and OLS Regression for Effort Prediction of
Software Projects,” Proc. 12th European Software Control
and Metrics Conf., 9-15, 2001.

[8] M. Jørgensen, and M. Shepperd, “A Systematic Review of
Software Development Cost Estimation Studies Document
Actions”, IEEE Transactions on Software Engineering,
33(1): 33-53, 2007.

[9] S. MacDonell, M.J. Shepperd, “Using Prior-Phase Effort
Records for Re-estimation During Software Projects”,
Proceedings of the Ninth International Software Metrics
Symposium (METRICS’03), Sydney, Australia, 2003.

[10] S. McConnell, “Avoiding classic mistakes”, IEEE
Software, 1996, pp. 111-112.

[11] T. Menzies, D. Port, Z. Chen, J. Hihn, S. Stukes,
“Validation methods for calibrating software effort
models”, Proceedings of the 27th International Conference
on Software Engineering, St. Louis, MO, USA, 2005.

[12] L.H.A. Putnam, “A general empirical solution to the
macro software sizing and estimation problem”, IEEE
Transactions on Software Engineering, 4(4): 345-381,
1978.

[13] M. Shin and A.L. Goel, “Empirical Data Modeling
in Software Engineering Using Radial Basis Functions”,
IEEE Transactions on Software Engineering, 26(6): 567-
576, 2000.

[14] A. Sillitti, A. Janes, G. Succi, T. Vernazza,
“Collecting, Integrating and Analyzing Software Metrics
and Personal Software Process Data”, Proceedings of the
29th EUROMICRO, Antalya, Turkey, 2003.

[15] A. Trendowicz, J. Heidrich, J. Münch, Y. Ishigai, K.
Yokoyama, N. Kikuchi, “Development of a hybrid cost
estimation model in an iterative manner,” Proceeding of
the 28th International Conference on Software
Engineering, Shanghai, China, 2006.

522

BASS: Business Application Support through Software Services

Mateus B. Costa∗,† Rodolfo F. Resende† Marcelo V. Segatto‡
∗Federal Center of Technological †Federal University of Minas Gerais ‡Federal University of Espírito Santo

Education of Espírito Santo Department of Computer Science Department of Electrical Engineering
Serra, ES, Brazil Belo Horizonte, MG, Brazil Vitoria, ES, Brazil

mcosta@dcc.ufmg.br rodolfo@dcc.ufmg.br segatto@ele.ufes.br

Eduardo F. Nakamura� Nahur Fonsecaψ

�FUCAPI – Research and Technological ψBoston University
Innovation Center Department of Computer Science

Manaus, AM, Brazil Boston, MA, USA
eduardo.nakamura@fucapi.br nahur@cs.bu.edu

Abstract

In this paper, we introduce a software framework called
Business Application Support through Software Services -
BASS. BASS supports the development of information sys-
tem applications. BASS support aims at decoupling the
business logic description of the applications from the sup-
porting implementation, e.g. software services. BASS also
allows us to define service access elements without pro-
gramming activities. By using the BASS framework, target
applications can dynamically select and specify service in-
vocations according to the execution of the supported busi-
ness processes.

1. Introduction

Information systems integration, driven from increasing
demands for collaborative activities, must consider impor-
tant interoperability aspects and, at the same time, should
not impose hard technological or business constraints [22].
Therefore information systems development must be sup-
ported by software solutions considering such interoperabil-
ity aspects. Service Oriented Computing (SOC) is consid-
ered a major paradigm to support their development [19].

In the SOC paradigm, a software service is an element
with functions available to other networked software ele-
ments. A software service can also be seen as a software
element that encapsulates one or more business functions
[8]. An application supporting an information system can
play the role of service provider or service client. A client
application can use a business function available through a
service once guaranteed the integration at the message ex-
change level, at the application architecture level, and by
the supported business processes [13].

Web Services are one of the important sets of technolo-
gies that implements the software service concept. Web
Services technologies provide a high degree of interoper-
ability at the message exchange level and among different
development platforms, facilitating the integration at these
levels [8]. However, the interoperability aspects that remain
at business process level must be considered in the develop-
ment of the involved applications.

Applications that provide services are developed to en-
able run time service discovery [21] and composition [16]
to be performed by unknown client applications. Client ap-
plications should therefore deal with service discovering,
selection and execution driven by their business processes,
Business Transaction support [6, 18], and several other as-
pects, e.g., vocabulary mediation [9].

In this work, we present the Business Application Sup-
port through Software Services - BASS, a software frame-
work [11], for developing the software infrastructure for in-
formation system integration. BASS provides an Applica-
tion Programming Interface (API) that simplifies the map-
ping of the business process level onto the application’s
architecture level, allows the definition of the application
business logic to be independent from the software services
aspects and encapsulates the complexity of dealing with the
software services and the service’s business functions id-
iosyncrasies in the application development. The use of
BASS also permits the definition of service access aspects
without the need of program encoding. One important con-
tribution of BASS is to show that a service can be treated
during software development as a logical and physical ele-
ment absent from the conceptual models.

The remainder of this paper is organized as follows. In
Section 2, we discuss the aspects of applications, which are
client of software services, that can be developed by using

523

BASS. In Section 2 we also introduce our running example.
In Section 3 we discuss the application development using
BASS. In Section 4, we present some related work. Section
5 presents future directions and concludes the paper.

2. Client Applications

Software services can be used in different application do-
mains, such as scientific applications and information sys-
tems for E-Commerce. The development of BASS is fo-
cused on the information system domain. To illustrate the
use of BASS we adopt as an example the development of a
simple Business-to-Business application to manage orders
among a client and several suppliers. Despite its simplicity
this example follows some ideas presented by Papazoglou
[18]. The Order Management includes the following func-
tionalities:

• Create Order. The client creates an order following the main
flow:
1. Create an order; 2. Place the order.

• Verify order. The client verifies an order following the main
flow:
1. Get the order ID; 2. Retrieve the order; 3. Present the
order.

• Cancel an order. The client cancels an order following the
main flow:
1. Get the order ID; 2. Cancel the order.

• Update an order. The client updates an order following the
main flow:
1. Get the order ID; 2. Retrieve the order; 3. Update the order
data; 4 Re-place the order.

• List a set of orders. The client queries the orders following
the main flow:
1. Get the order list selection criterion; 2. Retrieve the order
list based on the selection criterion; 3. Present the order list.

Herein we consider a software development process
based on the Unified Process [15]. The Unified Process
prescribes the use of Object Oriented Modeling and Design,
UML notation and Use Case based development. In order
to represent the functional requirements of the Order Man-
agement, its functionalities can be translated in terms of an
use case diagram.

One aspect of using the Unified Process is the develop-
ment of: a) an analysis model, represented by diagrams that
include the elements of the problem domain; b) a design
model, with diagrams representing, in high level, the ele-
ments of the solution domain for the chosen development
platform; and c) an implementation model that details the
solution described by the design model. Here we consider
a process based on the Unified Process and customized for
the BASS framework, but we focus on the design model
aspects.

A preliminar design model for Order Management could
be represented in terms of local software elements, without

OrderManager
(from control)

OrderCollection
(from entity)

OrderInterface
(from Boundary)

Order
(from entity)

Figure 1. Classes involved in the Order Man-
agement.

considering software Services. Figure 1 presents a possi-
ble class diagram of the Order Management design model
including these elements.

To support the Order functionality, the OrderManager
class can implement the operation saveOrder(Order order).
Similarly, the remaining functionalities can be supported
by operations that form together a set of operations much
like the CRUD (Create, Retrieve, Update, and Delete) op-
erations set [5]. Such operations would be: retrieve-
Order(OrderId id), listOrders(OrderCriterion criterion), save-
Order(Order order), deleteOrder(OrderId id), and update-
Order(Order order).

We refer to this set as RLSDU operations (Retrieve, List,
Save (create), Delete, and Update). In a local implementa-
tion, such operations can be supported by a persistence layer
[1, 14] that encapsulates the adopted storage mechanism
and allow these operations to be performed exclusively by
means of operations involving application objects.

To illustrate how these RLSDU operations are imple-
mented in terms of software services, we consider herein
that the orders are sent the suppliers’ information systems
through software services.

In the development based on software services, services
are usually accessed by elements, called stubs, and local
representations of the data types defined by the services.
The majority of Web service platforms provide a tool to au-
tomatically generate these elements (stubs and data types)
from the service interface descriptions. This style allows
client applications to be developed using the operations
available in the stubs and abstracting the adopted service
access platform.

Let us consider the layered architectural style [20] where
we define two layers: an Application and an Integration
layer. In the application layer, we have the application lo-
cal elements and representations of elements external to the
application. In the integration layer, we have elements to

524

support the service access.
Figure 2 presents a diagram containing the Application

and the Integration layers represented as packages. The
package representing the Application Layer has the sub-
packages Entity, Control and Boundary as derived from the
Analysis Model following the prescription of the Unified
Processs. In the Application layer we have also the stubs
corresponding to the services of each supplier. The integra-
tion Layer presents a high level API built with APIs such as
the one defined by Apache AXIS[2].

Application Layer
(from Logical View)

entity control boundary

serviceStubs
(from Integration Layer)

supplierA
(from serviceStubs)

supplierB
(from serviceStubs)

supplierC
(from serviceStubs)

Integration Layer
(from Logical View)

Software service access API
(from Integration Layer)

Figure 2. Order Management Layered Archi-
tecture

Figure 3 presents the class diagram for the Order Man-
agement considering the use of stubs. In this example, we
consider one client and three suppliers. Each supplier has
its own stub and its data type set. To represent an order,
SupplierA uses the Invoice data type, SupplierB uses the Or-
der data type, and SupplierC uses the Request data type. All
these data types differ, in terms of attributes, from the Order
data type defined in the client application.

The implementation of the saveOrder(Order order) and
the other RLSDU operations imposes specific logical ele-
ments (stubs and data types) dependencies to represent the
business logic. These dependencies introduce complexity
in the development of the business process driven service
selection and execution support. This approach also intro-
duces difficulties for application change management, scal-
ability and flexibility [12].

SupplierABindingStub
makeInvoice(invoice : Invoice)

SupplierBBindingStub
makeOrder(order : Order) : String

SupplierCBindingStub
makeRequest(request : Request)

OrderManager

saveOrder()

OrderCollection
(from entity)

Order
number
description
price
date
employee

OrderInterface
(from Boundary)

Invoice
id
description
price

Order
orderId
specification
amount
orderDate

Request
number
goods
value
date

Figure 3. Class Diagram for the Order Man-
agement Application Layer.

3. Using BASS to develop applications

Similarly to persistence layers tools, BASS provides an
API that allows the development of the Application layer
design model without logical and physical dependencies of
the services’ access. The RLSDU operations are the substi-
tutes for the direct service access.

In our example, an order is represented by an instance
of a class called Order. The RLSDU operations deals with
instances of classes such as Order. Classes such as Order
are referred to as a proxy entity. BASS implements RLSDU
operations for proxy entities. Each proxy entity has a cor-
responding external representation and the set of values as-
sociated to external representations define an external state.
The semantics of these operations is specified as follows:

• Retrieve: retrieves the entity proxy external state.
This external state is retrieved and converted into an
entity proxy instance;

• List: retrieves the external state of a set of entity proxy
instances;

• Save: Saves the state of an entity proxy instance into
an external representation. The representation is cre-
ated if it still does not exists;

• Delete: Removes the external representation associ-
ated with an entity proxy instance;

• Update: Updates the state of an existing entity proxy
instance based on the state of its corresponding exter-
nal representation.

The Update operation is provided, except for inexistent
objects, as a convenient option to the pair retrieve and save.

525

The semantics for the RLSDU operations does not define
the concrete actions that will be performed out of the appli-
cation bounds. As we will see later, this task is part of the
configuration of BASS.

In the context of a layered architecture with an Appli-
cation layer and Integration layer, by using BASS, the de-
velopment of the Application layer does not depend on the
stubs and data types used to access software services. Fig-
ure 4 illustrates this architecture and also shows the depen-
dency relations among the elements of the Application and
Integration layers. The elements of the Integration layer
referred to in the Application layer are the Session and
OCLExpression classes.

Application Layer
(from Logical View)

boundary control entity

Integration Layer
(from Logical View)

bass
(from Integration Layer)

Session
(from core)

OclExpression
(from ocl)

serviceStubs
(from Integration Layer)

Dependency achieved by using
reflexion

Software service
access API

(from Integration Layer)

Figure 4. A Layered Architecture using BASS.

Figure 5 depicts the elements of the Application layer
and the elements of BASS used to implement the Order
Management. The RLSDU operations will be performed
taking an Order proxy entity (a class or an instance, de-
pending on the operation) and a set of business rules. The
Session class implements the generic RLSDU operations.
The OCLExpression class supports the specification of the
business rules that will be used to perform those opera-
tions. The services, services’ operations, and operations’

arguments used to perform the RLSDU operations will be
defined based on the class or object that executes the oper-
ation and on the business rules expressed using the Object
Constraint Language (OCL) [17].

OrderCollection
(from entity)

Order
number
description
price
date
employee

Session
loadBindFilter()
loadBindMap()
retrieve()
save()
list()
update()
delete()

OclExpression
OclExpression()
getConstraints()
getDynamicParameters()
getStatements()
setConstraints()
setStatements()

OrderInterface
(from boundary)

OrderManager

saveOrder()

Figure 5. Class Diagram for the Order Man-
agement Application Layer by using BASS.

To save an order, an OrderManager object will perform
the following steps:

1. Instantiate an object of Order class and set its values;

2. Choose the target supplier;

3. Specify the supplier in terms of an OCL expression;

4. Invoke the save operation by using a Session object
and by passing the Order and OCLExpression objects
as arguments.

The supplier choice is a decision made during the busi-
ness process execution and can be guided by the user in-
teraction with the objects of the OrderInterface class. This
aspect forces the software service interactions to be auto-
matically guided by the business process of the client appli-
cation. Another task performed by BASS is the vocabulary
mediation. As we can see in the example, the application
Order class differs, in term of attributes, from the equivalent
suppliers’ classes. Mediation between these vocabularies is
automatically performed by BASS.

The configuration of the Integration layer involves two
main tasks:

Specify the bindings of every proxy entity: In the con-
text of this work, binding is an implementation of an abstract
data type that encapsulates an association between an entity
proxy and a software service and the details of such an as-
sociation.

Specify the application vocabulary: The application
vocabulary includes the definition of a set of terms and mor-

526

<!-- SAVE BindEntryCollection --> <save>
<bindEntry className= "SupplierABindingStub">

<operations>
<operation name="makeInvoice"
returnType="" MappedToField="">

<parameters>
<parameter name="invoice"
paramType="Invoice" category="javabean" >
</parameter>

</parameters>
</operation>

</operations>
</bindEntry>
<bindEntry className="SupplierBBindingStub">
<!--same structure of the bind entries above-->
</bindEntry>
<bindEntry className="SupplierCBindingStub">

<!--same structure of the bind entry above-->
</bindEntry>

</save>

Figure 6. Excerpt of a binding file related to
class Order showing the {Order,save} bind-
ing.

phological relationships among these terms, such as syn-
onymity.

Every pair {proxy entity, RLSDU operation} has a set of
bindings. For instance, the pair {Order, save}, has a bind-
ing with SupplierA, SupplierB and SupplierC. In our current
implementation of BASS, the set of bindings related to an
entity proxy is represented by an XML file that we call bind-
ing file. Figure 6 presents the set of bindings corresponding
to the {Order, save} pair.

The specification mechanism of the vocabulary used by
the application is a framework hotspot [11]. A hotspot is
a customizable (programmable) framework element. This
hotspot allows the incorporation of different mechanisms
for defining and analyzing the application vocabulary and
mediating the vocabularies used by the application and the
software services. In our current implementation, the vo-
cabulary mediation mechanism is based on lists composed
of: a) one local term, used for conceptual modeling of the
client application and b) a set of synonyms from data types
and parameters used by the software services. Figure 7 il-
lustrates terms used in our Order Management example.

order invoice request
number id orderId
description specification
price amount value
date orderDate
empployee

Figure 7. Order Management vocabulary.

3.1. Observed Aspects in the Development using
BASS

BASS was defined together with a method for designing
and implementing applications that are clients of software
services. In this method, we observe the following features:

1. The modularization of the application development by
separating the design and implementation of software
service interactions from the remaining parts. This as-
pect can be observed in the separation of the design of
the Order Management in an Application layer and an
Integration layer. Among the benefits of such a separa-
tion, we can observe the simplification not only of the
work division and testing but also a simplification of
the mapping of the application analysis model onto its
correspondent design model without the need to con-
sider the aspects of the software services being used.

2. The specification of the service interactions is done
without programming activities. In reality, instead
of procedural code programming, BASS specifies a
type of declarative programming using configuration
files. As we showed, the Integration layer is config-
ured by using binding files and the vocabulary defini-
tions. Such configuration, can be aided by a tool that
automatically gets the stubs and data types of the as-
sociated services, and simplifies the definition of the
binding files (e.g., by using a graphical interface). This
tool can also aid the vocabulary entry generation based
on the business rules and on the application proxy en-
tities, stubs, and data types.

3. The service selection and execution guided by busi-
ness processes. As we observed, the service selection
and execution occurs transparently based on instances
of business rules and processes executed in the appli-
cation layer. For instance, in the execution of an order
placement, the determination of which service should
be executed is done through user interactions. Based
on that choice, a business rule instance containing the
supplier specification is created, and BASS determines
the bind entry associated to the supplier (see Figure 6).

4. Related Work

Software development tools and platforms that support
Software Services, such as .NET and J2EE, have been used
within development models in which computations that use
Web services have been explicitly programmed in the ap-
plication modules by means of Stubs or remote procedure
calls. However, some of the problems resulting from such
an approach have been pointed out in the literature. In
the remainder of this section we briefly discuss some ap-
proaches to these problems.

527

Eberhart [10] proposes the so called Web Service De-
scription Framework (WSDF) that handles the aspects of
the dynamics of service-oriented applications by using an
approach based on Web Semantics and ontology. The main
purpose of the WSDF is to allow a client application to ac-
cess a service without knowing its description.

Verheecke and Cibrï¿ 1
2n [3] address the problem of the

applications’ lack of flexibility caused by the explicit coding
of computations, in client applications, that use Web Ser-
vices. The authors propose an intermediate layer between
applications and services called Web Service Management
Layer (WSML). The WSML allows the use of Web Services
without hard coding the invocation of the services by using
Aspect Oriented Programming.

Baligand and Monfort [4] present a similar approach,
but they focus on including policies for specifying non-
functional requirements also in the the description and in
the invocation of services.

We have also experimented, in early work, the use of As-
pects for dealing with software services selection and invo-
cation [7]. Our solutions based on Aspects introduced ele-
ments nonintuitive to the business logic definition, whereas,
the use of Object Oriented frameworks were more appropri-
ate in creating the abstraction view of the integration layer
in the application development.

5. Conclusion and Future Work

The use of technologies based on software services aids
the development of applications for different domains, such
as E-Commerce, Collaborative Work, and Information Dis-
tribution. However, the difficulties for this development are
not negligible.

In this work we presented BASS, a software framework
to support the development of applications that are clients of
software services. The use of BASS decouples the business
application aspects from the implementation details of soft-
ware services. The definition of the services related to the
application are specified in a customizable way, without the
need of programming activities. BASS enables the business
process-driven software selection and execution, and eases
the services run time configuration.

As future work, we plan to extend the current version of
BASS with long-running transactions [18]. The support of
such transactions aims at allowing the definition of the treat-
ment of possible transaction variations. Other future work
includes the definition of a GUI-based configuration tool for
BASS and a customization of a software process including
BASS. Our current results are very promising and we be-
lieve that the benefits obtained by using BASS are similar
to the benefits obtained by using a persistence layer instead
of hard-coding SQL commands in an application. Never-
theless, we are designing an experiment that will charac-
terize the benefits of using BASS instead of hard-coding a
network solution.

References

[1] S. Ambler. Mapping Objects to Relational Databases,
2000. [Online] Available: http://www.AmbySoft.com/ map-
pingObjects.pdf.

[2] APACHE. Apache Axis, 2006. [Online] Available:
http://ws.apache.org/axis/.

[3] M. A. C. B. Verheecke and V. Jonckers. AOP for Dy-
namic Configuration and Management of Web Services. In
ICWS’03), September 2003.

[4] F. Baligand and V. Monfort. A Concrete Solution for Web
Services Adaptability using Policies and Aspects. In ICSOC
’04, pages 134–142, New York, NY, USA, 2004. ACM Press.

[5] A. Cockburn. Writing Effective Use Cases. Addison Wesley,
2001.

[6] M. B. Costa, R. F. Resende, M. F. Alves, and M. V.
Segatto. Business-to-Business Transaction Modeling and
WWW Support. In BPM’2, pages 132–147. LNCS -
Springer Verlag, June 2004.

[7] M. B. Costa, R. F. Resende, P. S. Neto, and M. H. F. Alves.
Utilização de Aspectos no Desenvolvimento de Aplicações
baseadas em Serviços Web. In WASP’04, 2004.

[8] F. Curbera, W. Nagy, and S. Weerawarana. Web services:
Why and how. In OOPSLA’01: Proceedings of the Workshop
on Object-Oriented Web Services. ACM, 2001.

[9] A. Dey, J. Mankoff, G. Abowd, and S. Carter. Distributed
Mediation of Ambiguous Context in Aware Environments.
In UIST ’02, pages 121–130, New York, NY, USA, 2002.
ACM Press.

[10] A. Eberhart. Towards Universal Web Service Clients. In
Proceedings of the Euroweb, 2002.

[11] M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Build-
ing Application Frameworks: Object-oriented Foundations
of Framework Design. John Wiley & Sons, Inc., New York,
NY, USA, 1999.

[12] R. B. Grady. Practical Software Metrics for Project Man-
agement and Process Improvement. Prentice-Hall Inc, Upper
Saddle River, NJ, 1 edition, 1992.

[13] W. Hasselbring. Information system integration. Commun.
ACM, 43(6):32–38, 2000.

[14] Hibernate. Relational Persistence for Java and .Net, 2006.
[Online] Available: http://www.hibernate.org/.

[15] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-
ware Development Process. Addison Wesley, 1998.

[16] N. Milanovic and M. Malek. Current Solutions for Web Ser-
vice Composition. IEEE I. Computing, 8(6):51–59, 2004.

[17] OMG. Object Constraint Language Description, 2003.
[18] M. P. Papazoglou. Web Services and Business Transactions.

World Wide Web: Internet and Web Information Systems,
6(1):49–91, 2003.

[19] M. P. Papazoglou and D. Georgakopoulos. Service-Oriented
Computing: Introduction. Communications of the ACM,
46(10):24–28, October 2003.

[20] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall Publishing, 1996.

[21] G. Spanoudakis, A. Zisman, and A. Kozlenkov. A Service
Discovery Framework for Service Centric Systems. In SCC
’05, pages 251–259, Washington, DC, USA, 2005. IEEE
Computer Society.

[22] S. Zang, A. Hofer, and O. Adam. Cross-enterprise busi-
ness process management architecture- methods and tools
for flexible collaboration. In OTM Workshops, volume
3292 of Lecture Notes in Computer Science, pages 483–494.
Springer, 2004.

528

Abstract— Today, software engineering is evolving from
source code to the model realm. As objects have been considered
“atomic units” in software development and maintenance,
models are becoming first order citizens in the well-known MDA
paradigm. New languages and metamodel families are appearing
to support the management of models and the new capabilities
arising from this technological evolution. In this paper we
present the MDPEM (Model-Driven Pattern Matching)
technique and a possible application for models.

Index Terms— MDA, Model instrumentation, Model-Driven
Pattern Matching, OCL, QVT

I. INTRODUCTION

oftware evolution is turning classic artefacts into
models as a first order element in the development

process. Current development paradigms are going through a
change from object orientation to model-driven trends [1].
This evolution is partially supported by many proposals such
as standard languages and metamodels. Perhaps one of the
most popular initiative is OMG (Object Management Group),
consisting of UML2 (Unified Modelling Language) [2], OCL2
(Object Constraint Language) [3], MOF2 (Meta-Object
Facility) [4], CWM (Common Warehouse Specification) [5]
and the recently appeared KDM (Knowledge Discovery
Metamodel) [6] (intended to support the Architecture-Driven
Modernization process [7]).

Since languages such as Java, SmallTalk and C++ met the
new requirements when object orientation appeared, other
kinds of languages are currently appearing to fulfil the new
requirements of the MDA (Model-Driven Architecture) [8]
paradigm. These languages are capable of managing models
and metamodels as other languages, such as Java or C++, deal
with objects and classes.

The MDA philosophy is creating new opportunities for
software engineering. For example, software development can
be supported by means of models [9, 10], reengineering for
software modernization [11], system integration [12], etc.

Ignacio García-Rodriguez de Guzmán is with the Alarcos Research Group.
Information Systems and Technologies Department, UCLM-SOLUZIONA
Research and Development Institute. University of Castilla-La Mancha,
Ciudad Real, Spain. (e-mail: Ignacio.GRodriguez@uclm.es).

Macario Polo is with the Alarcos Research Group. Information Systems
and Technologies Department, UCLM-SOLUZIONA Research and
Development Institute. University of Castilla-La Mancha, Ciudad Real, Spain.
(e-mail: Coral.Calero@uclm.es).

Mario Piattini is with the Alarcos Research Group. Information Systems
and Technologies Department, UCLM-SOLUZIONA Research and
Development Institute. University of Castilla-La Mancha, Ciudad Real, Spain.
(e-mail: Mario.Piattini@uclm.es).

One of the most popular (and one of the most ambitious
bets) to deal with models is QVT
(Query/View/Transformations) [13]. This language, proposed
by the OMG, is intended to perform operations with models.
Using QVT, it is possible to throw queries against models,
create views from models and of course, carry out
transformations among models. One of the most common
operations in QVT is pattern matching. For any operation,
QVT expresses models as searching patterns. The QVT
specification [13] establishes in which context pattern
matching is used, but is does not make clear what to do when
it is only necessary to look for occurrences of a given pattern.

Computer science has used pattern matching in many
domains, such as lexical and syntactical analyzers, data
mining, information retrieval, etc. But in most of them, pattern
matching is carried out against text, files or other media. Our
proposal is to use the latest advances in model technology to
facilitate the application of the well-known technique of
pattern matching.

This paper is organized as follows: Section II gives an
overview of QVT and some related works; Section III
introduces the concept of MDPEM; Section IV depicts what
MDPEM could be useful for; Section V tackles a possible
application of MDPEM in the aggregation of services to a
system; and Section VI gives some conclusions and outlines
some future lines of work.

II. BACKGROUND

A. About QVT
QVT is an initiative of the OMG. In 2002, it was published
the QVT RFP. One year later in March 2003, the QVT-
Partners published the “Initial submission for MOF 2.0
Query/Views/Transformations RFP” [14]. In November 2003,
QVT-Partners published the “Revised submission for MOF
2.0 Query / Views / Transformations RFP” [15]. This
specification showed a more complete specification along
with the declarative and imperative QVT’s languages. In
November 2005, OMG published the “MOF QVT Final
Adopted Specification” [13].

In spite of the popularization of this language, there is no
available any QVT engine implementing the declarative QVT
language (up to now). Some projects in the academic world
[16] are now underway. There are other initiatives such as the
MODELWARE QVT Tool [17], based on the QVT Operational
language, the other sublanguage of QVT.

Using Model-Driven Pattern Matching to Derive Functionalities in
Models

García-Rodríguez de Guzmán, I., Polo, M. and Piattini, M.

S

529

B. Pattern Matching
Traditionally, patterns have been used for many purposes. For
example, in some works [18, 19], patterns have constituted the
cornerstone of the migration process from one kind of system
to another. In other studies [20], the authors use a pattern-
oriented language to integrate databases. Additionally,
patterns have been used to reduce the inherent complexities
that arise when applications must be connected to databases
[20-22].

Patterns have been widely used to reengineer legacy
systems [23], and particularly, patterns are very useful in the
reverse engineering stage [24-26]. The well-known patterns of
Gamma [27] have been used not only in the system design
stage, but also with the aim of refactoring or restructuring
legacy systems.

III. MODEL-DRIVEN PATTERN MATCHING

A. What does MDPEM consist of?
Model-Driven Pattern Matching is simply a traditional
concept which has evolved together with software trends. The
basic idea behind pattern matching is to find occurrences of a
given pattern in a data set. Thus, MDPEM uses models to
specify both the patterns and the target data set.

According to [28], “the essential idea behind pattern
matching is to allow the succinct expression of complex
constraints in an input data type; data which matches the
pattern is then picked out and returned to the invoker”. In the
MDPEM context, the pattern model specifies the complex
constraints and the target model represents the data.

B. A framework for MDPEM
As noted above, this paper focuses on the MDPEM concept in
the QVT language; thus the developed framework to perform
MDPEM is based on this model-oriented language.

The QVT language uses the concept of pattern matching in
every action that its constructors perform intensively. But due
to the novelty of QVT, there is neither foundation nor theory
about how to use this language to perform pattern matching,
and, additionally, the QVT specification [13] is confusing in
this respect.

For this reason, a basic framework has been developed to
support (at least on a theoretical level) the MDPEM process.
Fig. 1 depicts the framework. For the sake of simplicity all the
involved artifacts are located in an MOF-like pyramid. Level
M2 of Fig. 1 represents the metamodels for patterns and target
models, as well as the model transformations involved in the
process; Level M1 represents all the models involved in the
MDPEM process, namely the patterns, the target model, and
the matchings (occurrences of the pattern in the target model).
Since all the steps are developed in M2 and M1, M3 and M0
are not explained. Table I summarizes the elements
represented in Fig. 1. For each element (“Level M2” column in
TABLE I) on the M2 level, there exists a conforming model
(“Level M1” column in TABLE I) on the M1 level.

The PatternToQVTPattern transformation, not included in
Table I, plays an important role in the MDPEM process. As

noted above, any pattern (PatternModel) must be transformed
into a different representation that QVT imposes: the QVT
Template (shown as QVTPattern Model in Fig. 1). The QVT
Template is the structure that QVT uses to represent any
pattern that needs to be matched. As a consequence, any
pattern we want to match should be transformed to this
representation. Therefore, a transformation
(PatternToQVTPattern in Fig. 1, Level M2) involves both the
pattern metamodel (PatternMModel) and the QVTPattern
MModel (QVT Template Metamodel).

Fig. 1. MDPEM Framework
TABLE I

ELEMENTS INVOLVED IN THE MDPEM PROCESS
Level M2 Level M1 Description

PMM PM

Patterns (models) are constrained by a
given metamodel. This must be
compatible with the target model to be
able to find matchings.

QVTPMM QVTPM

Patterns must be translated into a QVT
pattern representation (QVT Template
[13]), so the QVT Template metamodel
(QVTPMM) should be taken into
account. As a consequence, each pattern
model is transformed to a QVT Template
(QVTPM)

PIM/PSMMM PIM/PSMM

Because in any MDA process models are
called PIM or PSM (according to the
abstraction level of the model), we
suppose that the target model will be a
PIM or a PSM

- Matching

After MDPEM is applied, matchings may
be found. This matchings can be seen as
fragments of the target model, so the
metamodel for these elements can also be
the PIM/PSMMM

PMM = Pattern Metamodel; PM = Pattern Model; QVTPMM = QVT Pattern
Metamodel; QVTPM = QVT Pattern Model; PIM/PSMMM = PIM/PSM
Metamodel; PIM/PSMM = PIM/PSM Model

The MDPEM process can be divided into four steps:
1. Pattern model and target model are defined.
2. QVT Template model is obtained from Pattern

Model.
3. MDPEM is carried out.
4. Matchings (sub-models) are returned to the

invoker.
For a deeper explanation of MDPEM and examples of

530

patterns, please see [29].

IV. FINDING/DEFINING DEFINING PATTERN ON MODELS

The previous section outlined the MDPEM technique, but
the main goal of this technique is not only to find occurrences
for a given pattern. MDPEM can be also used to undertake
more detailed operations over those models acting as target
models.

This technique was conceived as a tool to support some
parts of an MDA process to extract services from relational
databases [30]. In this process, patterns are used to extract
functionality from relational databases. That led us to the
question: how to use MDPEM to do something more than find
matchings?

A. Patterns plus actions to derive functionalities
In this paper our aim is to provide a mechanism to use
MDPEM undertaking actions associated with the set of
occurrences obtained in the matching process (Fig. 2).

Fig. 2. Extended MDPEM
The basic MDPEM depicted in Fig. 1 can be expressed as a

function fMDPEM. This function is defined as follows:
)(, OTPMDPEM MSetMMf , where MP represents the pattern,

MT represents the source model, and MO represents an
occurrence of MP in MT. Depending on both the pattern model
and the target model, fMDPEM may return a set of occurrences
(Set(MO)).

But according to Fig. 2, the MDPEM basic concept can be
extended to provide an extra functionality. Patterns can be
provided together with a description of an abstract action. The
basic idea behind Fig. 2 is to have not only a pattern (MP) but
also an associated abstract action, which could be later
transformed into a concrete transformation.

However, MDPEM can be specified in a more powerful
way. First of all, instead of a pattern MP, the process takes a
pair <pattern, abstract action>, algebraically represented as

AT AMK , , where MT represents the aforementioned
pattern model, and AA represents the abstract action.
Therefore, the previously defined function fMDPEM must be
redefined according to the new element K. This new function
can be considered as follows:

OATMDPEM MASetMKf , . AA

is then applied to each element in the resulting set of
occurrences. Thus the abstract action, which is defined in

terms of the abstract elements of the pattern, is then
“materialized” for each actual occurrence obtained in the
MDPEM process.

In Fig. 2, K is represented by the pattern plus the action (top
of the figure), and MT is the source model depicted at the
bottom of figure. After applying MDPEM and obtaining the
occurrences, the specified action is then applied to each
occurrence.

The term “abstract action” may be very vague, but in fact
any action or structure can be specified to be applied to each
occurrence. As a consequence, certain parts from models
(MDPEM occurrences) can be updated or modified according
to the instructions given in the abstract action (AA).

In the following section, we will describe what MDPEM
has been used for: to detect services in databases using
patterns and abstract descriptions for the services attached to
patterns.

V. USING MDPEM TO FIND AND CREATE SERVICES

This section explains the purpose of this technique. As noted,
MDPEM was developed in the context of an MDA process to
extract services from relational databases. The lack of tools
and experience around languages such as QVT prompted the
development of MDPEM to properly manage models and
patterns.

In the context of the process proposed in [30], we can define
a pattern and attach a particular behavior to this pattern. This
behavior is specified in terms of operations, called services.
Thus, for a given pattern involving a set of entities, a set of
abstract operations involving these entities can be attached.
Thus, when an occurrence is found, each abstract operation
attached to the pattern is “instantiated” with the entities of the
occurrence.

A. Problem definition
MDPEM can be used to discover services in relational
databases. Thus, all the artifacts (patterns and target model)
will be described in terms of tables, columns, foreign keys and
so on.

The aim is to start from a database model, define a set of
patterns, find their matches and obtain possible useful
services. This case study fits the example depicted in Fig. 2,
and:

the database model plays the role of the source
model,
a pattern describing a particular database fragment
structure plays the role of the pattern, and
the abstract description of an operation involving the
elements of the pattern.

B. Pattern model and target model definition
Fig. 3 depicts a fragment from a relational database extracted
from an industrial application. This fragment is composed of
10 tables and will form the target model for the MDPEM
process. This model has been used to carry out a simple case

531

study and illustrates the work presented in this paper. Due to
the lack of space, the picture does not include any detail such
as columns, primary keys or the like. It can be assumed that a
suitable database metamodel is used (in fact, a summarized
version of the one presented in [31] is used).

EQUIPMENT_CALC_TYPECONCEPT_EQUIPMENT

NON_METERED_USAGES

NON_METERED_USAGES_DEF

SECTOR

PRORATE_TYPE

EQUIPMENT_TYPENON_METERED_EQUIPMENT

CONSUM_TYPECONCEPTS_MASTER

Fig. 3. Case study database
BaseTable

Column

ReferentialConstraint

UniqueColumn

PrimaryKey

+column
1..*

+ownerTable

+column
1..*

+refConstraint
*

+column
1..*

+primaryKey
0..1

+primaryKey

*

(a)
 A M B

Fk1 Fk2

(b)
Fig. 4. (a) Pattern metamodel, (b) DFK (Double Foreign Key) Pattern, and (c)
DFK pattern conforming to pattern metamodel

Fig. 4 (a) represents the pattern metamodel. Since it may
not be sufficiently descriptive, Fig. 4 (b) shows a conceptual
representation. Fig. 4 (b) shows the pattern to be applied in the
MDPEM process.

Once the source model and pattern are defined, the
abstract operation must be defined (the “Action” in Fig. 2). In
this context, any service (or operation) against the database is
translated into an SQL query. But in spite of existing
proposals to represent SQL queries in a metamodel-like
representation (PL/SQL Grammar1), there is no standardized
DML metamodel for SQL. Nonetheless, a suitable solution
lies in the OMG’s metamodel family, OCL2. OCL2 is as
expressive as SQL. Furthermore, the OCL2 specification
includes the language metamodel, so that any OCL expression
can be represented as a model [32] and thus used in any MDA
approach as an artifact. For these reasons, OCL was chosen to
describe the abstract operations.

In the pattern (Fig. 4 (b)), table M has two foreign keys:
one to table A and one to table B. The M primary key is
obtained by linking together the foreign key for table A and
the foreign key to table B. Thus, for a given value of the B
primary key it is possible to obtain those records from table A
linked to table B. As a consequence, two operations or
services can be attached to the pattern in Fig. 4 (b):

getA_TupleBy_B(b:B):bag(A) Having the values of
the B table tuple, it is possible to obtain a list of tuples
from A by means of table M.
getB_TupleBy_B(a:A):bag(B) As in the previous
operation, here it is possible to return a set of tuples to

1 https://javacc.dev.java.net/files/documents/17/2959/FormsPlSql.jj

table B. It is only necessary to pass the value of an A
table primary key to perform the search.

Fig. 6. (a) includes the required OCL postcondition to
specify the service getA_TupleBy_B(b:B):bag(A). Supposing
that these services are allocated in a façade class [27], the
OCL expression:

1. Recovers all the instances (M is a class representing a
table) of mM property,

2. for each instance:
a. calculate the values or properties which

implement the foreign key to B,
b. calculate the values of the properties conforming

the primary key of b (argument of the operation),
c. calculate which of these sets have the same

values, and
3. for each of these sets, return the corresponding mA

attribute in the M context.
The Fig. 6 (b) represents the same expression, but in a

model-like representation. It should be noted that all the
elements referred in the expression belong to the pattern (see
Fig. 4 (b)).

C. QVT Template generation
Once all the elements involved in the process have been

defined, the pattern must be transformed into a suitable
representation to perform the MDPEM process.

Fig. 5. QVT Template abstract representation
As noted above, QVT defines its own pattern

representation: the QVT Template [13] (also called QVT
Pattern Model in Fig. 1). A QVT Template (see Fig. 5)
represents a pattern on the basis of the elements involved in
the pattern and the relationships between them. Thus, before
performing the MDPEM process the input pattern must be
transformed into a QVT Template. In the proposed framework
(see Fig. 1), this transformation is carried out by means of a
QVT transformation (PatternToQVTTemplate).

This transformation, outlined in Fig. 7, transforms patterns
(based on the metamodel in Fig. 4 (a)) to a QVT Template
representation. Thus, starting from a pattern and then applying
this transformation, a suitable QVT Template is obtained to
perform MDPEM. The Fig. 7 transformation is divided into
five relations. Each relation is intended to address the
transformation from each part of the original metamodel (Fig.
4 (a)) to other part in the QVT Template one (Fig. 5). See [29]
for a further description of this transformation.

D. MDPEM application and matchings generation
This step depends entirely on the QVT engine that executes

the matching. As can be seen in Fig. 1, the QVT engine takes
the source model (referred in the picture as the “PIM/PSM
Model”) and the QVT Template (obtained from the initial
pattern) as input. Then, the QVT engine executes the
matching and automatically returns the occurrences.

532

result = self.mM.oclType.allInstances
 ->select(m:M|foreignKeys(m,mB) = b.primaryKeys()).mA

(a)

ExpressionInOCL

VariableDeclaration
+name = 'self.mM.oclType'

AssociationEnd
+name = 'allInstances'

Operation
+name = 'select'

OperationCallExp

AssociationEndCallExp

VariableExp

+source

+referredAssociationEnd+source

+referredVariable

Operation
+name = 'result'

+referredOperation

OperationCallExp

+arguments

+referredOperation

VariableExp
+initExpression

VariableDeclaration
+name = 'self.mM'

AssociationEnd
+name = 'oclType'

+referredVariable +referredAssociationEnd

Constraint
+postCondition

+postContext
Operation

+name = 'getA_TupleBy_B(b:B):bag(A)'+body

+ownedParamete

+ownedFormalParameter

VariableExp

VariableDeclaration
+name = 'self'

AssociationEnd
+name = 'mM'

+referredVariable

+referredAssociationEnd

+initExpression

OperationCallExp

Operation
+name = '='

+referredOperation

BaseTable
+name = 'B'

OperationCallExp
+source

+arguments

VariableDeclaration
+name = 'self.mM'

VariableExp
+source

+referredVariable

VariableExp
+initExpression

VariableDeclaration
+name = 'self'

AssociationEnd
+name = 'mM'

+referredVariable
+referredAssociationEnd

Operation
+name = 'foreignKeys'

+referredOperation VariableExp
+arguments

VariableDeclaration
+name = 'm'

+referredVariable

OperationCallExp

Operation
+name = 'primaryKeys'

+referredOperation

+arguments

Parameter
+name = 'b'
+direction = 'in'

+arguments
+arguments

AssociationEndCallExp

+source

AssociationEnd
+name = 'mA'

(b)
Fig. 6. (a) OCL postcondition for the getA_By_B(p:B):Set(A) and (b) its model-based representation

The obtained matchings can be seen as constrained views of
the target model. These small “sub-models” represent
something interesting from point of view of the engineering
which is supervising the MDPEM process. In this work, we
present one of the possible uses of MDPEM: the inclusion of
operations in the recovered matchings.
transformation SQL92SchemaPatternToQVTTemplate
 (sql92p: SQL92SchemaPattern, qvtt:QVTTemplate)
{
key ObjectTemplateExp = {name};
key PropertyTemplateItem = {name};
top relation BaseTableToObjectTemplateExp{…}
top relation ColumnToObjectTemplateExp{…}
top relation UniqueColumnToObjectTemplateExp{…}
top relation ReferentialConstraintToObjectTemplateExp{…}
top relation PrimaryKeyToObjectTemplateExp{…}
}

Fig. 7. QVT transformation to generate a QVT Template from a patter for
database models

As depicted in Fig. 2, patterns are given together with the
abstract description of an operation (shown, for example in
Fig. 6). After MDPEM is applied and the matchings are
recovered, the abstract operation is applied to each obtained
occurrence. Thus, since the elements of the matchings belong
to the target model, the elements involved the abstract
operation will no longer be abstract.

TABLE II
MATCHINGS OBTAINED IN THE MDPEM PROCESS

ID A M B
1 CONCEPTS_

 MASTER
CONCEPT_
 EQUIPMENT

NON_METERED_
 EQUIPMENT

2 CONSUM_TYPE EQUIPMENT_TYPE SECTOR
3 PRORATE_TYPE CONCEPTS_MASTER SECTOR

For the given pattern in Fig. 4 (a), and the target model in
Fig. 3, the set of matchings after applying MDEM are
described in the TABLE II, and the resulting services in
TABLE III.

TABLE III
SERVICES OBTAINED FROM MATCHINGS AND ABSTRACT OPERATIONS
ID SERVICE
1 -getCONCEPTS_MASTER_TuplesBy_NON_METERED_EQUIPMENT

-
getNON_METERED_EQUIPMENT_TuplesBy_CONCEPTS_MASTER

2 - getCONSUM_TYPE_TuplesBy_SECTOR
- getSECTOR_TuplesBy_CONSUM_TYPE

3 - getPRORATE_TYPE_TuplesBy_SECTOR
- getSECTOR_TuplesBy_PRORATE_TYPE

Of course, the names of the services in TABLE III are not
intuitive and the names of the abstract operations are just
illustrative. Services created from matchings and abstract
operations must be renamed by the engineer, according to the
service’s functionality. Therefore, services become intuitive
and easy to use. For each service in TABLE III, references to
abstract elements (namely A, B, and M) are substituted by the
elements in the matching playing this “abstract role” (e.g., in
TABLE II, in the occurrence with ID = 2, “SECTOR” plays
the role of B, “CONSUM_TYPE” the role of A, and
“EQUIPMENT_TYPE” the role of M.

Due to the lack of space, an abstract operation
“instantiated” for a matching could not be shown.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents MDPEM, an approach to perform pattern
matchings in the context of models. The proposed framework
focuses on QVT, a particular language to manipulate models
by means of queries, views and transformations.

In addition to MDPEM, this paper focuses on what
MDPEM is able to do with models. The main idea behind
MDPEM is to use the models obtained as a result of the
matchings to perform an action over these models.

Our aim is to use the dual “pattern-abstract operation”
against a target model. Thus, portions of the target model (the

533

occurrences of the pattern) can be annotated with operations
or services (described as abstract operations related to the
searching pattern). The instrumentation of models with these
services facilitates the implementation of MDA-based
development processes.

As well as development, MDPEM might be useful in other
areas. Software maintenance in a model-level can be improved
using this technique, e.g., looking for design patterns, as well
as looking for bad-smells and correcting them (in a model –
level). Every process described as a “search pattern and apply
rule” sequence can be partially automated and then easily
applied.Due to the lack of tools for implementing the QVT
language, MDPEM has not been tested in an automated
environment. As soon as a tool is available, this theoretical
proposal will be migrated to a runnable one

For each pattern metamodel, it is necessary to develop a
suitable transformation to generate the equivalent QVT
Template model. Therefore, it may be useful to automate the
generation of the QVT Template from some pattern
metamodels.

ACKNOWLEDGMENTS

This work was partially supported by the ENIGMAS poject
(PIB-05-058), the FAMOSO Project (2006: FIT-340000-
2006-67); and the MECENAS project (PBI06-0024).

REFERENCES

[1]. Bézivin, J. Introduction to Model Engineering. 2006.
<www.modelware-ist.org> [Accesed: 14-November-2006]

[2]. OMG. Unified Modeling Language: Superstructure. Versión 2.0. 2005.
<http://www.omg.org/docs/formal/05-07-04.pdf> [Consultado el: 21 de
Noviembre del 2005]

[3]. OMG, OCL 2.0 Specification. Version 2.0. 2005, Object Management
Group (OMG). p. 185.

[4]. OMG. Meta Object Facility (MOF) Specification. 2002.
<http://www.omg.org/docs/formal/02-04-03.pdf> [Accessed: 11-05-
2005]

[5]. OMG. Common Warehouse Metamodel (CWM) Specification. 2003.
<http://www.omg.org/docs/formal/03-03-02.pdf> [Consultado el: 29-
09-2005]

[6]. OMG. Architecture-driven Modernization (ADM): Knowledge
Discovery Metamodel (KDM) Specification. 2006.
<http://www.omg.org/docs/ptc/06-06-07.pdf> [Accessed in February,
2006]

[7]. OMG. ADM Task Force. 2006. <http://adm.omg.org> [Accessed in
February 2007]

[8]. OMG, MDA Guide Version 1.0.1. 2003, Object Management Group. p.
62.

[9]. Maamar, Z., et al. Towards a contextual model-driven development
approach for Web services. in Proceedings of the 8th International
Conference on Enterprise Information Systems (ICEIS 2006). 2006.
Pahos, Cyprus

[10]. Xiaofeng, Y., et al. A Model Driven Development Framework for
Enterprise Web Services. in Proceedings of the 10th Conference on
Enterprise Distributed Object Computing (EDOC'06). 2006. Hong
Kong, China: IEEE Computer Society IEEE Computer Society. ISBN.
0-7695-2558-X

[11]. Reus, T., H. Geers, and A. van Deursen. Harvesting Software for MDA-
Based Recovering. in European Conference on Model Driven
Architecture - Foundations and Applications. 2006. Bilbao (Spain):
Springer-Verlag Berlin Heidelberg. LNCS 4066 Springer-Verlag Berlin
Heidelberg, A. Rensink and J. Warmer, Editors. ISBN. 3-540-35909-5

[12]. van den Heuvel, W.-J. Matching and Adaptation: Core Techniques for
MDA-(ADM)-driven Integration of new Business Applications with

Wrapped Legacy Systems. in Model-Driven Evolution of Legacy Systems
(MELS 2004). 2004. Monterey, California, USA

[13]. OMG. MOF QVT Final Adopted Specification. 2005.
<http://www.omg.org/docs/ptc/05-11-01.pdf> [Accessed in February,
2005]

[14]. OMG. QVT-Partners initial submission to qvt-rfp. 2003.
<http://www.qvtp.org/downloads/1.0/qvtpartners1.0.pdf> [Accessed in
November, 2006]

[15]. OMG. Revised submission for MOF 2.0 Query/Views/Transformations
RFP. 2003. <http://www.omg.org/docs/ad/04-04-01.pdf> [Accessed in
November, 2006]

[16]. Queralt, P., et al. Un Motor de Transformación de Modelos con soporte
para el Lenguaje QVT Relations. in Desarrollo del Software Dirigida
por Modelos y Aplicaciones 2006 (DSDM´06). 2006. Sitges, Barcelona
(Spain)

[17]. ModelWare. The ModelWare QVT Tool. 2007. <http://www.modelware-
ist.org/> [Accesed: 15-02-2007]

[18]. Bodhuin, T., E. Guardabascio, and M. Tortorella. Migrating COBOL
Systems to the WEB by Using the MVC Design Pattern. in Ninth
Working Conference on Reverse Engineering (WCRE'02). 2002.
Richmond, Virginia: IEEE Computer Society IEEE Computer Society

[19]. Goedicke, M. and U. Zdun, Piecemeal legacy migrating with an
architectural pattern language: a case study. Journal of Software
Maintenance and Evolution: Research and Practice, 2002. 14: p. 1-30.

[20]. Brown, K. and B.G. Whitenack, Crossing Chasms, A Pattern Language
for Object-RDBMS Integration, ed. K.S.C. Editor. 1995. K.S.C. Editor.

[21]. Yoder, J. Patterns for making business objects persistent in a relational
database. in Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 2002. Tampa Bay (Florida)

[22]. Yoder, J., R.E. Johnson, and Q.D. Wilson. Connecting Business Objects
to Relational Databases. in Proceedings of the 5th Conference on the
Pattern Languages of Programs. 1998. Minticello-IL (Estados Unidos)

[23]. Cagnin, M.I., et al. Reengineering Using Design Patterns. in Seventh
Working Conference on Reverse Engineering (WCRE'00). 2000.
Brisbane, Australia: IEEE IEEE

[24]. Sartipi, K. and K. Kontogiannis. On Modeling Software Architecture
Recovery as Graph Matching. in International Conference on Software
Maintenance (ICSM'03). 2003. Amsterdam, The Netherlands: IEEE
Computer Society IEEE Computer Society

[25]. Pinzger, M., et al. Revealer: A Lexical Pattern Matcher for Architecture
Recovery. in Proceedings of the 9th Working Conference on Reverse
Engineering. 2002. Richmond, Virginia: IEEE Computer Society IEEE
Computer Society

[26]. Stoermer, C., L. O´Brien, and C. Verhoef. Practice Patterns for
Architecture Reconstruction. in Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE´02). 2002. Richmond,
Virginia: IEEE Computer Society IEEE Computer Society

[27]. Gamma, E., et al., Design Patterns Elements of Reusable of Object-
Oriented Software. 1995: Addisson-Wesley.

[28]. QVTP. Revised submission for MOF 2.0 Query / Views
/Transformations RFP (Version 1.1). 2003.
<http://tratt.net/laurie/research/publications/papers/qvtpartners1.1.pdf>
[Consultado el:23-06-2005]

[29]. García-Rodríguez de Guzmán, I., M. Polo, and M. Piattini. A
Framework for Model-Driven Pattern Matching. in Proceedings of the
9th International Conference on Enterprise Information Systems. 2007.
Funchal, Madeira - Portugal (In press)

[30]. García-Rodríguez de Guzmán, I., M. Polo, and M. Piattini. A
Methodology for Database Reengineering to Web Services. in European
Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA 2006). 2006. Bilbao (Spain): Springer-Verlag
Berlin Heidelberg. LNCS 4066 Springer-Verlag Berlin Heidelberg, A.
Rensink and J. Warmer, Editors. ISBN. ISBN 3-540-35909-5

[31]. Calero, C., et al., An Ontological Approach To Describe the SQL:2003
Object-Relational Features. Accepted in "Computer Standards and
Interfaces", 2005: p. 28.

[32]. Reynoso, L., M. Genero, and M. Piattini. OCL2: Using OCL in the
Formal Definition of OCL Expression Measures. in Quality in Modeling
(QIM´2006). 2006. Genova (Italy)

534

A MODEL-DRIVEN APPROACH TO ARCHITECTING SECURE SOFTWARE
Ebenezer A. Oladimeji

Architecture and eServices, IT

Verizon Communications

Irving, Texas 75038, USA.

email: ebenezer.oladimeji@verizon.com

Sam Supakkul

Department of Computer Science

The University of Texas at Dallas

Richardson, Texas 75083, USA.

email: ssupakkul@ieee.org

Lawrence Chung

Department of Computer Science

The University of Texas at Dallas

Richardson, Texas 75083, USA.

email: chung@utdallas.edu

ABSTRACT

Software architecture provides a high-level description of a
software solution in terms of the structure, topology, and in-
teractions between its principal components. While a num-
ber of formal architectural description languages have been
developed, a visual modeling approach seems to be more
suitable for practitioners. There is also a lack of established
tools or methodologies for integrating security requirements
with software architectural models. Moreover, determining
whether or not a given software architectural model realizes
a set of security requirements remains a challenging prob-
lem. To address these issues, this paper proposes a model-
based framework for architecting secure software. Specifi-
cally, we present a mapping strategy between the core ele-
ments of software architecture and a lightweight extension to
the UML metamodel. We then describe how security require-
ments, captured in the forms of authorization and obligation
security policies, can be visually integrated with the software
architectural model. We show how this approach enables the
early detection of security conflicts or inconsistencies dur-
ing design, and the traceability of security concerns from re-
quirements to architecture. The feasibility of the proposed
approach is illustrated with an example of the design of a
simplified health information system.

KEYWORDS
software security, software architecture, architectural mod-

els, security policies, security conflicts, security traceability

1 Introduction

As our lives continuously depend on several complex

software-based systems, the security of software systems

continues to play more significant roles. The need for design-

ing security into software applications rather than retrofitting

it as an afterthought has been well discussed [1, 18, 17]. Cap-

turing security concerns during the requirements analysis and

architectural design phases, in particular, can improve the

overall security of a system. While a number of approaches

have addressed how to capture security concerns during the

requirements engineering phase [16, 15], more research is

needed to enable the design of software architectural models

that explicitly capture the security issues identified during re-

quirements analysis, in a systematic manner.

The software architecture provides a description of a soft-

ware solution at a critical level of abstraction. At the architec-

tural level, software engineers describe the solution domain

in terms of the structure and topology of its principal compo-

nents and the interactions between them [5, 6]. Several archi-

tectural description languages (ADL’s) [4], with varying ex-

pressive powers have been developed. However, there is lack

of established tools or methodologies for integrating security

policies with software architectural models. We believe that

explicit modeling of security issues at the architectural level

can make a system more resistant to vulnerabilities.

However, while it has been argued [4] that security con-

cerns should be explicitly addressed during requirements en-

gineering and architecture design stages, in practice, this is

seldom the case. One reason for this is the lack of standard-

ized methodology and visual notations for specifying and

analyzing security issues at the architectural level. While

ADLs have matured to some extent, practitioners are not

very excited about using them for architectural descriptions.

A visual modeling approach to software architecture design

seems to be more suitable in practice. Two approaches have

been identified for addressing this problem [6]. One is to

use specialized notation for software architectures, and the

other is to adapt a general-purpose modeling notation such

as the UML. We adopt the latter strategy because of familiar-

ity of the UML to developers and the existence of commer-

cial tool supports. Moreover, determining whether or not a

given software architectural model realizes a set of security

requirements remains a challenging problem.

In this paper, we present a model-based approach for

explicitly capturing security concerns into UML-based mod-

els of software architecture. Our goal is to provide practi-

tioners with a useful artifact that can guide the way secu-

rity issues are handled during the rest of the development

process. Specifically, we are concerned with the representa-

tion of security requirements and their integration with visual

models of software architectures. We illustrate the concepts

presented with the example of designing a set of architec-

tural models for securely developing a web-based Simplified

Health Information System (SHIS hereafter), whose informal
architecture is shown in Figure 1.

The rest of the paper is organized as follows: Sections

2 and 3 describe our modeling notations and Section 4 de-

scribes the proposed approach. Section 5 discusses related

research while Section 6 concludes the paper.

535

2 Modeling Security Requirements

During the requirements engineering phase, security require-

ments are usually captured in the form of high-level secu-

rity policies. These policies typically describe who is granted
what level of access to what part of the system. Marriott et al
in [12] describe two major categories of security policies for

managing distributed systems in general, namely authoriza-

tion and obligation policies. An authorization policy spec-
ifies what actions a given subject (agent, user, role, or pro-
cess) is permitted or forbidden to perform on a set of target
objects. On the other hand, obligation policies are rules that
specify what activities a subject must or must not perform on
a set of target objects under an optionally specified condition

or system event (i.e. they specify job functions related to se-

curity management). These policies can be expressed in any

suitable policy specification languages such as Ponder [2],

and Rei [10]. For convenience, we adapt Ponder and denote
security policies with the following syntax:

modality identifier: {on event} [subjects; objects,
actions/*] {when condition}

where modality is one of A+ denoting positive authoriza-
tion, A- denoting negative authorization, O+ denoting pos-
itive obligation, and O- denoting negative obligation. The
terms in curly brackets are optional, while the terms in bold

typeface are keywords. For simplicity, identifiers, events,

subjects, objects, actions, and conditions are specified in nat-

ural language or set notation. An action is a high-level de-
scription of a set of related operations and an asterisk denotes

all possible actions on the target object. Consider the follow-
ing example policies from the SHIS application domain:

• A+ P1: [Doctor; MedicalRecord; *]

• A+ P2: [MedicalStaff; MedicalRecord; View]

• A- P3: [Nurse; CreditCardInfo; View]

• O+ P4: on request-for-disclosure [AdminStaff; Medi-
calHistory; Obtain-Permission]

• O- P5: [Nurse; CreditCardInfo; View]

• A+ P6: [AdminStaff; CreditCardInfo; Update]

Policy P1 denotes that doctors are authorized to perform all
possible actions on their patients’ medical records, while pol-

icy P3 specifies that nurses are forbidden from viewing pa-

tients’ credit card data. On the other hand, P4 is a positive
obligation policy denoting that on any event of a request for

disclosure from any medical research agency, the admin staff

must obtain permission from the patient whose information

is to be disclosed for research purposes. Similarly, the neg-

ative obligation policy P5 denotes that nurses must not even
view credit card information of patients.

Figure 1. An Informal Representation of the Software Archi-

tecture for SHIS

3 UML-Based Software Architectural Models

Since software architecture is produced early in the develop-

ment process, it promises a means for less-expensive design-

time analysis and reasoning about emergent system proper-

ties such as performance, scalability, and security. However,

this promise is only realizable if architectures are described

with semantically rich and expressive notations. In practice,

architectural designs are usually represented with box-and-
line diagrams. Figure 1 shows an example model of software
architecture for the SHIS based on this informal approach.
Representing software architectures in this manner, visually

intuitive as it may seem, suffers a number of drawbacks.

First, these diagrams have no formal semantics and are there-

fore subject to different interpretations, thus limiting their us-

age as communication tools among stakeholders. Second,

traceability between these informal diagrams and other de-

sign models is difficult to ascertain. Furthermore, they are

not amenable to any formal reasoning or analysis that may

reveal incompleteness, conflicts or inconsistencies.

To address these drawbacks, some ADL’s have emerged

(see [5] for a list). While these languages vary in their con-

ceptual details, there seem to be an ontological consensus

among them about the major elements of a software archi-

tectural description. From existing work [6, 14] and from a

practitioner’s point of view, the core concepts that must be
modeled in a software architectural description are as fol-

lows: components (with their required and provided inter-
faces, types and ports), connectors (with their required and
provided interfaces), and configurations.

Since the UML is the de-facto standard for object mod-

eling, several efforts have been recently made at mapping

ADL concepts to the UML [7, 13]. Garlan et-al [6] present a

thorough examination of this space and propose some strate-

gies for mapping ADLs concepts to the UML. They argue

that the UML (1.x) component lacks semantic match for the

component concepts in software architecture. However, with

the advent of UML 2.0, a number of revisions and new con-

cepts provide a significant bridge to the gap between the

UML component and the architectural component. These re-

visions are shown in the unshaded portions of the metamodel

of Figure 2. It should be noted that in UML 2.0, a compo-

536

Figure 2. A Metamodel for the Proposed Approach

nent is a subtype of a class, which implies it may now have
attributes and operations, as well as participate in associa-

tions and generalizations. Also, UML 2.0 provide explicit

modeling elements for the concepts of provided and required
interfaces and ports. These revisions makes the UML 2.0
component diagram suitable as a standard model of software
architectures. We therefore use the following mapping strat-

egy for the core elements identified above:

Components: These represent the computational elements
and data stores of a system. Components may have mul-

tiple points of interactions called ports through which the
component exposes a number of provided and required in-
terfaces for interacting with its environment. This archi-

tectural conceptual element maps intuitively to the UML 2.0

component model-element. For an example, Figure 3 shows

a UML component model for SecurityServices component
of the SHIS application. This component provides two in-
terfaces (RBAC and Encryption), and requires a Persistence
interface, all through different ports.

Connectors: These are the means of interactions among
components, providing the glues in architectural designs

from a run-time standpoint. A connector can be abstract or

concrete. An abstract connector represent simple forms of

interactions such as pipes, procedure calls, and event broad-

casts. We model this type of connectors with UML assembly
and delegation connectors. An assembly connector maps a
required interface of a component to a provided interface of

another component in a certain context. Similarly, delega-

tion connectors connect the externally provided interfaces of

a component to the parts that realize or require them. For

example, in Figure 3, the provided interface RBAC is dele-
gated to the RBAC-Controller sub-component while the En-
cryption interface is realized by the EncryptionEngine class.
On the other hand, concrete connectors perform complex co-

ordination activities (e.g client-server protocols) through one

or more provided and required interfaces. These type of con-

nectors can be modeled as stereotyped components.
Configurations: Also known as architectural styles, archi-
tectural configurations typically define a vocabulary of de-

sign element types as a set of component, connector, port,

role, binding, and property types, together with rules for

composing instances of the types [5]. We model architec-

tural configurations with the topology (arrangement and in-

Figure 3. A Component Diagram Example

terconnection) of the component diagram. UML association
links and interface bindings are used to depict the topology of
complex components. Also, since the parts in a component
can be UML classifiers, component diagrams can be drawn

at different levels of detail of the inner parts, thus enabling

the modeling of complex hierarchical structures.

Next we describe our approach for depicting security abstrac-

tions on UML-based models of software architecture.

4 Architecting Secure Systems

To enable the production of semantically rich visual models

of software architecture that explicitly depict security con-

cerns, we extend the UML 2.0 component metamodel as il-

lustrated in Figure 2. The extension metaclasses in Figure 2

are shaded to differentiate them from the UML 2.0 standard

metaclasses. An architectural model (represented by a com-

ponent diagram) based on this extended metamodel helps to

establish traceability of security objectives from the require-

ments to the architectural models. It can also help in perform-

ing some design-time analysis thus significantly improving

the overall security of the software system.

4.1 Representation of Security Concerns

We represent security concerns on the software architectural

model in two ways as follows:

Modeling Security Mechanisms: Designers often use es-
tablished prevention mechanisms (such as encryption, au-

thentication, firewalls, virtual private networks), as well as

detection mechanisms (such as content filtering, virus check-

ers and audit log analyzers). Since most software security

problems lie at the points of interactions among components,

ports constitute the best place to implement these security
mechanisms. Therefore, we depict these mechanisms as

tagged-values of the ports in component diagrams. Appropri-
ate single or multi-valued properties such as ‘SecurityMech-
anisms’ and ‘ConnectionType’ can be modeled as attributes
of the ports. For example, the ConnectionType property of
a port can denote complex communication protocols such

as SSH, SFTP, or communication types like SQL, that are
enforceable in the port. While preserving the semantics of

UML tagged-values notation, we show only the values of the

properties in order to avoid visual clutter.

Figure 4 depicts the UML-based software architectural

model for securely building the SHIS application. It shows
that the User Interface component communicates with the

537

Figure 4. A Software Architectural Model for SHIS from a UML Component Diagram Perspective)

ApplicationLogic component using HTTPS protocol. Simi-
larly, the Encryption interface required by the Application-
Logic and provided by the Security Services component is
implemented over a port that implements secure shell (SSH).
Modeling Security Policies: Apart from the interactions

among components, the internal parts of a component need

to implement relevant security policies that were elicited dur-

ing the requirements engineering phase. These policies needs

to be captured in the architectural model. To achieve this, we

extend the UML 2.0 metamodel to enable the integration with

the security-specific terminologies and notations described in

Section 2. As illustrated in Figure 2, each security policy is
denoted on the architectural model with a policy link, and is
composed of its modality and the sets of subjects, target ob-
jects, and actions. The subjects and objects are abstracted
into UML components and realized with classifiers (classes
or components). Each action consists of a set of related op-
erations implemented and exposed as interfaces. Since the

parts of a component can be any classifier, the UML compo-
nent diagram can be drawn at different levels of abstractions,

showing only the most important internal parts at a particular

level. Internal details of major complex components can be

shown with other models such as class diagrams (or domain

models), component diagrams, or collaboration diagrams.

For example, Figure 5 shows how the internal details of

theDataManager component of the SHIS application is mod-
eled. The internal parts and their relationships are depicted

with a domain model. The authorization and obligation poli-

cies identified in Section 2 are then shown with policy links.
This method can be applied iteratively at different levels of

abstraction when dealing with complex systems.

4.2 Traceability and Consistency Analysis

After an architectural model that captures security concerns

is created as described above, it is desirable to be able to

reason about the security properties of the system under de-

velopment. Specifically, we are concerned with the problem

of determining whether or not a given software architectural

model realizes a set of security policies. Another problem of

interest is whether or not such a realization occurs in a con-

sistency preserving manner. To address these problems, we

develop the following analysis rules for establishing trace-

ability and detecting conflicts among security policies.

For precision, Let SECPOL be the set of all security
policies elicited during the requirements phase, and let S, O,
and A be respectively the set of subjects, target objects, and
possible actions in the problem domain. Then, each policy

p ∈ SECPOL is a 4-tuple structure denoted by:

p = [mod, s, o, a]
where mod ∈ {A+, O+, A−, O−} is the modality of the
security policy, s ∈ S, o ∈ O, and a ∈ A. Furthermore,
suppose SOFTARCH denotes the software architectural

model (represented by a component diagram). LetCOMPS
be the set of components and L be the set of policy links

explicitly captured in SOFTARCH . We define two

functions M1 : S ∪ O → COMPS which maps a subject
or target object to a given component C in SOFTARCH ,
and M2 : SECPOL → L which maps a given security

policy to a particular policy link in SOFTARCH . Then,
the following rules can be applied:

Completeness Rule: SOFTARCH is complete with re-
spect to SECPOL if SOFTARCH |= φ0 where:

φ0 = {∀p = [mod, s, o, a] ∈ SECPOL,
[∃c1, c2 ∈ COMPS|((M1(s) = c1)ˆ
(M1(o) = c2)) ⇒ (∃l ∈ L|M2(p) = l)]}

In other words, each subject or target object in the problem

domain that has something to do with the requirements spec-

ification, must be mapped to a component in the architectural

model (though not necessarily one-to-one). Similarly, each

security policy identified during requirement analysis must

be mapped to some policy link in the architectural model.

This rule helps to establish the conceptual traceability from

requirements to architecture.

Consistency Rules: Security policy conflicts and inconsis-
tencies may arise due to interactions between components,

since these components form the underlying elements of dif-

ferent security policies. A conflict occurs whenever there
is an interaction between positive and negative policies of

the same type (i.e. A+/A- or O+/O- applying to the same

subject or object). On the other hand, an inconsistency oc-
curs whenever there is a coexistence of positive and neg-

ative policies of different types (i.e A+/O- or A-/O+ ap-

plying to the same subject or target object). We consider

inheritance and composition relationships among compo-

538

Figure 5. Security Policies Enforced in the SHIS Software Architecture

nents. We denote aggregation by the function IsPartOf :
COMPS → COMPS, and specialization by the function
IsA : COMPS → COMPS. Suppose that p1, p2 ∈
SECPOL are any two security policies such that p1 =
[mod, si, om, a] and p2 = [mod, sj , on, a] for some i, j,m,
and n. Then, SOFTARCH is said to be consistent with
respect to SECPOL if it satisfies the following rules:

(a) SOFTARCH |= φ1 where:

φ1 = ¬{(p1 = [A+, si, om, a]ˆp2 = [A−, si, om, a])
v (p1 = [O+, si, om, a]ˆp2 = [O−, si, om, a]) v
(p1 = [O−, si, om, a]ˆp2 = [A+, si, om, a]) v
(p1 = [A−, si, om, a]ˆp2 = [O+, si, om, a])}

(b) SOFTARCH |= φ2 where:

φ2 = IsA(om, on) ⇒
¬{(p1 = [A−, si, on, a]ˆp2 = [A+, si, om, a]) v
(p1 = [O−, si, on, a]ˆp2 = [O+, si, om, a]) v
(p1 = [O−, si, on, a]ˆp2 = [A+, si, om, a]) v
(p1 = [A−, si, on, a]ˆp2 = [O+, si, om, a])}

(c) SOFTARCH |= φ3 where:

φ3 = IsPartOf(om, on) ⇒
¬{(p1 = [A+, si, on, a]ˆp2 = [A−, si, om, a]) v
(p1 = [O+, si, on, a]ˆp2 = [O−, si, om, a]) v
(p1 = [O−, si, on, a]ˆp2 = [A+, si, om, a]) v
(p1 = [A−, si, on, a]ˆp2 = [O+, si, om, a])}

(d) SOFTARCH |= φ4 where:

φ4 = IsA(si, sj) ⇒
¬{(p1 = [A+, sj , om, a]ˆp2 = [A−, si, om, a]) v
(p1 = [O+, sj , om, a]ˆp2 = [O−, si, om, a]) v
(p1 = [A+, sj , om, a]ˆp2 = [O−, si, om, a]) v
(p1 = [O+, sj , om, a]ˆp2 = [A−, si, om, a])}

(e) SOFTARCH |= φ5 where:

φ5 = IsPartOf(si, sj) ⇒
¬{(p1 = [A+, sj , om, a]ˆp2 = [A−, si, om, a]) v
(p1 = [O+, sj , om, a]ˆp2 = [O−, si, om, a]) v
(p1 = [A+, sj , om, a]ˆp2 = [O−, si, om, a]) v
(p1 = [O+, sj , om, a]ˆp2 = [A−, si, om, a])}

To illustrate how these rules can be applied, consider the se-

curity policy P1 through P6 identified for the SHIS applica-
tion in Section 2, and suppose they are designed to be im-

plemented by the DataManager component. Figure 5 shows
the architectural model of the DataManager component that
captures these security policies. An application of φ3 to this
model reveals that policy P2 conflicts with policy P3. This
is because the target objectMedicalRecord is an aggregation
of CreditCardInfo. By policy P3, a nurse is forbidden from
viewing patients’ credit card data, but by policy P2, the same
nurse is permitted to view credit card data (since Nurse is
a type of MedicalStaff). Similarly, P2 and P5 are inconsis-
tent by a violation of φ4. This is due to the fact that the
subject MedicalStaff is a generalization of Nurse. By pol-
icy P5, a nurse must not (i.e. under a negative obligation)
view patients’ credit card information, but by policy P2, the
nurse (being a type of a medical staff) is permitted to view

the credit card information. This implies that the nurse has

an implicit authorization to perform an action that another

policy obligates her not to perform. This is an example of a

violation of the principle of least privilege.

The above rules are non-exhaustive. They represent the

rules for detecting security policy conflicts and inconsisten-

cies that results from only inheritance and composition rela-
tionships among subjects and target objects in a given UML-
based software architectural model. Other forms of relation-

ships (e.g. transitive UML associations among components)

can trigger some other types of conflicts and inconsistencies

among the underlying security policies.

5 Related Work and Discussions

Software architecture continues to attract attention because it

promises to enable design-time analysis, and reasoning with

non-functional requirements in general. Related work in this

domain are in two broad categories: (1) secure architecture

description languages (ADLs) and their mappings to UML,

and (2) integration of security into UML or its extension.

A number of ADLs have been proposed [5] and some at-

tempts have been made at developing frameworks for map-

ping concepts expressed in ADLs to the UML modeling no-

tation [7, 13, 17]. Other works including [11, 9] address how

security requirements can be incorporated into UML.

539

More closely related to this research, however, are

[8, 17, 3], which all support the notion that software archi-

tecture is a convenient abstraction for reasoning about secu-

rity in distributed applications. Jensen et-al [8], in particu-

lar, proposed that security policies should be programmed in

the connectors, separate from the application’s code. These

works however lack expressive visual notations and con-

sistency checking procedures. Our approach complements

these proposals by considering the transitions of security

concerns from requirements to architectural design, thus of-

fering practitioners a visual modeling technique for design-

ing secure software systems.

We believe that a systematic application of the proposed

approach offers a number of benefits. One, the software ar-

chitectural model so generated can form the basis for rea-

soning about and discovering security policy errors as de-

scribed in Section 4. Two, explicitly capturing security con-

cerns at the architecture level can enable practitioners to es-

tablish traceability of security concerns from requirements

to architecture. In addition, since the proposed approach is

based on the a lightweight extension of the UML 2.0 meta-

model, existing UML tools can be easily extended to support

the approach. However, it is desirable for software architec-

tural models to be amenable to change in order to reflect new

realities and threats in the security environment. It is also de-

sirable to visually depict policy conflicts and inconsistencies

on the resultant architectural model such as Figure 5. These

concerns are not addressed in the current proposal.

6 Conclusions

Security architectural modeling plays a significant role in the

design of the overall security model for a system because

it can help to ensure that security is built into applications,

rather than retrofitted at later stages of the development pro-

cess. We have described in this paper a framework for cre-

ating visual models of software architecture that explicitly

captures elicited security policies, based on the UML 2.0.

Specifically, we show how security policies captured dur-

ing requirements analysis phase can be integrated into UML-

based models of software architectures. We also demonstrate

how some analysis rules are used to verify the completeness

and consistency of the resultant architectural model.

This approach not only offers a smooth transition from

requirements elicitation to high-level architecture design, but

also greatly improves the traceability of security require-

ments from the problem to the solution domains. Moreover,

the software architectural model so produced can serve as a

valuable resource for detailed design, and can be applied as

a basis for testing and validating the system implementation

in terms of desired security features. Future work will be tar-

geted at developing a tool support for the proposed approach.

We also plan to extend the current proposal to address dy-

namic aspects of security, nesting of components, and con-

sideration of the requirement-level object model.

References

[1] R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security Require-

ments Engineering: When Anti-Requirements Hit the Fan. In

Proc. of Int’l Requirements Engineering Conference, 2002.
[2] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Pon-

der Policy Specification Language. Policy Workshop 2001,
Bristol, U.K., Springer-Verlag, LNCS, Jan. 2001.

[3] Y. Deng, J. Wang, J. J. P. Tsai, and K. Beznosov. An Ap-

proach for Modeling and Analysis of Security System Archi-

tectures. IEEE Transactions on Knowledge and Data Engi-
neering, 15(5):1099– 1119, Sept/Oct. 2003.

[4] P. T. Devanbu and S. Stubblebine. Software Engineering for

Security: A Roadmap. In The Future of Software Engineer-
ing. Special volume of the proceedings of ICSE’2000, pages
227–239, June 2000.

[5] D. Garlan. Software Architecture: A Roadmap. In The Future
of Software Engineering. Special volume of the proceedings of
ICSE’2000, pages 91–101, June 2000.

[6] D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling

the Needs of Architectural Description with Object-Modeling

Notations. Science of Computer Programming. Special Issue
on Unified Modeling Language, 44(1):23–49, July 2002.

[7] C. Hofmeister, R. L. Nord, and D. Soni. Describing Software

Architecture with UML. In Proc. of the 1st Working IFIP
Conf. on Software Architecture (WICSA1), Feb. 1999.

[8] C. D. Jensen. Secure Software Architectures. In Proceed-
ings of the 8th Nordic Workshop on Programming Environ-
ment Research, pages 239–246, Aug. 1998.

[9] J. Jrjens. UMLsec: Extending UML for Secure Systems De-

velopment. UML 2002, LNCS 2460, Springer-Verlag, 2002.
[10] L. Kagal. Rei: A Policy Specification Language. PhD the-

sis, CSEE Department, University of Maryland, Baltimore

County, Baltimore, MD 21250, 2005.
[11] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-

Based Modeling Language for Model-Driven Security. UML
2002, LNCS 2460, Springer-Verlag, pages 426–441, 2002.

[12] E. Lupu and M. Sloman. Conflicts in Policy-based Distibuted

Systems Management. Transactions on Software Engineer-
ing, 25(6):852–869, Nov. 1999.

[13] N. Medvidovic and D. S. Rosenblum. Assessing the Suit-

ability of a Standard Design Method for Modeling Software

Architectures. In Proc. of the 1st Working IFIP Conf. on Soft-
ware Architecture (WICSA1), San Antonio, TX, Feb. 1999.

[14] H. Muccini, P. Inverardi, and P. Pelliccione. DUALLY:

Putting in Synergy UML 2.0 and ADLs. In Proceedings of
the 5th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’05), pages 251–252, LAquila, Italy, Nov. 2005.

[15] S. Myagmar, A. Lee, and W. Yurcik. Threat Modeling as a

Basis for Security Requirements. In Proceedings of the Sym-
posium on Requirements Engineering for Information Secu-
rity (SREIS’05), Paris, France, Aug. 2005.

[16] E. A. Oladimeji and L. Chung. Representing Security Goals,

Policies and Objects. In Proc. of the 5th IEEE/ACIS Inter-
national Conference on Computer and Information Science
(ICIS’06, pages 160–167, Honolulu, Hawaii, July 2006.

[17] J. J. Pauli and D. Xu. Misuse Case-Based Design and Analy-

sis of Secure Software Architecture. In Proceedings of the Int.
Conference on Information Technology: Coding and Comput-
ing (ITCC’05). IEEE CS Press, April 2005.

[18] J. Rushby. Security Requirements Specifications: How and

What. In Proc. of the IEEE Symposium on Requirements Eng.
for Information Security (SREIS), Indianapolis, March 2001.

540

An Intelligent Agent of Automatically Notify Services

Shuo-Yan Hsu, William C. Chu
TungHai University, Taiwan

E-mail: mohito@itlab.csie.thu.edu.tw, cchu@thu.edu.tw

Abstract

A lifestyle website is an electronic commerce website
of providing daily necessities and services. But nowadays,
most of them are lack of automatically notifying services
and personalized learning mechanism. Therefore, users
have to login the website and search suitable services in a
large database. This is really a time-wasted and
inefficient work.

This paper proposed an extensible structure of the
intelligent agent for the lifestyle website. We integrate
three techniques to build this structure: (1) Data Cube
structure, (2) Bit-Mapping technique, and (3) FP-Tree
algorithm. With these techniques, the intelligent agent
will not only analyze the user’s shopping habits, but
automatically notify users of suitable services before the
habits happen. With this agent, the lifestyle website can
mine more potential customers and let the user feel more
convenient.

Keywords: E-Commerce, Partial Periodic Pattern,
Intelligent Agent, Push Services

1. Introduction

A lifestyle website is an electronic commerce website
providing daily necessities and services. Nowadays, most
of the famous lifestyle websites in Taiwan are lack of the
“Push” mechanism. Therefore, the user must login the
website, and search suitable services in such a large
system. This is really a time-wasted and inefficient work.

What is the “Push” mechanism? That is, automatically
provide the “right service” to the “right customer” in
“right time.” Therefore, how to collect user’s shopping
habits and analyze it correctly and efficiently are the key
points to realize it.

This paper proposed an intelligent agent for the
lifestyle website. The agent will record the user habits,
and automatically notify users of suitable services before
the habits happen. For example, Laura has lunch in the
restaurant near her home at about 12:10 every noon. After
the agent records this habit, it will automatically login the
lifestyle website and collect the suitable services for
Laura before this habit happens. In order to realize it, the
agent must retrieve the user’s basic shopping attributes

(including shopping time, location, and category) and
analyze these attributes in a correct way.

Personal agents are computer programs that can learn
users’ interests, preferences, and habits and give them
proactive, personalized assistance with a computer
application [1]. In other words, an agent must have the
ability to retrieve basic shopping attributes and translate
them to shopping habits in user’s shopping transaction list.
The shopping habits we called in this paper, is a kind of
Full Periodic Patterns and Partial Periodic Patterns.
Both of two patterns belong to Time-Series databases of
data mining.

There are a lot of researches about data mining in
Time-Series databases [6][7][8][9][10]. Among them, an
interesting research [13] was similar to us. The author
developed an Apriori-like algorithm to mine imperfect
partial periodic pattern. But the Apriori pruning in mining
partial periodicity may not be as effective as in mining
association rules [11]. We use a more effective approach,
FP-Tree [4], to improve the speed of mining. Furthermore,
we also use FP-Tree to mine the relations between
shopping behaviors to improve the accuracy of predicting
habits.

The remaining of the paper is organized as follows. In
section 2, we introduce the structure of our system. In
section 3, we list two kinds of habits and analyze them in
section 4 and 5 respectively. In section 6, we have a
discussion for our ideas. Finally, we conclude our study
and introduce the future works in section 7.

2. Structure of the System

Figure 1 shows the structure of the system we
proposed. There are two ways to provide services for the
users. The first way is that the agent receives the users’
request “passively”, and searches the suitable services
from the service profile to notify him. The second way is
that when the agent learns the user’s habits, it will
“actively” notify the user of suitable services before the
habits happen. This paper was focus on the personalized
learning mechanism and we will not specify other
functions in detail. We will discuss them in our future
writings.

541

Figure 1: The structure of the system.

The intelligent agent will divide a day into 24
segments (hours). The agent will automatically notify
users of suitable services before the old segment pass.
Services can be easily pushed to the right users through
the agent. In order to realize the “push” ability, the agent
must have two mechanisms as follows:

Automatic notification mechanism
Most of the lifestyle websites are lack of the

automatic notification mechanism, so the services
were in a passive situation to wait for customers
finding. In our system, the agent will use RSS2.0
(Really Simple Syndication 2.0) [12] to notify users.

There are three notification channels. They are
“Advertisement”, “User subscribed”, and
“Personalized” channels. The channel of
“Advertisement” and “User subscribed” are not the
key points in this paper, so we will not discuss them
here. The agent will use personalized learning
mechanism to notify users of suitable services
through the “Personalized” channel.

Personalized learning mechanism
The shopping habits we proposed, including

Vertical Habits (VH) and Horizontal Habits (HH).
Vertical habits are the periodic shopping habits and
horizontal habits are the relations between shopping
behaviors. For example, Laura has lunch at 12:10
every Monday (VH), and she likes to buy drinks
after lunch except Monday (HH).

After integrating vertical habits and horizontal
habits, the agent will notify Laura of drinks’
services after she finished lunch every Monday.
The purpose of this approach is to reduce the
deviation when the user had a temporary trip and
improve the accuracy of predicting habits.

In order to realize this mechanism, we integrated
three techniques to build it: (1) Data Cube structure,
[5][13] (2) Bit-Mapping technique, and (3) FP-Tree

algorithm. It shows that data cube structure
provides an efficient and effective structure for on-
line analytical processing (OLAP) and on-line
analytical mining [5]. As to FP-Tree algorithm, it
mines frequent patterns without candidate
generation. It is also more effective than Apriori
algorithm [4].

We retrieve user’s vertical habits based on data
cube structure, and use FP-tree to retrieve
horizontal habits.

3. Vertical Habits (VH) and Horizontal
Habits (HH)

Vertical habits are the periodic shopping habits. We
denote VH = (Day, Bi). Bi is the number of shopping
Behaviors. “Day” is the day when the shopping habits
happened, where Day = {1, 2, …, 7}.

Horizontal habits are the relations between shopping
behaviors. We denoted HH = (Bi, {Bj}), where Bj is a set
of shopping behaviors, i j, i > 0, j 0 (j = 0 means that
there are not any related behaviors with Bi)

After integrating horizontal habits and vertical habits,
we can call it Cyclic Pattern, CP=(Day, {BH} {HH}).
The cyclic patterns are also the shopping habits we called
in this paper.

4. Mining Vertical Habits – Using Data
Cube-based Structure

In this section, we discuss how the agent mining
vertical habits with data cube-based structure after it
record basic shopping attributes (location, category and
time).

We construct two data cubes, template cube and
mining cube. Template cube is used to record users’ basic
attributes and mining cube is used to mine vertical habits.

4.1. Template Cube

Template cube is a 4-D data cube. It records the basic
shopping attributes, including shopping location,
category of services, shopping segments, and shopping
day. The concept hierarchies for these attributes are as
follows:

Shopping location: shopping district city
Category of services: food, clothes, live, traffic,
education, entertainment, and the others.
Shopping segments: 24 hours
Shopping day: day week month year.

The number of the cell represents the number of
Behaviors (Bi), where Bi = (Location, Service, segment,

542

Day), i = 1, 2, 3, …, n, n > 0, and n is the total number of
the cells.

1 2 3 23 24

Time segments (Hour)

FoodClothes
Other

Serv
ice

L
oc

at
io

n

Taipei

Taoyuan

Taichung

Kaohsiung

Hsinchu

1 2 3 23 24

25 26 27 47 48

49 50 51 71 72

145 146 147 167 168

121 122 123 143 144

The number of a behavior

Day 15

Figure 2: Template Cube

Figure 2 is the template cube based on shopping
environment in Taiwan. For example, B145 = (Hsinchu,
Food, 1, 15). When the agent record B145, it shows that
the user have a night snack at 1:00 in Hsinchu in Day 15.
After retrieving the shopping information, we can mine
vertical habits using mining cube.

4.2. Mining Cube [13]

Mining cube, as Figure 3, is used to mine vertical
habits. We fold time dimension into two parts: time-index
dimension and period-index dimension. Notice that each
cell needs only a bit (existent, nonexistent). Each slice of
the mining cube can be implemented as a bit-array, except
the last slice, period-index = All, which contains the
number of nonzero bits of all weeks slices and each cell is
an integer.

Day1 Day2 Day3 Day6 Day7
Time-index (period = week)

1
2

All

Perio
d-index1

2

3

n-1

n 1

1

Times

1

1

Figure 3: Mining Cube.

Through mining cube, we can easily record the
shopping behaviors. But in the real world, a habit will not
be happened with 100%. So we must introduce the
concept of confidence to tolerate misses. We denote
confidence as , total number of period-index as , and
minimum support as × . The vertical habits must no
less than minimum support.

For example, as Figure 4, if we assume = 50% and
= 4 (weeks), we can figure out that minimum support = 2
(50% × 4). Now, only (Day1, Bn), (Day3, Bn-1) and (Day6,
B2) can pass the threshold, and they are the vertical habits.

Day1 Day2 Day3 Day6 Day7

Time-index(period = week)

Al
1

4

Perio
d-index

T
he

 n
um

be
r

of
 a

 b
eh

av
io

r

1

2

3

n-1

n 2

4

Times

1

31

1

Figure 4: Mining cube where period-index = All

5. Mining Horizontal Habits – Using FP-Tree
Algorithm

After analyzing vertical habits, we almost know the
user’s habits. But if user has a temporary trip, it will
induce the deviation. In order to solve this problem, we
use FP-Tree to retrieve horizontal habits and improve the
accuracy of predication.

We made a table for example, as Table 1.

Table 1: An example of vertical habits
Time Period The number of a Behavior
Day1 B1, B2, B5

Day2 B2, B4

Day3 B2, B3

Day4 B1, B2, B4

Day5 B1, B3, B5

Day6 B1, B2, B6

Day7 B1, B2, B3, B5

We assumed that the minimum support is 3. First, we
scan Table 1 and derive Table 2 after deleting the
infrequent behaviors (less than 3). Through Table 2, we

543

derive a list of frequent items, {B2: 6, B1: 5, B3: 3, B5: 3},
and translate it to FP-Tree, as Figure 5.

Table 2: The frequent behaviors of vertical habits
Time Period The number of a Behavior
Day1 B2, B1, B5

Day2 B2,
Day3 B2, B3

Day4 B2, B1

Day5 B1, B3, B5

Day6 B2, B1

Day7 B2, B1, B3, B5

Figure 5: The FP-Tree in Table 2

The conditional pattern bases and the conditional FP-
Trees generated are summarized in Table 3. Through
Table 3, we found the horizontal habits, HH = (B1, B2).
Notice that through template cube, we can know which
behaviors happened earlier.

Table 3: Mining of all-patterns by creating conditional
(sub) - pattern bases

Behavior
ID

Conditional
Pattern Based

Conditiona
l FP-Tree

Sequenc
e Pattern

B5
{(B2 B1:1),

(B2 B1 B3:1)} Null null

B3
{(B2 B1:1),

(B2:1), (B1:1)} Null null

B1 {(B2:4)} (B2:4) B2 B1:4

After integrating vertical habits and horizontal habits,
we modify the habits of “Day 5”, translate to cyclic
patterns, as Table 4, and it is the final habits we proposed.

Finally, after we retrieve the shopping behaviors (CP),
we will automatically notify the user of suitable services.
How to automatically notify a user? Because we know the
user’ shopping behavior hour and the day, the server will
automatically generate the RSS Seed in the personalized
channel.

Figure 6 shows a template structure of a RSS 2.0 seed.
From the specification of RSS2.0, we can know the
seed’s information [12]. We can know what kind of
services the seed belong by the category element and

what time it broadcast by the pubDate element. With
these two elements, we can easily search the seed of right
category service and right time satisfying the user’s habits.

Table 4: Cyclic Patterns
Cyclic Pattern(CP)
Day1, B1, B2, B5

Day2, B2, B4

Day3, B2, B3

Day4, B1, B2, B4

Day5, B1, B2, B3, B5

Day6, B1, B2, B6

Day7, B1, B2, B3, B5

Figure 6: A template structure of a RSS2.0 seed

Take Figure 2 for an example. After we have analyzed
the user’s shopping behaviors, we found that the user will
need the food information in Taipei about 1:00 am in
Taipei. The server will automatically search the RSS 2.0
seed generated from the store, and rebroadcast in
personalized channel before 1:00. So, the agent combined
RSS reader function will receive the seed, and notify the
user of food information in Taipei before 1:00 am in
Day1.

With this mechanism, users will not need to waste time
searching for services in large databases, and we can let
stores have more opportunities to publish their services.

6. Discussion

After integrating template cube and mining cube, we
successfully retrieve the vertical habits. But, why we use
the data cube-based structure? It is because that it has
high extension. For example, we can change 24 segments
to 48 or 12, and so do the location, category, and day.
Moreover, not only the high extension, but it provides an

544

efficient and effective structure for on-line analytical
processing (OLAP) and on-line analytical mining.

Beside data cubed-based approach, we also use FP-
Tree to find the horizontal behaviors. But we must remind
that we use FP-Tree just because it is an efficient
approach. If there is a new approach faster than it, we can
adapt the new one to improve the prediction’s efficiency.
It is the most variable advantage of our high extensible
structure.

7. Conclusion and Future Work

We proposed an intelligent agent for the lifestyle
website. The intelligent agent will not only analyze the
user’s shopping habits, but automatically notify users of
suitable services before the habits happen.

We also construct a personalized learning mechanism
with high extension. In other words, we can easily modify
and adapt to it.

Figure 7: The structure of whole system in the future

As Figure 7, we hope to integrate pervasive
computing to retrieve users’ behaviors and construct a
preference elicitation rule to elicit users’ shopping habits.

8. References

[1] S. J. Soltysiak and I. B. Crabtree, “Automatic
Learning of User Profiles — Towards the Personalisation
of Agent Services,” BT Technology Journal, Vol. 16, No.
3, pp.110-117, July 1998.

[2] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” Proceedings of the 20th
International Conference on Very Large Data Bases, pp.
487–499, September 1994.

[3] R. Agrawal and R. Srikant, “Mining sequential
patterns,” Proceedings of the 11th International
Conference on Data Engineering, pp. 3–14, March 1995.

[4] J Han, J Pei, and Y Yin, “Mining Frequent Patterns
without Candidate Generation,” Proceedings of the 2000
ACM SIGMOD International Conference on Management
of data, pp. 1-12, 2000.

[5] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, 1998.

[6] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient
Similarity Search in Sequence Databases,” Proceedings
of the 4th International Conference on Foundations of
Data Organization and Algorithms, pp. 69-84,
October1993.

[7] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos,
“Fast Subsequence Matching in Time-Series Databases,”
ACM SIGMOD Record, Vol. 23, No. 2, pp. 419-429, June
1994.

[8] K. Chan and A. Fu, “Efficient Time-Series Matching
by Wavelets,” Proceeding of the 15th International
Conference on Data Engineering, pp.126-133, March
1999.

[9] H. Mannila, H. Toivonen, and A. Verkamo,
“Discovering Frequent Episodes in Sequences,”
Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, pp. 210-215,
1995.

[10]D. Rafiei, “On Similarity-Based Queries for Time-
Series Data,” Proceeding of 15th International
Conference on Data Engineering, 1999.

[11] J. Han, G. Dong, and Y. Yin, “Efficient mining of
partial periodic patterns in time series database,”
Proceeding of 15th International Conference on Data
Engineering, Sydney, Australia, Mar. 1999.

[12]Hammond, T, Hannay, and B. Lund, “The Role of
RSS in Science Publishing,” D-Lib Magazine, Vol. 10,
No. 12, December 2004.

[13] J. Han, W. Gong, and Y. Yin, “Mining segment-wise
periodic patterns in time-related databases,” Proceeding
of 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’98), pp. 43-52,
August 1998.

545

A Proposal for a Decentralized Multi-Agent Architecture for Virtual Enterprises

Andreas Grünert, Sven Kaffille, and Guido Wirtz
Distributed and Mobile Systems Group

University of Bamberg
Feldkirchenstraße 21, 96052 Bamberg, Germany

andreas.gruenert@atkearney.com,
{sven.kaffille|guido.wirtz}@wiai.uni-bamberg.de

Abstract

Today, enterprises need more flexibility than ever before,
but classic companies often cannot meet this requirement.
Therefore, a more flexible kind of enterprise evolved: The
Virtual Enterprise. One reason why Virtual Enterprises
are that flexible is their extensive use of IT. Yet, given the
temporary character of Virtual Enterprises, existing software
concepts are often not applicable. Multi-Agent Systems
(MAS) may help to solve this problem. Actually, MAS
based solutions have already been developed for diverse
problems (mainly) of the Virtual Enterprise performance
layer. However, a concept that allows cooperating agents
to support the management of the complete life-cycle of a
Virtual Enterprise, is still missing.
This paper attends to that gap. It defines an agent supported
Virtual Enterprise life-cycle and proposes an abstract
architecture for organizing a virtual enterprise based on a
structured, multi-layered organization of agents. In doing
so, the infra-structure for the next steps, i.e. elaborating the
detailed ontologies, is provided.

Keywords: virtual enterprise, agents, architecture

1. Introduction

Today’s enterprises are faced with a quickly changing global

environment. They have to be highly flexible and adaptable

to survive in a business world marked by trends like global-

ization, increasing customer orientation and product variety,

and demand for shorter product life-cycles as well as shorter

time-to-market. On the other hand surging product, orga-

nizational and environmental complexity hinder fexible and

adaptive behavior as e.g. finding skilled employees or reduc-

ing the size of an enterprise quickly (cf. [21]). For these

reasons so called Virtual Enterprises (VE) evolved, which

are -for short- a temporary cooperation of independent en-

terprises with specific capablities and resources. What these

enterprises require most, are tools that support their quick

formation and dissolution, and ensure that the different en-

terprises’ heterogeneous business and information technol-

ogy is integrated in an acceptable way for the time the VE

exists. While the business world has to becomemore flexible

and adaptable the demand for flexible and adaptable software

architectures increased as well. This has been addressed in

information and computer science with help of new concepts

and technologies. One of these is the concept of Multi-Agent

Systems (MAS), in which autonomous and heterogeneous

entities -the agents- interact. For MAS, theories for flexible

cooperation (e.g. [20, 22]) as well as technologies and stan-

dards [5] have been developed. The goal of our work is to

develop a MAS-based infrastructure to support VEs during

their whole life cycle. For this purpose we propose an ab-

stract architecture for VEs developed from the requirements

the life cycle of a VE imposes on such an architecture.

This paper first develops the conceptual and technological

foundations of VEs including a concise model of their life

cycle as well as the corresponding structures and processes

in MAS in section 2. In section 3, the abstract architecture

for VEs is presented. Afterwards, our approach is evaluated

against existing approaches in section 4. The paper con-

cludes with some remarks on future work.

2. Conceptual and Technological Foundations

The foundations of our work stem from three main fields:

economics, MAS theory, and MAS technology. Therefore

this section describes the basic concepts from these fields,

which have been incorporated into our work.

2.1. Virtual Enterprises

There is no uniform definition for VEs and there is no

uniform approach to define them. Davidow and Malone

define Virtual Enterprises via their organizational structure

546

as “a nearly contourless formation with permeable and
permanently changing dividing lines between enterprise,
suppliers and customers” (Translation from [2, p. 15]).

Others define Virtual Enterprises via the properties and

preconditions of the emerging cooperation (e.g. [6]). Yet,

looking at the individual definitions, as diverse as they

may be, there are several aspects many authors agree on.

Therefore, this paper works with an “assembled” definition

of Virtual Enterprises with attributes and characteristics of

VEs as follows:

• Cooperation network of legally and economically inde-
pendent enterprises

• Federation based on a shared business understanding
• Motivated by customer needs and market opportunities
• Focus on core competencies for each partner
• One face to the customer
• Renunciation of an extensive legal framework
• Aimed at temporary collaboration
• Ad hoc formation
• No institutionalized central management functions
• Cooperation in horizontal and vertical structure
• Enabled by information/communication technology

As a VE is a temporary organization to exploit market oppor-

tunities, the VE vanishes when the market opportunity has

been fully exploited or does not exist anymore. Therefore a

VE has a life cycle like the products and services it produces.

In literature [6, 13, 14], VEs with three, four and five phases

have been proposed. Our work is based on a life cycle with

five phases, which are related in an unambiguous conditional

and chronological way and are executed sequentially with

each phase establishing the preconditions for its successor.

These phases are:

1. Identification: In this phase a market opportunity is
identified by one company (or many companies in par-

allel). This company specifies a value chain and the ac-

tivities that have to be performed. Then it performs a

cost-benefit analysis and a competency analysis. After-

wards it decides whether the market opportunity should

be exploited and a VE should be formed.
2. Formation: At the beginnnig of the formation phase re-
quirements profiles are derived from the competency

analysis. Based on this profiles potential partners are

selected. Between the best fitting ones and the initiating

company the formation of a VE is then negotiated.
3. Design: After a suitable group of enterprises has been
identified and the individual companies have agreed to

form a VE, a common strategy has to be agreed on.

Then performance measures, the basic legal and finan-

cial framework, and operating structure and infrastruc-

ture are established and created. These tasks comprise

e.g. protection of intellectual property of companies as

well as assignment of value chain activities and roles to

the individual companies. A plan for the dissolution has

to be elaborated to determine the preconditions for the

VE’s dissolution and to prevent from legal or technolog-

ical issues afterwards. After an agreement is reached the

single enterprises commit to the VE and start operation.

4. Operation: During this phase the VE performs business
according to the plans and the framework elaborated in

the preceding phases. In this phase the VE operates sim-

ilar to a single traditional enterprise but the coordina-

tion of the individual enterprises is more complex, as it

crosses the boundaries of single enterprises. Therefore

the VE has to emphasize on flexibility and adaptabil-

ity in its coordination mechanisms. Another important

issue is to emphasize on customer needs and to provide

one face to the customer to successfully exploit the mar-

ket opportunity.

5. Dissolution: When the preconditions agreed on for the
dissolution of the VE are fulfilled it dissolves. In this

phase shared know-how and data has to be distributed

among the partners. Legal issues as e.g. how future

warranty claims of customers are handled must be ad-

dressed. These issues should have been sorted out in the

dissolution plan developed during Design.

This process has not necessarily to be performed in a simple

sequence as the partners may decide to go back to an earlier

phase. Thus, the VE life cycle may become iterative.

2.2. Cooperation and MAS

A Multi-Agent System (MAS) is according to [11] ,,a

loosely coupled network of problem solvers that work

together to solve problems that are beyond the individual

capabilities or knowledge of each problem solver”. A MAS

can be constructed (i) with help of a top-down/divide-

and-conquer approach or by (ii) a bottom-up approach

by composing individual agents or groups of agents with

different capabilities and knowledge. For (i) all problem

solving and communication strategies become a hard-wired

integral part of a MAS. Whereas approach (ii) requires

coordination and negotiation between agents to achieve a

solution for their problem(s). A MAS can be described by

the following characteristics [19]:

• Each agent has limited capabilities and knowledge to
solve problem(s) for itself

• There exists no global control.
• Data storage is decentral.
• Computation is asynchronous.
• The configuration of a MAS is heterogeneous or homo-
geneous regarding the agents.

• A MAS can be closed or open.
• A MAS is expected to operate in a highly dynamic en-
vironment.

547

2.2.1. Teamwork in MAS

The limited capabilities and knowledge of agents to solve

problems on their own makes cooperation necessary, which

can be structured in MAS with help of the Cooperative

Problem Solving (CPS) process ([22], p. 576). CPS is

divided into four phases: recognition, team formation, plan

formation, and team action.

1. Recognition: At least one agent must recognize that
there is the need or potential for cooperation. Further-

more a group of agents, that can cooperatemust be iden-

tified.

2. Team Formation: In this phase the agents try to let all
other agents know that there is a cooperation possible. If

this phase is successful a potential team has been found.

3. Plan Formation: Now the agents try to find a common
plan to achieve their goal(s). If they find and agree upon

a common plan they engage into a joint commitment.

They promise each other to carry out their plan. If there

is no agreement on a common plan the cooperation fails.

4. Team Action: In this last phase the agents carry out the
plan agreed upon before.

As CPS is an iterative process, this phases have not to be

processed sequentially. The benefit of agent cooperation ac-

cording to CPS is the added flexibility that results from the

definition of plans and assignment of tasks/roles. The joint

effort of the team is monitored in a decentral manner by all

agents. To facilitate this a shared mental state and joint com-

mitments are established to flexibly react to anticipated and

unanticipated plan failures [20]. The commitments can be

parameterized by means of conventions [22], that specifiy

what actions must be performed when anticipated and unan-

ticipated plan failures occur.

2.2.2. The FIPA Standard

In order to facilitate the interaction between heterogeneous

agents the Foundation of Intelligent Physical Agents (FIPA)1

has developed a set of standards. These standards are mainly

concerned with agent management and communication and

define an abstract architecture for MAS platforms [5]. The

abstract architecture requires a MAS platform to provide yel-

low pages (directory facilitator), white pages (agent man-

agement system) and communication services. Agent com-

munication and these services are standardized in a plat-

form independent manner. Agents communicate with help

of messages formulated in an agent communication language

(ACL), which has a 3-layer architecture. On the first layer,

the content language resides, which defines the syntax of

messages. The second layer defines the semantics of the

terms used on the first layer with the help of an ontology.

1http://www.fipa.org/

The third layer defines the interpretation of messages utiliz-

ing speech acts. The standard mainly defines standard inter-

action protocols based on speech acts, ontologies and con-

tent languages that must be implemented by the directory fa-

cilitator and agent management system. The basic content

language, which all FIPA-compliant agents must support is

FIPA-SL.

3. The Abstract Architecture

In this paper we propose an abstract architecture that has

been designed to support the management of a virtual

enterprise. This management is completely distributed

between the individual enterprises, which must coordinate

and cooperate to create a virtual management layer. The

requirements which have been imposed on the abstract

architecture are:

• The life-cycle of a VE corresponds to a CPS process,
but just mapping them one to one is too simplisitic, as an

enterprise consists of many multi-agent organizations

(MAO).
• An enterprise has many interfaces and connections to
other enterprises in the VE and has to perform many

tasks. Therefore an enterprise cannot be represented by

just one agent, as this view is to coarse grained.
• Not all tasks relevant for VEs can be executed by ar-
tificial agents but humans as well as robots have to be

integrated.
• A problem is that a VE and its corresponding MAS

are created bottom-up rather than top-down. Therefore

many characteristics of a VE are specified at runtime

(either by software agents or humans) as e.g. the plans

of VE operation. For this reason the abstract architec-

ture has to fix the structure and behavior for a MAS that

facilitates negotiation and coordination between VEs.
• Standard coordination tasks should be performed auto-
matically by software agents.

• The abstract architecture should not impose too narrow
constraints on the internal structure and behavior of VEs

and their MASs.

Our architecture is divided into two parts: The VE Man-

agement MAS (VEMMAS) and the VE Performance MAS

(VEPMAS). The former is responsible for the management

tasks of the VE and the latter for the production of services

and products provided by a VE.

The main components of a MAS for Virtual Enterprise life-

cycle support on the VEMMAS layer are the Partner Selec-

tion MAO, the Production Planning MAO, and the Data Dis-

tribution MAO. As a Partner Selection MAO only encom-

passes agents of one enterprise, each partner enterprise may

actually posses its own. Under certain circumstances these

MAOs may cooperate and form a Virtual Enterprise span-

ning Partner Selection MAO. The two remaining MAOs are

548

Figure 1. Proposed Architecture of VE*MAS

formed by agents of different enterprises. In the following,

the Production Planning MAO, the Data Distribution MAO

and the Virtual Enterprise spanning Partner Selection MAO

will be called first-level MAOs.

Agents of individual partner enterprises are distinguished

into second-level MAOs based on the first-level MAOs (e.g.

the Production Planning MAO) they are part of. That means,

for example, that agents of an enterprise that are part of

the Production Planning MAO form a different second-level

MAO than those agents of the same enterprise that are part of

the Data Distribution MAO. Interactions between agents oc-

cur only along two dimensions, within individual enterprises

and within the individual first-level MAOs. Thus, the num-

ber of interfaces between different enterprises and between

different first-level MAOs is reduced.

The second-level MAOs encompass at least two types of

agents. One Interface Agent (IFA) encapsulates a MAO

from the point of view of a MAO of another enterprise.

Second-level MAOs of different enterprises that form a first-

level MAO together interact via these Interface Agents. Ser-

vice Provider Agents (SPA) encapsulate a second-levelMAO

(and simultaneously the first-level MAO the second-level

MAO is part of) from the point of view of other agents of

the same enterprise. Via the SPAs it is possible for other

agents to request the (re-)execution of certain roles.

Summarized, second-level MAOs of different enterprises

that form a first-level MAO interact via IFAs, whereas agents

of one enterprise that are part of different MAOs interact

via SPAs. Agents that are not part of one of the mentioned

MAOs can access these via the corresponding SPAs of their

own enterprise. Thus, the demand that interactions may only

happen along two dimensions is met.

Within these first-level MAOs CPS processes are carried out

across enterprise boundaries. Within these processes the

tasks (identified on a high level) described in section 2 can

be assigned to different enterprises (repectively the second-

level MAOs). Still missing are the agents that perform the

tasks of a second-level MAO. Of what type these agents are,

how many of them exist within the individual MAO, how

they interact, and how they complete the tasks is of no in-

terest for the abstract architecture but most likely they will

engage in a CPS process, as well.

The encapsulation of a second-level MAO by its IFA and

SPAs is particularly useful with regard to the Partner Selec-

tion MAOs. If an enterprise needs to request the selection of

new potential partners it is completely sufficient if the enter-

prise has a SPA that receives the request from agents within

the enterprise, and an IFA that can “execute” that request by

delegating it to the Partner Selection MAO of another enter-

prise. There is no need for the enterprise to have a complete

Partner Selection MAO established itself.

Each partner enterprise is responsible for its own agents and

therefore needs at least one agent platform as described by

the FIPA standard. An enterprise may also provide different

549

platforms for agents that belong to different MAOs but this

is of no concern for the abstract architecture. The same is

true for how agents of an enterprise know what SPAs to use

and how to contact them. This could be done via the direc-

tory service of an agent platform, but as already said, this is

of no concern for the abstract architecture because each en-

terprise can use an individual solution as long as its agents

know what SPAs to use and how to contact them.

In contrast to this, how IFAs of different enterprises can find

each other so that the first-level MAOs can be formed is of

great interest for the abstract architecture. The IFAs of an

enterprise are registered at the local agent platform so that

IFAs of other enterprises could ask that platform where they

can find a certain IFA. Nonetheless, the abstract architecture

proposes to use specialized agents to provide this informa-

tion. All enterprises must have a so called Interconnection

Agent (ICA) whose contact information is exchanged when

the Virtual Enterprise is formed. These agents hold and ex-

change the contact information of the IFAs of an enterprise

and of which first-level MAOs these are a part of.

Introducing ICAs is advantageous for two reasons. First, an

enterprise may operate several agent platforms. When look-

ing for a certain IFA of an enterprise, several platformswould

have to be asked requiring that all these platforms are known.

As each enterprise has exactly one ICA, only the contact in-

formation of one agent has to be exchanged when the Vir-

tual Enterprise is formed. Second, using ICAs allows that

changes concerning an IFA can be distributed actively to the

IFAs of other enterprises. An agent platform could distribute

those changes only passively. Together, the ICAs of all part-

ner enterprises form a first-level MAO as well.

In order to implement this abstract architecture first of all,

the components that are specified as mandatory by the FIPA

standard have to be implemented. This includes for example

an agent platform, an agent directory service and a message

transport service. Next, second-level MAOs have to be im-

plemented that will become part of the Production Planning

MAO and the Data Distribution MAO of the Virtual Enter-

prise. The constituent parts of a second-level MAO are one

IFA, one to several SPAs and the agents that actually perform

the tasks of the MAO. The IFA and the SPAs have to be im-

plemented. The other agents have to be present but might as

well be human agents with a suitable interface to the MAO.

In addition, a second-level Partner Selection MAO has to be

implemented. If the enterprise does not intend to function as

an initiating enterprise, it is sufficient if this MAO encom-

passes one IFA and one to several SPAs. Agents that actually

perform a partner selection are only necessary if the enter-

prise intends to initiate the formation of a Virtual Enterprise.

Even then, these agents have not necessarily to be imple-

mented because they could be human agents as well.

Finally, every enterprise needs an implemented ICA.

4. Related Work

The work presented here, proposes to use software agents in

the context of virtual enterprises for partner selection, pro-

duction planning and data distribution. Zheng and Zhang

[23] propose an artificial marketplace, a negotiation proto-

col, and a bid selection algorithm that allow agents to form

a virtual organization. Petersen and Divitini [15], e.g., pro-

pose agent-based mechanisms to form Virtual Enterprises,

and Petersen and Matskin [16] developed agent interaction

protocols for partner selection. Besides the seminal work

of Jennings and Wooldridge on how to control Cooperative

Problem Solving in industrialMulti-Agent Systems [22], lots

of approaches use agents for dynamic and distributed process

management [10, 17]. In terms of information sharing, Dutta

et al. [4] have developed cooperative information sharing

strategies to support distributed resource allocation, Decker

et al. [3] have published considerations about how to design

the behavior of information agents, and [1] propose a feder-

ated information management for cooperative virtual organi-

zations.

The amount of related work justifies the basic decision to use

agent technology for VEs but also demonstrates the need for

an architecture in order to structure these efforts. Proposals

for complete agent based architectures dedicated to virtual

enterprises, however, are rarely to be found.

Although a well-developed model to describe team coopera-

tion involving software agents as well as robots and humans

using a proxy-architecture, the Machinetta framework2 is not

specifically taylored towards virtual enterprises [18]. In or-

der to implement an architecture as presented in section 3,

many adjustments on the intra- as well as inter-enterprise

level are required. Additionally, the system is not FIPA-

compliant and it cannot be assumed that each enterprise par-

ticipating in such an architecture uses Machinetta.

The CONOISE (CONOISE-G) project is closely related to

our approach in its efforts to employ agent-based models and

techniques to automatically form and operate virtual organi-

zations in general or in the specific context of grid comput-

ing, respectievely [12]. The system proposes a number of

agents for, e.g., service providers, yellow pages, quality and

clearing as well as quality of service, policy and reputation

monitoring. The CONOISE-G architecture, however, is in-

herently different from the approach presented here by using

a single managing agent. Thus, the system only supports a

centralized broker architecture. The idea of our abstract ar-

chitecture is to distribute the load of managing the VE among

the participating enterprises, which first try to solve problems

occuring during the life-cylce locally and if this is not possi-

ble, coordinate with the other enterprises according to their

commitments and conventions.

2http://teamcore.usc.edu/doc/Machinetta/

550

For a more rigorous comparison of these approacheswith our

architecture, please refer to [7].

5. Conclusion and Future Work

In this paper a first step towards a uniform and flexible de-

centralized MAS architecture for supporting VEs and its in-

ternal structuring mechanisms has been proposed. The de-

tails about the single interaction protocols that are neces-

sary to assign roles and negotiate commitments and conven-

tions have been ommitted due to space limitations but can

be found in [7]. Our idea regarding protocols is to propose

meta-protocols to select interaction protocols e.g. for plan-

ning and negotiation of commitments and conventions. Some

additional developments towards this are underway, e.g., in

[9] a meta-protocol for service level agreements has been de-

veloped.

Closely related to the development of interaction protocols

is the development of ontologies that define the important

concepts for VEs in much more detail than the overall struc-

ture presented here. Required ontologies have to comprise

ontologies for products and services as well as actions, com-

mitments, and conventions of agents. One of the next steps

will be the evaluation of existing ontologies whether they fit

our requirements. Furthermore, the detailed structure of the

performance layer, i.e., the VEPMAS and its interfaces to

the management layer VEMMAS have to be investigated in

more detail. Moreover, the abstract architecture will be ex-

tended by integrating a reputation management scheme as

proposed in [8] much like the one of CONOISE [12] but tay-

lored towards our decentralized approach.

References

[1] H. Afsarmanesh and L. M. Camarinha-Matos. Federated in-

formation management for cooperative virtual organizations.

In Proceedings of DEXA97 - International Conference On
Data Bases and Expert Systems Applications, 1997.

[2] W. H. Davidow and M. S. Malone. Das virtuelle Un-
ternehmen - Der Kunde als Co-Produzent. Campus Verlag,
Frankfurt/Main, New York, 1993.

[3] K. Decker, A. Pannu, K. P. Sycara, and M. Williamson. De-

signing behaviors for information agents. Proceedings of the
First International Conference on Autonomous Agents, 1997.

[4] P. S. Dutta, N. R. Jennings, and L. Moreau. Adaptive dis-

tributed resource allocation and diagnostics using cooperative

information sharing strategies. In Proceedings of 5th Inter-
national Conference on Autonomous Agents and Multi-Agent
Systems, 2006.

[5] FIPA TC Architecture. Fipa abstract architecture specifica-

tion. Technical report, FIPA - Foundation for Intelligent and

Physical Agents, 2002.

[6] H. T. Goranson. The agile virtual enterprise: cases, metrics,
tools. Quorum Books, Westport, 1999.

[7] A. Grünert. Life-cycle assistance capabilities of cooperating

Software Agents for Virtual Enterprises - evaluation and con-

cept development for selected phases. Technical Report 71,

Bamberg University, 2007.
[8] A. Grünert, S. Hudert, S. König, S. Kaffille, and G.Wirtz. De-

centralized reputation management for cooperating software

agents in open multi-agent systems. International Transac-
tions on Systems Science and Applications, 1(4):363–368,
2006.

[9] S. Hudert, H. Ludwig, and G. Wirtz. A negotiation protocol

framework for ws-agreement. In KIVS 2007, 2007.
[10] A. K. Jain, I. V. A. Manuel, and M. P. Singh. Using agents for

process coherence in virtual enterprises. Communications of
the ACM, 42(3):62–69, 1999.

[11] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap

of agent research and development. Autonomous Agents and
Multi-Agent Systems, 1(1):7–38, 1998.

[12] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings,

M. Luck, V. D. Dang, T. D. Nguyen, V. Deora, J. Shao,

A. Gray, and N. Fiddian. Agent-based formation of virtual or-

ganisations. International Journal of Knowledge Based Sys-
tems, 17(1-2):103–111, 2004.

[13] M. Oprea. Coordination in an agent-based virtual enterprise.

Studies in Informatics and Control, 12(3):215–225, 2003.
[14] H. V. D. Parunak. Technologies for virtual enterprises. Agility

Journal, 1997.
[15] S. A. Petersen and M. Divitini. Using agents to support the

selection of virtual enterprise teams. In G. W. Paolo Giorgini,

Yves Lesprance and E. S. K. Yu, editors, Proceedings of
the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2002 at AAMAS*02),
pages 98–112, Bologna, 2002.

[16] S. A. Petersen and M. Matskin. Agent interaction pro-

tocols for the selection of partners for virtual enterprises.

In V. Marik, J. Mller, and M. Pechoucek, editors, Multi-
agent Systems and Applications III, 3rd International Cen-
tral and Eastern European Conference on Multi-Agent Sys-
tems, CEEMAS 2003, volume LNAI 2691, pages 606–615.
Springer-Verlag, June 2003.

[17] N. R. J. S. Bussmann and M. Wooldridge. Multiagent systems
for manufacturing control: A design methodology. Springer
Verlag, 2004.

[18] P. Scerri, D. Pynadath, N. Schurr, A. Farinelli, S. Gandhe, and

M. Tambe. Team oriented programming and proxy agents:

The next generation. In Proceedings of 1st International
Workshop on Programming Multiagent Systems, 2004.

[19] K. P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92,
1998.

[20] M. Tambe and W. Zhang. Towards flexible teamwork in

persistent teams: Extended report. Autonomous Agents and
Multi-Agent Systems, 3:159–183, 2000.

[21] H. B. Walter Gora. Virtuelle Organisationen im Zeitalter
von E-Business und E-Government - Einblicke und Ausblicke.
Springer Verlag, Berlin, Heidelberg, New York, 2001.

[22] M. J. Wooldridge and N. R. Jennings. The cooperative prob-

lem solving process. Journal of Logic and Computation,
9(4):563–592, 1999.

[23] Q. Zheng and X. Zhang. Automatic formation and analysis

of multi-agent virtual organization. Journal of the Brazilian
Computer Society (JCBS), 11(1):74–89, 2005.

551

Traceability for Agent-Oriented Design Models and Code
Gilberto Cysneiros

Dep. of Computer Science
City University, London
London, UK EC1V OHB

g.cysneiros@soi.city.ac.uk

Andrea Zisman
Dept. of Computer Science

City University, London
London, UK EC1V OHB

a.zisman@soi.city.ac.uk

ABSTRACT
In this paper we present a rule-based approach to

support automatic generation of traceablity relations of
design models and code specifications of agent-oriented
systems. We define six different types of traceability
relations between artefacts in Prometheus design models
and JACK code. We assume the models and code
specifications represented in XML and the rules specified
in XQuery. A prototype tool has been developed in order to
demonstrate and evaluate the work.

1. INTRODUCTION
Software traceability is considered an important activity

when developing software systems [9][22][24][28] and it
has been the focus of research for many years. Several
approaches and techniques have been proposed to support
software traceability. A survey of these approaches can be
found in [28]. Traceability can be used to assist with
evolution of software systems, reuse of parts of the system,
validation that a system meets its requirements,
understanding of the rationale for certain design decisions,
identification of common aspects of the system, and change
impact analysis of the system.

Despite its importance, existing support for traceability
is not always adequate [22]. Some approaches assume that
traceability relations between software artefacts should be
established manually [7][13][24][25]. However, manual
establishment of traceability relations is error-prone,
difficult, time consuming, expensive, complex, and limited
on expressiveness, causing traceability to be rarely
established. Other approaches have been proposed to
support semi- or fully-automatic generation of traceability
relations [1][8][10][12][17][21][26][29], alleviating some
of the above problems.

In recent years, we have been experiencing the
development of Agent-Oriented Systems (AOS), in which
software systems are composed of autonomous and flexible
computational entities. A large number of systems have
been developed by using agent-oriented paradigm. This
paradigm has demonstrated success in many application
areas, such as telecommunications, manufacturing, finance,
air traffic management, aerospace, e-commerce, customer
management, military simulation, decision support, and
games. Different architectures and methodologies for AOS
have been proposed [15].

Given the advances in the area of AOS and the
importance of such systems, in this paper we propose a
traceability approach to support the development of AOS.
More specifically, we describe a rule-based approach to
support automatic generation of traceability relations
between agent-oriented design models and agent-oriented
code. Our work concentrates on models generated when
using Prometheus methodology [18] and code specified in
JACK [30]. We have chosen Prometheus methodology as a
basis of our work due to its large use in both academia and
industrial settings and its support for the majority phases in
the software engineering development life-cycle. The
rationale for using code specified in JACK is also given by
its large use in industrial settings. Moreover, JACK
includes all components of Java programming language and
offers extensions for implementing agent behaviour aspects.
It is based on Belief, Desires and Intentions (BDI)
architecture [23], which is considered one of the most
successful architecture for developing AOS.

In our work, we assume the models in Prometheus and
the code in JACK are represented in XML in order to tackle
their heterogeneity. In addition, the rules to generate the
traceability relations are represented in XQuery [31] to
facilitate element identification in the XML documents.

The work described in this paper is part of a large
project of research to support automatic generation of
traceability relations based on rules between heterogeneous
models generated during the development of software
systems. The work here is built upon previous work to
generate traceability relations between requirements artefact
and analysis object models generated during the
development of object-oriented systems [29], between
documents created during the development of product line
systems [12], and between i* models and Prometheus
artefacts [3]. In this paper, we extend the work in [3], and
focus on automatic generation of traceability relations for
Prometheus design models and JACK code. We analyse
Prometheus models and JACK code in order to specify
traceability relations between their main elements and
implement new traceability rules to generate these relations.

The remaining of this paper is structured as follows. In
Section 2 we present an example of a Bookstore AOS with
some Prometheus models and part of JACK code. In
Section 3 we give an overview of the approach, describe the
different types of traceability relations and rules, and
illustrate the approach through some examples. In Section 4

552

we specified existing work in the area. Finally, in Section 5
we summarise our approach and suggest some future work.

2. EXAMPLE
This section describes an example of a Bookstore agent-

oriented system. This system supports the main
functionalities of selling books, validating the clients of the
system, and managing catalogues of clients and books. The
design models of the system are specified in Prometheus
[18] while the code is implemented in JACK [30]. Due to
space restriction, in this section we do not represent all the
design models and the code of the system, but part of the
models that will be used to illustrate our approach.

Prometheus methodology consists of several descriptors
and diagrams to represent the design of AOS. The
descriptors represent different types of artefacts such as
agents, percepts, actions, goals, data, roles, plans, messages,
and capabilities.

In Prometheus, (a) an agent represents an autonomous
entity in an environment; (b) a percept represents data
received by the environment; (c) an action represents how
an agent affects the environment; (d) a goal describes the
aim of an agent to be accomplished, some activities that an
agent wants to achieve, or a state that should be either
avoided or maintained once the goal is achieved; (e) a data
represents external information that an agent needs to
access or believes representing an agent's knowledge about
the environment or itself; (f) a role specifies some
functionality and groups together a set of related goals,
percepts, actions, and data; (g) a plan is a sequence of
actions that an agent can perform to achieve a goal; (h) a
message represents communication between agents; and (i)
a capability represents functionality of an agent by
encapsulating percepts, data, actions, messages, plans, and
internal capabilities.

Examples of diagrams in Prometheus are goal diagram,
role diagram, use case scenario, system overview diagram,
agent overview diagram, capability diagram, process
diagram, and protocol diagram. Figures 1 and 2 present
examples of a system overview diagram and agent overview
diagram for the Bookstore AOS, respectively.

The system overview diagram specifies how an AOS
interacts with the environment. The main elements in this
diagram are agents (represented as rectangles with an image
of an actor inside the diagram), percepts (represented as star
elements) to which the agents respond, actions performed
by the agents (represented as arrow rectangles), messages
exchanged between agents (represented as a rectangle
envelope), and external data accessed by the agents (not
shown in Figure 1).

As shown in Figure 1, the Bookstore AOS is composed
of agents Sales Assistant, Stock Manager, Credit Card
Agent, and Security Manager. The Sales Assistant agent in
Figure 1 responds to Book Details percept, which contains
information about purchase of books, and to Keyword

Search percept, which contains information about a search
in the book catalogue. The Sales Assistant agent also sends
Book Query and Book Purchase messages to Stock
Manager agent requesting information about an item in the
book catalogue and requesting a purchased item to be
removed from the stock, respectively. The other elements in
the diagram are represented similarly.

Figure 1: System Overview Diagram

Figure 2: Security Manager Agent Overview Diagram

The agent overview diagram represents in details the
design of an agent. The main elements in this diagram are
actions (represented as arrow rectangles), plans
(represented as ovals), data (represented as a data storage
symbol), and percepts (represented as arrow rectangles).
Figure 2 shows an example of an agent overview diagram
for Security Manager agent in Figure 1. As shown in the
figure, in the presence of Login Details percept, the
Validate User plan is executed. This plan consists of
checking if a user’s login information matches a data in the
User DB data storage. In positive case, action Show Main
Screen is executed; otherwise action Show Invalid Login
Message is performed. The other elements in the diagram
are represented similarly. A detailed description of
Prometheus is beyond the scope of this paper, but can be
found in [18].

JACK language is based on Java programming
language. It extends Java with agent-oriented constructs
represented as classes, interfaces, and methods, and uses
other valid Java declarations and statements such as
package, import, attributes, and method definitions. An
application in JACK is composed of several source code
specifications representing agents, plans, events,
capabilities, and belief sets.

In JACK, an agent specification is used to define the
behaviour of a software agent. It includes the capabilities of
an agent, the types of messages and events to which the

553

agent responds, the events created by the agent, the belief
sets (data) used by the agent to store information, and the
plans the agent uses to achieve goals. Figure 3 shows an
example of the implementation of agent SecurityManager in
JACK. The SecurityManager agent inherits its core
functionality from class Agent (extends). It contains
declarations for events (#posts and #handles), plans, and
data. A #posts event represents events that the agent can
create, while a #handles event represents events to which
the agent responds. A #uses plan specifies a plan executed
by the agent, while a #private data identifies a belief set
that the agent can use to store information. In the figure, the
SecurityManager agent specification also contains an
attribute bookstore (private BookStore bookstore) that
provides an interface between the agent and the
environment, and definitions of several methods to process
percepts from the environment and create events.

Figure 3: Example of SecurityManager Agent in JACK
A plan specification describes a sequence of actions that

an agent can execute when an event occurs. Figure 4
presents an example of the implementation of plan
VerifyUser in JACK. This plan inherits its core
functionality from class Plan. It contains declarations for
events, interfaces, and data, and a body() method. The
body() method describes the behavior of the agent
(specified in the #uses interface declaration) when
executing a plan. In this case, the body() method checks if
the password and username properties of the Login event
can be matched to a user recorded in the UserDB belief set.

In JACK, belief sets represent information that an agent
has about its environment; events can be of type
BDIGoalEvent, representing a goal that an agent wants to
achieve, and BDIMessageEvent, representing events that

one agent uses to communicate with another agent; and
capabilities encapsulate plans, events, java code, and other
functionalities. A detailed description of JACK is beyond
the scope of this paper, but can be found at [30].

Figure 4: Example of VerifyUser Plan in JACK

3. OVERVIEW OF OUR APPROACH
We propose a rule-based approach to support automatic

generation of traceability relations between Prometheus
design models and JACK code. The use of rules are
important to (i) automate and assist with decision making,
(ii) allow standard ways of representing knowledge that can
be used to infer data, (iii) facilitate the construction of
traceability generators, and (iv) support representation of
dependencies between elements in the documents.

In order to support the heterogeneity of models and
tools used during the software development life cycle we
assume the models to be represented in XML. We have
chosen XML as the basis of our approach due to several
reasons: (a) XML has become the de facto language to
support data interchange among heterogeneous tools and
applications, (b) the existence of large number of
applications that use XML to represent information
internally or as a standard export format, and (c) to allow
the use of XQuery [31] as a standard way of expressing
traceability rules. Moreover, our approach combines
models in Prometheus and JACK code and, therefore, it
requires a common representation of these models.

We propose to use an extended version of XQuery [31]
to represent the rules. XQuery is an XML-based query
language that has been widely used for manipulating,
retrieving, and interpreting information from XML
documents. Apart from the embedded functions offered by
XQuery, it is possible to add new functions and commands.
We have extended XQuery (a) to support representation of
the consequence part of the rules, i.e. the actions to be taken
when the conditions are satisfied, and (b) to support extra
functions to cover some of the traceability relations being
proposed. Examples of these functions are isSynonym,
which verifies if the names of two elements are synonyms,
and isOverlap, which verifies if an overlaps relation has
been created between two elements.

public agent SecurityManager extends Agent {
 #posts event Login ev;
 #posts event CreateUser ev1;
 #posts event RemoveUser ev2;
 #posts event ChangePassword ev3;
 #handles event Login;
 #handles event CreateUser;
 #handles event RemoveUser;
 #handles event ChangePassword;
 #uses plan VerifyUser;
 #uses plan AddUser;
 #uses plan DeleteUser
 #uses plan ModifyPassword;
 #private data UserDB users();
 private BookStore bookStore;

public SecurityManager(String name, BookStore bookStore){
 super(name); this.bookStore = bookStore;}

public void login(String userName, String password) {
 postEventAndWait(ev.login(userName,password));}

public void showMainMenu() {
 bookStore.showMainMenu();}

public void modifyPassword(String password){
 postEventAndWait(ev3.changePassword(password));}

public void showInvalidLogin(String message) {
 bookStore.showInvalidLogin(message);}}

public plan VerifyUser extends Plan {
 #handles event Login ev;
 #uses interface SecurityManager self;
 #uses data UserDB users;
 …
 body() {
 logical String password;
 logical String name;
 logical String role;
 if (users.get(ev.userName,password,name, role)) {
 if (ev.password.equals(password.as_string())) {
 User user = new User(ev.userName,

name.as_string(), role.as_string());
 self.showMainScreen(user);
 } else { self.showInvalidLogin("Password Invalid");}
 } else { self.showInvalidLogin("UserName Invalid");}}}

554

In our approach, the models of our concern are
generated using proprietary tools and represented in their
native format (e.g. PDT[18], JACK[30]). These models are
translated into XML format by using a Model Translator
component based on XML Schemas proposed for the
models, whenever the tools used to create the models do not
generate them directly in XML. The XML-based models
and rules are used as inputs to the Traceability_Generator
component to generate traceability relations between the
models. The component uses WordNet to support the
identification of synonyms between the names of elements
in the models. The traceability relations are represented in
an XML document (Traceability_Relations document). The
use of a separated document to represent the traceability
relations is important to preserve the original models, to
allow the use of these models by other applications and
tools, and to allow the generated relations to be used to
support the identification of other traceability relations that
depend on the existence of previously identified relations
(e.g. contributes, uses, creates, achieves, and depends on
relations).

We call the traceability relations that do not depend on
the existence of other relations as primitive relations and
the ones that depend on the existence of other relations as
secondary relations. The Traceability_Relations document
is used as input to the Traceability_Generator component
to support generation of secondary traceability relations.
Examples of primitive and secondary relations are
described in Subsection 3.1.
3.1 Traceability Relations

Based on the study of Prometheus methodology and
analysis of the JACK language, our study and experience
with software traceability [3][28][29][12], and types of
traceability relations proposed in the literature [21][22], we
have identified six different types of traceability relations
between the various elements in the models used in our
approach. These types of traceability relations have also
been identified in our study of i* and Prometheus models
[3]. Table 1 presents the different types of relations for the
main types of elements in Prometheus and elements in
JACK language. In Table 1, apart from overlaps relations
that are bi-directional, the direction of a relation is
represented from a row [i] to a column [j] (e.g.
“Prometheus role is used by JACK agent”). In the following
we describe the various types of traceability relations
identified in our work.

Overlaps – In this type of relation, an element e1
overlaps with an element e2 (an element e2 overlaps with
an element e1), if e1 and e2 refer to common aspects of
AOS or its domain. For instance, an overlaps relation holds
between Security Manager agent in Prometheus (Figure 1)
and SecurityManager agent in JACK (Figure 3), since they
refer to common aspects of the system. This is an example
of a primitive relation.

Contributes (Contributed by) - In this type of relation,
an element e1 contributes to an element e2, if e1 assists
with the achievement or accomplishment of another element
e2. For instance, a contributes relation exists between
Security Manger agent in Prometheus (Figure 1) and login
method in JACK (Figure 3). This secondary relation is
given by the fact that login method in JACK creates an
event Login, which holds an overlaps relation with goal
Login in Prometheus that is achieved by Security Manager
agent (goal diagram is not shown in Section 2).

Uses (Used by) - In this type of relation, an element e1
uses an element e2, if e1 requires the existence of e2 in
order to achieve its objective. For instance, a uses relation
holds between Validate User plan in Prometheus (Figure 2)
and Security Manager agent in JACK (Figure 3). In this
case, SecurityManager JACK agent uses VerifyUser JACK
plan that overlaps with Validate User plan in Prometheus
(Figure 2). Therefore, we can infer that Security Manager
agent in JACK uses Validate User plan in Prometheus. This
is an example of a secondary relation due to the existence
of the overlaps relation.

Creates (Created by) - In this type of relation an
element e1 creates an element e2, if e1 generates element
e2. For instance a secondary create relation exists between
SecurityManager agent in JACK (Figure 3) and Show
Invalid Login Message action in Prometheus (Figure 2),
since SecurityManager agent contains showInvalidLogin
method which holds an overlaps relation with Show Invalid
Login Message action in Prometheus (Figure 2).

Achieves (Achieves by) - In this type of relation an
element e1 achieves an element e2, if e1 meets the
expectations and needs of e2. Plans in JACK describe a
sequence of actions that an agent can take when an event
occurs. In JACK, goals are implicitly represented as events
that can trigger plans. Therefore, if there is a goal in
Prometheus that has an overlaps relation with an event in
JACK and a plan in JACK responds to that event, then we
can say that there is an achieves relation between the plan in
JACK and the goal in Prometheus. For instance, a
secondary achieves relation exists between VerifyUser plan
in JACK (Figure. 4) and Login goal in Prometheus (not
shown in Section 2), since the VerifyUser plan responds to
event Login that holds an overlaps relation with goal Login.

Depends on (Is Dependent) - In this type of relation an
element e1 depends on an element e2, if the existence of e1
relies on the existence of e2, or if changes in e2 have to be
reflected in e1. For instance, a depends on relation holds
between Validate User plan in Prometheus (Figure 2) and
showInvalidLogin method in JACK (Figure 3). This
secondary relation is given by the fact that
showInvalidLogin method holds an overlaps relation with
Show Invalid Login Message action in Prometheus, and
since a plan is defined as a sequence of actions, it depends
on the existence of the methods that overlaps with these
actions.

555

JACK
Prometheus Method Agent Plan BeliefSet Capability BDIGoalEvent BDIMessgeE

vent
Goal Contributed by Achieved by Achieved by Uses Creates Achieved by Overlaps ---
Role Contributed by Used by Uses Uses Contributed by Achieves ---

Agent Contributed by Overlaps Uses Uses Uses Achieves Uses Creates
Capability Contributed by Used by Uses Uses Overlaps Achieves ---

Plan Depends on Used by Overlaps Uses Used by Achieves Uses Creates
Percept Is Dependent Used by Used by --- Used by Is Dependent ---
Action Overlaps Created by Created by --- Used by --- ---

Message --- Used by Created by Used by Created by Uses --- --- Overlaps
Data --- Used by Created by Used by Created by Overlaps Used by --- Used by

Table 1: Different Types of Traceability Relations

3.2 Traceability Rules
The traceability rules used in our work to support

automatic generation of traceability relations are composed
of three main parts. Figure 5 shows a general template
representing a pseudo-code for the rules. In the template,
elements between square brackets (“[“, “]”) are optional,
and fi(fi+1…(fi+j(•))…) represents a composition of functions
and if statements used in our rules. These functions are
XQuery functions or the extra functions that we have
implemented to support our work. Figure 6 presents an
example of a rule represented in XQuery for generating
dependency relation between methods in JACK and plans
in Prometheus. We explain below the parts in a rule.

Part 1: It consists of the rule identification and contains
a unique identifier (RuleID), a priority of the rule
(RulePriority) indicating if this is a primitive rule (priority
1) or dependent rule (priority 2), the type of the rule
(RuleType), the type of the source element to be traced
(ElemTypeA), the type of the target element to be traced
(ElemTypeB), and a brief description of the rule
(Description). The priority of the rule is used to identify if
the rule is primitive or dependent and to assist with the
execution of the rules; i.e., rules with priority 1 are
executed before rules with priority 2, since these latter rules
depend on the existence of the relations generated by rules
with priority 1. The type of the rule is based on the type of
the traceability relation generated by the rule. Figure 6
shows examples of this first part of the rule.

Part 2: It consists of XQuery statements and is formed
by other subparts. The first subpart (DECLARE) contains
declarations of namespaces, documents, and sequence of
elements used by the rule. The declaration of the documents
and sequence of elements are described as XPath
expressions. For the example in Figure 6, there are
declarations of (a) Similar java classes, (b) JACK and
Prometheus models (JACK.xml and BookShop.pd), and (c)
sequences of elements of JACK methods and Prometheus
plans to be compared ($methods and $plans).

The second subpart (FOR) iterates elements of the
sequences and bind these elements to variables ($elema
$elemb $elemc). As shown in Figure 6, the first for
statement binds plans in Prometheus and methods in JACK
to variables $plan and $method, respectively.

The third subpart (CONDITION) defines the condition
part of the rule that should be satisfied. Conditions can be
defined by the where-expression clause of a for clause in
XQuery or by the test-expression part of an if-then-else
expression in XQuery. The condition part of the rule uses
XQuery built-in functions and expressions, and the Java
extra functions that we have developed.

In the example in Figure 6, a where expression in the
condition part of the rule checks if a plan in Prometheus
contains at least one action that has an overlaps relation
with a method in JACK. For instance, showInvalidLogin
JACK method in Figure 3 has an overlaps relation with
ShowInvalidLoginMessage Prometheus action in Figure 2.
In addition, Validate User Prometheus plan uses
ShowInvalidLoginMessage Prometheus action in Figure 2.
Thus, the condition in the where part of the rule holds.

The fourth subpart (ACTION) specifies the
consequence part of the rule when the conditions are
satisfied. It describes traceability relations (RELATION).
The evaluation of the consequence part consists of writing
the traceability relations in the XML Traceability_Relation
document. Figure 7 presents part of this document with the
result of executing RulePJ5b in Figure 6 for Validate User
Prometheus plan (Figure 2) and showInvalidLogin JACK
method (Figure 3). A traceability relation contains
information about the respective rule (RuleID), its type
(RelType), and related elements (element <Element>).

TRACE_RULE
 RuleID = R_ID
 RulePriority = Priority_Number
 RuleType = Rule_Type
 ElemTypeA = ElementTypeName
 ElemTypeB = ElementTypeName
 Description = DescriptionText
 XQUERY
 [DECLARE Namespace]
 [DECLARE Documents]
 [DECLARE Sequences]
 for $elema in $seqa,
 $elemb in $seqb,…
 $elemn in $seqn

CONDITION fi(fi+1…(fi+j(•))…)
 ACTION

RELATION
 RuleID = R_ID
 RelType = Relation_Type

556

 [ELEMENT
 Document = DocumentPath
 ElemType = ElementType
 ElemName = ElementName
 ElemID = ElementID]
 ACTION_END
 XQUERY_END
TRACE_RULE

Figure 5: Traceability Rule Template
<Rule id="rulePJ5b" priority="2" type="dependency"
 elementTypeA="Method" elementTypeB="Plan"
 description="Dependency between a method in
 JACK and a plan in Prometheus">
 <XQuery> <![CDATA[
 declare namespace sim = "java:xquery.Similar";
 let $prometheus := doc("file:///c:/retratos/BookShop.pd")
 let $jack := doc("file:///c:/retratos/JACK.xml")
 let $plans := $prometheus//object[@type='Plan']
 let $methods := $jack//method
 for $plan in $plans, $method in $methods
 where (some $actionID in
 ($plan//field[@name='actions']/list/object/@ref |
 $plan//field[@name='actions']/list/object/@id)
 satisfies sim:isOverlap($actionID,$method/@id))
 return
 <TraceabilityRelation type="dependency" ruleID="rulePJ5b" >
 <Element doc="c:/retratos/BookShop.pd" type="Plan"
 name="{$plan/base/field[@name='name']/text()}"
 id="{$plan/@id}"/>
 <Element doc="c:/retratos//JACK.xml" type="Method"
 name="{$method/@name}" id="{$method/@id}"/>
 </TraceabilityRelation>]]> </XQuery> </Rule>

Figure 6: Example of a Dependency Traceability Rule
<Traceability>…
<TraceabilityRelation ruleID="PJ5b” type="dependency">
 <Element doc=" c:/retratos/BookShop.pd " type="Plan"
 name="Validate User" id="59 "/>
 <Element doc="c:/retratos/JACK.xml" type="Method"
 name="showInvalidLogin" id="m6"/>
</TraceabilityRelation> …

Figure 7: Example of a Traceability Relation
4. RELATED WORK

In [16], the authors state that the lack of tools to support
AOS development is one of the challenges that needs to be
overcome before agent-oriented paradigm can be widely
adopted by industry. More recently, in [11] and [19] the
authors proposed tools to support automatic mapping
between agent-oriented models applying a Model Driven
Architecture approach. In [17] the authors suggest
debugging approaches to AOS. In [5], an approach to
support automatic change propagation in agent software
evolution is presented. Although some work has been
proposed to support AOS development, an approach to
assist with automatic traceability generation of AOS design
models and code specification has not been proposed.

Approaches for traceability generation can be classified
as manual, semi-automatic, and automatic [28]. Most of the
commercial tools adopt the manual approach in which the
user has to select the source and target objects to be traced
and offer sophisticated visualisation, display, and
navigability components [7][24]. The task of creating

traceability relations manually is costly, labour-intensive,
and error-prone. As a consequence, the cost of establishing
traceability relations can overcome their benefits. Semi-
automatic approaches are concerned with the generation of
traceability relations based on a set of previously
established relations [8], or when traceability relations are
generated as a by-product of the software development
process [21]. Several techniques have been proposed to
support automatic generation of traceability relations
ranging from information retrieval [1][10][17], rule-based
[12][29], inference axioms [20], and hypermedia and
information integration [26]. However, these approaches
have not been used in the scope of AOS models and code.
The work presented in this paper extends the work in
[12][29] to support AOS models.

Examples of approaches to support traceability
involving software code have been proposed in [1][8]
[17][26]. In [1] the authors apply probabilistic and vector
space information retrieval techniques to find traceability
relations between C++ code and manual documents, and
Java code and functional requirements. They assume that
programmers use meaningful names for items such as
functions, variables, types, and methods. The work in [17]
uses another information retrieval technique, latent
semantic analysis, to identify traceability relations between
code and system documentation, expressed in natural
language. The scenario-based approach in [8] uses a set of
hypothesized trace relations between software artifacts and
scenarios and generates other traceability relations between
scenarios and related code. The work in [26] uses open
hypermedia and information integration techniques to
enable the discovery, creation, maintenance, and
visualisation of traceability relations between requirements
and code. However, none of these approaches are based on
the use of rules and have been tested in the scope of AOS
and JACK code.

Various classifications for different types of traceability
relations are presented in reference models and framework
[4][6][9][21][22][28]. However, despite the reference
models and classifications there is still a lack of standard
semantic definition for the various types of relations [28].
The need to capture the semantic of traceability relations is
fundamental to provide their effective use. Many existing
tools support the representation of different types of
relations, but the interpretation of these relations depends
on the stakeholders, which causes confusion when
interpreting relations and difficulties to develop tools for
automatic generation of traceability relations. In this paper,
we based upon the work in [3][12][29] and contribute to
fulfil the lack of a classification for traceability relations for
models and code specifications generated during the
development of AOS. The work in this paper complements
the work in [3], providing a traceability approach for
different phases of the development of AOS; i.e.
requirements, design, and implementation phases.

557

5. CONCLUSION AND FUTURE WORK
In this paper we present a rule-based approach to

support automatic generation of traceability relations
between Prometheus design models and JACK code. We
presented six different types of traceability relations
between different artefacts in Prometheus design models
and JACK code. In the work, we assume design models and
code specified in XML and define rules in an extension of
XQuery. We have implemented 52 traceability rules. A
prototype tool to parse the rules and create traceability
relations has been implemented in Java and uses Saxon [27]
to evaluate XQuery parts of the rules.

Currently, we are evaluating the work through some real
case studies in terms of recall and precision in order to
verify the effectiveness of the approach and to verify the
completeness of the set of traceability rules created. Initial
experiments of our work for automatic generation of
traceability relations between i* and Prometheus models
were promising. We are also extending the rules in order to
support automatic identification of missing elements
between Prometheus design models and JACK code.

6. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia and

E. Merlo, "Recovering Traceability Links between
Code and Documentation," IEEE Transaction on
Software Engineering, v. 28, 2002.

[2] J. Cleland-Huang, C. Chang, G. Sethi, K. Javvaji , H.
Hu, J. Xia, "Automating Speculative Queries through
Event-based Requirements Traceability", IEEE Joint
Int. Req. Eng. Conference, Essen, Germany, 2002.

[3] G. Cysneiros and A. Zisman. “Tracing Agent-Oriented
Systems”. In Proc. of the Grand Challenge Traceability
Symposium, USA, March 2007.

[4] A. Davis. "The analysis and specification of systems
and software requirements," Systems and Software
Requirements Engineering, 1990.

[5] K. Dam, M. Winikoff, and L. Padgham. "An agent-
oriented approach to change propagation in software
evolution", ASEC, 2006.

[6] J. Dick. "Rich Traceability," TEFSE, UK, 2002.
[7] DOORS., www.telelogic.com/products/doors.
[8] A. Egyed, "A Scenario-Driven Approach to Trace

Dependency Analysis," IEEE Trans. on Software
Engineering, vol. 29, 2003.

[9] O. Gotel, and A. Finkelstein "An Analysis of the
Requirements Traceability Problem", International
Conference on Requirements Engineering, USA, 1994.

[10] J.H. Hayes, A. Dekhtyar , S.K. Sundaram, “Advancing
Candidate Link Generation for Requirements Tracing:
The Study of Methods”, IEEE Transaction on Software
Engineering, V. 32, No. 1, 2006.

[11] G. Jayatilleke, L. Padgham, and M. Winikoff, "A
model driven development toolkit for domain experts
to modify agent based systems," AOSE, 2006.

[12] W. Jirapanthong and A. Zisman. “Supporting Product
Line Develeopment through Traceability”, APSEC,
Taiwan, 2005.

[13] H. Kaindl. "The Missing Link in Requirements
Engineering", Software Engineering Notes, June 1992.

[14] L. Lavazza and G. Valetto, "Requirements-based
Estimation of Change Costs", Empirical Software
Engineering - An International Journal, 5(3),
November 2000.

[15] M.Luck, “From Definition to Deployment: What Next
for Agent-based Systems?”, The Knowledge
Engineering Review, Vol. 14:2, pp.119-124, 1999.

[16] M.Luck, R. Ashri, and M. D’Inverno, “Agent-based
Software Development”, ISBN 1-58053-605-0, 2004.

[17] A. Marcus and J.I Maletic, "Recovering
Documentation-to-Source-Code Traceability Links
using Latent Semantic Indexing", ICSE, 2003.

[18] L. Padgham and W.Winikoff. "Developing Intelligent
Agent Systems–A Practical Guide”, John Wiley &
Sons, 2004.

[19] A. Perini and A. Susi, "Automating Model
Transformations in Agent-Oriented Modelling,"
AOSE, 2005.

[20] F. Pinheiro and J.Goguen, "An object-oriented tool for
tracing requirements," IEEE Software, vol. 13, 1996.

[21] K. Pohl, "Process-Centered Requirements
Engineering," John Wiley & Sons, 1996.

[22] B. Ramesh and M. Jarke, "Towards Reference Models
for Requirements Traceability", IEEE Transactions on
Software Engineering, vol. 37, 2001.

[23] A. Rao and M. Georgeff. “BDI Agents: from theory to
practice”, International Conference on Multi-Agent
Systems, The MIT Press. Cambridge, MA, USA. 1995.

[24] RDT, http://www.igatech.com/rdt/index.html
[25] RTM. Integrated Chipware. www.chipware.com.
[26] S. Sherba, "Towards Automating Traceability: An

Incremental and Scalable Approach," PhD thesis, Dep.
of Computer Science, University of Colorado, 2005.

[27] Sourceforge; Saxon: http://saxon.sourceforge.net/
[28] G. Spanoudakis and A. Zisman, "Software

Traceability: A Roadmap," in S. K. Chang, ed.,
Handbook of Software Engineering and Knowledge
Engineering, August, 2005.

[29] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P.
Krause, "Rule-based Generation of Requirements
Traceability Relations", Journal of Systems and
Software, v. 72, 2004

[30] M. Winikoff, JACKTM Intelligent Agents: An Industrial
Strength Platform, Multi-Agent Programming, 2005.

[31] XQuery. http://www.w3.org/TR/xquery/.

558

ONTOMADEM: An Ontology-driven Tool for Multi-Agent Domain Engineering

Rosario Girardi and Adriana Leite
Federal University of Maranhão

Av. dos Portugueses, s/n, Campus do Bacanga,
CEP 65080-040, São Luís–MA, Brazil

{rgirardi@deinf.ufma.br, adri07lc@gmail.com}

Abstract
A significant contribution of Knowledge Engineering

to Software Engineering comes from techniques and
formalisms for knowledge representation and ontology
development. Ontologies provide an unambiguous
terminology that can be shared by all involved in a
software development process. They can also be as
generic as needed allowing its reuse and easy extension.
These features turn ontologies useful for representing the
knowledge of software engineering techniques and
methodologies, and an appropriate abstraction
mechanism for the specification of high-level reusable
software artifacts like domain models, frameworks and
software patterns. This work describes ONTOMADEM, a
conceptualization of MADEM (“Multi-Agent Domain
Engineering Methodology”), a software development
methodology for Multi-Agent Domain Engineering. The
ontology is used as a knowledge-based tool for capturing
and representing the products of a Multi-agent Domain
Engineering process, created through the instantiation of
its hierarchy of classes.

1 Introduction

A significant contribution of the Knowledge
Engineering discipline to the Software Engineering one
comes from techniques and formalisms for knowledge
representation and ontology development.

An ontology is usually defined as the specification of a
conceptualization [20], a simplified, abstract way of
perceiving a segment of the real world as a set of objects
and their relationships, as well as the terms used to refer
to them and their agreed meanings and properties. This
specification is formal, i.e. can be processed by a
computer system; it is explicit, i.e. concepts and
constraints are previously and explicitly defined; it is
sharable, i.e. it relates to consensual knowledge accepted
by a group and is used by more than one individual.
Ontologies are frequently formalized with knowledge
representation structures, e.g. frame-based systems where
concepts are represented in frames and relationships
between concepts as frame slots. Thus, they can be
available in knowledge bases where concepts are
semantically related allowing effective searches and
inferences thus facilitating their understanding and reuse.

Ontologies provide an unambiguous terminology that
can be shared by all involved in a software development
process. They can also be as generic as needed allowing
its reuse and easy extension. These features turn
ontologies useful for representing the knowledge of
software engineering techniques and methodologies, and
an appropriate abstraction mechanism for the
specification of high-level reusable software artifacts like
domain models, frameworks and software patterns
[13][14][19].

This work describes ONTOMADEM, a
conceptualization of MADEM (“Multi-Agent Domain
Engineering Methodology”), a software development
methodology for Multi-Agent Domain Engineering [14].
The MADEM methodology integrates techniques for
domain analysis, domain design and domain
implementation: GRAMO (“Generic Requirement
Analysis Method based on Ontologies”), DDEMAS
(“Domain DEsign technique of Multi-Agent Systems”)
and DIMAS (“Domain Implementation technique of
Multi-Agent Systems”), respectively. Earlier work on
GRAMO and DDEMAS has been already published
[12][17].

The ontology is used as a knowledge-based tool for
capturing and representing the products of a Multi-agent
Domain Engineering process, created through the
instantiation of its hierarchy of classes. It integrates
ONTOPATTERN [13], an ontology we have previously
developed for the representation and reuse of software
patterns [16].

The paper is organized as follows. Section 2 describes
the conceptualization of the MADEM methodology in the
ONTOMADEM ontology. Section 3 introduces how
domain models and multi-agent frameworks are
developed with ONTOMADEM. The semantic
relationships between the modeling concepts in these
products are illustrated with examples extracted from
cases studies conducted to evaluate both MADEM and
ONTOMADEM. Section 4 discusses the capabilities
provided by ONTOMADEM for using and reusing
modeling products. Section 5 concludes the paper and
discusses further work being conducted.

559

2 The ONTOMADEM tool

ONTOMADEM was developed in a two phase
development process: the specification and the design of
the ontology. In the specification phase, a
conceptualization of MADEM was represented in a
semantic network. In the design phase, concepts and
relationships in the semantic network were mapped to a
frame-based ontology in Protégé [11].

Three main classes representing the MADEM
concepts drive the design of ONTOMADEM: Modeling
concepts, Modeling tasks and Modeling Products. These
concepts are described in the following sections.

2.1 MADEM modeling concepts

Main modeling concepts and tasks of MADEM are
based both on techniques for Domain Engineering
[2][8][21] and for development of multi-agent systems
[5][6][9][24].

2.1.1 Domain Engineering

Domain Engineering and Application Engineering are
two complementary software processes. Domain
Engineering, also known as Development FOR Reuse, is a
process for creating software abstractions reusable on the
development of a family of software applications in a
domain, and Application Engineering or Development
WITH Reuse, the one for constructing a specific
application using reusable software abstractions available
in the approached domain(s).

A family of systems is defined as a set of existing
software systems sharing some commonalities but also
particular features [8].

The process of Domain Engineering is composed of
the phases of analysis, design and implementation of a
domain. Domain analysis activities identify reuse
opportunities and determine the common and variable
requirements of a family of applications. The product of
this phase is a domain model. Domain design activities
look for a documented solution to the problem specified in
a domain model. The product of this phase is composed of
one or more frameworks and, possibly, a collection of
design patterns, documenting good solutions in that
domain. Reusable components integrating the framework
are constructed during the phase of domain
implementation. This is the compositional approach of
Domain Engineering. In a generative approach, Domain
Engineering produces Domain Specific Languages
(DSLs), and application generators that are used to
construct a family of applications in a domain automating
the reuse activities of selection, adaptation and
composition [8].

A main concern of MADEM and Domain Engineering
techniques is variability modeling for capturing and
representing mandatory, alternative or optional features of
domain models. Mandatory features should be present in all
systems of the family while alternative and optional ones
form the variable part of a model providing alternative or

particular realizations of the model through its reuse in the
Application Engineering process.

In ONTOMADEM, common and variable features are
represented in the variability slot of the modeling concepts
sub-classes, by instantiating the Variability class associated
to that slot, according to the type of variability (mandatory,
alternative or optional).

2.1.2 Agent-oriented modeling

For the specification of the problem domain to be
solved, MADEM focuses on modeling the context,
concepts, goals, roles and interactions of entities of an
organization.

Entities have knowledge and use it to exhibit
autonomous behavior. An organization is composed of
entities with general and specific goals that establish what
the organization intends to reach. The achievement of
specific goals allows reaching the general goal of the
organization (reached from relationship of Figure 1). For
instance, an information system can have the general goal
“satisfying the information needs of an organization” and
the specific goals of “satisfying dynamic or long term
information needs”. Specific goals are reached through the
performance of responsibilities (achieves relationship of
Figure 1) in charge of particular roles (in charge of
relationship of Figure 1) with a certain degree of
autonomy. In the example of Figure 1, the Retriever role is
in charge of the Matching and similarity analysis
responsibility.

Responsibilities are exercised through the execution of
activities (exercised through relationship of Figure 1). The
set of activities associated with a responsibility are a
functional decomposition of it.

Roles have skills on one or a set of techniques that
support the execution of responsibilities and activities in
an effective way (requires relationship of Figure 1). Pre-
conditions and post-conditions may need to be satisfied
for/after the execution of an activity (is satisfied and
satisfies relationships of Figure 1). Knowledge can be
consumed and produced through the execution of an
activity (uses and produces relationships of Figure 1). For
instance, an entity can play the role of “retriever” with the
responsibility of executing activities to satisfy the dynamic
information needs of an organization. Another entity can
play the role of “filter” in charge of the responsibility of
executing activities to satisfy the long-term information
needs of the organization. Skills can be, for instance, the
rules of the organization that entities know to access and
structure its information sources.

Sometimes, entities have to communicate with other
internal or external entities to cooperate in the execution
of an activity (participates relationship of Figure 1). For
instance, the entity playing the role of “filter” may need to
interact with a user (external entity) to observe his/her
behavior in order to infer his/her profile of information
interests.

For the specification of a design solution, roles are
assigned to agents (plays relationship of Figure 1)
structured and organized into a particular multi-agent

560

architectural solution according to non-functional requirements.
.

Figure 1 Some relationships between modeling concepts and their instances in the ONTOMADEM ontology

MADEM modeling tasks and products

The MADEM methodology supports the domain
analysis, domain design and domain implementation
phases of a multi-agent domain engineering process
(Table 1).

Domain Analysis supported by the GRAMO technique
approaches the construction of a domain model which
specifies the current and future requirements of a family of
applications in a domain by considering domain
knowledge and development experiences extracted from
domain specialists and applications already developed in
the domain. Existing analysis patterns can also be reused
in this modeling task.

Domain Analysis is performed through the following
modeling tasks: Context Modeling, Modeling of domain
concepts, Goal Modeling, Role Modeling, Variability
Modeling, Role Interaction Modeling and User Interface
Prototyping. The product of this phase, a Domain Model,
is obtained through the composition of the products
constructed through these tasks: a Context Model, a
Concept Model, a Goal Model, a Role Model, a set of Role
Interaction Models and a prototype of the user interface.

The Context Modeling task looks for representing in a
Context Model a general view of the system environment
and the external entities with which it interacts.

The Modeling of domain concepts task aims at
performing a brainstorming of concepts of the domain and
their relationships, representing them in a Concept Model.
These concepts are refined in the subsequent modeling
tasks.

The purpose of the Goal Modeling task is to identify
the goals of the family of systems, the external entities
with which it cooperates and the responsibilities needed to
achieve them. Its product is a Goal Model, specifying the
general and specific goals of the system family along with
the external entities and responsibilities.
 The Role Modeling task associates the responsibilities
identified in the Goal Modeling task to the roles that will

be in charge of them. The skills required for exercising a
responsibility, the pre- and post-conditions that must be
satisfied before and after the execution of a responsibility
are also identified. Finally, the knowledge required from
other entities (roles or external entities) for the execution
of activity or responsibility and the knowledge produced
from their execution is recognized. This task produces a
Role Model, specifying roles, responsibilities; activities,
skills, pre- and post-conditions, knowledge and
relationships between these concepts.

Table 1- Modeling Phases, Tasks and Products of
MADEM Methodology

The Variability Modeling task is performed
simultaneously with the Goal and Role Modeling ones.

561

The purpose of this task is to classify goals, roles,
responsibilities and skills in Goal and Role models as
common or variable features.

The Role Interaction Modeling task aims at identifying
how external and internal entities should cooperate to
achieve a specific goal. For that, responsibilities of roles
are analyzed along with their required and produced
knowledge specified in the Role Model. A set of Role
Interaction Models specifying the interactions between
roles and external entities needed to achieve a specific
goal is constructed as a product of this task.

The Goal and Role Models provide a static view of
the organization; the set of Interactions Models, a
dynamic one.

The goal of the User Interface Prototyping task is to
identify the interactions of the users with the system and
simulate them in a prototype.

 Domain design supported by the DDEMAS
technique approaches the architectural and detailed
design of multi-agent frameworks providing a solution
to the requirements of a family of multi-agent software
systems specified in a domain model. It consists of three
sub-phases: the Multi-agent society Knowledge
Modeling sub-phase, which identifies and semantically

represents the concepts shared by all agents in their
communication; the Architectural Design sub-phase, that
establishes an architectural model of the multi-agent
society including its coordination and cooperation
mechanisms; and the Agent Design sub-phase, that
defines the internal design of each agent, modeling its
structure and behavior.

Domain implementation supported by the DIMAS
technique approaches the mapping of design models to
agents, behaviors and communication acts, concepts
involved in the JADE framework [11], which is the
adopted implementation platform. An Implementation
Model of the Multi-agent Society is constructed as a
product of this phase of MADEM, composed of a Model
of agents and behaviors and a Model of communication
acts.

The conceptualization of some MADEM modeling
tasks and products in the ONTOMADEM ontology is
illustrated in Figure 2 and Figure 3. Figure 2 shows the
classes and relationships between modeling tasks of the
domain design sub-phase in the ONTOMADEM
ontology. Figure 3 illustrates the classes and relationships
between modeling products of the domain model.

Figure 2 Classes and relationships between modeling tasks of the domain design sub-phase in the
ONTOMADEM ontology

Figure 3 Classes and relationships between modeling products of the domain model in the ONTOMADEM
ontology

3 Constructing domain models and multi-
agent frameworks with ONTOMADEM

In ONTOMADEM, modeling products are generated
through the instantiation of the corresponding Modeling

Tasks, Modeling Products, and Modeling Concepts
classes. For instance, the construction of a Domain
Model requires the subsequent instantiation of the
subclasses Domain Analysis of the Modeling Tasks class
and Domain Model of the Modeling Products class;

562

then, the instantiation of each class representing a
subtask of the Domain Analysis class (Context Modeling
, Concept Modeling, Goal Modeling, Role Modeling
Role Interaction Modeling and User Interface
Prototyping); finally, the instantiation of each class
representing a product composing a Domain Model
(Context Model, Concept Model, Goal Model, Role
Mode, Role Interaction Models and Prototype of the
User Interface).

A graphical notation has been defined in MADEM for
the representation of each modeling product [14]. This
facilitates not only the instantiation process but also
contributes for reducing the complexity of the modeling
tasks allowing the visualization, decomposition and
refinement of the modeling products.

Several domain and design models have been
constructed in order to evaluate both MADEM and
ONTOMADEM. Recently, we have developed two
families of multi-agent systems: one that approaches the
problem of providing personalized Web services through
Usage Mining [14] and another one supporting the
development of applications for Web Information
Retrieval and Filtering.

ONTOWUM-DM, a domain model describing the
common and variable requirements of a family of multi-
agent applications for providing personalized Web
services through Usage Mining is described in [14].
ONTOWUM-DD, a multi-agent design solution to the
requirements specified in ONTOWUM-DM, is
introduced in [23]. In [16], a system of software patterns
extracted from this development experience is described.

4 Using and reusing modeling products from
ONTOMADEM

Since retrieval is based on semantics, results from
searching on modeling products and concepts in the
ONTOMADEM knowledge base are more effective than
the ones that could be obtained through simple keyword
retrieval on instance texts.

Figure 4 Results on semantic searching for
modeling concepts and products in the ONTOMADEM

knowledge base

For instance, the following information need could be
expressed in the query of Figure 4, using the Algernon
query language supported by the Algernon plug-in of
Protégé:

“Show the responsibilities that allow reaching the

specific goal of “Model users through Usage Mining”
along with the agents in charge of, required knowledge,
and resources required to perform them”.

High precision is exhibited in the results of the query.
This facilitates the understanding, validation and reuse
of modeling products from the ONTOMADEM
knowledge based repository.

5 Related work

Some prototypes of knowledge-based tools and
environments, like ODYSSEY [4] and ODE [10], have
been already developed to increase the productivity of the
software development process, the reusability of
generated products, and the effectiveness of project
management. One main characteristic distinguishing
ONTOMADEM from these approaches is its reuse
support for agent-oriented software development.

Most available development tools for the construction
of multi-agent systems, like JADE [3] provide support
only to the implementation, debugging and deployment
phases of a software development cycle.

Some tools supporting the earlier phases, like PTK,
begin to appear. PTK (Passi Toolkit) [7] is an add-in for
the commercial UML-based CASE tool Rational Rose. It
enables the user to follow the PASSI process of analysis
and design, providing a set of functionalities that are
specific for each phase of the process by means of sub
and pop-up menus that appear after having selected some
UML elements (classes, use cases and so on). This tool
also allows the designers to perform checking operations,
which are based on the correctness of single diagrams and
consistency between related steps and models.

Two main differences between ONTOMADEM and
PTK are the support that the first one provides for the
construction of the reusable products of a Multi-agent
Domain Engineering process and the ontological
approach in which it is based.

6 Concluding remarks and further work

This work introduced ONTOMADEM, a knowledge-
based tool for Domain Engineering of multi-agent
systems. ONTOMADEM supports the application of the
MADEM methodology for the construction of families of
multi-agent applications in a problem domain. Domain
models and multi-agent frameworks are represented as
semantically related instances of the ONTOMADEM
ontology, turning it a knowledge-based repository where
precise searches and logical inferences can be done thus
facilitating the validation, understanding and reuse of the
available modeling products.

Two main case studies have been developed to
evaluate both MADEM and ONTOMADEM in the
problems domains of information retrieval and filtering,
recommendation systems and user modeling based on
usage mining [14][23].

From the point of view of Knowledge Engineering for
Software Engineering [1], ONTOMADEM contributes

563

with an example of conceptualization of a software
development methodology.

The ONTOMADEM evolution is guided by the
improvements we are still introducing in the MADEM
methodology. Since we have adopted the JADE/JESS
framework [3] for our implementation activities, we are
taking advantage of the integration capabilities of the
JADE and Protégé development environments to the
partial generation of code.

We have also worked on a methodology for Multi-
agent Application Engineering, a process for the
construction of specific multi-agent applications by
reusing the products of the Multi-agent Domain
Engineering process. A conceptualization of this
methodology is being used to extend ONTOMADEM to
support a Multi-agent Application Engineering process.

 A Protégé plug-in is being developed for a partial
automation of the MADEM modeling tasks in
ONTOMADEM based on a set of inference rules.

Using an approach similar to the one described in [18]
we are also working on the mapping of queries in natural
language to a logic-based formalism in order to turn more
intuitive and user-friendly the searches for modeling
concepts and products in ONTOMADEM.

References

1. A. Abran, J. Moore, P. Bourque, R.L. Dupuis, L. Tripp,
Guide to the Software Engineering Body of Knowledge –
SWEBOK, Trial Version 1.0, IEEE-Computer Society
Press, May 2001, URL: http://www.swebok.org

2. Arango, G.: Domain Engineering for Software Reuse. Ph.D.
Thesis. Department of Information and Computer Science,
University of California, Irvine, 1988.

3. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.. JADE A
White Paper. Exp v. 3 n. 3, Sept 2003. http://jade.tilab.com/

4. Braga, R.; Werner, C.; Mattoso, M. “Odyssey: A Reuse
Environment based on Domain Models”, IEEE Symposium
on Application-Specific Systems and Software Engineering
Technology (ASSET'99), pp.50-57, Texas, Mar 1999.

5. Bresciani, P., Giorgini, P., Giunchiglia, F., and Mylopoulos,
J., and Perini, A.: TROPOS: An Agent-Oriented Software
Development Methodology. In Journal of Autonomous
Agents and Multi-Agent Systems, Kluwer Academic
Publishers Volume 8, Issue 3, May (2004) 203 – 236.

6. Cossentino, M., Sabatucci, L., Sorace, S. and Chella, A.:
Patterns reuse in the PASSI methodology. In: Proceedings
of the Fourth International Workshop Engineering Societies
in the Agents World (ESAW'03), pp. 29-31. Imperial
College London, UK. October 2003.

7. Cossentino, M. and Potts, C., 2002. A CASE tool supported
methodology for the design of multi-agent systems. In: The
2002 International Conference on Software Engineering
Research and Practice (SERP’02). June 24-27, Las Vegas
(NV), USA.

8. Czarnecki, K., Eisenecker, U. W.: Generative
Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
2000.

9. Dileo, J., Jacobs, T. and Deloach, S.: Integrating Ontologies
into Multi-Agent Systems Engineering. Proceedings of 4th
International Bi-Conference Workshop on Agent Oriented
Information Systems (AOIS 2002), pp. 15-16, Bologna
(Italy), July 2002.

10. Falbo, R. A., G. Guizzardi, and Duarte, K. C.: An
Ontological Approach to Domain Engineering. In
Proceedings of the XIV International Conference on
Software Engineering and Knowledge Engineering (SEKE
2002), Ischia, Italy, ACM Press, pp. 351-358, 2002.

11. Gennari, J., Musen, M. A., Fergerson, R. W. et al.: The
Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. Technical Report SMI-2002-
0943. 2002.

12. Girardi, R.; Lindoso, A. “DDEMAS: A Domain Design
Technique for Multi-agent Domain Engineering”. In: The
Seventh International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2005) At The 24th
International Conference on Conceptual Modeling (ER
2005), 2005, Klagenfurt. Proceedings of ER Workshops,
LNCS 3770. Berlin Heidelberg: Springer-Verlag, 2005. p.
141-150.

13. Girardi, R. and Lindoso, A. “An Ontology-based
Knowledge Base for the Representation and Reuse of
Software Patterns”. ACM Software Engineering Notes,
New York, v. 31, n. 1, 2006.

14. Girardi, R. and Balby, L.. A Domain Model of Web
Recommender Systems based on Usage Mining and
Collaborative Filtering. Requirements Engineering Journal,
Vol. 12, N. 7, Jan. 2007.

15. Girardi, R. and Lindoso, A., A Multi-agent Architectural
Model for Web Recommender Systems based on Usage
Mining and Collaborative Filtering, submitted paper, 2006.

16. Girardi, R., Balby, L. and Oliveira, I. “A System of Agent-
based Patterns for User Modeling based on Usage Mining”,
Interacting with Computers, v. 17, n.5, pp. 567-591. Sept.
2005.

17. Girardi, R., and Faria, C.: An Ontology-Based Technique
for the Specification of Domain and User Models in Multi-
Agent Domain Engineering. CLEI Electronic Journal, V. 7,
N. 1, Pap. 7, June, 2004.

18. Girardi, R.; Ibrahim, B. Using English to Retrieve Software.
The Journal of Systems and Software, v. 30, n. 3, p. 249-
270, 1995.

19. Girardi, R.; and Lindoso, A., An Ontology-driven
Technique for the Architectural and Detailed Design of
Multi-Agent Frameworks, In: Kolp, M.; Bresciani, P.;
Henderson-Sellers, B.; Winikoff, M. (Org.). Agent-Oriented
Information Systems III, Lecture Notes in Artificial
Intelligence., Ed. Springer-Verlag, pp. 124-139. Berlin.
2006.

20. Gruber, T. R “Toward Principles for the Design of
Ontologies used for Knowledge Sharing”, International
Journal of Human-Computer Studies. Nº 43, pp. 907-928.
1995.

21. Harsu, M.: A Survey of Domain Engineering. Report 31,
Institute of Software Systems, Tampere University of
Technology, December 2002.

22. Lindoso, A., Girardi, R. The SRAMO Technique for
Analysis and Reuse of Requirements in Multi-agent
Application Engineering. IX Workshop on Requirements
Engineering, Cadernos do IME, UERJ Press, v. 20, 41-50.
Rio de Janeiro. 2006.

23. Marinho, Leandro B.: A Multi-Agent Framework for Usage
Mining and User Modeling-based Web Personalization.
Master dissertation, Federal University of Maranhão -
UFMA - CPGEE, 2005. (In Portuguese)

24. Odell, J., Parunak, H.V.D. and Bauer, B.: Extending UML
for Agents. Proc. of the Agent-Oriented Information
Systems Workshop at the 17th National Conference on
Artificial Intelligence, accepted role, AOIS Workshop at
AAAI pp. 3-17, 2000.

564

A Three Level Multi-agent Architecture to Foster Knowledge Exchange

Juan Pablo Soto, Aurora Vizcaíno, Javier Portillo-Rodríguez, Mario Piattini
Alarcos Research Group, Information Systems and Technologies Department, UCLM-Soluziona

Research and Development Institute, University of Castilla – La Mancha
Ciudad Real, Spain

jpsoto@proyectos.inf-cr.uclm.es, {aurora.vizcaino, mario.piattini}@uclm.es,
javier.portillo@alu.uclm.es

Abstract

This paper proposes a multi-agent architecture
based on the concepts of communities of practice and
reputation to manage knowledge management systems.
The main goal of this proposal is to emulate the
behavior of communities of practice where people
exchange information and in this way attempt to foster
the reuse of information in organizations which use
knowledge base or knowledge management systems.

1. Introduction

The need to support knowledge processes in
organizations has always existed. However, its
importance has definitely increased in the last few
years. Recently, the concept of knowledge
management suggests a paradox since compared with
traditional production factors knowledge is so
complex, scattered and hidden that it is rather
complicated to manage it.

On the other hand, traditional Knowledge
Management Systems (KMS) have received certain
criticism as they are often implanted in companies
overloading employees with extra work; for instance,
employees have to introduce information into the KMS
and worry about updating this information. As a result
of this, these systems are sometimes not greatly used
by the employees since the knowledge that these
systems have is often not valuable or on other
occasions the knowledge sources do not provide the
confidence necessary for employees to reuse the
information. For this purpose, companies create both
social and technical networks in order to stimulate
knowledge exchange. An essential ingredient of
knowledge sharing information in organizations is that
of “community of practice”, by which we mean groups
of people with a common interest where each member

contributes knowledge about a common domain [12].
The ability of a community of practice to create a
friendly environment for individuals with similar
interests and problems in which they can discuss a
common subject matter encourages the transfer and
creation of new knowledge. Many companies report
that such communities help reduce problems caused by
lack of communication, and save time by “working
smarter”[13]. For these reasons, we consider the
modelling of communities of practice into KMS as an
adequate method by which to provide these systems
with a certain degree of control to measure the
confidence and quality of information provided by
each member of the community.

In order to carry this out, we have designed a multi-
agent architecture in which agents try to emulate
human behaviour in communities of practice with the
goal of fostering the use and exchange of information
where intelligent agents suggest “trustworthy
knowledge” to the employees and foster the
knowledge flow between them.

The remainder of this work is organized as follows.
The next section presents two important concepts that
exist in the development of our work (agents and
trust). In Section Three the multi-agent architecture
proposed to manage trustworthy KMS is presented..In
Section Four a prototype developed to evaluate our
architecture is explained in order to illustrate how it
could be used. Finally, conclusions are presented in
Section Five.

2. Agents and trust

Because of the importance of knowledge
management, tools to support some of the tasks related
to knowledge management have been developed.
Different techniques are used to implement these tools.
One of them, which is proving to be quite useful, is

565

that of intelligent agents [10]. Software agent
technology can monitor and coordinate events,
meetings and disseminate information [1].
Furthermore, agents are proactive; this means they act
automatically when it is necessary. The autonomous
behavior of the agents is critical to the goal of this
research since agents help to reduce the amount of
work that employees have to perform. On the other
hand one of the main advantages of the agent paradigm
is that it constitutes a natural metaphor for systems
with purposeful interacting agents, and this abstraction
is close to the human way of thinking about their own
activities [14]. This foundation has led to an increasing
interest in social aspects such as motivation,
leadership, culture or trust [3]. Our research is related
to this last concept of “trust” since artificial agents can
be made more robust, resilient and effective by
providing them with trust reasoning capabilities.

For agents to function effectively in a community,
they must ensure that their interactions with the other
agents are trustworthy. For this reason it is important
that each agent is able to identify trustworthy partners
with which they should interact and untrustworthy
correspondents with which they should avoid
interaction. The stability of a community depends on
the right balance of trust and distrust.

3. Our proposal

The goal of this work is to provide a reputation
model for communities of practice using a multi-agent
architecture that:

Assists employees in identifying trustworthy
entities.
Gives artificial agents the ability to reason about
the trustworthiness of other agents or of a
knowledge source.
Encourages knowledge exchange between the
community members.
Provides the confidence necessary to foster the
usage of information and knowledge of the KMS.

To do this, we first need to define a conceptual
model for the agent that permits it to obtain the level of
confidence of an information source or of a provider of
knowledge.

The conceptual model of the agent is based on two
related concepts: trust and reputation. The former can
be defined as confidence in the ability and intention of
an information source to deliver correct information
[2] and the latter as the amount of trust an agent has in
an information source, created through interactions
with information sources. There are other definitions
for these concepts [4, 6]. However, we have presented

the most appropriate for our research since the level of
confidence in a source is based on, in our case,
previous experience of this.

The reputation of an information source not only
serves as a means of belief revision in a situation of
uncertainty, but also serves as a social law that obliges
us to remain trustworthy to other people. Therefore,
people, in real life in general and in companies in
particular, prefer to exchange knowledge with
“trustworthy people” by which we mean people they
trust. People with a consistently low reputation will
eventually be isolated from the community since others
will rarely accept their justifications or arguments and
will limit their interaction with them. It is for this
reason that the remainder of this paper deals mainly
with reputation.

Figure 1. General architecture

Taking the concepts reputation and communities of
practice into account we designed a multi-agent
architecture which is composed of three levels (see
Figure 1): reactive, deliberative and social. The
reactive and deliberative levels are considered by other
authors as typical levels that a multi-agent system must
have [9]. On the other hand, the social level is not
frequently considered in an explicit way, despite the
fact that these systems (multi-agent systems) are
composed of several individuals, interactions between
them and plans constructed by them. The social level is
only considered in those systems that try to simulate
social behaviour or those that represent a more generic
architecture prepared to represent this or other
behaviour. Since we wish to emulate human feelings
such as trust, reputation and even intuition we have
added a social level that considers the social aspects of
a community which takes into account the opinions
and behaviour of each of the members of the
community. Other previous works have also added a
social level, for instance in [5] the author tries to
emulate human emotions such as fear, thirst, bravery
and also uses an architecture of three levels: reactive,
deliberative and social.

In the following paragraphs we will explain each of
these levels in detail.

Reactive level: This is the agent’s capacity to
perceive changes in its environment and to respond to

566

these changes at the precise moment at which they
happen. It is in this level when an agent will execute
the request of another agent without any type of
reasoning. That is to say, the agent must act quickly in
the face of critical situations.

Deliberative level: The agent may also have a
behaviour which is oriented towards objectives, that is,
it takes the initiative in order to plan its performance
with the purpose of attaining its goals. In this level the
agent would use the information that it receives from
the environment, and from its beliefs and intuitions, to
decide which is the best plan of action to follow in
order to fulfill its objectives.

Social level: This level is very important as our
agents are within communities and they exchange
information with other agents. Thanks to this level
they can cooperate with other agents by using an
expressive language. This language analyzes the
present situation, considering the goals and interests of
the agent and structure solutions in the form of plans.

Two further important components of our
architecture are the Interpreter and the Planner. The
former is used to perceive the changes that take place.
The planner indicates how the actions should be
executed.

In this paper only the deliberative architecture is
described due to space restrictions.

Figure 2. Deliberative architecture.

The components of the Deliberative Architecture
are (see Figure 2);

Agent’s internal model: As an agent represents a
person in a community this model stores the user’s
features. Therefore, this module stores the following
parts:
- The interests. This part is included in the internal

model in order to make the process of distributing
knowledge as fast as possible. That is, the agents
are able to exchange knowledge automatically,
checking whether their stored knowledge matches
with the interests of other agents. This behaviour
fosters knowledge sharing and reduces the amount
of work employees have to do because they receive
knowledge without making searches.

- Expertise. This term can be briefly defined as the
skill or knowledge of a person who knows a great

deal about a specific thing. This is an important
factor since people often trust in experts more than
in novice employees.

- Position. Employees often consider information
that comes from a boss as being more reliable than
that which comes from another employee in the
same (or a lower) position as him/her [11]. In an
enterprise this position can be established in
different ways, for instance by using an
organizational diagram or classifying the
employees according to the knowledge that a
person has.
Such different positions inevitably influence the

way in which knowledge is acquired, diffused and
eventually transformed in the local area. Because of
this these factor will be calculated in our research by
taking into account a weight that can strengthen this
factor to a greater or to a lesser degree.

History: This component stores the interactions of
the agents with the environment.

Belief generation: This component is one of the
most important of the cognitive model because it is in
charge of creating and storing the agent’s knowledge.
Moreover, it defines the agent’s beliefs.

Beliefs: The beliefs module is composed of the
inherited beliefs of the organization, lessons learned,
and agents’ interactions. Inherited beliefs are the
organization’s beliefs that the agent receives. For
instance: an organizational diagram of the enterprise,
the expertise of each employee, the philosophy of the
company or community. Lessons learned are the
lessons that the agent obtains while it interacts with the
environment This interaction can be used to establish
parameters in order to know what the agent can trust
(agents or knowledge sources).

Intuitions: The intuitions are beliefs that have not
been verified but which it thinks may be true.
According to [7] intuition has not yet been modelled
by agent systems. In this work we have tried to adapt
this concept by comparing the agents’ profiles to
obtain an initial value of intuition that can be used to
form a belief about an agent.

Goals: The goals are formed by the objectives of
the agent. For instance, one of the goals of each
member of a community of practice is knowledge
exchange. The goals are defined in accordance with
the community or group in which the agent interacts

4. Prototype

In order to test our architecture we have developed
a prototype system into which people can introduce
documents and where these documents can also be

567

consulted by other people. The goal of this prototype is
to allow software agents to help employees to discover
the information that may be useful to them thus
decreasing the overload of information that employees
often have and strengthening the use of knowledge
bases in enterprises. In addition, we try to avoid the
situation of employees storing valueless information in
the knowledge base.

The main feature of this system is that when a
person searches for knowledge in a community, and
after having used the knowledge obtained, that person
then has to evaluate the knowledge in order to indicate
whether:

The knowledge was useful.
How it was related to the topic of the search (for
instance a lot, not too much, not at all).

To design this prototype we have designed a User
Agent and a Manager Agent. The former is used to
represent each person that may consult or introduce
knowledge in a knowledge base. Therefore, the User
Agent can assume three types of behavior or roles
similar to the tasks that a person may carry out in a
knowledge base. The User Agent plays one role or
another depending upon whether the person that it
represents carries out one of the following actions:

The person contributes new knowledge to the
communities in which s/he is registered. In this
case the User Agent plays the role of Provider.
The person uses knowledge previously stored in
the community. Then, the User Agent will be
considered as a Customer.
The person helps other users to achieve their
goals, for instance by giving an evaluation of
certain knowledge. In this case the role is of a
Partner. So, Figure 3 shows that in community 1
there are two User Agents playing the role of
Partner, one User Agent playing the role of
Consumer and another being a Provider.

The second type of agent within a community is
called the Manager Agent (represented in black in
Figure 3) which must manage and control its
community.

Figure 3. Communities of agents

The prototype provides the options of using
community documents and updating reputation values,

proposing new topics in the community, etc. Due to
space limitations, we shall now describe only the
following situation:

Using community documents and updating
reputation values. People can search for documents in
every community in which they are registered. When a
person searches for a document relating to a topic
his/her User Agent consults the Manager Agent about
which documents are related to their search. Then, the
Manager Agent answers with a list of documents. The
User Agent sorts this list according to the reputation
value of the authors, which is to say that the
contributions with the best reputations for this Agent
are listed first. On the other hand, when the user does
not know the contributor then the User Agent consults
the Manager Agent about which members of the
community know the contributors. Thus, the User
Agent can consult the opinions that other agents have
about these contributors, taking advantage of other
agents’ experience. To do this the Manager consults its
interaction table and responds with a list of the
members who know the User Agent. Then, this User
Agent contacts each of them. If nobody knows the
contributors then the information is listed, taking their
authors’ expertise and positions into account. In this
way the User Agent can detect how worthy a
document is, thus saving employees’ time, since they
do not need to review all the documents related to a
topic but only those considered most relevant by the
members of the community or by him/herself
according to previous experience with the document or
its authors.

Once the person has chosen a document, his/her
User Agent adds this document to its own document
list (list of consulted documents), and if the author of
the document is not known by the person because it is
the first time that s/he has worked with him/her, then
the Community Manager adds this relation to the
interaction table. This step is very important since
when the person evaluates the document consulted,
his/her User Agent will be able to assign a trustworthy
value to that document. The formulas used to approach
this have been explained in [8] (they have been
omitted due to space constrains).

5. Conclusions

Communities of practice have the potential to
improve organizational performance and facilitate
community work. Because of this we consider it
important to model people’s behavior within
communities with the purpose of imitating the
exchange of information in companies that are

568

produced in those communities. Therefore, we are
attempting to encourage the sharing of information in
organizations by using knowledge bases. To do this
we have designed a multi-agent three-layer
architecture where the artificial agents use similar
parameters to those of humans in order to evaluate
knowledge and knowledge sources. These factors are:
reputation, expertise, position, previous experience and
even intuitions.

 This approach implies several advantages for
organizations as it permits them to identify the
expertise of their employees and to measure the quality
of their contributions. Therefore, it is expected that a
greater flow of communication will exist between them
which will consequently produce an increase in their
knowledge.

6. Acknowledgement

This work is partially supported by the ENIGMAS
(PIB-05-058), and MECENAS (PBI06-0024) project,
Junta de Comunidades de Castilla-La Mancha,
Consejería de Educación y Ciencia, both in Spain. It is
also supported by the ESFINGE project (TIN2006-
15175-C05-05) Ministerio de Educación y Ciencia
(Dirección General de Investigación)/ Fondos
Europeos de Desarrollo Regional (FEDER) in Spain.

7. References

[1] Balasubramanian, S., Brennan, R. and Norrie, D., An
Architecture for Metamorphic Control of Holonic
Manufacturing Systems. Computers in Industry, Vol. 46,
No. 1, 2001, pp. 13-31.

[2] Barber, K. and Kim, J., Belief Revision Process Based on
Trust: Simulation Experiments. In 4th Workshop on
Deception, Fraud and Trust in Agent Societies, Montreal
Canada, 2004.

[3] Fuentes, R., Gómez-Sanz, J. and Pavón, J., A Social
Framework for Multi-agent Systems Validation and
Verification. Wang, S. et al Eds. ER Workshops 2004,
Springer-Verlag, LNCS 3289, 2004, pp. 458-469.

[4] Gambetta, D., Can We Trust Trust? In Gambeta, D., ed.:
Trust: Making and Breaking Cooperative Relations,
Basil Blackwell, New York, 1990, pp. 213-237.

[5] Imbert, R. and de Antonio, A., When Emotion Does not
Mean Loss of Control. In Lecture Notes in Computer
Science, T. Panayiotopoulos, J. Gratch, R. Aylett, D.
Ballin, P. Olivier, and T. Rist, Eds. Springer-Verlag,
London, 2005, pp. 152-165.

[6] Marsh, S., Formalising Trust as a Computational
Concept. PhD Thesis, University of Stirling, 1994.

[7] Mui, L., Halberstadt, A. and Mohtashemi, M., Notions of
Reputation in Multi-Agents Systems: A Review.
International Conference on Autonomous Agents and
Multi-Agents Systems (AAMAS'02), 2002, pp. 280-287.

[8] Soto, J.P., Vizcaíno, A., Portillo, J. and Piattini, M.,
Knowledge Management Systems with Reputation and
Intuition: What for?, Accepted to be published in
International Conference on Enterprise Information
Systems (ICEIS'07), 2007.

[9] Ushida, H., Hirayama, Y. and Nakajima, H., Emotion
Model for Life like Agent and its Evaluation. In
Proceedings of the Fifteenth National Conference on
Artificial Intelligence and Tenth Innovative Applications
of Artificial Intelligence Conference (AAAI'98 / IAAI'98).
1998. Madison, Wisconsin, USA, 1998, pp. 62-69.

[10]van-Elst, L., Dignum, V. and Abecker, A., Agent-
Mediated Knowledge Management. In International
Symposium AMKM 2003, Stanford, CA, USA, Springer,
2003.

[11]Wasserman, S. and Glaskiewics, J., Advances in Social
Networks Analysis. Sage Publications, 1994.

[12]Wenger, E., Communities of Practice: Learning
Meaning, and Identity, Cambridge U.K.: Cambridge
University Press, 1998.

[13]Wenger, E., McDermott, R., and Snyder, W., Cultivating
Communities of Practice, Boston: Harvard Business
School Press, 2002.

[14]Wooldridge, M. and Ciancarini, P., Agent-Oriented
Software Engineering: The State of the Art. In
Wooldridge M., Ciancarini, P. (Eds.), Agent Oriented
Software Engineering, Springer-Verlag, LNAI 1975,
2001.

569

An Agent Based System for Search in Distributed Environments

LI SA, YONG-SHENG DING
College of Information Sciences and Technology, Shanghai University, Shanghai

201620, P. R. China
sali@ustc.edu, ysding@dhu.edu.cn

Abstract: The obvious problems that have infected the popularity of peer-to-peer (P2P) systems are effective information
search and traffic caused by the blind flooding-based search. In this paper, we have concentrated on developing an
agent-based model for controlling query messages that are represented as agent; the Ecologically Inspired Distributed
Search (EIDS), which derives its inspiration from natural ecosystem, is presented. As an experiment result, we compare its
performance against the well-known k-random walker approach.

Key-Words: Agent-based System, Peer-to-Peer, Distributed Search, Modeling and Simulation, Algorithm

1 Introduction
There has been a growing interest in peer-to-peer networks
since the initial success of some very popular file-sharing
applications such as Napster and Gnutella. A peer-to-peer
(P2P) network is distributed systems based on the concept
of resource sharing by direct exchange between peer nodes
(i.e., nodes having same role and responsibility).
Exchanged resources include content, as in popular P2P
file s are end systems in the Internet and maintain
information about a set of other nodes (called neighbors) in
the P2P layer. These nodes form a virtual overlay network
on top of the Internet. Each link in a P2P overlay
corresponds to a sequence of physical links in the
underlying network.

Early search mechanisms primarily used flooding or
k-random walk [1] algorithms. In the flooding approach,
each node propagates the query to all its neighbors. On a
receipt of a query, the node searches in its local repository.
If the object is found, it informs the query originator and
further search in that path terminate. If not, the node
further forwards the query to all its neighbors.

The flooding method generates a large amount of
network traffic. To overcome this problem, random walk
algorithms are often used. In Random Walks, the
requesting node sends out k query messages to an equal
number of randomly chosen neighbors. Each of these
messages follows its own path, having intermediate nodes
forward it to a randomly chosen neighbor at each step.
These queries are also known as walkers. Random Walkers
cannot learn anything from its previous successes or
failures, displaying high variability in all ranges of
requests.

The environments in which P2P applications are
deployed exhibit extreme dynamism in structure and load.
In order to deal with the scale and dynamism that
characterize P2P systems, a paradigm shift is required that
includes self-organization, adaptation and resilience as
fundamental properties. Complex adaptive systems (CAS)
commonly used to explain the behavior of certain
ecological [7] and social systems can be the basis of a new
programming paradigm for P2P applications. Here we are
concerned with the development of an ecosystem-inspired

approach to the design of agent systems for searching in
Unstructured Peer-to-Peer Networks.

Ecosystems have been a source of inspiration to a
number of previous developers of agent systems [2,3,4].
Moukas [3] employs ecosystem inspired ideas in the
Amalthaea architecture for information filtering. Paul
Marrow and colleagues [2] have advocated an
“information ecosystems” approach to support a variety of
information management applications. The interaction of
many simple agents was used to solve problems, rather
than sophisticated processing at the individual agent level.
Doran [4] provides a contrasting view of
ecosystem-inspired agent systems, using agent models to
assist in the management of natural ecosystems.

This paper developed an ecology-based model for
managing a number of search agents on the P2P networks
that can provide decentralized distributed robust control of
agents in the dynamic P2P network environments. This
kind of agents does provide a viable means of performing
network resource discovery, which makes P2P more
practicable. This paper is organized as follows: Sec.2
defines the model and states the attributions of agents; a
detailed description of all aspects related to the EIDS
algorithm. Sec.3, next to showing the performance of the
algorithm in comparison to other approaches, presents
experimental results and analysis. Sec.4 provides a
discussion of related work on agent based model used for
searching in peer-to-peer networks.

2 System Model
This section is divided into two parts. In the first part
(Section 2.1) we describe the framework chosen to model
the P2P environment. In the second part (Section2.2) we
describe the ecologically inspired search algorithm.
2.1 Environment Definition
The model framework involves three concepts: peers,
neighbors and search agents. The peers are typically
computing devices that can maintain some state, or
perform computations. A peer has a set of neighbors and is
able to send search agents to its neighbors only.

The factors which are important for simulating P2P
environments are the overlay topology. The overlay
topology consists of a two-dimensional grid responsible

570

for maintaining the neighborhood connections between the
peers in the P2P network. Due to the grid structure, each
peer residing in a particular node has a fixed set of eight
neighbors. Each grid is conceived to be containing a
heterogeneous distribution of peers of the P2P network
with one or more distinct resources. We assume that there
are 1024 unique resources; each of them can be
represented by a 10-bit binary token as the resource
information (RI). All agents take with also a 10-bit binary
token as their searching information (SI) when they move
across the environment. Similarity between a RI and a SI is
measured by the number of bits that are identical. That is,
sim(RI, SI) = d –HD(RI, SI), where HD is the Hamming
distance between RI and SI. Zipf’s distribution [5] is
chosen to distribute each of the 1024 unique resources in
the network. These resources are gathered and consumed
by the agent to survive. Each peer may be visited by at
most one agent at any time. At any time during the
evolution of the model, each agent has a distinct location
on the environment, characterized by the peer the agent
visits, and a distinct field of view, measured in grids. Each
agent has perfect knowledge of resource levels within its
field of view; an agent has no knowledge or memory of
resource levels outside its field of view. All the agents
have a fixed time to live. In addition, an agent has a
characteristic metabolic rate for the resource it finds and
consumes. Any resources found by an agent can be
retained as energy without constraint. If an agent’s energy
diminishes to zero, the agent dies from starvation.

2.2 Environment Definition
The ecologically inspired search is a distributed algorithm
in which queries are represented as agents. The agents are
created at the peer who issued the query and travel over the
P2P network in which peers are arranged in a grid-like
topology, as in the Swarm simulator [6]. At random times,
each agent makes a random number of hops along the P2P
network.

The search in our P2P network is initiated from the
user peer. The user emanates search agents (message
packets) to its neighbors-the packets are thereby forwarded
to the surroundings. The method of spreading search
agents forms the basis of the algorithm.

Ecosystems usually have several attractive qualities
(such as dynamic decentralized control, self regulation, no
single point of failure, robustness, and stability) that we
require for P2P system. We propose a solution to the
problem of controlling the number of agents appropriate
for a search which is inspired by large ecosystems
(Figure.1):

1. Each kind of resources (Resources could be files in a
file-sharing system or CPU cycles in a computational grid.)
in P2P system will be associated with energy.

2. Agents finding a resource successfully will collect
the energy associated with the resource.

3. Agents consume energy over time to sustain their
existence.

4. Agents that exceed the time to live or exhaust their
supply of energy die.

5. Abundance of energy can cause a new agent to
spawn.

All search operations are controlled by a set of
micro-scale rules. The spatial distribution of resources are
searched, the energy associated with the resources are
gathered and consumed by the agents to survive.

An agent has two dynamic attributes behavioral
attributes:

The current energy level (EL): The current energy
level of the agent. If this falls below zero the agent
will die.
The agent’s age (AA): Measured in number of
hops.

Figure.1 Flowchart of agent behavior

In addition, an agent has a number of static attributes
that do not change during their lifetime:

Search Profile (SP): Built from the informational
interest of the peer by which the agent is made.
Metabolic Rate (MR): The amount of energy it
consumes during each hop.
Energy received at Birth (EB): The energy the
agent is born with.
Energy need for reproduce (ER): The energy the
agent needs to attain before it can reproduce.
Time to Live (TTL): The agent’s maximum
possible age. It represents the maximum
hop-distance a search agent can reach before it gets
discarded.

As time evolves, four micro-scale behavioral rules
control the search agents-Query Start Rule (QSR),
Resource Search Rule (RSR), Reproduce Rule (RR) and
Die Rule (DR). These rules are explained as following:
Query Rule: A query is initiated by a randomly selected
peer who requests for some kinds of resources. To obtain
an answer to the request, agents are generated by the peer
and flooded in its neighboring peers. The Query Start
Rule is elaborated below.
Rule 1 QR: Generate Search Agent (SA)
/*Agents are generated by the peer in response to
user requests. */

571

The peer emanates search agent (SA) to its neighbors.
Search Rule: Once the search agents are emanated, they
hop from peer to peer in subsequent time steps. Whenever
a search agent moves to a peer, it checks whether the peer
has earlier been visited or not. If not, then the agent moves
to the peer. In this connection, each peer maintains a field
named visit (V), a field named resource profile (RP) and a
field named new energy (NE). A successful search is
reported if the required resource can be found in this peer.
A flag will be set to true to indicate a successful search. An
algorithmic form for the resource search rule (RPR) is
presented as follow.
Rule 2 SR: If (Search agent (SA)) Start
 AA++;
 V++;

If ((V = = 1) AND (SP = RP)
 /*Report a match, V = 1 indicates first
time visit by an agent.*/

 flag = true;
 EL = EL + NE;
 Update;
Reproduce Rule: Once the current energy level of the
search agent exceeds a threshold, the agent will spawn a
new one and splitting its current energy in half.
Rule 3 RR: If (Search agent (SA)) Start

If (EL >= ER) /*The agent get enough energy
for reproduce.*/

 Produce a new agent;
 EL = EL/2;

Die Rule: When the agent’s age reach the time to live
(TTL) value, or the current energy level of the agent falls
below zero, the agent will die.
Rule 4 DR: If (Search agent (SA)) Start
 If ((AA >= TTL) OR (EL <= 0))
 The agent die;

2.3 Performance Metrics
In this paper we focus on efficiency aspects of the
processes solely, and use the following simple metrics in
our abstract p2p networks.

Hit rate is defined as the number of resources found
for each agent within a given period of time.

Average number of hops per successful query. This
parameter depends on the topology of P2P network as well
as on how effectively search mechanism uses it. The less
hops is required in average to find requested data, the less
traffic is generated and the less time is required for search.

Population of agents. The number of agents needs
to find the requested resource according to the distribution
of resource in the uncertain network environments.

Based upon the above mentioned model and metric
definition, we now present the experimental results.
Simulation runs on Pentium 2.3 GHz with 1GB RAM
under windows XP.

3 Simulation Result and Analysis
The experimental results illustrate the efficiency of the
algorithms and the effect of controlling the number of
agents dynamically based on ecologically inspired control
mechanism. This mechanism is completely distributed,

executed locally and uses only locally available
information. Thus, no globally available information is
required. The emergent behavior resulting from the
individual localized control decisions will yield an
optimal, or sufficiently optimal, solution at the global
level. For comparison, we also simulate experiments with
k-random walk. The time-step experiment is elaborated
next.

3.1 Search Efficiency
The search is initiated by a randomly selected node and the
number of resource found each time-step from the
commencement of the search is calculated. The value of
resource hit rate provides the indication of search
efficiency. Figure. 2 shows the result of running the
time-step experiment for 20 generations (1 generation is
100 time-steps). The time-to-live parameter is set to 25,
and k is set to 12, grid size is 100 100.

Figure.2 Average number of hops per successful query

We expect that if an agent employs spawn strategy, the
total number of agents would increase, the hops required to
complete a search would decrease. When EIDS and
K-Random Walk are compared, EIDS requires much fewer
hops (6 hops) than K-Random Walk (32 hops). In fact,
K-Random Walk constantly requires a large number of
hops.

The decision for agents spawn strategy is based on a
parameter [0, 1]. For example, if parameter is set to 0.8,
each agent will employ the spawn strategy in 80% of the
cases. If the parameter is set to 1, then the agent will spawn
a new agent whenever its energy level is above a threshold;
when the parameter is set to 0, the agent will never spawn
any new one, in the fact, it employs the k-random walk
strategy.

The hit rate is dependent on parameter not only in the
start-up phase, but also in the converged phase (Figure.3).
The more search agents in the network, the higher the hit
rate. The best result can be reached when setting = 1.
After ten generation, 2.8 resources on average are found in
this case. All the five curves employing spawn strategy
converge to the same limit over time. The worst result is
obtained when setting = 0, which is the k-random walk
case, the performance stays constant with on average 0.6
resources are found. We see that search efficiency of
spawn agents is almost 3-4 times higher than that of
k-random walkers.

572

Figure.3 Hit rate per generation

3.2 Ecosystem Inspired Control of Agent’s
Population

The system of search agents and the environment they
inhabit, i.e., the P2P network, consist of an information
ecosystem. All peers can be seen as both information
producers and consumers; as consumers, peers send agents
(queries) for searching information resources they required,
these living agents survive in the context of limited
information resources they can find in the network
environment. Agent population is determined by the
resources of P2P network, the “carry capacity” of the
networked information environment, that is, by the size of
the relevant set for the given query (Figure.4).

Figure.4 Agent population over time (TTL=6, Size=
30 30)

Figure.5 Average hits over time (TTL=6, Size= 30 30)

As the number of agents in the system grows at the
beginning of simulation, the resource they find increase
rapidly; when the resource the agents can find reach the
max mount of resource, agent population fluctuates within

a definite scope, that’s to say the population reach the carry
capacity of network environment, and the hit rate maintain
a steady average change (Figure.5).

4 Conclusions
The most important functionality of P2P network is search.
In this paper, we have concentrated on developing an
agent-based model for controlling query messages that are
represented as agent; a search algorithm which derives its
inspiration from natural ecosystem is presented.
Experiment results above show that this ecologically
inspired algorithm is much more efficient search method
than k-walker random walk. Each additional step in the
search increases the number of nodes visited by only a
constant. So exponentially increased over load on each
visited node by flooding can be avoided. The basic
strengths displayed by the EIDS algorithm need to be
further explored and developed, by applying it in more
realistic circumstances in the near future.

References:
[1] Q. Lv, P. Cao, E. Cohen, and S. Shenker. Search and

replication in unstructured peer-to-peer networks. In
Proceedings of the 16th ACM Conference on
Supercomputing, 2002.

[2] C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core
specification and experiments in diet: a decentralised
ecosystem-inspired mobile agent system. In Proc. of
AAMAS 2002, pp. 623-630.

[3] Moukas, A. Amalthaea: Information Discover and
Filtering using a Multiagent Evolving Ecosystem.
Proc. Conf. Practical Applications of Agents and
MultiAgent Technology, 1997.

[4] G. K. Zipf. Psycho-Biology of Languages.
Houghton-Mfflin, 1935.

[5] The SwarmWiki environment, Center for the Study of
Complex Systems, the University of Michigan,
http://www.swarm.org/wiki.

[6] Pack Kaelbling, L., Littman, M.L., & Moore, A.W.
Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 1996, pp. 237-285.

[7] N. Minar, M. Gray, O. Roup, R. Krikorian, and P.
Maes. Hive: distributed agents for networking things.
In: Proceedings of ASA/MA '99, 1999.

573

Tree Hash Under Concurrency Control

Kyosuke YASUDA Takao MIURA
Dept.of Elect. and Elect. Engineering, Hosei University

Kajinocho 3-7-2, Koganei, Tokyo, Japan

Abstract

Dynamic Hash allows us to adjust the size of hash space
dynamically, i.e., we can change the space size dynami-
cally according to volume of data to maintain efficiency
for retrieval and insert. We have proposed Tree Hash (Tree
Hash,TH) as a new hash structure so far. By the technique,
the hash space grows smoothly and hierarchically while the
space avoids severe damage to efficiency caused by bucket
split during batch (consecutive) insertion. Also we can re-
lieve excessive I/O caused by overflow splitting. In this in-
vestigation, we discuss concurrency control mechanism for
tree hash technique to improve total throughput. Here we
examine two kinds of parallelism, one by key level and an-
other bucket level. We show how to implement the mecha-
nism based on a framework of compensation transactions.
Keywords: Tree Hash, Concurrency Control, Compensation
Transaction

1 Introduction

Compared to single user execution, it is hard tremen-
dously for us to control concurrent access: multiple updates
may arise at the same time, one should undo some change
while other might retrieve them. In theory of transaction,
several important aspects have been focused on atomicity,
consistency, isolation, and durability, called ACID, as well
as deadlock issues.

For the purpose of highly efficient data management,
many kinds of hash techniques have been proposed so far.
In fact, the technique allows us to retrieve and update data
in O(1). This is especially useful for online real-time en-
vironment. Dynamic Hash allows us to adjust the size of
hash space dynamically, i.e., we can change the space size
dynamically according to volume of data to maintain effi-
ciency for retrieval and insert while keeping constant den-
sity1 We could see many implementation based on this ap-
proach such as Linear Hash(LH)[1].

1Note ”density” means the ratio of the practical number of data to the
space size.

To obtain efficient data management under parallel en-
vironment, we should examine theory of transaction to the
hash technique. In [2], they have discussed linear hash un-
der parallel environment. They introduce 3 kinds of locks,
read-lock, selective-lock, and exclusive-lock and 5 kinds of
operations on a lock compatibility matrix for retrieval and
update to buckets. One of their problems is that deadlock
arises very often in the case of small hash space. By using
multi-level lock [3], we can improve the problem. The main
idea comes from using both key lock and page lock. Also,
by compensation transaction, we can manage recovery pro-
cess efficiently.

It is well-known that there exist severe problems in LH
to insert buckets. In fact, when the space grows linearly,
the bucket of just overflowed remains unchanged but the
space must contain longer overflow-chains. We have pro-
posed Tree Hash by which we can relieve the situation of
interest[4].

In this investigation we propose a concurrency control
suitable for tree hash. Here we introduce three kinds locks
and two levels of locks to manage concurrency control sim-
ilar to the one for linear hash. We show, by some experi-
mental results, there happen fewer deadlocks but better ef-
ficiency.

In section 2 we quickly review basic ideas of Tree Hash,
and in section 3 we define concurrency control suitable for
hash structures. Section 4 contains some experiments, anal-
ysis and the comparison with other approach. We conclude
our investigation in section 5.

2 Tree Hash

We have proposed Tree Hash (TH) to improve bucket-
bias issues caused in LH. The basic idea is that we split the
overflowed bucket hierarchically.

The main difference of LH and TH comes from the two
points, hashed value calculation and bucket splitting. In TH,
we use L that corresponds to level. L is defined as the max-
imum among the level values. In TH, L are called as root
variables. We manage bucket address through a bucket ad-
dress table.

574

Figure 1. Bucket Split

Let j = L initially. Then we obtain a hashed value a
through an algorithm: a ← hj(C) = Cmod 2j ; If there
exists no bucket address a in the bucket address table, we
put j ← j − 1 and calculate a again. We repeat the process
until we see a in the bucket address table. That is, once we
examine a bucket with the longest bit-length but we don’t
find the data, we cut down the length and apply the process
again.

Because we don’t have growth position in TH for bucket
splitting, we can split any bucket at any time. Since we
can split any bucket according to the first bit, we may have
bucket splitting as a tree structure in Figure 1. Note that the
tree means history of bucket-splitting, but not a collection
of many intermediate bucket-nodes organized into a tree.

Because buckets in TH are independent with each other,
we can apply arbitrary conditions for splitting. In this in-
vestigation, we assume following conditions:
(1) There exist overflows in a bucket and the density is
greater than a given load factor.
(2) There exist overflows in a bucket and the level of the
bucket is less than or equal to a threshold value.
(3) The ratio of data in the bucket just after splitting is
greater than a threshold value. When we split a bucket, we
get the following values using the level m of a bucket at a:
a′ ← a + 2m;m = m + 1; We split a bucket at a into two
buckets at a and a′, move appropriate data to a′ and we add
a′ to the bucket address table.

EXAMPLE 1 Let us show an example of inserting key
Ann when there exist two buckets at 0 and 1. Let us assume
that we get hashed value 1 and insert the key in a bucket at
1, and that we see a bucket at 1 is divided into two buckets.
A bucket 1 is divided into a bucket 01 and a bucket 11 (Fig-
ure 1). Since a bucket address has bit-length 2, the level L
becomes 2.

We can implement Tree Hash structure under distributed
environment. For more detail see [4].

read-lock selective-lock exclusive-lock
read-lock Yes Yes No

selective-lock Yes No No
exclusive-lock No No No

Table 1. Lock Type

3 Concurrency Control of Hash Structure

3.1 Concurrency Control

As described before, TH is different from LH only at
hash value calculation and splitting-control, it is possible to
apply concurrency control techniques of LH directly to TH.
In LH, we should have 5 kinds of data manipulations, re-
trieve, insert, delete, split and merge. Since we can describe
merge and delete by the combination of the basic operations
in TH, we put our focus on insert, split and retrieve.

Generally there arises some conflict against multiple up-
dates to a same key. In both of LH and TH, it is possible to
retrieve, insert and split buckets that are currently retrieved
without any control. However, a problem arises when we
split a bucket to which we are retrieving with some key
data, and we need some sophisticated mechanism such as
lock to block splitting. Similarly we can retrieve, insert and
split buckets to which we are now inserting some key data.
However, when we apply undo data to recover from abort
of insertion, we can’t retrieve and split the buckets that we
are now inserting key data.

When there happens overflow, we should block inserting
key data until we complete linking overflow-chain correctly.
And finally it is impossible to retrieve, insert and split buck-
ets that we are now splitting.

When some operation terminates abnormally (or an op-
eration aborts), the recovery process should be invoked be-
cause many update operations make the data space incon-
sistent. We apply compensation process to recovery from
abort. By compensation process we can undo all the up-
dates in the aborted process by applying reverse-updates in
a reverse order, i.e., ”delete a” for ”insert a”, ”update a with
b” for ”update b with a” and so on. By the process, we can
manage recovery without any special control mechanism
but we can update buckets directly for recovery indepen-
dently of other (usual) processes, if there is no intervention
among them.

3.2 Lock Types and Compatibility Matrix

In our TH concurrency control we introduce three types
of lock control, read-lock, selective-lock and exclusive-lock.
Basically retrieval requires read-lock, insertion selective-
lock and splitting exclusive-lock for the bucket of interest.

575

To see how well lock mechanism works, let us illustrate
Lock Compatibility matrix in a table 1.

Let us note that, in this investigation, there are 2 levels
of lock control, key-lock and page (bucket) lock. To get a
lock on key value, we set a lock on a bucket containing the
key first, then we set a lock on any part in the bucket or
the overflow area. Once we lock the key, we release page-
lock so that multiple processes could insert key data into a
same bucket. We get read-lock on a key for retrieval, and
exclusive-lock on an empty place in a bucket for inserting
key. We get an exclusive-lock on an overflow part even if
exclusive-lock or read-lock have already been applied to the
overflow. Note that we permit read-lock to retrieval of key
data that the process has inserted. ”Split” operation permits
neither retrieval nor insertion for a bucket that has been al-
ready processed, and we keep holding exclusive-lock for
the bucket. Once we commit the process, we release all the
locks.

3.3 Re-Hash Scheme

During TH process given a key, we go to some bucket
through a hash function with some root variables, but we
may see the bucket has different level value because of split-
ting before, and we should maintain a correct hash value to
get to the key value. Then we should go to another bucket
from the current bucket position. Here is an algorithm for
the re-hash scheme with the level j which the bucket keeps:
if (m > j) then j = j + 1; a ← hj(C) = Cmod 2j ; As
shown in the algorithm, we get some lock on a bucket, but
if this is not the one at a, we release the page-lock and lock
a correct bucket at a.

3.4 Operation Sequence in a Transaction

Let us discuss the whole configration of TH processes
organized into a transaction and how to work. In a figure 2
let us show a typical execution sequence in the environment.

First a user sends a request (a collection of operations
which constitute a logical unit of works) to his/her transac-
tion manager(TM). The request corresponds to a transac-
tion. After logging the request, TM initiates a set of retrieve
or insertion processes according to the request. Each pro-
cess requires locks to the page and the key at first. TM
watches waits for clearing all the lock requests for a while,
otherwise there exist some lock conflicts and TM restart all
the processes from scratch. Once the processes get several
locks on buckets, they starts with inserting or retrieving the
key values. TM waits for completion of all the processes.
When some retrieve or insert process may abort, the pro-
cess gets restarted by TM after the compensation process
completes the effort. TM generates the log output, commits

Figure 2. Operation Sequence

the work, and tells the result to the user. Note there are two
types of synchronization by TM, one for clearing all the lock
requests and another for completion of all the processes.

We may have the situation to start with splitting buckets
when an insertion process terminates. Then TM initiates
”split” process which gets locks on buckets and split. The
process generates the log message and commits as usual.

3.5 Deadlock and Compensation Process

When terminating all the processes by force, we may
have the situation of deadlock. In this work, we detect dead-
lock by means of timeout protocol, i.e., we believe there
arises a deadlock after some interval and we kill one of the
processes waiting for lock-clearing.

The compensation process keeps holding the locks on the
key and the bucket during recovery. Thus we can keep the
hash space consistent from other access. The compensation
process recovers the space by applying reverse operations
in a reverse order. After completing the work, the compen-
sation process releases all the locks.

EXAMPLE 2 Let us insert the key ”Ann” into the TH
space. Once TM puts the log message, an insert process
(IT) gets lock on root variables, and obtains hash value of
the key. Assume IT gets answer 1 and releases the lock on
the variables. Then IT gets selective-lock on a bucket 1. IT
applies re-hash scheme to the key because the bucket may
be split during IT. Assume IT gets answer 1 again, which
means IT still keeps the desired bucket and keeps holding
the lock on the key.

576

Figure 3. Control of Lock and Unlock

Since there exists an overflow, IT gets exclusive-lock on
overflows and does some works. IT waits for the comple-
tion of all other processes. After taking synchronization, IT
inserts the data and takes synchronization again. TM writes
the log message, IT commits the work and unlocks the key.

If we split a bucket during inserting a key ”Ann”, ”split”
process (ST) writes the log message and gets exclusive-lock
on a bucket B, in our case, a bucket 1. ST generates a new
bucket b and gets a lock on it, in our case, a bucket 11 for
TH. Then we decompose the bucket B into the two buckets.
ST waits for releasing the lock on the key.

When the process aborts during splitting a bucket, a com-
pensation process begins. The process reads the log and
start recovering. The process examines whether splitting
happens at a bucket b, and may combine two buckets for
recovery. Finally the process releases the locks.

ST restarts splitting after geting exclusive-locks on the
bucket B. ST gets exclusive-lock on root variables and ad-
justs them. ST writes the log message, commits work and
releases the locks on root variables and on the bucket.

We illustrate he whole sequences in a figure 3 containing
lock and unlock.

4 Experimental Results

In this section we show some experimental results to see
the effectiveness of concurrency control for TH. We also
discuss some comparison with LH.

Experiment Number 1 2 3 4 5 6
InsertedRecords X 25000 25000 25000 25000 25000

Transaction 20 X 20 20 20 20
Multiplicity 200 200 X 200 200 200

MemoryCapacity 30 30 30 30 X 30
AbortProbability 2 2 2 2 2 X

Table 2. Parameters in Experiment

InsertedRecords LH(I) TH(I) LH(R) TH(R)
10000 3.075 2.702 1.280 1.044
25000 3.138 2.736 1.718 1.414
50000 3.203 2.712 1.524 1.343

100000 3.255 2.618 1.431 1.309

Table 3. InsertedRecords.I/O

In this experiment, we use a collection of 120,000 coor-
dinates records of non-uniformly distribution, which corre-
spond to postal addresses area of New York, Boston and
Philadelphia2. We examine the collection by simulating
multiple transaction environment through multi-threading
in Java. We evaluate the results by counting bucket I/O per
data.

Here we examine 6 experiments described below. In this
work, we assume three conditions over bucket splitting[4].

(1) 0.90 as Load factor
(2) L− 2 as a splitting level
(3) 0.80 as the ratio of data in a bucket just after
splitting

Here we adjust L value only if level values in more than 3
buckets goes beyond L.

There are 5 parameters for our experiments. ”Inserte-
dRecords” means how many data we insert to TH space,
”Transaction” means how many processes a transaction
consists of, ”Multiplicity” means the total number of con-
current processes, ”MemoryCapacity” shows teh size of
cache memory and ”Abort Probability” means probability
assumption how many processes abort. Let us illustrate all
the combination of the parameters in a table 2. We examine
a value X as a variable in each experiment.

We insert data successively and retrieve them succes-
sively afterwards. Let us note that ”(I)” in the table means
the insertion case, ”(R)” the retrieval case, ”(A)” the counts
of abort and ”(D)” the counts of deadlock.

4.1 Inserting Records

First of all, let us examine how many I/O we need de-
pending on the number of insertion in an experiment 1.
We discuss the efficiency with 10000, 25000, 50000 and

2www.rtreeportal.org

577

InsertedRecords LH(I)(A) TH(I)(A) LH(R)(A) TH(R)(A)
10000 2.047 2.010 2.380 1.770
25000 1.987 2.040 2.144 1.996
50000 2.105 2.160 2.098 2.024

100000 2.156 2.233 2.011 2.545

Table 4. InsertedRecords.Abort

Transaction LH(I) TH(I) LH(I)(D) TH (I)(D)
10 3.249 2.753 1.667 1.333
20 3.138 2.736 1.000 0.667
30 3.120 2.666 5.000 2.333
50 3.124 2.634 21.333 25.667

Table 5. Transaction

100000 data. We show the results in tables 3 and 4 where
the value tells the average number of bucket I/O per record.

Clearly the more data we insert, the more the number
of I/O we need. Compared to LH, TH shows slightly less
I/O but the number increases by about 0.1 to 100,000 from
10,000. Especially all the TH(I) cases preserve about 2.7
while LH cases needs 0.4 additionally. Thus we can say TH
keeps efficiency independently of the number of data.

As for retrieval cases, both LH and TH show efficient
performance especially in more than 50,000 cases. TH(R)
cases are superior to LH, 0.2 less I/O. The main reason is
that we need less access to overflow in TH, say 2/3.

Through this experiment we see 2 % as ”abort” probabil-
ity, the value is almost same to both cases of insertion and
retrieval and to the initial probability parameter. This means
there happens less process abort caused by deadlock.

4.2 Transactions

In an experiment 2, we examine how TH performs well
under many processes given a multiplicity (the total num-
ber of processes). Note that one request (a transaction by a
user) can be divided into several processes and executed in
a concurrent manner. Here we discuss the efficiency under
the conditions how many processes we have within a trans-
action under the condition of the multiplicity 200. Let us
show the results in tables 5.

In this experiment we see there is no difference of I/O
counts in a ”retrieve” case because of no deadlock. We show
only insertion case.

The I/O counts decrease by 0.1 when the number of con-
current processes increases. In our approach TM generate
log output and the I/O count decreases when the number of
transactions of each request becomes bigger. In a case of
the number 10, each process needs 0.2 I/O for logging, but
the number of processes is 50, each process requires 0.04

Multiplicity LH(I) TH (I) LH(I)(D) TH(I)(D)
200 3.138 2.736 1.000 0.667
400 3.153 2.739 1.667 0.667
600 3.168 2.757 28.667 37.333
800 3.200 2.789 97.333 72.333

Table 6. Multiplicity

I/O for logging.
In this experiment there arises deadlock very often when

the number of processes is more than 30. With bigger num-
bers of processes in a request, deadlock arises more often
since there exist more interfere among processes with each
other. However, according to the experiment, we have less
I/O caused by by deadlock than I/O by logging.

4.3 Multiplicity

In experiment 3, we examine TH efficiency with vari-
ous multiplicity. Remember ”multiplicity” means the total
number of processes. If a transaction consists of 20 pro-
cesses with the multiplicity 200, there can be at most 10
users concurrently. Let us show the results in tables 6.

In this experiment we see there is no difference of I/O
count in a ”retrieve” case, and we discuss only insertion
case here.

The more transactions there are the more often we see
deadlock. This is because we may get locks on same buck-
ets as in other transactions if we have more and more mul-
tiplicity. The number of deadlock grows dramatically when
multiplicity is more than 600, and the number of deadlock
can’t be proportional to multiplicity.

In both TH and LH, the number of I/O increases by 2 %
for insertion with multiplicity 800. When a process aborts
because of deadlock, we don’t need to delete the dirty data.
Thus the number of I/O is 2, one for accessing log and an-
other for accessing a bucket. We need 1.7 I/O for recovery
which is theoretical minimum.

4.4 Memory Capacity

In TH processing we assume cache memory manage-
ment to reduce I/O counts based on Least Recently Used
(LRU) policy. Here we examine how about the relationship
between memory size and TH efficiency. Let us show the
results in tables 7.

Basically the more memory we have the less I/O hap-
pens. In our process, we examine whether the bucket is
correctly located in memory after getting page-lock. Other-
wise we go to the bucket after getting lock on the key. In
our experiment 5, we have 90 percent of I/O count with the
memory capacity 90 compared to 10.

578

MemoryCapacity LH(I) TH(I) LH(R) TH(R)
10 3.238 2.812 1.754 1.418
30 3.138 2.736 1.718 1.414
50 3.063 2.664 1.682 1.307
70 2.972 2.584 1.643 1.330
90 2.883 2.509 1.607 1.296

Table 7. MemoryCapacity

Probability LH(I) TH(I) LH(R) TH(R)
0 3.078 2.673 1.691 1.344
2 3.138 2.736 1.718 1.380
4 3.215 2.814 1.740 1.409
6 3.289 2.868 1.772 1.435

Table 8. AbortProbability.I/O

4.5 Abort Probability

Finally we examine actual probability of process abort.
Let us show the results in tables 8 and 9.

When a TH process aborts, we should erase dirty data in
a reverse order. Then we have special I/O for log reading,
the bucket retrieval and deleting. We need 1.7 I/O for log
reading, appropriate number of I/O for retrieval and 1 for
deleting. Through our experiment, we need 4.42 I/O for LH
and 4.10 for TH in total. If no deletion is necessary, we need
1.7 I/O. Average I/O for recovery becomes 3.06 for LH and
2.90 for TH when 50 percent of aborts is no deletion case.

As a result, we need 3.40 I/O in LH and 3.03 I/O in TH
for recovery. However, there exists relatively large variation
of 0.2 because of deadlock.

We see the abort probability given as a parameter and the
actual probability are almost the same. Looking at deadlock
0-4, we see abort has no effect on deadlock.

4.6 Discussions

By our experiments, we can say that LH and TH work in
a similar manner.

To reduce I/O count, we must have (1) small number
of data, (2) large memory, (3) lower multiplicity, and (4)
large number of concurrent processes within a transaction.
In TH, the condition (1) is straightforward. We must have
more deadlock without (2). However, we have both less I/O
caused by large memory capacity and more I/O count by
deadlock, and by our experiment, we can say we’d better
have enough memory.

The conditions to avoid deadlock are (1) lower multi-
plicity and (2) large number of concurrent processes within
a transaction. When the multiplicity exceeds the thresholds

Probability LH(I)(A) TH(I)(A) LH(R)(A) TH(R)(A)
0 0.152 0.027 0.000 0.000
2 1.987 2.040 2.144 1.996
4 4.047 4.272 4.044 4.228
6 6.167 6.480 6.520 6.316

Table 9. AbortProbability.Abort

at the conditions (1) and (2), deadlock arises more often and
we should give the appropriate threshold values.

TH is not really different from LH from the viewpoint of
abort probability and deadlock. However, we have less I/O
for recovery for abort and as well as all the aspects pointed
in the experiemnts, TH is superior to LH. Moreover, the
efficiency in TH is independent of data size, and is more
useful under concurrency control.

Remember that we can manage splitting conditions arbi-
trarily, and that dynamically we can adjust efficiency caused
by splitting under heavy traffic situation.

5 Conclusion

In this investigation, we have examined the concurrency
aspects for Tree Hash. By several experimental results, we
have shown the superior properties. It is possible to manage
TH space efficiently without excessive deadlocks by giv-
ing parameters in a suitable manner, and we can recover
the space with less I/O independently of other processes by
means of compensation approach. We can adjust efficiency
caused by splitting under heavy traffic situation.

Let us point out that there can be TH under the dis-
tributed environment[4]. There remains how to do that.

References

[1] Litwin, W.: ”LINEAR HASHING : A NEW TOOL
FOR FILE AND TABLE ADDRESSING”, In Proc. of
VLDB, 1980.

[2] Ellis, C. S.: ”CONCURRENCY IN LINEAR HASH-
ING”, In ACM Transactions on Database Systems
(TODS), 1987

[3] Madria, S.K., Tubaishat, M.A.: ”AN OVERVIEW OF
SEMANTIC CONCURRENCY CONTROL IN LIN-
EAR HASH STRUCTURES”, In Intn’l Symposium on
Computer and Information Systems (ISCIS98), 1998

[4] Yasuda,K. Miura, T. and Shioya, I.: ”DISTRIBUTED
PROCESSES ON TREE HASH”, In Computer Soft-
ware and Applications Conference (COMPSAC ’06),
2006

579

Query Processing in Paraconsistent Databases in the Presence of Integrity
Constraints

Navin Viswanath Rajshekhar Sunderraman

Georgia State University, Atlanta, GA 30302

E-mail: nviswanath1@student.gsu.edu,raj@cs.gsu.edu

Abstract

In this paper, we present an approach to query process-
ing for paraconsistent databases in the presence of integrity
constraints. Paraconsistent databases are capable of repre-
senting positive as well as negative facts and typically oper-
ate under the open world assumption. It is easily observed
that integrity constraints are usually statements about nega-
tive facts and as a result paraconsistent databases are suit-
able as a representation mechanism for such information.
We use set-valued attributes to code large number of reg-
ular tuples into one extended tuple (with set-valued com-
ponents). We define an extended relational model and al-
gebra capable of representing and querying paraconsistent
databases in the presence of integrity constraints. The ex-
tended algebra is used as the basis for query processing in
such databases.

1 Introduction

The relational data model introduced by Codd ([6]) has

been a major success story in computer science and is the

basis for the database systems widely in use. Relations al-

low only atomic values in the domains of attributes (First

Normal Form) and negative information is inferred using

the Closed World Assumption (CWA). These assumptions

are quite reasonable in traditional applications, but are ques-

tionable in newer application domains such as scientific

and life science data management. Scientists usually do

not prefer to use default negation rules to infer negative

data and rely on the open world assumption. Several re-

searchers ([5, 7, 9, 12]) have looked into the problem of

representing and manipulating negative data explicitly in

databases. Such databases have been referred to as para-

consistent databases as they are based on 4-valued paracon-

sistent logic ([4]). In [2], Bagai and Sunderraman intro-

duced paraconsistent relations, a framework for relational

databases to represent and query explicit negative facts.

Paraconsistent relations represent both positive as well as

negative facts explicitly and hence employ the open world

assumption for negative data. Paraconsistent relations and

their associated algebra were used in [1] to compute the

well-founded semantics of logic programs. In this paper,

we propose to further extend the notion of paraconsistent

relations to include set-valued attributes. We show that this

extension is suitable for query processing in the presence of

integrity constraints.

Relations that contain relations as tuple components are

called non-first normal form relations [8, 10, 11]. In this pa-

per, we restrict our attention to relations that allow only sets

as tuple components and thus is a special case of non-first

normal form relations [8, 10]. If the domain of an attribute

is a subset of the powerset of the atomic-valued domain, we

call it a set-valued attribute. The extended relational model

requires that the domain of attributes be set-valued. Atomic

values are represented as singleton sets. Every row in such

an extended relation shall henceforth be called an s-tuple to
differentiate it from the term tuple that we normally asso-
ciate with regular relations and the relations will themselves

be called s-relations. Since tuple components in s-relations
are set-valued, we extend the notation to allow the “comple-

ment” operation from set theory. It will be shown that this

notation, apart from increasing the clarity and simplicity

of representation, also increases the power of the algebra,

specifically when applied to paraconsistent relations. Thus

tuple components can also contain {a} which represents a
set containing all elements in the domain of the attribute ex-

cept a, and φ, the empty set. Null values in s-relations are
thus represented as φ. φ̄ will now represent the entire do-
main. We will also make the assumption that all attributes

have the same domain φ̄, without any loss of generality.

Consider student(ssn,name,phone), a simple
predicate, which describes students. In our set-valued

paraconsistent relational model, we will be able to ex-

press facts such as ”Student John has ssn 1234 and has

two phones 1111 and 1112” using the s-tuple notation <
1234, John, {1111, 1112} > to denote a positive fact. The
functional dependency constraint ssn → name would al-
low us to infer negative facts in the form of the s-tuple

580

< 1234, {John}, φ >.
The rest of the paper is organized as follows: Section

2 presents the set-valued extension to the relational model.

Section 3 presents the set-valued extension to the paracon-

sistent relational model. Section 4 presents query process-

ing approaches for paraconsistent data in the presence of

integrity constraints. Section 5 concludes with a discussion

on future work.

2 A Set-Valued Extension to the Relational
Model

Let a relation scheme Σ be a finite set of attribute names,
where for any attribute name A ∈ Σ, dom(A) is a non-
empty domain of values for A. A tuple on Σ is any map

t : Σ → ∪A∈Σdom(A), such that t(A) ∈ dom(A) for each
A ∈ Σ. Let t(Σ) denote the set of all tuples on Σ [2].

An ordinary relation on schemeΣ is thus any subset of t(Σ).
Now we define the notion of s-tuples and s-relations:

s-tuple.An s-tuple on Σ is any map t : Σ → ∪A∈Σdom(A),
such that t(A) ⊆ dom(A) for eachA ∈ Σ. Let τ(Σ) denote
the set of all s-tuples on Σ. Then, τ(Σ) =< φ̄, φ̄, . . . , φ̄ >.
s-relation. An s-relation on scheme Σ is a set of s-tuples on
Σ.
Figure 1 shows an s-relation in which each s-tuple has set-

STUDENT

SSN Name Ph

{111} {Tom} {4046514633, 4046654321}
{888} {Jennifer} φ

Figure 1. An s-relation, STUDENT

valued components. The φ in the last s-tuple indicates that
there is no value (NULL) under the column Ph for that s-

tuple.

Given an s-relation e which contains k s-tuples where the
ith tuple is denoted by < ti1, . . . , tin > where all tij , 1 ≤
i ≤ k, 1 ≤ j ≤ n, are set-valued, there is a one-to-one
correspondence between the s-relation e and the ordinary
relation corresponding to e. We denote by eord the ordinary
relation corresponding to the s-relation e defined as follows:

eord = ∪k
i=1ti1 × . . .× tin

We introduce two new operators REDUCE and COM-
PACT, which will be used in all operations in the model.

2.1 REDUCE

We define an operator, REDUCE, which takes an
s-relation e on scheme Σ as input and returns another s-

relation on scheme Σ after eliminating redundant s-tuples.

Below is a formal description of REDUCE.

REDUCE(e) = {t1 ∈ e|¬(∃(t2 ∈ e)) ∧ ∀x∈Σ(t2[x] ⊃ t1[x])}

e
A B C

{1,2,3} φ̄ {1}
{3} {6,7} {1,3}
{6} {8} {7,9}

REDUCE(e)
A B C

{1,2,3} φ̄ {1}
{6} {8} {7,9}

Figure 2. Example of REDUCE

2.2 COMPACT

We introduce a new operator COMPACT that takes an
s-relation e as input, and produces another s-relation e′.The
new s-relation e′ will have atmost the number of s-tuples
in e or fewer. The algorithm below will take as input an

s-relation e and the associated functional dependencies and
produce another s-relation e′ as output.

Algorithm COMPACT (e,R, F)
Input:An s-relation e under the scheme R and a set of

associated functional dependencies F .
Output:A compacted s-relation e′.
Method:The s-relation e′ is obtained as follows:
1. Let C = {k1, k2, .., kn} be the candidate keys computed
from F .
2. if(∃i, j|(ki ∩ kj = φ) ∨ ((|C| = 1) ∧ (|k1| �= 1)))
return e
else{
if(∃kc ∈ C|(|kc| = 1) ∨ (∀i,j(ki ∩ kj = kc) ∧

(|kc| = 1))
for every set of tuples T for which π<R−kc>(T)
is singleton,

replace them with a new s-tuple t such that
t[R− kc] = π<R−kc>(T) and t[kc] = ∪πkc(T)
return the new compacted relation e′

}
The intuition behind the COMPACT algorithm is that the
column picked to be set-valued would be one that belongs
to all keys of the s-relation. When the keys of the s-relation
are computed, a number of scenarios can occur:

Case 1: The s-relation has only one key attribute.

Case 2: The s-relation has only one key but the key consists

of more than one attribute.

Case 3: The s-relation has multiple keys and all of them

581

have exactly one attribute in common.

Case 4: The s-relation has multiple keys and NOT all of

them have exactly one attribute in common.

Let us consider the operation of COMPACT on the

s-relation e below. Let A be the only key attribute of

the s-relation. In both cases 2 and 4 the algorithm just

e
A B C

{1} {6,7} {9}
{2} {3} {8}
{3} {6,7} {9}

COMPACT (e)
A B C

{1,3} {6,7} {9}
{2} {3} {8}

Figure 3. An example of COMPACT

returns the original s-relation and does not attempt to

COMPACT the s-relation e any further. This is because
the time complexity of performing such an operation

becomes exponential when there is more than one attribute

to COMPACT on.
Let us now examine cases 1 and 3 which ARE candidates

for COMPACT . The simplest is Case 1 where the

s-relation has just one key attribute. Since that attribute is

the ONLY key of the s-relation, it very likely that we will

have two or more tuples that have identical values under

all other attributes (it should be noted here that this would

not have been possible if there WAS another key for the

s-relation). These tuples can then be combined into a single

s-tuple with the key attribute set-valued.

Case 3 is where there are multiple keys in the s-relation

and all have exactly one attribute in common. Since we are

looking for exactly one attribute to perform COMPACT ,
an attribute that appears in all keys of the s-relation seems

an ideal candidate going by the intuition that COMPACT
was based on.

2.3 Algebraic Operators

Here we define the algebraic operators for s-relations.

We also define an operatorREP {} which takes an ordinary
relation under any scheme Σ as input and produces an

s-relation under the same scheme as follows:

REP {}(R) = {s|(∀t ∈ R)(∀A ∈ Σ)s[A] = {t[A]}}
This operator REP {} is used in the definition of the

difference operator.

Set theoretic operators

Union. The union of s-relations e1 and e2, under
scheme Σ and with functional dependencies F1 and F2

repectively, denoted by ∪s, is defined as follows:

e1 ∪s e2 = COMPACT (REDUCE({t|t ∈ e1 or t ∈
e2}),Σ, F1 ∪ F2)

Difference. The difference between two s-relations, e1 and
e2, under scheme Σ and with functional dependencies F1

and F2 repectively, denoted by −s, is defined as follows:

e1 −s e2 = COMPACT (REDUCE(REP {}(e1ord) ∪
e2) − e2,Σ, F1)
Intersection. We use the identity e1∩se2 = e1−s(e1−se2)
with the algorithm above to compute ∩s on s-relations e1
and e2.

Relation theoretic operators

Selection. The selection of e by F , where e is an s-
relation on scheme Σ, denoted by σsF (e) where e is an
s-relation on scheme Σ as follows:

Let θ = {<,≤,=, >,≥, �=}. Let c, c1, c2 be constants and
X,Y ∈ Σ The formula F can be classified into one of four
cases:

Case 1: c1θc2
Case 2: Xθc
Case 3: cθY
Case 4: XθY .
Case 1 is trivial and returns either TRUE or FALSE and

hence the query returns either e or the empty relation.
Case 2: Without loss of generality, assume X is the first

column in the s-relation e. Let t =< u1, u2 . . . un >
be any s-tuple in e and let u1 = {a1, a2 . . . am}. Then,
u′1 = {ai|1 ≤ i ≤ m and aiθc is true }. If ui′ = φ, then
drop t. Else return t′ =< u′1, u2 . . . un >
Case 3 is similar to Case 2.

Case 4: Without loss of generality, let X be the first

column and Y be the 2nd column in s-relation e. Let

t =< u1, u2 . . . un > be any s-tuple in e and let

u1 = {a1, a2 . . . am} and u2 = {b1, b2 . . . bm}. Let c = b1
and repeat Case 2 to generate t′1. Let c = b2, c = b3 and
so on to generate a new s-tuple t′i for each bi. Thus atmost
n new s-tuples are generated for each bi, 1 ≤ i ≤ n. This
can be reduced to min(m,n) s-tuples by choosing Y θ′X
instead of XθY where θ′ is the complementary operation
to θ.
Projection. The projection of e onto Δ, denoted by πsΔ(e)
where e is an s-relation on scheme Σ, and Δ ⊆ Σ and F is

the set of functional dependencies, is defined as follows:

πsΔ = COMPACT (REDUCE({t[Δ]|t ∈ e}),Δ, F).
Cartesian product. Let e1 and e2 be two s-relations on
schemes Σ andΔ respectively. Then, the cartesian product,

denoted by e1 ×s e2 is an s-relation on scheme Σ ◦ Δ
defined as

e1 ×s e2 = REDUCE({t1 ◦ t2|t1 ∈ e1 and t2 ∈ e2})
where ◦ denotes the concatenation operation.

582

3 Set-Valued Paraconsistent Relations

Unlike normal relations where we only retain informa-

tion that is believed to be true of a particular predicate, the

paraconsistent relational model is a step towards complet-

ing the database. In a paraconsistent relation, we also retain

what is believed to be false of a particular predicate [2, 3].
We define paraconsistent relations formally as follows:

Paraconsistent relations. A paraconsistent relation on a

scheme Σ is a pair < R+, R− > where R+ and R− are

ordinary relations on Σ.
Thus R+ represents the set of tuples believed to be true of

R and R− represents the set of tuples believed to be false.
We allow the paraconsistent relations to be set-valued and

introduce the notion of sp-relations.
sp-relation. An sp-relation on a scheme Σ is a pair <
R+, R− > where R+ and R− are s-relations on Σ. Also,
COMP ACT (R) =< COMP ACT (R+), COMP ACT (R−) >

REDUCE(R) =< REDUCE(R+), REDUCE(R−) >

Figure 4 is a instance of a paraconsistent employee

database. We use this as a running example for all the

queries in the paper. The database has a relation

Employee
SSN Name Age

{111} {Navin} {24}
{222} {James} {23}
{333} {Jennifer} {25}
{555} φ̄ φ̄
{666} φ̄ φ̄

Supervisor
SSN SuperSSN

{111} {333}
{222} {111}
{111} {333}
{333} φ̄

Figure 4. A set-valued paraconsistent em-
ployee database

Employee =< Employee+, Employee− > which repre-
sents the employee entity and the relation Supervisor =<
Supervisor+, Supervisor− > which represents their su-

pervisors(who are themselves employees). The tuples <
{555}, φ̄, φ̄ > and < {666}, φ̄, φ̄ > in Employee− in-

dicate that there are no employees with SSN=‘555’ or

SSN=‘666’.

3.1 Algebraic Operators

Here we define the algebraic operators for sp-relations.

Set theoretic operators

Let R and S be two sp-relations on scheme Σ.
Union. The union of R and S, denoted R ∪sp S, is an
sp-relation on scheme Σ, given by
(R ∪sp S)+ = R+ ∪s S+, (R ∪sp S)− = R− ∩s S−,

where ∪s denotes union over s-relations and ∩s denotes

intersection over s-relations.

Complement. The complement of sp-relation R, denoted
by −spR is an sp-relation on scheme Σ,given by
(−spR)+ = R−, (−spR)− = R+

Intersection. The intersection of sp-relations R and S,
denoted by R ∩sp S, is an sp-relation on scheme Σ, given
by,

(R ∩sp S)+ = R+ ∩s S+, (R ∩sp S)− = R− ∪s S−

Difference. The difference of sp-relations R and S,
denoted by R −sp S, is an sp-relation on scheme Σ, given
by

(R−sp S)+ = R+ ∩s S−, (R−sp S)− = R− ∪s S+

Relation theoretic operators

Selection. Let R be an s-relation under scheme Σ
and let F be a formula of the form XθY where

θ = {<,>,=, <=, >=, �=}. Then, the selection of

R by F , denoted by σspF (R) is a sp-relation on Σ, given by
σspF (R)+ = σsF (R+), σspF (R)− = R− ∪s σs¬F (τ(Σ))
where σs is the selection operation on s-relations.
The negative component, R− ∪σs¬F (τ(Σ)), is computed as
follows. Since τ(Σ) represents the set of all tuples on Σ, it
can be represented as the single |Σ|-tuple < φ̄, φ̄,, φ̄ >.
Selecting s-tuples that satisfy ¬F from τ(Σ) will thus
mean removing from each component φ̄ in τ(Σ), those
values that satisfy ¬¬F , or F . Notice that when F is of the
form XθY , and either X or Y is a constant, σs¬F (τ(Σ))
will always contain only one s-tuple.

Projection. Let R be an sp-relation on scheme Σ and let

Δ ⊆ Σ. Then, the projection of R onto Δ, denoted by
πspΔ (R), is an sp-relation onΔ, given by,
πspΔ (R)+ = πsΔ(R+), πspΔ (R)− = {t ∈ τ(Δ)|tΣ ⊆
(R−)Σ},
where πsΔ is the projection overΔ of s-relations.

The negative component of the projection denotes the set of

all tuples in scheme Δ, τ(Δ) such that all their extensions
are present in (R−)Σ.
We define extensions of an s-tuple as follows:

If Σ and Δ are relation schemes such that Δ ⊆ Σ, then
for any s-tuple t ∈ τ(Δ), we let tΣ denote the set of |Σ|
-tuples {t′|t′(A) = t(A), for all A ∈ Δ and t′(B) =
φ̄, for all B ∈ Σ − Δ}.
Join. Let R and S be sp-relations on schemes Σ and Δ
respectively. Then the natural join of R and S, denoted by

R ��sp S, is given by,
(R ��sp S)+ = R+ ��s S+, (R ��sp S)− =
(R−)Σ∪Δ ∪s (S−)Σ∪Δ

where ��s can be defined in terms of ×s and σs.

583

4 Query Processing in the Presence of Con-
straints

An important application of sp-relations is the treat-

ment of constraints in relations. In this paper, we re-

strict ourselves to two commmon constraints found in re-

lational databases - functional dependencies and referential

integrity constraints. Generally the number of tuples that

do not belong in a relation will be much larger than then

number of tuples in it. Hence in a paraconsistent relation

R =< R+, R− >, set-valued attributes might be very use-
ful while expressing the s-relation R−. Sections 4.1 dis-
cusses a method of representing constraints in sp-relations.

4.1 Representing Constraints in sp-relations

A functional dependency of the form A → B in a re-

lation R introduces a constraint that for any two tuples

t1, t2 ∈ R, if t1[A] = t2[A] then t1[B] = t2[B]. This
results in an explosion in the information content when the

relation is paraconsistent. Whenever a functional depen-

dency is present in a relation, the constraint thus introduced

implies that we can infer a number of facts to be false in

R, or, in other words, we can conclude that those facts will

belong to R−. Let R =< R+, R− > be a paraconsistent

relation under the scheme Σ. Assume that there is a tuple
t ∈ R+ with t[A] = a and t[B] = b and a functional depen-
dency A → B for some attributes A,B ∈ Σ. This implies
that any tuple with t[A] = a and t[B] �= b will be in R−.
Thus R− will contain tuples of the form
{t | (t[A] = a) ∧ (t[B] = x) ∧ (x �= b)∧
(t[Σ− {A,B}] ∈ τ(Σ− {A,B}))}
for every functional dependency A → B.
With sp-relations, it is much easier to represent the func-

tional dependencies in the negative component. The nota-

tions that were introduced in Section 1 now simplify the

process and it involves introducing just one s-tuple of the
form < a, {b}, φ̄, φ̄... > in R−.
Similarly, a referential integrity constraint on a database

requires that each value in the foreign key in a relation

matches the value in the primary key. In paraconsistent rela-

tions, when a value is stored as false in the primary key of a

relation i.e. in the negative component in all possible com-

binations, then all foreign keys matching that primary key

value will also become false. For example, in the employee

database, the employee relation with primary key SSN has

values ’555’ and ’666’ stored in the negative component in

all possible combinations. This implies that no employee

exists with either SSN ’555’ or ’666’. The supervisor rela-

tion has SSN as a foreign key. Since SSN values ’555’ and

’666’ are false in the employee relation, all extensions of

these values can be introduced in the negative component

of the supervisor relations as < 555, φ̄ > and < 666, φ̄ >.

4.2 Query Example

The database instance of Figure 4 modified to include the

FD SSN → Name,Age and the attribute references SSN
and SuperSSN in Supervisor to SSN in Employee is
shown in Figure 5.

Employee
SSN Name Age

{111} {Navin} {24}
{222} {James} {23}
{333} {Jennifer} {25}
{555} φ̄ φ̄
{666} φ̄ φ̄

{111} {Navin} {24}
{222} {James} {23}
{333} {Jennifer} {25}

Supervisor
SSN SuperSSN

{111} {333}
{222} {111}
{111} {333}

{333,555,666} φ̄
φ̄ {555,666}

Figure 5. The employee database instance af-
ter coding constraints

Consider the query: Find the SSN’s of all employees not
supervised by the employee with SSN=333.
The query can be expressed as shown below in terms of the

algebra:

−sp(πsp<SSN>(σsp<SuperSSN=333>(Supervisor)))
Let R = σsp<SuperSSN=333>(Supervisor). Then the

answer to the query is obtained by the expression

−sp(πsp<SSN>(R)). The answer to the query seems to

R
SSN SuperSSN

{111} {333}
{111} {333}

{333,555,666} φ̄
φ̄ {555,666}
φ̄ {333}

πsp<SSN>(R)
SSN

{111}
{333,555,666}

−sp(πsp<SSN>(R))
SSN

{333,555,666}
{111}

Figure 6. Answer to query

be intuitively correct since we have information that the

employee with SSN=‘111’ is supervised by the employee

with SSN=‘333’ and no one else. Hence {111} appears
in the negative component of the answer. Similarly, we

do not have complete information about the supervisors of

employee with SSN={222} and hence this value does not

584

appear in the answer. SSN values {555,666} are not em-
ployees at all and hence they appear in the positive compo-

nent of the answer trivially. Notice that this query was for-

mulated in a manner different from what would have been

done in ordinary relational databases. There we would have

used a difference operator instead of the complement used

here. The answer to this query if the expression was written

with the difference operator would have been < {333} >
in the positive component and < {111, 555, 666} > in the

negative component which would indicate that employees

with SSN {555,666} are supervised by the employee with
SSN=‘333’. This is intuitively incorrect since the database

indicates that they are not employees at all. Thus the com-

plement operator defined in this model allows us to express

queries with more precision than can be achieved with the

minus operator in the relational model.

5 Conclusions and Future Work

In this paper, we present a relational model that is suited

to query processing in the presence of constraints. The con-

straints imposed on a database result in the inference of neg-

ative facts. The paraconsistent relational model is an elegant

way to process queries in the presence of constraints since

negative facts are represented explicitly as tuples in this

model. One of the drawbacks of the paraconsistent model

was that the negative facts in a database, especially those

introduced by constraints such as functional dependencies

and referential integrity constraints, are very large and rep-

resenting them as tuples is infeasible. This motivated the in-

troduction of a set-valued relational model. The set-valued

approach defined here is markedly different from earlier ap-

proaches in that we extend it to allow notations such as the

complement and the empty set. The empty set notation φ
seems to be particularly relevant here since it is consistent

with the other domain values in the database as opposed to

the NULL in ordinary relations, which is not very intuitive.

The paper also addresses two other issues introduced by

set-valued notations. One is the issue of redundancy, since

redundant information is not easy to eliminate when the tu-

ples are set-valued. TheREDUCE operator addresses this
issue and reduces redundancy. The other is to exploit the

set-valued model in order to reduce the number of tuples,

especially in the negative components of relations. The

COMPACT operator was defined to ‘shrink’ the table us-
ing the keys in the relation. The sp-relational model pro-

vides an elegant way for processing queries in the presence

of constraints by explicitly representing this information in

the database.

An interesting topic for future work is the analysis of the

operators defined in the sp-relational model. This becomes

particularly important since the algebra of this model allows

for different expressions of queries and brings out issues

of semantics when we go from expressing queries in the

natural language to the algebra. We have highlighted this in

the last section with an example query.

References

[1] Rajiv Bagai and Rajshekhar Sunderraman. An alge-

braic construction of the well-founded model. In Van-

galur S. Alagar and Maurice Nivat, editors, AMAST,
volume 936 of Lecture Notes in Computer Science,
pages 518–530. Springer, 1995.

[2] Rajiv Bagai and Rajshekhar Sunderraman. A paracon-

sistent relational data model. International Journal of
Computer Mathematics, 55(3), 1995.

[3] Rajiv Bagai and Rajshekhar Sunderraman. Bottom-up

computation of the fitting model for general deductive

databases. Journal of Intelligent Information Systems,
6(1):59–75, January 1996.

[4] N. D. Belnap. A useful four-valued logic. In G. Epp-

stein and J. M. Dunn, editors, Modern Uses of Many-
valued Logic, pages 8–37. Reidel, Dordrecht, 1977.

[5] H. A. Blair and V. S. Subrahmanian. Paraconsistent

logic programming. Theoretical Computer Science,
68:135–154, 1989.

[6] E.F. Codd. A relational model for large shared data

banks. Comm. of the ACM, 13(6):377–387, 1970.

[7] Hendrik Decker. A case for paraconsistent logic as

foundation of future information systems. In Jaelson

Castro and Ernest Teniente, editors, CAiSE Workshops
(2), pages 451–461. FEUP Edições, Porto, 2005.

[8] Jaeschke G. and Schek H. Remark on the algebra of

non first normal form relation. In Proceedings of ACM
Symposium on Principles of Database Systems, 1982.

[9] John Grant and V.S. Subrahmanian. Applications of

paraconsistency in data and knowledge bases. Syn-
these, 125:121–132, 2000.

[10] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matos. Ex-

tending relational algebra and relational calculus with

set-valued attributes and aggregate functions. ACM
Trans. on Database Syst., 12(4):566–592, 1987.

[11] Mark A. Roth, Henry F. Korth, and Abraham Sil-

berschatz. Extended algebra and calculus for nested

relational databases. ACM Trans. Database Syst.,
13(4):389–417, 1988.

[12] V. S. Subrahmanian. Paraconsistent disjunctive de-

ductive databases. Theoretical Computer Science,
93:115–141, 1992.

585

An Object-Oriented Approach to Storage and Retrieval of RDF/XML Documents

Ching-Ming Chao
Department of Computer and Information Science, Soochow University

Abstract-The Resource Description Framework (RDF) is a
foundation for processing metadata, which provides interopera-
bility between applications exchanging machine-understandable
information on the World Wide Web. Due to its highly flexible
hierarchical structure and machine-independent characteristic,
XML has become the formal way to store and transmit RDF
models. We refer such documents as RDF/XML documents, or
RDF documents for short. Efficient storage and retrieval of RDF
documents in persistent data stores is an important issue in
computer technology today. In this paper, therefore, we propose
an object-oriented approach to this issue. Firstly, we propose an
object-oriented data model, called the RDF Data Storage Model
(RDSM), for storage of data extracted from RDF documents, as
well as an RDF document decomposition algorithm for extrac-
tion of data from RDF documents. Secondly, we propose a ge-
neric RDF API that supports fundamental RDF data accessing
and querying operations, and utilize the W3C’s SPARQL lan-
guage as the high-level query language for retrieval of RDF data.
Finally, an experimental system is implemented to demonstrate
the efficiency and effectiveness of the proposed approach.

I. Introduction

The Resource Description Framework (RDF) is a W3C
Recommendation for the notation of metadata on the World
Wide Web (WWW) [1,2]. The RDF Schema (RDFS) extends
this standard by providing developers with the means to spec-
ify vocabularies and model object structures [3]. These tech-
niques enable enrichment of the Web with ma-
chine-understandable semantics, thus helping to construct the
Semantic Web described by Tim Berners-Lee et al. in [4].

It should to be noticed that RDF is a model for expressing
metadata, which implies that RDF users can use any possible
syntax to encode data described in RDF. Due to its highly
flexible hierarchical structure and machine-independent
characteristic, XML has become the formal way to store and
transmit RDF models. We refer such documents as RDF/XML
documents, or RDF documents for short. How to efficiently
store and retrieve RDF documents in persistent data stores is
an important issue in computer technology today.

In this paper, therefore, we propose an object-oriented ap-
proach to this issue. Firstly, we propose an object-oriented
data model for storage of data extracted from RDF documents,
as well as an RDF document decomposition algorithm for
extraction of data from RDF documents. Secondly, we pro-
pose a generic RDF API that supports fundamental RDF data
accessing and querying operations, and utilize the emerging
W3C’s SPARQL language as the high-level query language

for retrieval of RDF data. Finally, we implement an experi-
mental system to demonstrate the efficiency and effectiveness
of the proposed approach.

The rest of this paper is organized as follows. Section II re-
views related work. Section III presents the data model and
the decomposition algorithm. Section IV describes the generic
RDF API and the query-answering algorithm. Section V illus-
trates the results of performance evaluation. Section VI con-
cludes this paper and suggests directions for future research.

II. Related Work

Several methods for storing XML documents in relational
databases have been proposed. These methods can be roughly
classified into two categories: the structure-mapping approach
and the model-mapping approach [5]. In the former approach,
a database schema represents the logical structure of the target
XML document, and the logical structure can be obtained by
analyzing the Document Type Definition (DTD) or the XML
Schema Definition (XSD) accompanying the document. In
other words, a set of tables is defined for every single XML
document structure or, more precisely, for the DTD or XSD of
the XML document. Examples of this approach can be found
in [6,7]. In the latter approach, a set of consolidated tables is
created to store all XML documents. Examples of this ap-
proach can be found in [5,8]. The strength of the struc-
ture-mapping approach lies in that the precise information
represented in the DTD or XSD can be preserved. Since this
approach creates a set of tables for every DTD or XSD, how-
ever, management of these tables raises a challenging issue to
the database administrator (DBA). On the other hand, the
model-mapping approach only maintains one set of consoli-
dated tables and therefore greatly reduces the burden of DBA.

Besides classification according to the mapping approach,
these methods can also be distinguished into using schema
information or using no schema information. By using
schema information such as DTD or XSD, an XML document
can be decomposed without losing its precise structure and
data type information. By using no schema information, on
the other hand, it is possible to lose the precise structure and
data type information of a tree-like semistructured data set (to
which an XML document conforms). Examples of the former
case can be found in [5,6,7], and examples of the latter case
can be found in [8].

The database management system (DBMS) chosen to store
incoming XML documents is also an important factor affect-
ing the development of these methods. Traditionally, most of

586

the methods adopt the relational or object-relational DBMS
(RDBMS/ORDBMS) as the underlying DBMS. Relational
technology and its successor object-relational technology,
however, have proven awkward for queries that require com-
plex XML constructs in their results, and may be inefficient
when fragmentation due to handling of set-valued attributes
and sharing causes too many joins in the evaluation of simple
queries [7].

class RDFNode
{
 attribute URI string;
 attribute seqNum integer;

relationship Statement statement_of
 inverse Statement::node_of;

 string getURI();
void setURI(in string sURI);

 integer getseqNum();
void setSeqNum(in integer iSeqNum);
boolean addStatement(in Statement oStatement);
Statement getStatement();

}

class Literal : RDFNode
{

attribute literal string;

string getLiteral();
void setLiteral(in string sLiteral);

}

class Resource : RDFNode
{

attribute ID string;

string getID();
void setID(in string sID);

}

class Statement
{

attribute containerType string;
relationship List <RDFNode> nodes_of

 inverse RDFNode::statement_of;

 string getContainerType();
void setContainerType(in string sContainerType);

 Resource getSubject();
boolean addResource(in Resource oResource);

 Resource getPredicate();
boolean addPredicate(in Resource oPredicate);

 RDFNode getObject();
boolean addObject(in RDFNode oObject);

}

class Model
{
 Model create();
 Model duplicate();

Literal createLiteral(in string sURI,
in string sLiteral);

Resource createResource(in string sURI,
in string sID);

Statement createStatement(in Resource oSubject,
in Resource oPredicate;
in RDFNode oObject,
in string sContainerID);

void addStatement(in Statement oStatement);
void removeStatement(in Statement oStatement);

}

Fig. 1. Class definitions of the RDSM model.

One notable method proposed by Shanmugasundaram et al.
can be found in [7]. In this method, a DTD is simplified with
a series of transformation, and the related DTD graph is then
created on the basis of the simplified DTD in order to gener-
ate relational schemas with the Shared or Hybrid techniques
they proposed. Another notable method proposed by Florescu
and Kossmann can be found in [8]. In this method, several
approaches are proposed (Edge, Binary, Universal Table,
Separate Value Tables, and Inlining) by mapping an XML
instance to an ordered and labeled directed graph and storing
the structure of the graph in several fixed-schema tables ac-
cording to the scheme they choose.

III. Storing RDF/XML Documents

A. Data Model for Storing RDF Data

An RDF model usually contains several statements, each of
which consists of a resource as the subject, a resource as the
predicate and a resource/literal as the object. Furthermore,
both of the resource and literal can be treated as a kind of
generalized node–a node containing the parts and operations
that all of the resources or literals have in common–so that
they can be presented as a class hierarchy forming the data
model used to store these nodes systematically. We adopt the
model-mapping approach and propose an object-oriented
data model, called the RDF Data Storage Model (RDSM),
for storage of data extracted from RDF documents. The de-
sign of the RDSM model is complied with the OODB stan-
dard 2.0 of the Object Data Management Group (ODMG).
Class definitions of the RDSM model are shown in Fig. 1.
A generalized node that forms the foundation of all build-

ing blocks in an RDF model is the RDFNode class. The actual
building blocks, including subjects, predicates and objects,
can all inherit from this class. The URI attribute is used to
store the Uniform Resource Identifier (URI) when an instance
of the Resource class or the Literal class is created. The
seqNum attribute is useful for an instance acting as a predicate
to record the position information where the predicate is
placed in a container of a statement. The relationship state-
ment_of and its inverse relationship node_of can be helpful to
look up where this resource/literal resides.

By inheriting from the RDFNode class, the Resource and
Literal classes can be created as physical instances of the
subjects, predicates, and objects involved in RDF statements.
For a Resource instance, we use the ID attribute to store the
ID of this resource represented with the rdf:ID attribute to
which other statements can refer while we are decomposing

587

an RDF document. Note that the URI attribute in an instance
of the Literal class is used to store the data type URI of this
instance, and the actual value in string literal form is stored in
the literal attribute of the Literal instance.

To present a statement that consists of a specific subject,
predicate and object, we use the Statement class as the re-
pository to store the information needed to construct an RDF
statement. In an instance of the Statement class, we use a List
object to keep track of the resources and literals that are used
to form this statement. To record the type of a container that
might be used in a statement, we simply store the information
about the type of the container by putting one of the values
“Bag,” “Seq” and “Alt” in the containerType attribute.

The Model class can be used to create the model that would
contain several interconnected statements. We use its opera-
tions to create a new model, duplicate an existing model, cre-
ate a resource or literal, or create a new statement.

B. Decomposing RDF/XML Documents

While receiving an RDF document, we need to decompose
it into components that our RDF data store can accept and
store. Before introducing the process of decomposing an RDF
document, we first consider the following cases:

Typed Literals: These specify type information of the
corresponding literals. Fig. 2(a) shows an example of a typed
literal. When we decompose an RDF document, type infor-
mation will be preserved for the convenience of query proc-
essing. For a literal that is provided without type information,
we will try to analyze its structure and determine a reasonable
type for it. Since the XML Schema standard provides many
built-in data types, we preload these data types as fundamen-
tal RDF resources for quotation purpose.

Nesting Statements: As the example shows in Fig. 2(b),
the inner rdf:about attribute plays a double role. It is the
value of the s:Composer property in the first statement, and
is also the subject of a further statement. When we encounter
this case, we first flatten nesting statements into several sim-
ple RDF triples, and then we internally group the sharing re-
sources to improve storage performance.

Containers: A container structure can be used to indi-
cate a group of things. Fig. 2(c) shows a typical rdf:Bag con-
tainer structure. A container structure can be processed simi-
larly to the way for processing nesting statements, except for
the rdf:Seq structure. The order information of the involving
members needs to be recorded to preserve the semantics of an
rdf:Seq container instance.

Taking into account of the three cases listed above, we de-
velop an algorithm for decomposing an RDF document. We
adopt the Document Object Model (DOM) in [9] for process-
ing RDF documents and assume that the namespace URIs
used in a given document are all declared as attributes of the
rdf:RDF element for performance consideration. To further
improve the performance of the algorithm, we will not proc-
ess nodes such as instruction and comment nodes. The algo-

rithm, which is shown in Fig. 3, executes the following steps:

<rdf:Description rdf:about="http://www.imdb.com/name/nm0515908">
<s:age rdf:datatype="http://www.w3.org/2001/XMLSchema#

decimal">58</s:age>
</rdf:Description>

(a)

<rdf:Description rdf:about="http://www.imdb.com/name/nm0515908">
<s:Composer>

<rdf:Description rdf:about="http://www.imdb.com/title/tt0293508">
<s:Name>The Phantom of the Opera</s:Name>
<s:publishedIn>2004</s:publishedIn>

</rdf:Description>
</s:Composer>

</rdf:Description>
(b)

<rdf:Description rdf:about="http://www.imdb.com/name/nm0515908">
<s:Composer>

<rdf:Bag>
<rdf:li rdf:resource="http://www.imdb.com/title/tt0293508"/>
<rdf:li rdf:resource="http://www.imdb.com/title/tt0173714/"/>
<rdf:li rdf:resource="http://www.imdb.com/title/tt0070239/"/>

</rdf:Bag>
</s:Composer>

</rdf:Description>
(c)

Fig. 2. Three special RDF/XML serializations.

1) Record the namespace prefixes and the associated URIs
used in the whole RDF document.

2) Create a Model instance for organizing and grouping all
of the resources and literals extracted from the document.

3) Extract a subject by retrieving the URI representing this
resource; use the URI_GENERATOR() function to generate a
URI for an anonymous resource; record the value of the
rdf:ID attribute for future use.

4) Extract the localname of a found predicate and combine
it with the corresponding URI prefix to form the full URI of
the predicate.

5) Check whether the object of the predicate is a resource
or not. If the object is a resource, acquire the URI of a named
resource or call the URI_GENERATOR() function to generate
a URI for an anonymous resource. If the object is a string
literal, get the value in string form, and so does the corre-
sponding data type if it is explicitly specified in the document
(or analyzed by the decomposition process).

6) Use the CONSTRUCT_STATEMENT() function to cre-
ate a new statement if no further object can be extracted, else
continue to extract the objects belonging to a nesting state-
ment or a container statement.

IV. Retrieving RDF/XML Documents

A. Generic RDF API

To provide the ability to access and query RDF data stored
in our RDF data store, we introduce a generic RDF API for
accessing and querying RDF data. The set of operations is
generic RDF Model operations and can be implemented by

588

any service that wishes to expose RDF to client applications.
Note that the StatementSet or any similar set collection can be
presented in RDF/XML format. The operations involved in
the API are described below.

Get Object: This operation allows extracting the object
of a given statement. The full URI is returned if the object is a
resource. The string literal with the associated data type URI
is returned if the object is a literal.

LiteralAppendedURI getObject (Statement);

LiteralAppendedURI: Full URI or literal with the associ-
ated data type's full URI of the object.

Statement: Statement for the operation.

Get Predicate: This operation allows extracting the
predicate of a given statement.

URI getPredicate (Statement);

URI: Full URI of the predicate.
Statement: Statement for the operation.

Get Subject: This operation allows extracting the sub-
ject of a given statement.

URI getSubject (Statement);

URI: Full URI of the subject.Algorithm RDF/XML Document Decomposition Algorithm
Extract the namespace prefixes and the associated URIs used in the
document.
Construct a Model instance for organizing and grouping all building
blocks extracted from the given document.
For each first-level rdf:RDF node do

Generate a Resource instance as the subject of a triple with the
corresponding URI or with URI_GENERATOR() function.
Get the ID indicated with the rdf:ID attribute, if any.

For each second-level rdf:RDF node do
Combine the namespace URI corresponding to the prefix of
the found predicate with its localname.

Get the object of current predicate as a named resource
or an anonymous resource generated with
URI_GENERATOR() function, if the object is a
resource.
Get the type information and the string literal of the
object, if the object is a literal.
Construct a RDF statement with
CONSTRUCT_STATEMENT() function by passing the
newly extracted subject, predicate, and object as the
function's parameters.

If the current predicate contains subnode(s) then
Iteratively get every container member object or the
nesting object, and then construct statement for every
newly acquired member object.

End Algorithm

Fig. 3. RDF/XML document decomposition algorithm.

Statement: Statement for the operation.

Get Statements: This operation matches the template
(Subject, Predicate, Object) against the model, where the slots
are either a fixed value (URI or literal) or a wildcard (mean-
ing match anything in this position).

StatementSet getStatements (Subject, Predicate, Object);

Subject: URI or * (wildcard).
Predicate: URI or *.
Object: URI, literal or *.
StatementSet: Set of statements returned.

Insert Statements: This operation allows inserting mul-
tiple statements into the RDF data store. If a statement al-
ready exists within the model, then it is not duplicated nor is
an exception thrown.

insertStatements (StatementSet);

StatementSet: Set of statements for the operation.

Query: This operation allows implementing a query
language to query data in the data store. It accepts the Query
parameter in the syntax of a subset of the W3C's SPARQL
language to query data in our RDF data store.

StatementSet query (Query);

Query: The query to be executed.
StatementSet: Set of statements returned.

Remove Statements: This operation allows removing all
of the statements specified in the StatementSet parameter.

removeStatements (StatementSet);

StatementSet: Set of statements for the operation.

Update Statements: This operation removes one set of
statements (specified with the RemoveSet parameter) from the
data store and inserts another set of statements (specified with
the InsertSet parameter) into the data store.

updateStatements (RemoveSet, InsertSet);

RemoveSet: Set of statements to be removed.
InsertSet: Set of statements to be inserted.

B. Querying RDF Data

The SPARQL language [10], which is under development
by the W3C's RDF Data Access Working Group (DAWG), is
a query language and data access protocol for the Semantic
Web. We support the SELECT query to provide high-level
querying capabilities to the clients.

589

SPARQL is built on the triple pattern, which is written as
subject, predicate, and object and is terminated with a full
stop (i.e., “.”). URIs are written inside angle brackets (i.e.,
“<” and “>”). String literals are denoted with either double
quotes (i.e., “"”) or single quotes (i.e., “'”). The keyword
PREFIX binds a prefix to a namespace URI. A prefix binding
applies to any QNames in the query with that prefix. Variables
are indicated by “?”; however, “?” does not form part of the
variable. “$” is an alternative to “?”. In a query, $author
and ?author denote the same variable. The SELECT clause is
used to define the data items that will be returned by a query.
The WHERE clause uses braces (i.e., “{” and “}”) to group a
collection of triple patterns, and this collection is called a
graph pattern. Each of the triple patterns must match for the
graph pattern to match. Matching a triple pattern to a graph
gives bindings between variables and building blocks in a
RDF graph so that the triple pattern, with variables replaced
by corresponding RDF data, is a triple of the graph being
matched. The result of a query is a sequence of results that
form a table or result set. Each row in the table corresponds to
one query solution, and each column corresponds to a vari-
able declared in the SELECT clause.

By combining with the API introduced in the previous
subsection, we can create a system for querying RDF data
stored in our data store. Firstly, we iteratively retrieve each of
the triple solutions to a specified triple pattern and connect it
to other triple solutions from other triple patterns to form a
candidate graph. Then, we look up the bindings between the
variables specified in the SELECT clause and the candidate
graph to acquire the query result. The algorithm for acquiring
query results is shown in Fig. 4.

V. Performance Evaluation

We have implemented an experimental system for storing
and retrieving RDF documents. In the experimental system,
databases are built on the Computer Associates' Jasmine II
object-oriented database management system and programs
are written in the C# object-oriented programming language
under the Microsoft Visual Studio 2005 development envi-
ronment. The hardware platform is with the equipments of
Pentium III 800MHz CPU, 512Mbytes of RAM, and
80Gbytes of hard disk storage capacity. The graphical user
interface (GUI) of the experimental system is shown in Fig. 5.

The application's window is divided into two parts. The
upper part of the window is configured for loading the RDF
document. The user can specify the document by entering the
document's full path or invoking a file selection dialog box by
clicking the “…” button. The specified document is then
shown in the display area and the user can load it into the data
store by clicking the “Store it!!” button. The lower part of the
window is arranged for querying RDF data. The user issues a
query statement in the entering area and clicks the “Go!” but-
ton to execute the query statement. The query result is then
displayed in the display area in a tabular format.

Fig. 5. GUI of the experimental system.

To evaluate the performance of our storing process, we
conducted the test by taking test files under the categories of
“Examples From the RDF Model and Syntax Specification”,
“Automatically Generated RDF Files”, and “Miscellaneous
Examples” listed on the web page named “RDF Examples
and Miscellaneous Tests”
(http://www.w3.org/2000/10/rdf-tests/) as the input files of
our experimental system. The results of the evaluation are
shown in Table 1.

Because the original contents of several test files were not
fully complied with the RDF/XML syntax defined in the RDF
standard suite, we modified their original contents to make
these files testable for our system. From the results shown in
Table 1(a) and 1(c), we can see that most of the test files can
be processed in less than 3 seconds. Even though our system
gets the worst performance shown in Table 1(b), since the file
size in this category is up to 5 kilo bytes, the average proc-
essing time is still less than 4 seconds. From the results of the
evaluation, we can say that our storing process is acceptably
efficient for decomposing and storing RDF documents we
selected, and it is reasonable to presume that our storing
process can process almost all of the RDF documents.

Algorithm RDF Query Answering Algorithm
Query all of the possible triple pattern solutions for every triple
pattern involved in a graph pattern.
For each graph pattern solution constructed by picking up one of the
triple pattern solutions from each triple pattern do

If the bindings between the variables in the SELECT clause and
the graph pattern solution exist then

Acquire the bindings as one solution of the query result
set.

End Algorithm

Fig. 4. RDF query answering algorithm.

590

Fig. 6. Evaluation results of the proposed querying process.

To evaluate the performance of our querying process, we
prepared ten properly designed queries (Q1-Q10) over the
contents of the test files previously stored. The estimated
number of returned triples of these queries is well arranged at
an incremental proportion. That is, the number of returned
triples of the tenth query (Q10) is anticipated roughly being
ten times of the number of returned triples of the first query
(Q1). The results of the evaluation are shown in Fig. 6.

TABLE 1
EVALUATION RESULTS OF THE PROPOSED STORING PROCESS

Category Name Examples From the RDF Model and
Syntax Specification

Number of Files 14
Longest Time 5 sec.
Average Time 2.85 sec.

(a)

Category Name Automatically Generated RDF Files
Number of Files 4

Longest Time 5 sec.
Average Time 4 sec.

(b)

Category Name Miscellaneous Examples
Number of Files 534

Longest Time 4 sec.
Average Time 2.18 sec.

(c)

As shown in Fig. 6, the equation indicates that the elapsed
time of these queries represents a liner relationship, and the
variance (R2) indicates that the elapsed time of a query with a
known number of returned triples can be precisely estimated.
From the results of the evaluation, we can see that the elapsed
time of a query is proportional to the number of returned tri-
ples of the query. We can also precisely estimate the elapsed
time for a query that returns a known number of triples.

VI. Conclusion and Future Work

In this paper, we addressed the important issue of efficient
storage and retrieval of RDF documents and proposed an ob-
ject-oriented approach to this issue. We proposed an ob-
ject-oriented data model for our RDF data store and a de-
composition algorithm for extracting RDF building blocks.
We also proposed a generic RDF API for accessing and que-
rying RDF data in the data store, as well as a query-answering
algorithm that combines the functionality of the generic RDF
API and the emerging SPARQL query language. Experiments
showed that the proposed approach is efficient and effective.

As for future work, we are going to make our decomposi-
tion algorithm more comprehensive to process the inferring
affairs of RDF data. Besides, we are going to improve the
performance of our generic RDF API. Query rewriting and
optimization of the SPARQL language are expected to be our
long-term research objectives.

Acknowledgment

The author would like to express his appreciation for the
financial support from the National Science Council of Re-
public of China under Project No. NSC95-2221-E-031-005.

References

[1] G. Klyne, J. J. Carroll and B. McBride, Resource Description Frame-
work (RDF): Concepts and Abstract Syntax, W3C Recommendation,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210, February
2004.

[2] F. Manola, E. Miller and B. McBride, RDF Primer, W3C Recommen-
dation, http://www.w3.org/TR/2004/REC-rdf-primer-20040210, Febru-
ary 2004.

[3] D. Brickley, R. V. Guha and B. McBride, RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Recommendation,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210, February
2004.

[4] T. Berners-Lee, J. Hendler, and O. Lassila, The Semantic Web, Scien-
tific American,
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84
A9809EC588EF21, 2001.

[5] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, “XRel: A
Path-Based Approach to Storage and Retrieval of XML Documents
Using Relational Databases,” ACM Transactions on Internet Technol-
ogy, vol. 1, no. 1, pp. 110-141, 2001.

[6] K. Runapongsa and J. M. Patel, “Storing and Querying XML Data in
Object-Relational DBMSs,” Lecture Notes in Computer Science, vol.
2490, pp. 266-285, March 2002.

[7] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J.
Naughton, “Relational Databases for Querying XML Documents:
Limitations and Opportunities,” in Proceedings of the 25th Interna-
tional Conference on Very Large Databases, Edinburgh, Scotland,
1999.

[8] D. Florescu and D. Kossmann, “Storing and Querying XML Data using
an RDBMS,” IEEE Data Engineering Bulletin, vol. 22, no. 3, pp. 27-34,
1999.

[9] A. L. Hors, et al., Document Object Model (DOM) Level 2 Core Speci-
fication Version 1.0, W3C Recommendation,
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113, No-
vember 2000.

[10] E. Prud'hommeaux and A. Seaborne, SPARQL Query Language for
RDF, W3C Candidate Recommendation,
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406, April
2006.

591

CXPath: a Query Language for Conceptual Models of Integrated XML Data

Diego de Vargas Feijó, Claudio Naoto Fuzitaki, Álvaro Moreira∗,
Renata de Matos Galante†, Carlos Alberto Heuser‡

Universidade Federal do Rio Grande do Sul – UFRGS
Instituto de Informática, Porto Alegre, RS, Brasil

Email: {diego, fuzitaki, afmoreira, galante, heuser}@inf.ufrgs.br

Abstract

In order to search for the same information in hetero-
geneous XML data sources, on the Web or in multiple
databases in an enterprise, one must write a specific query
in accordance with the structure of each XML source. A
better solution is to state a single query against a global
conceptual schema and then translate it automatically into
an XML query for each specific data source. CXPath (for
Conceptual XPath) has been proposed as a language for
querying XML sources at the conceptual level. In this pa-
per we improve the language original proposal by extend-
ing it with queries using inheritance and self-relationships,
and by giving a formal specification of the criteria for val-
idating CXPath queries against conceptual models.

1. Introduction

Data integration systems provide users with a uniform
interface to multiple data sources. It is required when
querying different sources on the Web, querying multi-
ple databases within an enterprise, and querying disparate
parts of a large-scale scientific experiment. Without data
integration, the user must have knowledge about the struc-
ture of each data source and write a query for each one of
them.

The XML format has been extensively used to repre-
sent and to interchange data among users and applications,
specially through the Web [20]. There are several works
on the integration of semistructured data [2, 13, 12] and
XML sources [6, 8, 11, 18, 14]. We focus on the problem
of performing queries on heterogeneous XML data sources
related to some specific domain.

In this context, the main challenge is to deal with differ-
ent XML representations of semantically equivalent data.
A solution to this problem requires [10]: (i) a global (uni-
fied) representation that captures XML source schemata of
a specific domain; (ii) a language to write global queries in

∗This work has been partially supported by CNPq under grant No.
481516/2004-2 and Fapergs under grant No. 0412264.

†This work has been partially supported by Fapergs under grant No.
0412264, CNPq No. 550.845/2005-4 and CNPq No. 475.743/2004-0

‡This work has been partially supported by CNPq under grant No.
473310/2004-0

accordance to the global representation; (iii) a translation
mechanism to convert these global queries into queries in
accordance to the schema of each XML source; and (iv)
an instance integration mechanism to unify query results
coming from different XML sources into a single query
result matching the global representation.

In this paper we consider the first two points above
since we present a global representation (i.e., a conceptual
model) that can express concepts such as inheritance and
self-relationships, and we extend and formally define the
language CXPath [3] for querying this representation.

CXPath (for Conceptual XPath) is a language for query-
ing conceptual models that result from the integration of
XML sources. CXPath is one of the outcomes of a research
effort that has lead to a semi-automatic and bottom-up
process for semantic integration of XML Schemata called
BinXS [14].

The contributions of this paper are: (i) an exten-
sion of CXPath queries to deal with inheritance and self-
relationships, not present in the original language proposal,
and (ii) a formal specification of the criteria for validating
global queries, written in the CXPath language, against a
conceptual model.

A conceptual model, where inheritance and self-
relationship can be represented, is more expressive and,
at the same time, simplifies the task of designing web ap-
plications that have to deal with heterogeneous XML data
sources. The extensions allow more concise queries and a
more natural representation of the schema integration. The
resulting formalization, in its turn, provides a precise de-
scription of the language and can be used as a reference for
implementors and query planners.

The rest of this paper is structured as follows. Sec-
tion 2 presents the conceptual model CXPath is based on
extended with inheritance and self-relationship. Section 3
presents the main features of the CXPath query language
through a series of examples and illustrates how it can be
used to build queries at the conceptual level. Section 4 has
a set of inference rules that specify the criteria for vali-
dating CXPath queries. Section 5 discusses related work.
Main ideas of this paper, and future work, are summarized
in Section 6.

592

2. Conceptual Model

A conceptual model for defining a global schema has
been adopted, instead of the logical XML model, be-
cause the XML model is unable to abstract several XML
schemata at the same time. Considering the domain of
bibliographical references, for instance, a many-to-many
authorship relation between Publication and Person may
be represented by two different XML schemata: (i)
one Publication (ancestor element) associated to many
Persons (descendent elements); or (ii) one Person (an-
cestor element) associated to many Publications (descen-
dent elements). A global XML schema would be able to
represent only one of these possibilities. However, a con-
ceptual model directly represents many-to-many relation-
ships (many Publications associated to many Persons ,
and vice-versa), without imposing a strict navigation order
between them.

Figure 1 shows a simple conceptual schema for a do-
main of bibliographical references. Publication is a non-
lexical concept (solid rectangle), being composed by in-
formation about Title, Year and Person . Title, Year
and Name are lexical concepts (dotted rectangles), holding
textual information. An anonymous association relation-
ship is defined between Publication and Year, denoting
that a publication has one associated year information, and
a year is associated to one or more publications. An as-
sociation relationship named author is defined between
Publication and Person , denoting that a person may be
an author of several publications. There is also anonymous
association relationships between Publication and Title,
and between Person and Name.

Year Title

Person

Name

Publication

(1,1) (1,1) (1,1)

(1,N) (1,N) (1,N)
(1,N)(0,N)

author

Figure 1. A simple conceptual model.

A discussion about the process of building a concep-
tual model from heterogeneous XML sources is out of the
scope of this paper (it is described in detail in [14]).

2.1. Inheritance

In this paper, the conceptual model presented in [14]
is extended with inheritance and self-relationship. An
inheritance relationship is a binary relationship between
a generic concept and a sub-concept. Figure 2 illus-
trates the modeling of an inheritance relationship where
Publication is the generic concept, Article and Book

are sub-concepts. In the example, Article extends
Publication with a relationship referee to the concept
Person , and Book also extends Publication . A model
like the one depicted in Figure 2 can be the result of a data
source such as the one shown in Figure 3(a), where a pub-
lication element has books and articles as subelements.

Article

Year Title

Person

Name

Publication

(1,1) (1,1)

(1,1)

(1,N) (1,N)

(1,N)
(1,N)

(1,N)(0,N)

(0,N)

author

referee

Book

Figure 2. Inheritance relationship.

Figure 3. Data sources that give rise to inheritance in a
conceptual model.

Alternatively, it also could result from integrating the
data sources shown in Figure 3(b) and Figure 3(c), where
article and book elements have a common structure.

2.2. Self-relationship

A publication can make references and/or it can be
referenced by other publications. Figure 4 exemplifies a
situation where a self-relationship named bibliography

is convenient. A publication, in the self-relationship
bibliography depicted below, can play two different
roles: either it has reference or a is reference of of
another publication. A model like the one depicted in

Article

Year Title

Person

Name

Publication

(1,1) (1,1)

(1,1)

(1,N) (1,N)

(1,N)
(1,N)

(1,N)(0,N)

(0,N)

author

referee

bibliography

has_reference is_reference_of

Book

Figure 4. Self-relationship.

Figure 4 can be the result of a data source such as the
one shown in Figure 5, where an article “a1” makes refer-
ence to article “a2”. Both inheritance and self-relationship
were absent from the initial proposal for the conceptual
model [14] and its associated query language [3]. They
are essential not only for writing more concise queries but
a conceptual model where these relationships can be rep-
resented is more expressive thus simplifying the task of
designing web applications.

593

Figure 5. Data source that gives rise to a self-
relationship in a conceptual model.

3. CXPath

Although syntactically based on XPath, CXPath has a
different semantics because it is applied to a different data
model. XPath is suitable for navigating in XML documents
that are tree-based structures, whereas CXPath is suitable
for navigating over a conceptual schema that is a graph-
based structure.

In the remaining of this section, we informally explain
the semantics of CXPath queries over conceptual models
by making a parallel with the semantics of XPath queries
(we assume the conceptual model given in Figure 4).

Concept names instead of element names. In XPath,
XML elements are referred by their labels (element
names). In CXPath, concept names are used instead of
element names. A concept name refers to all instances of
that concept in the conceptual base.

Root elements and absolute path expressions. An XML
instance has a root element, and an XPath expression that
begins with slash (an absolute path expression) starts nav-
igating from it. This can be done because the data model
of an XML source is a tree. However, because its data
model is a graph, a conceptual base does not have an ini-
tial element. The CXPath semantics for the absolute path
expression is that the navigation may start at any concept
in the conceptual base. A query like /Article for instance,
retrieves all instances of the concept Article.

In order to keep the formal treatment of relative and ab-
solute paths more uniform, a special concept, called Root,
is introduced. It is distinguished from the others because
it has a unique unnamed relationship with all other lexi-
cal and non-lexical concepts. Thus, it is always possible
to navigate from the Root concept to any other concept.
Observe though, that the name Root is not available when
writing CXPath queries. Figure 6 shows the same model
of Figure 4 extended with the Root concept. As Root is
present in all conceptual models connected to all concepts
it can be omitted in order to keep the presentation neat.

Navigation operator (slash operator) and relative path
expressions. In XPath, the slash operator, when not ap-
pearing in the beginning of a path expression, has the se-
mantics of “navigate to the child elements”. As our data
model is a graph and not a tree, the semantics of ”/” has
been changed to “navigate to the related elements”. For

Article

Year Title

Person

Name

Publication

(1,1) (1,1)

(1,1)

(1,N) (1,N)

(1,N)
(1,N)

(1,N)(0,N)

(0,N)

Root

author

referee

bibliography

has_reference is_reference_of

Book

Figure 6. Example with Root.

verifying whether a navigation between two concepts is
valid, it is necessary to examine if there is a relation-
ship between then represented in the conceptual model.
For example, the query /Publication/Title starts navi-
gation from the Root concept and retrieves all instances of
concept Title that are related to the instances of concept
Publication.

Inheritance allows the navigation between concepts that
do not have direct relationships. Considering Figure 6, the
following query /Article/Title retrieves the titles of all
publications that are articles. This navigation is possible
because the specialized concept Article inherits all the re-
lationships of the generic concept Publication.

Qualified navigation operator, relationship name and
predicates. When more than one relationship relates two
concepts, the identification of a specific relationship to be
navigated may be needed. For example, the expression
/Article/Person/Name retrieves all names of Person that
are related to instances of Article, thus including relation-
ships author (inherited from Publication) and referee,
while the query /Article/{author}Person/Name retrieves
all names of persons that are authors of articles. This se-
lection of relationships by name is exclusive of CXPath,
and there is no counterpart in XPath.

It is also possible to restrict values by using a predicate.
A query like

/Article[Year="2007"]/{author}Person/Name
for instance, retrieves all names of persons that are authors
of articles produced int the year 2007. A restriction in
CXPath, not present in XPath, is that, in predicates, paths
should end with a lexical entity.

Qualified navigation operator and role name. In the
case of self-relationships, a role name can be necessary to
indicate the direction of the navigation. Considering the
Figure 4, the following query

/Publication[Year="2007"]/

{bibliography.has reference}Publication

for instance, retrieves all publications that are reference for
publications in the year 2007. Another query

/Publication[Year="2007"]/

{bibliography.is reference of}Publication

594

retrieves all publications that make references to 2007 pub-
lications.

4. Validating CXPath against Conceptual
Models

Not all syntactically correct CXPath expressions are
valid queries. A query such as /Person/Year for in-
stance, is not valid against the conceptual model of Fig-
ure 4, since there is no navigation path connecting these
two concepts. Another syntactically correct but invalid
query is

/Article[{author}Person = {referee}Person]/
Title

Person is a non lexical concept and non lexical concepts
can not be compared.

A query language is nothing more than a programming
language with special purposes [7] and the validation prob-
lem, in relation to a model, is similar to the typing problem
in programming languages. For this reason, we adopt a
style that is widely used in the formal definition of pro-
gramming languages, and also in the formal description of
the static and dynamic semantics of the XPath and XQuery
languages [9]

In what follows, we give a set of rules that specify the
conditions that must hold for a CXPath query to be valid
against a conceptual model. Each rule has the form

premise1 . . . premisen

CM, cxt1 . . . ctxm � CXPath expression

where n ≥ 0, m ≥ 0, meaning that, if all the premises
hold, the CXPath expression , when considered in a con-
text given by cxt1 . . . ctxm , is valid in relation to a concep-
tual model CM.

All the rules are defined on the syntactical structure of
CXPath queries and there is exactly one rule for each con-
struct. For these reasons, an inference algorithm can be
easily extracted from them. We have implemented a proto-
type in Haskell that take as input a conceptual model and
a CXPath query, and returns whether the query is valid
or not. The implementation is available in www.inf.
ufrgs.br/˜cnaoto/cxpath. The syntactical struc-
ture of CXPath is given in Figure 7. A CXPath expres-
sion can be a relative path expression or an absolute path
expression. An absolute path expression may be just “/”
(slash) or a “/” followed by a relative path expression. A
relative path expression may optionally specify a relation-
ship and role name, followed by a required concept identi-
fier, followed by an optional predicate. In the grammar op
stands for the relational operators.

Before explaining the rules we start by giving a formal
definition of conceptual model as discussed in Section 2.
A lexical concept is represented by a pair (c, t), where c
represents the lexical concept name, and t represents its
type (string or integer).

An association relationship is represented by a n-tuple
(c1, c2, r, p1, p2), where c1 is a source concept name, c2 is

CXPath ::= RelPath

| AbsPath

AbsPath ::= /

| /RelPath

RelPath ::= Rel id Preds

| Rel id Preds /RelPath

Rel ::= { RelName }
| { RelName.RoleName }
| ε

Preds ::= [/RelPath1 op /RelPath2] Preds

| [/RelPath1 op RelPath2] Preds

| [/RelPath op Literal] Preds

| [RelPath1 op /RelPath2] Preds

| [RelPath1 op RelPath2] Preds

| [RelPath op Literal] Preds

| ε

Figure 7. CXPath Grammar.

a target concept name, and r is the relationship’s name (ε
when the relationship is unnamed). When c1 and c2 are the
same, the n-tuple represents a self-relationship, in this case
p1 and p2 are the names of the roles assumed by concept
instances in the relationship (ε when the self-relationship
has no roles - or when it is not a self-relationship)1.

An inheritance relationship is represented by a pair
(cg, ce), where cg and ce are the generic and specialized
concept names, respectively. Both cg and ce must be non-
lexical concepts.

Finally, a conceptual model CM is given by a tuple
(NL, L, IR, AR) where: NL is a set of non-lexical con-
cepts, L is a set of lexical concepts, and IR and AR are sets
of inheritance and association relationships between con-
cepts, respectively.

The rules are grouped into rules for absolute path ex-
pressions, relative path expressions, relationships, and
predicates. This classification follows the syntactic cate-
gories in Figure 7. In what follows, we explain each one
of these group of rules. In some rules we write CMAR for
the component AR of the conceptual model CM, and sim-
ilarly for other components of a conceptual model.

Absolute Path Expressions. We have two rules for val-
idating absolute path expressions: one for each clause in
the grammar of Figure 7 for AbsPath (/ and /RelPath).
By the rule (APE1), the absolute path expression / is always
well formed:

CM �APE /
(APE1)

Rule (APE2) says that, to validate an absolute path
/RelPath, it is necessary to validate RelPath using the
group of rules for relative path expressions (the premise of
rule (APE2)). Note that for typing relative path expres-
sions it is necessary to add to the context the concept that
antecedes it (the Root concept in this case):

1In order to keep the formal treatment simpler we omit the cardinality
information from tuples representing association relationships since they
are not relevant for the purpose of validating CXPath queries against a
conceptual model.

595

CM, Root �RPE RelPath

CM �APE /RelPath
(APE2)

Relative Path Expressions. The rule (RPE1) is for path
expressions in the format Rel id Preds :

CM, id1, id2 �REL Rel CM, id2 �PRE Preds

CM, id1 �RPE Rel id2Preds
(RPE1)

and rule (RPE2) below is for path expressions in the format
Rel id Preds/RelPath:

CM, id1, id2 �REL Rel

CM, id2 �PRE Preds CM, id2 �RPE RelPath

CM, id1 �RPE Rel id2Preds/RelPath
(RPE2)

Observe that the first two premises of these rules are
the same (one for the relationship Rel , and the other for
the predicates Preds). The third premise of rule (RPE2)
validates RelPath against both the conceptual model, and
the last identifier of its previous path expression (id2 in
these two rules).

Relationships. The verification if a relationship between
concepts in a path expression is valid is done by verifying
three possible situations. The first situation verifies named
relationships (RelName); the second, besides named rela-
tionship, verifies role names (RelName.RoleName); the
third has neither named relationship nor role name (ε).

For simplicity, the representation of relationships in a
conceptual model is done by indicating a source and a des-
tination concept. But the navigation can be done in any
direction. Thus, the source concept may act as source or
destination, and the destination may act as source. For this
reason, all rules must take this in consideration and to ver-
ify if there is a relationship that has the source concept (or
destination) and the destination (or source) matching the
concepts related in the path expression.

CM � id1 ≺ idg1

CM � id2 ≺ idg2

(c1, c2,RelName , p1, p2) ∈ CMAR

(c1 = idg1 ∧ c2 = idg2) ∨ (c1 = idg2 ∧ c2 = idg1)

CM, id1, id2 �REL {RelName} (REL1)

id1 = id2
(id1, id2,RelName , p1, p2) ∈ CMAR

p1 = RoleName ∨ p2 = RoleName

CM, id1, id2 �REL {RelName .RoleName} (REL2)

id1 ≺ idg1

id2 ≺ idg2

(c1, c2, ε, p1, p2) ∈ CMAR

(c1 = idg1 ∧ c2 = idg2) ∨ (c1 = idg2 ∧ c2 = idg1)

CM, id1, id2 �REL ε
(REL3)

Rule (REL2) is for typing self-relationships with associ-
ated role names. In this case, the source and the destination
concepts must be the same.

Rules (REL1) and (REL3) are analogous; both contem-
plate the possibility of inheritance relationship between the
concepts. Rule (REL1) is for named relationships while
rule (REL2) is for unnamed relationships.

The notation id1 ≺ id2, present in rules (REL1) and
(REL2), means an inheritance relationship, where id1 is the
specialized concept and id2 is the generic concept. The
relation id1 ≺ id2 holds when (id1, id2) ∈ CMIR. This
relation is also reflexive and transitive.

Predicates. A predicate in CXPath is a relational opera-
tion between two expressions (path expressions and/or lit-
erals). The rules (PR1), (PR2), and (PR3) are for predicates
with an absolute path as the left operand of op. The rules
for predicates with a relative path, or a literal as the left
operand are trivial variations and, for this reason, we omit
them from the paper.

LastId(RelPath1) ∈ CML

LastId(RelPath2) ∈ CML

CM �APE /RelPath1
CM �APE /RelPath2
CM, id �PRE Preds

CM � LastId(RelPath1) op LastId(RelPath2)

CM, id �PRE [/RelPath1 op /RelPath2]Preds
(PR1)

LastId(RelPath1) ∈ CML

LastId(RelPath2) ∈ CML

CM �APE /RelPath1
CM, id �RPE RelPath2

CM, id �PRE Preds

CM � LastId(RelPath1) op LastId(RelPath2)

CM, id �PRE [/RelPath1 op RelPath2]Preds
(PR2)

LastId(RelPath) ∈ CML

CM �APE /RelPath

CM, id �PRE Preds

CM � LastId(RelPath) op Literal

CM, id �PRE [/RelPath op Literal]Preds
(PR3)

One requirement for a predicate to be considered valid
is that, if a path expression is one of its operands, its last
concept must be lexical.

Finally note that the rules make use of the following
auxiliary function, called LastId , which simply returns the
name of the last concept of a path

LastId(Rel idPreds) = id

LastId(Rel idPreds/RelPath) = LastId(RelPath)

Comparisons. The comparisons are relational operations
involving lexical concepts and literals. The rules for vali-
dating comparisons are trivial and so are omitted.

5. Related Work

In the field of data integration, there are several works
related to the integration of semistructured data [2, 13, 12]
and XML sources [6, 8, 11, 18, 14, 17]. In particular, we
are using BinXS [14] that is a semi-automatic and bottom-
up process for semantic integration of XML Schemata. We
adopted a conceptual model for defining a global schema
instead of the logical XML model, because the XML
model is unable to abstract several XML schemata at the
same time.

We believe that our approach is more general than those
mentioned above because CXPath is an XPath based lan-
guage for building queries over a conceptual schema that

596

is an abstraction of several XML sources, avoiding that the
user must know the schema of each source to formulate
queries. We have chosen for the conceptual level a lan-
guage that is based on the concept of path expression to
simplify the process of translation of a query at the con-
ceptual level to a query at the XML level, and discarded
languages like entity-relationship algebras [16] and SQL
that are based on the join operation. Examples of query
languages that are based on the concept of path expression
are OQL for the object-oriented model [4], Lorel for semi-
structured data [1] and XPath for the XML model. As we
also aim at simplifying the process of learning of the pro-
posed language for those acquainted with the XML, we
chose to base the conceptual level query language on the
XPath.

Recently there has been a lot of research activity in the
formal definition of XML related languages such as XPath
and XQuery [9]. A type system for a XML query lan-
guage is given in [5] and it is used to verify if the query
language operations respect the XML schema restrictions.
[19] specifies a formal semantic for XML Schema while
W3C Consortium [20] has an effort to specify an oper-
ational semantics and a type system for both XPath and
XQuery [9].

6. Summary and Future Work

In this paper, we improve the original proposal of CX-
Path [3] by extending it with queries using inheritance and
self-relationships, and by giving a formal specification of
the criteria for validating CXPath queries against concep-
tual models.

We believe that this work is an essential step towards
establishing other results about our approach for query-
ing heterogeneous XML sources. Among these issues we
mention establishing that CXPath queries lead to the same
results as those of XPath queries produced by a translation
process.

A next step to establish a proof of correctness of our
aproach is to define rules that characterize the result of
a CXPath query concerning a conceptual model, in other
words, what should be the conceptual values resulting from
conceptual queries expressions, considering a given con-
ceptual model.

Considering the many XML sources that compose the
Conceptual Model, we have to show that each translated
query returns an XML value that, when abstracted, is con-
tained in the expected result of the conceptual query. For
achieving this we still need to formalize the translation
method and the abstraction process.

In another direction, we are investigating the require-
ments related to the query containment [15] in data integra-
tion contexts, such as query optimization, independence of
queries from updates, and query rewriting using views. A
formal definition of query validity is essential in order to
investigate these issues rigorously.

References

[1] S. Abiteboul. Querying semi-structured data. In ICDT,
pages 1–18, 1997.

[2] S. Bergamaschi, S. Castano, M. Vincini, and D. Beneven-
tano. Semantic integration of heterogeneous information
sources. Data & Knowledge Engineering, 36(3):215–249,
2001.

[3] S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying
heterogeneous XML sources through a conceptual schema.
In Intl. Conf. on Conceptual Modeling (ER), volume 2813
of LNCS, pages 186–199, Chicago, IL, USA, Oct 2003.
Springer.

[4] R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman,
S. Gamerman, D. Jordan, A. Springer, H. Strickland, and
D. Wade. The Object Data Standard: ODMG 3.0. Morgan
Kaufmann, San Francisco, 2000. 280p.

[5] D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Types for
correctness of queries over semistructured data. In WebDB,
pages 19–24, 2002.

[6] I. F. Cruz, H. Xiao, and F. Hsu. An ontology-based frame-
work for XML semantic integration. In IDEAS, pages 217–
226, 2004.

[7] C. J. Date. Some principles of good language design (with
especial reference to the design of database languages).
SIGMOD Record, 14(3):1–7, 1984.

[8] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning ap-
proach. In SIGMOD Conference, 2001.

[9] D. Draper, P. Fankhauser, M. FERNÁNDEZ, A. Malhota,
K. Rose, M. Rys, J. SIMÉON, and P. Wadler. XQuery
1.0 and XPath 2.0 formal semantics, May 2005. In W3C
Working Draft. ¡http://www.w3.org/TR/2003/WD-xquery-
semantics-20030502/¿.

[10] A. Elmargamid, M. Rusinkiewcz, and A. Sheth. A Man-
agement of Heterogeneous and Autonomous Database Sys-
tems. Morgan Kauffmann Publishers, 1999.

[11] B. F. Lóscio and A. C. Salgado. Generating mediation
queries for XML-based data integration systems. In SBBD,
pages 99–113, 2003.

[12] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In VLDB, pages 49–58, 2001.

[13] P. McBrien and A. Poulovassilis. A semantic approach
to integrating xml and structured data sources. In CAiSE,
pages 330–345, 2001.

[14] R. S. Mello and C. A. Heuser. BInXS: A process for in-
tegration of XML schemata. In Intl. Conf. Advanced In-
formation Systems Engineering (CAISE), volume 3520 of
LNCS, pages 151–166, Porto, Portugal, Jun 2005. Springer.

[15] T. D. Millstein, A. Y. Halevy, and M. Friedman. Query con-
tainment for data integration systems. Journal of Computer
and System Sciences, 66(1):20–39, 2003.

[16] C. Parent and S. Spaccapietra. An entity-relationship alge-
bra. In ICDE, pages 500–507, 1984.

[17] A. Poggi and S. Abiteboul. XML data integration with
identification. In G. M. Bierman and C. Koch, editors,
DBPL, volume 3774 of Lecture Notes in Computer Science,
pages 106–121. Springer, 2005.

[18] P. Rodrı́guez-Gianolli and J. Mylopoulos. A semantic ap-
proach to xml-based data integration. In ER, pages 117–
132, 2001.

[19] J. Siméon and P. Wadler. The essence of XML. In POPL,
pages 1–13, 2003.

[20] W3C XML Work Group. XML - Extensible Markup Lan-
guage, 2006. http://www.w3.org/XML.

597

OWLe
d: Extending Knowledge for Web Ontology Language

Hichem Zaı̈t, Aı̈cha Mokhtari
Computer Science Laboratory, LRIA/USTHB BP 32, El-Alia Bab Ezzouar Algiers, Algeria

E-mail:{hichem.zait@gmail.com, aissani mokhtari@yahoo.fr}

Abstract

Recent semantic web based on the Web Ontology Lan-
guage (OWL), with its Description Logic compatible sub-
language (OWL-DL), explicitly excludes defaults and ex-
ceptions. However, as a few concepts are definable us-
ing only strict knowledge, the terminological knowledge
bases contain partially defined concepts, which represents
the main cause of noise and silence in information retrieval.
In this paper, we propose OntoDLe

d as a description lan-
guage including default (d) and exception (e) connectives.
Based on the later, we propose OWLe

d as an extension of
OWL with new RDF/XML constructors representation and
we show the mapping between the two proposed languages.
Finally, we give the structural concept algebra of the pro-
posed solution and we prove that its computation is of poly-
nomial complexity.

1 Introduction

The use of Web ontologies is essential for the creation of
the semantic Web. However, we can’t reach the real seman-
tic without ensuring a complete definition of concepts using
default knowledge. The works to extend conceptual defi-
nitions with default knowledge based on description logic
becomes very important for many applications which ap-
pear to require default reasoning, at least if they are to be
engineered in a maintainable way.

In (classical) DLs, concepts are defined with strict con-
ceptual knowledge. However, defining concepts with de-
fault knowledge has several advantages. It enlarges the set
of potentially definable concepts; indeed, this overcomes
the obstacle that the need for subsumption algorithms to be
tractable had led to such restrictions in DLs that a lot of
concepts can’t be defined.

In the literature there has been much work on the treat-
ment of defaults in frame and DL-based systems [13, 15,
14, 16, 2, 7], where several formal tools borrowed from non

monotonic logics have been adapted to the framework of
description logics. Such an adaptation is not trivial, be-
cause description logics are not, in general, propositional
languages, therefore it gives rise to both representational
and reasoning problems. The above cited works are focused
on defaults, thus not taking into account several other non-
first-order features. Other work [8] presented a framework
to express more non-first-order features but doesn’t take
into consideration Web ontology specifications. [9] pro-
posed ALδε, a description language including default (δ)
and exception (ε) connectives for concept definition. How-
ever, ALδε excludes some Web ontology language connec-
tives such as disjunction.

In this paper we define, inspired from [9], a specific
description logic OntoDLe

d which allows us to express
the OWL-DL with consideration of default and exception
knowledge. Thus, we propose OWLe

d language, an exten-
sion of OWL-DL including default and exception construc-
tors and we give the grammar and the algebric semantic on
which it is based. In section 2 we present a definition of
the description language OntoDLe

d. In section 4, we intro-
duce OWLe

d as the extension of OWL-DL and we present
the expression of OWLe

d using OntoDLe
d. The structural

concept algebra is given in section 4.2. Finally, we prove in
section 4.4 that the subsumption in OntoDLe

d is for poly-
nomial complexity.

2 The OntoDLe
d language

In this section we propose OntoDLe
d as a description

language including default (d) and exception (e) connec-
tives for concept definition and formally define the sub-
sumption relation using an algebric semantic. It includes
also all necessary connectives which will be mushed with
OWL constructors (section 4).

OntoDLe
d is inductively defined from a set R of primi-

tive roles and a set P of primitive concepts, augmented by
the constant concept �(top). In below abstract syntax rule d
and e are two unary connectives, we use Cd to express that

598

C is a default concept and we useCe to express thatC is de-
fined as an exception. � and � are two binary connectives,
∀ and ∃ enable universal quantification on role values.

C,D → � most general concept
|⊥ less general concept
|P primitive concept
|¬P negation of a primitive concept
|C �D concept conjunction
|C �D concept union
|∀R : C value restriction
|∃R : C cardinality restriction
| ≥ nP minimal cardinality restriction
| ≤ nP maximal cardinality restriction
|Cd default concept
|Ce exception of the concept C

In the following we assume that concepts are partially or-
dered by a subsumption relation. A concept B is subsumed
by a concept A if A is more general than B. Thus, concept
B will inherit all properties of concept A.

For example, using OntoGe
d

1 (figure 1) the concept AB
is subsumed by concepts A and B. The concept D is sub-
sumed by the concept AC and by three default concepts
(A1, A2 and A3). The concept E is subsumed by the con-
cept D and by the the concept A3 by exception. We use
rectangle to represent a class and circle to represent a con-
cept property.

In the following we show how we can combine different
conceptual terms in order to define new relations.

Figure 1. Representation of default and ex-
ception concepts in OntoGe

d

Equational system and definitions

1Described separately in other work. We created OntoGe
d to represent

graphically the ontology concepts based on OntoDLed language. We give
here just a quick overview for demonstration purpose.

The equational system forOntoDLe
d highlights the main

properties of connectives and gives an equivalence relation
between conceptual terms. Also, it reduces the number of
properties used in the same definition.

Below, we define relations such as the associativity, com-
mutativity, idempotence and neutral elements. We give also
some other definitions which can be used when defining
combination of inherited concepts 2.

Let us consider the following set of equations, where A,
B, C belong to OntoDLe

d:

� (A �B) � C = A � (B � C) def1.1
A �B = B �A def1.2
A �A = A �A = A def1.3
� �A = A def1.4
A � ¬A = ⊥ def1.5
A � ⊥ = ⊥ def1.6

� (A �B) � C = A � (B � C) def2.1
A �B = B �A def2.2
A �A = A �A = A def2.3
� �A = � def2.4
A � ¬A = � def2.5
A � ⊥ = A def2.6

d (A �B)d = Ad �Bd def3.1
A �Ad = A def3.2
Ae �Ad = Ae def3.3
Add = Ad def3.4

e (Ad)e = Ae def4.1
(Ae)e = Ae def4.2

For example, if we replace the definition of concept D
in concept E as defined in figure 1 we obtain the following
syntax:
D = AB �A1d �A2d �A3d
E = D �A3e

= AB �A1d �A2d �A3d �A3e

The new syntax contains double definitions of concept
A3, the definition by exception A3e and the inherited de-
fault definition A3d. If now we apply the definition 3.3
above we replace the default definition of concept A3 by
the exception, the new syntax will be:

E = AB �A1d �A2d �A3e

Before presenting the OWLe
d language, let us describe

the Web Ontology based on DL.

3 Web Ontology based on DL

In order to allow sharing and reuse of ontologies on the
Semantic Web, a common ontology language is required.

2All definitions are semantically proved.

599

OWL Abstract Syntax DL syntax
Class axioms

Class(A partial C1 . . . Cn) A Ci

Class(A complete C1 . . . Cn) A ≡ C1 � . . . � Cn

EnumeratedClass(A o1 . . . o1) A ≡ {o1 . . . o1}
SubClassOf(C1C2) C1 C2

EquivalentClasses(C1 . . . Cn) C1 ≡ . . . ≡ C2

DisjointClasses(C1 . . . Cn) C1 � Cj ⊥
ObjectProperty(R super(R1) . . . R Ri

super(Rn))
domain(C1) . . . domain(Cn) � ∀R−.Ci

range(C1) . . . range(Cn) � ∀R.Ci

[inverseOf(Ro)] R−
o

[Symmetric] R−

[Functional] T ≤ 1R

[InverseFunctional] T ≤ 1R−

[Transitive] Trans(R)

SubpropertyOf(Q1 Q2) Q1 Q2

EquivalentProperties(Q1 . . . Qn) Q1 ≡ . . . ≡ Qn

SameIndividual(o1 . . . on) o1 = . . . on

DifferentIndividuals(o1 . . . on) oi �= oj , i �= j

Table 1. Axioms in OWL DL and SHOIN(D)

The W3C has developed two ontology languages for use
on the Semantic Web. The first is RDFS [5], which was
developed as a lightweight ontology language. The second
language is OWL [6], which is a more expressive ontology
language based on Description Logics [3].

OWL consists of three species, namely OWL Lite, OWL
DL and OWL Full, which are intended to be layered accord-
ing to increasing expressiveness. OWL Lite is a notational
variant of the Description Logic SHIF(D); OWL DL is a
notational variant of the Description logic SHOIN(D) [11].
It turns out that OWL DL adds very little in expressiveness
to OWL Lite [12]. OWL Lite and OWL DL pose several
restrictions on the use of RDF and redefine the semantics
of the RDFS primitives; thus, OWL Lite and OWL DL are
not properly layered on top of RDFS. The most expressive
species of OWL, OWL Full, layers on top of both RDFS
and OWL DL.

In this paper we are mainly concerned with the most
well-known and most investigated species of OWL, namely
OWL DL, which can be seen as an alternate notation for the
Description Logic language SHOIN(D). In the remainder
of this section we will explain OWL DL using Description
Logic syntax. Table 1 shows axioms mapping between the
OWL DL abstract syntax and the syntax of the Description
Logic SHOIN(D).

A Description Logic knowledge base consists of two

parts, namely the TBox and the ABox. The TBox con-
sists of a number of class and property axioms; the ABox
consists of a number of individual assertions (see Table
1). Here, C refers to a description, T refers to a concrete
datatype; D refers to either a description or a datatype. R
refers to an object property name, Q refers to an object or
datatype property ; o and t refer to object and concrete val-
ues, respectively. A class axiom in the TBox consists of two
class descriptions, separated with the GCI (General Class
Inclusion, or subsumption; �) symbol or the equivalence
symbol (≡), which is equivalent to GCI in both direction
(i.e. � and �). Similarly, a property axiom consists of two
property names, separated with the subsumption (�) or the
equivalence (≡) symbol. A description in the TBox is either
a named class (A), an enumeration ({o1, . . . on}), a prop-
erty restriction (∃R.D, ∀R.D, ∃R.o,≥ nR,≤ nR, analo-
gously for datatype property restrictions), or an intersection
(C �D), union(C �D) or complement (¬C) of such de-
scriptions (Table 2). Individual assertions in the ABox can
be individual (in)equality (o1 = o2, o1 �= o2) assertions
(Table 1).

However, OWL DL does not allow us to express de-
fault and exception knowledge. In next section, we propose
OWLe

d as an extension of OWL DL including default and
exceptions which allows more complete definition of ontol-
ogy concepts.

4 The OWLe
d language

In this section, we present an extension of the OWL lan-
guage by adding two constructors. These two constructors
allow us a more representation flexibility of concepts with
the default and exception knowledge. The RDF representa-
tions of “default” and “exception” constructors are the fol-
lowings:

<rdfs:Class rdf:ID=“default”>
<rdfs:label>default</rdfs:label>
<rdfs:subClassOf rdf:resource=“#Class”/ >

</rdfs:Class>

<rdfs:Class rdf:ID=“exception”>
<rdfs:label>exception</rdfs:label>
<rdfs:subClassOf rdf:resource=“#Class”/ >

</rdfs:Class>

In table 2 we show a mapping between the OWLe
e

abstract syntax and the syntax of the Description Logic
OntoDLe

d.
For example, we consider above definitions of the con-

cepts E and we tray to give the corresponding representa-
tion in OWLe

d:
E = AB �A1d �A2d �A3e

The OWLe
d representation should be:

600

OWLed Abstract Syntax OntoDLed syntax
A (URI Reference) A

owl:Thing �
owl:Nothing ⊥

intersectionOf(C,D) C � . . . �D

unionOf(C,D) C � . . . �D

complementOf(C) ¬C
oneOf(o1...on) {o1...on}

restriction(P someValuesFrom(C)) ∃P : C

restriction(P allValuesFrom(C)) ∀P : C

restriction(P value(o)) ∃P : o

restriction(P minCardinality(n)) ≥ nP

restriction(P maxCardinality(n)) ≤ nP

defaultOf(C) Cd

exceptionOf(C) Ce

Table 2. Descriptions in OWLe
d and OntoDLe

d

<owl:Class rdf:ID=‘E’>
<owl:intersectionOf rdf:parsetype=‘Collection’>

<owl:Class rdfs:about=‘D’>
<owl:default>

<owl:Class rdfs:about=‘A1’>
</owl:default>
<owl:default>

<owl:Class rdfs:about=‘A2’>
</owl:default>
<owl:exception>

<owl:Class rdfs:about=‘A3’>
</owl:exception>

</owl:intersectionOf>
</owl:Class>

To make such syntax possible we need to extend the
OWL DL grammar as well. The OWLe

d grammar is pre-
sented in the next section.

4.1 OWLe
d grammar

An OWL ontology in the abstract syntax contains a se-
quence of annotations, axioms, and facts. OWL ontologies
can have a name. Annotations on OWL ontologies can be
used to record authorship and other information associated
with an ontology, including imports references to other on-
tologies. The main content of an OWL ontology is carried
in its axioms and facts, which provide information about
classes, properties, and individuals in the ontology. Below,
we note Annotation by annot:

ontology ←′ Ontology(′[ontologyID]directive′)′

directive←′ Annot(′ontologyPropertyIDontologyID′)′

|′Annot(′annotationPropertyIDURIreference′)′

|′Annot(′annotationPropertyIDdataLiteral′)′

|′Annot(′annotationPropertyIDindividual′)′

|axiom
|fact

In general, we divide OWLe
d axioms into: Class Ax-

ioms, Descriptions, Restrictions and Property Axioms.
More than OWL-DL, descriptions in the OWLe

d abstract
syntax include class identifiers, restrictions default and ex-
ception. Descriptions can also be boolean combinations of
other descriptions, and sets of individuals.

description← classID

|restriction
|′defaultOf(′description′)′

|′exceptionOf(′description′)′

|′unionOf(′description′)′

|′intersectionOf(′description′)′

|′complementOf(′description′)′

|′oneOf(′individualID′)′

4.2 Structural Concept Algebra

First, we define P as the set of primitive concepts com-
plemented with the set P defined as follows:

P = {p/p ∈ P}
Let C be the structural concept algebra of OntoDLe

d, we
define the domain of C as follows:

C = IED ,

where:

E0 = 2P∪P × 2∅

En+1 = 2P∪P × 2En

E =
⋃

n≥0En

D = 2P∪P

I is the mapping function from OntoDLe
d into OWLe

d

language. Consequently, for an element A of C, we note Aσ

the set of strict definitions of the concept A, Aε the set of
exception definitions and Aδ the set of default definitions.
We write:

IAσ,Aε

Aδ

We present in table 3 the structural concept algebra C
corresponding to OWLe

d:
For example, we give structural denotations of concepts

described in figure 1 as follows:

601

OWLed Abstract Syntax C
owl:Thing I∅,∅∅

owl:Nothing I∅,∅∅

intersectionOf(C,D) I
{Cσ∪Dσ},{Cε∪Dε}
{g(Cδ,Dε)\Dσ∪g(Dδ,Cε)\Cσ}

unionOf(C,D) I
{Cσ∪Dσ},{Cε∪Dε}
{g(Cδ,Dε)\Dσ∪g(Dδ,Cε)\Cσ}

complementOf(C) I
{P},∅
∅

oneOf(o1...on) I
{o1...on},∅
∅

defaultOf(C) I∅,∅g(Cδ,Cε)

exceptionOf(C) I∅,Cε

∅

Table 3. Descriptions in OWLe
d and OntoDLe

d

• The denotation of AB is I{A,B},∅
∅

• The denotation of D is I{A,B},∅
{A1,A2,A3}

• The denotation of E ∩D is I{A,B},{A3}
g({A1,A2,A3},{A3})

• The denotation of E will be I{A,B},{A3}
{A1,A2}

The function g is used to cut out exceptions in defaults.
We give more details about this function in the next section.

4.3 Substitution algorithm for OWLδε

The principal of the function g is to get in entry two sets
l and d. The set l contains a list of default definitions, while
the set d contains the list of exceptions. For each concept
a of the set d, we search if there exists a concept b from l
such that a = b and we replace the default definition by the
exception.

g : 2D × 2D → 2D such that
g(l, d) =

if d = ∅
then return l
else res← l

for all a ∈ d
if there exists b ∈ l such that a = b

then res← g(res\b, d\a)
endfor
return res.

In the next section we prove that g is of polynomial com-
plexity

4.4 Computational complexity in OWLδε

In this section, we study the computational complexity
of the function g.

Proposition. The function g is of polynomial complexity.
Proof . Let n and m be the respective lengths of the two
sets l and d. We know that the function g is a recursive
function and that the lengths of the sets are decreasing for
each new recursive call of the g. For each substitution, the
length of the set d decreases (m− 1), then the new research
will continue on the rest of the set l without the substituted
concept (n− 1).

We note go the complexity of g, and goi the complexity
of the function g at the step i of the substitution.

go1 ≤ n×m

go2 ≤ (n− 1)× (m− 1)
...
gon ≤ (n− (n− 1))× (m− (n− 1)) (with m > n− 1)

≤ (1)× (m− n+ 1)

≤ m− n+ 1

We know that:
go = go1 + go2 + . . .+ gon

Then:
go ≤ (n×m) + ((n− 1)× (m− 1)) + . . .+ (m− n+ 1)

≤ (n×m)× n (n times)

≤ mn2

5 Conclusion

In this paper we proposed OWLe
d as an extension of the

ontology Web language OWL by adding two new construc-
tors default and exception. In order to make such exten-
sion possible, we proposed a specific description language
OntoDLe

d which includes default and exception connec-
tives. Then, we demonstrated who we can make mapping
between the two languages and we presented the extension
of grammar and the structural concept algebra. Finally, we
proved that the proposed solution lays to a polynomial com-
putational complexity.

We demonstrated in this paper the necessity to extend the
Ontology Web Language with default and exception knowl-
edge and the feasibility to do it based on description logic
theory. We believe that such extension will solve most of the
problem related nowadays to the Web semantic researches.
However, the whole formalism is developed in a parallel
work in our laboratory and includes as well the study of dif-
ferent cases of conflicts in definitions, especially for inher-
ited concepts, and the complete algebra structure with the-
orems and proofs which are not presented in this paper. We
are also focusing in the conception of a complete software
including both language and graphical interface OntoGe

d.
As a future work, we intend to study the problem of map-

ping between heterogenous ontologies by using OntoDLe
d

as an intermediate language, the ontologies not based on de-
fault and exception knowledge will be completed by default

602

values. Therefore, we can offer a complete and transpar-
ent mediation system between end users and heterogenous
ontologies.

References

[1] G. Attardi, M. Simi. A Description-Oriented Logic
for Building Knowledge Bases. In Proceedings of the
IEEE, vol. 74, n. 10, 1335–1344, 1986.

[2] F. Baader, B. Hollunder. Embedding defaults into ter-
minological knowledge representation formalisms. J.
Auto. Reason. 14, 149-180, 1995.

[3] F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, P.
Patel Schneider. The description logic handbook. Cam-
bridge (UK): Cambridge university press, 2003.

[4] R.J. Brachman. I Lied about the Trees Or, Defaults
and Definitions in Knowledge Representation. The A.I.
Magazine, vol.6, Number 3, 80–93, 1985.

[5] D. Brickley, R.V. Guha. RDF vocabulary descrip-
tion language 1.0: RDF schema. Recommendation 10
February 2004, W3C, 2004.

[6] M. Dean, G. Schreiber eds. OWL Web Ontology Lan-
guage Reference. W3C Recommendation 10 February,
2004.

[7] F.M. Donini, D. Nardi, R. Rosati. Non-first-order fea-
tures in concept languages. In Proceedings of the 4th
Conference of the Italian Association for Artificial In-
telligence (AI*IA95). Number 992 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, 91-102, 1995.

[8] F.M. Donini, D. Nardi, R. Rosati. Description Logics of
Minimal Knowledge and Negation as Failure. In ACM
Transactions on Computational Logic, vol. 3, num. 2,
pages 177–225, 2002.

[9] P. Coupey, C. Fouquer. Extending Conceptual Defini-
tions with Default Knowledge. In Computational Intel-
ligence, Volume 13, Number 2, 258–299, 1997.

[10] T.R. Gruber. Towards principles for the design of on-
tologies used for knowledge sharing. In Roberto Poli
Nicola Guarino, editor. International Workshop on For-
mal Ontology, Padova Italy, 1993.

[11] I. Horrocks, P.F. Patel-Schneider. Reducing OWL en-
tailment to description logic satisfiability. In Proc. of
the 2003 Int. Semantic Web Conf. ISWC, 2003.

[12] I. Horrocks, P.F. Patel-Schneider, F. Van Harmelen.
From SHIQ and RDF to OWL: The making of a web
ontology language. Journal of Web Semantics 1(1):7–
26, 2003.

[13] R. Nado, R. Fikes. Semantically sound inheritance for
a formally defined frame language with defaults. In Pro-
ceedings of the 6th National Conference on Artificial
Intelligence (AAAI87). 443448, 1987.

[14] L. Padgham, T. Zhang. A terminological logic with
defaults. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence (IJCAI93). 662-
668, 1993.

[15] J. Quantz, V. Royer. A preference semantics for
defaults in terminological logics. In Proceedings of
the 3rd International Conference on the Principles
of Knowledge Representation and Reasoning (KR92).
Morgan Kaufmann, Los Altos, 294-305, 1992.

[16] U. Straccia. Default inheritance reasoning in hybrid
KL-ONE-style logics. In Proceedings of the 13th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI93). Morgan Kaufmann, Los Altos, Chambery
(France), 676-681, 1993.

603

Using Ontologies to Represent Software Project Management Antipatterns

Dimitrios Settas, Ioannis Stamelos
Dept. of Informatics,

Aristotle University of Thessaloniki
Thessaloniki, Greece

{dsettas,stamelos}@csd.auth.gr

Abstract

In spite of numerous knowledge sharing and reuse mech-
anisms, the provision of intelligent advice to software
project managers still remains an open issue. Antipat-
terns provide information on commonly occurring solutions
to problems that generate negative consequences. These
mechanisms are documented using informal structures that
do not readily support knowledge sharing and reuse. For
this, we need better-structured representations. The formal-
ism of Bayesian Networks (BN’s) has been proposed to cap-
ture and model software project management antipattern
uncertainty manually or automatically, through an antipat-
tern knowledge base. The antipattern ontology proposed in
this paper, specifies the conceptual structure of the antipat-
tern knowledge base, encodes tacit software project man-
agement knowledge into computer understandable form and
will allow the sharing and reuse of this knowledge by soft-
ware tools. Furthermore, the issue of capturing and quanti-
fying uncertainty in the antipattern ontology is addressed by
including the concepts of antipattern BN models and their
corresponding OWL ontology in the design of the generic
antipattern ontology.

Keywords: Antipattern Ontology, Bayesian Networks, An-
tipattern Knowledge Base

1. Introduction

Software project management antipatterns suggest com-

monly occurring solutions [1] to problems regarding dys-

functional behaviour of managers or pervasive management

practices that inhibit software project success [2]. These

mechanisms can manage all aspects of a software project

more effectively by bringing insight into the causes, symp-

toms, consequences, and by providing successful repeatable

solutions [3]. The readers that are not familiar with antipat-

terns can use [2],[3] as introductions to the topic.

Software project management antipattern catalogues

[1],[2],[3],[4],[5] have been documented using informal

templates and unofficial structures that attempt to make an-

tipatterns easy to remember. Such structures do not readily

support knowledge sharing and reuse because they can only

be used among people. The amount of defined antipatterns

and the amount of printed documentation is increasing to

the extent that it becomes difficult for it to be effectively

used. Furthermore, different templates have been proposed

[2], [3], which can be used to document a software project

management antipattern. As a result software project man-

agement using antipatterns has not become a common prac-

tice in the practitioners’ community. For antipatterns to be-

come a widespread practice, a better structured antipattern

representation is required.

While there is a considerable amount of literature about

ontologies, the issue of representing antipatterns using on-

tologies has not been addressed. Uncertainty concerns ev-

ery aspect of ontologies [6],[7] and it is one of the most

important criteria that need to be taken into account in the

selection of an appropriate knowledge representation [8].

In this paper, the issue of quantifying uncertainty in the an-

tipattern ontology is addressed by including the concept of

antipattern Bayesian Network (BN) models [5] in the ontol-

ogy itself. Furthermore, a corresponding OWL ontology of

an antipattern BN model is included in the generic model of

the antipattern ontology.

BNs have been recently suggested [5] for modeling soft-

ware project management antipatterns. This formalism pro-

vides a natural, logical and probabilistic framework to de-

pict software project management antipatterns and can be

used by project managers to illustrate the effects of uncer-

tainty on a project management antipattern. The antipat-

tern knowledge base model [9] can overcome the problems

associated with the manual construction of BNs by auto-

matically constructing antipattern BN models. However,

due to the problems associated with antipattern documen-

tation, an ontology is required to provide the conceptual

model of antipatterns. Furthermore, the antipattern ontol-

ogy will benefit the antipattern knowledge base model [9]

604

by providing it with a description of concepts, attributes

of concepts, relationships among concepts, constraints on

these relationships, defining therefore knowledge reference

structure of the domain of software project management an-

tipatterns. Following the official process of ontology con-

struction [10], the antipattern ontology was first specified

and then designed.

In particular this framework is exemplified by using ”The

Standards” software project management antipattern [3].

This antipattern explains why standards fail to address the

needs of many organizations and provides a refactored solu-

tion in order to resolve the unbalanced forces, causes, symp-

toms and consequences of this antipattern [3]. We chose this

issue to illustrate the power of including BNs and their cor-

responding OWL ontology in the generic antipattern ontol-

ogy in the context of antipattern knowledge base approach

[9]. This paper is organized as follows: section 2 describes

the background, related work and the literature review used

in our research. Section 3 describes the specification and

design of the antipattern ontology. Section 4 exemplifies

the proposed ontology approach in the context of the an-

tipattern knowledge base. Finally in section 5 findings are

summarized and conclusions are drawn.

2. Background and Related Work

2.1 Background

By listing project management antipattern catalogues

project managers can identify potential problems and pro-

vide a refactored solution in a practical and reusable man-

ner. According to Brown et al. [1], a software project man-

agement antipattern can be the result of a manager not hav-

ing sufficient knowledge or experience in solving a particu-

lar problem.

The antipattern knowledge-base [9] uses a many-to-

many interaction of software managers and antipattern con-

tributors through the antipattern knowledge base. The

knowledge base provides the means to intelligently dissem-

inate computer-based software project management antipat-

terns and can be used together with queries of software

managers in order to create Bayesian Network (BN) mod-

els of software project management antipatterns [5] in an

automated manner. This is achieved using the Knowledge

based model construction (KBMC) framework [8], which is

a combination of first-order logic and Bayesian networks.

According to Devedzic [11], one can draw an analogy

between libraries of ontologies and catalogues of software

patterns. Patterns and antipatterns are not ready-to-use

building blocks as are ontologies and ontologies can also be

seen as knowledge skeletons of a domain. However, ontolo-

gies are more general and common-sense oriented and less

concrete than antipatterns. The most important difference

between these two notions is that ontologies are encoded

in computer understandable form and can be used by intel-

ligent agents, while antipatterns can only be used among

people. Joining these two notions will encode important

software project management knowledge into a computer

understandable form to allow the sharing and reuse of this

knowledge by computer tools that implement intelligent

agent technology [12]. Furthermore, an ontology can pro-

vide a framework for categorizing empirical studies and or-

ganizing them into a body of knowledge [13]. In this paper,

this framework addresses the software project management

antipattern domain. Thus, antipattern researchers will be

able to provide a context within which specific questions

about antipatterns can be investigated.

2.2 Related Work

Software patterns have been recently represented using

ontologies [14], [15]. Antipatterns are the latest generation

of design pattern research and are related with patterns in

the sense that design patterns can evolve into antipatterns

[1]. The difference is in the context: An antipattern is a pat-

tern with inappropriate context and is particularly useful in

the case of knowledge representation and knowledge man-

agement, because it captures experience and provides infor-

mation on commonly occurring solutions to problems that

generate negative consequences. An antipattern is a new

form of pattern that has two solutions. The first is a solution

with negative consequences and the other is a refactored so-

lution, which describes how to change the antipattern into

a healthy solution. These fundamental differences between

patterns and antipatterns inhibit the use of the software pat-

tern ontology [14],[15] in order to represent antipatterns.

The activities in the research of antipatterns are mainly fo-

cused in the invention of new antipatterns.

As already mentioned it is important to address the issue

of uncertainty in the selection of an appropriate knowledge

representation. One of the most widely used standards that

have emerged for web ontologies is OWL [6]. However,

the current definition of OWL does not take uncertainty

of knowledge into account [6],[7]. It has been proposed

that in cases where OWL is inefficient in capturing uncer-

tainty, special means should be used [6]. BayesOWL [7] is a

framework which extends and supplements OWL for repre-

senting and reasoning with uncertainty based on BNs. This

framework [7] provided a set of rules and procedures that

directly translate an OWL ontology into a BN structure and

a method that utilizes available probability constraints about

classes and interclass relations in constructing the condi-

tional probability tables (CPTs) of the BN.

The issue of uncertainty has also been addressed using

other approaches, including directly embedding uncertainty

information in the knowledge base using probabilistic de-

605

scription logics [16] and using Bayesian networks [17] but

the reasoning support in tools for such extensions is lacking

[6]. In this paper, the issue of capturing uncertainty in the

antipattern ontology is addressed by including one or more

BN models of an antipattern [5] in the antipattern ontology.

3 Specification and design of Antipattern
Ontology

3.1. Specifying the Antipattern Ontology

In this paper, only a part of the ontology construction

process is considered and ontologies are treated as more

complete specifications of antipatterns. As already men-

tioned, project management antipatterns are specified using

informal presentation styles of ([3], [2], [4]), For the speci-

fication of the software project management antipattern on-

tology Laplante’s [2] template (see Table 1) attributes are

used.

In the construction of an ontology, existing ontologies

must be integrated. Since, an antipattern ontology does not

exist, pattern ontologies can be partially integrated. As a

result, following the recent specification of the pattern on-

tology [14], the antipattern ontology can be specified using

the notion of antipattern relationships. In the specification

of the antipattern ontology, antipatterns and their relation-

ships must be included [14]. These are expressed according

to a formalism which was originally proposed for software

systems [18]:

• If the refactored solution of an antipattern A1 uses an
antipattern A2, then A1 uses A2.

• If the explanation of an antipattern A1 is a specializa-
tion of an antipattern A2, then A1 refines A2.

• If the application of an antipattern A2 is demanded
in the application of antipattern A1, then A1 demands

A2.

• If an antipattern A1 and an antipattern A2 provide dif-
ferent refactored solutions for the same problem then,

antipattern A1 is the alternative of A2.

Finally the antipattern ontology takes into account the

three different kinds of antipatterns, which according to

Brown et al. [1] are software development, software ar-
chitecture and software project management antipatterns.

3.2. Designing the Antipattern Ontology

There exist different formalisms that can be used to ex-

press ontologies, such as the Knowledge Interchange For-

mat and knowledge representation languages [19], [11].

Table 1. Antipattern attributes for the specifi-
cation of the antipattern ontology.

Name A short name that conveys the antipattern’s meaning.

Central The short synopsis of the antipattern in order to make the

Concept antipattern identifiable.

Dysfunction The problems with the current practice.

Explanation The expanded explanation including causes and
consequences.

Band-Aid A short term coping strategy for those who don’t have the

influence nor time to refactor it.

Self-Repair The first step for someone perpetuating the antipattern.

Refactoring The required changes in order to remedy the situation and

their rationale.

IdentificationAn assessment instrument consisting of a list of questions
for diagnosis of the antipattern.

However, a generally accepted notation for representing on-

tologies has not been proposed yet [11]. The Unified Mod-

elling Language notation has been generally accepted in

object-oriented design because it provides a graphical nota-

tion that represents classes, objects and their relationships in

different views. UML has also been proposed as a suitable

notation to represent ontologies [6],[13],[20]. In this paper,

UML was used to express and design the antipattern ontol-

ogy. UML was chosen because several software tools have

been developed that enable the representation of ontologi-

cal knowledge using UML [20]. Furthermore, an eXtensi-

ble Stylesheet Language Transformation (XLST) based ap-

proach can be used on UML models in order to generate

Web Ontology Language (OWL) [21]. Such tools are de-

ployed because practitioners are already familiar with UML

and there is often no need to learn how to use specific on-

tology tools [21].

In UML information is represented in class diagrams

[20]. The use of UML has been proven successful in the

construction of an ontology as a static model using a UML

class diagram and an object diagram [19]. Class diagrams

have also been used to describe the software maintenance

process ontology [13]. A UML profile for OWL has been

recently proposed in [6], but it is based on a dated ver-

sion of OWL. An initiative to provide a standard mapping

between UML and ontology languages such as OWL is

in progress under the auspices of the Object Management

Group (OMG). In the design of the antipattern ontology di-

agram (see Fig. 1), UML notation was used to describe

the different relationships that an antipattern might have ac-

cording to the specification of the antipattern ontology. Fur-

thermore, the antipattern ontology includes the attributes

of an antipattern according to the specification of the an-

tipattern ontology. The design also addresses the differ-

ent kinds of antipatterns and illustrates the relationship be-

tween the concepts of antipatterns, antipattern BN models

and the OWL ontology that corresponds to an antipattern

606

BN model. This relationship indicates that an antipattern

can be modelled with one or more Bayesian Network mod-

els. However each antipattern BN model only corresponds

to a single OWL ontology.

Figure 1. The Generic Antipattern Ontology
UML Diagram

4 The antipattern knowledge base model

4.1. The use of Bayesian Networks in the
Antipattern Ontology

In this section we exemplify the use of BNs in the an-

tipattern ontology, which conceptually defines the antipat-

tern knowledge base (See Fig. 2). The antipattern knowl-

edge base system [9] aims towards the automatic construc-

tion of antipattern BN models and the intelligent dissemi-

nation of computer-based software project management an-

tipatterns. The model uses a many-to-many interaction of

software managers and antipattern contributors through the

antipattern knowledge base. The main feature of this archi-

tecture is the collective knowledge, built by a combination

of human work and machine learning. Another important

feature is that the knowledge base receives real-world feed-

back on the quality and correctness of their contributions

in the form of queries and their outcomes, and the resulting

knowledge is therefore much more likely to be both relevant

and correct [8].

The interaction of the antipattern contributors with the

antipattern knowledge base includes:

• Antipatterns. Antipatterns will be expressed as rules
and facts in the Horn clause subset of first-order logic,

which is used to capture a broad-range of real-world

knowledge.

The interaction of software managers with the antipat-

tern knowledge base includes three kinds of information:

• Queries. Queries are predicates with open variables
that will be provided by the user from a graphical user

interface. Information concerning the query can also

be captured from the outside system that the query is

referred to. Finally a utility value will be associated

with queries in order to indicate the value of the query

answer to the software manager. This will encourage

software managers, who are also contributors to pro-

vide high quality antipatterns.

• Replies. In order to generate replies, the open vari-
ables for which the query predicate is true are instanti-

ated.

• Feedback. If the reply of the query satisfies a soft-
ware manager then he/she can report positive feed-

back to the knowledge base. On the other hand if

the reply is not satisfactory then the error can be re-

ported. For example, if the query is ”Where on the

World-Wide Web can I find an antipattern on hetero-

geneous pair-programming developer personalities?”

and the answer is a URL, the software manager can

visit the URL and provide feedback if the web-page

was successfully found or not.

Antipattern

Contributors
Software

Managers
Antipatterns Replies

Feedback

Queries

Inference

Learning

Antipattern

Knowledge

Base

Ontology

Figure 2. Antipattern knowledge base infor-
mation streams

By including the BN model of an antipattern in the on-

tology proposed in this paper, each antipattern is associated

with at least one corresponding BN model. The BN models

that are included in the knowledge base can be either cre-

ated manually or automatically using the KBMC framework

by. To answer a query, KBMC extracts from the knowl-

edge base the antipattern Bayesian network (See Fig. 3)

containing the relevant knowledge. Every grounded predi-

cate that is relevant to a specific query becomes a node in

607

the Bayesian network model. Once this conversion takes

place, any standard BN inference technique may be used to

answer the software developers’ queries [8]. The resulting

BN model is proportional to the number of query rules and

not to the size of the entire knowledge base. This is another

advantage of using the KMBC framework.

Developer

Resistance

Standard

Tailoring

Standard

Implementation

Standard

Selection

Commitment

Perception

Code QualityStandardization

Figure 3. ”The Standards” Antipattern BN
model

Besides the power of probabilistic reasoning provided

by BN itself, BN’s are used in the antipattern ontology be-

cause of the structural similarity between the DAG of a BN

and the RDF graph of OWL ontology: both of them are

directed graphs, and direct correspondence exists between

many nodes and arcs in the two graphs [17]. According to

Pan et el. [7] a set of rules and procedures can be used for
direct translation of an OWL ontology into a BN structure (a

directed acyclic graph or DAG). However, the probabilities

that are required in both translation and mapping can be ob-

tained by using text classification programs, supported by

associating to individual concepts relevant text exemplars

retrieved from the web [7].

Developer

Resistance

Standard

Tailoring

Standard

Implementation

Standard

Selection

Commitment

Perception

Code QualityStandardization

Figure 4. ”The Standards” Antipattern corre-
sponding OWL Ontology

In the approach proposed in this paper the same set of

rules are used to translate an antipattern BNmodel (See Fig.

3) directly into a corresponding OWL ontology (See Fig. 4).

The general principle underlying the structural translation

rules is that all nodes in BN are translated to OWL classes

[7]. The arrows represent the influence relation. In this

graphical example (See Fig. 4) OWL concept properties and

data types are not implemented since the BN model nodes

(See Fig. 3) do not specifically define them.

5. Conclusion

In this paper the ontological representation of a software

project management antipattern provided a source of pre-

cisely defined terms that can be communicated across peo-

ple and software tools. A common project management on-

tology is an important step towards software tool interoper-

ability because using the antipattern ontology, a specific an-

tipattern can be much more easily used from different soft-

ware project management tools. Furthermore, a knowledge-

base approach using the antipattern ontology was proposed

to support the technology of software project management

antipatterns. This approach serves as a framework to allow

the easy acquisition of software project management tacit

knowledge using antipatterns. The antipattern knowledge

base allows this knowledge to become explicit and provides

the theoretical and technical foundation to successfully ac-

quire and represent tacit knowledge encoded in antipatterns.

In particular this framework was exemplified by using

”The Standards” software project management antipattern

[3]. We chose this issue to illustrate the power of including

BN models of antipatterns and their corresponding OWL

ontology in the antipattern ontology. Further technical de-

velopment of the internal knowledge base KBMC algorithm

is required for further research and evaluation of the pro-

posed framework. Furthermore, a richer set of data from

empirical investigations would be more helpful in repre-

senting several project management antipatterns. Finally,

a web-based community of software project management

antipattern contributors must be created in an effort to de-

velop, evaluate this environment and allow its on-line use

by software project managers worldwide.

References

[1] William J. Brown, Raphael C. Malveau, Hays W.

”Skip” McCormick III, Thomas J. Mowbray: An-

tiPatterns: Refactoring Software, Architectures, and

Projects in Crisis. Wiley Computer publishing (1998)

[2] Philip A. Laplante, Colin J. Neil: Antipatterns: Iden-

tification, Refactoring, and Management. Taylor and

Francis (2006)

608

[3] William J. Brown, Hays W. ”Skip” McCormick III,

Scott W. Thomas: AntiPatterns in Project Manage-

ment. Wiley Computer publishing (2000)

[4] Kuranuki Y., Hiranabe K.: Antipractices: AntiPat-

terns for XP Practices. Agile Development Confer-

ence (2004)

[5] Settas D., Bibi S., Sfetsos P., Stamelos I., Gerogiannis

V.: Using Bayesian Belief Networks to Model Soft-

ware Project Management Antipatterns. Proceedings

of the 4th ACIS International Conference on Software

Engineering Research, Management and Applications

(SERA) (2006) 117–124

[6] David Taniar, Johanna Wenny Rahayu: Web Seman-

tics and Ontology. Idea Group Publishing(2006)

[7] Pan, R., Ding, Z., Yu, Y, and Peng, Y.: A Bayesian

Network Approach to Ontology Mapping. Proceed-

ings of the Fourth International Semantic Web Con-

ference(2005)

[8] Richardson M., Domingos P.: Building large knowl-

edge bases by mass collaboration. Proc. of the 2nd Int.

conf. on Knowledge capture. (2003) 129–137

[9] Settas D., Bibi S., Sfetsos P., Stamelos I., Gerogian-

nis V.: A Computer Supported Bayesian Network Ap-

proach to Model Software Project Management An-

tipatterns. Submitted to Springer LNCS.

[10] Fridman, N. N., McGuinnesS, D. L .: Ontology Devel-

opment 101: A Guide to Creating Your First Ontology.

Knowledge Systems Laboratory (2001)

[11] Vladan Devedzic: Understanding Ontological Engi-

neering. Communications of the ACM 45(4ve) (2002)
136–144

[12] Vladan Devedzic: Ontologies: Borrowing from Soft-

ware Patterns.Intelligence 10(3) (1999) 14–24

[13] Kitchenham, B. A., Travassos, G. H., vonMayrhauser,

A., Niessink, F., Schneidewind, N. F., Singer, J.,

Takada, S., Vehvilainen, R., and Yang, H.: Towards

an ontology of software maintenance. Journal of Soft-

ware Maintenance 11(6) (1999) 365-389

[14] Rosario Girardi, Alisson Neres Lindoso: An

Ontology-based Knowledge base for the Representa-

tion and Reuse of Software Patterns. ACM SIGSOF

Software Engineering Notes. 31 (1) (2006)

[15] Jean-Marc Rosengard and Marian F. Ursu: Ontologi-

cal Representations of Software Patterns. Proceedings

of KES04. Lecture Notes in Computer Science 3215
(2004) 31–38

[16] Guigno,R., Lukasiewicz, T.: A probabilistic extension

of SHOQ(D) for probabilistic ontologies in the Se-

mantic Web. Proceedings of the 2002 European Con-

ference on Logics in Artificial Intelligence (JELIA).

Springer-Verlag. (2002) 86–97.

[17] Ding, Z., Peng, Y.Pan, R.: A Bayesian approach to

uncertainty modelling in OWL ontology. Proceedings

of the 2004 Int. Conference on Advances in Intelligent

Systems (2004)

[18] Agns Conte,Mounia Fredj, Ibtissem Hassine, Jean-

Pierre Giraudin, and Dominique Rieu:A Tool and a

Formalism to Design and Apply Patterns. OOIS 2002

Springer LNCS 2425 (2002) 135–146

[19] Cranefield S., Purvis M.: UML as an Ontology Mod-

elling Language. Proc. of the Workshop on Intelligent

Information Integration, 16th Int. Joint Conference on

AI (1999)

[20] Kogut, P. A., Cranefield, S., Hart, L., Dutra, M.,

Baclawski, K. and Kokar, M. M. and Smith, J. E.:

UML for Ontology Development. The Knowledge En-

gineering Review 17(1) (2002) 61–64

[21] Gasevic D., Djuric D., Devedzic V., Damjanovic V.,

From UML to Ready-To-Use OWL Ontologies, 2nd

IEEE Int. Conference on Intelligent Systems (2004)

485–490

609

Abstract

Planning has been commonly applied to Web service
composition recently. However, most of automated systems
of Web service composition contain two problems. First,
most of them overlook some user needs which sometimes
combine services provided by systems themselves and
services from external systems to provide a much more
flexible service model. Second, most of them do not record
information about service providers having already served
the users and about plans having already been processed in
order to speed up the pace and facilitation of systems
providing services. Therefore, this paper presents a method
of merging internal and external service systems to reach

resides in the local system,
and the external one means a Web service provided by
external service providers. We apply techniques of planning
to combine both types of services, so that we can create
plans made of a series of operations to satisfy user needs.
We also apply Case-Based Reasoning to store plans and
related information into a case base, so that it creates plans
in much faster way when users have similar needs.

1 Introduction

Service composition is a challenging research topic [1].
To solve such problem, different approaches have been
proposed, and there are a few reported systems, such as
MIND [2] and Pistor [3], which use planning from artificial
intelligence. Our work is to add a feature of user satisfaction
in service composition using planning and also provide a
mechanism which remembers the usage of previous service
request. For this reason, we have designed a system which
uses planning, namely Hierarchical Task Network Planning
(HTNP) [2], in service composition along with Case-Based
Reasoning (CBR) [4] for reusing old experiences.

This work was supported in part by Ministry of Economic Affairs (Taiwan)

under the grant 95-EC-17-A-02-S1-029 and National Science Council (Taiwan) under

the grants 95-2752-E-008-002-PAE and 94-2213-E-194-010.

Our prototype system described in this paper uses
intension-aware goal models [5] and the concept of personal
ontology [6] to provide a service which is most suitable to
the user. By using CBR, the system remembers how the user
has been satisfied by certain services in order to reuse the
previous experiences in future usage.

The work reported in [2] uses HTNP as the base in
deriving services. The OWL-S files provided by service
providers are converted to the domain in the tool, SHOP2,
and the service request entered by the user will be used in
planning with the domain information. Finally, a description
file resulted from the service composition in OWL-S is
produced. In addition to using HTNP for service
composition, the authors in [7] provide an algorithm, called
Enquirer, in the query manger to obtain information. The
advantage is that it produces a reasonable result in the initial
stages when information is still lacking. An approach in
planning as model checking is used in [3]. The authors use
MBP Planner [8] for solving nondeterministic and partial
observable problems along with problems associated with
extended goals. CBR is used in [9] for service composition,
and the authors use six different kinds of relationship among
services. The service name along with its service description
is used for retrieving a case for providing a solution.

For the discussion above, Table 1 summarizes the related
work with features and criteria, such as the main methods
used; the capability in handling unexpected situation, in
achieving a goal, and in recording what service providers
had been used; and the ability in performing composition
among internal services and external services. All systems
have the ability in achieving their goals from the known
providers, but only some of them can handle unexpected
situations. Since none of the systems learns the providers
that they have used, every service request is processed from
scratch. In addition, none of the systems feature the ability in
composing internal and external services together. If a
system has its internal services, it can use such services in
place of external services. This will save resources in
searching and transmission. In addition, such internal
services may also play the roles of substituting external
services in case of failure.

Service Composition Using Planning and Case-Based Reasoning

Kuan-Hsian Huang and Alan Liu
Department of Electrical Engineering

Center for Telecommunication Research
National Chung Cheng University

Chiayi, 621, Taiwan
aliu@ee.ccu.edu.tw

610

Table 1. Comparison

Work Main
method

Unexpected
situation

Goal
achievement Learning External and

internal services
[2] HTN

Planning
No Yes No No

[7] Planning as
Model Check

Yes Yes No No

[8] HTN
Planning

Yes Yes No No

[9] CBR No Yes No No

Table 2. Four methods for obtaining external services

Action Precondition Status change
Select_Service Service (S)

Select (S)
Haveservicedata (S)

Select (S)
Check_Service_Data Haveservicedata (S)

Have_main_service_data
Main_goal (S)

Have_main_service_data

Check_all_Condition Sort_Condition (S) (C)
Filter_Condition (S) (C)
Haveservicedata (S)

Check_Ready
Sort_Condition (S) (C)
Filter_Condition (S) (C)

Show_Data Check_Ready
Have_main_service_data

Finish

Our research is to use HTN planning with CBR for
providing the user services. For the first time user, the
system uses HTN planning to compose a service by
exploring external and internal services for a possible
combination. At the same time, the usage is learned by the
system through the CBR mechanism. If the user issues a
similar service request in the future, the CBR mechanism
will find a composite service from the previous experience.
In the next section, we explain our method which is a
combination of a planning method and a CBR mechanism.
Section 3 describes the process of implementation for our
prototype system. The last section states the conclusion.

2 Combined Method

One feature of our system is to make it possible to
combine the internal services originated at the user's local
system and with the external services from other service
providers. Another aim is to record the usage of a particular
user in order to deliver a composite service without
reorganizing it from scratch if the service request has been
sent previously. Two AI techniques used in our system,
planning and CBR, are discussed here in this section. Our
method of combining planning and CBR may be considered
as an extension to the work in [11]. If the service request
cannot be solved through CBR, the planner takes over and
find a composite service for the user. If the solution can be

found using the CBR system, then the user has the choice of
reusing the solution or to recomputing a new solution.

2.1 HTN Planning

In using a planning mechanism, more information will
be required other than a single service request from a user.
For this reason, we have studied methods for expanding
keywords for providing more information for a planner.
From our previous research in analyzing user intension and
ontology, a system transforms the user query into a goal
model which consists of the following attributes [5]:

1. Actions: user's intended action
2. Objects: user's preferred type of service
3. Constraints: user's constraints toward a service
4. Parameters of objects: user's preference toward a

service
When using an external or internal service, we

sometimes need to face unexpected situations like time out
or execution failure during the execution of a plan. In order
to solve nondeterministic problems like this, a monitoring
mechanism is added to our planning mechanism. In using
HTN planning, we insert such monitoring mechansim to
actions with potential failures.

In this paper, we use P = (T, S) as our definition of
planning, where P is a plan generated, T is a set of tasks,
and S is the initial status of a plan problem. The planner

611

uses S and T to come up with a plan. In the task network, T,
t' represents a sub-task. A sub-task may be a method or an
operator, so if t' represents a method, then t' needs to be
decomposed further until t' becomes an operator. An
operator represents the basic action in this paper, and the
basic action cannot be divided. Thus, decomposition stops
when t' is an operator.

A subtask, 1t , may be viewed as four methods, such as
Select_Service, Check_Service_Data, Check_all_Condition,
and Show_Data. Table 2 summarizes the precondition for
those actions and the stauts changes afterward. In Table 2
and Figure 1, S represents a service provider and C
represents the parameter for filtering information after a
service.

In Figure 1, we represent Table 2 as a state chart, in
which we can see that what preconditions need to be
satisfied before executing a method and what status change
a method brings after execution. In the figure, we see that to
execute Show_data, we need to satisfy two statuses,
Check_ready and Have_main_service_data. These two
statuses rely on two methods, Check_all_condition and
Check_service_data. These two methods instead rely on
Select_service.

Figure 1. Relationship between four methods

Those four methods in Table 2 can be further divided
into other methods or operators. Taking the method,
Select_Service as example, we can divide it into two types,
the primary service and the secondary service. These two
types are then defined as Main_Goal and Seond_Gaol,
respectively, and they have different preconditions. This is
depicted in Figure 2.

As for the method, Check_all_Condition, the main
purpose is to check whether or not sorting or filtering status
still exists in the service. If there is a service still needing
sorting or filtering status, then Check_all_Condition will
clean the status after applying sorting or filtering and
produces Check_Ready status.

Figure 2. Flow of select_service

2.2 Process with CBR

A case is divided into two parts, the description part
and the solution part. We use three attributes, action, object,
and constraints, to define the description part of a case. As
for the solution part, it includes the locations of the OWL-S
files by service providers, the parameters needed for the
service providers, and the plans.

At the case retrieval stage, we use the goal model
provided as the features for finding a case. At the case reuse
stage, we check the content of the goal model and the
retrieved case. If the content is an exact match, then we can
just simply copy the solution part as a composite service for
the user. If there is still a difference, an adaptation
mechanism will modify the solution part accordingly.

As for the prototype reported here, we have not yet
come up with a satisfactory adaptation method, so we
simply use substitution for the adaptation part. For that we
find the data of Constraints and Parameters of objects for
comparison and apply If-Then rules to modify the content.
Currently, we have two categories of rules, oone based on
constraints and the other based on objects. The following
are some of the rules:

A. Rules based on constraints (18 rules)
IF AND New

Then Update Case_Constrains_Data
IF AND New

Then Update Case_Constrains_Data
IF AND New

Then Update Case_Constrains_Data
...

B. Rules based on Parameters of objects (8 rules)
IF Case_Date != New_Date
THEN Case_Date = New_Date

612

IF Case_DepartureTime !=
New_DepartureTime
THEN Case_DepartureTime =
New_DepartureTime
IF Case_ ArrivalTime != New_ ArrivalTime
THEN Case_ ArrivalTime= New_ ArrivalTime
...

When all services in a plan generated by the HTN
planner are completed, we can apply a QoS mehods [10] to
evaluate the result. If the result is good, then this successful
case will be stored in the case base.

3 System Implementation

We use a domain independent planning tool, JSHOP2
[12], as our planner. For defining a planning problem and
planning domain we use definitions as follows:
(defproblem problem-name domain-name

([naaa 21]) T), where problem-name is given by
the user and domain-name are picked from the planning
domain. 21 ,aa and to na are the initial states, and T
represents the tasks which can satisfy the initial states.
(defdomain domain-name (nddd 21)),

where domain-name is given by the user, and 21, dd all the

way up to nd represent operations and methods.
JSHOP2 transforms the planning problem and planning

domain into Java code, and plans are delivered after
executing the Java code. Planning problems vary according
to different users. We also use OWL-S API [13] in
developing our system. With this API, we can execute an
OWL-S file containing atomic process in WSDL grounding
or use sequence, unordered, and split to control composite
process in OWL-S.

Figure 3. System architecture

Figure 3 shows the system architecture consisting of
service providers and personal service selector in the outer
part with goal models and personal ontology coming

through external interface. In this prototype, plan execution
is a simple function which is assumed to execute the
resulting plans. Here we describe the six components
depicted in Figure 3:

Plan Retriever (PR): This component retrieves a case
for a plan if there is a case to be found. It then
transfers goal models to the Plan Adaptation
component. If there are multiple similar cases, the
system displays the choices for the user. However, if
no case is applicable, then the goal model will be
passed to the Goal Model Transformer.

Goal Model Transformer (GMT): It uses the Action
and Object fields in a goal model to analyze what type
of a provider a user is seeking. If there is a need in
using external services, the parameters related to input
and output will be given to the personal service
selector.

Request Data Checker (RDC): Its main purpose is to
check whether the information for executing a service
is complete or not. If it lacks some information, then
personal ontology is first checked. If there is more
information needed, then the user will be requested to
enter some information.

Plan Generator (PG): It uses JSHOP2 to generate plans
according to the problem domain previously defined
and the data provided by the RDC.

Plan Adaptation (PA): It checks the goal model and the
case retrieved in the case base for their differences. If
there is a difference, then there is a set of rules to
modify the solution part.

Plan Execution (PE): This is to verify how well plan
can be executed. When a plan is executed, then an
evaluation will be carried out. If the plan is
satisfactory, the plan will be stored as a case in the
case base.

The sequence of system execution is shown in Figure 4.
The dashed rectangle represents the outer system, and a
regular rectangle represents a particular function. Since
there are many functions involved in all process, the
functions are organized as four objects and represented as
ovals. When the system receives the goal model from the
external system, it executes plan retrieval and this will
cause a search in a case base. If there is a match, then the
goal model is transferred to the Data Gatherer (DG).

After the goal model enters the DG, it will utilize the
GMT and the RDC. This sequence is depicted in Figure 5.
In the GMT, the goal model is analyzed to determine what
types of services the user prefers. If the system does not
have enough internal services for the user, then the system
uses the Personal Service Selector to pick a suitable service.
After receiving a suitable service, the RDC is performed.
The RDC first checks to see if enough information is
supplied for the service. If the information is not sufficient
for the RDC, the user or the personal ontology is consulted.
The user preferences will be passed to the PG by the RDC.

613

The DG delivers service information and planning results
to the PG, where Select_Plan_Generate and
Order_plan_Generate are performed, as shown in Figure 6.
This process is to set up the plan generator and to produce
suitable plans to execute. Figure 7 shows the sequence
diagram of the CBR Planner, which compares the goal

model with the previous cases to decide whether to perform
the adaptation process. The similarity measurement is
basically to check the parameters of objects and constraints.
If both sections are matched, then no modification is
necessary. If there is no exact match, then the rules are
triggered to modify the solution part of the case retrieved.

Figure 4. Sequence diagram of our system

Figure 5. Sequence diagram of data gatherer

614

Figure 6. Plan generator

Figure 7. CBR planner

4 Conclusion

Based on the observation made for Table 1, our aim was
to introduce a system which has a learning capability. In
addition, the system is designed to be able to perform
service composition with internal and external services. We
built a prototype system which accepts a service request
from a user through the intention analysis system which
produces a goal model by extending the service request with
more keywords representing the intention. We used
simulated Web services for traveling services including
airline tickets and other means of services for executing our
prototype. The result was satisfactory by using a planner for
building a composite service from scratch and also reusing
experiences through the CBR system. Our observation is
that the planner gives flexibility in adding or deleting
services. The CBR system was also effective in providing a
composite service quickly.

References

[1]

Computing Online, Vol. 8, no. 6, 2004, pp. 51-59.
[2]

Journal of. Web Semantics, vol. l, no. 4, 2004, pp.377
396.

[3] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P.
monitoring web service

Artificial Intelligence, ethodologies, Systems, and
Applications (AIMSA), 2004, pp.106-115.

[4] -Based Reasoning:
Foundational Issues, Methodological Variations, and

1994, pp. 39-59.
[5] C.H.L. Lee and A. Liu, Toward Intention Aware

Semantic Web Service Systems Proceedings of the
IEEE International Conference on Services Computing
(SCC 2005), 2005, pp.69-76.

[6]
IEEE Internet Computer, 1999, pp. 85-87.

[7]
Checking for Extended Goals in Non-deterministic

2001.
[8] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P.

IJCAI'01 Workshop on Planning under Uncertainty and
Incomplete Information, Seattle, August 2001, pp.93-97.

[9] B. Limthanmaphon and Y. Zhang,
Composition with Case-
Fourteenth Australasian database conference on
Database technologies 2003, pp.201-208.

[10] S. Kalepu, S. Krishnaswamy, and S. W. Loke,
A QoS Metric for Selecting Web Services and

Information Systems Engineering Workshops
139.

[11] H. Munoz- -based
Reasoning with Task De
Seventeenth International Joint Conference on Artificial
Intelligence, 2001.

[12] O. Ilghami and D.
synthesize problem- -
TR-4597, UMIACS-TR-20060, University of Maryland,
2003.

[13] E. Sirin et al., OWL-S API,
http://www.mindswap.org/2004/owl-s/api/index.shtml ,
2004.

615

MDA-based Ontology Development: A Study Case

Eluzaı́ Souza dos Santos, Célia Ghedini Ralha, Hervaldo Sampaio Carvalho
Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brası́lia

Faculdade de Medicina, Universidade de Brası́lia
Campus Universitário Darcy Ribeiro, Caixa Postal 4466, Brası́lia, Cep 70.910-900, Brasil

eluzai@cic.unb.br, ghedini@cic.unb.br, carvalho@unb.br

Dragan Gas̆ević
School of Computing and Information Systems, Athabasca University

1 University Drive, Athabasca, AB T9S 3A3, Canada
dgasevic@acm.org

Abstract

In this paper, we present an experience to enable the
integration of computational systems using the eXtensi-
ble Stylesheet Language Transformation (XSLT)-based ap-
proach for automatic generation of the Web Ontology Lan-
guage (OWL) from a UML model developed at the medi-
cal domain. We discuss similar approaches to automatic
transformation between a metamodel for OWL based on
the Meta-Object Facility (MOF) and an associated UML
profile. Although MDA-based techniques are promising for
ontology development, there has not been practical study
cases to demonstrate how this technology can be used in
real scenarios. In our efforts to support the model-driven
development of OWL ontologies from its Ontology UML
Profile (OUP), we illustrate the axiomatic verification of the
OUP-developed ontology extension with the use of Racer
reasoner and Protégé.

1 Introduction

Generally speaking, the Semantic Web initiative tries to
establish better semantic connections between different re-
sources on the Web. These resources can be specified by
ontologies. Ontologies are responsible to capture the se-
mantics of a domain by deploying knowledge representa-
tion primitives, enabling a machine to partially understand
the relationship between concepts in a domain [17].

The standardization of the Web Ontology Language
(OWL) by the World Wide Web Consortium (W3C) con-
tributed heavily to the wide-spread use of ontologies [11].
In 2003, the Object Management Group (OMG), a stan-
dardization consortium for various aspects of software en-

gineering including the well-established Unified Modeling
Language (UML) [23], replied to this by issuing a Request
for Proposal (RFP) for an Ontology Definition Metamodel
(ODM) [21]. There were some submitted proposals to the
OMG. The final draft was sent last June and they are now
waiting for its adoption [24].

The intention of the RFP was to provide a MOF [22]
metamodel which allows for processing ontologies in the
same technical space where other modeling technologies
are defined in (e.g., UML, CWM, or any other Domain-
Specific Modeling Languages - DSMLs). The main ben-
efit of this approach is that one can use the same tools for
processing ODM, UML, or any DSMLs that can be trans-
formed by using the same model-to-model transformation
language (i.e., QVT), stored by the same XML approach
(i.e., XMI) and managed by the same APIs (e.g., JMI) [26].

In this paper, we present a study case using the XSLT-
based approach for automatic generation of the OWL on-
tology from a UML model applied to the medical domain,
according to the approach presented in [15]. The work pre-
sented here is motivated by the fact that once this MDA-
based technology is available, what is missing are real use-
cases that will demonstrate how the technology can be used.
Moreover, the previous work did not have a strong verifi-
cation of ontologies by using ontology reasoners such as
Racer [1], which may lead to developing ontologies that are,
for example, inconsistent.

2 Background Work

Before presenting the used approach to MDA-based au-
tomatic OWL ontology development, we summarize con-
cepts related to the OMG’s Model Driven Architecture
(MDA) [8, 12, 25] and its MOF model [22], the Ontology

616

Driven Architecture (ODA) [27] and the ODM [21], which
can be used together to maximize and take advantage of an
hybrid approach.

This work is based on the MDA proposal defined by
OMG. MDA is considered a conceptual framework, formed
by a four-layer architecture. Its objective is to describe the
basic requirements that should be developed to maximize
the reuse, portability and interoperability, as well as to clar-
ify the relationship among them to offer support to the code
generation [14, 12].

The MDA architecture is formed by the Meta-metamodel
(MOF)-M3 layer. MOF defines an abstract language and a
framework to specify, build and manage independent tech-
nology of metamodels. All the metamodels and patterns,
defined by the MOF are located in the Metamodel layer-M2
(e.g., the place where UML is defined). The Model layer-
M1 contains the models of the real world, represented by
defined concepts in a corresponding metamodel of the M2
layer (e.g. UML metamodel). Finally, in the Instance layer-
M0 there are objects of the real world. The patterns pro-
posed by MDA of OMG make possible the metadata admin-
istration and integration. Among them, we highlighted the
XML Metadata Interchange (XMI). XMI is a pattern that
maps MOF to XML. In that way, there are defined XML
tags used to represent the MOF metamodel in XML.

While MDA provides a powerful framework for Soft-
ware Engineering and systems, the Semantic Web technolo-
gies provide a natural extension of this framework through
the use of ontologies, bounding the semantic paradigm to
MDA model originating the ODA. Thus, ODA is a comple-
ment to MDA since an ontology is an explicit conceptual
model, with semantics based on formal logic, where the
description of components can be consulted. Also, com-
ponents that are indirectly necessary can be pre-loaded or
they can be verified to avoid inconsistency in the system’s
configuration; thus, much of the development is done at ex-
ecution time [27]. In this way, ODA maintains the original
flexibility of the configuration and execution of the appli-
cation server, but it adds new capacities for the system’s
developer and user.

3 Related Work

Considering the ODM model and the OMG’s RFP, we
may briefly describe some previous work related to differ-
ent research groups involved in the efforts to define a meta-
modeling architecture for ontology development. Crane-
field was the first researcher to propose the use of UML as
a graphic language to represent ontologies [10]. According
to his proposal, a domain expert designs an ontology graph-
ically, that is exported by the UML tool in the XMI format.
The XMI file goes by a XSLT transformation which can re-
sult in an ontology at the RDFS language and Java classes.

[7] propose an ODM for OWL DL language based on
MOF. The metamodel uses Object Constraint Language
(OCL) to define restrictions on the models, that are codi-
fied visually using the profile UML proposed. However, the
authors did not present a practical implementation that uses
the ODM and profile proposed.

[6] present a metamodel for OWL DL and OWL Full
through the use of an UML profile based on MOF. In
this work, we find the presentation of two tools that im-
plement ODM submitted to OMG: the Visual Ontology
Modeler (VOM) [2] and Integrated Ontology Development
Toolkit (IODT) [3]. VOM is a tool developed by Sand-
piper enterprise and actually is implemented as a plugin to
IBM/Rational Rose. According to [6] VOM is compatible
with the metamodels ODM and the profile for RDFS/OWL
proposed by them. IODT is a toolkit for ontology-driven
development, an Eclipse-based ontology-engineering envi-
ronment, and an OWL ontology repository that supports
RDFS/OWL parsing and serialization, transformation be-
tween RDFS/OWL and other data-modeling languages.

Gas̆ević [15] presents an ODM proposal that supports
OWL DL. In their work they propose the definition of dif-
ferent specifications, in agreement with the requirements
of ODM: Ontology UML Profile and two mapping forms
- OWL and ODM, ODM and Ontology UML Profile, and
from Ontology UML Profile to other profiles. A better view
of this proposal will be presented in Section 4.

4 The Used Approach

While ODM is not concluded, some proposals present
alternatives to implement part of the mappings for the RFP.
According to [12], to use the graphic modeling capacities
of UML, the ODM should use a UML profile. This is a
concept used to adapt the basic builders of UML for some
specific purpose; in other words, it means to introduce new
types of modeling elements. Although, in [6] we also find
the UML profile based on MOF approach, in the article
there is just a description of tools (e.g. VOM) and we could
not test their UML profile in the VOM tool.

Figure 1 illustrates how the OUP transformation work
according to [14]. In [16] we found a good explanation
of OUP: a profile that allows the graphic edition of on-
tologies using diagrams UML, as well as other means that
come from the traditional use of current CASE tools for
UML modeling. In this paper, we have used this approach
for XSLT transformations of OUP-based ontologies into the
OWL language recommended by ODM.

XSLT is a W3C recommendation that allows interoper-
ability of information. In XSLT, the information is seen
as a tree of abstract nodes. The declarative nature of the
leaves demarcation of style turns XSLT more accessible to
non computer specialists users. XSLT includes builders that

617

Figure 1. Used approach for transformations.

can be used to identify and to interact with the structures
found in our source of information. The information that is
being transformed can travel in any order, how many times
are necessary, to produce the wanted result [18].

In [14], an ODM architecture is presented. In operational
terms, the XMI exported file from the UML CASE tool
serves as input for an XSLT processor that produces a doc-
ument in the OWL format. This OWL file can be imported
in an ontology development tool, where the ontology can
be further worked, extended or refined. This approach will
be illustrated in section 5 and the study case workflow can
be understood through Figure 2. In previous publications
[16, 12], authors used the Wine Ontology to test the solu-
tion, since this example ontology is distributed with Protégé
environment [4].

5 The Study Case

Studying domain models, we noticed that they contain
enough information to be the base of an ontology, being an
artifact with central role during the whole software develop-
ment. Therefore, the focus of the study is the transformation
of MDA languages for OWL [10], so that the resulting on-
tology can be used for practical implementation in compu-
tational systems. For execution of this study case we used
Poseidon for UML Community Edition 4.2 as CASE tool
and Protégé 3.1.1 as ontology tool. As an ontology develop-
ment methodology, we used the 101 Method [20], described
in details in [13]. This methodology was used to extend the
OWL automatic generated ontology which we intend to be
represented in OWL DL to perform the axiomatic verifica-
tion.

Figure 2 illustrates the complete study case workflow
used in this work. Note that it describes the whole tool
chain (Poseidon, Xalan, Protégé, Racer) along with docu-
mented models used (UML, OUP, XSLT, OWL) to depicts
a real setting of how ontologies can be developed based on
UML tools. The dashed rectangle in this figure illustrates
the phases that we consider the main contribution of this

Figure 2. The Study Case Workflow.

work, since the previous work in the related literature does
not include ontology verification, through the use of rea-
soner tools, what may lead to ontologies’ inconsistence.

Now, we describe the three phases of our study case. (i)
Use of the system’s UML documentation, more specific the
domain model, to adapt it to OUP and to export as a XMI
document. (ii) To use the XMI document to generate a pre-
liminary OWL ontology. The XMI document will serve as
input for a XSLT processor (Xalan), that will produce as
output a OWL document. (iii) To import the OWL docu-
ment in an ontology tool (Protégé), where it will be ana-
lyzed to create an extended ontology with all the axioms
necessary for the development of other related systems con-
sidering the chosen domain.

Starting from Protégé, and after having initialized the
Racer reasoner, we used the following inference services
to validate the ontology: verification of the consistence and
classification of the ontology. Following this approach, our
experiments used two different modules of GSWeb a sub-
project of GIMPA’s project used at the University of Brası́lia
Hospital (HUB), better described in Section 5.1.

5.1 GIMPA’s Project

GIMPA is a project that deals with medical informa-
tion of patients allied to Brazil’s public health system at
the Braslia University Hospital (HUB) [9]. GIMPA is sub-
divided into different modules to deal with different medical
information of patients and medical assistance. One of these
modules is the GSWeb, an information management system
of individual patient’s that includes a patient’s Electronic
Record. Besides the clinical information, the Eletronic Pa-
tient Record (EPR) includes automatic communication to
different medical equipments.

The several modules of GSWeb include evaluation and
diagnostic report related to different exams that involve as-
pects of the heart and other organs: (i) Echocardiogram
(ECO)-uses ultrasounds to examine the heart, getting im-
ages in one and two dimensions that allow to evaluate the
size, thickness and movement of diverse cardiac structures,
giving anatomical and functional evaluations; (ii) Cardiac
Cintilography (CINT)-verifies the anatomy and functional-
ity of the heart by means of isotopics radio markers; (iii)
Electrocardiogram (ECG)-accomplishes the graphic repre-

618

sentation of the heart electric activity on the body surface,
interpreting anatomical data and cardiac functionalities; (iv)
Thorax Radiography (X-Ray)-the use of radiation for the
scientific examination of material structures, radioscopy;
(v) Computerized Tomography (CT)-verifies the anatomy
and functionality of the heart with contrast and without con-
trast and (vi) Nuclear Magnetic Resonance (RMN)-through
the distribution of atoms, it evaluates the anatomy and car-
diovascular function.

The ECO and X-Ray modules were used in our study
case. ECO is a system to register information related to the
echocardiogram exam aiming the generation of correspond-
ing reports. The information used in ECO comes from the
patient’s electronic record and the equipment that accom-
plishes the echocardiogram exam. The X-Ray system aims
to support diagnosis and treatment of diseases related to
thorax and other organs. At the time of our experiments
this GSWeb module was under development and documen-
tation, and we have used it to integrate to ECO module. For
that purpose, we developed the ontology that included all
the concepts and relationships of ECO module and then ex-
tended our ontology to include the concepts and relation-
ships of X-Ray. This aim was possible because the reports
in GSWEB are parameterized. A complete description of
our experiments is in [13]. Section 5.2 presents an illustra-
tion of the study case using the phases presented in 5.

5.2 OUP Application

Figure 3 illustrates the OWL study case ontology auto-
matically generated from UML through the OUP transfor-
mation. The ontology include concepts related to the heart’s
function and anatomy used by ECO module of GIMPA. Af-
ter the transformation, the OWL ontology is ready to be
imported into Protégé to be further refined, validated or
extended. This figure is done using Jambalaya (Protégé’s
plug-in to visualize OWL ontologies). Note the hierarchi-
cal structure of the ontology, where the class Parede (i.e.,
wall) is dependent of SubEstruturaAnatômica (i.e., anatom-
ical substructure); while the class Átrio (i.e., atrium) is
dependent of EstruturaAnatômica (i.e., anatomical struc-
ture). Both classes SubEstruturaAnatômica and Estrutu-
raAnatômica are dependent of the Estrutura (i.e., structure)
class. Figure 4 shows part of the study case ontology focus-
ing the Estrutura class. The whole ontology in both OUP
and OWL formats are available at [5].

OUP uses the standard UML extension and customiza-
tion mechanisms defined in the UML specification; i.e.,
stereotypes, tag definitions, tagged values and constraints.
According to [14] stereotypes enable defining virtual sub-
classes of UML metaclasses, assigning them additional se-
mantics. In the used approach, the stereotypes execute a
central role at the classes and properties definition. For in-

Figure 3. Ontology’s Class Hierarchy.

stance, to model ontology classes in OUP, we used stereo-
typed UML class <<OntClass>>. The other class types,
like Enumeration, Union and Restriction, are also created
with a new stereotyped class for each of them. As the UML
metamodel is in the M2 layer of MDA, the extensions are
also made in the M2 layer (see Section 2).

In UML, an instance of a Class is an Object. Since on-
tology individuals and UML Object have some differences,
OUP Individuals are modeled as stereotyped UML Objects
with <<OntClass>>. In ontology languages (e.g. OWL)
Property is a stand-alone concept, unlike the attributes in
UML, which are part of the UML class they belong. Ac-
cording to the semantics of OWL (that OUP is based on)
there are two types of properties: <<ObjectProperty>>,
which can have only Individuals in its range and domain,
and <<DatatypeProperty>> a string type.

Figure 4. Study case class diagram with on-
tology properties.

Figure 4 shows a class diagram, an excerpt of the study
case ontology, which depicts ontology properties modeled
in UML. Note that the class Átrio (i.e., Atrium) is at the

619

domain property of temParedeAnormal (i.e., hasAbnormal-
Wall), that is a <<ObjectProperty>> whose range is the
class Parede. The stereotype <<Restriction>> is used to
refine the restrictions of properties. In this way, the class’
restriction on a property the Átrio’s <<ObjectProperty>>
temParedeAnormal has as allValuesFrom restriction the
<<OntClass>> Parede. That means, each instance of the
Átrio class must have at least one instance of the property
temParedeAnormal whose range is the Parede class.

5.3 Axiomatic Verification

One of the key features of an OWL DL ontology is the
fact that it can be processed by an automatic reasoner. The
reasoner executes two main functions: the classification
verification and the ontology consistence. The classifica-
tion function is performed by testing all ontology classes to
generate the ontology’s inferred hierarchy. Another func-
tion is the consistency check, which is based on the classes
description/condition to verify whether the classes can have
instances. The reasoner uses the necessary and sufficient
conditions to verify the ontology classification. According
to [19], the classes need to be specified with necessary and
sufficient conditions so that the reasoner can determine that
any individual or class which satisfies these conditions must
be a member of the class.

Figures (3,5) shows part of the study case with the class
hierarchy ontology focusing the class Estrutura. The XSLT
used generates automatically all classes with necessary con-
ditions, what does not allow the classification verification
by the automatic reasoner. Thus, we have redefined some
classes with necessary and sufficient conditions, according
to the domain specification, in order to allow the automatic
verification of our generated ontology. To verify the clas-
sification verification and consistence of the OWL ontol-
ogy, we used the Racer reasoner (educational license) with
Protégé.

In our study case, the advantage of using the reasoner
could be checked in practice. Using the option of con-
sistence verification, it was possible to notice some mis-
takes at the ontology definition. Some domain properties
of a class had been used in the definition of other classes
accusing consistence error. For example, the property te-
mAnormalidade (i.e., hasAbnormality) possessed by the do-
main class SeptoInteratrial (dependent of the class Estrutu-
raAnatômica at the asserted part of the figure 5); however
it was also used by the class Átrio (i.e., Atrium dependent
of the class EstruturaAnatômica at the asserted part of the
figure 5). Such fact generated an inconsistency, that spread
to the other classes. The same also happened with some
definitions of range. After the correction of these errors
the ontology was ready to incorporate the X-Ray module
of GSWeb system.

Figure 5. Asserted (a) and Inferred (b) hierar-
chy of Projects ECO and X-Ray ontology.

Once initialized the Racer reasoner, we used the clas-
sification inference service to classify the ontology. The
OWL ontology classes are named asserted while the in-
ferred classes are checked by Racer. Figure 5 illustrates
the asserted (a) and inferred (b) hierarchy of Projects ECO
and X-Ray ontology used in our study case. In order to use
Racer’s classification inference service, we have created a
class named Teste, dependent on the owl:Thing class and
with the ∀ regurgitação Grau necessary condition. Since we
have defined the Teste class as described, Racer could cor-
rectly classify it as dependent of Válvula class, once Válvula
class is defined to have as necessary and sufficient condi-
tions ∀ regurgitação Grau.

6 Conclusions

In this paper, we have shown a practical realization
of the XSLT-based approach, for automatic generation of
the OWL ontology from a UML model developed at the
GSWeb medical system. Our work was motivated by the
fact that although MDA-based technology is available, we
could not find real use-cases in the literature to demonstrate
how this technology can be really used. We presented some
related approaches to MDA-based automatic OWL ontol-
ogy development, but we could not compare results since

620

only the UML profile is available in [6], but the implemen-
tation is not. The approach used in this work is also im-
portant since it allows the use of free tools, e.g. Poseidon
for UML Community Edition, Xalan, Protégé; while in the
approach of [6] they define tools developed by Sandpiper
(e.g., VOM - an add-in to IBM’s Rational Rose product).

Our experiments demonstrated that to integrate different
computational systems the presented approach is a reason-
able solution. One obstacle at the beginning of our project
was to acquire knowledge to work with the OUP standard
and the UML extension and customization mechanisms de-
fined in the UML specification; i.e., stereotypes, tag defini-
tions, tagged values and constraints. Also to work in Po-
seidon with classes with the stereotype <<Restriction>>
named anonymous is a bit okward, since it is hard to find
out the alignments between properties and restrictions. Un-
fortunately, UML does not have notation to show values of
tagged values in diagrams, but users may add that in a UML
note connected to the <<Restriction>> as shown in Fig-
ure 3.

In order to illustrate the axiomatic verification of the gen-
erated ontology, we have extended the OWL study case on-
tology to allow the integration of other computational sys-
tems. The final ontology has 69 classes and 77 properties
(including datatype and object). Once extended the OWL
ontology, we could do the consistence verification using
Racer. With our ontology classification test, we concluded
that the presented approach can help to correct mistakes in
the ontology definition. But for ontology developers using
UML tools to obtain feedback of consistency of their on-
tology, they have to go to another tool such as Protégé to
use a reasoner. This scenery could be improved if current
UML tools executes two important functions: classification
and consistence of the ontology. Also if current UML tools
were adapted to OUP transformations it would be possible
to transform from OUP to OWL and vice-versa.

The future research should explore ways to represent rea-
soning facts inferred by the reasoner in a UML tool. An-
other important aspect is to find ways how reasoners and
ontology tools can be integrated (e.g., Web Services), so
that they can support the proposed approach allowing ontol-
ogy developers to stay inside a UML tool when developing
ontologies and at the same time to be able to use reasoning
services (e.g., FaCT allows using CORBA to use its reason-
ing services).

References

[1] http://www.racer-systems.com/.
[2] http://www.sandsoft.com/products.html.
[3] http://www.alphaworks.ibm.com/tech/semanticstk.
[4] http://protege.stanford.edu/.
[5] http://www.cic.unb.br/˜ghedini/.

[6] S. Brockmans, R. M. Colomb, E. F. Kendall, E. K. Wallace,
C. Welty, and G. T. Xie. A Model Driven Approach for
Building OWL DL and OWL Full Ontologies. In The 5th

Int’l Semantic Web Conf., Athens/GA, USA, 2006.
[7] S. Brockmans, R. Volz, A. Eberhart, and P. Lfler. Visual

modeling of OWL DL ontologies using UML. In Proc. of the
3rd Int’l Semantic Web Conf., pages 198–213, Hiroshima,
Japan, 2004.

[8] A. Brown. An introduction to Model Driven Architecture
Part I: MDA and todays systems, February 2004. IBM de-
veloperWorks.

[9] H. S. Carvalho, C. J. N. C. Jr, and W. B. Heinzelman. Geren-
ciamento de Informações Médicas do Paciente (GIMPA). In
Proc. of VIII Congresso Brasileiro de Informática em Saúde,
Natal/RN, Brasil, 2002.

[10] S. Cranefield. Networked Knowledge Representation and
Exchange using UML and RDF. J. of Dig. Info., 1(8):118–
143, 2001.

[11] M. Dean and G. Schreiber. OWL Web Ontology Language
Reference. Technical report, W3C Consortium, 2004.

[12] D. Djurić, D. Gas̆ević, and V. Devedz̆ić. Ontology Modeling
and MDA. J. of Obj. Tech., 4(1):109–128, 2005.

[13] E. S. dos Santos. Uma Proposta de Integração de Sis-
temas Computacionais Utilizando Ontologias. Master’s the-
sis, Departamento de Ciência da Computação, Universidade
de Brası́lia, Brası́lia, Brasil, 2006.

[14] D. Gas̆ević, D. Djurić, and V. Devedz̆ić. Bridging MDA and
OWL Ontologies. J. of Web Eng., 4(2):118–143, 2005.

[15] D. Gas̆ević, D. Djurić, and V. Devedz̆ić. Model Driven Ar-
chitecture and Ontology Development. Springer, NY, 2006.

[16] D. Gas̆ević, D. Djurić, V. Devedz̆ić, and V. Damjanović. A
UML profile for OWL ontologies. In Proc. of Model-Driven
Architecture: Foundations and Applications - MDAFA,
pages 138–152, Linkoping, Sweden, 2004.

[17] T. R. Gruber. A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199–220, 1993.

[18] G. K. Holman. What is XSLT?, 2000.
[19] M. Horridge. A practical guide to building OWL ontologies

using the Protege-OWL Plugin and CO-ODE Tools, 2004.
[20] N. F. Noy and D. L. McGuinness. Ontology Development

101:a guide to creating your 1st ontology. Working Paper
KSL-01-05, Stanford Knowledge Syst. Lab., March 2001.

[21] Object Management Group. Ontology Definition
Metamodel-Request for Proposal, March 2003.

[22] Object Management Group. Meta Object Facility(MOF)
Core Specification. Technical rep v2.0, OMG, January 2006.

[23] Object Management Group. UML: Infrastructure. Technical
Rep v2.0, OMG, March 2006.

[24] Ontology Definition Metamodel. Sixth Revised Submission
to OMG/ RFP ad/2003-03-40, 2006.

[25] J. D. Poole. Model-Driven Architecture: Vision, standards
and emerging technologies. In ECOOP’01: Proc. of the
Work. on Metamodeling and Adaptive Obj. Models, 2001.

[26] T. Stahl and M. Voelter. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley
& Sons, 2006.

[27] P. Tetlow, J. Pan, D. Oberle, E. Wallace, M. Uschold, and
E. Kendall. Ontology Driven Architectures and Potential
Uses of the Semantic Web in Software Engineering, May
2005. Editors’ Draft W3C.

621

Towards Domain-Centric Ontology Development and Maintenance Frameworks

Faezeh Ensan and Weichang Du
Faculty of Computer Science, University Of New Brunswick, Fredericton, Canada

{faezeh.ensan, wdu}@unb.ca

Abstract

In this paper, we attempt to study and investigate on-
tology development and maintenance frameworks from a
domain-centric point of view. By frameworks we mean the
structures which have been designed to allow ontology en-
gineers and domain experts to develop and maintain do-
main ontologies. Such frameworks usually specify partic-
ular phases for developing ontologies and provide imple-
mented components for each phase. Our purpose is to ana-
lyze the suitability of a framework for developing ontologies
which can fulfill the necessities of a specific domain. We
have designed a comparison model for analyzing ontolog-
ical frameworks. Using the model, we inspect how an on-
tological framework utilizes domain information resources
for creating and maintaining ontologies, how much fineness
and granularity the designed ontology can reach, and with
how much maturity it supports the maintenance and inte-
gration capabilities in the development process.

1. Introduction

In his seminal paper, Gruber [6] defines an ontology as

‘an explicit specification of a conceptualization’. Ontolo-

gies are used by applications, domain experts and users in

order to reach consensus on various concepts of a domain

of discourse for the purpose of collaboration and commu-

nication. There have been different proposals for the appli-

cation of ontologies. Niles et al. target the creation of an

high-level ontology for defining general-purpose concepts

[10]. This ontology can be used as a foundation for other

domain specific ontologies. On the other hand, other ap-

proaches attempt to design ontologies to describe parts or

all of the concepts of a specific domain.

So far, numerous methodologies, methods and tools have

been proposed for developing ontologies [4, 3]. In this pa-

per, we are concerned with studying and analyzing ontology

development and maintenance frameworks from a domain-

centric point of view. By frameworks we mean those pro-

posals that target the main parts of the ontology develop-

ment process. They specify particular phases for building

and managing ontologies and usually provide implemented

components for each phase.

Our objective is to study the applicability and suitabil-

ity of general-purpose ontology frameworks for creating

domain-centric ontologies. We intend to analyze the meth-

ods for integrating domain specific information into such

frameworks. We attempt to investigate how ontologies that

are developed by a framework for a specific domain are ex-

tracted from domain specific knowledge and information,

how they fulfill domain necessities and how they evolve

based on arising requirements and changes.

We propose a domain-centric comparison model for an-

alyzing and investigating ontological frameworks. This

model has five dimensions. Through the ‘Resources’ di-

mension, we study the domain resources which are ex-

ploited by a framework in its ontology development pro-

cess. The ‘Scope and usage coverage’ dimension spec-

ifies the types of applications which can utilize a devel-

oped ontology and how the scope of the ontology is de-

termined.‘Fineness and independency’ examines how much

domain granularity an ontology can reach through the em-

ployment of the development framework. It also investi-

gates whether a framework can be applied to all domains or

it is only designed for a specific one. The ‘Maintenance ca-

pability’ and ‘Integration capability’ dimensions study how

completely a framework supports the maintenance of on-

tologies and how well it exploits other related ontologies in

its process, respectively.

In Section 2, we classify a range of ontological frame-

works. We select instances from each category and discuss

more about their proposed processes. In Section 3, we fully

introduce the proposed comparison model. Section 4 pro-

vides some concluding remarks.

2. Ontological Frameworks

We classify ontological frameworks into three main cat-

egories. In the first category, we are interested in the frame-

works that attempt to take into consideration all of the pos-

sible activities of the ontology development process. These

622

activities include the development of one or more ontolo-

gies for a domain of discourse, managing them and letting

them to be automatically or manually changed, and keeping

and manipulating several versions of the target ontologies.

We have selected Text-To-Onto [7] and OntoLearn [9] as

two case studies and will analyze them within our proposed

domain-centric comparison model.

In the second category, the main aim of the selected

frameworks is the management of ontologies, instead of

their design. They mostly focus on managing ontolo-

gies, integrating several ontologies of the same domain and

their evolution rather than constructing ontologies. These

types of frameworks can be integrated with other discussed

frameworks in order to cover all activities of the ontology

engineering process.

Integrating several ontologies related to a specific do-

main is an important aspect of ontology maintenance. For

a domain of discourse, there may be more than one ontolo-

gies that have been designed by developers with dissimilar

approaches that describe different parts of the same domain.

Integrating these ontologies has been the topic of several

research papers. Wache et al. [15] give a good survey ex-

plaining possible ways for ontology integration. They argue

over three approaches of using ontologies for describing a

domain of discourse. Single ontology approach stands for a

situation that there is only a global ontology for a domain.

In this environment there may be other particular ontolo-

gies, but all of them should be mapped to the general one.

Multiple ontologies, is the second approach discussed in

[15]. In this approach there are several ontologies in the

system that may be developed independently. In order to

integrate such diverse ontologies, inter-ontology mapping

algorithms are necessary. PROMPT [11] is a framework

that has the appropriate capabilities for maintaining ontolo-

gies based on this approach. It has components that provide

inter-ontology mappings, merging and alignment. In Sec-

tion 2.3 we will talk about the PROMPT framework more

completely. The third approach is the hybrid ontology ap-

proach, where there are several ontologies for a domain, but

all of them share a common vocabulary (or upper ontology).

The third category of the selected frameworks is devoted

to the frameworks which aim at developing or maintain-

ing ontologies related to a very specific domain. We have

chosen the medicine domain, one of the most popular do-

mains that ontologies have been employed. So far, many

ontologies as well as methodologies and methods have been

proposed in bio-medicine, molecular biology and gener-

ally speaking, the medicine domain. Open Biomedical On-

tology (OBO) library [2] is a collection of bio-ontologies

which have been designed and shared across medical and

biological domains. The Gene Ontology (GO) project pro-

vides ‘a controlled vocabulary to describe gene and gene

product attributes in any organism’ [1]. We have selected

Oasis [12], an integration framework for biomedical ontolo-

gies, which best fulfils our definition of ontological frame-

works and will study it thoroughly in Section 2.4.

2.1 Text-To-Onto

Maedche et al. [7] have developed an almost mature on-

tology learning framework. The development process of

this framework consists of the following steps:

Importing and reusing other ontologies: In this step,
domain experts identify and select appropriate ontologies,

schemas and conceptualizations which are related to the do-

main of discourse. This framework suggests making use of

the FCA-MERGE [13], a bottom-up merging method, for

integrating domain ontologies.

Ontology Extraction: This step is the major part of the
proposed framework. The framework includes OntoEdit as

a workbench to help experts collaboratively design ontolo-

gies; however, the framework also considers learning on-

tologies from resources other than experts. Text-To-Onto is

a method suggested to be used for extracting ontology prim-

itives from natural language documents. It includes several

algorithms for extracting each ontological element so that

experts or ontology engineers can choose the appropriate

one under different conditions. The Text-To-Onto method

first extracts domain related concepts by processing natural

language documents using a shallow text processor. Do-

main concepts are selected based on frequency measures

like TF-IDF. In the second step, the method hierarchically

clusters domain concepts to form a taxonomic relationship

between them. Non-taxonomic relations are the other onto-

logical primitives that are extracted in the third step. Text-

To-Onto applies association rule mining algorithms in order

to acquire the relationships between the concepts.

Pruning the result ontology and refinement: The result
ontology from previous phases may focus on some unneces-

sary details but may not include some important and useful

information. In the pruning phase, some parts of the on-

tology are removed and then in the refinement phase some

ontological elements are inserted. These steps are the on-

tology management parts of the framework.

This framework has an evolving nature. After each

round, ontology engineers can decide to begin the process

cycle again. In each phase, the information extracted in the

previous cycles can be utilized as background knowledge.

2.2 OntoLearn

Navigli et al. [9] have designed a framework for learning

domain based ontologies from relevant documents. Their

ontology engineering framework is comprised of three

phases: First, the main domain concepts and taxonomic re-

lationships between them are automatically extracted from

623

domain documents. In the next phase, these concepts

are evaluated by the experts through a groupware package

called ConSys, and finally all the new accepted concepts

are inserted into the ontology using the SymOntoX tool [8].

SymOntoX accepts new concepts and relations from Con-

Sys as incoming suggestions and inspects and applies them

to the target ontology.

Phase one of the suggested framework has been real-

ized by the OntoLearn system. OntoLearn itself has three

phases. First, terminology concepts are extracted using a

linguistic and syntactic parser. The extracted terminologies

in the first phase may be compound phrases which consist

of several terms. For example, the system may recognize

‘bus service’, ‘coach service’ and ‘ferry service’ as domain

terminologies. Every term in a complex terminology may

have several senses. Identifying the best sense for each term

in the compound phrase is a challenging task. The second

phase of OntoLearn is comprised of three sub-phases. First

with a novel algorithm named SSI and using upper taxo-

nomic knowledge sources like WordNet, one sense is as-

signed to each term in a complex phrase. In the second sub-

phase, the OntoLearn method determines appropriate hier-

archical relationships between compound terms by cluster-

ing synonym and similar terms as well as taxonomic infor-

mation of WordNet. In the third sub-phase, for extracting

non-taxonomic relationships between the components of a

compound phrase, an inductive learner is employed. First,

an ontology engineer manually tags some instances of do-

main terms with appropriate relationships relevant to the do-

main, and then the learner builds a tagging model. The in-

ductive learning system needs a vector of features for each

instance. The authors in [9] suggest that the feature vector

of each compound phrase should be shaped by all of the hy-

peronyms of its terms. The OntoLearn framework includes

methods for creating and managing ontologies in an evolv-

ing manner. Each new concept or relation is learnt by On-

toLearn and validated by the experts and inserted through

SymOntoX. The management tasks are done in a collabora-

tive manner. SymOntoX define three levels for manipulat-

ing ontologies. A simple user can only view the ontology, a

super user can read and write, and an ontology master can

modify the ontology and validate the suggestions of the su-

per users.

2.3 PROMPT

PROMPT [11] is an ontology management framework

which is developed at the Stanford University. The main

aim of PROMPT is to provide features for multiple ontol-

ogy management tasks which include the maintenance of

ontology libraries, import and reuse of other related ontolo-

gies, support for ontology versioning , merging, mapping

and aligning ontologies and factoring independent sections

of the ontology. PROMPT consists of four components:

iPROMPT is a component which helps its users merge dif-

ferent ontologies describing the same domain of dis-

course. Given two ontologies, iPROMPT finds simi-

lar concepts between them and suggests them as merg-

ing candidates to the ontology engineers. The users

can follow the suggestions or select other concepts for

merging.

AnchorPROMPT finds similarity between different on-

tologies; therefore, it facilitates their mapping and

alignment. It contains a graph-based algorithm which

finds similar ontological concepts of two ontologies,

based on a given set of identified anchors.

PROMPTDiff controls ontology versioning. Utilizing

some defined heuristics, this component attempts to

match ontological elements of two versions of the

same ontology and finds the changes that have been

applied in the new version compared to the last one.

PROMPTFactor is a component that allows its users factor

some part of a huge domain ontology for a specific use.

2.4 Oasis

Oasis [12] is an integration framework for bio-medical

ontologies. It provides a warehouse for bio-medical con-

cepts, saves them, finds similarity between the concepts

of different ontologies and interactively with the domain

experts, maps similar concepts onto each other. The Oa-

sis framework consist of two major parts: a database and

a novel mapping tools named IOMG. The Oasis frame-

work has been mainly influenced by the OBO ontologies

structure. The database is comprised of three types of ta-

bles. Firstly, the OBO tables which include terms and

term2terms. Term2term are all ontological terms that have

an is-a or has-a relationship with each other. Secondly,

Mapping tables are tables that store the concepts that have

been mapped by the framework. Finally, proprietary tables

that maintain concepts from other ontologies rather than

OBO.

IOMG is a tool designed for finding similarity between

domain terms and mapping them. It also utilizes a graph-

based representation of the OBO ontologies for finding pos-

sible similarities. Oasis defines three similarity metrics: lin-

guistic similarity between term names, similarity between

the definition of ontological terms that are provided for most

of GO terms and also similarity between parents and chil-

dren of each term in the graph representation. Based on

these metrics, IOMG finds a similarity value between each

pair of concepts for two given ontologies. IOMG attempts

624

to find proper pairs from all of the candidate pairs by maxi-

mizing an objective function of all similarity values. Conse-

quently, not only similarity of two terms is important for ap-

plying a mapping, but also the best conditions under which

all of the mapped pairs have their highest similarity values is

also considered. Ultimately all established links that cause

a cycle in the graph are identified and introduced to domain

experts as potential failure links.

3. A Domain-centric Comparison Model

The major goal of our proposed model is that given a spe-

cific domain for examination, it would assist the analysts in

the selection process of an appropriate framework from the

already existing huge number of methods and approaches in

order to best fulfil the target domain’s necessities. In the fol-

lowing, we thoroughly explain each of its dimensions and

analyze the introduced frameworks based on these dimen-

sions.

3.1 Domain Resources

Different frameworks suggest dissimilar information re-

sources for extracting ontological elements. In many meth-

ods and frameworks, domain experts are reliable references

for the development of ontologies. Based on this fact, the

experts’ role may significantly vary: some times the only

references for every thing are the domain experts who solely

or collaboratively design and maintain ontologies, while in

other approaches experts only confirm what has been ex-

tracted by machine learning algorithms. For example in the

PROMPT framework, the only available domain resources

are the domain experts who modify ontologies whereas in

the OntoLearn Framework, experts confirm and finalize on-

tological concepts extracted from other domain resources.

In another approach, such as the model proposed in the

Text-To-Onto framework, domain experts may specify in-

formation resources that should be utilized by automatic

learning algorithms.

The upper ontology is another learning reference which

may be used in the ontology development process. For in-

stance,OntoLearn uses WordNet for disambiguating terms

in compound phrases and extracting taxonomic and non-

taxonomic relationships between terms. The other domain

resource for developing ontologies are semi-structured or

natural language Web documents that may be exploited by

automatic algorithms for extracting concepts and relation-

ships. Database schemas, domain thesauri and dictionaries

are examples of semi-structured information resources. The

Text-To-Onto and OntoLearn frameworks make use of do-

main related Web documents for extracting terminologies

and relationships. Furthermore, the former one also exploits

semi-structured domain resources. Oasis uses the synonym

table of OBO along with the definitions related to each GO

concept for finding similarity between medical concepts.

3.2 Domain Scope and Usage Coverage

Specifying the scope of the target ontology is an impor-

tant subject which has been discussed in various methodolo-

gies. The first phase of Uschold and Grninger’s methodol-

ogy [14] is to specify the scope of the ontology. The specifi-

cation phase of METHOONTOLOGY [5] also aims to find

the scope of the ontology. What is important for us in this

comparison model is how different frameworks specify the

scope of the target ontology. Domain experts have an im-

portant responsibility in most cases. The domain scope of

a framework can be investigated through experts and all of

the available information. While there have been no sugges-

tions for specifying the scope of an ontology in some frame-

works, some others utilize a combination of these methods.

Observably, experts are the only reference for defining

the ontology scope in frameworks which their development

process is completely based on human efforts. They should

decide on the degree of relevancy of a new concept to the

domain and whether it should be inserted into to the ontol-

ogy or not. Alternatively, some frameworks attempt to de-

velop or evolve domain ontologies based on all of the avail-

able information. The OntoLearn framework aims to extract

all of the ontological concepts and relationships from Web

documents. However, experts can also influence identify-

ing the borders of the developed ontology by confirming or

rejecting ontological elements through the ConSys compo-

nent. The Text-To-Onto framework also follows a similar

approach.

In usage coverage, we consider the types of applica-

tions that can benefit from the designed ontology. We show

whether all existing applications can utilize the created on-

tology or only specific ones which has been indicated by

the domain experts can benefit from it. Navigli et al.[9]

suppose that the coverage of an ontology should be very

vast to make it useful. They state that all of domain related

concepts should be available in a suitable ontology. Based

on such definition, all of the applications related to that do-

main should be able to make use of the designed ontology

and hence communicate on this basis. On the other hand,

some frameworks attempt to evolve the domain ontology

based on the users’ needs. In this approach, only domain

applications which are specified by the domain experts and

ontology engineers can exploit the designed ontology. The

PROMPT and Oasis frameworks are examples of such an

approach.

625

3.3 Maintenance Capabilities

Several frameworks have been suggested for developing

and managing ontologies. As was explained previously,

some of the frameworks emphasize more on constructing

ontologies whereas the others focus more on maintaining

and evolving them. However, the ontology learning and

constructing frameworks that we have chosen provide par-

tial capabilities for ontology evolution.

The maintenance capabilities criterion investigates how

thorough a framework supports the maintenance of domain

ontologies. We have studied two items in this field: evolu-

tion support and also the quality of ontology manipulation.

Preserving different versions of an evolving ontology, un-

doing changes applied to a version and retrieving the latest

versions of an ontology are considered as factors indicat-

ing the degree of evolution support. Among the introduced

ontological frameworks, only PROMPT provides evolution

support to some extent. The PROMPTdiff component of the

PROMPT framework is designed for representing changes

between different versions of the ontology without making

use of change logs. PROMPT considers conditions where

the selected ontologies have been developed in different en-

vironments so a unified change log is not accessible. The

framework does not mention other versioning activities like

reversing the applied changes by particular users.

Ontology manipulation can be realized through either

expert collaboration or the evolving lifecycle of the devel-

opment process of a framework. The most popular ap-

proach in ontology maintenance is to allow domain ex-

perts manipulate ontologies and change it according to their

needs. Nonetheless, implementation of this simple schema

in a distributed environment could have some practical dif-

ficulties. Through our comparison model, we examine

whether a framework provides the experts with the pos-

sibility of collaboratively managing ontologies in a dis-

tributed environment or not. The Text-To-Onto and On-

toLearn frameworks, are instances of frameworks that allow

experts manage ontologies in a collaborative manner.

An evolving lifecycle is another way to adapt a designed

ontology to new conditions. New changes and modifica-

tion can be learnt in each cycle during ontology develop-

ment. Both OntoLearn and Text-To-Onto exploit this type

of lifecycle for updating an under-development ontology

over time.

3.4 Integration Capabilities

For a specific domain, there may exist other ontologies

that have already been designed. Ontology development

and management frameworks might utilize these ontologies

in their process. In the proposed comparison model, we

want to investigate how a framework exploits other exist-

ing ontologies. Some frameworks provide no integration

capability, such as the case in the OntoLearn framework

which does not suggest any method for utilizing other on-

tologies. As another approach, a framework may make use

of other related ontologies for developing one inclusive do-

main ontology, such as the Text-To-Onto framework. Some

other frameworks like Oasis and PROMPT follow another

approach for integration. They attempt to concurrently in-

tegrate several ontologies for a domain of discourse in a

‘multi-ontology environment’.

3.5 Domain Fineness and Independency

Domain fineness is concerned with how much granular-

ity a framework attempts to achieve while enriching the do-

main ontology. Similar linguistic words may have different

meanings in different domains. A good framework should

be able to deal with each word based on its specific seman-

tic in the target domain. Furthermore, domain specific re-

lationships might exist that can only be extracted when a

framework exploits domain knowledge and heuristics. The

OntoLearn framework exploits domain specific information

and knowledge for extracting ontology concepts to some ex-

tent. The disambiguation algorithm assigns domain related

sense to each term of a compound phrase. Furthermore,

in the case of non-hierarchal relationships among classes,

the framework makes use of domain relative information

for generating rules which tag compound terms with appro-

priate non-taxonomic relationships. The Oasis framework

also utilizes domain specific features for integrating ontolo-

gies. OBO graph representation as well as the definitions

that are provided for GO concepts is used by Oasis to find

similarity between the concepts.

Through domain independency, we study dependency or

independency of a framework to a specific domain. One can

investigate whether and with how much accuracy a frame-

work can be applied to different domains. In some circum-

stances, there is a tradeoff between these two criteria. The

frameworks that attempt to apply too many domain specific

heuristics and knowledge might be not completely domain

independent. Among the introduced frameworks, Oasis is

the only one which is completely dependent to the medical

domain and cannot be employed by other domains.

4. Concluding Remarks

Ontological frameworks are those that attempt to suggest

ontology engineers a process for developing or maintaining

ontologies. They attempt to clarify each step of the process

by providing an implemented component. They have not

been designed for end-users nor applications. They target

engineers who want to develop ontologies for the end-users.

We have designed a model for comparing and investigating

626

Table 1. Analysis of the Ontological Frameworks From Domain-centric Perspective.
Text-To-Onto OntoLearn PROMPT Oasis

Experts’ Role Selection of Other Resources,
Approve and finalize ontolog-
ical elements learnt by the
method.

Approve and finalize ontolog-
ical elements learnt by the
method.

Responsible for all tasks Responsible for all tasks

Web Docs Natural language documents
from the Web

Domain-based web docu-
ments

- -

Upper Ontologies - WordNet - -
Semi-Structured Resources domain thesaurus and domain

related schemas
- - OBO synonym tables and the

definition related to each GO
concept

Model for Scope Specification All information/Domain Ex-
perts

All information/Domain ex-
perts

Domain experts Domain experts

Usage Coverage All applications All applications Specific applications Specific Application

Evolution Support - - Versioning -
Ontology Manipulation Evolving development life cy-

cle&Collaborative manip.
Evolving development life cy-
cle&Collaborative manip.

Standalone manip. Standalone manip.

Integration Capabilities Based on global ontology - Multi-ontology environment Multi-ontology Environment

Domain Fineness - Use of domain knowledge for
concept extraction

- Use of domain knowledge for
Integration

Domain Independency Independent Independent Independent Doamin dependant

such frameworks. Our framework focuses more on the do-

main capabilities of each framework. We investigate how an

ontological framework can utilize domain knowledge and

also how it can be used for a certain domain of interest.

We extracted five criteria for investigating such frameworks.

While some of criteria focus on generating a general view

of the application of a given framework, the others attempt

to find domain relevancy of it and also domain closeness of

the generated results. Table 1 summarizes the results of the

performed comparisons.

Considering the domain perspective, our main attempt

for future research is to design a high-level methodology

which assists engineers in developing domain-centric on-

tological frameworks. This methodology would allow the

designers to specify the goal of the framework and its ca-

pabilities, the domain knowledge it intends to exploit, the

domain coverage of the final ontology which is designed

by the framework and also its dependency or independency

to a specific domain. This methodology would be a meta-

methodology which is designed not for developing ontolo-

gies but for crafting frameworks which manage and design

ontologies.

References

[1] The gene ontology, http://www.geneontology.org/, last vis-

ited feb 2007.

[2] Open biomedical ontologies, http://obo.sourceforge.net, last

visited feb 2007.

[3] O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez.

Methodologies, tools and languages for building ontologies:

where is their meeting point? Data Knowl. Eng., 46(1):41–
64, 2003.

[4] Y. Ding and S. Foo. Ontology research and development.

part 1- a review of ontology generation. Journal of Informa-
tion Science, 28(2):123–136, 2002.

[5] M. Fernandez-Lopez, A. Gomez-Perez, J. P. Sierra, and A. P.

Sierra. Building a chemical ontology using methontology

and the ontology design environment. IEEE Intelligent Sys-
tems, 14(1):37–46, 1999.

[6] T. R. Gruber. Toward principles for the design of ontologies

used for knowledge sharing. Int. J. Hum.-Comput. Stud.,
43(5-6):907–928, 1995.

[7] A. Maedche and S. Staab. Ontology learning for the seman-

tic web. Intelligent Systems, IEEE [see also IEEE Intelligent
Systems and Their Applications], 16(2):72–79, 2001.

[8] M. Missikoff and F. Taglino. Symontox: a web-ontology

tool for ebusiness domains. pages 343–346, 2003.
[9] R. Navigli and P. Velardi. Learning domain ontologies from

document warehouses and dedicated web sites. Comput.
Linguist., 30(2):151–179, 2004.

[10] I. Niles and A. Pease. Towards a standard upper ontology.

In FOIS ’01: Proceedings of the international conference on
Formal Ontology in Information Systems, pages 2–9, New
York, NY, USA, 2001. ACM Press.

[11] N. F. Noy and M. A. Musen. The prompt suite: interac-

tive tools for ontology merging and mapping. Int. J. Hum.-
Comput. Stud., 59(6):983–1024, 2003.

[12] G. Song, Y. Qian, Y. Liu, and K. Zhang. Oasis: A map-

ping and integration framework for biomedical ontologies.

In CBMS ’06: Proceedings of the 19th IEEE Symposium on
Computer-Based Medical Systems, pages 611–616, 2006.

[13] G. Stumme and A. Maedche. FCA-MERGE: Bottom-up

merging of ontologies. In IJCAI, pages 225–234, 2001.
[14] M. Uschold and M. Gruninger. Ontologies: Principles,

methods and applications. Knowledge Engineering Review,
11:93–136, 1996.

[15] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt,

G. Schuster, H. Neumann, and S. Hubner. Ontology-based

integration of information - a survey of existing approaches.

In workshop on Ontologies and Information Sharing at the
International Joint, pages 108–117, 2001.

627

Service Oriented Architecture Empirical Study

Mohammad Abu-Matar Jeff Offutt
 George Mason University George Mason University

 mabumata@gmu.edu offutt@ise.gmu.edu

Abstract
Service Oriented Architecture (SOA) has been

proposed as model for distributed software
development that surpasses the traditional Distributed
Object Architecture (DOA) practices in many areas.
However, no empirical studies have been conducted to
verify the claimed benefits. This study is a first attempt
at presenting empirical evidence regarding the benefits
of SOA. It is a comparison between traditional DOA
and SOA. The two technologies were compared on the
basis of code size and development time. The results
show that, as a whole, the subject application was faster
to develop using the SOA method. However, the
application size was larger than that developed in the
DOA method.

Key Words: SOA, Web Services, EJB, SOA
experimentation

1. Introduction
Traditional Distributed Object Architecture (DOA)

used in building multi-tier Web based applications can
reach its limit when highly distributed heterogeneous
systems need to interoperate. Modern web applications
need a new computing model where services are treated
as self-contained modules that can be advertised,
discovered, composed, and negotiated on demand.

Service Oriented Architecture (SOA) is a model for
designing, building, and deploying distributed software
applications. It emphasizes loosely coupled design
approaches where disparate systems, with different
computing platforms, can collaborate without major
changes to their existing core architectures.

Despite wide industry and academic attention, no
evidence has been presented to substantiate the claimed
benefits of SOA. Therefore, empirical studies are
needed to evaluate the value of SOA.

This paper reports on a first attempt to attain
empirical evidence regarding the benefits of SOA. It is
a comparison between traditional DOA using the EJB
[4] technology and SOA using Web Services (WS) [3].

The main contributions of this paper are:
An empirical investigation of SOA
A comparison of the EJB and Web Services
technologies

A highlight of the value of tool support in
implementing both technologies

The paper is structured as follows: section 2
describes the experiment in details, section 3 presents
the results, section 4 discusses the results, and section 5
concludes the paper.

2. Experiment Description
 This section describes the experiment in detail
following the template presented by Wohlin et al. [1].

The first author designed and implemented the
application in two technologies: EJB (DOA) and WS
(SOA). It should be noted that the same design was
used for both implementations to remove any design
related effect on the results of the experiment.

The purpose of the experiment was to evaluate two
Web applications developed using both EJB and WS
with regard to time to market and size.

The authors were primarily interested in evaluating
the benefits of one development methodology over the
other, if any.

Two effects were studied in the experiment.
1. Time to Market: How long does it take to develop

the constituent classes of each application? This is
represented by hours of work (hrs).

2. Size: How large are the constituent classes of each
application? This is represented by the number of
line of code (LOC).

The subject is a PhD student (the first author) who
has OO industrial software engineering experience. It
should be noted that the subject did not have EJB or
WS industrial experience.

The object is a distributed software procurement
repository Web application written in Java. Constituent
Java classes and interfaces1 are the sole objects of this
experiment. Configuration, unit testing, integration, and
deployment files are not considered.

The server-side of the system consisted of three
services: ItemsService (S1), PaymentService (S2), and
UsersService (S3). The client-side consisted of JSP
pages, a front controller servlet, and request handlers
that interact with services on the server-side.

1 WSDL files are treated as interfaces, because they
serve as the public APIs for core services.

628

2.1 Experiment Planning
The independent variable (Factor) was the

development method. There were two treatments of this
factor: Web Services and EJB.

There were two dependent variables: time-to-
market and code size. A simple comparison analysis
was used, with the following symbols: The time-to-
market for EJB implementation is t1. The time-to-
market for WS implementation is t2. The measure of
size (LOC) for EJB implementation is s1 and the
measure of size (LOC) for WS implementation is s2.

With these variables, the null hypotheses are:
H01: t1= t2, the time-to-market is the same for
both EJB and Web Service
H02: s1 = s2, the size of code is the same for both
EJB and WS

The alternate hypotheses are:
Ha1: t1 t2, t2 < t1, the time-to-market is less for
WS
Ha2: s1 s2, s2 < s1, the size of code is less for
WS

Measurements instruments: Time-to-market was
measured by the number of hours (hrs) spent
implementing the Web application’s classes. The Size
was measured by the number of lines of code (LOC) of
the Web applications’ classes.

2.2 Validity Evaluation
Internal validity is concerned with confounding

factors that could affect the causal relation between the
independent and dependent variables [1]. A main threat
to internal validity stems from the IDE used to build the
applications. The WebSphere IDE [2] has built-in
support for both EJB and WS development. The IDE’s
built-in support can affect the time-to-market dependent
variable. The same argument applies to the LOC
dependent variable because of the varying amount of
generated code that different environments produce.

External validity addresses the generalization of the
experiment’s results to industry. External validity is
reduced by the following factors:

Only one subject participated.
Only one application was developed.
Only one IDE, WebSphere, was used.

2.3 Experiment Operation
The subject developed the EJB server-side and

client first, then he developed the WS server-side and
client.

Development times were rounded to the nearest
quarter hour and entered into tables. The subject then
counted the lines of each class in each application using
the LOC facility of the IDE and entered them into

tables. Finally, these tables were transformed into MS
Excel to calculate the figures.

Java classes were broken into two categories:
classes that were generated by the IDE (GEN) and
classes that were written by the subject (WRT). This is
an important distinction since the LOC measure tends
to be high for the WS method because of the amount of
generated classes.

3. Results and Data Analysis
 This section uses the notation introduced in section

2.1 to perform the comparison analysis.

3.1 Server-Side Data
Due to space constraints, only the main classes are

presented in the following tables. Java beans and helper
classes are not shown, but their corresponding results
are included in the total LOC and Time numbers.

TABLE 1 – All Server-side EJB Services
Service Classes LOC Hrs GEN WRT
S1 10 1139 3.75 3 7
S2 8 548 1.75 3 5
S3 10 765 2.75 3 7
Total 28 2452 8.25 9 19

t1s => measure of time for EJB server-side = 8.25 hrs
s1s => measure of size for EJB server-side = 2452 LOC

TABLE 2 – All Server-side WS
Service Classes LOC Hrs GEN WRT
S1 5 919 3.25 0 5
S2 3 329 1.25 0 3
S3 5 517 2.25 0 5
WSDL 3 335 3.00 3 0
Total 16 2100 9.75 3 13

t2s => measure of time for WS server-side = 9.75 hrs
s2s => measure of size for WS server-side = 2100 LOC

3.1.1 Comparison Analysis
The difference between the two time-to-market

measurements, Dts = | t1s – t2s | = 1.5 hrs. The
difference between the two size measurements, Dss = |
s1s – s2s | = 352 LOC.

Null hypotheses, H01, and H02 are rejected. For the
first alternate hypothesis, Ha1, the opposite is verified.
The second alternate hypothesis, Ha2, is verified.

3.2 Client-Side Data
 Again, due to space constraints, only the main
classes are presented in the tables.

Table 3 classes are basically Java handlers (Hs) that
deal with HTTP Request and Response objects. JSP
files were not included here since they are exactly the
same for both EJB and WS.

629

TABLE 3 – EJB Client Classes
Service Classes LOC Hrs GEN WRT
Hs 9 1036 7.5 0 9
Total 9 1036 7.5 0 9

t1c => measure of time for the EJB Clients = 7.5 hrs
s1c => measure of size for the EJB Clients = 1036 LOC

Table 4 reports on client classes that interact with
the WS. Again, JSP files were not included since they
are exactly the same for both EJB and WS.

TABLE 4 – Web Services Client Classes
Service Classes LOC Hrs GEN WRT
Hs 9 906 4.75 0 9
S1 18 1557 0 18 0
S2 14 1233 0 14 0
S3 19 1656 0 19 0
Total 60 5352 4.75 51 9

t2c => measure of time for WS Clients = 4.75 hrs
s2c => measure of size for WS Client s = 5352 LOC

3.2.1 Comparison Analysis
 The difference between the two time-to-market
measurements, Dtc = | t1c – t2c | = 2.75 hrs. The
difference between the two size measurements, Dsc = |
s1c – s2c | = 4316 LOC.

Null hypotheses, H01, and H02, are rejected. The
first alternate hypothesis, Ha1, is verified. For the
second alternate hypothesis, Ha2, the opposite is
verified.

3.3 Complete Implementation Data
This section compares the two methods as a whole –

server and client side.

TABLE 5 – EJB Services and Client Classes
System Classes LOC Hrs GEN WRT
Services 28 2452 8.25 9 19
Client 9 1036 7.50 0 9
Total 37 3515 15.75 9 28

t1a => measure of time for EJB = 15.75 hrs
s1a => measure of size for EJB = 3515 LOC

TABLE 6 – Web Services and Client Classes
System Classes LOC Hrs GEN WRT
Services 13 1765 6.75 0 13
Client 60 5352 4.75 51 9
WSDL 3 335 3.00 3 0
Total 76 7452 14.5 54 22

t2a => measure of time for WS = 14.50 hrs
s2a => measure of size for WS = 7452 LOC

3.3.1 Comparison Analysis
The difference between the two time-to-market

measurements, Dta = | t1a – t2a | = 1.25 hrs. The
difference between the two size measurements, Dsa = |
s1a – s2a | = 3937 LOC.

Null hypotheses, H01, and H02, are rejected. The
first alternate hypothesis, Ha1, is verified. For the
second alternate hypothesis, Ha2, the opposite is
verified.

3.4 Written Implementation
This section compares only the written portions of

the two methods for both services and clients.

TABLE 7 – Written EJB Services
System Classes LOC Hrs
Services 19 1836 8.25
Client 9 1063 7.50
Total 28 2899 15.75

t1w => measure of time for EJB written = 15.75 hrs
s1w => measure of size for EJB written = 2899 LOC

TABLE 8 – Written WS Services
System Classes LOC Hrs
Services 13 1765 6.75
Client 9 906 4.75
Total 22 2671 11.5

t2w => measure of time for WS written = 11.5 hrs
s2w => measure of size for WS written = 2671 LOC.

3.4.1 Comparison Analysis
The difference between the two time-to-market

measurements, Dtw = | t1w – t2w | = 4.25 hrs. The
difference between the two size measurements, Dsw = |
s1w – s2w | = 228 LOC.

Null hypotheses, H01, and H02, are rejected.
Alternate hypotheses, Ha1, and Ha2, are accepted.

4. Discussion
As a whole, the implementation time was less for

the WS method than the EJB method. However, there
was a steep learning curve to learn the WS facilities
within the IDE. As a result, the experiment design did
not account for such time.

The LOC for the WS was almost twice that of the
EJB method. The big difference in the LOC for the WS
method was due to the amount of generated code by the
IDE.

4.1 Server-Side Implementation
For the server-side, the EJB method was faster. The

main reason for this was the time it took to generate the

630

WSDL files in the WS method. It took about three
hours to generate these files due to the intricacies of the
IDE and the successive allocation of the services’
classes in the right directories. This undermines the
validity of the results since they depend on the IDE and
subject’s experience.

The LOC for the WS method was less than that of
the EJB method. The reason was the higher number of
generated files in the EJB method. The IDE generated
three container-related classes for each service in the
EJB method, whereas only one file was generated per
service in the WS method. Nevertheless, the hypothesis
was verified in this case. However, the IDE generated
the extra files in the EJB method; therefore this result
cannot be externalized to all SOA development.

4.2 Clients Implementation
The WS method was faster. The main cause for this

result was that clients need to execute several steps to
find and bind to EJBs, whereas in the WS method,
clients use proxy files to invoke methods directly on
WS.

Although it was faster to implement the WS client-
side, the LOC was five times higher than that of the
EJB method. This significant difference was due to the
large number of generated files in the client-side of the
WS. The majority of these files implemented a
proprietary serialization and de-serialization mechanism
for the value objects that are passed between clients and
services. In fact, we were surprised by the large number
and intricacies of these generated files. Again, the IDE
affected this result and it definitely cannot be
externalized.

4.3 Written Implementation
Because of the large number of generated files in

various stages of both development methods, we also
compared just the classes that were written by the
subject.

There were 28 written classes in the EJB method
and 22 written classes in the WS method. It took four
hours less to implement the classes in the WS method.
The LOC was slightly smaller in the WS method. Based
on these results, the main hypothesis of this study holds
for the written classes in the object application. In other
words, it took less time to implement the written classes
in the SOA method and these classes were smaller in
size compared to the DOA method.

The results of this particular comparison are
important, because they suggest that once developers
get familiar with their IDEs, they can concentrate on
their core business logic rather than on the intricacies of
the IDEs. The idea is that developers will write the
same number of core classes regardless of the used
IDE.

5. Conclusions
We found no published evidence that support the

claimed benefits of SOA. As a result, this experiment
attempted to verify two claimed benefits of SOA: short
time to market and small size of code (LOC). Web
Services were used to represent SOA and EJBs were
used to represent DOA.

The experiment hypothesized that applications
developed using SOA are faster to implement and
smaller in size compared to those developed using
DOA. The results show that, as a whole, the
implementation time for the WS method (SOA) was
shorter than that of the EJB method (DOA).
Furthermore, they show that the LOC of the WS
method was almost twice that of the EJB method. These
results confirm the time-to-market part of the
hypotheses, but refute the LOC part.

The results also show that when compared based on
the implementation of the server-side only, the EJB
method was faster to implement. However, the LOC
was smaller for the WS method than that of the EJB
method.

When the client-side of the two methods was
compared, the results show that the WS method was
faster to implement. Conversely, the LOC of the WS
method was five times higher than that of the EJB
method. Lastly, when only the written classes were
compared in both methods, the WS method was faster
to implement and it had smaller LOC. Thus, the two
parts of the hypothesis were confirmed in this case.

Although the results of the experiment were mixed,
the overall hypothesis was confirmed when only the
written code was compared. However, the overall
conclusion suffers from some validity threats as
explained in section 2.2. Mainly, the choice of the IDE
may have confounded some results. Therefore,
replication of this experiment is needed to enable
researchers to draw more accurate conclusions. Future
replication should include more subjects, several IDEs,
design as an independent variable, and investigation of
maintainability, reliability, and coupling as dependent
variables.

References
[1] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B.

Regnell, and A. Wesslen, Experimentation in
Software Engineering—An Introduction. Kluwer,
2000

[2] IBM WebSphere main page, http://www-
306.ibm.com/software/websphere

[3] World Wide Web Consortium (W3C),
http://www.w3.org/2002/ws/

[4] Ed Roman, Rima Sriganesh, and Gerald Brose,
Mastering Enterprise Java Beans. Wiley, 2005

631

Semantic Support to Reformulate Public Services
in Terms of Life Events.

Luis Álvarez Sabucedo
Depto. of Telematics

Universidade de Vigo

Email: Luis.Sabucedo@det.uvigo.es

Luis Anido Rifón
Depto. of Telematics

Universidade de Vigo

Email: Luis.Anido@det.uvigo.es

Abstract—Resources devoted to eGovernment make it possible
the soaring amount of solutions and projects available nowadays.
These projects take place in administrations from different
levels and provide solutions that are not driven by a common
infrastructure. Main shortcomings due to these phenomena are
related to lacks of interoperability and difficulties for locating
desired services. As a result, the digital gap may get bigger.
To overcome these drawbacks, a semantic approach based on
LifeEvents, a concept presented in the paper, is proposed. By
means of LifeEvents, an interoperable manner to address needs
from the point of view of the citizen is developed. As they
are described using OWL, powerful semantic resources are
available. A process of analysis in the domain has been conducted
and this turns out in a powerful ontology that may support
the characterization of Life Events. The goal is to allow not
only already defined LifeEvents but also those identified in the
future. Even more, once LifeEvents are defined by means of
an ontology, they are susceptible of being published under the
form of Semantic Web Services. Thus, it is possible to enable
enhancements about composition, discovery and organization, as
shown in the paper, within the framework of this proposal.

I. INTRODUCTION

Currently, we are being witnesses of a huge effort in

eGovernment development. As ICTs (Information and Com-

munication Technologies) are getting a broad use, Public

Administrations (here after PAs) are getting into this tendency.

But it is important to consider that eGovernment is not solely

a simple replacement of technology to provide a 24/7 service.

Indeed, eGovernment solutions require the reengineering of

all processes involved in the public service. As a matter of

fact, this technology forces PAs to orient services toward a

better performance by putting the citizen in the center of all

supported tasks.

The goal of an eGovernment service is to conduct a com-

plete end-to-end solution for citizens whenever it is possible.

Thus, they are aimed at improving access to government, re-

ducing service-processing costs and providing a higher quality

of service.

The development of these platforms for eGovernment ser-

vices has benefits for both government and citizens. As ICT

allow the access to information and services, citizens and

businesses can access and interact with PAs under a 24/7

model.

Regretfully, projects may be in quite different status. It is

possible to classify them into several levels according to an

UN criterion[1]:

• Emerging presence (stage I). Information is presented and
documents are available only for download.

• Enhanced presence (stage II). The citizen can search for
documents and perform more advanced operations, but

the amount of information they can submit to PAs is

limited.

• Interactive presence (stage III). Interactive services are
available and government officials can be contacted by

email, fax and telephone.

• Transactional presence (stage IV). Two-way interaction is
supported and complex services (such as taxes, fees and

postal services) are available.

• Networked presence (stage V). Final level that integrates
all services under ICTs platforms and support a two-way

open dialog between citizens and PAs.

At an international level, we can point out several initia-

tives: SAGA (Standards und Architekturen in eGovernment

Anwendungen)[2] in Germany, e-GIF (eGovernment Interop-

erability Framework)[3] in United Kingdom, ADEA (l’Agence

pour le dèveloppement de l’administration électronique)[4]

in France, EIF (European Interoperability Framework)[5] for

European solutions, FEAF (Federal Enterprise Architecture

Framework)[6] in USA, . . . Unfortunately, most of them do not

provide the description of an architecture to develop solutions

or standards for service definition. Therefore, the provision of

support available from different platforms is not possible and

even reusing solutions from external applications requires a

great effort.

International organisms involved in technological develop-

ment play a role in this area too. We can outline some

working groups from different environments: DGRC (Dig-

ital Government Research Center) by the National Science

Foundation, the working group E-Gov DSIG from the OMG

(Object Management Group), OASIS (Organisation for the

Advancement of Structured Information Standards), the CEN

(European Committee for Standardization) and others.

A main drawback identified in the domain is the lack

of interoperability among developed solutions. A data based

approach allows little interaction with services developed out

of its original frame. Some limitations have been also noted

on accessing services. The citizen, the end user, has problems

632

locating the wished services or, even, the proper administration

they are willing to deal with. The aim is to overcome some

drawbacks detected in the domain.

To overcome them, this paper presents an alternative where

eGovernment services are provided using a semantic support

based on Life Events, here after LEs. LEs, as discussed

later on, can be seen as those situations where citizens are

compelled to deal with a PA in order to fulfill an obligation

(i.e., pay a fine) or to make use of a right (i.e., request a grant).

Paramount features of this support will consist in the

provision of a methodology to define services for different

PAs, design interoperability mechanisms and make easier the

task of locating the proper service.

The key for the definition of LEs lays on the identification

of problems from the point of view of the citizen. The

citizen should not be aware of the administrative procedure,

just of their own needs. So, a methodology and a complete

environment are provided to define LEs. In this way, it will

be possible to define LE from different PAs to fulfill requests

from the citizen in such a way that identified shortcomings

can be easily overtaken. This concept is further elaborated in

section 2.

While developing this formal tool, semantics happen to

play a significant role. Semantic technologies make possible

features related to the provision of a common ground to

build up services related to the discovery of services or the

orchestration of services are possible. We needed to choose

one among the currently available semantic technologies. In

the present case, we decided to use OWL[7], the W3C official

recommendation, to represent the information. The process to

build up the entire ontology is shown in section 3.

Dealing with Semantic Web Services is also an open issue.

In this context as we will see, WSDL-S[8] is used to wrap

services. This technology allows us to support in a standard

and cost-effective manner advanced mechanisms of discovery

and interoperability. This is possible due to simplifications in

the definition of services and how they are linked to each other.

A more detailed review of this point is provided in section 4.

This is not the first time, Life Events are proposed in the

domain. Some previous initiatives are reviewed in section 5.

Finally, on section 6, some conclusions and future works are

yielded.

II. OUTLOOK ON LIFEEVENTS

With the already discussed shortcomings in mind, we sug-

gest a new formulation of the problem. As all interaction

between the citizen and PAs is driven by the exercise of a right

or the fulfilling of an obligation, we propose the definition of

services provided by the administration in these terms. Thus,

it is possible to focus on what the citizen is requesting and

not on the PA itself.

Instead of developing services in a data layer from use

cases expressed in natural terms, we work in the provision

of a semantic description of services in a scalar and reusable

manner. To model that idea, we define the so-called Life Event.
This is the concept we use to refer to any particular situation

a citizen must deal with and requires assistance, support or

license from a PA. We can consider as “life events” situations

such as getting certifications, paying a fine, getting married,

moving, . . .

Taking this into account, we establish a semantic based

definition for LEs. These elements are going to play a main

role in and are expressed using semantic terms shared by the

whole system. The definition of a LE includes the following

items:

• Task. Title for the considered operation. Folksonomies
can play an interesting role as they provide support for

semi-automatic enhancements of discovering services.

• Description. High level description of the desired opera-
tion expressed in natural terms from the point of view of

the citizen.

• Input documents. All operations carried out by the ad-
ministration require some input document. At least, the

citizen must provide a signed form in order to invoke

the operation. This element is similar to preconditions in
some environments.

• Output documents. Of course, as a result of any per-
formed operation, the PA in charge must provide an out-

put expressed in terms of the ontology. This information

will be put together into one or several documents. This

output will vary its content from the expected document

(i.e., a certification, a license, . . .) to information about

potential failures in getting the expected document.

• Scope. We must identify the scope of the operation

(local, national, international, . . .) in which we want to

recognized it.

• Security Conditions. The conditions for the security

mechanism involved in the whole process, such as iden-

tification of both parties, cipher methods, etc.

• Cost. The amount of money to be payed, the time it will
take or other penalizations involved.

• Version. Life Events can be modified and changed from
one version to another.

In order to transform natural or normal services to LE

expressed in the proposed terms, we must follow a simple

methodology that will be illustrated by the example LE

“Moving”. The proposed algorithm goes as follows:

1) Identify the particular problem we are dealing with in

terms of features and PAs involved. In this example, we

provide support for the situation of “Moving” that hap-

pens when a citizen wishes to move from a permanent

address to a new one. This will involve the city council.

2) Decompose the main problem into several different ones

that may be completed in a single step, i.e., each step

must produce a document meaningful for the citizen.

These new problems may become in new LE as well.

For the sake of simplicity, we describe only some of

the issues a family willing to move must deal with. In

our example, several subprocesses can be considered:

changing the school assigned for children, changing the

medical center assigned, revoke transport bonuses, . . .

633

3) For each procedure identified in the previous step, look

for the input documents, scope and cost. These must

be expressed in terms of the ontology of the system. If

required, the ontology will be expanded.

In the current example, input documents may be digital

identity documents, certifications of the current address

and a signed request. Note that each local council can

impose particular conditions, for example, it is possible

to ask for a document that proves the residence in the

new address, i.e., a renting contract. The cost can be

estimated by the city council as it wishes. And the scope

of the operation is local.

4) Identify internal partial steps that the citizen could

be interested in. These steps usually involve internal

documents that may carry no meaning for the citizen

but are relevant for the administration. Nevertheless, the

citizen will be informed about future and past steps of

his request.

In this case, the internal steps that may be identified

are updating the address for the purpose of official

notifications.

5) Identify all possible documents created as potential final

steps of the operation.

In our example, the output document will consist of

the certification of the new address if the operation was

completed successfully. Of course, the service denial is

possible in circumstances such as pending fines, new

address out of the limits of the city council, . . .

6) Update all services and agents that may be aware of the

new service.

This proposed schema is suitable for the eGovernment

field for several reasons: all operation require some input

documents, the most common output in the service is a

new document, there is no need (opportunity) for bargaining

about services, there are limits and conditions very explicit

about the data managing in terms of trustability and security

(non-repudiation, privacy, integrity and confidentiality), and

operations do not have real time constrains.

III. APPLYING SEMANTIC SUPPORT

So far, a tool for modeling services with no relation to

any particular technology has been presented. The task now

is to introduce a semantic formulation in those concepts. As a

result, advances in interoperability and discovery are expected

to emerge.

Our approach takes advantage of the power of OWL to

express the information relevant for the system. Nevertheless,

we must keep in mind that OWL is just a tool to express

knowledge with all its potential and limitations.

As developing an ontology is a common task, stan-

dard methods have been defined. Among all of them,

Methontology[9], a process recommended by the Foundation

for Intelligent Physical Agents (FIPA)1 to develop ontologies,

has been chosen. This methodology imposes several stages

1http://www.fipa.org/

and phases to construct an ontology in an organized manner.

The aim of this ontology is to provide support for LEs and,

hence, LE is the main class in this ontology. The main slots are

name, version, description, cost, etc. as shown in the previous

section. Besides, we can identify some other relevant classes

(see Fig. 1):

• Citizen. It supports the characterization of the citizen
itself. This class is tagged with metadata and provides

properties that explain its functionalities.

• PA. This class models the behavior of Public Admin-
istrations. Every PA involved in the system must be

characterized according to some properties to make it

possible interaction such as name, Public PKI Key, scope,

etc.

• Document. This class defines legal proofs and includes
properties such as owner, issuing entity, etc. Besides,

for each sort of document supported, a new sub-class is

defined; thus, each new document is modeled as a new

instance in the proper subclass.

• Also classes to model regions and costs are provided
In this ontology, we have reused previously proposed

metadata. For example, in the task of defining the citizen,

one of the main classes in the system, FOAF (Friend of a

Friend)2 has been reused. Besides, to mark documents in the

system, metadata from European standards has been reused,

in particular, CWA 14859[10], CWA 14860[11] and CWA

13988[12]. This is part of a general philosophy leading toward

the maximum possible agreement and reusability both for the

ontology and the software based on it.

Several properties have also been identified regarding to the

LEs (see Table I). These ones allow the implementation of

mechanisms to discover which LE can be invoked or how

they can be composed. For example, by means of the property

generates, it is possible to discover which document can be
achieved as the result of the completion of a certain LE.

To increase the possibilities of the reasoner in their duties,

inverse relations are defined in any case that it is possible, i.e.,

if provided the relation supports, then the property isSupport-
edBy is also defined. This is possible thanks to the fact that
identified relations can be considered as transitive.

To ensure the consistency of current and future individuals

in the ontology, some rules have been defined: every LE

generates some Document, all LE is supported by some

PA,. . . Of course, further details about the conformance to local

or national laws regarding documentation and legal procedures

are no considered at this point and further implementations of

the system should take care of it.

IV. ACCESSING LIFE EVENTS

Once the knowledge that defines the problem has been

formalized, the access to LE themselves as services has to

be faced. The adopted solution is to wrap LE under the form

of Semantic Web Services (SWS)[13]. This makes possible

the provision of a LE pool and also related services.

2http://rdfweb.org/topic/FoafProject

634

CitizenDocuments

TaxesReceipt

Digital Identity

Certification of Residence

Visa

LifeEvent

PAs

issues

requires

su
pports

owns

Civil Status Certification

VAT

Local Taxes

generates

Fig. 1: Main classes and properties in the ontology

TABLE I: Properties identified in the system

Property Domain Range Explanation

issues PA Document Refers to which document is provided by who

requires LE Document Refers to which document is required for a LE

supports PA LE Refers to which LE is supported by a PA

owns Citizen Document Refers to which Document is owned by a Citizen

generates Document LE Refers to which Document is the output of a certain LE

The state of the art in the present moment about SWS

is not steady. To meet requisites in our case, WSDL-S[8]

was chosen. The motivation is its simplicity but power to

express all required information. Also, as shown later on, this

proposal fits quite nice in our definition of LE. Other options

were rejected for different reasons. For instance, OWL-S[14]

was seriously considered but it involved overhead and did

not introduce any clear advantage in this particular case over

WSDL-S, a much lighter technology. WSMO[15] was also

considered but the use of a mediator does not really fit in our

proposal.

Thus, for each LE supported in the system, a single Se-

mantic Web Service is provided. Therefore, in each operation
considered, the inputs and the outputs are defined in terms
of the ontology developed. In particular, regarding to the LE

“Moving”, input and output documents are the ones previously
identified. Preconditions and effects supported in WSDL-S do

not carry special meaning in our proposal.

It is quite simple, in a general case, to orchestrate LEs using

a semantic reasoner as it only will have to link outputs and

inputs expressed in terms from the same ontology and related

properties identified in Table I. We must keep in mind that

WSDL-S is just a tool to introduce semantics in LE. Others

could be used with no structural changes. It is possible, if

required, to migrate from WSDL-S to other technologies with

little effort[16].

V. RELATED WORK

Similar initiatives to our proposal based on LE can be

outlined. The first time the concept of LE in eGovernment

was used was in the eGov project[17]. In that context, Life

Events were defined as “situations of human beings that trigger

public services”. This approach to the concept is mainly used

to model the internal process in the own PA and it was used

as a guide to its implementation. Thus, it can be considered

mainly as a back-office contribution.

Later on, this idea is reused in different official pages such

as the Ontario’s eGov site3, Nova Scotia’s one4, the Irish

eGovernment initiative 5 and many others. Those sites make

use of the concept of LEs to index and locate services in a

3http://www.gov.on.ca/
4http://www.gov.ns.ca/snsmr/lifeevents/e/
5http://www.oasis.gov.ie/siteindex/by_life_event.html

635

web interface. The role performed in these cases is mainly

related to facilitate the location of services to end users.

In literature, we can find some interesting initiatives, that

make use, at different levels, of semantics applied somehow

to this concept:

• The Finnish Web site, Suomi.fi 6, implements a taxonomy
that allows a more formal classification of LE. Even, the

approach is similar, the use of semantic is limited and

only interaction with human users is allowed.

• The EIP.AT project7. It is developed in the University

of Linz, Austria. Life Events and related relevant pieces

of information are described using RDF support. Infor-

mation retrieval mechanisms are supported by means of

RDQL[18] queries.

• The SemanticGov project[19]. This ongoing project sup-
ported by the 6th Framework Program is aimed to develop

a software infrastructure intended to provide support for

PAs. Semantic technologies are expected to play a main

role.

• The Access-eGov project[20]. An initiative, also in the
6th Frame Program, based on a peer-to-peer and service-

oriented architecture that also takes advantage of seman-

tics to improve accessibility and connectivity.

Our proposal goes a step further and suggests features not

provided in these platforms such as the provision of a LEs pool

from different PAs and support for its automatic management,

semantic mechanisms to discover the proper LE, legal support

for performed operations by means of signed documents, etc.

VI. CONCLUSIONS AND FUTURE WORKS

The main goal of this paper is the introduction of a semantic

oriented model to describe eGovernment services in a formal

manner. From the study of the domain and its requisites, an

ontology is presented to be cornerstone of an entire system

where service can be developed in an interoperable and scal-

able manner. This ontology is based on the use of LifeEvent

as the elemental unit to drive all operations in the system.

From the use of LE, Semantic Web Services can be easily

derived by using WSDL-S, a semantic technology. This light-

weighted technology has been prooven to be powerful enough

to support operations within the presented framework.

This proposal takes into consideration limitations and short-

comings from the technological environment, especially from

the semantic environment where a lot of work is yet to be

done. Nevertheless, some limitations related to the design of

an accurate semantic matcher were overcome thanks to the

approach selected where some simplifications are possible.

Besides, this solution bears in mind some requirements in

this field:

• Third parties can develop their own agents according to
the provided information.

• Flexibility is a must in this environment. This is the result
of a platform that is frequently updated due to changes

6http://www.museosuomi.fi/suomifi
7http://eip.at

not just about technical issues but also about legal or

administrative ones. Also, the system must be able to

develop new features in a scalar way.

• Different administrations may be involved in a deal.

These may use a different level of knowledge about the

same citizen or require different data treatments or data

models.

• Legal documentation to compel both, citizen and PAs, to
fulfill operations must be created in each interaction.

This solution has been implemented under official support

from Public Administration (PGIDIT06PXIB322285PR) and

first prototypes are reporting promising results and they,

shortly, will be at the disposal for several interested PAs.

VII. ACKNOWLEDGMENT

We want to thank “Ministerio de Educación y Cien-

cia” and “Xunta de Galicia” for their partial support

to this work under grants TIN2004-08367-C02-01 and

PGIDIT06PXIB322285PR.

REFERENCES

[1] United Nations, “Benchmarking e-government: A global perspec-
tive,” Web available, 2005, http://unpan1.un.org/intradoc/groups/public/
documents/un/unpan019207.pdf.

[2] KBSt, “Saga,” Web available, 2005, http://www.kbst.bund.de/-,182/
SAGA.htm.

[3] UK GovTalk, “e-GIF,” Web available, 2007, http://www.govtalk.gov.uk/.
[4] French Government, “Adea,” Web available, 2007, http://www.adae.

gouv.fr/adele/.
[5] D. Enterprise and I. I. Unit, “European interoperability framework for

pan-european egovernment services,” Web available, 2005, http://europa.
eu.int/idabc/en/document/2319/5644.

[6] POPKIN Software, “FEAF,” Web available, 2007, http://government.
popkin.com/frameworks/feaf.htm.

[7] W3C, “Web ontology language,” Web available, 2007, http://www.w3.
org/2004/OWL/.

[8] W. W. W. Consortium, “Web service semantics - wsdl-s,” Web available,
2007, http://www.w3.org/Submission/WSDL-S/.

[9] Fernández-López, M., Gómez-Pérez, A, and Juristo, N., “Methontology:
From ontological art towards ontological engineering.” Symposium on
Ontological Art Towards Ontological Engineering of AAAI., pp. 33–40,
1997.

[10] CEN, “Guidance on the use of metadata in egovernment,” Web available,
2007, http://www.cenorm.be/cenorm/businessdomains/businessdomains/
isss/cwa/cwa14859.asp.

[11] ——, “Dublin Core eGovernment Application Profiles,” Web available,
2007, http://www.cenorm.be/cenorm/businessdomains/businessdomains/
isss/cwa/cwa14860.asp.

[12] ——, “Guidance information for the use of dublin core in europe,”
Web available, 2007, ftp://cenftp1.cenorm.be/PUBLIC/CWAs/e-Europe/
MMI-DC/cwa13988-00-2003-Apr.pdf.

[13] “Semantic Web Services Interest Group,” Web available, 2007, http:
//www.w3.org/2002/ws/swsig/.

[14] OWL-S Coalition, “OWL-S: Semantic Markup for Web Services,” Web
available, 2005, http://www.daml.org/services/owl-s/1.1/.

[15] SDKWSMO working group, “Wsmo,” Web available, 2005, http://www.
wsmo.org/TR/d2/v1.1/.

[16] “D30v0.1 Aligning WSMO and WSDL-S,” Web available, 2007, http:
//www.wsmo.org/TR/d30/v0.1/.

[17] “egov: Online one-stop government,” Web available, 2005, http://www.
egov-project.org/.

[18] A. Seaborne, “RDQL - A Query Language for RDF,” Web available,
2007, http://www.w3.org/Submission/RDQL/.

[19] “The SemanticGov Project,” Web available, 2006, http://www.
semantic-gov.org.

[20] “Access-eGov,” Web available, 2006, http://www.accessegov.org/.

636

A Component-Based Solution and Architecture
for Dynamic Service-Based Applications

Alessio Colzi, Tommaso Martini, Paolo Nesi, Davide Rogai
Department of Systems and Informatics, Distributed Systems and Internet Technology Lab (DISIT)
University of Florence, Florence, Italy, tel 0039-055-4796523, www.dsi.unifi.it, nesi@dsi.unifi.it

Abstract
Recently many new middleware frameworks are going

to enforce more dynamism to their component-based
models and systems. In this context, an application is build
as the composition of several components/services. The
main challenge is dynamic deployment and update of such
components, during the application lifetime, including the
discovering of the suitable components in the network and
the decoupling of application code from component’s
nature, implementation. These features increase dynamism
and the flexibility. In this paper, the main principles of a
solution that allows the dynamic management, allocation
and connection of remote service, including capabilities of
deploying and updating of such components, during the
application lifetime is proposed. The described solutions
has been used to add those functionalities to a middleware
based on .NET framework and has been accepted for
defining the distributed services capabilities part of
MPEG M3W (Multimedia Middleware) of ISO IEC23004-
3, that is now becoming an official standard.

1. Introduction
The first implementations of middleware [1], [2] have

been mainly realized as interoperability layers among
heterogeneous computer based systems for general
purpose usage. Recently, more specific middlewares have
been proposed while those with general capabilities have
been deeply integrated into the most diffused development
platforms and/or operating systems. This trend has
provoked the production of middlewares and frameworks
for workflow applications, peer to peer applications, GRID
solutions, industrial automation, home automation,
multimedia [2], etc.

Most of the proposed component-based middleware
models defines the same concept as building blocks, such
as the (i) support for the reuse of components by
specifying interface and contract of the offered services,
(ii) portability of the framework among different
platforms, (iii) interoperability of the framework by using
different languages by providing “language bindings” of
component access functionality, (iv) dynamic binding of
component services in order to compose them in a
suitable architecture, (v) exploitation of component

services over a distributed environment (notification of
available services, activation and invocation).

Other features can be required to acquire maximum
benefits from the usage of a component-based framework
for multimedia applications: real-time, robustness,
security, interoperability, low-footprint, updating and
trading.

Some of the most important middleware models are (in
some cases, specific for multimedia): CORBA\CCM [1],
DCOM, .NET, EJB, JINI, Robocop, PECOS, RUBUS,
MPEG M3W [2], PECT, PBO, UPnP, OSGI, HAVi,
KOALA, etc.[1], [4], [5], [6].

The main challenge is dynamic deployment and update
of such components, during the application lifetime,
including the discovering of the suitable components in the
network and the decoupling of application code from
component’s nature, implementation. These features
increase dynamism and the flexibility. In this paper, the
main principles of a solution that address these aspects are
proposed. This has been used to add those functionalities
to .NET in relationships with AXMEDIS R&D IP FP6
project of the European Commission [7]. It inspired the
definition of the “remote capabilities” part of MPEG M3W
(MPEG Multimedia Middleware) of ISO IEC23004-3, that
is now becoming an official standard.

The paper is organized as follows. In Section 2,
motivations and rationales of the distributing computing
model are discussed. Section 3 reports the main principles
of the solution for enforcing the proposed dynamism in the
component-based middlewares. In Section 4, the usages of
the solution proposed in a middleware based on .NET and
its adoption by MPEG M3W (explaining also how this
work contributed to the standardization) are commented.
An example is reported as well. Conclusions are drawn in
Section 5.

2. Motivations for Distributed computing
and services

In this section, the most relevant scenario is reported (it
is related to the AXMEDIS project [4], and in general to
network of embedded systems and PC for multimedia
applications, see also MPEG M3W) as an example in
which several component services, located on different
devices should be usable in a transparent manner,

637

independently from their location in the home network of
multimedia devices (as shown in Figure 1). In this case,
the services are published functionalities of some
components put at disposal of other components in the
network. In this scenario, a component should use
transparently any of the multimedia components/services.
In this context, the PCs may act as a service provider (as a
sort of multimedia center) for the several multimedia
devices that are present and connected. On the other hand,
some devices can only use specific component services,
deployed on and provided by other devices. Furthermore,
any service/component should be updated from a third-
party. Applications may reside on any device and can be
developed and/or reused on different platforms; their
lifetime is guaranteed by software component maintenance
and update (e.g., via Internet). Component vendors can
simply reuse the middleware runtime features to deliver
software components to the user and the latter can treat
his/her own software as a resource to be archived in a
storage device for further/different usages. Applications
can be developed and/or reused on different platforms; the
life time of these platforms is guaranteed by the
middleware runtime features (i.e., simply requesting new
services to the middleware runtime, which provides
retrieving and installation). The services/components can
be of coding, decoding, adaptation or media processing in
general.

In general, the component (see Figure 2b) groups a set
of services. A service declares to implement some
interfaces and models a functionality which is usable by an
application. The component may also contain an additional
set of information, which is relevant in order to properly
use the included functionalities (e.g., documentation,
formal specification of behavior, metadata, etc.).

Fig. 1 – Home multimedia device network

Following the example of Figure 2b, Service1 has been
created to implement InterfA, InterfB. InterfC. Application
is unaware about how these interfaces have been
implemented and who is providing the required
functionalities. This approach opens to manage service
functionality extension without any impact on the
Application deployment. For example, Service1 which
implements InterfX, could be extended in a second step to

implement InterfY (with a richer set of methods). The
Service can be easily updated, while the Application does
not need to change, since it may continue to use InterfX.
In this way, old and new applications can survive in the
same distributed system.

In this context, it is very important to have a high
dynamicity in the replacement/update of the components
and in making them independent from the implementation
and platform. In the following section, the achieved
programming model is presented. It presents, as the most
relevant feature, the decoupling from the application code
and the service implementation.

3. Principles of the Middleware
In this section, the main architecture of the component

based middleware is presented. It is mainly based on the
concepts and functionalities of the:

Component Model, defining the component package
and how to access those implemented functionalities;
The component model has been described in [8] and
includes the:
o manifest is a XML metadata section

information including identifiers of the
components, offered services, description of
their interfaces, a list of dependencies for each
services (for example, a service may depend on
several other services for its correct execution),
and all the relevant information needed by the
system to manage the lifecycle of components
and services.

o executable code of the component.
o documentation: human-readable compendium

introduced since a component can be sold for
integration or packaging purposes

RunTime Environment, realizing a support service
for the middleware capable of managing the
compliant components in order to provide actual
means to access their services. In Figure 2c, a simple
usage flow is sketched: where an application, located
on a device is using Service1 which has been
deployed and installed on a remote system.

In Figure 2a, an overview of the concepts involved in
the modeling of the component based framework and their
relationships is given.

The decoupling of the applications from the
components is possible by performing an “a-priori”
standardization of the services in terms of “logical
entities”, that is to define them as abstract functionality
providers, as a set of implemented interfaces.

In order to access to service functionalities, the
Application depends on the interfaces, which are well-
known for the service standardization. The service is
identified by a unique name, (e.g., namespace and name).

The Application needs also to use some support
services in order to obtain access to component services.
Those services, according to the object-oriented paradigm,

638

are realized as object constructor, while in this case are
referred to as “service activation”. After the activation, a
given instance is put in execution and maintained running
by the runtime environment, and thus, it is ready to fulfill
the application requests. Thus the general services for
managing component services have to be exposed by the
RunTime Environment of the middleware.

The typical component-based Application starts with a

given service activation, that is performed “by name”. The
name is known by the Application as a standardized
service ID (e.g., audio.mp3.MP3Decoder). The request has
to be performed by the Application to the RunTime which
produces an object instance that has to be cast to one of the
interfaces implemented by the obtained service instance.
The RunTime has the duty of finding the service in the
network, making transparent the activities for the
Application. In this manner, the Applications can be
totally unaware about which host is providing the
implementation it is exploiting. Thus, Applications can
control and exploits the whole network environment.

The RunTime Environment has to support the
component-model components and to avoid dependencies
among (i) Application development languages, (ii) the Run
Time Environment implementation and deployment, and
(iii) the network topology and protocol. In addition,
Applications must be capable of using the remote service
instances as the local ones, even passing them as
arguments for any other service method invocation.

3.1. An overview of RunTime Environment
The main functionalities/aspects of the RunTime

Environment can be discussed in terms of Figure 3, and
are the possibilities of: (i) decoupling from the application

code and the service implementation, (ii) providing
general services for managing services in a transparent
manner, (iii) managing and propagating the exceptions.

The proposed solution allowed solving the
requirements mentioned in the above section. In fact, any
application depends only on the IServiceBroker, which is
the gateway to any component service, and provides a
class ServiceManager which implements such an

interface. In order to allow reusing/exploiting of the
running services/components, the Proxy design pattern has
been applied. This allowed the Applications to work with
any object which implements all the know interfaces for
the related service and redirect them to IServiceBroker
generic requests for a service method execution.

The component manifest contains a list of the eventual
other services that are needed to be activated to complete
the required invocation. Other metadata information may
refer to the execution profiling (e.g., computational
complexity), and/or platform resource usage. All these
data are readable at run-time (but also at design-time),
when decision could be taken about which component/host
is more suitable to fulfill a given request. Therefore, each
component is enriched with a set of data attributes which
are retrieved and processed by the Run Time Environment
during the component exploration for service selection and
connection.

In order to retrieve and use component services, the
RunTime works with different framework management
service/interfaces:

IServiceLocator to find a service by querying the
underlying distributed environment;
IComponentExplorer to obtain information about a
given component and its available services; any kind

Fig. 2 – Programming model concepts: a) Entity overview b) Component c) Sharing of available services

a) b)

c)

Application

RunTime

Service2

RunTime

Service1

Local System any Remote System

other Application

other Application

639

of package attribute can be returned back as
information accessible by all the system entities;
IServiceActivator, responsible of using the
component for instantiating a specific service; it
returns a generic instance handle which identifies that
instance for further requests;
IServiceHandler to redirect a generic request to a
specific invocation on the target service instance.

Fig. 3 –Main entities and relations

Moreover, the solution proposed is capable of
propagating the service execution exceptions which could
occur through any level of calling stack, without breaking
neither the RunTime nor the running application. The
deployment of the components which provide new
services (or service updates) has to be simple, according to
the philosophy of .NET framework: just copying them to a
given path. In this manner, also dynamic download of new
components has been easily achieved.

The RunTime is based on set of available services, and
it works as a crucial service for the whole system: if the
RunTime breaks, than all the services are not anymore
available. Due to the dynamicity of the system the
availability level of the components cannot be taken for
granted. Thus, the service instance execution has to be
monitored, and unexpected crashes should not stop the
RunTime service in any case. Any error/exception has to
be managed in order to maintain availability of the
component service access functionalities. Furthermore, on
the basis of the proposed delegation policy, also error
information should be propagated at any system entity
involved in the invocation process. With this report, many
different high-level policies could take place in order to
recover a service fault (e.g. instance replacement, service
update).

3.2. Distributed architecture for services
This section depicts how a distributed system is

deployed over the network sharing service functionalities.
The same RunTime is capable to fulfill service activation
and handling requests from other RunTime services. The
RunTime actually covers two main roles in this distributed
system:

Unique gateway for Applications to access to all
network services; it is the sole dependency of a
service consumer in order to access the distributed
environment;
Peer for the service sharing network; it serves requests
from other RunTimes as they were issued by any
application.

Fig. 4 – Invoking a service method on a remote platform

In Figure 4, details regarding the delegation process of
serving an invocation request are shown. In this case, an
Application has obtained a stub for a service instance
hosted by a remote RunTime.

Please note that, the request is forwarded to the proper
RunTime that finally performs the invocation on the active
instance. The active service instances are located with a set
of data which uniquely identify an active instance: unique
ID of the instance, location i.e. the URL of the host
platform (active RunTime), serviceName including its
namespace. With this information any ServiceManager is
capable of retrieving an active instance even if the first
activation has not been commanded by it.

In Figure 5, a sequence of object diagrams is showing
how a service stub, in the hands of the application code, is
used as argument of another service method invocation. In
Figure 5a, the starting condition is sketched: the
application has already activated the instances of Service1
and Service2; the invocation is performed through
Service1Stub by using the usual “dot notation” and
directly passing Service2Stub as it is (i.e.
s1stub.do(s2stub)). In Figure 5b, the ServiceManager,
while handling the invocation request, extracts from

640

Service2Stub data regarding the localization of related
Service2 instance and delivers them to the RunTime.
Service2Data is the delivered information, which the
RunTime can use requesting a ServiceManager to build
another stub for a Service2 instance. Thus, the method
implementation can also neglect that the passed argument
is actually a remote active service. In fact, in Figure 5c, the
RunTime is responsible of forwarding the invocation to
the proper Service1 instance, and performs the opposite
operation with respect to what ServiceManager did in 5b;
that is: it builds a new Service2Stub (by using a
ServiceManager) from the received information
Service2Data and passes this stub as the actual argument
of method invocation on the Service1 instance. In Figure
5d, the Service1 instance has received the Service2Stub
and it will use it transparently (it has been assigned to a
local reference).

Fig. 5 – Passing a Stub as a method parameter

Please note that, this architecture enables a real
transparency in term of reusing of the same application
code that works for a local environment. Stubs are treated
as logical references to the service instances, emulating in
all aspects local references to such instances.

4. Some applications
The solution proposed has been used for enforcing

dynamicity in two different middleware: .NET of
Microsoft and the MPEG M3W ISO standard.

4.1. Solution Usage in .NET
The .NET Framework has been augmented with the

above proposed functionalities allowing to create a more
dynamic component-based middleware. The proposed
implementation in .NET adds a pervasive fruition of
services in a distributed environment, while .NET
Remoting supports only one-to-one interactions.
Components have been modeled as .NET Assemblies; they
are organized at higher level for usage of their attributes.
Attributes are presently used to describe exposed
interfaces in terms of what has been specified by the
service standardization. Also dependencies among services
are reported as Assembly’s attributes.

The proxy, that has been realized, decodes the
invocation (method name and arguments) and
subsequently forwards it to the ServiceManager.

Since .NET support “emit” feature, which is the
possibility of programmatically defining a new class, it has
been decided to free the application deployment from any
additional dependency with respect to the used interfaces
of any service. Any service stub class is generated at run-
time, reading the component service description and listing
the interfaces known by the application (i.e., reachable by
the Application component).

In the .NET Framework, the concept of protected
memory execution is defined as “application domain”.
Such a domain is actually managed as an independent
process, while it belongs to a unique operative system
process. New threads can be created inside an application
domain. Since memory is protected, the communications
among the application domain have to exploit network or
file communication. The “execution” application Domain,
where RunTime is running, is responsible of creating as
many application domains as the service instances are. The
communication among RunTime and its active service
instance is performed with .NET Remoting. This
communication support is capable to notify if an exception
occurred, so that another application domain could manage
the situation. In this case, the service execution never risks
the RunTime for failures.

4.2. Solution Usage in MPEG M3W
The solution proposed has been also accepted by the

MPEG M3W standardization activity, so the major results
has been directly included in the standard edition
ISO/IEC23004-3 (actually still under editing phase). Since
the target platform, conceived for such standardization, is
a Consumer Electronics device, many of the realization
artifacts cannot be included in the defined services.

MPEG M3W includes the so called “reference
software” as a compendium for understanding the
information handling as depicted in the standard body text.
The M3W component model is based on native binary
products. The proposed concepts have been standardized
in two built-in component services provides building
blocks for remote invocation. Proxy service has been
defined as the virtualization of the real component service

641

on a remote platform and Wrapper service has been
proposed in order to wrap any interface under a generic
IReflection interface (i.e. by name invocation). DCE RPC
has been used as the support communication protocol. The
serialization technology has been left free in order to cope
with different requirements. The standardization activity
has done together with Philips and ETRI as contributors of
the required technology.

4.3. An example
Among the validation tests, the following simple core

experiment can be reported in the remaining document
space. It has been performed on a local area network
where some services have been deployed. The test has
been set up on three platforms, equipped with RunTime
service, with an application and two components: A
component, with PrinterService implementation, is
deployed on platform 2 and another, with LoggerService
implementation, is deployed on platform 3.

The Application code is responsible of activating and
using the required services. The sequence of the
implementation instructions can be resumed as:

gathering of the ServiceManger instance;
activation (via ServiceManager) of a PrinterService
instance;
activation of a LoggerService instance;
use of PrinterService instance as IPrinterSettings to
specify a new text colour (setColor(Color));
use of PrinterService to print colored text
(print(coloredtext));;
use PrinterService as IPrinter to print a text while
logging this operation (print(string, myLogger)),
passing LoggerService instance as second argument;
release of active service instance by releasing local
stubs (release())

All the service instances are activated and managed on
their platforms. Furthermore, the PrinterService instance
has been a service consumer for the LoggerService,
actually using another stub for the unique active instance.
In Figure 7, the object diagram presents a snapshot of the
three platforms status, before releasing.

5. Conclusions
The recent trend has led to the production of specific
middlewares for industrial automation, home automation,
multimedia, etc. In this paper, a solution to enforce in
those middlewares a higher dynamism, in terms of the
dynamic management, allocation and connection of
remote service, deploying and updating of such
components during the application lifetime, is presented.
The solution has been developed on the basis of the
requirements coming from MPEG M3W ISO
standardization effort and to satisfy the needs of
AXMEDIS IST FP6 Research & Development of the
European Commission [4]. Thus, it has been accepted as
valid contribution in the MPEG M3W for the definition of
a component model which allows remote utilization of

services and components in the standard. The solution
provided is mainly based on the control and execution of
services that in turn may instantiate and manage remote
objects. Thus the communication among distributed
objects is still possible but managed as in terms of
independent services.

LoggerService

PrinterService

RunTime

IPrinter

ILogger

RunTime RunTime

IPrinterSettings

PrinterServiceSTUB

IPrinter
IPrinterSettings

LoggerServiceSTUB

ILogger

ServiceManager

ServiceManagerLoggerServiceSTUB
ILogger

Application

platform 3
platform 2

platform 1

Fig. 7 – Example: platform status

6. Acknowledgements
The authors would like to thank to all MPEG M3W

contributors and the AXMEDIS project partners including
the Expert User Group and all affiliated members, for their
contributions, funding and collaborations. A specific
acknowledgment to EC DG INFSO for the partial funding.

7. References
[1] CORBA Component Model 3.0, June 2002

[2] R. Baler, C. Gran, A. Scheller, A. Zisowsky, “Multimedia
Middleware for the Future Home”. Proc. of the 2001 int.
workshop on Multimedia middleware, Oct. 2001, Ottawa,
Ontario, Canada

[3] ISO/IEC JTC1/SC29/WG11 N6835 “MPEG Multimedia
Middleware: Requirements on the MPEG Multimedia
Middleware V2.0”, Oct. 2004.

[4] Crnkovic and M. Larsson. “Building Reliable Component-
Based Software Systems”. Artech House Publishers, 2002.

[5] J. Muskens and M. Chaudron. “Integrity management in
component based systems”. In Proc. of the 30th
EUROMICRO conf., Rennes France, Aug. 2004.

[6] K. Sandstrom, J. Fredriksson, and M. Akerholm.
“Introducing a component technology for safety critical
embedded real-time systems”. In 7th ICSE Workshop on
Component-Based Software Engineering, May 2004.

[7] AXMEDIS: www.axmedis.org

[8] T. Martini, P. Nesi, D. Rogai, A. Vallotti, "A Component
based Multimedia Middleware for Content Production
Factory", 11th Int. Conf. on Distributed Multimedia
Systems, DMS 2005, Banff Springs Hotel, Banff, Canada,
Sept. 2005

642

Adequacy of Composite Parametric Software Reliability Models

Lance Fiondella and Swapna S. Gokhale
Dept. of Computer Science and Engineering

Univ. of Connecticut, Storrs, CT 06269
{lfiondella,ssg}@engr.uconn.edu

Abstract

Several composite parametric models have been pro-
posed for software reliability analysis. These models en-
hance the classical software reliability models by explicitly
incorporating the impact of testing effort on the fault de-
tection process. The adequacy of composite models is com-
monly assessed using the Mean Square Error (MSE) crite-
rion, which measures the ability of a model to explain the
observed failure behavior. Many composite models perform
better than the classical models on which they are based,
according to the MSE. However, this goodness of fit sacri-
fices the parsimony of the original model and usually de-
creases the composite model’s predictive power.

In this paper we suggest the use of the Akaike Informa-
tion Criteria (AIC) to assess model adequacy. The use of the
AIC is motivated by its inherent feature to penalize models
based on the number of model parameters. This serves to
deter against overly complicated models that may fit the ob-
served data well, but ultimately result in poor predictions.
An illustrative comparison of the different models shows
that the composite models fare worse than the classical ones
according to the AIC. This indicates that the predictive ca-
pability of the composite models may be poorer than the
classical models. We thus conclude that several classical,
simpler software reliability models still remain relevant to
modeling the fault detection process during testing.

1 Introduction

The dependence of our society on the services provided
by software systems continues to grow. Software systems
are prevalent in several critical domains including health
care, avionics, space, finance, and telecommunications, in
which failures can have far reaching consequences. This
heavy reliance on software systems places a significant pre-
mium on the reliable operation of these systems.

A number of models have been proposed over the past

thirty years [6] for the assessment of software reliability.
These models characterize the time-dependent fault detec-
tion process of a software application during its testing
phase. In the recent past, some of these classical software
reliability models have been enhanced to explicitly include
testing effort [16, 15]. Testing effort models are based on
the notion that since the number of units of effort are func-
tionally related to the fault detection process, it may be more
realistic to model the effort as a function of time and fault
detection as a function of these efforts.

To apply a software reliability model, its parameters may
be estimated based on the failure or/and testing effort data,
either using the maximum likelihood (MLE) [7] or the least
squares method [3]. The MLE method is preferred as it is
asymptotically efficient at achieving the Cramer-Rao lower
bound [5]. MLE works well for models with a simple form
having a few parameters. However, it may face algorithmic
challenges with respect to convergence for models that have
a complicated form with several parameters. As a result,
the MLE method has been used with reasonable success for
classical models with two to three parameters. However, it
cannot be applied directly to estimate the parameters of the
testing effort models, since these models have at least four
parameters. Thus, a hybrid approach which combines the
least squares and the MLE method is followed to estimate
the parameters of the testing effort models. It is from this
hybrid method that the term composite1 parametric models
originates and is used to refer to the testing effort models.

The parameterized model is then used to provide quan-
titative estimates of different metrics such as the reliability
and the failure rate. More importantly, it can be used to
provide future predictions of these metrics and ultimately
guide engineering decisions regarding the optimal release
time. Since an important objective of model-based software
reliability analysis is to guide such decisions through ac-
curate future predictions, if a model fits the observed data
well, but makes poor predictions, the utility of such a model

1The terms testing effort models, composite models and composite
parametric models are used interchangeably in the rest of the paper.

643

is fairly low. Although an ideal model would both fit the
observed failure data precisely and predict the future ac-
curately, given a choice between a perfect fit and accurate
predictive performance, the latter should be assigned greater
importance than the former. Thus, the criteria used to assess
model adequacy must emphasize their predictive capability
over their ability to explain the past.

One of the prevalent criteria to assess model adequacy is
the mean square error (MSE). MSE emphasizes a model’s
ability to fit the observed data. On the other hand, to evalu-
ate and compare the predictive capability of the models [2],
several criteria have been proposed. These include prequen-
tial likelihood ratio, u-plot, y-plot, Kolmogorov-Smirnov
test, Akaike Information Criterion (AIC) [1], and predictive
ratio risk [13]. Of these, the AIC is very widely accepted
and has been applied in the context of software reliability
engineering [17, 8]. Since the AIC penalizes bias intro-
duced by larger number of parameters, it is considered to be
an objective way to assess models with a different number
of parameters. It is thus expected that AIC-guided model
selection would enable better predictions.

Theoretically, the AIC may be used to evaluate only
those models whose parameters are estimated using the
MLE method. Practically, however, most estimation meth-
ods including the hybrid approach, share the objective of
maximizing the likelihood function with the MLE method.
Due to this reason, we suggest the use of the AIC to as-
sess the adequacy of composite models whose parameters
are estimated using the hybrid method. To illustrate the
use of the AIC, we evaluate and compare the adequacy of
two classical models, namely, the Goel-Okumoto and in-
flection S-shaped, against three composite models, namely,
exponential, Rayleigh, and Weibull effort on two data sets.
Our results indicate that the composite models fare worse
than the classical models according to the AIC. The classi-
cal models may thus provide more accurate predictions than
the composite models and remain relevant in modeling the
fault detection process by providing valuable quantitative
guidance to control and optimize the testing process.

The paper is organized as follows. Section 2 summarizes
the considered models. Section 3 discusses model applica-
tion. Illustrations are presented in Section 4. Section 5 of-
fers concluding remarks with directions for future research.

2 Software reliability models

In this section we review the classical and composite
parametric software reliability models used in this paper.

2.1 Classical models

An important class of classical software reliability mod-
els is based on the non-homogeneous Poisson process

(NHPP) [6]. Among the several NHPP-based models [6],
we considered the Goel-Okumoto [7] and the inflection S-
shaped models [12] in our study for the following reasons.
The GO model was chosen as it is one of the most well
known and widely applied model. The inflection S-shaped
model was chosen because of its ability to model a S-shaped
fault detection curve which may arise due to masked faults
or the learning curve of the test team [14].

The mean value function, m(t), of the Goel-Okumoto
model, which provides the expected number of faults de-
tected by time t, is given by:

m(t) = α
(
1− e−βt

)
(1)

The parameters of the GO model include: α, which de-
notes the number of faults that will eventually be detected,
and β which denotes the fault detection rate. The larger
the value of β, the faster the number of faults detected will
approach α, which occurs as t →∞.

The mean value function of the inflection S-shaped
model is given by:

m(t) = N
1− e−φt

1 + ψe−φt
(2)

where φ is the fault detection rate, N is the total num-
ber of latent faults, and ψ is the inflection parameter. The
inflection parameter is defined for a given r as:

ψ(r) =
1− r

r
, r > 0 (3)

The inflection rate r provides the ratio of the number of
detectable faults to the total number of faults in the applica-
tion due to masking or other causes. As r → 1, the inflec-
tion S-shaped model reduces to the GO model.

2.2 Composite parametric models

The general form of a composite parametric model is:

m(t) = a
(

1− e−rW (t)
)

(4)

where a is the number of faults that will eventually be
detected and r is the fault detection rate. W (t) is the time-
dependent effort function. The base model of Equation (4)
is thus time dependent through the specific form of W (t).

We review three composite parametric models with ex-
ponential, Rayleigh and Weibull [16, 15] testing effort func-
tions in this section. These effort functions were chosen
because they belong to the same family of models. Further,
they have been used extensively in hardware reliability [10].

The mean value function when the testing effort function
is exponential is given by:

m(t) = a
(

1− e−rα(1−e−βt)
)

(5)

644

Parameters β and α are interpreted as the rate of con-
sumption of testing effort and the total effort eventually ex-
erted by the end of testing.

The mean value function of the composite model with
the Rayleigh effort function is given by:

m(t) = a

(
1− e

−rα 1−e−

β
2 t2
)

(6)

The parameters in Equation (6) have a similar interpre-
tation as for the exponential function in Equation (5).

The Weibull effort curve is a generalization [13] of both
the exponential and Rayleigh curves and has the following
mean value function:

m(t) = a
(

1− e−rα(1−e−βtm)
)

(7)

Here α is the total eventual effort, while β and m denote
the scale and shape parameters respectively.

3 Model application

In this section we discuss how a software reliability
model may be applied to the data collected during testing.
Towards this end, we first describe the various data types,
followed by the parameter estimation methods. Finally, we
discuss the criteria used to assess model adequacy.

3.1 Data description

Classical software reliability models can be applied to
two types of failure data, namely, time between failures data
and failure count data. The former consists of occurrence
times of failures, whereas, the latter consists of a count of
failure occurrences in different (possibly uneven) time in-
tervals. It is clear that the former type is more fine grained
than the latter. However, when the failure data is to be aug-
mented with testing effort, it is difficult to trace individ-
ual failures to discrete efforts without tools which system-
atically log effort data in homogeneous time units. Since
composite models need both failure and testing effort data,
to maintain consistency while applying both classical and
composite models, failure count data is used here.

The failure count data consists of a vector of tuples:
t = {(t1, y1), (t2, y2), . . . , (tn, yn)}, where ti denotes the
end of the ith time period, while yi denotes the number of
failures observed in the interval (ti−1, ti). Furthermore, it
is assumed that y0 = 0 at time t0.

To consider the testing effort explicitly, a third element
is added to this vector of tuples to account for the vari-
able testing effort. The data then is of the form t =
{(t1, w1, y1), (t2, w2, y2), . . . , (tn, wn, yn)}, where wi is
the effort expended in the interval (ti−1, ti).

3.2 Parameter estimation

In this section we discuss the different methods that
could be used to estimate model parameters. This discus-
sion is offered within the context of applying these methods
to software reliability models.

3.2.1 Least squares method

In the least squares method, model parameters are estimated
by minimizing the sum of the squares of the differences be-
tween the observed data and those computed by the model.
When used to estimate the parameters of the effort function
of the testing effort models, the least squares method can be
mathematically represented as:

MSEW =
n∑

i=1

(wi −W (ti))
2 (8)

Here, MSEW is the sum of the differences between the
cumulative units of observed effort (wi) and the number
of units of effort predicted by the effort function (W (ti)).
Equation (8) is differentiated with respect to each parame-
ter of the effort function. The set of equations so generated
are set to zero and then solved simultaneously to produce
the least squares estimates of the model parameters.

3.2.2 Maximum likelihood method

When applied to software reliability, the canonical form of
the joint likelihood [6] for failure count data is given by:

L(Θ|t) =
n∏

i=1

(m(ti)−m(ti−1))fi e−(m(ti)−m(ti−1))

fi!
(9)

where Θ is the vector of model parameters, and t is the
observed data. fi denotes the fault count for the ith inter-
val, and is assumed to be an independent Poisson random
variable with mean m(ti)−m(ti−1).

As the logarithm is monotonic and allows application of
various identities which simplify the form of Equation (9),
it is maximized for each parameter through partial differ-
entiation of the likelihood function and solving the result-
ing expressions for that parameter. Typically, closed form
solutions are infeasible, necessitating the use of an approx-
imation using a numerical root finding algorithm [4], for
simultaneous maximization of the joint likelihood function
for all the parameters. The numerical algorithm, however,
may face convergence issues especially if the expressions
are complex or if the model has several parameters.

645

3.2.3 Hybrid method

The overview of composite models in Section 2.2 indicates
that these models have four or more parameters. Thus, esti-
mating their parameters using the MLE method is infeasible
due to the convergence challenges. The following hybrid,
two-step procedure is thus used to estimate their parameters.
In the first step, the parameters of the effort function are es-
timated using the least squares method (Section 3.2). In the
second step, the parameter estimates of the effort function
obtained in the first step are used to estimate the parameters
of the original model. Thus, by first fitting wi with respect
to ti, it is then possible to fit yi with respect to ti. The
rationale for this two-step procedure is that since the least
squares methods provides a good fit to the effort curve it
is a viable alternative to simultaneously estimating all the
parameters by the MLE method.

3.3 Model assessment

Model assessment consists of evaluating how well a
dataset conforms to a selected model. Of the several mea-
sures used for this purpose, we discuss the Mean Square
Error (MSE) and the Akaike Information Criterion (AIC).

Minimum mean square error of the mean value function
is a popular measure and is computed by:

MSEmodel =
n∑

i=1

(yi −m(ti))
2 (10)

Here, MSEmodel is the sum of the differences between
the cumulative number of failures observed (yi) and the cu-
mulative number of failures predicted (m(ti)).

An alternative method to assess adequacy is the AIC [1],
given in Equation (11), which is a function of the likelihood
equation and the number of model parameters, M .

AIC = −2 · log L(Θ̂|t) + 2 ·M (11)

The lower the AIC, the greater is the adequacy, and a
difference of two or more in the candidate models is con-
sidered to be significant evidence that one model is better
than the other in preserving the predictive power. The AIC
has been used to demonstrate that the Lognormal model [8]
fared better than the other software reliability models.

Since the AIC is an asymptotically unbiased estimator
of the expected log likelihood, theoretically, it may be used
to evaluate only those models whose parameters are esti-
mated using the MLE method. Practically, however, most
parameter estimation methods ranging from non-linear pro-
gramming to genetic algorithms [11] including the hybrid
method, share the objective of maximizing the likelihood
equation with the MLE method. As a result, we suggest the
use of the AIC to evaluate composite models, although their
parameters are estimated using the hybrid method.

4 Illustrations

In this section we evaluate and compare classical and
composite models based on the AIC using two data sets pre-
viously used in the context of these models. The use of prior
data sets allows us to ascertain the correctness of our para-
meter estimates and objectively compare the results of our
analysis with the earlier results [16, 15, 12, 3].

For each data set, the set of models applied are chosen
based on a visual inspection of the trends in the data. The
parameters of the classical and composite models are esti-
mated using the MLE (Section 3.2.2) and hybrid methods
(Section 3.2.3) respectively.

4.1 Data set 1

The cumulative number of faults detected as a function
of time, shown in Figure 1, does not exhibit a S-shaped
trend. Thus, it is appropriate to apply the GO model. Fur-
thermore, as the effort function in Figure 2 only exhibits a
decreasing trend on an average, the composite model with
exponential effort may be suitable.

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

Months

N
u
m

b
e
r

o
f
S

o
ft
w

a
re

 E
rr

o
rs

Actual
Exponential Effort
Goel−Okumoto

Figure 1. Faults detected vs. time (Data set 1)

Table 1 shows the MSE and the AIC of the models. The
overall disagreement between the AIC for the two models
is 7.46, in favor of the GO model due to its parsimony. The
fluctuations in the testing effort indicate that there is alterna-
tion between testing and another activity such as bug fixing
and additional test suite development. Such data describ-
ing the daily allocation of resources to various key activities
would aid in the development of new models.

646

0 2 4 6 8 10 12
0

200

400

600

800

1000

1200

1400

Months

C
P

U
 H

o
u
rs

 o
f
T

e
st

in
g
 E

ff
o
rt

Actual
Exponential Effort

Figure 2. Testing effort vs. time (Data set 1)

Table 1. Model assessment (Data set 1)
Model MSE AIC
Goel-Okumoto 13354.2 168.396
Exponential Effort 13874.9 175.856

4.2 Data set 2

The fault detection curve, shown in Figure 3, exhibits
the S-shaped trend, suggesting the use of the inflection S-
shaped model. The effort, shown in Figure 4, initially in-
creases and then decreases, so the composite models with
Rayleigh and Weibull [13] effort functions are chosen.

Table 2 shows the MSE and the AIC for the three mod-
els. According to the AIC, the inflection S-shaped model
outperforms the Rayleigh and Weibull models by 60 and
65 points respectively. The MSE of the inflection S-shaped
model is the lowest. While the Weibull model has a bet-
ter MSE than the Rayleigh model, the AIC unquestionably
suggests that the inflection S-shaped model is closest to the
underlying process. The fluctuations in the testing effort for
this data set are even more pronounced than the first one.

Table 2. Model assessment (Data set 2)
Model MSE AIC
S-shaped 22477.1 350.537
Rayleigh Effort 63366.7 410.334
Weibull Effort 38548.2 415.248

These illustrations indicate that meaningful models can-
not be built from testing effort data alone. The other key

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

Months

N
u

m
b

e
r

o
f

S
o

ft
w

a
re

 E
rr

o
rs

Actual
Rayleigh Effort
Inflection S−shaped

Figure 3. Faults detected vs. time (Data set 2)

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

Months

W
al

l C
lo

ck
 H

ou
rs

 o
f T

es
tin

g
E

ffo
rt

Actual
Rayleigh Effort
Weibull Effort

Figure 4. Testing effort vs. time (Data set 2)

activities which occur throughout testing should also be
recorded. To obtain precise data, it would be necessary to
implement a voluntary policy which systematically enables
non-intrusive monitoring of the software process. This
would enable the development and validation of simpler,
more realistic models for use during the testing process.
Without such detailed data, however, software reliability re-
search must be based on overly simplified assumptions.

5 Conclusions and future research

In this paper we suggest the use of Akaike Information
Criteria (AIC) to assess and compare the adequacy of com-

647

posite models which incorporate testing effort into the clas-
sical software reliability models. We propose the use of the
AIC since it is expected that AIC-based model selection will
preserve the predictive properties of the models, because of
its ability to penalize models based on the number of model
parameters. Although the AIC may be theoretically applied
to only those models with parameters estimated using the
MLE method, we argue that from a practical standpoint it is
appropriate to apply it to composite models whose parame-
ters are estimated using the hybrid method, because the fun-
damental objectives of the hybrid and the MLE methods is
the same, namely, maximization of the likelihood function.
We demonstrate the use of the AIC in assessing and com-
paring composite parametric and classical software reliabil-
ity models. Our results indicate that the composite models
fare worse than the classical models according to the AIC.
Thus, the predictions provided by the classical models may
be more accurate than the composite models. The classical
models thus remain relevant in modeling the fault detection
process. We also provide insights into the kind of additional
data that may be valuable to the development and validation
of realistic software reliability models.

There exist many avenues for future research. These in-
clude: (i) considering other testing effort functions such as
the log-logistic function [9], and (ii) Developing parameter
estimation methods based on data mining techniques.

Acknowledgments

This research is supported in part by a CAREER award
from the National Science Foundation (#CNS-0643791).

References

[1] H. Akaike. A new look at the statistical model
identification. IEEE Trans. Automatic Control, AC-
19(6):716–723, December 1974.

[2] S. Brocklehurst and B. Littlewood. Handbook of
Software Reliability Engineering, chapter Techniques
for Prediction Analysis and Recalibration, pages 119–
166. McGraw-Hill, New York, NY, 1996.

[3] W. Brooks and R. Motley. Analysis of discrete soft-
ware reliability models. Technical Report RADC-
TR-80-84, Rome Air Development Center, NY, April
1980.

[4] R. Burden and J. Faires. Numerical Analysis.
Brooks/Cole, 2004.

[5] G. Casella and R. Berger. Statistical Inference. Thom-
son, New York, NY, 2nd edition, 2002.

[6] W. Farr. Handbook of Software Reliability Engineer-
ing, chapter Software Reliability Modeling Survey,
pages 71–117. McGraw-Hill, New York, NY, 1996.

[7] A. Goel and K. Okumoto. Time-dependent error-
detection rate model for software reliability and other
performance measures. IEEE Trans. Reliability, R-
28(3):206–211, August 1979.

[8] S. Gokhale and R. Mullen. From test count to code
coverage using log normal failure rate. In Proc. of
Fifteenth International Symposium on Software Relia-
bility Engineering, pages 295–305, November 2004.

[9] C. Huang, S. Kuo, and I. Chen. Analysis of a soft-
ware reliability growth model with logistic testing-
effort function. In Proc. of Eighth Intl. Symposium
on Software Reliability Engineering (ISSRE-8), pages
378–388, Albuquerque, NM, November 1997.

[10] W. Kuo, V. Prasad, F. Tillman, and C. Hwang. Optimal
Reliability Design: Fundamentals and applications.
Cambridge University Press, New York, NY, 2001.

[11] T. Minohara and Y. Tohma. Parameter estimation
of hyper-geometric distribution software reliability
growth model by genetic algorithms. In Proc. of Sixth
International Symposium on Software Reliability En-
gineering, pages 324–329, October 1995.

[12] M. Ohba. Software reliability analysis models. IBM
Journal of Research and Development, 28(4):428–
443, July 1984.

[13] H. Pham. System Software Reliability. Springer-
Verlag, London, England, 2006.

[14] Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata.
Structural approach to the estimation of the num-
ber of residual software faults based on the hyper-
geometric distribution. IEEE Trans. Software Engi-
neering, 15(3):345–355, March 1989.

[15] S. Yamada, J. Hishitani, and S. Osaki. Software-
reliability growth with a weibull test-effort: A model
& application. IEEE Trans. Reliability, 42(1):100–
106, March 1993.

[16] S. Yamada, H. Ohtera, and H. Narihisa. Software reli-
ability growth models with testing-effort. IEEE Trans.
Reliability, R-35(1):19–23, April 1986.

[17] X. Zhang, X. Teng, and H. Pham. Considering fault
removal efficiency in software reliability assessment.
IEEE Transactions on Systems, Man, and Cybernetics
Part A, 33(1):114–120, January 2003.

648

Evaluation of the OORT Techniques for Inspection of
Requirements Specifications in UML: an empirical study

Tereza G. Kirner, Erik R. da Cruz
Methodist University of Piracicaba - Graduate Program in Computer Science

Rodovia do Açúcar, Km 156 - 13400-911, Piracicaba , SP - Brazil
tgkirner@unimep.br, cruz@claretianas.com.br

Abstract

The use of the Unified Modeling Language (UML) has
been expanding significantly, in many companies.
However, given the great amount of information
generated through the diagrams, it is essential to evaluate
UML models, aiming at detecting and eliminating defects
that could be inserted in the system specification. One of
the most efficient methods for the evaluation of software
artifacts is the inspection. This work presents an empirical
study on the evaluation of Object-Oriented Reading
Techniques (OORTs) for the inspection of UML
specifications, performed with the objective of evaluating
the efficiency of such techniques as well as identifying
some issues related to the professional practice.

1. Introduction

The UML (Unified Modeling Language) is based on
concepts and notations of object orientation and its goal is
to create models, supported by graphic diagrams,
representative of software systems. The UML diagrams
allow the production of the conceptual modeling and of
the high-level system design [2]. The use of UML has
been expanding, not only in the academic environment but
also in companies worldwide. However, given the large
amount of information generated through the diagrams
and the strong inter-relationship existing among the
different diagrams, it is fundamental to invest on the
evaluation of UML models, in order to detect and
eliminate defects that could be embedded in the system
specification and design.

The main defects that may occur in UML models are
inconsistencies, omissions and ambiguities, referring to a
single diagram, to two or more diagrams analyzed
comparatively, or to diagrams in relation to the Software
Requirements Specification (SRS) document [10]. Such
defects, if not identified and eliminated, will lead to
failures that will impair the quality of UML models, and
may result in serious damages to the quality of the
developed product.

Inspection is a very efficient method for the evaluation
of software artifacts, aiming at detecting defects that shall

be later removed or corrected. Software inspection was
initially proposed by Fagan [5], [6], being improved by
other authors [7], [9]. Traditionally, the inspection process
comprises meetings where groups of experts work
together for the detection of defects embodied in the
artifacts analyzed. Some examples of software artifacts
prone to be inspected are: Software Requirements
Specification (SRS) documents; requirements
specifications expressed in a language or method;
software coding, in a given programming language; etc.

The Object-Oriented Reading Techniques (OORTs)
were proposed to inspect UML models. They include
seven techniques that must be jointly utilized. Through
each technique, or two UML diagrams are comparatively
evaluated or one diagram is evaluated in relation to the
SRS [10]. The OORT techniques have already been
successfully employed (Bunde [3], Conrad [4]).

This work presents an empirical study on the
evaluation of OORT techniques, performed to evaluate
both the efficiency of the techniques, in terms of defect
detection, and factors related to the use of such techniques
by system analysts of Brazilian institutions in the region
of Piracicaba, São Paulo state.

Section 2 describes the inspection process through the
OORTs, presenting the main works related to the subject.
Section 3 presents the empirical study. Section 4 describes
the data analysis, outlining the identified results. The
conclusions are presented in section 5.

2. Object-Oriented Reading Techniques

2.1. Related Work

Inspection techniques [6] have been successfully
employed to identify defects in different types of software
artifacts, such as SRS documents, specifications prepared
through several methods (like structured analysis, object-
oriented methods, etc.), system code list in different
languages, etc. The inspection has shown to be efficient
and effective, once it assists the detection of a great part of
defects present in the artifact, with acceptable cost.

In particular, inspection techniques based on reading
[1] have been used in a significant amount of projects.

649

Conrad [4] reports published studies on the use of these
techniques, standing out several important benefits related
to the reduction of project costs and increase of
productivity in software development.

Presently, more and more companies are using the
UML as high-level language for software specification
and project. Therefore, it is of utmost importance the
investment in inspection techniques adapted to reading the
UML diagrams. The Object-Oriented Reading Techniques
[10], make up a process of inspection for specifications
modeled in UML, which already relies on some studies
and experiments [3], [4].

However, there are few studies with the participation
of software engineers as inspectors, once great part of the
published works on inspection uses students as subjects.

An experience on the use of OORTs in the business
environment was conducted at Erickson, Norway [3],
using a version of the OORTs, with some adaptations
considered necessary to fulfill the peculiarities of the
industrial environment. The obtained results were
analyzed and presented, highlighting the following
conclusions: (a) the OORT techniques showed themselves
efficient and assisted the detection of more than twice the
number of defects than the inspection technique
previously used in the company; (b) the experiment
pointed out to some modifications in the OORTs that, if
performed, could improve the obtained results.

The research already performed suggests the
importance of developing further empirical studies, in
order to evaluate the practical feasibility of the use of
OORTs by software professionals in the business
environment. Furthermore, it is noticed the need of
improving the OORTs, aiming at getting better results
from inspections of UML artifacts.

2.2. OORT Techniques

The first version of the OORTs resulted from the
extension of the traditional reading techniques, to provide
a process for the inspection of UML documents [12].
Later, extensions to this first version appeared [3], [4].
These works supplied the main conceptual basis for the
definition of the OORTs adopted in the present research.

The inspection process through the OORTs comprises
seven types of reading, classified as Horizontal Reading
and Vertical Reading [10]. The Horizontal Reading aims
at compare artifacts resulting from the same phase in the
software development, as, for example, comparison
between class diagrams and state diagrams, elaborated in
the phase of logical design. The Vertical Reading aims at
comparing artifacts resulting from different phases of the
software development, such as requirements engineering
and design. Whereas horizontal techniques are mainly
directed to consistency analysis between the diagrams,
vertical techniques are directed to the analysis of

completeness and traceability of diagrams. Both types of
reading are illustrated in Figure 1 and summarized as
follows.

Figure 1. The OORTs and Diagrams and
Artifacts related to them

• Horizontal Reading. It comprises the four readings
summarized below.

- OORT1. It analyzes a Sequence Diagram
comparatively to a Class Diagram, with the goal of
verifying if the Class Diagram describes the classes
and their relationships, in such a way that the
behavior specified in the Sequence Diagram is
correctly captured.

- OORT2. It analyzes a State Diagram in relation to a
Description of Classes, with the goal of verifying if
the classes are defined, so they can capture the
functionality specified by the State Diagram.

- OORT3. It analyzes a Sequence Diagram compared
to a States Diagram, with the aim of verifying if
every transition of state for an object can be achieved
by the messages transmitted and received by that
object.

- OORT4. It analyzes a Class Diagram in relation to a
Description of Classes, with the aim of verifying if
the detailed description of the classes has all
information needed and if the description of classes
is correct.

• Vertical Reading. It comprises the three readings
summarized below.

- OORT5. It analyzes a Description of Classes
comparatively to the SRS document, with the aim of
verifying if the concepts and services that are
described by the functional requirements are
captured by the description of the classes.

- OORT6. It analyzes a Sequence Diagram in relation
to a Use Case Diagram, aiming at verifying if the

Class
Diagram

State
Diagram

Sequence
Diagram

Classes
Description

Vertical Reading Horizontal Reading

OORT4

OORT6OORT5

Requirements
Description

Use Cases

OORT7

OORT2 OORT3

OORT1

650

Sequence Diagram describes an appropriate
combination of objects and messages that capture the
functionality of the Use Case specification.

- OORT7. It analyzes a State Diagram compared to
the SRS document and to the Use Case Diagram,
with the goal of verifying if the State Diagram
describes appropriately the states of the objects and
the events that trigger changes of states, as described
by the Use Case specification.

The techniques cover almost all the UML diagrams.
Besides, the SRS is used to verify if the diagrams fulfill
the system specification. Each technique compares at least
two artifacts, aiming at detecting defects in them. It is
important to highlight that the techniques presuppose that
both the SRS and the Use Case Diagram are correct and
free of defects.

Each technique consists on a series of steps and a
checklist, which guide the inspectors in the reading of
diagrams and detection of defects in them. The defects are
classified in the following types: [10]:

• Omission. It occurs when one or more diagrams that
should contain some concept from the software
requirements do not contain a representation for that
concept.

• Extraneous Information. It occurs when the design
includes information that, while perhaps true, does
not apply to the focused domain and should not be
included in the design.

• Incorrect Fact. It occurs when a design diagram
contains a misrepresentation of a concept described
in the general requirements or requirements
document.

• Ambiguity. It occurs when a representation of a
concept in the design is unclear, and could lead the
user to misinterpret or misunderstand the meaning of
the concept.

• Inconsistency. It occurs when a representation of a
concept in one design diagram disagrees with a
representation of the same concept in either the same
or another design diagram.

Considering the level of criticality, each defect is
classified in:

• Serious, when it refers to a problem that impairs
continuity of the reading, indicating that the system
must be re-specified;

• Medium Criticality, when the defect invalidates the
portion of the specification and the diagrams focused
on the technique;

• Non-serious, when it does not impair the diagrams
dealt with, only indicating, for example, the need for
complementation.

The OORTs, as they were used in this research, are
presented in detail in Cruz [8].

3. Development of the Empirical Study

The main goal of the empirical study was to answer
the following questions: Which is the level of efficiency of
the OORT techniques, in terms of quantity of defects
detected in software specifications prepared through the
Unified Modeling Language? And which is the level of
satisfaction of the specialists that inspected the UML
specification through OORT techniques, regarding to
important aspects involved in the application of these
techniques?

The study involved professionals with experience in
software specification using UML. Given the difficulty in
obtaining professionals that know and have experience in
UML, the study based on a convenience sample, defined
with basis on the criteria of “minimum experience of 2
years with UML”. There were 7 software engineers
identified who met the stipulated criteria, working in the
region of Piracicaba, Brazil, which were contacted and
agreed in taking part in the research.

Participants were required to inspect a Sub-System of
Enrollment Control, which is part of an Academic
Administration System, specified in UML. To make the
consecution of the study objectives feasible, that involved
the detection of defects in the UML artifacts, were
injected defects representatives of all considered types, in
all diagrams. In total, there were injected 47 defects,
related to the types included in the adopted classification –
omission, incorrect fact, inconsistency, ambiguity and
extraneous information.

Each participant received the following documents for
the inspection:

• Specification of the Sub-System of Academic
Enrollment Control, modeled in UML, containing:
Informal description of the system requirements; Use
Case Diagrams; Class Diagram and Description of
the Classes; Sequence Diagram; and State Diagram.

• Descriptions of the seven OORTs, each one
presented through a form containing an explanation
of the steps for application of the technique.

• Form for Writing down the Defects for Horizontal
Reading, which allows the participants to note down:
type of defect detected, keyword related to the
defect, type of discrepancy, classification of defect,
severity degree of defect, identification of
requirement related to the defect, and additional
issues related to the defect.

• Form for Writing down the Defects for Vertical
Reading, which allows the participants to note down:
type of defect detected, keyword related to the
defect, type of discrepancy, classification of defect,

651

severity degree of defect, identification of
requirement related to the defect, and additional
issues related to the defect.

• Table of Classification of Defects: omission,
incorrect fact, inconsistency, ambiguity and
extraneous information.

• Report on the Use of OORT Techniques, comprising
a series of questions that aimed at identifying aspects
related to usability, completeness, and consistency of
the OORTs.

First, a pilot test was performed with a software
engineer, to verify if the documents prepared for the
research were adequate. The results of such test indicated
the need for performing some corrections in the
documents, including: improve definitions of types of
defects; and clarify the checklists included in the OORTs.
Based on those results, the documents were reviewed and
improved.

After the pilot test, the research was conducted.
Initially, each participant was contacted by phone and,
later, all of them received the research documents. After
the sending of documents, individual meetings were
appointed, at the workplace of the participant, for
supplying of necessary clarifications about the process of
inspection to be performed.

It is important to highlight that, from the 7 participants
contacted, 2 did not return the forms filled in, being thus
excluded from the research.

4. Analysis of Results

The data collected through the forms were tabulated
and interpreted through descriptive statistics. From the 5
professionals that performed the inspection (identified as
“experts”), one of them had 3 years experience in the use
of UML for software specification; the other ones had
more than 4 years experience. Besides that, all has already
had some experience in software inspection, but none of
them had used the OORT techniques.

The analysis of the results are presented as follows.

4.1. Efficiency of the OORT Techniques

The following results were identified through the
performed research, including the experts who took part
on it, and considering the inspected system:

• From the 47 defects injected in the artifacts, 34
(72,4%) were detected through the inspection
performed by the experts.

• In three situations – using OORT1, OORT3 and
OORT5, occurred the detection of 100% defects
existing in the inspected artifacts.

• The higher percents of defects found occurred for
classifications of “Inconsistency” (88,24%),
“Ambiguity” (100%) and “Extraneous Information”
(75%), also occurring a significant index for defects
of “Omission” (50%). The lowest index occurred for
detection of defects of the type “Incorrect Fact”
(37,50%).

• A high percent of defects was detected by means of
Horizontal Reading (OORT 1, OORT 2, OORT 3
and OORT 4), reaching 91,30%. The percent of
defects detected through Vertical Reading (OORT 5,
OORT 6 and OORT 7) was lower, reaching 54,17%.

• In a general way, the OORTs showed to be
significantly efficient, once 72,4% of the defects
embedded in the system specification were detected.

• Considering the seven techniques, the OORT7 was
the less efficient in terms of amount of defects
detected by each technique.

• Considering the five types of defects adopted, the
lower index of detection of defects occurred for
“Extraneous Information”.

• Considering the two types of reading, the Horizontal
Reading showed to be significantly more efficient
than the Vertical Reading. The Horizontal Reading
detected 91,30% of the defects and the Vertical
Reading detected 54,17% of the defects.

4.2. Evaluation of the OORTs by the Experts

Concerning the evaluation of the characteristics of the
documents and forms that made up the OORT techniques,
it can be concluded that, for the performed research,
including the experts that took part on it and the inspected
system:

• Considering the classification of defects used, the
majority (80%) of participants declared to be
satisfied about the understanding propitiated by the
classification. However, only 20% informed to be
satisfied with the completeness of the adopted
classification. Such results can suggest the need for
reviewing and testing more in detail the
classification, aiming at extending it in order to
allow the covering of other types of defects that
could occur.

• Considering the description presented to each type of
defect included in the classification adopted, 80% of
the participants declared to be “very satisfied”,
“satisfied” or with “medium satisfaction”, both
regarding the understanding requirement and the
completeness requirement. Such result can indicate
that, in a general manner, the defects are adequately
defined.

652

• Considering the OORTs that make up the Horizontal
Reading, it was evidenced that the OORT 3 (which
comparatively analyzes Sequence Diagram versus
State Diagram) was the one that received a lower
level of satisfaction, as declared by the experts (20%,
including “little satisfaction” and “no satisfaction”).
Such result can indicate the need for reviewing the
OORT3, aiming at improve its quality.

• Considering the OORTs that make up the Vertical
Reading, it was evidenced that OORT6 and OORT7
received a lower index referring to the satisfaction of
the participants, in relation to the OORT5. In a
general way, the OORT7 was indicated as the one
with lower index of satisfaction, by the experts. Such
results can indicate the need to review and improve
these OORTs, especially OORT7.

• Considering the knowledge propitiated to the experts
through the participation in the research, 100% of the
participants declared that their knowledge on
inspection (including the use of OORT techniques)
was increased. Such result is very significant and can
suggest that the approach adopted in the research
could be useful for the definition of training of
professionals on the use of the OORT techniques.

• Considering the acceptance demonstrated by the
experts in utilizing the OORT techniques in a
software project, at their business environment, 40%
of the participants placed themselves unfavorably to
this possibility. Such result is significant and points
to the need for establishing strategies of utilization of
the referred techniques, in order to make the
inspection process through the OORTs more
acceptable. It is important to clarify that, in the
research, each participant inspected all the system’s
specification, using the seven OORTs. A different
strategy, where each professional would be
responsible for the application of only one part of the
OORTs, would tend to be less tiresome for the
inspectors.

Additional results and discussions for the presented
research are presented in [8].

5. Concluding Remarks

This work presented an empirical study on the
evaluation of OORT techniques, performed with the goal
of evaluating both the efficiency of the techniques in
terms of detection of defects, and factors related to the
utilization of these techniques by software engineers of
companies in the region of Piracicaba city, Brazil.

It is important to point out that the empirical study
represented an initial step for a deepest understanding of
the OORT techniques, not only aiming at identifying the

efficiency of these techniques in the detection of defects in
specifications modeled through UML, but also aiming at
identifying aspects that could be improved in these
techniques.

As future work, it is important to perform a new
research, involving a higher number of experts, which
would make possible the analysis of results through
techniques of statistical inference, which could lead to
results prone to be extended to a greater scope referring to
the use of OORTs.

Finally, the present work intends to give a contribution
to the improvement of software quality, through the
discussion of quality evaluation techniques of
requirements specifications modeled in UML, and through
the presentation of an empirical study on this subject, with
significant results.

References

[1] Basili, V.R., Caldiera, G., Lanubile, F., Shull, F.
Studies on Reading Techniques. Proceedings of the
21th Annual Software Engineering Workshop,
Greenbelt, MD, 1996, p. 59-65.

[2] Booch, G., Rumbaugh, J., Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley,
Reading, 1999.

[3] Bunde, G.A. Defect Reduction by Improving
Inspection of UML Diagrams in the GPRS Project.
MSc. Thesis, Agder University College, Norway,
2002.

[4] Conrad R. et al. Object-Oriented Techniques for
Inspection of UML Models – An Industrial
Experiment. Proceedings of the European
Conference on Object-Oriented Programming,
Darmstadt, DE, Springer-Verlag, 2003, p. 483-501.

[5] Fagan, M.E. Design and Code Inspection to Reduce
Errors in Program Development. IBM Systems
Journal, Vol. 15, Number 3, 1976, p. 182-211.

[6] Fagan, M.E. Advances in Software Inspections.
IEEE Transactions on Software Engineering,
Volume 12, Number 7, 1986, p. 744-751.

[7] Gilb, T., Graham, D. Software Inspection. Addison-
Wesley, Reading, 1993.

[8] Kirner, T.G., Cruz, E.R., and Montebelo, M.I.
Evaluation of the OORT Techniques: an Empirical
Study. RTInfo - Information Technology, Volume 6,
Number 1, 2006, p.21 – 38.

[9] Porter, A.H., Votta, L. A Review of Software
Inspections. Advances in Computers, Volume 42,
1996, p. 40-76.

[10] Travassos, G.H., Shull, F., Fredericks, M., Basili,
V.R. Detecting Defects in Object-Oriented Designs:
Using Reading Techniques to Increase Software
Quality, ACM SIGPLAN Notices, Volume 34,
Number 10, 1999, p. 47-56.

653

Abstract— We present a statistical approach for software
agents to learn ontology concepts from peer agents by asking them
whether they can reach consensus on significant differences
between similar concepts. This method allows agents that are not
sharing common ontologies to establish common grounds on
concepts known only to some of them, when these common grounds
are needed. The method starts with fetching positive and negative
examples for a concept vaguely understood by a learner agent from
the peer agents. The learner agent then uses a concept learning
method to learn the concept in question. Then example objects of
the candidate concept are sent back to the peer agents asking for
their feedback. Peer agents evaluate the examples using two
dimensional rate and weight evaluation criteria. The returned data
is then tested for integrity and analyzed using analysis of variance
to identify whether a statistical consensus can be achieved among
peer agent with respect to the learnt concept. If such consensus
exists, the learning agent can add the concept to its ontology with a
higher degree of confidence. This will enhances the autonomy and
improve communication and cooperation abilities among software
agents.

I. INTRODUCTION

AVING a common syntax, a common semantics and a
common context are necessary for communicative

agents to interact and understand each other. Ontology
research community tries to address issues arisen from
violation or relaxation of any of the above three
requirements. Conceptualization, that is identifying key
concepts and their relations, is central in ontology research.
Many researchers have proposed several ways of
conceptualization and have devised many forms of
conceptual mapping arithmetic [11] [13]. For the sake of
simplicity and/or convenience many researchers in their
works have assumed that it is possible to establish a
common language among agents (e.g., using several
variations of agent communication languages, ACL), and
also the agents are provided with a complete common
understanding of all the concepts they need (e.g., having a
common conceptualization). In case that heterogeneity or
interoperability is a requirement, many researchers assume

This work was supported in part grants from the NSERC and IBM.
Behrouz Far, Dept. of Electrical & Computer Engineering, University of

Calgary, Canada, (tel: 403-210-5411; email: far@ucalgary.ca).
Nora Houari, Dept. of Electrical & Computer Engineering, University of

Calgary, Canada, (email: nhouari@ucalgary.ca).
Abdel-Halim Hafez Elamy, Dept. of Electrical & Computer Engineering,

University of Alberta, Canada, (email:elamy@ualberta.ca).
Mohsen Afsharchi, Dept. of Electrical & Computer Engineering,

University of Calgary, Canada, (email: mafsharc@ucalgary.ca).

that it is possible to have an already existing common
ontology for the agents and that the agent developers can use
this common ontology when designing their agents, perhaps
by calling an ontology service, thus allowing for easy
communication and understanding among the agents.
However, the assumption of existence of a common
ontology is often too strong or unrealistic. For many
application domains, there is no agreement on ontology for
the domain among developers. Also for many areas home
brewed ontologies already exist and in many cases the
potential ontologies are large, unwieldy and encompass
more than what a particular agent most probably will ever
need and implementing complex ontologies can also easily
lead to discrepancies among implementations [1].

A recent approach is to let the agent have their
individualized ontologies and provide them with learning
and conflict resolution mechanisms for the concepts they
need during communication. (See [6] for learning and
making up a language; [13] and [1] for learning a concept).
The work in [13] has focused on interactions between two
agents only and single concepts and [6] was not concerned
with concepts. In a previous work Afsharchi and Far have
devised a methodology for having agents learn concepts
from several peer agents [1]. In this method a learner agent
queries peer agents by providing features (and their values)
or examples that it thinks are associated with a vaguely
understood concept. The queried agents provide the learner
with positive and negative examples from their
understanding of their own concepts (i.e. known concepts)
that seem to fit the query. Then the learner agent uses a
learning technique to learn the concept in question [1].

The learner agent must deal with the fact that the peer
agents queried might not totally agree on which examples fit
the concept and which do not. Therefore, a drawback of the
above mentioned method is that there is no guarantee that
the peer agents also agree upon the learnt concept. In other
words, there still exists some case of misunderstanding due
to the learning misses. One solution to this problem is to use
a kind of voting mechanism and ask the peer agents vote on
the examples for which the contradictory information is
obtained. However, voting does not usually resolve the
contradictions.

In this paper we have extended the work in [1] by
devising a sound statistical method called adjudication that
aims at resolving the contradictions among peers by
questioning whether they have significantly different
viewpoints regarding a concept. In the adjudication method,

Adjudicator: A Statistical Approach for Learning Ontology
Concepts from Peer Agents

Behrouz Far, Member, IEEE, Abdel-Halim Hafez Elamy, Nora Houari and Mohsen Afsharchi

H

654

after a successful learning cycle, example objects of the
learnt concept are sent back to the peer agents asking for
their feedback. Peer agents will evaluate the examples using
a two dimensional rate and weight evaluation criteria. Their
response is then tested for integrity and analyzed using
analysis of variance (ANOVA) to identify whether a
collective statistical consensus can be achieved among peer
agent with respect to the learnt concept. If such consensus
exists, the learner agent can add the concept to its ontology
with a higher degree of confidence.

The structure of this paper is as follows: in Section II we
give definitions for the concepts that we use throughout this
paper. In Section III the concept learning mechanism is
reviewed, Section IV introduces the adjudicator
methodology and is followed by an example in Section V.
Finally conclusions are drawn in Section VI.

II. TERMINOLOGY AND DEFINITIONS

In this section, we provide definitions for ontologies,
concept, dimension, feature, object (example), and agent that
we require for our method.

Ontology: We adopt Stumme’s definition (see [12]) who
defines ontology as a structure O := (C, C, R, , R). Where
C and R are two disjoint sets and the members of C are
called concept identifiers and the members of R are called
relation identifiers. C and R are partial orders on C and R,
respectively called concept hierarchy or taxonomy (C), and
relation hierarchy (R). : R C+ is a function providing a
signature for a relation.

Concept, dimension, feature, object: Many works in
databases and machine learning define concepts as
collections of objects that share certain feature
instantiations. We assume that there exists a set of features F
= {f1, f2, ... , fn} and a subset of F is common among agents.
This means that the agents have a minimum common ground
for communication. We also characterize a concept by using
its dimensions and features. Therefore a concept c C is
represented by a set of dimensions, c = {D1, D2, …, Dm},
and each dimension is comprised of certain features, Di =
{fi1, fi2, …, fik}. Then an object (or example) o = ([f1 =v1],
[f1=v2], …, [fn = vn]) is characterized by its values for each of
the features. For example a concept software development
can have dimensions such as modeling, process and
application. And process itself can be comprised of features
such as architecture, lifecycle and manageability.

In an ontology, we assign a concept identifier to each
symbolic concept that we want to represent in our ontology
The relation C is supposed to be associated with how
concepts are defined. In the literature, taxonomies are often
build using the subset relation, i.e. we have Ci C Cj iff for
all objects o Ci we have o Cj. This definition of C

produces a partial order on C and we will use this definition
in the following for the ontologies that our agents use.

Agent: in this work we view an agent Ag as a quadruple
Ag = (Sit, Act, Dat, fAg). Sit is a set of situations the agent
can be in, the representation of a situation naturally depends
on the agent’s sensory capabilities. Act is the set of actions

that Ag can perform and Dat is the set of possible values that
Ag’s internal data areas can have. In order to determine its
next action, Ag uses the function fAg : Sit × Dat Act
applied to the current situation and the current values of its
internal data areas. The Sit set usually contains parts
representing observations of other agents and of the
environment the agent is in. In this paper, we assume that
among the observations of an agent are all messages send by
other agents since the last situation an agent was in.

III. LEARNING NEW CONCEPTS

A goal of this part of research is to develop a method how
an agent can learn new concepts for its ontology with the
help of other agents. This naturally assumes that the agents
do not have the same ontology, otherwise learning would
not be necessary. We additionally assume that there are only
some base features Fbase F that are known and can be
recognized, by all agents and that there are only some base
symbolic concepts Cbase that are known to all agents by
name, their feature values for the base features and the
objects that are covered by them. Outside of this base
common knowledge, individual agents may come with
additional features they can recognize and additional
concepts they know. Agents might refer to the same such
features and concepts by different names and they may have
features and concepts that have the same name but are not
the same. While all the ontologies used by the agents will
use as taxonomy the subset-relation, agents may use
different other relations in their ontologies and two agents
cannot rely on the same relation identifiers referring to the
same relations.

Given this setting, agents will develop problems in
working together, since the common ground for
communication is too narrow. Our basic idea is to have an
agent learn required concepts with the help of the other
agents. Due to the potential differences in the ontologies of
agents, objects that are positive and negative examples for a
concept will play a major role in teaching an agent a new
concept. We assume that the identifying name of an object is
a feature in Fbase. We do not see this as a big limitation,
since it is usually not too difficult to establish a clear
identification of objects. For example, if the objects are part
of the environment, pointing to a particular object is
sufficient to identify it.

Although we want all agents to be able to learn new
concepts, for explaining our interaction scheme we
designate one agent, AgL, as the learner agent which wants
to learn a new concept and the other agents, Ag1,...,Agm, will
be its peers. AgL has an ontology OL = (CL, C, RL, L, RL)
and knows a set of features FL. Analogously, Agi has
ontology Oi = (Ci, C, Ri, i , Ri) and knows a set of features
Fi. For a concept c known to the agent Agi, this agent has in
its data areas a set pexc

i of positive examples for c that it can
use to teach c to AgL. Part of ActL are actions
QueryConcept, AskClassify, Learn, and Integrate, while
part of the Actis are the actions FindConcept, CreateNegEx,
ReplyQuery, ClassifyEx and ReplyClass; all with

655

appropriate arguments. These actions form our interaction
scheme as:
1. AgL determines it needs to know about a concept cgoal

and performs QueryConcept(“cgoal”) to inform the peer
agents about this need.

2. Each agent Agi reacts to AgL’s query by:
(a) performing FindConcept(“cgoal”), which leads to a

set of candidate concepts Ci
cand ;

(b) selecting the “best” candidate ci out of Ci
cand ;

(c) selecting a given number of elements out of pexci
i ,

thus creating pi;
(d) performing CreateNegEx(ci) to produce a given

number of (good) negative examples for ci, which
we call the set ni;

(e) performing ReplyQuery(path(ci),pi,ni).
3. AgL collects the answers (path(ci),pi,ni) from all peer

agents and uses a learner to learn cgoal from these
combined examples (action Learn((p1,n1),...,(pm,nm))). If
there are conflicts, then it resolves them with the help of
the other agents using AskClassify (resp. ClassifyEx
and ReplyClass by the other agents).

4. AgL uses the learned cgoal and the collected path(ci)s
from the other agents to construct an ontology path Cpath
leading to cgoal within its ontology OL :
(action Integrate(path(c1),...,path(cm))).

The result of this learning/teaching scheme is the description
of cgoal in terms of AgL’s feature set FL and an updated
ontology Onew

L = (Cnew
L , C, RL, L, RL). AgL will also

create a set pexcgoal
L in case another agent wants AgL to teach

it cgoal. Details of each step are explained in [1].

IV. ADJUDICATOR METHODOLOGY

The Adjudicator method aims at identifying and resolving
conflict among peer agents (Agis) regarding a learnt concept
(cgoal) using a sound procedure to verify whether the
differences in the viewpoints of the peers are statistically
significant or not. Figure 1 shows the flow of the method.

In the Adjudicator method, after a successful learning
cycle, objects representing the learnt concept are sent back
to the peer agents asking for their feedback in the form of a
two dimensional rate and weight data. This is after a careful
consideration of parameters such as the number of peers and
number of replicas. Therefore each query is backed up by a
statistical experiment. Then response collected from peer
agents is tested for integrity and analyzed using analysis of
variance (ANOVA) for each dimension of the concept to
identify whether a collective statistical consensus exists
among the peer agent with respect to that particular
dimension of the learnt concept. The same process will be
repeated for all dimensions and the goal is to seek consensus
for all dimensions.

In order to obtain statistically valid results, besides
specifying the evaluation data, we require:
(1) Selecting a proper number of agents to be asked for

their feedback. For instance, asking 12 peer agents.

(2) Collecting several data sets (i.e. replicas) from the
queried agents, for example selecting to have at least 4
data sets for each feature (or dimension) examined.

(3) Deciding upon the appropriate experiment type, for
example, balanced incomplete block design (BIBD) [8]
[9].

Figure 1. Flow of the Adjudicator method

Below we will give answer to the following questions: (1)
What data should be collected from peer agents? (Section A)
(2) How many objects should be selected and how many
agents should be asked to provide feedback? In other words,
what shall be the target population? (Section B) (3) How
many replicas are needed? And what shall be the appropriate
statistical model? (Section C). Finally, we present the details
of statistical validation procedure (Section D).

A. Evaluation model and data collection
We have devised a Multidimensional Weighted-Attributes

Framework (MWAF) based on which the peer agents can
evaluate the example objects. The idea of MWAF is to use
the most common and important criteria (or dimensions) and
their features (or attributes) of an example for a concept
being evaluated.

Dimensions: the framework contains a number of
dimensions, each of which represents one of the major
evaluation criteria.

Attributes: are the different features pertaining to each
criterion (i.e. dimension) to describe it.

Parameters: the values that are given to measure the
attributes.

The reason of partitioning features into dimensions is
twofold. First, it allows for hierarchical decomposition of
the concept; and second, it may show common grounds for
conflicts. It is possible that the all peer agent agree on
certain features and disagree on a few. Analysis of
dimensions will reveal which features are commonly agreed
upon and which are not.

656

The peer agents are asked to provide two parameters for
each of the features: a rate and a weight. Rate reflects the
extent the feature is present in the concept. For example,
whether color is a feature for the concept citrus or not. Rate
is an objective parameter because it is measured according
to the degree of availability or effectiveness of the examined
property. Weight, on the other hand, is a subjective
parameter that reflects the extent that the peer agent thinks
this feature is important to the concept being evaluated. For
example, whether color is a necessary feature for the
concept citrus or not. The values given to these two
parameters can be binary. However, for the sake of
generality of the method and providing better precision we
have assumed them to be numeric with the range from 0 to
10. A value of ‘0’ implies full absence of the attribute,
whereas a value of 10 reflects its maximum availability and
strength.

Note that all available voting mechanisms merely collect
data for the rate only. A unique feature of our method is to
combine the rates and weights in order to differentiate
between the must have and nice to have features of a
concept.

B. Identifying sample set
Kitchenham et al [7] define a target population as the

groups or individuals to whom the final results are
applicable. In this work we can identify a two dimensional
population: (1) a set of treatments (i.e. objects) that
represent a concept; (2) and a set of peer agents Agis that are
queried.

Ideally, a set of objects which can be evaluated by Agis to
provide a valid set of observations are viewed as a
representative subset for the learnt concept. The term
“representative” is very critical, because if we do not have a
representative set, we cannot claim that the final results can
be generalized. Therefore identifying a proper subset of
objects that represent the concept is crucial. In this work we
assume that the representative sample set is selected based
on the learner agent’s interest, and not at random from a
large number of objects. In fact, this set can be selected by
identifying objects that might have caused problem during
the learning phase (pessimistic approach) or the objects that
are best fit for the learnt concept cgoal (optimistic approach).

The set of peer agents includes but may not be limited to
those who were queried at the first place. The minimum
number of agents to be queried depends on the type of
experiment (see below) and the number of replicas.

C. Selecting variables and statistical model
Before selecting the model, or even setting up the

statistical hypotheses that describe the goal, it is important to
define the experimental variables and the appropriate scale
of measurement [4]. In our study, the effectiveness of the
features, as described by the weights and rates given to each
dimension, is the dependent variable (i.e. response). In order
to be tested, a dependent variable is usually quantitative and
measurable. The objects and peer agents are on the other
hand independent variables that influence and regulate the

response; these variables are discrete in their nature and
work through a nominal scale (categorical). When applying
analysis of variance models, the independent variables are
usually called factors or treatments.

For the sake of statistical validity each query should be
tied to an appropriately designed experiment. There are
several ways to construct an experiment including complete
randomized design (CRD) [10], randomized complete block
design (RCBD) [10] [3], balanced incomplete block design
(BIBD) [8] [9]. The experiment design is decided upon
based on (a) number of objects queried; (b) number of peer
agents; and (c) number of replicas required.

D. Statistical validation procedure
For the statistical procedure we use the analysis of

variance (ANOVA) model which is a robust and adaptable
technique that is usually used to study the relationship
between a dependent variable and one or more independent
variables [5]. By using ANOVA, we can also identify the
sources of variability among one or more potential sources.
The basic underlying idea of ANOVA is to compare the
variability of the observations between groups to the
variability within groups. In Adjudicator method, ANOVA
is used to test for the significant differences in the mean
effectiveness of each dimension, Dm, among the example
objects, such that:

Null hypothesis (Ho)
There is no significant difference in the mean
effectiveness of the examined dimension among the
evaluated objects, i.e., all the treatment effects are the
same and a consensus is achieved for this particular
dimension.
Alternative hypothesis (Ha)
There is a significant difference in the mean
effectiveness of the examined dimension among the
evaluated objects, i.e., the treatment effects are not the
same and no consensus exists for this particular
dimension.

ANOVA depends on the weight-rate data collected from
the peer agents and in order to trust the results obtained from
the ANOVA we shall check the model for aptness by
running three tests, indicated in Table 1, to examine the
assumptions involving the adequacy of the ANOVA
procedure and to detect serious departures from the
conditions assumed by the model [9]. Failure of any of the
tests indicates that the collected data is not appropriate to
validate the hypotheses.

Table 1. Model aptness tests

Test # Test Type Instrument Used
1 Outliers a. Normal probability plot of residuals

b. Individual value plot of residuals
versus independent variable

2 Normality of
residuals

Normal probability plot of residuals

3 Homogeneity
of variances

a. Residual plots against fitted values
b. Bartlett’s test

The validation process is repeated for all dimensions and

657

we can only assume a full consensus among the peer agents
exist if the Ho holds for all dimensions. Unfortunately in
many cases, it is hard to achieve such consensus. If the test
result is significant, we can go further to carry out multiple
pairwise comparisons of the objects, using Tukey’s HSD
(honestly significant differences) method [14] to identify
which pairs of objects are significantly different from the
others. In this way we can pin point the candidate objects
that are causing problem and possibly remove them.

V. EXAMPLE

In this example we created a test-bed and examined
building conceptualization for 3 sets of software projects.
We organized the entire projects documents in 3
repositories, one for each set. The sets were comprised of
110 software projects developed by software engineering
students over 4 years period in the graduate and
undergraduate courses. The sets were comprised of projects
with concentration on software testing; concentration on
object oriented analysis and design; and concentration on
agent-based software development. We devised 12 agents,
to serve as Agi peer agents, each assigned to a set of projects
for one concentration in one year. We also designed an AgL
learner agent by assigning to it random selection of projects
from all three repositories. The conceptualization for each
agent was arbitrary and they only shared a subset of features
F and common concepts C as specified in Section III.

The learner agent AgL used the learning mechanism
(Section III) to learn a new concept that we call it
“development methodology”.

The learner agent AgL wants to verify whether a consensus
exists among 12 peers (Agis) queried with respect to this
concept, using the Adjudicator method. The set pexcgoal

L
includes 9 objects that are all selected to be queried. The
learnt concept has 3 dimensions (i.e., modeling, process, and
application) and 14 features. In this experiment we decided
to have at least 4 replicates which means that 4 data sets are
collected for each of the 9 objects.

Giving this input set, for one-way ANOVA procedure
using a CRD model requires that i=36 which means that we
many need to query 36 peer agents so that each peer will
receive one object at random to evaluate it, and each object
will be evaluated by four peers. However, we have two
limitations. We believe that there is heterogeneity among
peers for many reasons that can potentially contribute to
creating some sort of variability in data. Also another
constraint is that we have only 12 peers. One way to
overcome this lack is to make use of each peer to assess
more than one object. This implies using a Randomized
Complete Block Design (RCBD) where each agent should
assess a complete block, i.e. 9 objects, or using the Balanced
Incomplete Block Design (BIBD) model [14] in which a
subset of objects (3 in this case) will be sent to each peer. In
this experiment we decided to go for BIBD and query the
peer agents to provide the evaluation data for 3 objects each.

In order to determine whether significant differences exist
between the peers’ viewpoints with respect to objects, we
repeated the experiment for the 3 dimensions that
characterize the 9 objects. We could classify all 14 features
into one dimension but we decided to cluster them into 3
dimensions each representing a specific criterion. The
following set of hypotheses describes this strategy in a
statistical fashion that will be applied to all the examined
dimensions.

Null hypothesis, Ho: There is no significant difference
in the mean effectiveness of the examined dimension
among the evaluated objects.
Alternative hypothesis, Ha: There is a significant
difference in the mean effectiveness.

We analyzed the collected data by means of applying
ANOVA procedure to the BIBD model to test the significant
differences in the mean effectiveness of each individual
dimension. In this way, if significant differences are
ascertained, we go further to perform pairwise comparisons
to identify which pairs of objects significantly differ from
which ones. On the other hand, if the overall ANOVA test is
insignificant, we will not apply any pairwise comparisons.
In such a case, the conclusion to be made is that all the
objects are statistically equal in their main effects for the
examined dimension. The detailed steps of analysis were:

Step 1: Data Abstraction and Formulation
We extract the necessary data for this dimension from the

collected raw data. Thus, we multiply recorded rates by the
corresponding average weights of relevant attributes.

Step 2: Constructing the BIBD tableau
By adopting the BIBD arrangement we construct the

BIBD tableau of this dimension.
Step 3: Testing the ANOVA assumptions
We conducted the tests depicted in Table 1 to examine the

assumptions involving the adequacy of the ANOVA
procedure. The results of these tests were that all of the plots
did not suggest any significant departures, either from the
normality of the distribution of errors or the homogeneity of
error variances. Also, there was no evidence of potential
outliers; all the residuals appeared to be bounded within a
95% confidence interval, and they all fell within the
acceptable range of normality [9].

Step 4: ANOVA computations and hypotheses testing
We applied the adjusted formulas of the BIBD described

by Yates [14], to the data arranged in the BIBD tableau and
came up with the analysis of variance components.
According to [14], if the calculated F statistic (F0) is larger
than its critical value (Fcrt), F0 falls in the rejection region.
Thus, we have sufficient evidence to reject the null
hypothesis at a 95% level of significance based on the
available data. In this example F0 was larger than Fcrt for 2
out of 3 dimensions, i.e., modeling and application.

Step 5: Identifying significant differences
In the hypotheses test we carried out in Step 4, no

variability was observed for the Dimension 2 (process)
therefore no need to continue for this dimension. However,
since the test was significant for the other 2 dimensions, we

658

went further for pairwise comparison tests to identify which
objects are statically different. Christensen [2] and Neter
[10] have exhibited several methods for pairwise
comparisons, such as Tukey’s HSD (Honestly Significant
Differences, also known as the T-method) and Fisher’s
LSD. In this case, we adopted the HSD method and
determined that the pairs of objects which have significantly
different effects were: [O1] with [O3, O4, O5, O6, O7, O8];
[O2] with [O5, O6]; and the rest were not significantly
different.

Table 2 shows a binary representation of these results. It
should be noted that an intersection of ‘0’ in a cell implies
that the corresponding two objects, as crossed by their row
and column, are not significantly different. That is, both
objects are equivalent statistically, although they may have
different means of effectiveness. On the other hand, a value
of ‘1’ implies that the two objects are significantly different.
This clearly indicates that for Dimension 1 (modeling) the
objects O1 and partially O2 are causing trouble and there
exists considerable consensus on the rest. By further
reviewing the objects we found out that the O1 and O2 were
instances of two popular agent based development
methodologies that use rather different modeling perspective
that the rest which were examples of the conventional object
oriented approaches.

It may look rather odd to find that for Dimension 3
(application) the overall test conducted by the ANOVA was
significant, while the pairwise comparisons of means
conducted by the HSD test fails to reveal any significant
differences among the objects in this dimension. This
exceptional case occurs because the ANOVA
simultaneously considers all possible contrasts involving the
treatment means, and not just the pairwise comparisons.
From the agent perspective, this case implies that the peer
agents could not reveal significant differences among the
object in the set of attributes described by Dimension 3.
Table 2: Binary representation of the evaluation results

 O2 O3 O4 O5 O6 O7 O8 O9

D
im

en
si

on
 1

:
M

od
el

in
g

O1 0 1 1 1 1 1 1 1
O2 0 0 1 1 0 0 0
O3 0 0 0 0 0 0
O4 0 0 0 0 0
O5 0 0 0 0
O6 0 0 0
O7 0 0
O8 0

 O2 O3 O4 O5 O6 O7 O8 O9

D
im

en
si

on
 3

:
A

pp
lic

at
io

n

O1 0 0 0 0 0 0 0 0
O2 0 0 0 0 0 0 0
O3 0 0 0 0 0 0
O4 0 0 0 0 0
O5 0 0 0 0
O6 0 0 0
O7 0 0
O8 0

Step 6: Interpretation of results
Learner agent could identify the cause for discrepancy
among peers. Among 14 features and 3 dimensions only 2

were the cause of trouble and pairwise analysis revealed that
two objects O1 and O2 may be removed from the learned
examples set. The learning (Section III) by discarding these
two objects and adjudicator method (Section IV) may be run
again until no further discrepancies are found.

VI. CONCLUSION

We presented a methodology for improving interaction
and communication among agents by letting them learn
ontological concepts from each other while maintaining their
own individualized conceptualization. The Adjudicator
method presented in this paper provides the learner agent
with a conflict resolution mechanism that goes beyond a
simple voting and helps achieve consensus among peer
agents with regard to a learnt concept. Therefore the
Adjudicator method replaces ad-hoc voting methods and is
reliable because it adopts statistical procedures and validates
the concluded results within certain confidence limits.

ACKNOWLEDGMENT

The authors are grateful to NSERC for the Discovery
Research Grant and IBM for the 2006 UIMA Innovation
Award.

REFERENCES

[1] M. Afsharchi and B.H. Far and J. Denzinger: Ontology Guided
Learning to Improve Communication among Groups of Agents, Proc.
5th AAMAS 2006, 2006, pp. 923-930.

[2] R. Christensen: Analysis of Variance and Regression. Chapman &
Hall, 1996.

[3] L. Douglass, BIOM 602: Lecture Notes, Oregon State Univ., 2004.
[4] A.H. Elamy and B.H. Far: Utilizing Incomplete Block Designs in

Evaluating Agent-Oriented Software Engineering Methodologies. In
Proceedings of the IEEE CCECE’05, Saskatoon, Canada, May 2005,
1412-1515.

[5] R. Fisher: The Design of Experiments, 1st ed., Oliver & Boyd,
Edinburgh, 1935.

[6] K-C. Jim, C.L. Giles: Talking Helps: Evolving Communicating
Agents for the Predator-Prey Pursuit Problem, Artificial Life 6(3),
2000, pp. 237–254.

[7] B. Kitchenham, and S. Pfleeger: Principles of Survey Research, Part 5:
Populations and Samples. Software Engineering Notes, vol. 27, no. 5,
UK, 2002.

[8] M. Liu and L. Chan: Uniformity of Incomplete Block Designs, Int’l
Journal Materials and Product Technology, vol. 20, no. 1–3, 2004,
pp.143–149.

[9] D. Montgomery: Design and Analysis of Experiments, 6th ed., John
Wiley & Sons, Inc., USA, 2005.

[10] J. Neter, W. Wasserman, and M. Kutner: Applied Linear Statistical
Models, 5th ed., Irwin, USA, 1996.

[11] L. Steels: The Origins of Ontologies and Communication Conventions
in Multi-Agent Systems, Autonomous Agents and Multi-Agent
Systems 1(2), 1998, pp. 169-194.

[12] G. Stumme: Using Ontologies and Formal Concept Analysis for
Organizing Business Knowledge, in J. Becker, R. Knackstedt (Eds.):
Wissensmanagement mit Referenzmodellen – Konzepte fur die
Anwendungssystem- und Organisationsgestaltung, Physica, 2002, pp.
163–174.

[13] A.B. Williams: Learning to Share Meaning in a Multi Agent System,
Autonomous Agents and Multi Agent Systems 8(2), 2004, pp. 165–
193.

[14] F. Yates: Experimental Design: Selected Papers. Griffin, UK, 1970.

659

DALICA: Intelligent Agents for User Profile
Deduction

Stefania Costantini, Leonardo Mostarda, Arianna Tocchio and Panagiota Tsintza
Department of Computer Science,

University of L’Aquila, Italy

Email: stefcost,mostarda,tocchio,panagiota.tsintza@di.univaq.it

Abstract—In this paper we are going to discuss the potential
contributions that agent technology can bring into an Ambient
Intelligence scenario, related to the fruition of cultural assets.
The users are located in an area which is known to the agents:
in the application, the users are the visitors of Villa Adriana,
an archaeological site in Tivoli, near Rome (Italy). Agents are
aware of user moves by means of Galileo satellite signal, i.e., the
proposed application is based on a blend of different technologies.
The agents, developed in the DALI logic programming language,
pro-actively learn and/or enhance users profiles and are thus
capable to competently assist the users during their visit, to elicit
habits and preferences and to propose cultural assets to the users
according to the learned profile.

I. INTRODUCTION

The paradigm of Ambient Intelligence implies the objective

of building a friendly environment where all of us will be sur-

rounded by “intelligent” electronic devices, and this ambient

should be sensitive and responsive to our needs. A multitude

of sensors and actuators are already embedded in very-small or

very large information and communication technologies, and

a challenging task nowadays is to identify which advantages

can be gained from these technology systems. Tourism for

instance is a context where old and new aspects can be melted

for reaching interesting results. In fact, tourism is a growing

industry and it needs to evolve according to the tourists

changing features. In the past, tourists were satisfied with

standardized package tours. Today, with the popularization

of traveling, tourists are expecting new tour experiences that

are different and authentic [10]. Several interesting works

have proposed a new manner of enjoying cultural places,

as technology may support more dynamic and personalized

methods to conceive the fruition of cultural assets. Park et

al. in [8] propose a system named “Immersive tour post”. It

uses audio and video technology to provide improved tour

experiences at cultural tour sites. This system reproduces the

vision and sounds of the historical event that occurred at the

particular space. Mobile applications in a mobile-environment

have been experimented by Pilato et al. in [9]. Visitors are

assisted in their route within the “Parco Archeologico della

Valle dei Templi” (archaeological area with ancient Greek

temples) in Agrigento (Sicily, Italy) by an user-friendly virtual-

guide system called MAGA, adaptable to the users needs of

mobility. MAGA exploits speech recognition technologies and

location detection, thus allowing a natural interaction with the

user. Several other proposals can be found in the literature,

exploring the integration between human-computer interaction

and information presentation. The system Minerva, proposed

by Amigoni et al. in [1] organizes virtual museums, starting

from the collections of objects and the environments in which

they must be displayed, while the DramaTour methodology

presented by Damiano et al. in [6] explores a visit scenario

in an historical location of Turin. Visitors are assisted by

a virtual spider that monitors their behavior and reactively

proposes the history of the palace in detail with a lot of

funny anecdotes about the people. The systems presented

above have a common characteristic: they try to improve the

traditional methods to inform the visitor by means of new

catchy techniques for making the human-machine interface

more friendly and intuitive. But, is it possible to go beyond,

towards capturing the visitors desires and expectations? A

particular mechanism for capturing the visitor interest for one

or more cultural assets has been presented by Bhusate at

al. in [2]. Each visitor receives a PDA associated to non-

invasive sensors that measure “affective” context data such

as the user’s skin conductance and temperature. Preferences

can be also catched by asking questions directly to the user

before starting the visit. This method has been adopted in the

system KORE [3] where parameters such as age, cultural level,

preferences in arts, preferred historical period, etc., are taken

into account for “tuning” the pieces of information provided,

by throwing away those useless for the user (either too difficult

or too easy to understand) and delivering only data which

match the user profile. The architecture of KORE is based on

a distributed system composed of some servers, installed in

the various areas of museums, which host specialized agents.

The KORE system practically demonstrates that intelligent

agents can have a relevant role in capturing the user profile by

observing the visitor behavior. In this paper, we present the

architecture of the MAS DALICA applied to the Villa Adriana

scenario for capturing the visitors interests and enhancing their

profiles. Similarly to what happens in the KORE system, each

DALICA intelligent agent starts its activity with the cashing

of data such as the visitors’ age, preferences, cultural level

and so on. Then, it captures additional data about the visitor’s

movements and choices, elaborates them and updates the user

profile. The visitor’s movements are traced by means of the

Galileo satellite. The learned profile allows DALICA to offer

information on the cultural assets adapted to the visitor, and

to proactively propose to see those assets closer on the one

660

hand to the visitor’s physical position and on the other hand to

the visitor’s preferences. The related items of information are

provided in an appropriate customized form. As acknowledged

in Section V, the DALICA system has been developed within

the CUSPIS European project. In Section II we present the

scenario where DALICA has been put at work and the features

of the system. Section III is dedicated to the methods through

which the intelligent agents are capable to capture the visitors’

interest and the monitoring capabilities of the agents. Finally,

we conclude in Section IV.

II. THE DALICA ONTOLOGY

DALICA system plays a relevant role because spies the

users during their visit, captures their habits and elaborates

a profile for a customized assets fruition. Villa Adriana turns

out to be the greatest villa never belonged to a roman emperor,

testimony of the extraordinary level of ability caught up from

the roman architecture. With a perimeter of 3 Km, it combines

the best elements of the architectural heritage of Egypt, Greece

and Rome in the form of an ’ideal city’ [11]. For a visitor,

Villa Adriana is a unique wonderful place. For DALICA, Villa

Adriana is a set of Points of Interest (POI’s). For “POI”

we intend either a specific cultural asset or a public places

like restaurants located nearby. The structure of a single POI

contains the following fields:

• Identifier: a string identifying uniquely the POI;
• Latitude: the latitude of the POI defined through the
Galileo satellite.

• Longitude: the longitude of the POI defined in the same
way as the Latitude.

• Radius: the radius of the circle that contains the POI area.
• Keywords: a list of the POI characteristics like, for exam-
ple, ’mosaic’ if the POI contains a mosaic, or ’water’ if in

the POI there is a fountain or a water basin. Considering

that each POI can have one or more keywords, we

combined each one with a number indicating its weight

in the POI description. The weights are chosen according

to the relative importance (expressed as a percent value)

of the POI characteristics. Clearly, this information has

been provided by experts.

• Time for visit: is an average of the time that we suppose
an user will employ for visiting the specific POI.

Keywords are important because they allow to establish

the possible similarities between POIs and, consequently, to

discover if the visitor is interested in a particular feature

which is common to them. The POIs descriptions have been

collected into an appropriate ontology (developed by the group

of Artificial Intelligence and Natural Language Processing at

the Dept. for Computer Science, Systems and Management

of the University of Rome Tor Vergata, in the context of the

CUSPIS project).

III. CONSTRUCTING THE USER PROFILE

The main goal of the DALICA system is that of supporting

users during their visits. For this reason, when an user starts

the visit, a DALICA agent is created for spying and assisting

him. Agents are destined to create and upgrade the user profile

according to which is proposed the information about Villa

Adriana but through which steps are they able to reach the

goal? The profile are created starting from an embryonal status

defined by the user before starting the visit. In fact, each

visitor, at the beginning of the visit, has to book the route on

an Internet site where she/he can express some preferences and

choices about the service fruition. The initial profile contains

some data related to the visitor’s name, surname, age, job

and some related to the visit that she/he intends to perform

(day of the visit, starting and ending time, preferences,...).

Preferences express the POI characteristics that the DALICA

system should take in consideration for proposing the POIs to

the users. For example, if the user declares to be interested

in ’mosaic’ and ’plants’, the system should select for him

those POIs in Villa Adriana having the above keywords with

a high weight value. When the visitor starts her/his route, an

intelligent agent, called User Profile One, is generated. At the

staring phase, it elaborates the data coming from the user-

profile stored on Internet and determines an initial fruition

profile. Then, it re-elaborates the fruition profile according

to new data derived from the user behaviour. New enhanced

fruition profile will possibly substitute the former one while

the visitor proceeds in the route. At this point, it is necessary

to explain through which strategies is possible to capture the

visitors interests in a scenario such as Villa Adriana, where

the cultural assets are arranged in an area of 300 hectares.

A. Deducing the Visitor’s Interests

Intelligent agents in DALICA are reactive, pro-active and

communicative. Their are capable to percept the data coming

from the environment such as the satellite coordinates or the

POIs chosen by the visitor and to react appropriately. While

reactivity allows the agents to adopt a specific behavior in

response to the external perception, pro-activity has a main

role, because the reasoning process that leads to the interests

deduction is based on the correlation of several data coming

from the environment, from the ontology and from some basic

inferential processes. Communication capabilities intervene

whenever it is necessary to send data to the visitor’s PDA:

e.g., the explanations of what is being seen or the list of the

deduced interests or the proposed other POIs to see or the

warning that the visitor is entering in a restricted area. In

the rest of this section we concentrate the attention on the

methods used for deducing the user interests, while in next

section we present the strategies for assisting her/him during

the visit and for checking her/his behavior. We divide the agent

deduction process into three phases: the first one represents a

basic deduction level while the second and third ones elaborate

the results by concatenating the previous deductions. We starts

the explanation by illustrating the algorithms concerning the

first phase:

Deducing the interests based on time: This algorithm is

founded on the consideration that a visitor is interested in a

POI if she/he observes it for a time interval “longer” than

the average time of the visit for the specific cultural asset.

661

The meaning of “longer” can be modulated according to the

current visitor’s profile. So, if a visitor has booked a visit that

lasts up to six hours the time interval for the observation will

be longer than that of a visitor that booked a visit lasting for

two hours.

How is it possible to determine which POI the visitor is

looking at? The method is based on the Galileo Satellite. Each

POI, as explained in the previous section, is identified by a

circle (whose center is defined by a latitude and a longitude)

and by a radius. If the visitor position (expressed in latitude

and longitude and coming from the PDA) belongs to the

circle related to a specific POI, we can suppose that she/he

is visiting that POI. If two or more POIs are close enough to

determine an intersection between their circles and the visitor

is located in this intersection, then the algorithm, not being

able to capture the real intention of the visitor, presumes that

the visitor is interested in all those POIs. Each POI which is

selected according to the visitor movements is identified by a

list of keywords. The algorithm elaborates the keywords of all

selected POIs and then extrapolates the most frequent ones.

These keywords represent the hypothetical user interests that,

once deduced, will have to be confirmed both by subsequent

user behavior and by other deduction mechanisms.

Deducing the interests based on the visited POIs: This algo-
rithm considers the POIs chosen by the user and its outcome

improves when several POIs have already been visited. In fact,

for each POI the algorithm extracts the keywords and the most

frequent ones are asserted as “deduced interest”.

Deducing the interests based on the chosen route: If a
visitor decides to follow a predefined route chosen between

those proposed by the system, the agent tries to capture the

visitor’s interests by studying the POIs included in the route.

POIs keywords most relevant for describing the route will be

selected for the next step of the deduction process.

Deducing the interests by similarity: This algorithm employs
a similarity measure. In particular, the interests expressed by

the visitor in the web site are matched with those in the

ontology. Those in the ontology which look to be similar

enough are selected as deduced interests.

Deducing the interests according to some questions: An-
other strategy for capturing the visitor’s interests is centered

on some occasional questions about the POIs located near the

visitor. The agent observes the POIs around the PDA, chooses

one of them and asks the visitor’s opinion on it. A positive

response such as (“Yes, I like the Odeon”) will trigger the

interests deduction process.

Deducing the interests according to cultural questions:
The last strategy for deducing the visitor’s interests takes into

consideration the cultural level of the visitor. Some questions

such as “Do you like the ancient art? Do you know what is a

cavea?” are useful to determine the information level to submit

to the visitor. Moreover, some parameters such as the visitor’s

job and age are involved in the process. The agent compares

the data acquired via the questions and via the other parameters

and elaborates them in order to determine the appropriate

degree of the information. We have identified for now three

degrees.

Basic: It is related to a basic information level where the
user prefers a superficial information on the POIs combined

with details on the ancient people’s life. This level usually fits

primary and secondary students and occasional visitors.

Medium: Provides more technical data on POIs and par-
ticular attention is reserved to their structure. This level fits

people fond of art.

Specialized: Provides the visitor with a detailed information
on POIs combined with information about the materials and

techniques used to manage the cultural assets. This level is

tailored to specialized students, technical people, researchers

and so on.

The second deduction phase captures the results of the

previous deduction algorithms and tries to compare them, with

the aim of reaching a more precise user profile definition. In

particular, those interests coming from the previous phase and

confirmed by this second one are involved in a process that

selects only the most frequent ones. In fact, each deduced

interest is involved in a interests updating process. More
precisely, each interest/keyword is associated to a weight

(priority) N. For a specific deduced interest K, we have define

a global evaluation function computed on the weights. In this

manner, the system takes in account not only the interests more

frequently deduced but also their ’relevance’ in the deduction

process. Then, these interests are sent to the visitor’s PDA in

order to be confirmed by her/him. Precisely, this second phase

is based on the following algorithms:

Filtering the deduced interests according to the time: This
filter combines the deduction of the interests based on the

permanence near a certain POI and the moment when the

deduction itself has been reached. In particular, this step has

the objective of understanding whether a visitor remained in

a specific area because interested in a POI or for some other

reasons (e.g., she/he was sitting on a lawn eating a sandwich).

Combining the deduced interests: The interests deduced by
the previous algorithms based on time, on visited POIs, on

the chosen route and according to some questions are crossed

in order to obtain a more reliable user profile definition. The

interests which are confirmed will be involved in the interests
updating process.
Using similarity for confirming the deduced interests:
Reliability of the interests deduced in the previous phase is

checked according to the similarity degree with those inserted

in the visitor’s profile in the web site. If the similarity is greater

than a prefixed threshold, the interest will be involved in the

interests updating process.
The third phase delivers data related to the elicited interests

to the visitor’s PDA. When the visitor receives the interests

list, she/he can confirm either all interests or a subset of them.

The selected interests are managed by the agent for updating

the user profile. Moreover, the agent communicates them to a

central system that manages the information for the visitor in

order to propose (through the agent) data and POIs closer to

her/his desires and expectations.

662

B. Monitoring Visitor’s Behavior

Intelligent agents in DALICA are also used for monitoring

the users behavior with a fixed frequency. The situations where

the reactive and proactive capabilities of the agents are put at

work for this kid of monitoring are at least the following.

Checkinging the forbidden areas: In Villa Adriana there are
areas where visitors cannot enter. These areas are defined in

the ontology and an agent monitors from time to time the

visitors’ movements in order to guarantee that no one violates

the rules.

Monitoring the visitors route: The agent has the ability to
follow the visitor that has chosen a predefined route along

her/his visit. For instance, the agent is able to make the

itinerary shorter or longer (by either removing or adding POIs)

according to the user pace, so that the user can complete the

itinerary in time.

Creating a list of POIs: When the visitor has finished the
visit, the agent collects all POIs that she/he has visited and

puts them in a file with texts and images. This allows the

visitor to keep a reminder of his visit to Villa Adriana.

C. The DALICA Architecture

The DALICA architecture involves a MAS and a central

external system. This system on the one hand acts as a “router”

between the MAS and the PDA’s: in fact, the MAS is presently

too heavy to be directly installed on the PDA’s. Thus, the

MAS resides on a more powerful machine and uses the central

system to exchange data with the PDA’s. It receives messages

from/to the agents and delivers them from/to to the PDAs of

the visitors. On the other hand, the central system collects

and stores data about visitors and visits for future use. In the

DALICA MAS, several intelligent agents cooperate in order to

support the users during their visit. The three most important

agents composing the MAS are the following.

Generator Agent: The role of this agent is to automatically
generate the User Profile agents when a user starts a visit. The

generation process happens when PDA sends a positioning

message related to a new visitor.

User Profile Agent: Acts as described before in this section.
They deduce the visitors interests and monitor their behaviors.

Output Agent: Manages communications between the DAL-
ICA MAS and an external central system.

DALICA agents have been implemented in the DALI

language,[4] [5] [12], an Active Logic Programming language

for executable specification of logical agents. DALI is a

prolog-like logic programming language with a prolog-like

declarative and procedural semantics [7].

IV. CONCLUSIONS

We conclude this paper by making some considerations

about our work. It is not so easy to find an application where

intelligent agents are put at work in a real scenario but it is

even less frequent to find intelligent logical agents at work.

In the light of these considerations, the DALICA MAS is

a novelty. This also because DALICA exploits the signal of

Galileo Satellites to deduce the Users Profiles. DALICA at

work in the area of Villa Adriana practically demonstrated

that logical agents can be applied successfully for capturing

the visitors habits and preferences. Our system cannot be

compared with platforms such as MAGA and DramaTour

where the main goal is to offer information to the visitors via

specialized interfaces. DALICA mainly deduces the visitors

interests and leaves the job of presenting the information to

an external component. KORE is the system closer to DALICA

because it uses agents for managing the information through

the study of the User Profile. KORE does not use the Galileo

signal and its agents are not logical. Moreover, DALICA is

more centered on the deduction profile process while KORE

mainly filters the information according to the User Profile

characteristics. As future developments, the system reasoning

capabilities that are presently quite basic can be improved.

Also, previous experience can be better exploited. Different

agents managing different visitors might communicate so as

to cooperate in improving their performance and enhancing

the services they offer.

V. ACKNOWLEDGEMENTS

This work has been partially supported by the project

CUSPIS (GJU/05/2412/CTR/CUSPIS) “A Cultural Heritage

Space Identification System”.

REFERENCES

[1] F. Amigoni, S. D. Torre, and V. Schiaffonati, “Yet another version of
minerva: The isola comacina virtual museum,” in Proc. of the First
European Workshop on Intelligent Technologies for Cultural Heritage
Exploitation, at The 17th European Conference on Artificial Intelligence,
2006, pp. 1–5.

[2] A. Bhusate, L. Kamara, and J. Pitt, “Enhancing the quality of experience
in cultural heritage settings,” in Proc. of the First European Workshop
on Intelligent Technologies for Cultural Heritage Exploitation, at The
17th European Conference on Artificial Intelligence, 2006, pp. 1–13.

[3] M. Bombara, D. Cal, and C. Santoro, “Kore: A multi-agent system to
assist museum visitors,” in Proc. of the Workshop on Objects and Agents
(WOA2003), http://citeseer.ist.psu.edu/708002.html, 2003.

[4] S. Costantini and A. Tocchio, “A logic programming language for multi-
agent systems,” in Logics in Artificial Intelligence, Proc. of the 8th
Europ. Conf.,JELIA 2002, ser. LNAI 2424. Springer-Verlag, Berlin,
2002.

[5] ——, “The dali logic programming agent-oriented language,” in Logics
in Artificial Intelligence, Proc. of the 9th European Conference, Jelia
2004, ser. LNAI 3229. Springer-Verlag, Berlin, 2004.

[6] R. Damiano, C. Galia, and V. Lombardo, “Virtual tours across different
media in dramatour project,” in Proc. of the First European Workshop
on Intelligent Technologies for Cultural Heritage Exploitation, at The
17th European Conference on Artificial Intelligence, 2006.

[7] J. W. Lloyd, Foundations of Logic Programming (Second, Extended
Edition). Springer-Verlag, Berlin, 1987.

[8] D. Park, T. Nam, C. Shi, G. Golub, and C. V. Loan, Designing an
immersive tour experience system for cultural tour sites, in chi ’06
extended abstracts on human factors in computing systems ed. Montral,
Qubec, Canada, April 22 - 27: ACM Press, New York, NY, 1193-1198,
2006.

[9] G. Pilato, A. Augello, A. Santangelo, A. Gentile, and S. Gaglio, “An
intelligent multimodal site-guide for the parco archeologico della valle
dei templi in agrigento,” in Proc. of First European Workshop on
Intelligent Technologies for Cultural Heritage Exploitation, at The 17th
European Conference on Artificial Intelligence, 2006.

[10] A. Poon, “The new tourism revolution,” Tourism Management,vol.15,
no.2, 1994.

[11] U. site, “Villa adriana,” http://www.villa-adriana.net.
[12] A. Tocchio, “Multi-agent sistems in computational logic,” Ph.D. Thesis,

Dipartimento di Informatica, Universitá degli Studi di L’Aquila, 2005.

663

Abstract

Human-to-human conversation remains such a significant part
of our working activities because of its naturalness. Multimodal
interaction systems combine visual information with voice,
gestures and other modalities to provide flexible and powerful
dialogue approaches. The use of integrated multiple input modes
enables users to benefit from the natural approach used in human
communication. However natural interaction approaches
introduce interpretation problems. In this paper is presented an
approach to interpret user’s multimodal input. Starting from the
analysis of the different types of modalities’ cooperation we take
into account the user’s input behavior in order to better
approximate the resultant multimodal input sentence with the
user’s intention. This multimodal sentence is transformed in a
natural language one and we provides an algorithm to calculate
the exact/approximate interpretation according to the sentence
similarity level with sentence templates stored in a predefined
knowledge base.

1. Introduction
People can communicate with great efficiency and
expressiveness adopting natural interaction approaches.
Perhaps this is the main reason why face-to-face
conversation remains such a significant part of our working
activities despite of the availability of a great number of
communication technologies. Nevertheless, there is a great
interest in research about natural interaction approaches in
order to develop technologies to facilitate them [2], [6],
[14] and to improve the interpretation by the computer side.

From this perspective multimodality has the potential to
greatly improve Human Computer Interaction combining
harmoniously the different communication methods . A
user can use voice, handwriting, sketching and gesture to
input information., The system can use icons, text, sound
and voice (output)to present information.

This paper uses the concept of multimodal language
defined as a set of multimodal sentences [4], by the
extension of the definition of Visual Language given in [3].
A multimodal sentence contains atomic elements
(glyphs/graphemes, phonemes and so on) that form the
Characteristic Structure (CS). The CS is given by the
elements that form functional or perceptual units for the
user. A multimodal sentence is defined, similarly to [5], as

a function of: 1) the multimodal message, 2) the
multimodal description that assigns the meaning to the
sentence, and 3) the interpretation function that maps the
message with the description, and the materialization
function that maps the description with the message.

One of the most relevant problems of the multimodal
dialog consists of the fact that naturalness of
communication is directly proportional with the complexity
of the interpretation of messages.

The goal of this paper is to propose a new approach to
understand how different modalities cooperate each other,
taking into account the user’s behavior that can alter the
multimodal input recognized by the system. The resulting
multimodal input sentence is matched with a template
stored in a knowledge base to provide an interpretation of
the sentence. The sentence can precisely match the template
or approximates it.

We consider the speech modality as the prevalent one
because, generally, users explain their intentions by speech
and use other modalities to “support” the speech and
eventually to resolve ambiguities.

For this reason we have chosen the system can map
concepts involved in the multimodal sentence using a
natural language sentence. Each multimodal sentence
corresponds to a natural language one. The system returns
the interpretation of the multimodal sentence if the template
that exactly maps with the corresponding natural language
sentence is available. When the user interacts with the
system, the corresponding multimodal sentence must refer
to a stored template in the knowledge base in order to be
interpreted. If the corresponding sentence, expressed in
natural language, doesn’t match with any of the stored
templates than the system can interpret those sentences that
approximate the matching considering templates similar to
the first one. Because of some multimodal sentences (with
different templates) can have very close interpretations
(some times they can have the same meaning), this paper
proposes to calculate the templates’ similarity starting from
the semantic similarity of the natural language sentences
corresponding to the Multimodal one.

For this purpose it is possible the association of a
sentence and its template with the most similar template
computing semantic similarity between natural language
sentences. In this way we can provide an interpretation of

Fernando Ferri, Patrizia Grifoni, Stefano Paolozzi
Institute of Research on Population and Social Policies, National Research Council, Italy

{fernando.ferri, patrizia.grifoni, stefano.paolozzi}@irpps.cnr.it

An Approach to Multimodal Input Interpretation in Human-Computer
Interaction

664

the multimodal sentence also in case of non-perfect
matching.

The natural language sentence can be represented as a
semantic network of objects and binary relations among
them, where each object corresponds to one node.

The rest of the paper is structured as follow: section 2
briefly presents a short literature of related works; section 3
provides a running example, in section 4 is illustrated our
approach to interpret the multimodal input basing on
modalities interaction’s type and user’s behavior, section 5
is devoted to the evaluation of sentence similarity in the
multimodal context, section 6 concludes and describes
some future research.

2. Related Work
The problem of multimodal system interaction has been

studied for several years and still remains an active research
field.

Several studies have examined multimodal interaction
and interpretation addressing in particular sketch-speech
interaction. For example [8] discusses an integration
technique in order to solve the problem of interpretation of
multimodal queries constituted by multiple speech and
sketch inputs. In [1] is underlined the importance of the
study of the user’s behavior in order to correctly interpret
multimodal inputs combining sketching with speech,
enabling a more natural form of communication. In [11]
and [4] are proposed interesting approaches for studying
multimodal interaction showing how the use of integrated
multiple input modes enables users to benefit from the
natural approach used in human communication.

3. A Motivating And Running Example
In order to explain our approach we consider the

following example: the user draws an Entity-Relationship
scheme assigning a label to each construct. Without loss of
generality we assume that the input is given by only two
modalities: speech and sketch. This scenario is represented
in Fig. 1.

Suppose that the user sketches the diagram as shown in
Fig. 1a, and he/she speeches the sentences shown in Fig.
1b. The system has to interpret the multimodal sentence
and then has to materialize it as shown Fig. 1c.

For the sake of simplicity we only consider the creation
of the Professor entity. The user says: “The first rectangle
is the entity Professor”, at the same time the user sketches
the figure of a rectangle (in his/her intention).

If the figure is properly interpreted by the sketch
recognizer as a rectangle (Fig. 2a), we are in the typical
situation of redundant information given by different
modalities (i.e. the concept “rectangle” is expressed both by
speech and sketch modalities) The Natural Language

sentence associated to the multimodal one will be: “The
first rectangle is the entity Professor” and it represents all
the concepts expressed by speech and sketch.

Professor Courseteaching

(c) What user wants

(a) What user sketches (b) What user says

The first rectangle is the entity Professor

Second rectangle is the entity Course

The rhombus is the relationship Teaching

Fig. 1. An example of multimodal interaction.

Given such a sentence, a corresponding template to the
sentence in the knowledge base, must be found. The
associated template (in lexical form) is:

DT + JJ + rectangle + VB + DT + entity + NN

where DT refers to a determiner, VB a verb, JJ an
adjective, NN a singular noun.

The situation is more complex if we have some
ambiguities problem. That is for example, if a user draws a
figure that in his/her intention is a rectangle, recognized by
the system as a square. So the system is unable to identify
that the given input is redundant and can produce an
incorrect multimodal sentence interpretation. In Fig. 2 both
situation are illustrated with the proper timeline.

tt10

voice
control

" The First rectangle is the entity Professor "

t2 t1
'

t1

t2

t2
'

tt10

voice
control

" The First rectangle is the entity Professor "

t2 t1
'

t1

t2

t2
'

recognized as a rectangle

recognized as a square

b

a

Fig. 2. Example of multimodal input (by speech and
sketch) with timeline.

From the user point of view both situation must
reproduce the same multimodal sentence, but due to
ambiguities in sketch recognition the system doesn’t
produce the same sentences and they are not associated to
the same template. In order to avoid these problems we

665

propose an approach that take into account the user’s
behavior to reproduce multimodal sentences as near as
possible to the user’s input will.

4. Our Approach

4.1. Multimodal interaction
The most important problem to solve is to understand

how different modalities cooperate and what is the template
that the multimodal sentence matches according to the
cooperation modality.

Six type of cooperation between modalities have been
distinguished (for a more formal definition see [11]):

Complementarity: different chunks of information
composing the same command are transmitted over
more than one modality.
Concurrency: independent chunks of information
are transmitted using different modalities
overlapping in time.
Equivalence: a chunk of information may be
transmitted using more than one modality.
Redundancy: the same chunk of information is
transmitted using more than one modality.
Specialization: a specific chunk of information is
always transmitted using the same modality.
Transfer: a chunk of information produced by one
modality is analyzed by another modality.

Let us consider the interaction of two modalities (in
particular we address speech and sketch modalities) M1 and
M2 that transmit information in T1 and T2 time intervals
respectively. The possible time intervals relationship
between M1 and M2 are summarized in Fig. 3 and are:

Sequential: The transmission of the second
modality starts after the first one.
Disjoint: The transmissions of the two modalities
take place in two separated time intervals.
Overlap: The transmission of a modality partially
overlaps the transmission of the other one.
Contains: The transmission of a modality is self
contained in the transmission of the other one.

Evaluating time intervals for the involved transmission, we
analyze the possible combination of different input events.
Multimodal input events can either be interpreted
independently, or they can be merged.

 Let us refer to the example given in the previous section.
Firstly the system individually recognizes the concepts or
the chunk of information for each modality involved in the
input event. In this case the system must perform a speech
and a sketch recognition in order to capture the initial
information. Then each input modality is associated with its

own time interval of transmission. The next step is to
interpret these unimodal input on the base of the
transmission time and the information recognized in order
to extract a multimodal sentence representing the whole
input event. The system’s flow for this example is
illustrated in Fig. 4.

Fig. 3. Time intervals relationship in multimodal
interaction.

Fig. 4. The system’s architectural flow.

For our purposes, it is important to address two type of
cooperation: Complementarity and Redundancy.
Considering the aforementioned time intervals, Sequential,
Overlap and Disjoint transmissions can denote
Complementarity interaction as Contains and Overlap
transmissions can denote Redundancy interaction. In Fig. 5
this relationships are presented.

Fig. 5. Time intervals and type of interaction.

666

In this paper we are interested in Redundancy
interaction, because it has been observed that a redundant
multimodal input involving speech and sketch enables a
more natural form of communication.

As stated before each modality transmission represents a
finite number n of concepts.

Let us suppose that modality M1 transmits the concept C1

in the time T1 and the modality M2 transmits the concept
C2 in the time T2. T1 partially overlaps time T2. In our
example M1 is the speech modality and M2 is the sketch
modality. We have to identify the template for the
multimodal sentence in order to correctly interpret it. That
is, this “match” requires interaction between modalities has
to be recognized. A redundant interaction C1 and C2 must
be the same concept. However, the modality used to
express one concept (for example concept C1) can
introduce some imprecision and approximations. It can be
happen in a situation in which the user’s will is to draw a
rectangle, but he/she draws a square instead. At the same
time the concept expressed by speech mode is “the
rectangle”. In this case the two concepts C1 and C2 are
similar concepts. The question is: what similarity measure
has to be considered between two concepts in order to have
a redundant interaction between modalities?

This measure car vary among different users. The system
has to acquire knowledge on the user’s behavior during the
whole interaction process.

In particular we have considered a sample of 20 different
users (10 men and 10 women) and we asked them to draw a
rectangle, alternatively with other figures, with our sketch
interface, for 20 times. This permits to take into account the
user’s behavior, that is used to better calculate the
similarity between concepts.

The sketch recognizer will identify, for each sample, a
measure of similarity between user’s sketch and the
required figure (in this case a rectangle).

This measure represents a fundamental element for the
computation of concept similarity. More formally, if Ci is
the i-th sample drawn by the user, and n is the total number
of the samples, the user behaviour approximation Ass (for
sketch-speech modalities interaction) is:

1

1 , (0,1)
n

ss i ss
i

A C A
n

 (1)

The concepts are stored in the concepts database as
natural language terms. We adopt an extended words
similarity algorithm in order to calculate semantic similarity
between concepts are using the WordNet lexical database
[15].

4.2. Evaluating Concepts Similarity
The taxonomical structure of the WordNet knowledge

base is important in determining the semantic distance
between words. In WordNet, terms are organized into
synonym sets (synsets), with semantics and relation
pointers to other synsets.

One direct method for similarity computation is to find
the minimum length of path connecting the two words [12].

For example, the shortest path between student and
schoolmate in Fig. 6 is student-enrollee-person-
acquaintance, the minimum path length is 4, the synset of
person is called the subsumer for words of student and
schoolmate, while the minimum path length between
student and professor is 7. Thus, we could say that
schoolmate is more similar to student than professor to
student.

professor, prof

student,
pupil, educatee, ...

enrolleeacquaintance

academician,
faculty member, ...

educator,
pedagogue, ...

professional,
professional person, ...

adult, growup, ...

person, human, ...

entity

organism, being, ...

animal,
beast, ...

Fig. 6. A portion of the Wordnet’s semantic network.

However, this method may be not sufficiently accurate if
it is applied to a large and general semantic net such as
WordNet. For example, the minimum length from student
to animal is 4 (see Fig. 6), less than from student to
professor; however, intuitively, student is more similar to
professor than to animal. To address this weakness, the
direct path length method must be modified as proposed in
[10] utilizing more information from the hierarchical
semantic nets. It is important to notice that concepts at
upper layers of the WordNet’s hierarchy have more general
semantics and less similarity between them, while words
that appear at lower layers have more concrete semantics
and have a higher similarity. Therefore, also the depth of
word in the hierarchy should be considered. In summary,
we note that similarity between words is determined not
only by path lengths but also by depth (level in the
hierarchy). Moreover we take into account the user
behaviour considering the user behaviour approximation
Ass. The proposed algorithm is an extensions of the one
proposed in [10] for words similarity.

Given two concepts, c1 and c2, we need to find the

667

semantic similarity s(c1,c2).
Let be l the shortest path length between c1 and c2, and h

the depth of subsumer in the hierarchical semantic nets, the
semantic similarity can be written as:

1 2 1 2 (,) () () sss w w f l f h B (2)

Bss represents the user’s behaviour contribute and its
value depends on the value of the product between f1(l) and
f2(h). If this value is higher than a threshold value (), Bss is
equal to (Ass)-1, otherwise Bss is equal to 0. More formally:

1 2

1 2

 0 if () ()
 1 if () ()ss

ss

f l f h
B

f l f h
A

 (3)

The threshold value used in our experiments is 0.4.
The path length between two concepts, c1 and c2, can be

computed according to one of the following cases:
1. c1 and c2 belong to the same synset,
2. c1 and c2 do not belong to the same synset, but

their synsets contains one or more common
words,

3. c1 and c2 neither belong to the same synset nor
their synsets contain any common word.

First case implies that c1 and c2 have the same meaning,
then we assign the value 0 to the semantic path length
between c1 and c2. In the second case we can notice that c1

and c2 partially share the same features, then we assign the
semantic path length between c1 and c2 to 1. For case 3, we
must count the actual path length between c1 and c2. By the
above considerations we can considered the function to be
a monotonically decreasing function of l:

1 () lf l e (4)

where]1,0[.
In order to calculate the depth contribution, according to

the fact that at upper layers of the WordNet’s hierarchy
words have more general semantics and less similarity
between them, while words that appear at lower layers have
more concrete semantics and an higher similarity, function
f2(h) should be a monotonically increasing function with
respect to depth h:

2 ()
h h

h h
e ef h
e e

 (5)

where]1,0(.
The whole formula for words similarity computation

with the contribution of (4) and (5) is:

1 2 (,)
h h

l
ssh h

e es w w e B
e e

 (6)

The values of and depend on the used knowledge
base. For WordNet the optimal parameters are =0.2 and

=0.45 as explained in [9].

5. Evaluating Multimodal Sentence Similarity
To compare the user’s input multimodal sentence with

the stored templates the system has to proceed as follow:
let be T1 the template associated with the user’s input

sentence
1

ST and T2 the template associated to the stored

sentence
2

ST .
According to [12] we must construct a vector V that

contains all the distinct elements from the associated
sentences

1

ST and
2

ST .
The semantic similarity between two sentences is defined

as:
1 2

1 2

 s
s sS

s s
 (7)

where si (i=1,2) are the semantic vectors. The value of an
element of a semantic vector is defined as follows:

ˆ ˆ () ()j j j js I w I w (8)

Where jw is a word in the joint word set and ˆ
jw is its

associated word in the sentence and ˆ
js is the j-element of

the lexical vector ŝ (below introduced).
Function [0,1]I is based on the notion of information

content introduced by Resnik. The information content of a
concept c quantifies as informativeness decreases when
probability of the concept c increases [13]. Note that this
approach has been chosen because various results in the
literature demonstrate that it has a higher correlation with
human judgment than the traditional edge counting
approach [7].

It has been shown that words that occur with a higher
frequency (in a corpus) contain less information than those
that occur with lower frequencies:

log(1) () 1
log(1)

nI w
N

 (9)

where N is the total number of words in the sentence, n
is the frequency of the word w in the sentence (increased
by 1 to avoid presenting an undefined value to the
logarithm).

The lexical vector ŝ is determined by the semantic

668

similarity of the corresponding word in the joint word to a
word in the sentence. Each entry of the semantic vector
corresponds to a word in the joint word set, so the
dimension is equal to the number of words in V. Take

1

ST as
an example:

- if wj appears in the sentence, ˆ
js is set to 1.

- if wj is not contained in
1

ST , a semantic similarity
score is computed between wj and each word in the
sentence

1

ST , using the method similar to the one
illustrated for concepts similarity in the previous
section..

Thus, the most similar word in
1

ST to wj is that with the
highest similarity score.

6. Conclusion
Multimodal human-computer interaction, in which the

computer accepts input from multiple channels or
modalities, is more flexible, natural, and powerful than
unimodal interaction with input from a single modality.
However naturalness of communication is directly
proportional with the complexity of the interpretation of
messages. In this paper is presented an approach to
interpret multimodal input sentences, we have implemented
a multimodal system based on speech and sketch modalities
that use the aforementioned methodology to better
understand user’s input, also considering the user’s way of
inputting. Future work will address other input modalities,
such as gesture, that could also help disambiguate the
sketches and correctly simulate the user's ideas.

References
[1] Adler, A., Davis, R.: “Speech and sketching for multimodal design”,

in Proc. of the 9th Int. Conf. on Intelligent User Interfaces, ACM
Press, 2004, pp. 214–216.

[2] Binot, J. L., Falzon, P., Sedlock, D., Wilson, M. D.: “Architecture of
a multimodal dialogue interface for knowledge-based systems”, in
the Proc.of Esprit’90 Conference, Kluwer Academic Publishers:
Dordrecht, 1990, pp. 412-433.

[3] Bottoni, P., Costabile, M. F., Levialdi, S., Mussio, P.: “Formalizing
visual languages”, in Proc. of IEEE Symp. Vis. Lang. '95, IEEE CS
Press, 1995, pp. 334-341.

[4] Caschera, M. C., Ferri, F., Grifoni, P.: “Multimodal interaction
systems: information and time features”, in Int. Journal of Web and
Grid Services 2007 - Vol. 3, No.1 pp. 82 - 99, to be published.

[5] Celentano, A., Fogli, D., Mussio, P., Pittarello, F.: “Model-based
Specification of Virtual Interaction Environments” in Proc. of the
2004 IEEE Symposium on Visual Languages - Human Centric
Computing (VLHCC'04) - Volume 00, 2004, pp. 257-260.

[6] Johnston, M., Cohen, P. R., McGee, D., Oviatt, S. L., Pittman, J. A,
Smith, I.: “Unification-based Multimodal Integration”, in Proc. of the
35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the
Association for Computational Linguistics, Madrid, 1997, pp. 281-
288.

[7] Lee, J. H., Kim, M. H., Lee, Y. J.: “Information retrieval based on
conceptual distance in is-a hierarchies”, in Journ..of Documentation,
Vol.49, n.2, 1989, pp. 188-207.

[8] Lee, B-W., Yeo, A.W.: “Integrating sketch and speech inputs using
spatial information”, in Proc. of the 7th Int. Conf. on Multimodal
interfaces, ACM Press, 2005, pp.2-9.

[9] Li, Y., McLean, D., Bandar, Z. A.: “An Approach for Measuring
Semantic Similarity Using Multiple Information Sources”, IEEE
Trans. Knowledge and Data Eng., vol. 15, no. 4, 2003, pp. 871-882.

[10] Li, Y., McLean, D., Bandar, Z. A., O’Shea, J. D., Crockett, K.:
“Sentence Similarity Based on Semantic Nets and Corpus Statistics”
in IEEE Trans. Knowledge and Data Eng, vol. 18, n. 8, 2006, pp.
1138-1150.

[11] Martin, J.C.: “Toward intelligent cooperation between modalities: the
example of a system enabling multimodal interaction with a map”, in
Proc. of Int. Conf. on Artificial Intelligence (IJCAI’97) Workshop on
“Intelligent Multimodal Systems”, Nagoya, Japan, 1997.

[12] Rada, R., Mili, H., Bichnell, E., Blettner, M.: “Development and
Application of a Metric on Semantic Nets”, IEEE Trans. System,
Man, and Cybernetics, vol. 9, no. 1, 1989, pp. 17-30.

[13] Resnik, P. “Using information content to evaluate semantic similarity
in a taxonomy”, in International Joint Conference for Artificial
Intelligence, 1995, pp. 448-453.

[14] Wahlster, W.: “User and discourse models for multimodal
communication”, in Readings in intelligent user interfaces, Morgan
Kaufmann Publishers Inc, San Francisco, 1998, pp. 359-371.

[15] WordNet 2.1: A lexical database for the English language.
http://www.cogsci.princeton.edu/cgi-bin/webwn, 2005.

669

Abstract

Sketch-based interaction enables users’ simple communication
and it is used to represent concepts and commands in human-
computer interaction. This communication approach can be used
in different contexts with different devices. The ink style through
which the user performs a sketch is a critical component in the
recognition and interpretation processes. In particular, the
different users’ styles adopted to perform the sketch can introduce
over-tracing and/or cross-hatching phenomena that are
respectively represented in the sketch like bold style or dashed
style. The paper provides an approach to recognize the different
ink styles performed by a user during his/her sketch activity. More
specifically an approach to recognize both a single stroke style
and the whole sketch style is presented.

1. Introduction

People use the free hand drawing to express concepts and to
represent ideas in an immediate and intuitive simple way.
Therefore, the use of sketch-based interfaces to interact with
different devices provides a natural convenient way to carry
out concepts and commands.
 The user interaction is influenced by the individual
drawing style. Sometimes, tools used to interact with the
different devices (such as: smart phone, PDA, palmtop,
tablet-PC, and so on) and/or specific contexts can influence
the individual ink style too. As shown in Figure 1, different
users can draw the same object/concept using different
styles. This can happen without specific reasons because a
sketch action is intrinsically an informal and messy human
expression. Therefore, the over-tracing and/or dashed-
tracing phenomena can frequently occur. In this paper
discussion is focused on recognition of sketch drawing
styles. Figure 1 shows the same object/concept (circle)
drawn by four different sketches obtained using/combining
the three drawing styles (solid, bold, dashed described in
section 2). The different drawing styles make any
interpretation of the sketch very hard.

The purpose of this paper is to propose and discuss an
approach to recognize some of the different styles
performed by the user during her/his sketch activity. More
specifically, the approach recognizes both a single stroke
style and the whole sketch style.

Fig. 1. Four different circle representations.

There is an extensive body of related work on sketch
style recognition in Human Computer Interaction. In [1] [2]
[3] authors suggest a fast, simple and compact approach to
recognize sketches drawn with a stylus on a digitizing
tablet. The approach enables the system to identify shapes
(such as: triangles, lines, rectangles, circles, arrows,
crossing lines, diamonds and ellipses) of different size and
with different orientation in the space, drawn with
continuous, dashed-tracing or over-tracing strokes. This
approach is based on the computation and ratio of particular
geometrical features of shapes in the sketch (such as:
convex hull, the largest triangle and the largest quadrilateral
inscribed in the convex hull, the smallest enclosing
rectangle of the convex hull). The over-tracing action,
considered as a user imprecision, is discussed in [7]. The
system generates geometric approximations for single
stroke shapes that are over-traced. According to this
approach the system has to match input strokes with
geometric primitives producing fits for several shapes (such
as: lines, arcs and circles) by computing model’s parameters
that minimize the least squares fitting error. Also in [9] the
problems that involve the interpretation of over-tracing
freehand sketch are faced. In this approach over-tracing
strokes are interpreted according to the following steps: 1)
the strokes are first classified into lines and curves by a
linearity test, 2) after this a strokes grouping process that
handles lines and curves separately is performed.
Afterwards, the grouped strokes are fitted with 2D geometry
and further tidied-up with endpoint clustering and
parallelism correction. Finally, the in-context interpretation
is applied to detect incorrect stroke interpretation based on
geometry constraints and to suggest the most probable
correction based on the overall sketch context. In [5] the
authors present an approach that, unlike the previous two,
deals with both the over-tracing and hatching sketch on the
3D sketch. With this approach the strokes are divided into
core strokes (strokes that touch the characteristic curves of

Danilo Avola, Fernando Ferri, Patrizia Grifoni
Institute of Research on Population and Social Policies, National Research Council,

Via Nizza 128, 00198 Rome, Italy
{danilo.avola, fernando.ferri, patrizia.grifoni}@irpps.cnr.it

Sketch Style Recognition in Human Computer Interaction

670

the object), and hatching strokes (strokes that are mapped to
the faces of the object). This approach allows the
interpretation of the user’s sketch that presents over-tracing
strokes, by grouping strokes into bundles. Another approach
to recognize the free hand sketches drawn using different
styles (with over-traced, dashed or continuous strokes) is
given in [8]. The key advance of this approach, is an
integrated sketch parsing and recognition model designed to
enable natural and pen-based computer interaction. With
this approach, the stream of pen strokes is firstly examined
to identify delimiter patterns called “markers”. These then
anchor a spatial analysis, which groups the remaining
strokes into distinct clusters, each representing a single
visual object. Finally, a shape recognizer is used to find the
best interpretations of the clusters.

Indeed there are several approaches that face the over-
tracing or (less frequently) cross-hatching phenomena. But
there are not many works that face the problems from the
stroke style point of view. This paper proposes an original
approach to recognize the different drawing styles. It aims
to solve the ink style problems while the user is performing
the stroke (on-line recognition). The approach does not
need to know the features of the geometric shapes in the
sketch. It works only on each single stroke. For this reason
the approach can be adapted for sketches made up of
one/multi strokes. Besides, the approach allows the
recognition of all styles that make up a single object/shape
(made up of more than one stroke) in the sketch.

The paper is organized as follows. Section 2 describes
the common ink styles with which usually a user carries out
a sketch. Section 3 describes the approach to recognize the
different ink styles. Finally, Section 4 concludes the paper.

2. Sketch Styles in the Drawing Activity

In this section the most common styles with which a user
carries out a sketch are discussed. Sketch-based interaction
is an intuitive and simple communication method used to
represent concepts and communicate in different contexts.
Sketches represent abstract ideas, concepts or commands
using symbolic graphical elements and spatial constraints
among them. A user conveys a concept or an idea by
graphical ink individual style, and he/she does not follow
precise rules. Besides this, the complexity of the sketch
layout may depend on the specific context. In fact a sketch
performed in a specific context (such as: Data Flow
Diagram or Entity Relationship Diagram, and so on) usually
is “less complex” than one performed in another specific
context such as complex architectural designs. This more
complex sketch context can require to use more ink styles
than the simplest one. However, proportionally to the
complexity of the sketch in the different contexts, there is
the necessity to interpret correctly the ink style performed
by the user. Usually a user performs a sketch by three

defined styles [4]: solid, bold, dashed. The first style
(solid), as shown in Figure 2-a (simple electrical scheme), is
commonly used to represent a considerable part of a sketch
(or the whole sketch). The second style (bold), as shown in
Figure 2-b (simple example of a binary tree), is generally
used to represent an object in a particular contexts, or to
emphasize a particular area or object (or its part) in a
sketch. Otherwise it can be a personal user expression style.

Fig. 2. An example of (a) solid style, (b) bold style.

 The third style (dashed), as shown in Figure 3, can have
different uses. For example, a user could want to “hide”
some parts of a sketch that are useful to understand the
context of the sketch, but not important to understand the
core meaning of it, otherwise a user could want to
distinguish different objects or to highlight different groups
of objects by using different dashed ink patterns. Figure 3-a
shows an example of elements extracted from a sub-
database contained in a main database, while Figure 3-b
shows several 2D geometric figures. In Figure 3-a the
dashed style is used to focus on the context in which the
elements extraction from the sub-database occurred, while
in the Figure 3-b different dashed pattern styles are used to
distinguish the three groups of Figures (elliptical group;
quadrilateral group; triangular group).

Fig. 3. An example of (a) sketch with dashed style, (b)
different patterns of dashed style.

 In this context, a stroke is a drawing action defined by the
sequence: pen down, pen movement, pen up.

The next section introduces the proposed approach to
recognize the different ink styles conveyed by the user
during sketch drawing.

3. An Approach to Recognize Sketch Styles

This section discusses the approach proposed to detect
the different ink styles in the sketch. In the previous section
it has been observed that usually there are three styles to
draw a sketch (solid, bold, dashed). Indeed every stroke of a

671

sketch can be drawn only in solid or bold style. In fact,
usually, a dashed style is obtained composing solid and/or
bold strokes. Figure 4 shows that a dashed style is a
repetition of one pattern. In Figure 4-a there are four
examples of rectangles drawn with different dashed styles.
Because of the given stroke definition each rectangle in
Figure 4-a is drawn with more than one stroke (we assume
that every stoke represented in Figure is in solid style).
Looking at Figure 4-b, it is possible to observe that every
rectangle in the Figure 4-a has been drawn through the
repetition of a precise pattern. In particular the first and the
third rectangle have been drawn using a pattern made up of
a single solid stroke, while the second and the fourth
rectangles have been respectively drawn through a pattern
made up of two and three solid strokes.

Fig. 4. Representations of the (a) same rectangle, and (b)
related patterns.

The pattern used to draw the second and the fourth
rectangle highlights the importance, from sketch-based
context, of the pattern invariance to detect a dashed style. In
fact, potentially, every single stroke can be different from
the other; therefore every dashed shape (which is composed
of pattern repetition) is drawn by a repetition of similar (but
not identical) patterns. This aspect has to be taken into
account during dashed style recognition (as shown in the
second part of this section).

Fig. 5. Stroke style and sketch style.

The first part of this section concerns the approach used
to detect the stroke styles (solid, bold), the second concerns
the approach to detect the style of every ink used in the
sketch (solid, bold, dashed). The last two concepts are
shown in Figure 5. In Figure 5-a a sketch is represented. In
Figure 5-b-1 there are the two different stroke styles. In
Figure 5-b-2 all the recognized different styles in the sketch
are represented. In particular in Figure 5-b-2 the three

different dashed styles are represented. They respectively
belong to (in the middle of the Figure 5-a): 1) the bi-
directional arrow, 2) the rectangle and the row in the
rectangle.

The first step in detecting stroke style consists of the
analysis of the spatial and temporal sequence with which the
pixels belonging to the stroke are drawn by the user during
sketch activity. The aim of analysis is to detect the possible
direction change conveyed by the user during stroke
drawing. As shown in Figure 6, this analysis can be easily
performed by studying the behavior of a single space
component, of the stroke, in function of the time.

Fig. 6. (a) The stroke s, (b) the projection, on x axes, of
the stroke s.

As shown in Figure 6-a, a stroke (s) is a function of both
spatial coordinates (x, y) and temporal coordinate (t). The
labels A and B show respectively the start point (at time
t=ts) and the end point (at the time t=te) of the drawn stroke.

Considering only one of the two spatial coordinates of
each pixel (for instance x) and the time (t) in which the
pixels have been drawn, it is possible to obtain a reliable bi-
dimensional transposition of the stroke drawn by the user.
In this way, as shown in Figure 6-b, a function (sx)
depending on both the chosen axis (x) and the time (t) can
be considered. This function represents the projection on x
axes of the stroke (s). The ∆x shows the variability range of
the x values during the drawing of the stroke, the x
coordinates (xs and xe) show respectively the x spatial start
point (at time time t=ts) and the x spatial end point (at the
time t=te) of the drawn stroke. Finally ∆t shows the drawing
stroke time interval. The projection function (sx) allows
highlighting the direction change performed by the user
during stoke drawing (s). In fact, as shown in Figure 7,
these changes (on stroke s) are conveyed in proximity to the
local and/or absolute maximum and minimum points
belonging to the projection function (sx).

Fig. 7. (a) Stroke with two direction changes, (b) local
and/or absolute maximum and minimum points.

672

It is important to observe that it is the chosen axis (in this
case the x axis) that determines the meaning of direction
change. In fact, in this context, the direction change of the
stroke (s), is defined as the transition of x values from non-
increasing monotone to non-decreasing monotone (and vice
versa). In Figure 7-b the projection function (sx) clearly
shows four maximum and minimum points, and that is an
absolute maximum point maxA (coordinates (xe, te)), an
absolute minimum point minA (coordinates (xs, ts)), a
relative maximum point maxR (coordinates (x2, t1)), and a
relative minimum point minR (coordinates (x1, t2)). In
particular the points maxR and minR identify the direction
changes (respect x axis) of the stroke (s), while the other
two points represent the start (minA) and the end (maxA)
points of the stroke (s). These four points univocally fix the
related coordinates of the stroke (s). In fact, as shown in
Figure 7-b, the points minA, maxR, minR and maxA are
respectively related to the points A, s1, s2 and B of the
Figure 7-a.

In this way it is possible to recognize the direction
changes on stroke (s). In Figure 7-a the stroke (s) shows two
direction changes according to the points (s1 and s2). These
changes allow for the detection, in the stroke (s), of three
different sub-strokes. The first sub-stroke is shown by
segment [A, s1], the second one is shown by segment [s1,
s2], and the last one is shown by segment [s2, B]. The stroke
(s) can thus be subdivided in several strokes, where every
identified sub-stroke has a unique direction. It is important
to observe that the identification of the single sub-stroke is
independent from the speed with which the user has drawn
it. The identification entirely depends on the behavior
(transposed on the x axis) performed by the user during the
stroke drawing. That is, if the user draws the stroke in
Figure 7-a two times with a different speed, the approach
will identify the same sub-strokes, as shown in Figure 8.

Fig. 8. Same stroke with two different temporal sequences.

The user has drawn the stroke in Figure 8-b faster than
the stroke in Figure 8-a. Besides the user has kept a more
constant speed during stroke drawing shown in Figure 8-b
than the one shown in Figure 8-a. In spite of this, the
approach has detected (spatially on x axis) the same
coordinates for the four maximum and minimum points
(even if the functions s'x(t) and s''x(t) are obviously
different). Therefore the approach will consider the same
sub-strokes shown in Figure 7-a.

In this context it is important to observe that during
sketch activity a stroke can cross itself one or more time
(for example when a user performs a bold stroke). In this
way various pixels can be over-traced. In spite of this, every
time that a pixel is over-traced the related time has to be
considered (obtained always a continuous function).

The continuity of the generic projection function (sx) is
necessary to consider the possible relative maximum and
minimum points drawn upon a pixel already drawn.

When all the sub-strokes have been detected the second
step of the approach will be performed.

The second step to detect stroke style has to take into
account every sub-stroke detected in the previous step. An
enclosing rectangle for every sub-stroke can be considered,
as shown in Figure 9.

Fig. 9. Enclosing rectangles on: (a) first sub-stroke, (b)
second sub-stroke, (c) third sub-stroke.

In Figure 9 the three sub-strokes in the relative enclosing
rectangles are shown. In particular Figure 9-a shows the
enclosing rectangle for the sub-stroke [A, s1], Figure 9-b
shows the enclosing rectangle for the sub-stroke [s1, s2], and
Figure 9-c shows the enclosing rectangle for the sub-stroke
[s2, B]. The enclosing rectangle represents the smallest
rectangle that contains the stroke segment.

The last step of the approach to discriminate the stroke
style (bold or solid) is to analyze the relationship among all
the enclosing rectangles. Usually a low level overlap among
all the enclosing rectangles indicates that the stroke has
been drawn with solid style, on the other hand a high level
overlap indicates that the stroke has been drawn with bold
style. A stroke drawn in a solid style usually has all its
enclosing rectangles not completely overlapped, as shown
in Figure 10-a and 10-b, while, a stroke drawn in a bold
style usually has all its enclosing rectangles strongly
overlapped, as shown in Figure 10-c and 10-d. As it is
possible to observe, in Figure 10-b, there are two wide areas
(A1 and A2) that are covered only by two different enclosing
rectangles. Exactly, the area A1 belongs only to the
enclosing rectangle considered for the sub-stroke [A, s1],
and the area A2 belongs only to the enclosing rectangle
considered for the sub-stroke [s2, B].

 In Figure 10-d, the areas (A1 and A2) that are covered
only by two different enclosing rectangles are smaller than
in the previous example.

 We have observed that in a solid stoke the area

673

intercepted by the union of areas covered by A1 and A2 (in
Figure 10-b, A1 ∪ A2) is a larger part (among the 46% to
100%) than the area made up by union of all the areas of the
rectangles in Figure 10-a. The bold stroke has, on the same
involved areas, a smaller part (among the 0% to 37%) than
the union of areas of Figure 10-c.

Fig. 10. Enclosing rectangle on: (a)(b) solid stroke, (c)(d)
bold stroke.

Given the approach to detect the stroke style, it is
possible to introduce the approach to detect the sketch ink
style. Now, with the aim to detect dashed style in the sketch
(if present), it is necessary to analyze the relationships
among the recognized strokes. In order to explain better this
second approach we introduce the example of Figure 11.

Fig. 11. (a) Ten strokes, (b) two dashed strokes.

The stroke style approach recognizes, in the Figure 11-a,
ten strokes. More exactly, the approach recognizes two
different groups of strokes. The first one (in Figure 11-a-A)
made up of four solid strokes and the second one (in Figure
11-a-B) made up of six bold strokes. The best interpretation
for the sketch in Figure 11-a, as shown in Figure 11-b, is the
one that recognizes two dashed strokes. The first one made
up of four strokes belongs to the first group, and the second
one made up of six strokes belongs to the second group.

The approach to reach this new level of recognition
(sketch inked style) takes into account the spatial and
temporal relationships among strokes.

The first step of this approach, as shown in Figure 12-a,
is to consider an enclosing rectangle for each stroke
previously recognized. The further step, as shown in Figure
12-b, is to determine the barycentre of each enclosing

rectangle. After that a neighbourhood relationship has to be
identified among the barycentres’ rectangles. The
neighbourhood relationship is based on simple distance
measure among barycentres’ rectangles.

Fig. 12. (a) Enclosing rectangles, (b) enclosing
barycentres’ rectangle.

As shown in Figure 13-a the barycentres’ rectangles are
considered according to the order in which the related
strokes have been drawn. Consequently, as shown in Figure
13-b, c and d, the distances among each ordered couple of
barycentres’ rectangles are considered. Since each
calculated distance is smaller or equal than the fixed
threshold (thr) the involved strokes can be considered
belonging to a new stroke (dashed stroke) made up of the
original strokes.

Fig. 13. A stroke made up of four sub-strokes.

 As it is possible to observe in Figure 14, when two
rectangles centers are too far, taking into account the
considered fixed threshold, more dashed strokes have to be
considered.

Fig. 14. (a) Four strokes, (b) two dashed strokes.

Figure 14-a shows four strokes drawn in a solid style.
Figure 14-b shows two dashed strokes each one made up of
two original solid strokes.

A dashed stroke can be made up of complex patterns.
Through the approach introduced to detect the sketch ink

674

style it is also possible to identify the type of pattern that
composes a dashed stroke.

Fig. 15. Complex dashed pattern.

Figure 15-a gives a simple example of dashed stroke
made up of a pattern that involves two solid strokes.

Figure 15-b shows the main step of the approach to detect
the sketch ink style, that is the detection of the enclosing
rectangles.

In Figure 15-c the first couple of rectangles’ barycentres
is considered, and a dashed stroke is recognized. In Figure
15-d a new solid stroke is considered, and a similarity
relationship is detected between the first and the third solid
strokes. In Figure 15-e another solid stroke is considered
and another new similarity relationship is detected between
the second and the fourth solid strokes. Now, there are two
similarity relationships that cover all the four solid
considered strokes, for this reason it is possible to split the
set of solid strokes in two sub-sets, which have two solid
strokes each. In this way, as shown in Figure 15-f, a dashed
stroke can be recognized, besides the pattern that composes
the dashed stroke can be identified.

Finally, as added value, taking into account the temporal
information on the strokes that composes a pattern, it is also
possible to identify the verse of a pattern.

There are several ways to detect a similarity relationship
between strokes contained in enclosing rectangles. In this
case the measures of entropy (adapted to binary image),
average and variance of the simple distribution of the pixels
in the enclosing rectangles, as reported in [6], have been
sufficient to evaluate the similarity of two strokes.
The pattern recognition approach proposed in this paper to
identify the dashed pattern works when all the strokes that
make up the pattern are different according to their entropy
measure. Indeed, this kind of reasoning can be expanded to
allow us to recognize more complex patterns. The approach
to follow in order to reach this result is to group strokes
according to their similarity. This process has to take into
account the verse of the dashed pattern, moreover a certain
decision can be taken only when all the strokes reached by
the threshold have been analyzed. The proposed approach
discussed for the x axis can be extended to the other spatial
coordinates.

4. Conclusion

The spread of sketch-based interfaces to support the
different devices is mainly due to the fact that they make
communication intuitive and spontaneous. In this way a user
can easily represents concepts, commands and ideas in
different contexts building a powerful interaction language.
The ink style through which the user performs a sketch is a
critical aspect. Due to this aspect, recognizing and
interpreting steps are very hard tasks.

 The selection of a specific ink style is driven by a
personal ink style. Sometimes, it also depends on the
interaction tools and/or the specific contexts. This paper
proposes a strategy to detect the sketch ink style in human-
computer interaction. The approach is subdivided in two
main steps. In the first one it detects the solid or bold style
of every stroke that composes the sketch. In the second it
researches temporal, spatial and similarity relationships
among the detected stokes to identify the dashed strokes. In
this way every ink in a sketch is recognized as solid, bold or
dashed stroke. The shown approach takes into account only
the single stroke and it does not need to know the shapes
features contained in the sketch. In this way it is possible to
recognize also the different ink styles that can compose the
different sides of the same object/shape.

References
[1] M.J. Fonseca, J.A. Jorge, “Experimental Evaluation of an on-line

Scribble” Pattern Recognition Letters, Vol. 22 (12), pp. 1311–1319,
2001.

[2] M.J. Fonseca, J.A. Jorge, “Using Fuzzy Logic to Recognize
Geometric Shapes Interactively” fuzz IEEE, the 9th IEEE
International Conference on Fuzzy System (FUZZIEEE), San
Antonio TX USA, Vol 1, pp. 291-296, 2000.

[3] M.J. Fonseca, J.A. Jorge, “A simple approach to recognize geometric
shapes interactively. In Proceedings of the Third Int. Workshop on
Graphics Recognition (GREC’99), Jaipur India September, 1999.

[4] M.J. Fonseca, J.A. Jorge, “Sketch-Based Retrieval in Large Sets of
Drawings” Ph.D. Thesis Department of Information Systems and
Computer Engineering, Technical University of Lisbon Superior
Technical Institute July, 2004.

[5] J. Mitani, H. Suzuki, F. Rimura “3D sketch: sketch-based model
reconstruction and rendering” Kluwer Academic Publishers, pp. 85–
98, 2002.

[6] W.K. Pratt “Digital Image Processing. PIKS Inside, Third Edition
Copyright © John Wiley & Sons, 2001.

[7] T.M Sezgin, R. Davis “Handling Overtraced Strokes in Hand-Drawn
Sketches” In Proceedings of the AAAI Spring Symposium Series:
Making Pen-Based Interaction Intelligent and Natural, Washington
DC, pp. 21-24, October 2004.

[8] L.B. Kara “Automatic parsing and recognition of hand-drawn
sketches or pen-based computer interfaces” Ph.D. Thesis Mechanical
Engineering Department Carnegie Mellon University, September
2005.

[9] D.C Ku, S.F. Qin, D.K Wright “Interpretation of Overtracing
Freehand Sketching for Geometric Shapes” The 14th International
Conference in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG ' 2006), January 30 - February 3 2006.

675

Abstract. A peculiar arm-wrestling robot recently de-
veloped in our laboratory is basically comprised of a me-
chanical arm and a control computer. The arm-wrestling
robot detects the maximum arm-force of the user in the early
stage of the match, generates a different game scenario each
time, and executes force feedback control to implement the
scenario. This paper presents the configuration of the
arm-wrestling robot, implementation of real-time control,
design of the software structure, and human-computer in-
teraction. The validity of the proposed system is verified
through experimental studies, and is demonstrated at the
Future Tech Korea Exhibition.

I. INTRODUCTION

Presently, a novel arm-wrestling robot called Robo
Armwrestler is under development for senior health care in
our Intelligent Control and Robotics Laboratory (intro-
bot.konkuk.ac.kr), which is supported by the Korean Gov-
ernment. Our vision is to realize humanoid robots that have
entertaining functions such as arm wrestling and chess
playing, as well as service functions such as errands, and
help the elderly and the disabled in the near future.

Several years ago, Y. Bar-Cohen issued a challenge to
build a robot using muscles of electrically activated poly-
mers that could arm-wrestle a human [1]. As a result of
challenge, a few interesting arm-wrestling robots were built
using electroactive polymers (EAP) [2]. However, the pri-
mary object of these arm-wrestling robots is to demonstrate
the potential of EAP technology, and thus these robots do
not have a broad range of functions related to arm wrestling
skills. Another effort relating to a humanoid robot arm has
been in the field of prosthetic devices, such as the Utah Ar-
tificial Arm [3]. However, it does not appear that prosthetic
devices are suitable for arm wrestling, in which strong
arm-force is required.

Several practical arm wrestling devices have been pat-
ented as amusement units or as units for developing and
strengthening wrist and arm muscles [4]-[7]. These arm
wrestling devices may be classified roughly into three types
according to the methods of generating reaction force

against player's arm-force.
The first type of device uses a spring force; a typical

example is U.S. Patent 3,947,025 [4], in which the arm
wrestling device is comprised of a helical coiled spring that
has adjustable stiffness. The second type of device uses
pneumatic or hydraulic cylinders, which is better than the
spring type from the viewpoint of force manipulability.
However, a disadvantage is that the system becomes com-
plicated and bulky because of supplementary device for
pneumatic or hydraulic pressure generation. An example of
the hydraulic device is U.S. Patent 5,842,958 [5]. The third
type of arm wrestling device uses electric motors instead of
springs or pneumatic/hydraulic cylinders in order to gener-
ate resistive force against the user. Examples of this type are
Japan Patent 6-315544 [6] and Japan Patent 2002017891 [7],
in which torque motors are used for generating arm-force,
and sensor plates and photosensors are used for detecting
arm speed in order to prevent a throw fracture of the player.

These patented devices are invented for playing simple
arm wrestling games or practicing strength training, in
which they usually generate fixed force levels. If the player
generates a stronger force than the arm wrestling device,
then he will win; otherwise he will lose the game. Therefore,
the device has a deficiency in that the player is soon bored
after a few trials.

The Robo Armwrestler has salient features to improve
the above deficiency, namely, it generates automatically the
force level appropriate to each person after sensing the
human arm-force at the early stage of the match; its gener-
ated force profile varies with each match in order for the
person to play for a long time without being bored; the
winning average of the robot is determined randomly, but
the person's will to win during the match influences the
winning average of the robot. The robot recognizes a hu-
man’s approach and human’s sitting on the chair, and begins
to talk and guide. The facial expression of the avatar
changes synchronously according to arm wrestling situa-
tions.

This paper presents the configuration of the arm-wres-
tling robot, implementation of real-time force control, de-
sign of the software structure, and human-computer inter-
action.

 Chul-goo Kang, and Ho-yeon Kim
Department of Mechanical Engineering

Konkuk University, Seoul, Korea
cgkang@konkuk.ac.kr

Human-Computer Interaction for a Novel Arm-wrestling Robot

676

II. CONFIGURATION OF THE SYSTEM

The arm-wrestling robot, Robo Armwrestler, is basically
composed of a mechanical arm and a control computer. The
mechanical arm comprises a servo motor, a position/velocity
sensor, a speed reducer, a torque sensor, three inclinometers,
and an adapter with a mechanical stopper as shown in Fig. 1.
Two ultrasonic sensors are attached at the right and left sides
on the front of the table and detect a human's approach
within a prescribed range of angles near the arm-wrestling
robot. One photoelectric sensor using infrared rays detects a
human sitting on a chair. In order to guide the player, the
display monitor and speakers are prepared at an appropriate
position of the table.

Fig. 1. Mechanism for arm-force generation.

The control system of the robot is comprised of a CPU, a
memory part, an amplifier part, a logic circuit part, a pulse
generation part, and output ports. The CPU produces motor
control input using the control program and the feedback
signals, and produces voice and image signals. Voice
speakers and a display monitor are driven by the CPU
through output ports.

Torque sensor, inclinometer, photoelectric sensor, and
ultrasonic sensor signals are converted to digital signals
through A/D converters, and transmitted to CPU. Encoder
signals are transmitted to CPU directly through digital input
channels. Motor driving signals are converted to analog
voltage through a D/A converter, and transmitted to the
motor driver.

When the CPU is down, the D/A converter can still
output the last signal of the motor control input, and thus a
dangerous situation can occur if the electric power is applied
to the motor. To resolve this problem, the CPU transmits an
initialization completion signal to the motor power control
part through a D/A converter, and sends 0 value to the motor
driving part through the D/A converter when the initializa-
tion procedure is completed. The motor power control part
turns on the mechanical relay (MR) to supply the electric
power to the motor according to the output signal of the sold
state relay (SSR), which in turn is actuated by the initiali-
zation completion signal.

User safety is thus guaranteed even if the motor power
switch is turned on before completing the initialization pro-
cedure or at abnormal conditions of the control system since
the electric power is not transmitted to the motor.

III. REAL-TIME FORCE CONTROL

To make the arm-wrestling game attractive, we add force
control functions to the system in such a way that force
command is generated intelligently, and that real-time based
tracking control can follow the given force command. Linux
and RTAI (real-time kernel) have been adopted for the op-
erating system of the robot. When Linux and RTAI were
implemented at desktop PC with Pentium IV 2.8GHz, tim-
ing errors less than ±0.02 ms occurred for generating 5 ms
timer interrupts. Window XP had roughly ±1 ms latency
when we executed the same program with the same PC
platform.

A block diagram of the force feedback control scheme is
shown in Fig. 2. The control system receives feedback sig-
nals of actual position, velocity, and torque, and calculates
torque command using feedback signals and scenarios. The
system then controls the mechanical arm by means of gen-
erating the motor control input using force control logic. The
force control logic is basically a PID type, but it uses
velocity and position information together with force in-
formation.

Force control performance is mainly dependent on the
accuracy of feedback signals, and real-time control capa-
bility, including the accuracy of sampling time, and the force
feedback control logic itself. Force feedback control plays a
key role in arm-wrestling the robot, but position feedback
control is also necessary for rotating the mechanical arm to a
starting position, and setting the initial absolute angle of the
mechanical arm before a match.

Fig. 2. Simplified block diagram of the force control system.

When using the incremental encoder as the posi-
tion/velocity sensor, we initially set the absolute zero degree
angle of the mechanical arm using the mechanical stopper
and velocity feedback control. Initial setting of the absolute
arm angle can also be accomplished redundantly using
multiple inclinometers, but in this case the arm-force gen-
eration mechanism becomes more complicated, and possibly
more expensive.

677

IV. SOFTWARE STRUCTURE

The software for the arm-wrestling robot is programmed
with C language using multithreading function, pthread.
The whole program is composed of 6 tasks, and each task
corresponds to each interrupt service routine. Six tasks are
defined as in Fig. 3, in which task 1 and task 2 run in parallel,
task 3 and 4, and task 5 and 6 run in parallel, too. Task flow
with respect to time is shown in Fig. 3.

Arm wrestling is not strictly a strength sport, as people
often think, because technique and speed are both very
important. Therefore, a key element of the arm-wrestling
robot is to create an intelligent game scenario online. In the
Robo Armwrestler, the inference engine generates an ap-
propriate force profile for each match, which considers a
human’s maximum force, a human’s force pattern, time
duration, a human’s will to win, and randomness. Force
control logic enables the robot arm to follow the generated
force profile as smoothly as possible. In the developed
system, winning or losing is not predetermined, but varied
online according to the pattern of the game progression.

Fig. 3. Task definitions and task flows

For a few seconds in the early stage of the game, the
inference engine detects the human’s maximum force ac-
cording to the procedure. The system increases force up to
the specified value with a parabolic fashion for a short time,
and then the robot measures arm velocity at every 0.1 second
during the next few seconds. If the velocity is positive, then
the robot increases the force until the velocity becomes
negative, and memorizes the force value.

To realize unpredictable and intelligent game patterns,
we adopt a random number and a value called will point that
quantifies the will of the arm-wrestler to win the match. If
the will point is near 100, the user is considered to have a

strong desire to win the match. If the will point is near 0, the
user is considered to have a weak desire to win the match.
The will point is calculated by

will point = (average arm-force during one
sub-scenario)/(maximum arm-force of the user) x 100.

The game scenario is composed of several
sub-scenarios. Each sub-scenario has a different rotation
angle limit of robot arm within 150 degrees, and is divided
into three classes; win sub-scenarios, draw sub-scenarios,
and defeat sub-scenarios. If a sub-scenario is selected by
means of random number generation, the robot decreases or
increases the force during randomly determined intervals of
time. During these intervals of time, human force is meas-
ured and averaged in order to calculate the will point. As
soon as the execution of a sub-scenario is completed, the
next sub-scenario is immediately prepared. This
sub-scenario may be generated online at that instant, or may
be selected among many sub-scenarios prepared in advance.

Arm wrestling progression is affected by the will point
and the prespecified probability. For example, if the ob-
tained will point is 86, then the class of win, draw, or defeat
scenario is determined according to winning probability
with 8 %, drawing probability with 90 %, and defeat prob-
ability with 2 %. This class determination is conducted using
a random number 0 ~ 99, that is, the generated random
numbers 98 and 99 imply the defeat class, random numbers
8 to 97 imply the drawing class, and random numbers 0 to 7
imply the winning class.

Using another random number, we select a sub-scenario
randomly within sub-scenarios of the determined class. If
the selected sub-scenario is a drawing one, then the will
point is recalculated after the sub-scenario ends, and the
above procedure is repeated. If the selected sub-scenario is a
win or a defeat one, then the win or defeat sub-scenario is
progressed, and the human wins or defeats, and the arm
wrestling ends. Finally, the arm-wrestling system is initial-
ized for the next match.

V. HUMAN-COMPUTER INTERACTION

In an idle situation, the computer plays music, and waits
for a person. As a person approaches the robot, the computer
automatically detects his approach, greets him, and en-
courages him to arm-wrestle. If the person sits down, the
computer guides him to start the game.

The human-computer interaction of the Robo Arm-
wrestler is composed of four steps. The first step includes
initializing the arm-force generation mechanism and the
control system, transmitting an initialization completion
signal to the motor power control part, applying power to the
motor driving part, and setting an initial absolute angle of
the mechanical arm.

678

The second step includes detecting a human's approach
to the robot through ultrasonic sensors, guiding the human
with voice and image messages if the human is detected, or
repeating the process if not detected, detecting the human's
sitting on the chair, and guiding the human, or repeating the
process if not detected.

The third step includes increasing the torque acting on
the mechanical arm up to a specified value, determining
whether the velocity of the mechanical arm is positive or not,
increasing the torque acting on the mechanical arm with a
specific rule if the velocity is positive, decreasing the torque
acting on the mechanical arm if the velocity is negative, and
repeating the above process during a specified time interval,
and determining the user's maximum arm-force.

The fourth step includes selecting sub-scenarios among
winning, drawing, and losing sub-scenarios, calculating the
will point of the player, selecting the next sub-scenario ac-
cording to the will point, and repeating or ending the match
according to the selected sub-scenario.

The fourth step can be implemented differently from the
above by generating sub-scenarios online, which are char-
acterized by three parameters, i.e., force increment, rising
time, and maintaining time. All three values are determined
using a random number and the will point. The force in-
creasing or decreasing in a sub-scenario is achieved by
polynomial curves.

Fig. 4. An arm-wrestling match between the President of
Korea, Roh Moo-hyun, and the Robo Armwrestler at the
Future Tech Korea 2005 Exhibition.

Operation experiences at the laboratory and the Future
Tech Korea Exhibitions in October 2005 and 2006 held in
Seoul, Korea, have revealed that the Robo Armwrestler
generates intelligent scenarios unpredictably and reliably,
and controls the robot arm-force properly so that the human
arm-wrestler feels as if he is arm-wrestling against a human.
Fig. 4 shows a scene that the President of Korea, Roh
Moo-hyun, arm-wrestles with the Robo Armwrestler at the
Future Tech Korea 2005 Exhibition.

When a 72-year-old woman arm-wrestled with the robot,
she won one time and lost another time. Also, the results
showed that force patterns generated by the arm-wrestling
robot and the elapsed time of arm wrestling are different
from match to match even if the same person plays.

Another experiment was conducted as follows. As soon
as a youth with strong arm force around 50 N·m finished a
match, a 10-year-old boy with around 20 N·m arm-force
began another match. In this case, the arm-wrestlings pro-
ceeded smoothly without changing any parameters of the
arm-wrestling robot.

When one user played arm wrestling 26 times with the
Robo Armwrestler, the elapsed time varied each time (av-
erage = 17 sec) and winning average was 63%.

VI. CONCLUSION

In this paper, we have presented the configuration of the
arm-wrestling robot, implementation of real-time force
control, design of the software structure, generation of in-
telligent arm-wrestling scenarios, and human-computer in-
teraction. The validity of the proposed system is verified
through experimental studies, and is demonstrated at the
Future Tech Korea 2005 and 2006 Exhibitions. Although
the robot works as expected with the designed autonomy
and reasonable control performance, we plan to further
pursue research in order to build the arm-wrestling robot
capable of recognizing facial expressions of the human us-
ing a webcam, and thus emotionally communicating with
the human player. Moreover, we plan to add more de-
gree-of-freedom for more human-like motion, and to even-
tually integrate arm-wrestling function into a humanoid
robot.

References

[1] Y. Bar-Cohen, “Electric Flex,” IEEE Spectrum, vol. 41,
no. 6, pp. 28-33, 2004.

[2] G. Kovacs, and P. Lochmatter, “Arm wrestling robot
driven by dielectric elastomer actuators,” in Proc. of
SPIE, San Diego, CA, 2006, vol. 6168, pp. 1-12.

[3] E. Iversen, H.H. Sears, and S.C. Jacobsen, “Artificial
arms evolve from robots, or vice versa?” IEEE Control
Systems Magazine, vol. 25, no. 1, pp. 16-20, 2005.

[4] John M. Hobby, Jr., "Arm wrestling unit," US patent
no. 3947025, 2004.

[5] Fernando P. Rufa, "Arm wrestling device," US patent
no. 5842958, 1998.

[6] Taihei Giken Kogyo KK, “Hand wrestling game ma-
chine,” Japan patent no. 6-315544, 1994

[7] Shimizu Toshio, “Muscular force strengthening device
for arm wrestling,” Japan patent no. JP2002017891,
2002.

679

Managing XML Versions and Replicas in a P2P Context

Deise de Brum Saccol11,2, Nina Edelweiss2, Renata de Matos Galante2,4, Carlo Zaniolo3

2Instituto de Informática - Universidade Federal do Rio Grande do Sul (UFRGS)
Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil

{deise, nina, galante}@inf.ufrgs.br
3Computer Science Department – University of California (UCLA)

405 Hilgard Avenue, Los Angeles, CA, United States
zaniolo@cs.ucla.edu

1 This work has been partially supported by CNPq under grant No. 142396/2004-4, Capes under grant No. 1451/06-5, PERXML under grant No.

475.743/2004-0 and DIGITEX - CTInfo under grant No. 550.845/2005-4.
4 This work has been partially supported by CNPq under grant No. 481516/2004-2 (Edital Universal) and Fapergs under grant No. 0412264 (Auxílio
PROAPP).

Abstract

Peer-to-Peer (P2P) systems seek to provide sharing of
computational resources, which may be duplicated or versioned
over several peers. Duplicate resources (i.e. replicas) are the key
to better query performance and availability. On the other hand,
multiple versions can be used to support queries on the lineage
of resources and the evolution of history. However, traditional
P2P systems are not aware of replicas and versions, which cause
complexity at the logical level and inefficiency at the physical
level. To solve these problems, we propose an environment for
detecting, managing and querying replicas and versions of XML
documents in a P2P context. We also show that the proposed
environment can also be used for plagiarism detection, web page
ranking, and software clone identification.

1. Introduction

P2P systems refer to a class of applications that use
distributed resources to perform tasks in a decentralized
context. Each participant acts both as client and server,
providing access to resources through direct and
decentralized communication [1]. Their usability is mainly
dependent on techniques used to find and retrieve results. The
results quality may be measured by metrics such as the result
set size, query satisfaction, and processing time [2].

However, searching for resources in P2P systems must
deal with two important issues: the first is the existence of
replicas and the second is the presence of multiple versions of
a resource. Replicas (i.e. multiple representations) are
important for performance optimization: when the user poses
a query then the results must be returned from peers that best
satisfy performance and fast response time requirements. To
take advantage of resource replication it is necessary to detect

these replicas; otherwise, redundant results at a high
processing cost are returned to the user.

The second problem arises from the evolving behavior of
some resources, which is a fundamental aspect in persistent
information systems. This feature is even more evident in
XML domain, with frequent structure and content changes.
The evolution aspect must be managed to allow historical
analysis for dynamic resources.

The applications of the version concept are many and
diverse, for instance the management of the co-authoring
software, as studied in [3]. However, past approaches focus
on centralized management and truly P2P distributed
management still represents a difficult challenge. In P2P
systems, versioning techniques must consider that versions
and replicas may be spread over several peers. In such
context, detecting duplicates and versions is mainly useful for
query optimization. To address this issue, our paper proposes
DetVX, an environment for the detection, management and
querying of XML replicas and versions.

The main contributions of this paper are:
• A brief environment specification to detect, manage and

query replicas and versions in a P2P environment;
• A replica and linear version detection mechanism based on

hash functions and document similarity;
• A temporal XML model, based on diff algorithms and

timestamps, for representing versioned resources and
supporting basic temporal queries.
The paper is organized as follows: Section 2 presents

related works. Section 3 briefly describes the proposed
environment. Section 4 discusses the replica and version
manager module; a similarity function is presented for
version detection in content and structural evolutions. Query
capabilities are presented in Section 5. Section 6 highlights
other applications that may use our mechanism. Section 7
presents conclusions and future work.

680

2. Related Work

 There has been some recent works on temporal XML
models [5][6], extensions to its query languages [7], temporal
libraries [8] and version control [4]. However, version control
systems model files as text line sequences, storing the last
version and using reverse editing scripts to retrieve previous
versions [21]. These systems do not preserve the logic
structure of the original file and do not support complex
queries, and thus are inadequate to support XML versions.
These gaps are addressed in some works, such as [9][10] and
[11][12], respectively.

Previous works focus on version management rather than
version detection (i.e. the creation of a new version from an
old one). However, version detection is essential in our
motivating application, since the anonymity/distributed nature
of P2P environments prevents users from identifying
resources from which the new version or replica is being
created. Moreover, existent replica detection proposals focus
on identifying multiple representations of the same object in
the real world [13], which may have content or structure
differences. However, our work considers a replica as an
identical copy of a XML file.

To address this issue, we propose a detection mechanism
based on file similarity. There is some research on change
detection that can be used as a basis for measuring similarity.
Some approaches use diff algorithms to detect differences
between files [14][15]. Another possibility is to analyze their
ordered tree representations by calculating the edit distance,
i.e. the minimum cost to transform one tree into another tree
using basic operations [16][17].

Diff algorithms can be used to detect differences and, in a
certain way, a similarity value between files. However, diff
results are a delta script with no semantic information
regarding the similarity between documents. Also, the tree
edit distance results do not contain valuable information
related to the similarity level that could be used to detect
resource versions. Our work focuses on this gap and proposes
an environment for detecting and managing replicas and
versions of XML documents in a P2P context.

Many applications may use version detection mechanisms.
For plagiarism detection, comparing file checksums is enough
for detecting exact replicas, but insufficient for partial copies
[22][23]. By considering partial copies as versions, such
plagiarism can be detected. The web page ranking process can
also take advantage of the detection mechanism by ranking
new versions of existent top-ranked pages [25]. At last, the
software clone problem that arises during the development of
systems may have a negative impact on their maintenance
[24]. The proposed mechanism can help to detect such
clones.

3. DetVX Environment

DetVX is an environment for detecting and managing
replicas and versions of XML documents in a P2P context
[26]. DetVX is based on a super peer architecture [19]. Super
peers are responsible for receiving the query and resending it
to aggregated peers and other super peers. Peers must

(re)connect in super peers in order to share their files. Shared
XML files are related to a knowledge domain, used as a peer
grouping criterion in super peers. An ontology is used to
represent the knowledge domain [18]. Super peers are
managed by the administrative super peer, as depicted in
Figure 1.

Fig. 1. DetVX Environment

Files may be duplicated or versioned over the super peer
network. To provide the functionalities for replica and
version detection, this work proposes the following modules.
The peer manager is responsible for (re)connecting peers and
periodically verifying modifications in shared files. The
ontology manager maintains the ontology repository and
associates ontologies to super peers. The replica and version
manager identifies and manages document replica and
versions. The query processor is responsible for verifying the
query domain and rotating queries to peers. Metadata play a
fundamental role and are detailed in Section 3.1. In this
paper, we do not detail the peer and ontology managers. More
details may be found in [26].

3.1 Document and Metadata Representation

The term file refers to a physical representation stored in a
peer; document refers to the representation of an object in the
real world. In other words, one document can be stored as
many files, either because it is replicated or versioned. A file
has a registering and a modification time. The modification
time is considered to define the file order over time. Local
(fileID) and global identifiers (GFID) are used to identify a
file in a peer and in a specific location in the network,
respectively [26]. Documents also have identifiers (docID)
and they are used to identify versions and replicas of the same
object in the real world.

To manage identifiers and other relevant information, the
approach relies on the extensive use of metadata. Metadata
are represented as XML files and classified in two levels, as
shown in Figure 1. In this paper, only super peer metadata are
considered. Super peer metadata basically specify the
available versions and replicas in a specific super peer
(superPeerId), and the corresponding timestamps for each
element (timeStart: TS, timeEnd: TE) that is found in
certain file (fileID) in a peer (peerID), as shown in Listing 1.

<Metadata superPeerId="SP1">
 <document docID=”D1” fileID="F7" HDoc=’’YES”>
 <version versionID="1" peerID="P1" registeringTime="10/10/2005"
 modificationTime="08/08/2004" duplicate="no"
 hashResult="d49622ddab3733549e54749755fd52b5">
 <element name="author" TS="08/08/2004" TE="10/15/2004"/>
 <element name="address" TS="08/08/2004" TE="10/15/2004"/></version>
 <version versionID="2" peerID="P2" registeringTime="11/20/2005"
 modificationTime="10/16/2004" duplicate="yes"
 hashResult="7c00bb062edc60fa548729a3d55c04fd">
 <locationDuplicate>Peer 3</locationDuplicate>…</version>
</Metadata>

Listing 1. Super Peer Metadata

Research Projects Ontology
Metadata

Curriculum
Files

Curriculum
 and Research
Projects Files

Research
Projects Files

Research Projects
Files

Peer Peer 2 Peer 3 Peer 4

 SpPeer 1 SpPeer 2Curriculum Ontology
Metadata

Ontology Repository
Administrative Super Peer
Metadata

1
2
3
4
5
6
7
8
9
10
11
12

681

Each element has two timestamps inferred from the
modification time of the file in which the element is
contained. Super peer metadata information is updated
whenever a new file is registered into a peer and is
extensively used during querying process.

4. Replica and Version Manager

This module is responsible for detecting replicas and
versions and representing the history in a new structure,
called H-Doc file.

4.1 Detection Mechanism

To solve the detection problem, a first approach is to look
for replicas and versions in the local peer. If they are not
found, the detection is executed in the next peer of the super
peer network. The detection mechanism is executed whenever
a file is registered or updated in a peer. When a file is
removed, only the metadata need to be updated. A peer
modification checking service is responsible for periodically
watching the peer and notifying its super peer whenever a
change is detected.

The replica detection mechanism aims to verify if a file is
a copy of any other file stored in any peer belonging to the
same super peer network. In our work, a duplicate (or replica)
is defined as an identical copy of a XML file. The replica
detection is done by comparing the file hash result with all
the hash results already stored in its super peer metadata. Two
files f1 and f2 are replicas if:

HashFunction(f1)=HashFunction(f2)

The version detection mechanism aims to verify if a
modified file is a version of any other file stored in any peer
belonging to the same super peer network. Since this work
assumes the linear versioning approach, this activity will
compare the candidate file only with the last file versions
available in the super peer network.

There are two types of evolution that are considered:
� Content: <x>A St, 7</x> <x>B St, 8</x>

� Structure and content: <x>A St, 7</x> <y>B St</y> <z>8</z>

In this proposal, version detection is based on file
similarity. The general idea is that two files with high
similarity are considered two versions of the same document;
two different documents, otherwise.

Let’s first consider the content evolution type.

4.1.1 Content Evolution
Suppose two files, f1 and f2, shown in Listing 2.

Listing 2. XML Files

In order to evaluate the similarity between these files,
some features are observed:

� Diff results: the root element in both files has six child
elements. Using a diff algorithm, the differences between the
files are detected. As Listing 3 shows, the content of the
elements salary and job do not match in the second file. In
other words, 67% of the original elements kept unchanged in
the second file.

The assumption here is the following: the bigger
percentage of matched elements, the bigger chance the files
are versions of the same document.

<delta> <Deleted update="yes" pos="0:0:3:0">3700</Deleted>
 <Deleted update="yes" pos="0:0:2:0">engineer</Deleted>
 <Inserted update="yes" pos="0:0:2:0">manager</Inserted>
 <Inserted update="yes" pos="0:0:3:0">4900</Inserted> </delta>

Listing 3. Diff result2 for files f1 and f2

� Matched and unmatched elements: We consider the term
matched to refer to an element that has the same content in
both files (for example, name); unmatched, otherwise (for
example, salary). Let’s take a look at the unmatched elements
salary and job. Using a (combination of) string similarity
function(s), we calculate a value that demonstrates how
similar the unmatched elements are. The more similar the
respective unmatched elements, the bigger chance the files
are versions of the same document.

� Element change relevance: Another important issue is the
relevance of individual changes. Some domain concepts can
change more frequently than others. Let’s suppose that we
have an address element. Two different addresses can easily
refer to the same person; however, two different birthdates
suggest that we are analyzing two different objects in the real
world. In other words, the change relevance is differently
weighted for different concepts. We assume different
weights, such as high (1), medium (0.5) and low (0). The
average of weighted relevances is used to calculate file
similarity. The smaller change relevance they present, the
bigger chance the files are versions of the same document.

Based on the previous discussions, the similarity function
simC between two files f1 and f2 is defined as:

simC(f1,f2) = (w1*F1 + w2*F2 + w3*F3 + ... + wn*Fn)
Where wn is a factor that weights the importance of a

specific feature Fn. A factor may be positive or negative (if it
influences the similarity growth or reduction, respectively).
Considering wx, wx+1,…wy as positive factors and wz, wz+1,…wq
as negative factors, we assume that wx + wx+1 +...+wy = 1 and
0<= wz + wz+1 +...+wq <= 1.

In our approach, three features are considered to produce
the following content evolution similarity function:

simC(f1,f2) = w1*P + w2*S + w3*R

Where: P is the percentage of matched elements, S is the
mean similarity of the unmatched elements and R is the
average of domain relevances of the unmatched elements
(defined by the system administrator). P and S factors (w1 and
w2, respectively) are positive values (the greater these values,
the more similar the files) and R factor (w3) is a negative value
(the smaller this value, the less relevance the change and the
more similar the files). The factors (w1, w2,..., wn) must be
defined based on the importance of the three features in

2 We are currently using XyDiff implementation [14], but the architecture

allows changing to other diff algorithms.

<employee>
<name>Marcos</name>
<hiringDt>10/10/03</hiringDt>
<job>engineer</job>
<salary>3700</salary>
<address>7 St</address>
<phone>65982541</phone>

</employee>

<employee>
 <name>Marcos</name>
 <hiringDt>10/10/03</hiringDt>
 <job>manager</job>
 <salary>4900</salary>
 <address>7 St</address>
 <phone>65982541</phone>

</employee>

682

specific applications/domains and recall/precision measures
[30].

The intervals of the defined variables are defined as: {P|P
∈ [0,1]}, {S|S ∈ [0,1]}, {R|R ∈ [0,1]. Analyzing the
minimum e maximum values of P, S and R, and the sum
restrictions for positive and negative factors, we conclude that
the similarity function produces a value simC that ranges
from -1 to 1, i.e. {simC|simC ∈[-1, 1]}.

To calculate P, we use a function calcP that returns the
percentage of matched elements based on the diff result. S is
calculated by using a (combination of) string similarity
function(s) (StrSim()) and it is defined as the average of
unmatched elements (ue) similarity values. The function is
defined in more details as follows:

simC(f1,f2) = w1*calcP(diff(f1,f2)) + w2* StrSim(ue1x,ue2x) - w3* R(uex)

 t t

As depicted in Figure 2(a), the similarity function values
are not uniformly distributed. To uniformly distribute the
values, we sort and map the m similarity function results into
n classes. The mapping, represented in a transformation table,
categorizes m/n members in each class. Since we have 100
different similarity values, this transformation generates
0.01*m members in each class.

Fig. 2. Similarity Function Values (a) and (b)

Figure 2(b) shows the distribution of the mapped uniform
transformation. We generated 1.000.000 values according to
the original similarity function, using 0.5, 0.5 and -0.5 as the
weight values, and grouped them into 100 classes. These
classes were mapped to values ∈ [0,1], in order to uniformly
distribute the function values. To ensure that the mapping is
correct, we generated more 100.000 values and mapped them
to this table.

After producing the similarity values, a threshold is used
to detect versions based on them. The threshold generation is
an ongoing work and it is not detailed in this paper. Further
study is still needed to assess which threshold is better respect
to precision and recall.

4.1.2 Structure and Content Evolution
Suppose two files, f3 and f4, shown in Listing 4.

Listing 4.XML Files

In order to evaluate the similarity between these files, the
discussions about diff results and element change relevance

in the last sub-section are still valid. Another feature is also
observed:

� Added and removed elements: using a diff algorithm, the
differences between the files are detected. Analyzing the files
and the diff results, we can see that the f4 has added one
element (address) and has removed two elements (job and
hiringDt). Let’s refer added to the elements in the first
situation and deleted to the elements in the second situation.
These concepts are similar to the ideas presented in [29],
which consider plus, minus and common elements for
measuring similarity between a document and a DTD.

We consider the term matched to refer to an element that
has the same structure and content in both files (for example,
name and phone); unmatched, for those elements that the
content has changed (for example, salary). Similar to the
ideas presented for the content evolution, the following
features are considered to produce the structure evolution
similarity function:

simE(f3,f4) = simC(f3,f4) + w4*A + w5*D

Where: simC is the content similarity value, A is the
percentage of added elements and D is the percentage of
deleted elements. A and D factors (w4 and w5, respectively) are
negative values (the smaller these values, the more similar the
files).

The intervals of the defined variables are defined as: {A|A
∈ [0,1], {D|D ∈ [0,1]. Analyzing the minimum e
maximum values of simC, A, D, and the sum restrictions for
positive and negative factors, we conclude that the similarity
function produces a value simE that ∈[-3, 2].

To calculate A, we use a function calcA that returns the
percentage of added elements, based on the diff result. To
calculate D, we use a function calcD that returns the
percentage of removed elements, based on the diff result.

simE(f3,f4) =simC(f3,f4) - w4*calcA(diff(f3,f4)) – w5*calcD(diff(f3,f4))

The similarity values are not uniformly distributed.
Similarly, the process detailed in the previous section is
applied on the results to uniform these values. Also, the
threshold process presented in Section 4.1.1 is still valid.

Whenever a new version or replica is detected, the
timestamps described in the super peer metadata need to be
updated. Metadata updating is described in [26].

4.2 A Consolidated Historical Representation

After detecting the versions, the system stores them in a
new physical file, which contains the entire history of a
document. The document history is named consolidated
historical representation and represented in H-Doc files. H-
Doc files are stored in the respective super peer where the
original versions are registered. Timestamps are responsible
for validating data in specific versions. H-Doc representations
are generated only for frequently accessed and evolved files.
The goal is to provide faster query processing for queries that
ask historical retrieval.

The H-Doc generation process is detailed in [27]. Listing 6
shows the H-Doc file generated for Listing 4. Consider that f3
and f4 have 01/01/2004 and 01/01/2005 as modification
times, respectively.

t

x=1

t

x=1

<employee>
<name>Marcos</name>
<salary>4500</salary>
<address>7 St</address>
<phone>65982541</phone>

</employee>

<employee>
<name>Marcos</name>
<hiringDt>10/10/03</hiringDt>
<job>engineer</job>
<salary>3700</salary>
<phone>65982541</phone>

</employee>

683

<employee TS=”01/01/2004 TE=NOW”>
 <name TS=”01/01/2004” TE=”NOW”>Marcos</name>
 <hiringDt TS=01/01/2004 TE=”12/31/2004”>10/10/03</hiringDt>
 <job TS=”01/01/2004” TE=”12/31/2004”>engineer</job>
 <salary TS=”01/01/2004” TE=”12/31/2004”>3700</salary>
 <salary TS=”01/01/2005” TE=”NOW”>4500</salary>
 <phone TS=”01/01/2004” TE=”NOW”>65982541</phone>
 <address TS=”01/01/2005” TE=”NOW”>7 St</address>

<employee>

Listing 5. H-Doc File

In DetVX environment, the generation of the H-Doc file is
done by XVersion tool, a currently implementation work [27],
based on diff algorithms and timestamps.

5. Query Processor

After detecting replicas and versions, temporal queries
may be posed on the original files located in the peers or on
the historical representation stored in the super peers.

5.1 Querying the Original Files

To evaluate which files must be accessed to answer a
query, our approach relies on metadata described in Section
3.1. The query submission works as follows: the user poses a
query in a specific peer (named querying peer). This query
belongs to a specific domain. Looking at the super peer
metadata, it is possible to see how to access the history or
versions of an element or document.

Considering the super peer metadata described in Listing
1, some temporal retrieving examples are described below:
1. Retrieve the version vi of an element ej – for instance, get

the first version (versionID="1", line 3) of the element
author (element name="author", line 6). By searching the
version number represented in metadata, the system can
verify that the first version of the queried element is found
in peer 1 (peerID="P1", line 3) located at super peer 1
(superPeerId="SP1", line 1). Thus, the system must access
this file and return the results.

2. Retrieve the history of an element ej – for instance, get the
history of the element address. To answer this query, the
system searches the metadata, looking for all the versions
(versionID) of the element address (element
name="address"). The last version of this element is
represented by TE=now. Another possibility for this query is
to check if there is a generated H-Doc representation for
this file (attribute HDoc="YES", line 2). In this case, the
system can access this file in the super peer, as described
in the next section.

5.2 Querying the H-Doc File

Consider a document D as a n-tuple D = (root, e1, e2,...,
en) and an element e in this document as a 3-tuple E=(TS, TE,
<content>), where TS and TE denote the timestamps.
Temporal restrictions are applied based on a specific date x or
on an interval x and y (x<y). Some temporal clauses are:
1. Select_Before (E, x): returns the elements e that are valid

in H-Doc file before x (elements whose TS < x);
2. Select_After (E, x): returns the elements e that are valid in

H-Doc file after x (elements whose TE>x);

3. Select_Between (E, x, y): returns the elements e that are
valid in H-Doc file between x and y (elements whose
TS<=y and TE>=x);

4. Select_Now (E): returns the elements e that are valid in H-
Doc file in current time (elements whose TE=now);
The same clauses are defined for retrieving entire

documents, such as Select_Before (D, x), Select_After (D, x)
and others. Query capabilities based on XQuery language [20]
have been implemented in our tool named XVersion. This tool
generates the H-Doc document and allows basic temporal
queries over the historical file. More details about XVersion
may be found in [27].

6. Other Applications

This paper focuses on version and replica detection
problem in P2P systems. Although this is the motivating
scenario for our system and experiments, we expect that our
proposal can be used in other applications, such as:

� Web page ranking: ranking methods usually involve the
location and frequency of keywords in a web page. Search
engines verify if the searched keywords appear close to the
page top (headline or in the first few paragraphs). Frequency
is also considered by analyzing how often keywords appear in
relation to other words in a web page [25]. Another factor
that may be considered for ranking is the incoming link
degree (i.e. the number of links that point out to a page p).
However, new p versions may have a small incoming link
degree, mainly because of the pages that were pointing to p
are not aware of the new version. In such context, version and
replica detection may be useful for ranking new versions even
if they have low incoming degrees.

� Plagiarism detection: Digital files may be easily copied,
either partially or completely. One way to detect plagiarism is
by comparing file checksums, which is simple and suffices
for reliably detecting exact copies. However, detecting partial
copies is more complicated [22]. By using the mechanism
proposed in this paper, similar files are identified. The
threshold definition must be in accordance to such
application. For instance, partial copies must be identified
with a low threshold, whereas complete copies must be
detected with a higher threshold.

� Software clone identification: replicated code can arise
during the development and evolution of software systems
and it has a negative impact on their maintenance. The
detection gets difficult mainly because of small differences,
such as reformatting, code and variable name changes [24].
Existent detection mechanisms usually rely on the use of a
parser, but this approach is dependent on the programming
language syntax. The classical plain-text representation of
code is convenient for programmers but requires parsing to
uncover the deep structure of the program. Representing code
in a structured format, as XML documents [28], permits easy
specification of numerous software-engineering analyses by
leveraging on the abundance of XML tools and techniques. In
this context, the proposed mechanism may be used for
software clone detection.

684

7. Concluding Remarks

This paper focused on detection and management of XML
replicas and versions in P2P contexts. The relevance of such
problem is quite evident in many scenarios, such as
plagiarism detection, web page ranking, software clone
identification, assuring link permanence in Web documents,
and enhancing search in P2P systems. To increase efficiency
and effectiveness in such systems, this paper briefly described
the proposed architecture and functionalities of the DetVX
environment.

We have proposed a simple structure for representing
metadata which can be used for managing and querying the
available files. A document similarity function used as the
basic idea in the detection mechanism was also described.
The proposal requires no intervention by the user. The user is
only requested to update the document and register the file;
the system detects prior versions or duplicates, generates
identifiers and manages all the related metadata.

The current state of the project is as follows. We have
already implemented XVersion, a tool for representing and
querying document history. Basic retrieval capabilities have
been implemented, allowing simple temporal queries over the
historical representation. As future work, we are going to
incorporate the detection mechanism in DetVX environment.
The completion of the detection mechanism will allow us to
measure improvements on selected testbeds, including JXTA
[31]. Results will be presented in the conference.

References
1. Aberer, K. and Hauswirth, M.. An Overview on Peer-to-Peer

Information Systems. Workshop on Distributed Data and Structures,
Paris, France, 2002.

2. Yang, B. and Garcia-Molina, H.. Efficient Search in Peer-to-Peer
Networks. In: Proceeding of the Intl. Conf. on Distributed Computing
Systems, Vienna, Austria, 2002.

3. Westfechtel, B., Munch, B. P., and Conradi, R. A Layered
Architecture for Uniform Version Management. IEEE Trans. Software
Eng., 27(12):1111–1133, 2001.

4. Chien, S-Y., Tsotras, V. J., Zaniolo, C. (2001). XML Document
Versioning. SIGMOD Records, Vol. 30 Number 3, Sept.

5. Su, H., Kramer, D., Chen, L., Claypool, K. T., Rundensteinrer, E. A..
XEM: Managing the Evolution of XML Documents. Proc. of 11th Intl.
Work. on Res. Issues in Data Engineering, Heidelberg, 2001.

6. Grandi, F. and Mandreoli, F.. The Valid Web: an XML/XSL
Infrastructure for Temporal Management of Web Documents. Proc. of
Advances in Information Systems, 2000.

7. Gao, D. and Snodgrass, R.T.. Temporal Slicing in the Evaluation of
XML Queries. Proc. of Very Large Database Systems, 2004.

8. Wang, F. and Zaniolo, C.. Representing and Querying the Evolution of
Databases and their Schemas in XML. In Workshop on Web
Engineering, SEKE, San Francisco, USA, 2003.

9. Chien, S.; Tsotras, V.; Zaniolo, C. and Zhang, D.. Storing and
Querying Multiversion XML Documents using Durable Node
Numbers. Proc. of the 2nd Intl. Conf. on Web Information Systems
Engineering, 1, 232-241, vol.1, 2001.

10. Grandi, F., Mandreoli, F., Tiberio, P.. Temporal Modeling and
Management of Normative Documents in XML Format. Data &

 Knowledge Engineering, v. 54, n. 3, p. 327-354, Sept., 2005.

11. Vagena, Z. and Tsotras, V.. Path-Expression Queries over
Multiversion XML Documents. Proc. of Intl. Workshop on the Web

and Databases, 49-54, 2003.
12. Wang, F. and Zaniolo, C.. An XML-Based Approach to Publishing

and Querying the History of Databases. World Wide Web: Internet and
Web Information Systems, 2005.

13. Weis, M. and Naumann, F.. Detecting Duplicates in Complex XML
Data. Proc. of the 22nd Intl. Conf. on Data Engineering, 2006.

14. Cobena, G., Abiteboul, S. and Marian, A.. Detecting Changes in
XML Documents. Proc. of 18th Intl. Conf. on Data Engineering, 41-
52, 2002.

15. Wang, Y., DeWitt, D. J., Cai, J. (2003). X-Diff: An Effective Change
Detection Algorithm for XML Documents. Intl. Conf. on Data
Engineering, 519-530.

16. Chawathe, S.S.. Comparing Hierarchical Data in External Memory.
Proc. of the 25th Intl. Conf. on Very Large Data Bases, Morgan
Kaufmann Publishers Inc., 90-101, 1999.

17. Wan, X. and Yang, J.. Using Proportional Transportation Similarity
with Learned Element Semantics for XML Document Clustering.
WWW '06: Proc. of the 15th Intl. Conf. on World Wide Web, ACM
Press , 961-962, 2006.

18. Peres, A., Lopes, M., Corcho, O.. Ontological Engineering: with
Examples from the Areas of knowledge Management, e-Commerce
and Semantic Web. Springer, 1st edition, 2004.

19. Schollmeier, R.. A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architetures and Applications. Proc. of
the 1st Intl. Conference on Peer-to-Peer Computing, 27-29, Linköping,
Sweden. IEEE Computer Society 2001.

20. XQuery 1.0: An XML Query Language. W3C Proposed
Recommendation. Available at: http://www.w3.org/TR/xquery.

21. CVS: Concurrent Versions System. Available at:
http://www.nongnu.org/cvs.

22. Schleimer, S., Wilkerson, D., Aiken, A.. Winnowing: Local
Algorithms for Document Fingerprinting. Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data, San Diego, California, p. 76-85,
2003.

23. Chen, X., Francia, B., Li, M., McKinnon, B., Seker, A.. Shared
information and program plagiarism detection. IEEE Transactions on
Information Theory, v. 50, n. 7, p-1545-1551, 2004.

24. Ducasse, S., Niertrasz, O., Rieger, M.. On the effectiveness of clone
detection by string matching. Journal of Software Maintenance and
Evolution: Research and Practice, v. 18, n. 1, p. 37-58, 2006.

25. Baeza-Yates, R., Castillo, C.. Relating Web Characteristics with
Link based Web Page Ranking. Proc. of the 8th Intl. Symposium on
String Processing and Information Retrieval, 2001.

26. Saccol, D.B., Edelweiss, N., Galante, R.M.. Detecting, Managing
and Querying Replicas and Versions in a Peer-to-Peer Environment.
In: 1st IEEE TCSC Doctoral Symposium, in conjunction with the 7th
IEEE Intl. Symposium on Cluster Computing and the Grid, Rio de
Janeiro, 2007 (to appear).

27. Saccol, D. B.; Giacomel, F. S.; Galante, R. M.; Edelweiss, Nina..
Grouping and Querying XML Document Versions in a Peer-to-Peer
Environemnt (in Portuguese). In: Actas do XATA-XML: Aplicações e
Tecnologias Associadas, Lisboa, 2007.

28. Badros, G. J.. JavaML: A Markup Language for Java Source Code.
In Proc. of the 9th Intl. Conf. on the World Wide Web, Amsterdam,
2000.

29. Bertino, E., Guerrini G., Mesiti, M.. A Matching Algorithm for
Measuring the Structural Similarity between an XML Document and a
DTD and its Applications. Information Systems, v. 29, n. 1, Special
issue on web data integration, p. 23-46, 2004.

30. Baeza-Yates, R.A., Ribeiro-Neto, B.. A. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

31. Gong, L.. JXTA: A Network Programming Environment. IEEE
 Internet Computing, 5(3):88–95, May/June 2001.

685

Knowledge sharing through a simple release planning method
for web application development

Sven Ziemer and Ilaria Canova Calori

Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

E-mail: {svenz|canovaca}@idi.ntnu.no

Abstract

Web application development is – under circumstances
such as a strong emphasis on time-to-market – charac-
terised by the use of informal and ad-hoc development prac-
tices and a lot of tacit knowledge. A recently proposed
release planning method, that has been developed for the
use in these environments, aims at bringing stakeholders to-
gether to share their knowledge and to decide on a configu-
ration for the next release of a web application that satisfies
all stakeholders. An initial experiment to evaluate the re-
lease planning method indicates that the method does well
on supporting a consensus and stakeholder satisfaction, but
it does not contribute to knowledge sharing between stake-
holders in small projects. To study the effect that learning
and experience from using the method several times has on
knowledge sharing and understanding among members of
a small development team, and to study the effect that a
changed communication pattern has on knowledge sharing
and understanding.

1 Introduction

Web applications that are developed with a strong focus

on short time-to-market use development practices that can

be characterised as informal, chaotic, rush-to-market and ad

hoc [7] [11]. As a result of these practises, the knowledge

that is available to make a decision regarding the develop-

ment activities, is spread between all stakeholders, and is

tacit, informal, and in many cases qualitative and based on

the stakeholders opinion and beliefs. To make a decision

that takes all available knowledge into consideration, it is

necessary to bring the stakeholders together and to make

them share their knowledge.

Release planning is an important decision for a soft-

ware project. Release planning for web application devel-

opment must balance important factors such as a short time-

to-market, that is important to give an early return on the

investments that have been made into the web application,

and innovative and attractive functionality that aims at at-

tracting the attention of potential users. In a recent paper we

proposed a release planning method that brings together all

available knowledge from the stakeholders and make them

reach a consensus based decision on the next release [10].

Release planning is an important decision for a software

project [2]. Moreover release planning for web-application

development must balance important factors such as a short

time-to-market, that is important to give an early return on

the investment, and innovative and attractive functionalities

that aims at attracting the attention of potential users. Many

works refer to empirical studies on planning of software re-

leases [4] [5] but there are not specific works about web

application release planning. In a recent paper a release

planning method has been proposed to bring together all

available knowledge from the stakeholders and make them

reach a consensus based decision on the next release [10].

To study the effect of this method on small development

teams, we conducted an experiment with students at our

university [9]. Based on the analysis of the results from

this experiment we decided to repeat the experiment two

times in two different settings, in order to study the effect

of experience and learning on knowledge sharing and un-

derstanding and the the impact of changing the instructions

on the communication pattern of a method with respect to

knowledge sharing and understanding.

This paper describes the details of the experiments and

reports the results and lessons learned from them. The pa-

per is organised as follows: We give a more detailed back-

ground for our motivation to repeat the initial experiment in

section 2. The experiment planning is given in section 3,

and the results are shown in section 4. A discussion of rel-

evant topics is presented in section 5, and conclusions are

given in section 6.

2 Background

To make good decisions, the decision makers must have

access to the knowledge that is available about the issue at

686

A

Roles: PR = Project Manager,
MD = Marketing Director, PR = Programmer

PR

PM

MD

Method

Method

Method

B

PR MD

PM

Method

Figure 1. Two communication patterns

hand. When the knowledge leaves out certain aspects, this

will be reflected in the decision and in its results. When

a lot of the knowledge that a decision has to be based on

is tacit, we need a different technique to share knowledge

and create a common understanding than we need when the

knowledge is explicit.

Web development projects involve often tacit knowl-

edge, that is spread between all stakeholders. A recently

proposed release planning method, aims at bringing to-

gether stakeholders, make them share their knowledge and

create a common understanding, and to make a decision on

the next release for a web application development project.

To do so, the stakholders should perform a qualitative as-

sessment on the expected return on value for every require-

ment and candidate configuration. They should use a a sim-

ple scale with five points, where ”1” stands for no value

and ”5” for very high value. In addition, each stakeholder

should give a short justification for his assessment. Based

on the assessment requirements and candidate configura-

tions are prioritised, and a final decision on the next release

is made [10].

We decided that the proposed release planning method

should be evaluated and validated experimental. We there-

for planned an experiment to observe the effects the pro-

posed method had when used by small development teams.

The factors we decided to study were: knowledge shar-

ing, understanding, prioritisation, reaching a consensus, and

stakeholder satisfaction. Due to limited resources the ex-

periment was planned as an off-line, student experiment,

with one factor and with two treatments. The students were

divided into a treatment group and a control group. Both

groups had to participate in a role play and solve a release

planning task. The treatment group used the proposed re-

lease planning method whereas the control group solved the

task in an ad hoc manner. After the experiment all students

had to fill in a post-experiment questionnaire that we used

to analyse the effect of the release planning method on the

aforementioned factors. The results showed that the treat-

ment group did perform better on prioritisation, reaching a

consensus and stakeholder prioritisation, whereas the con-

trol group performed better on knowledge sharing and un-

derstanding.

The results were not as expected and we could there-

for not reject the null hypothesises stating that the release

planning method did not perform different for knowledge

sharing and understanding. When analysing and discussing

the results we found two possible explanation for the unex-

pected results:

• When introducing a new method, the focus of the de-
velopers is on understanding the method and to use it

correctly. The problem to be solved will consequently

receive less focus, and the communication about the

problem between the team members will be less inten-

sive. With more experience in using the method, the

understanding of the method is growing, and the de-

velopers will move their focus to the problem. The

communication between the team members will also

focus more on the problem again. The control groups

had not to learn a new method and could use all their

attention on the task.

• Another explanation is based on the communication
pattern that was introduced with the instructions on

how to use the release planning method and the hand-

outs supporting the use of the method. Every sub-

ject on the treatment groups received a form where

he could write down his notes on the problem during

the experiment. This was done for the team members

convenience, but seemed to have the unintended side-

effect of disabling the communication between group

members (see figure 1 A).

Our conclusions were that we would expect the treatment

groups to perform better on knowledge sharing and under-

standing when running the experiment again and observing

the effect (1) of the team members experience in using the

method, and (2) of changing the communication pattern that

is introduces to the treatment groups by the instruction they

receive. The changed communication pattern is shown in

figure 1 B, and aims to enable as much oral communication

between the group members as possible.

We decided to investigate these explanations further, and

performed four new experiments. The initial experiment is

denoted E1 (see figure 2). Two experiments – E 2.1 and E

2.2 – are replications of the first experiment. Their results

will – together with the results from the first experiment E1

– let us study the effect that learning and experience has

on knowledge sharing and understanding. For the two other

experiments – E 3.1 and E 3.2 – we will change the commu-

nication pattern in our instructions. Only the group leader

will receive a form for taking notes, and the group members

687

Communication
Pattern A

Communication
Pattern B

Scenario 1
Questionnaire 1

Scenario 3
Questionnaire 2b

Scenario 2
Questionnaire 2a

E 1

E 2.1 E 3.1

E 3.2E 2.2

H0b

H0a H0a

H0b

H0a

Figure 2. The organisation of experiments.

have to give their comments to the group leader orally. The

result of this experiment can be compared to the results of E

1, E 2.1 and E 2.2, to study the effect that a changed instru-

mentation have on knowledge sharing and understanding.

3 The experiments

We planned the four experiment together. Figure 2

shows how the experiments are related and the factors that

changed during the experimentation: The communication

pattern, the scenario and the questionnaire.

Experiment definition The experiment definition is

(using the template from [8]):

Object of study: The release planning method [10].
Purpose: Study the effect of learning and a changed

instrumentation on knowledge sharing and understanding.

Quality focus: The stakeholders increased shared knowl-
edge and understanding.

Perspective: The development teams point of view Con-
text: Experiment with industrial economy and computer
science students in their 3rd year of study, forming small

groups of 3 or 4 members. The study is conducted as

Multi-test within object study.

Experiment planning The four experiments have been

planned as replications of the initial experiment E1. We

refer to [10] for a detailed description of the experiment set-

ting. However, even when the experiments are planned as

replications of E1, we had to make some small changes to

be able to reach the goal for these experiments:

• As indicated in section 2, we changed the communi-
cation pattern that we introduce in our instructions on

how to use the release planning method and the hand-

outs that each group receives. These changes apply to

experiments E3.1 and E3.2. We recruited also a dif-

ferent student group for these two experiments. The

students were new to the experiment and the proposed

release planning method. Experiments E 2.1 and E2.2

are unchanged from E1, and where run with the same

communication pattern, handouts, and student group.

• We created two new scenarios to be used in the role
plays that take place in each experiment. Experiment

E2.1 and 3.1 used the first scenario, and experiment

E2.2 and 3.2 used the second scenario. Both scenarios

are from the development of web applications. The

first version of the new applications have to be de-

ployed within three weeks, and the task of the groups

is to find a release that satisfies all stakeholders.

• We used the same post-experiment questionnaire as
in the first experiment. Based on the leasons-learned

from the fist experiment, we added four questions in

a new group of questions on communication, to get a

better impression on the communication style in each

group. In addition we changed the order of the ques-

tions in the questionnaire for experiments E2.2 and

E3.2, and changed the wording of approximate 30 %

of all questions to a negative wording. Otherwise, the

questionnaire remained unchained.

Hypothesis formulation The hypothesises of the experi-

ments are as follows:

H0a: There is no effect on knowledge sharing and under-
standing from learning when the users gain experience in

the release planning method.

H1a: There is a effect on knowledge sharing and under-
standing from learning when the users gain experience in

the release planning method.

H0b: The changed communication pattern used in the re-
lease planning method has no effect on knowledge sharing

and understanding.

H1b: The changed communication pattern used in the re-
lease planning method has an effect on knowledge sharing

and understanding.

4 Results

The experiments collect data by means of a post-

experiment questionnaire, filled in be every participant or

every experiment he participated in. The questionnaires

were divided into six groups – knowledge sharing, un-

derstanding, prioritisation, consensus reaching, stakeholder

688

Figure 3. Boxplot for question 6 for E1, E3.1.
E2.2 and E3.2

satisfaction and communication – and contained a total of

28 issues. For each issue, a statement is given together with

a five-point Lickert scale. Each respondent used the Lickert

scale to express his degree of agreement with the statement,

by checking of one of the following: strongly disagree, dis-

agree, neutral, agree and strongly agree.

The questionnaire were analysed group for group, and

each group were analysed question by question. The null

hypothesis was tested for each group of questions. To reject

it we required that the results for one sample were signif-

icantly better for at least 50 % of the questions than the

results of the sample they compared to. We considered the

results to be significant for p-value less than 0.1.

4.1 Hypothesis A – Learning

What is the effect on knowledge sharing and under-

standing when the subjects in the treatment groups gain

some experience in using the release planning method in

small teams, and start to learn from previous experience?

Are there any differences between the treatment groups us-

ing the proposed release planning method and the control

groups solving the task in an ad hoc style. To answer these

questions we analyse the differences between the results

from experiments E1–E2.1, E1–E2.2 and E3.1–E3.2.

Knowledge sharing – Six questions

• E1 – E2.1 The results for the treatment groups in E2.1
are better for 6 out of 6 questions compared with the

results in E1. For one question, the difference is signif-

icant. For the control groups the differences are really

small and sometimes even negative – i.e. the results in

E2.1 are worse than in E1.

• E1 – E2.2 The results for the treatment groups in E2.2
are better in 4 out of 6 questions compared with the

results in E1. For two questions, the difference is sig-

nificant. For the control groups the results are worse on

5 out of 6 questions, and this difference is significant

in two cases.

• E3.1 – E3.2 The same observations are valid for the
results in E3.1 and E3.2. The treatment groups show

better results in 4 out of 6 questions, while the control

groups show better results only in 1 out of 6.

The results are not strong enough to reject the null hy-

pothesis with the criteria we have defined for this experi-

ment. A boxplot for the results of question 1 for the treat-

ment groups from these experiments are shown in figure 3.

The results show that the treatment groups improved

their performance on knowledge sharing as they gain expe-

rience in using the proposed method and start to learn from

previous experiences. The control groups do not improve

their performance on knowledge sharing. While the control

group did perform better on knowledge sharing on E1, this

has now changed, and the treatment group performs better

in both E2.2 and E3.2 In our opinion, using the release plan-

ning method in this situation helps the group to organise and

share their knowledge, and help them to learn from it.

We consider the results as a strong indication that the

proposed release planning method is enabling and support-

ing knowledge sharing, and conclude that a little experience

and learning is needed to take advantage of the release plan-

ning method to improve knowledge sharing over the level

that exists when working ad hoc style.

Understanding – four questions

• E1 – E2.1 The results for the treatment groups in E2.1
are better in 1 out of 4 questions compared with the re-

sults in E1, and in this case the difference is significant.

For the control group the results in E2.1 are better in 2

out of 4 questions, but the difference is not significant.

• E1 – E2.2 The results for the treatment groups in E2.2
are better in 1 out of 4 questions compared with the re-

sults in E1, and in this case the difference is significant.

For the control group the results in E2.2 are worse in 4

out of 4 questions, and the difference is significant in

3 of them.

• E3.1 – E3.2 The results for the treatment groups in
E3.2 are worse in 4 out of 4 questions compared with

the results in E3.1, and on 3 of them the difference is

significant. For the control group the results in E2.2

are worse in 4 out of 4 questions, and the difference is

significant in 4 of them.

The null hypothesis can not be rejected based on the re-

sults. The results show that understanding is not affected

689

by experience and learning. The results are the same for

both the treatment groups and the control groups. Our con-

clusions is that understanding is influenced by other factors

that experience and learning. The results in E2.2 and E3.2

might be affected by the fact that 3 out of 4 questions where

negatively rephrased (see also section 5) and it seems that

participants tend to be more neutral in this case.

4.2 Hypothesis B

What is the impact of changing the communication pat-

tern for the treatment group on knowledge sharing, under-

standing and communication? We compare the results from

experiments E1–E3.1 and E2.2–E3.2. The subjects of ex-

periment E2.2 are participating in their third experiment,

whereas the subjects of experiment E3.2 are participating

in their second experiment. Hence, the subjects of experi-

ment E2.2 are more experienced than the subjects of E3.2.

However, comparing the results from E3.2 with E2.1 intro-

duces other problems with respect to the questionnaire and

the scenario. This will be discussed in a section 5.

Knowledge sharing

• E1 – E3.1 The results for the treatment groups in E3.1
are better in 5 out of 6 questions on knowledge sharing

compared with the results of E1. For two questions, the

difference is significant. For the control groups, there

is almost no difference in the results of E3.1 and E1,

and none of the difference found have significance.

• E3.2 – E2.2 The results for the treatment groups in
E3.2 is slightly better for 5 out of 6 questions. How-

ever, the difference is not significant for any question.

The control group has similar results with 4 out of 6

questions with a slightly better result for E3.2 com-

pared with E2.2. However, the treatment group has

better results for E3.2 than the control groups.

None of the results are so strong that we can reject the

null hypothesis. The results show that the treatment group is

improving their performance on knowledge sharing at both

occasions. We conclude from the results that the improve-

ments stemming from a changed communication pattern de-

cline with more experience on how to use a new method.

In other words, to support the communication when intro-

ducing a new method in a context where communication is

critical, it is important to promote communication. After

the method has been internalised this is not necessary any

more.

Understanding

• E1 – E3.1 The results for the treatment groups in ex-
periment E3.1 are better then for E1, with two of the

differences being significant. The control groups have

better results in E3.1 then in E1 for 3 out of 4 question,

with one significant difference.

• E3.2 – E2.2 The results for the treatment groups are
better in 3 out of 4 questions (with one significant dif-

ference). The control groups have the same result.

The results show that the null hypothesis can be rejected

for the treatment groups on E1 – E3.1. Understanding can

be improved by instructing group members to communicate

more when a new method is introduced. When the group

members gain some experience in the methods, there seem

to be other factors that influence understanding more than

learning (see above) and a more explicit communication

scheme.

5 Discussion

There are some issues about the experiment that have to

be considered in more detail.

The first issue is the questionnaire that was used for ex-

periments E2.2 and E3.2 (shown as questionnaire 2b in fig-

ure 2). To avoid that the respondents reuse their response

from the previous experiment and try to be conform by giv-

ing the same answer, we decided to regroup the questions

and change around 30 % of the questions into a negative

form. The original statement ”The release chosen by my

group was my preferred release” was changed into ”The re-

lease chosen by my group was not my preferred release”. To

compare the results of these negative worded questions with

the results of the corresponding positive worded questions,

we had to change the value of these questions, assuming that

the response ”Disagree strongly” on a negative question is

the same result as ”Agree strongly” on a positive question.

However, when we compare the results for questions with a

negative worded variant in questionnaire 2b, we see that the

differences between the questions are bigger than for other

questions. It seems that it is more easy for respondents to

say that they agree than to say that they do not agree. In

cases where the respondents feel that they do not agree, it

seems that they prefer to choose ”Neutral” or ”Disagree”,

but not ”Strongly disagree”. This effect – unknown to us at

the time we planned the experiment – has been described –

among others – in [6].

This effect disturbs the comparison between experiments

E1–E2.2 and E2.1–E2.2. We assume that without this ef-

fect, some of the differences would have been stronger, and

maybe even significant. We have decided not to remove

these questions, as they still show how the difference be-

tween the treatment and control groups changes over time.

This difference has a positive tendency for both knowledge

sharing and understanding for the treatment groups.

690

Another issue are the impact of the scenarios on the re-

sults. The scenarios had some variations, such as the total

development effort that could be included into a configura-

tion, the total number of requirements in a scenario, and the

”size” of the requirements, i. e. the estimate of development

effort. These factors have an impact on how easy a group of

stakeholders think it is to find a final release. In an interview

with 10 students that participated in experiments E3.1 and

E3.2, they told us that each decision had its own challenges,

and that they found difficult aspects in both scenarios.

In the comparison with experiment E2.2–E3.2 the stu-

dents of E2.2 are more experienced as this is their third

experiment, while it is only the second experiment for the

students of E3.2. The reason for comparing these two ex-

periments is that it involves two experiments with the same

scenario and questionnaire. In our opinion it is better to

compare two experiments with the same scenario and ques-

tionnaire – and accept the difference in experience – than to

compare two results that were collected with different ques-

tionnaires.

Our last issue is the validity threat posed by the use of

students in the experiments. Students are not as experienced

as professionals, and the experiment may therefore not be as

realistic as it would be if professionals were used. However,

other studies using both students and professional indicate

that the relative difference in the results between students

and professionals for two or more experiments are close [1]

[3]. Also, it would be very resource demanding to acquire

a sample of professionals of the same size as used in our

experiment. The experiments reported in this paper could,

however, be expanded with one or more case studies using

the proposed release planning method in a more realistic

context, i.e. with professionals.

6 Conclusions and further work

In this paper we have presented the results of four ex-

periments that we conducted to further investigate a release

planning method [10]. An initial experiment [9] gave us

some answers about the use of the method, but also some

new questions. In the experiments described in this paper,

we addressed two issues: what is the effect of experience

and learning on factors such as knowledge sharing and un-

derstanding, and how will a changed communication pat-

tern impact these factors.

The results of the experiments show that knowledge

sharing is positively influenced by both experience and

changed communication pattern. Understanding is im-

proved little by changing the communication pattern and not

from experience. The results indicates that the communica-

tion pattern introduced in this experiment will accelerate the

improvement in the performance on knowledge sharing.

References

[1] E. Arisholm and D. Sjøberg. Evaluating the effect of a

delegated versus centralized control style on the main-

tainability of object-oriented software. IEEE Transac-
tion on Software Engineering, 30(8):512–534, 2004.

[2] P. Carlshamre. Release planning in market-driven

software product development: Provoking an under-

stadning. Requirement Engineering, 7(3):139–151,
2002.

[3] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Is-

sues in using students in empirical studies in software

engineering education. In Proceedings of the Ninth
International Software Metrics Symposium (MET-
RICS’03), 2003.

[4] G. Du, J. McElroy, and G. Ruhe. A family on em-

pirical studies to compare informal and optimization-

based planning of software releases. In ISESE ’06:
Proceedings of the 2006 ACM/IEEE international
symposium on International symposium on empirical
software engineering, pages 212–221, 2006.

[5] J. Momoh and G. Ruhe. Release planning process

improvement – an industrial case study. Software
Process: Improvement and Practice, 11(3):295–307,
2006.

[6] H. W. O’Neil. Response style influence in public opin-

ion surveys. The Public Opinion Quarterly, 31(1):95–
102, 1967.

[7] B. Ramesh, J. Pries-Heje, and R. Baskerville. Internet

software engineering: A different class of processes.

Annals of Software Engineering, 14:196–195, 2002.

[8] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson,

B. Regnell, and A. Wesslen. Experimentation in Soft-
ware Engineering: An Introduction. Kluwer Aca-

demic Publishers, 2000.

[9] S. Ziemer and I. C. Calori. An experiment with a re-

lease planning method for web application develop-

ment. In Submitted to Eurospi 2007, 2007.

[10] S. Ziemer, P. Sampaio, and T. Stålhane. A decision

modelling approach for analysing requirements con-

figuration trade-offs in time-constrained web appli-

cation development. In Proceedings of SEKE 2006,
2006.

[11] S. Ziemer and T. Stålhane. Web application develop-

ment and quality - observations from interviews with

companies in norway. In Proceedings of Webist 2006,
2006.

691

Distributed BPEL Processes

Luciano Baresi∗, Andrea Maurino+, and Stefano Modafferi∗
∗Dipartimento di Elettronica e Informazione - Politecnico Milano

Piazza L. da Vinci 32 – 20133 Milano (Italy) baresi|modafferi@elet.polimi.it
+Dipartimento di Informatica Sistemistica e Comunicazione - Università di Milano Bicocca
Via Bicocca degli Arcimboldi 8 – 20126 Milano (Italy) maurino@disco.unimib.it

Abstract

BPEL only supports a strictly centralized and coordi-
nated execution of Web service compositions, but this so-
lution is clearly not the best option in many concrete cases.
The conceptually monolithic BPEL process should be exe-
cuted in a distributed setting, where each peer is only re-
sponsible for a fraction of the whole process and for the
coordination with the other fragments. These considera-
tions lead us to propose a formal approach to support the
distributed execution of BPEL processes. The partitioning
is customizable and easily intertwines with the adoption of
special-purpose middleware infrastructures. In particular,
the paper shows how we pair the distributed execution with
a tuple-based infrastructure, to support distributed execu-
tion in mobile contexts, and with a publish and subscribe
middleware, to support dynamically changing scenarios.

1 Introduction

BPEL (Business Process Execution Language [12]) is

the de-fact standard for workflow-based compositions of

Web services, but their centralized approach to composi-

tion and coordination is often a too heavy constraint. For

example, if we think of business processes that involve dif-

ferent branches of the same organization, or also different

companies federated into virtual organizations, we tend to

conceive the global process as a single entity to identify the

interdependencies among the parts and the overall synchro-

nization among them. However, its centralized execution

is only a technological choice: the parts that pertain to the

different partners may be executed in a distributed setting,

where each peer is responsible for a particular part of the

process and coordinates with the others to keep the overall

structure of the execution. This is an example of the more

general case of cooperations where the different actors can

proceed autonomously and only need loose synchronization

with the other parts.

We can also consider all those cases where the comput-

ing infrastructure is based on a set of devices with limited

capabilities, which can execute part of the process, but are

not powerful enough to take care of the whole execution.

Emergency situations [8] are good examples for this sce-

nario: oftentimes a reliable computing infrastructure does

not exist —or has been damaged— and it must be mim-

icked through mobile ad-hoc networks set by using portable

devices with limited capabilities. Similarly, nomadic users

may be in charge of fragments of more complex processes

that need to exploit temporary connections to the network to

exchange information and synchronize with the other parts

of the process.

All these examples highlight some clear requirements for

the execution of BPEL processes. A conceptual monolith

BPEL process must be executable in a distributed setting,

but the execution must preserve the behavior of the central-

ized one. BPEL engines are still good candidates for ex-

ecuting the different parts, but we need to move from one

single BPEL engine to a set of federated engines. The dif-

ferent needs require that the distributed execution be based

on suitable middleware infrastructures that offer the basic

communication primitives to support the interaction and

synchronization of the different parts. Different scenarios

require that the middleware provide different guarantees:

frequently disconnected partners may ask for persistency

of synchronization messages to support the asynchronous

communication with the others, while highly flexible distri-

butions may require multi/broadcast mechanisms to be able

to exchange messages with a dynamically defined number

of partners.

These considerations lead us to propose a formal ap-

proach to support the distributed execution of BPEL pro-
cesses. The approach, whose first formulation was pre-

sented in [2], exploits metamodeling techniques and graph

transformation systems [1] to provide a formal means to

partitioning a BPEL process into a set of coordinated sub-

processes. The BPEL activities required to synchronize

the control and data flows with the other subprocesses are

692

added automatically. The transformation and slicing pro-

cess is customizable and thus can exploit different middle-

ware infrastructures. For example, if the communication

framework supports the multicast delivery of information,

the BPEL activities responsible for sending data to the other

processes can avoid to consider the actual number of part-

ners. We also present the explicit support for two different

well-known middelware technologies: LIME [9], as rep-
resentative of tuple-based systems for mobile devices, and

ReDS [6], to address publish and subscribe infrastructures.
The rest of the paper is organized as follows. Sec-

tion 2 exemplifies the approach for automatically partition-

ing BPEL processes on a simple step-by-step transforma-

tion. Section 3 introduces the tools developed both to sup-

port the automatic partitioning and to let obtained subpro-

cesses interact with the selected communication infrastruc-

ture. Section 4 surveys some related proposals and Sec-

tion 5 concludes the paper.

2 Workflow partitioning

The approach for partitioning BPEL processes is based

on graph transformation [1]. The choice of representing

partitioning rules as productions of a graph transformation
system relies on the fact that the interpretation of workflows

as graphs is widely diffused and thus workflow partitioning

can be easily interpreted as a transformation of such graphs.

In this paper, we do not explain how partitioning rules are
defined1, but we prefer to explain how they work.

A simple example process allows a broker to deliver

goods to its clients. After receiving a request (from a client),

the process checks two alternatives —two different Web

services— to estimate the time needed to deliver ordered

goods and always chooses the fastest way. This means that

in one case, the process simply invokes an external shipping

service, while in the other case it uses another Web service

to enable a specific protection on ordered goods and then

invokes the same service as for the first case. In the end, it

replies the client with the estimated delivery time.

Besides showing the process, Figure 1 also introduces

a possible division among three orchestrators. In this sce-

nario, the different orchestrators can be seen as different

branches of the same company: O1 is the broker, O2 is in
charge of the simple delivery process, and O3 manages the
“protected” delivery process. External services and vari-

ables have simple names (WSn and Vn, where n is an inte-
ger) and operations have self-explaining names. Notice that

each variable is used by more than one operation and there-

fore we need to consider them in the partitioning process

since a variable is used by operations invoked by different

orchestrators.

1Interested readers can refer to [2] for a complete presentation.

O3 <<Invoke>> Ws3-EnableGoodsProtection use V3n V7out

O2 <<Invoke>> Ws4-DeliveryGoods use V2in V6out

O1

O1Ws-2 is faster

O1 <<Reply>> useV6

O1 <<Receive>> V1

O1 <<Assign>> (Copy V1 part1 on V2)

O2 <<Invoke>> Ws2-CheckDeliveryTime use V2in V4out

O1 <<Assign>> (Copy V1 part1 on V3)

O3 <<Invoke>> Ws3-CheckDeliveryTime use V3in V5out

Ws-3 is faster

O3 <<Invoke>> Ws4-DeliveryGoods use V3n V6out

O1

O1

Figure 1. Original process.

The result of the step by step partitioning of Figure 1

is presented in Figure 2. It only shows the final outcome,

intermediate steps are omitted, but the reader can easily fol-

low the entire process by means of the labels added to the

figures.

Activity 1 of Figure 1 is controlled by O1 and it is not
touched by the partitioning process. Activity 2 is controlled
by O1 and produces V2 that is used by Activity 4, which in
turn is controlled by O2. Since this implies that V2 must
be forwarded to O2, we insert a pair <invoke sendData,
receive receiveData> in the flow and mark it with a
in Figure 2. The pair is used to pass V2 to O2. The lo-
cal process on O2 is instantiated by activity receive re-
ceiveData This is normal behavior because it is nothing but
a BPEL receive and as such it can instantiate new pro-
cesses. The two previous points must be repeated for Activ-
ity 3 (marked with b in Figure 2).
We use two parallel threads (BPEL flow activity) to

let O2 call operation checkDeliveryTime on service WS2
(Activity 4 in Figure 1) while O3 calls the same operation on
WS3 (Activity 5). The control flow must be passed by O1,
which controls the structured node that starts the flow, to O2
and O3. This is achieved by means of two pairs <invoke
giveControl, receive receiveControl> (c and d in Fig-
ure 2). When O2 and O3 have both data and control flow,
they can perform Activity 4 and Activity 5, autonomously.
Then O2 and O3 give back the control to O1 that is in charge
of controlling the end of the structured activity (g and h
in Figure 2).

To start the switch, O1 evaluates the associated con-
dition and propagates the result to all the orchestrators in-

volved in the switch. The evaluation is a local operation

implemented by using an assign, while the propagation
is performed in parallel by means of two pairs <invoke

693

O2 <<Receive Control>> Activity 6

O1 <<Receive>> client invocation

O1 <<assign>> Evaluate SwitchCondition

O1 <<Invoke GiveSwitchInfo>> on 02

O1 <<Invoke GiveSwitchInfo>> on O3

O2 <<Receive Control>> Activity4

O1 <<Invoke GiveControl>> Activity6

O2 <<Invoke>> Ws4-DeliveryGoods

Ws-3 is fasterWs-2 is faster

O1 <<Invoke Give Control>> Activity7

O1 <<Receive Control >> endSwitch

O2 <<invoke GiveControl>> endSwitch

O1 <<Receive Control>> endSwitch

Msg from O2 Msg from O3
pick

O2 <<Invoke SendData>> V6

O2 <<Receive Data>> V2

O2 <<Invoke>> Ws2-CheckDeliveryTime

O2 <<Invoke SendData>> V4

O2 <<Invoke GiveControl>>

O2 <<Receive Switch Information>>

Ws-2 is faster Ws-3 is faster

O3 <<Receive Control>> Activity 7

O3 <<Receive Control>> Activity4

O3 <<Invoke>> Ws4-DeliveryGoods

O3 <<invoke GiveControl>> endSwitch

O3 <<Invoke SendData>> V6

O3 <<Receive Data>> V3

O3 <<Invoke>> Ws3-CheckDeliveryTime

O3 <<Invoke SendData>> V6

O3 <<Invoke GiveControl>>

O3 <<Receive Switch Information>>

Ws-2 is faster Ws-3 is faster

O3 <<Invoke>> Ws3-EnableGoodsProtection

O1 <<Invoke SendData>> V2

O1 <<Invoke SendData>> V3

O1 <<Assign>> (Copy V1 part1 on V2)

O1 <<Assign>> (Copy V1 part1 on V3)

O1 <<Invoke GiveControl>> Activity4 O1 <<Invoke GiveControl>> Activity3

O1 <<Receive Data>> V4 O1 <<Receive Data>> V5

O1 <<Receive Control>> endFlowO1 <<Receive Control>> endFlow

O1 <<Reply>> to client

= flow synchronization task

= data synchronization task

Figure 2. Partitioned processes.

giveControl, receive receiveControl> (i and l in Fig-
ure 2). This is not data flow propagation since the data flow

graph shows that only the structured node used to start the

branch can use variables V4 and V5. The duplication of
the switch and the need for propagating the choice are
imposed by the control flow.

Now each orchestrator knows the right path that must be

followed. The symmetry of proposed process allows us to

only analyze O2. If it executes Activity 6, it gets the con-
trol from O1 by the pair<invoke giveControl, receive
receiveControl> marked with m in Figure 2. Then it per-

forms Activity 6. If we skip for a while the problem of

sending V6 (the output of Activity 6) to O1, which is the
next orchestrator that uses the variable, we can finally give

the control back to O1 (in charge of controlling the end of
the switch). If the selected branch were the other, O2
would do nothing.

Notice that when an orchestrator in a branch of a

switch has no activities to execute, it is extremely impor-
tant that it does nothing. This way, it allows the flow to go

on. If we simply stopped it, we would not keep the original

behavior. Moreover, variable V6 is used as output for both
Activity 6, controlled by O2, and Activity 8, controlled by
O3. This is a typical situation where the simple control flow
does not work. In fact, Activity 9 uses variable v6 that is the
output either of Activity 6 or Activity 8, therefore the data
source of Activity 9 is not identifiable at design time. The
proposed solution is only a special-purpose way to bypass

the problem.

Activity 9, which is the last one, seems to be simple, but
we need to discuss how to propagate data. Again, at de-

sign time, we cannot determine the actual source for v6.
We can modify the process to avoid this problem, but it is

interesting to analyze how we can solve this case. BPEL

provides a mechanism called pick: It can be seen as a set
of receive operations. Given the incoming message, the
system chooses the receive that must be activated and
thus the execution follows the corresponding branch. To

solve our problem, we use two <invoke sendData> on

the two possible sources, and a pick on O1 to model the
two possible <receive receiveData> for moving the de-
cision about the actual source at runtime (o and p in Fig-
ure 2). Given this solution, the reply (Activity 9) is only
a simple local activity.

3 Supporting tools

The conceptual approach described in the previous sec-

tion is supported by prototype tools that cover the whole life

cycle. Our tools support the design of partitioning rules that
can be either generic or be tailored to particular middleware

infrastructures, the deployment of generated BPEL (sub-
) processes, and the execution of these processes by sup-
porting the synchronization and message exchange among

them.

694

Design tool The Breaker, our design tool, was not con-
ceived from scratch, but it is based on AGG (Attributed

Graph Grammars) [4], which supplies suitable graphical

interfaces, to design new transformation systems, a Java-

like syntax, to specify the type graph and attribute values,

and analysis engines, to validate designed systems. The

Breaker can be used both through a graphical user inter-
face and as a dedicated Web service. Figure 3 shows its

main components.

BPEL
Description

BPEL
Description

Partitioning
Engine

Activity
List

Figure 3. Main components of the Breaker.

TheTranslator is in charge of transforming a BPEL pro-
cess into an attributed graph. The module receives a BPEL

process, the information about the orchestrators, and the

list of activities that each orchestrator is supposed to man-

age. Its output is a GXL (Graphical eXchange Language)

file that embeds the attributed graph. The translation from

BPEL to GXL uses XSL technology since the BPEL pro-

cess, the lists of activities, and GXL are all expressed in

XML. The XSL repository stores a set of XSL stylesheets,
which are specific to the different commercial BPEL en-

gines, that address the different BPEL “dialects” adopted

by selected engines.

The Partitioning Engine is the core of the tool and, as
already said, is based on AGG. The engine transforms an

attribute graph into another by means of the set of parti-

tioning rules stored in the Rule Repository. The engine
receives a GXL file, which represents the original BPEL

process, and produces a set of GXL files that represent the

local processes for the different orchestrators.

The Translator and Merger has two goals: It trans-
lates each GXL file into a BPEL description, and merges

all the BPEL files into a unique XML file that is the final re-

sult of the Breaker. A second XSL Repository stores the
stylesheets able to translate a GXL description into a BPEL

process.

Runtime support When we move to the runtime support

we offer for the distributed execution of BPEL processes,

we must recall that the rules presented in Section 2 must be

supported by suitable synchronization mechanisms. If we

think of the conventional receive/reply mechanism
(a typical RPC-based communication), when an orchestra-

tor wants to synchronize the execution flow or communi-

cate some data to another orchestrator, the two orchestra-

tors must be connected at the same time. This option is

a solution when the whole set of engines is deployed on

a wired network. In many other cases, the synchroniza-

tion may be more complex and we need suitable middle-

ware frameworks to support the cooperation among BPEL

engines.

So far we have developed two different solutions (parti-

tioning rules and related functionality) to support the run-

time management of partitioned processes. The first solu-

tion, calledDOME (Distributed Orchestration in the Mobile
Environments), deals with distributed BPEL processes de-

ployed onto mobile ad hoc networks (MANETs). The syn-

chronization among engines might be complex due to the

unpredictable and temporary disconnections of some de-

vices. As for many distributed system, we adopted a spe-

cific middleware solution to clearly separate the application

layer (BPEL engines) and the communication infrastruc-

ture. DOME extends the invoke/receive mechanism
without imposing any modification to existing BPEL en-

gines. We simply provide special-purpose implementations

of the two operations.

At application level, BPEL engines communicate di-
rectly by means of the synchronization activities introduced

by the rules; thus when a process has to communicate with

another process, it simply executes an invoke. At infras-
tructure level, the invocation is translated into the invoca-
tion of a special-purpose Web service hosted on the same

device as the calling process and the real communication

is implemented by exploiting LIME (Linda in Mobile Envi-
ronment, [9]), which is a tuple-based middleware infrastruc-

ture designed to support the development of mobile appli-

cations over both wired and ad hoc networks. In LIME, mo-
bile agents (e.g., Web Services) reside on mobile hosts and

the communication among them takes place via transiently

shared tuple spaces distributed across the mobile hosts. The

tuple space mechanism provided by LIME allows DOME to
manage the communication among orchestrators in a com-

pletely transparent way with respect to the application level.

At the infrastrcture level, an invoke corresponds to an
out operation on the local tuple space. LIME is in charge
of moving added data to the target host, where it performs

an in operation towards the instance of the BPEL process
specified by the sender.

The second solution we present in this paper is called

DOPS (Distributed Orchestration based on Publish and
Subscribe). It is based on the publish and subscribe in-

teraction paradigm to support highly flexible and dynamic

scenarios. In publish and subscribe systems, application

components subscribe to message (event) patterns and get
notified when other components publish messages match-
ing their subscriptions. A dedicated component called dis-
patcher is in charge of handling the delivery of the differ-

695

ent messages and thus decouples the communication be-

tween senders and receivers. Its asynchronous, implicit, and

multi-point communication style is particularly amenable to

those applications in which components adopt the multicast

delivery of information.

Following this approach, the engines do not need to

know the receivers of their messages: They publish their

messages and interested orchestrators receive them because

previously subscribed. DOPS is implemented on top of
ReDS [6], which supports user-defined message formats and
filters (used to allow users to subscribe to the different mes-

sages). ReDS also provides a distributed dispatcher orga-
nized as a set of brokers linked onto an overlay dispatching

network.

Before starting the execution, we need a DOPS sub-
scriber for each orchestrator. This component is respon-
sible for analyzing the local process, detecting all the mes-

sages that the orchestrator is supposed to exchange with the

other peers, and subscribing for all the message types rele-

vant for the cooperation with other orchestrators. Currently,

DOPS defines two special-purpose filters to represent mes-
sages that correspond to variables and execution flows, and

allows each engine to select the appropriate filter according

to the particular needs.

The pair invoke/receive is obtained by means of
two special-purpose Web services that are in charge of pub-

lishing produced messages onto the ReDS infrastructure and
conversely retrieve those for which the processes are sub-

scribed. More precisely, an invoke activity is realized by
aWeb service hosted on the samemachine as the engine that

publishes the variables or execution flows. A receive
activity is hosted on the same machine as the target en-

gine and is realized by a Web service that receives the mes-

sages and redirects them to the appropriate process instance.

DOPS and DOME adopt instance ids, suitably encoded in
exchanged messages, to disambiguate instances.

These two supporting frameworks introduce the prob-

lem of selecting the “right” middleware infrastructure for

the distributed execution we want to support. A thorough

discussion of the possible criteria is out of the scope of this

paper. Here, we can only touch the problem by means of an

example. Some process descriptions cannot be partitioned

due to data liveness; however in some situations a publish

and subscribe solution (or a solution based on a tuple space)

can overcome the problem of identifying the last user of a

variable passed among different engines. For example, in a

loan process, the system can update variable mortgage by
means of dedicated Web services that use different risk pro-

files, or it can issue an error message for the user if the risk

profile is undefined. This situation can easily be modeled

with a switch activity, where in all branches but one, there
is an activity that modifies the same variable. In this case,

partitioned processes can only be executed on top of DOPS

due to the decoupling between publishers and subscribers.

The first (and unique) activity that executes must publish the

message that contains the new value of mortgage, which is
then dispatched to the receiver engine. Statically, we do not

know the engine that publishes the message, but we know

those that are interested in receiving it. We only know that

one engine at a time can produce the value and thus we can

be sure that published value is always the last value of the

shared variable.

4 Related work

The distribution of workflow management has been

widely studied. Lack of space does not allow us to present

a thorough analysis of the different approaches, and thus

we need to limit our attention to the most relevant ones. It

is possible to establish a parallelism between research in

data integration [3] and research in distributed workflow

management. In the first area, there are two possible ap-

proaches to integrate schemas of different sources: (i) the

Global As View (GAV) approach, in which a set of differ-
ent data schemas are merged into a unique schema, and the

Local As View (LAV) approach, in which schemas of in-
formation sources are derived from a global schema. By

analyzing the literature on distributed workflow manage-

ment, it is possible to identify two similar approaches: the

first one supports the integration of autonomous and pre-

existing workflows and aims mainly at the coordination of

the different and independent actors. The second approach

supports the decomposition of single workflows to support

their autonomous execution by means of different engines.

According to this taxonomy, our approach is LAV-based be-

cause the global schema is the original process description

we want to slice, and the local processes are the “views” of

the global description.

ADEPT [11] belongs to GAV-based approaches. It sup-
ports the modeling, analysis, and verification of workflow

templates to guarantee correctness properties. The main

feature of ADEPT, and its evolution ADEPTflex [10], is

the possibility of modifying workflow instances at runtime:

ADEPT allows us to reduce the network workload by parti-

tioning workflow graphs and migrating the control of work-

flow instances from one server to another at runtime.

The next two approaches are similar to ours and they

both are LAV-based. The BPEL-based decentralized frame-
work presented in [5] proposes a decomposition approach to
increase the parallelism for improving performance rather

than fostering the integration of multi-organizational work-

flows. The authors use BPEL as composite Web service
model. They assume a centralized design of the workflow

and their system distributes the orchestration of the different

portions among different nodes. In this distributed scenario,

there is no centralized coordinator that can be a potential

696

bottleneck. Data distribution reduces network traffic and

improves transfer time. Control distribution improves con-

currency, and the asynchronous messaging among engines

brings the benefits of better throughput and graceful degra-

dation. The decentralization process essentially consists of

three steps: automatic parallelization and code partition-

ing, synchronization analysis, and code generation. They

are based on data flow analysis techniques, to determine the

maximum parallelism, and on a cost function, to determine

the most efficient code partition. After partitioning the code,

they analyze the interactions among partitions to determine

the best synchronization protocols.

The E-Role based decomposition system [7] addresses

role-based decomposition of a business process model

(based on a BPEL subset). They present a mechanism for

partitioning a business process where each partition can be

enacted by a different participant. An important goal is to

disconnect the partitioning itself from the design of the busi-

ness process, thus simplifying the reassignment of activities

to different entities. The result is a set of BPEL-compliant

processes, one for each participant, as well as the informa-

tion needed to wire them together at deployment time and

ensure correct instance-level connections at runtime.

5 Conclusions and future work

The paper presents a novel and formal approach to sup-

port the distributed execution of BPEL processes. It pro-

poses a formal methodology to automatically partition a

monolithic process into a set of coordinated subprocess

by means of graph transformation systems. The approach

also intertwines with special-purpose middleware infras-

tructures to better address the communication and synchro-

nization requirements of the different distributed scenarios.

So far, the approach integrates with LIME and ReDS to
support tuple-based and publish and subscribe communica-

tion patterns. We are quite confident that the approach can

be easily generalized —by means of dedicated partitioning

rules and communication functionality— to other middle-

ware infrastructures. In many cases, the selection of the

right middleware infrastructure, and thus the correct set of

partitioning rules, depends on many different factors. The

distribution helps bypass the bottleneck of a single central-

ized executor, but introduces the usual problems that char-

acterize distributed systems.

The first results are encouraging, but we still need to as-

sess the viability of the approach by means of further ex-

amples and scenarios and thus refine our supporting tools

accordingly.

References

[1] L. Baresi and R. Heckel. Tutorial Introduction to Graph

Transformation: A Software Engineering Perspective. In

Proceedings of the First International Conference on Graph
Transformation (ICGT 2002), volume 2505 of Lecture Notes
in Computer Science, pages 402–429. Springer-Verlag,
2002.

[2] L. Baresi, A. Maurino, and S. Modafferi. Workflow Par-

titioning in Mobile Information Systems. In Proc. of IFIP
TC8 Working Conference on Mobile Information Systems,
volume 158 of IFIP International Federation for Informa-
tion Processing, 2004.

[3] C. Batini and M. Scannapieco. Data Quality. Springer Ver-
lag, 2006.

[4] M. Beyer. AGG1.0 - Tutorial. Technical University of Berlin,
Department of Computer Science, 1992.

[5] G. Chafle, S. Chandra, V. Mann, and M. Nanda. Decentral-

ized Orchestration of Composite Web Services. In Proc. of
the Int. World Wide Web conference on Alternate track pa-
pers & posters, pages 134–143, New York, NY, USA, 2004.
ACM Press.

[6] G. Cugola and G. Picco. Reds: A Reconfigurable Dispatch-

ing System. Technical report, 2005. Politecnico di Milano.

[7] R. Khalaf and F. Leymann. E Role-based Decomposition of

Business Processes using BPEL. icws, 0:770–780, 2006.

[8] A. Maurino and S. Modafferi. Partitioning Rules for Orches-

trating Mobile Information Systems. Personal and Ubiqui-
tous Computing, 9(5):291–300, 2005.

[9] G. P. Picco, A. L. Murphy, and G.-C. Roman. Developing

Mobile Computing Applications with Lime. In ICSE, pages
766–769, 2000.

[10] M. Reichert and P. Dadam. ADEPTflex − supporting Dy-

namic Changes of Workflows without Losing Control. Jour-
nal of Intelligent Information Systems, 10(2):93–129, 1998.

[11] M. Reichert, S. Rinderle, and P. Dadam. ADEPT Workflow

Management System:. In W. van der Aalst, A. ter Hofst-

ede, and M. Weske, editors, Proc. of Int. Conference Busi-
ness Process Management, pages 370–379, Eindhoven, The
Netherlands, 2003.

[12] S. Thatte. Business Process Execution Language for

Web Services, 2003. http://www-106.ibm.
com/developerworks/webservices/library/
ws-bpel/.

697

Abstract— As the number of available web services increase

finding the appropriate web services to fulfill a given request
becomes an important task. In many cases a single service is not
capable of solving large problems. Therefore, the problem of
combining multiple web services to satisfy a single task, known as
web services composition problem, has recently received a lot of
attention by researchers and practitioners. An effective discovery
and composition are only possible when there is semantic
information. Most of the current solutions and approaches in web
service discovery and composition are limited in the sense that
they are strictly defined, and they do not use the full power of
semantic and ontological representation. In this paper we focus
on one of the most challenging tasks in service discovery and
composition: matchmaking process. We use an efficient
matchmaking algorithm based on bi-partite graphs. Our
proposed algorithm uses attribute ranking through weight
assignment. We have seen that bi-partite matchmaking has
advantages over other approaches in the literature for parameter
pairing problem.

Index Terms—Matchmaking, semantic similarity, scoring,
ranking, OWL-S, bi-partite graph.

I. INTRODUCTION
 In recent years, web services became the dominant
technology in providing the interoperability among different
systems throughout the web. If web service is used in limited
business domain or with strict rules with known business
partners everything will be fine. The problem of finding the
right and most suitable web services for user needs emerges
when open e-commerce systems are widely used and user
requirements dynamically change over time.

Although there are currently proposed technologies for
discovery of web services, such as UDDI [5], they do not
satisfy the full discovery requirements. This discovery process
is based on syntactical matching and keyword search that does
not allow the automatic processing of web services. To solve
the problem of automatic discovery and processing of web
services, the Semantic Web [6] vision is proposed. The
Semantic Web is an effort by the W3C consortium [7], and
one of its main purposes is to facilitate the discovery of web
resources.

There are different efforts and frameworks for semantic
annotation and discovery of web services [10, 11, 12]. For web
service discovery they also propose some techniques and

algorithms. However, they mostly classify the discovered web
services in set-based. They do not focus on rating the web
services using semantic distance information [13].

The evolution of web services, from conventional services
to semantic services, caused service descriptions contain extra
information about functional or non-functional properties of
web services. The semantic information included in the service
descriptions enables the development of advanced
matchmaking schemes, capable of assigning degrees of match
to the discovered services. Semantic discovery of Web
Services means semantic reasoning over a knowledge base
where a goal describes the required web service capability as
input. Semantic discovery adds accuracy to the search results
in comparison to traditional Web service discovery techniques,
which are based on syntactical searches over keywords
contained in the web service descriptions [3].

Improvement in matching process could be gained by the
use of ontological information in a useful form. With the use
of this information, it can be possible to rate the services found
in discovery process. As in real life, users/ agents should be
able to define how they see the relation of ontological concepts
from their own perspective. Similarity measures have been
widely used in information systems [14, 15, 16], cognitive
science, software engineering and AI [17, 18, 19]. So
integration of knowledge from these techniques can improve
the matching process.

By using semantic distance definition information, we aim
to get a rated and ordered set of web services as the general
result of the discovery process. We believe that this would be
better than set-based classification of discovered services. In
this paper, we propose a new scheme of matchmaking that
aims to improve retrieval effectiveness of semantic
matchmaking process. Our main argument is that conventional
evaluation schemes do not fully capture the added value of
service semantics and they do not consider the assigned
degrees of match, which are supported by the majority of
discovery engines. The existing approach to service
matchmaking contains subsumption values regarding the
concept that the service supports. In our proposed approach,
we add semantic relatedness values onto existing subsumption
based procedures.

II. RELATED WORK
Semantic Web services aim to realize the vision of the

Semantic Web, i.e. turning the Internet from an information
repository for human consumption into a world-wide system

SAM: Semantic Advanced Matchmaker

E.S. Ilhan, G.B. Akkus, and A. B. Bener, Member, IEEE

698

for distributed Web computing [6]. The system is a machine-
understandable media where all the data is combined with
semantic metadata. The domain level formalizations of
concepts form up the main element within this system, which
is called ontology [11]. Ontology represents concepts and
relations between the concepts; these can be hierarchical
relations, whole-part relations, or any other meaningful type of
linkage between the concepts [4].

The semantic matchmaking process is based on ontology
formalizations over domains. In the upcoming section we
present some of the selective research on the matchmaking
process considering the concepts that we build our research on.
Matchmaking of Web services considers the relationship
between two services. The first one is called the advertisement
and the other is called the request [2]. Advertisement denotes
the services description of the existing services while the
request indicates the picture of service requirements [19].

In [1], the problem of capability matchmaking is analyzed
with regarding to Web services, especially the Preconditions
and Effects (PE) matchmaking. In the paper, the authors
present a service similarity function which determines similar
parameter classes by using a matching process over synonym
sets, semantic neighborhood, and distinguishing features.
Parameter pairing is the process that is used for matching
service descriptions. In the work, maximum weight bi-partite
graph matching method is utilized for parameter finding; the
weights of bi-partite graph’s edges are evaluated with
matching degree between function parameters calculated by
the similarity function mentioned above.

Although good results are obtained with the usage of this
method, it should still be improved in two terms: One is that, it
is needed to be extended on pre-condition and effect because
the matching is performed only on parameters of input and
output, and the functional signature is not sufficient to identify
what it does. The other is that this framework should be
combined with particular directory service like UDDI in order
to improve the discovery efficiency.

In [21] the authors present an algorithm that deals with the
localization of Web services. The research does not address
the interoperability problem. The system introduced uses the
service profile ontology from the DAML-S specification
language but only considers the matching of input and output
concepts defined by the same ontology.

Traditional approaches to modeling semantic similarity
between Web Services compute subsume relationship for
function parameters in service profiles within a single
ontology. In [20] a graph theoretic framework based on bi-
partite graph matching for finding the best correspondences
among function parameters belonging to advertisement and
request is introduced. On computing semantic similarity
between a pair of function parameters, a similarity function is
introduced, determining similar entity which relaxes the
requirement of a single ontology and accounts for the different
ontology specifications. The function presented for semantic

similarity across different ontologies provides an approach to
detect similar parameters. The method is based on a matching
process over weighted sum of synonym sets, semantic
neighborhood, and distinguishing features. The method mainly
lacks use of functional similarities and lexical evaluation of
semantic mappings.

In [22], a semantic ranking MSC is designed to rank the
results of advertisements matchmaking. MSC stands for the
initials of three factors’ second words: Semantic Matching
Degree (to capture the semantic aspects of attributes),
Semantic Support (to describe the interestingness or potential
usefulness of an attribute) and Relational Confidence (to
capture the association relationships among attributes). Three
categories of attributes are defined in advertisements
matchmaking: Generalizable Nominal Attribute (GNA) whose
values can form a concept hierarchy; Numeric Attribute
(NUA), called quantitative attribute, whose values are numeral;
Nominal Attribute (NOA) whose values are neither numeral
nor can form a concept hierarchy. Three new factors are
designed to capture the semantic characteristics and
relationships of the attributes: Semantic Matching Degree,
Semantic Support and Relational Confidence.

Another approach on semantic matchmaking uses Case
Based Reasoning (CBR). According to CBR theory the first
step is to define all the elements contained in a case and the
associated vocabulary that represents the knowledge
associated with the context of a specific domain.

In [23], frame structures are adopted for the case
representation. However, in this research the problem that
research in semantic-based matchmaking and composition has
not been addressed sufficiently, rather it is described as the
interoperation between independently developed reasoning
engines. Without this interoperation, the reasoning engines
remain imprisoned within their own framework, which is a
drawback, especially that most engines usually specialize in
servicing a particular domain, hence interoperation can
facilitate inter-domain orchestration.

III. PROBLEM STATEMENT

 The first step in service composition is identifying the
domain of interest by means of taxonomy of subject
categories. The discovery and selection of services that are
suitable for a given request is obtained in two phases. Firstly,
matchmaking approach is based on the ontological framework.
It is applied on the set of available services in order to find
services that match needs of the requestor from a functional
point of view. Secondly, services are ranked and further
refined. This is done by taking into account context
information of the requestor. Then preconditions or post-
conditions can be defined as mandatory or optional.

The problem that we are concerned is the first step of this
scenario: given a request r, finding right web services for r.
The main goal of this research is to gain better precision and

699

recall values on matchmaking by considering user requests in
web services discovery.

The previous work on semantic matchmaking focused on
taking advantage of a single implementation based on some
information retrieval theory. The experimental research so far
has shown simple subsumption based matchmaking is not
sufficient to capture semantic similarity.

In this research, we aim to provide an efficient and accurate
matchmaking algorithm using scoring and ranking based on
similarity distance information, extended subsumption and
property level similarity assessment in a general semantic web
service discovery framework

IV. PROPOSED SOLUTION

In this paper we propose a hybrid approach on semantic
matchmaking. Our proposed solution uses decision modules
that can be plugged in and out. We have implemented some of
these modules to add semantic relatedness values onto existing
subsumption based procedures. Our proposed matchmaker
agent architecture mainly provides ranking and scoring based
on concept similarity. The components of the proposed
architecture are shown in Figure 1. Request service definition
and the corresponding relevant services set, which are
discovered through conventional discovery mechanisms, are
presented as input to the system. The ontology and services we
use are retrieved from “OWL-S Service Retrieval Test
Collection version 2.1”. The services in the collection are
mostly extracted from public UDDI registries, providing 582
web services described in OWL-S from seven different
domains. The OWL-S Test collection version 2.1 contains 29
queries, each of which associated with a set of 10 to 15
services [8]. We extended some ontologies in this test
collection for our own purposes in order to better demonstrate
the features of our proposed matchmaking agent. We believe
that a formal test collection of OWL-S services is crucial for
the evaluation of matchmaking agents.

Figure 1. Matchmaking agent components

The main software components of our proposed
matchmaking agent are shown in Figure 2. The top layer
represents our matchmaker SAM (Semantic Advanced
Matchmaker). OWL-S API models the service, profile, process
and grounding ontologies of OWL-S in an easy to use manner.
It is a widely used API in semantic applications. OWL-S API
also presents interfaces for reasoning operations and utilize
Jena constructs at the back-end. At the bottom of the hierarchy
we have Pellet reasoner for OWL reasoning operations.

Figure 2. Software components of matchmaking agent

We believe that a discrete scale (exact, plug-in, subsume,
and fail) of service classification is not sufficient for a
matchmaking process. On the other hand, semantic ranking of
services can capture a set of services that are lost in a discrete
scale match. Semantic similarity assessment is a crucial step
for the ranking process. In our proposed architecture, we
present value-added similarity assessment approaches between
service and request parameter pairs.

700

A. Matching Algorithm
Previous research has shown that bi-partite graph matching

algorithm is a good fit for finding matching parameters in a
service and request pair [9]. Bi-partite graph matching
provides us a solution for parameter pairing problem. We
consider the inputs and outputs as separate cases and partition
the service parameters and request parameters to form the bi-
partite graph. The similarity assessment process of our
matchmaker assigns weights for each parameter pair on this bi-
partite graph. A maximum weight match on the final graph
leaves us with the optimum matching parameter pairs and with
a score that is sum of the weights between matched parameter
pairs. We repeat this process for each service and request pair
and finally rank the services according to their score from bi-
partite graph matching algorithm.

As we stated before the process that differentiates the
services is the similarity assessment process. We consider
OWL-S profiles of service definitions and assign similarity
scores for input and output parameter pairs. We present the
following value-added features for similarity assessment:
Subsumption based similarity, WordNet based similarity,
similarity distance information and WordNet similarity
assessment.

Subsumption based Similarity Assessment
We make use of OWL-DL constructs subClassOf,

disjointWith, complementOf, unionOf and intersectionOf to
assess concept similarity based on subsumption. If two
concepts are explicitly stated to be complement or disjoint, a
zero score is directly assigned. Otherwise, we check for
subclass relation and also assess according to property level
assessment procedure described below.

We wanted to capture similarity values in bi-partite graph
since it is important to decompose concepts that include the
characteristic of “a union of”. Following this approach, we
always pair and assess score for atomic concepts in
matchmaking process.

Property-level Similarity Assessment
We have assumed that in matchmaking it is also important

to have properties and their associated range in measuring the
degree of match. Such as, if two concepts have similar
properties (properties having subclass relation) and their range
classes are similar, then this improves their level of similarity.

A service, that would normally be eliminated by a
conventional matchmaker, is ranked by using property level
similarity assessment. For example, a user request may favor a
particular author for a novel. A service, which returns articles
that are written by that particular author will have a high score
even though the concept of “an article” does not compare to
the concept of “a novel”. Therefore our proposed architecture
returns positive results for concepts that have similar
properties as well as the similar concepts.

Similarity Distance based Assessment
To represent similarity distance information we applied N-

ary relation pattern in OWL, which is used to represent
additional attributes on a property. The additional attribute in
our case is the similarity distance value. Figure 3 shows how
this pattern is organized:

Figure 3. N-ary relation pattern in OWL, representing
similarity distance information

SimilarityRelation concept is introduced as a class with this
pattern and the similarity distance value is represented as the
range of hasSimilarityDegree property of this concept. The
similar classes are represented as Concept_1 and Concept_2 in
Figure 3.

We follow the standards approach by representing similarity
distance information in OWL, which can be imported and used
in other ontologies [24]. Similarity distance information is
useful in reflecting user’s profile on the ontology. The
importance and relatedness of concepts for the user are
represented as weights on the ontology.

WordNet based Similarity Assessment

WordNet organizes words into synonym sets, which are also
linked to each other representing a semantic relation. In our
architecture we take WordNet as a secondary source of
information with the ontology repository. We aimed at
reasoning with these highly structured information sources in
order to get more reliable result sets.

We make use of wordnet::similarity open source project to
assess similarity score among words. The path length criterion
is used for score assignment. The parameter types of services
are presented as input to wordnet::similarity module.

V. EVALUATION AND RESULTS

In order to evaluate the performance of our proposed
matchmaking agent we extended the book ontology in OWL-S
Service Retrieval Test Collection (OWL-S TC) and also
modified related request and service definitions accordingly
[8]. As shown in Figure 4, we added subclasses of Magazine,
namely Foreign-Magazine and Local-Magazine classes.

701

Figure 4. Printed Material ontology section

We created subclasses of Publisher: Ordinary-Publisher,
Alternative-Publisher and Premium-Publisher. We also
created Local-Author and Foreign-Author classes, which are
subclasses of class Author.

The matchmaking agent is developed in Java and it makes
use of open source semantic web libraries like OWL-S API
and Jena. We also used Pellet as the reasoning engine for
OWL operations. To represent subsumption reasoning,
similarity distance based assessment and property-level
similarity assessment capabilities we define the following
request and services as described in Table 1:

INPUTS OUTPUTS
Request Book Author
Service 1 Author Book, Price
Service 2 Novel Author, Price
Service 3 Book Author, Price
Service 4 Local-Magazine Local-Author
Service 5 Book Price
Service 6 Foreign-Magazine Foreign-Author
Service 7 Science-Fiction-Book Author
Service 8 Science-Fiction-Novel Author
Table 1. Test request and service set

For the above test collection the property level similarity
assessment plays an important role. Even though Magazine
concept has no subclass relation with Book concept, both
concepts have hasAuthor and publishedBy properties. Thus,
our matchmaker applies a subsumption reasoning on ranges for
these properties, which are Author with its subclasses, and
Publisher with its subclasses. Finally, an additional score is
provided for these services. These services would have been
ignored as a “fail” by a conventional matchmaker.

We use the following weighted formulation for computing
final score considering both semantic and WordNet similarity
score:
Score = 0.8*Subsumption_Score + 0.2*WordNet_Score (1)

The final rank for the above collection from the most similar
service to least is as follows:

Service3-Service2-Service7-Service8-Service4-Service6-
Service5-Service1 (2)

 To consider how semantic distance information effects our

ranking we introduced the following weights into the book
ontology as described in Table 2:

CONCEPT 1 CONCEPT 2 SEMANTIC
DISTANCE

Publisher Ordinary-
Publisher

0.2

Publisher Alternative-
Publisher

0.5

Publisher Premium-
Publisher

0.3

Author Local-Author 0.3
Author Foreign-Author 0.7
Magazine Foreign-

Magazine
0.7

Magazine Local-Magazine 0.3
Book Short-Story 0.2
Book Science-Fiction-

Book
0.4

Book Novel 0.3
Book Encyclopedia 0.1
Novel Science-Fiction-

Novel
0.6

Novel Fantasy-Novel 0.2
Novel Romantic-Novel 0.2
Table 2. Semantic distance weights

The new ranking with semantic distance information is as
follows:

Service3-Service7-Service8-Service2-Service6-Service4-
Service5-Service1 (3)

As the semantic distance information favors Foreign-Author
over Local-Author and Premium-Publisher over Ordinary-
Publisher, we have Service 6 ranked higher than Service 4.
Also Service 7 has a higher rank compared to Service 2, since
genre Science-Fiction is favored over Novel.

The similarity score formulation considering semantic
distance information is as follows:

1/(path_length+1)*semantic_distance1*semantic_distance2*...
*semantic_distanceN , (4)

where path-length represents the edge count between the
compared concepts in hierarchy and semantic_distanceN
represents the weight on the Nth edge.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel advanced matchmaker architecture,
which introduces new value-added approaches like semantic
distance based similarity assessment, property level assessment

702

and WordNet similarity scoring. Instead of classifying
candidate web services in a discrete scale, our matchmaking
agent applies a scoring scheme to rank candidate web services
according to their relevancy to the request.

The ranking property enables to include some of the
relevant web services in the final result set whereas they would
have been discarded in a discrete scale classification.
Additionally, our proposed matchmaking agent improves
subsumption based matchmaking by utilizing OWL constructs
efficiently and by considering down to a level of concept
properties in the process.

We also introduced semantic distance annotation in
ontology to represent relevancy of concepts to the user in a
numerical way. Semantic distance annotations improve the
relevancy of returned web service set as they actually represent
user’s view of ontology. WordNet similarity measurement is
also presented as a value-added feature, which acts as a
secondary source of information, strengthening the power of
reasoning.

The development phase of our matchmaking agent is still in
progress and the results presented in this paper are
preliminary. We also think that preconditions and results of a
service should also be considered for a complete matchmaking
process. At that point, use of SWRL (Semantic Web Rule
Language) in both service advertisements and request
description will enhance the capabilities of our matchmaking
agent.

Another improvement will be to add context aware decision-
making capabilities, enabling our matchmaking agent to reason
based on user profiles, preferences, past actions etc. The
architecture that we have presented can be considered as a
basis for the development of context-aware agent.

REFERENCES

[1] Wang, H., Zengzhi L., Fan L., An Unabridged Method Concerning
Capability Matchmaking of Web Services, In Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence, 2006.

[2] Klusch, M., Fries, B., Khalid, M., and Sycara, K.. OWLS-MX: Hybrid
Semantic Web Service Retrieval. In 1st Intl. AAAI Fall Symposium on
Agents and the Semantic Web, AAAI Press, Arlington VA, 2005

[3] U. Keller, Lara R., Polleres A., WSMO Web Service Discovery,
http://www.wsmo.org/2004/d5/d5.1/v0.1/20041112/

[4] H. El-Ghalayini, M. Odeh, R. McClatchey, and T. Solomonides,
Reverse Engineering Ontology to Conceptual Data Models, In
Proceeding (454) Databases and Applications, 2005.

[5] Universal Discovery Description and Integration Protocol,
http://www.uddi. org, 2006.

[6] Semantic Web, W3C, http://www.w3.org/2001/sw/, 2006.
[7] W3C, World Wide Web Consortium, http://www.w3.org/, 2006.
[8] Mahboob Alam Khalid, Benedikt Fries, Patrick Kapahnke, OWL-S

Service Retrieval Test Collection Version 2.1, Deutsches
Forschungszentrum für Künstliche Intelligenz GmbH Saarbrücken,
Germany, 2006.

[9] Herbert Alexander Baier Saip, Claudio Leonardo Lucchesi, Matching
Algorithms for Bi-partite Graphs, Relatorio Tecnico DCC-03/93.

[10] Motta, E., J. Domingue, L. Cabral and M. Gaspari, "IRS-II: A
Framework and Infrastructure for Semantic Web Services", Proceedings

of the 2nd International Semantic Web Conference (ISWC2003), Vol.
2870 of LNAI., Springer, pp.306-318, Florida, USA, 2003.

[11] OWL-S Submission, http://www.w3.org/Submission/OWL-S, 2004.
[12] Fensel, D. and C. Bussler, "The Web Service Modeling Framework:

WSMF", Electronic Commerce: Research and Applications, Vol. 1, No.
2, pp. 113-137, 2002.

[13] Klein, M., B. Konig-Ries and M. Muussig, "What is needed for
semantic service descriptions? A proposal for suitable language
constructs", Proceedings of Inernational Journal of Web and Grid
Services, Vol. 1, No. 3/4, pp. 328-364, 2005.

[14] Voorhees, E., "Using WordNet for Text Retrieval”, C.
Fellbaum(Editor),"WordNet: An Electronic Lexical Database", pp. 285-
303, The MIT Press, Cambridge,1998.

[15] Ginsberg, A., "A Unified Approach to Automatic Indexing and
Information Retrieval", IEEE Expert , Vol. 8, No. 5, pp 46-56, 1993.

[16] Lee, J., M. Kim and Y. Lee, "Information Retrieval Based on
Conceptual Distance in IS-A Hierarchies", Journal of Documentation,
Vol. 49, No. 2, pp. 188-207, 1993.

[17] Agirre, E. and G. Rigau, “Word Sense Disambiguation Using
Conceptual Density”, Proceedings of the 16th Conference on
ComputationalLlinguistics, Vol.1, pp. 16-22, 1996.

[18] Hovy, E., “Combining and Standardizing Large-scale, Practical
Ontologies for Machine Translation and Other Uses", Proceedings of
the 1st International Conference on Language Resources and
Evaluation (LREC), Granada, Spain, 1998.

[19] Wang, Y. and E. Stroulia, “Semantic Structure Matching for Assessing
Web-Service Similarity”, Proceedings of the 1st International
Conference on Service Oriented Computing, Trento, Italy, 2003.

[20] Ruiqiang Guo, Dehua Chen, Jiajin Le, Matching Semantic Web
Services accross Heterogeneous Ontologies, Proceedings of the 2005
The Fifth International Conference on Computer and Information
Technology (CIT’05), 2005.

[21] Paolucci,M.; Kawamura,T.; Payne,T.; and Sycara,K. Semantic matching
of web services capabilities. In Horrocks, I. And Hendler, J.eds.Proc. of
the 1st International Semantic Web Conference(ISWC), pages333-347.
Springer,2002.

[22] MSC: A Semantic Ranking for Hitting Results of Matchmaking of
Services, Proceedings of the 30th Annual International Computer
Software and Applications Conference (COMPSAC'06)

[23] O. Taha, T. Dhavalkumar, Al-Dabass D., Semantic-Driven
Matchmaking of Web Services Using Case-Based Reasoning, IEEE
International Conference on Web Services, 2006.

[24] Şenvar, M. and Bener, A. , 2006, “Matchmaking of Semantic Web
Services Using Semantic- Distance Information”, Lecture Notes in
Computer Science by Springer Verlag, ADVIS 2006, October, 18-20,
İzmir, Turkey.

E.S. İlhan is a Computer Engineering graduate student at Bogaziçi
University. He has his undergraduate degree in Computer Engineering
department at Boğaziçi University in 2004. His research interests are
semantic web services and software engineering. He is a software engineer
now and has 3 years of working experience. Contact him at Boğaziçi
University, Istanbul, Turkey, erdem.ilhan@cmpe.boun.edu.tr,
G.B.Akkuş is a Computer Engineering PhD student at Bogaziçi University.
He has his undergraduate degree in Computer Engineering department at Ege
University in 2002. His research interests are semantic web services and
software engineering. He is a software engineer now and has 5 years of
working experience. Contact him at Boğaziçi University, Istanbul, Turkey,
gokay.akkus@boun.edu.tr,
A.B. Bener is a faculty member in the Department of Computer Engineering
at Bogazici University. Her research interests include Web services, security,
e-commerce, and m-commerce applications and software engineering. Bener
has a PhD in information systems from the London School of Economics. She
is a member of the IEEE, the IEEE Computer Society, and the ACM. Contact
her at Boğaziçi University, Istanbul, Turkey, bener@boun.edu.tr

703

A development platform for distributed user interfaces

Anders Larsson, Magnus Ingmarsson, Bo Sun
Department of Computer and Information Science

Linköping University
Linköping, Sweden

andla@ida.liu.se, magin@ida.liu.se, x04bosun@ida.liu.se

Abstract

Developing user interfaces for a heterogeneous comput-
ing environment is a difficult challenge. Partial distribution
of the user interface is even more difficult. In particular,
providing developers with the means of describing and con-
trolling how components are distributed and redistributed
as devices are included or removed. We present an ap-
proach to overcome these challenges, by combining ontolo-
gies with a reasoning engine. Our tool MaDoE uses Protégé
in combination with Jess to exemplify this in a simulated
home setting. Our approach allows developers to take ad-
vantage of the formal knowledge in the ontologies as well
harnessing the power of rules inside the expert system when
they design distributed user interfaces.

Keywords: Distributed user interfaces, Ontologies,

JESS , Mobile computing

1. Introduction

We move into a more and more distributed and hetero-

geneous computing environment where we see a develop-

ment towards applications using multi-machine user inter-

faces and distributed user interfaces (DUI), and where sev-

eral devices join to accommodate the user with contextually

optimized interaction possibilities [16, 19]. It is becoming

clear that current development methods are ill suited to han-

dle this new environment. Today’s methods lack support

both for describing how to divide and distribute user inter-

faces and for allowing the user interface to reside on multi-

ple devices.

In a series of projects [8, 4, 20] we have developed sys-

tems that take advantage of this new environment. Knowl-

edge from these different systems has provided require-

ments for a DUI programing framework, called Marve. One

essential component within this framework is a reasoning

mechanism for describing distribution of ui-components at

runtime among a variable set of devices according to a spe-

cific application strategy.

This paper presents the MaDoE module that allows de-

tailed descriptions of devices’ interaction capabilities in or-

der to control component distribution using knowledge en-

gineering tools together with a rule engine. This is done to

accommodate the changing set of devices that the user has

at his or her disposal.

While DUIs constitute a more modular and convenient

interaction platform for the user, they also constitute a more

difficult programming environment for the developers. This

difficult environment leads to a need for tools for effec-

tive development of DUIs, much in the same way as for

GUI-development [17]. We believe that these tools should

provide developers with high level of abstraction to handle

the complexity of distributing an application. For instance

preparing an application for three devices might in the ex-

treme case result in six different permutations of the user

interface.

2. Background

2.1. Distributed user interfaces

In a mobile and ubiquitous computing world, users are

constantly moving around, making their possible interac-

tion a function of the available I/O-devices. To illustrate

DUI:s we present an example below. Lisa arrives at Stock-
holm Arlanda airport. As she passes through the security
checkpoint and enters the departure hall she receives a mes-
sage on her PDA. The message contains information about
how she can access the lounge area using a special access
code. To find the lounge Lisa walks over to one of the wall-
mounted screens located throughout the airport. As she ap-
proaches the wall-mounted screen, a map of the airport ap-
pears, at the same time as Lisa is presented with a search
interface on her PDA. She can then search for the lounge
and navigate the map on the screen through her PDA. As
she starts walking, the map is transferred from the wall

704

mounted screen to her PDA and the search interface is re-
moved. When she arrives at the lounge a small screen tells
her to swipe her ticket and to enter the four digit access
code she received in the message. Lisa swipes her ticket,
enters her code on the interface presented on her PDA, and
steps into the Lounge.
A new programming model is needed to both handle and

take advantage of this new reality. Distributed user inter-

faces has been a presented as one way of solving the UI-

issues for these new demands [16, 5, 9]. DUI suggests that

the interaction components for an application are spread out

over the set of devices that the user currently has available

to them. Constructing DUIs may be seen as the combina-

tion of the fields of migrateable applications and device-

independent user interfaces. It is also a natural progression

in UI-development from absolute positioning, via relative

positioning, to distributed positioning of a UI’s components.

Allowing applications to be transferred between devices is

not new. Over the years there have been more and more so-

phisticated attempts to allow the user interface to be trans-

ferred between devices at runtime, while the application is

still running. A few of the first steps toward movable ap-

plications includes examples such as X11 remote displays,

VNC, or Windows Terminal Server. However, all are based

on the fact that an external process other than the applica-

tion itself has control over its own migration. In contrast the

DUI approach makes moving entire or partial UIs a directly

usable asset in application designs. While DUIs constitute a

richer interaction platform for the user, they also constitute

a more difficult programming task for the developers. For a

traditional GUI application the only outside influences the

developer has to be able to handle is the change in size of the

widow. This is commonly solved by layout managers that

re-render the interface components when the window size

is changed. In DUIs the developer needs to handle changes

not only size, but also in the set of devices and the capa-

bilities of the interface that is currently being used. This

process can be described in the following steps

1. Applications starts

2. Devices added to application

3. Distribute components over the devices

4. Devices removed/added to application −→ (3)

This can be referred to as the component distribution cy-

cle [7]. New mechanisms are needed to allow developers to

control the distribution cycle, just as developers already can

control a traditional application’s layout with layout man-

agers. In the Marve platform this is handled by distribution

managers which programmers can control. MaDoE adds a

formal mechanism which allows for more general means of

describing distribution well as a general descriptions of de-

vices used in a DUI system. As the field of distributed user

interfaces progresses we can expect to see the same level

of abstraction that distributed systems have made for net-

work programming. The distributed systems area has nearly

eliminated the need for the programmer to do detailed im-

plementations of network connectivity. Modern languages

are fairly easy to use in this respect and provide simple yet

powerful ways of handing network connectivity. An exam-

ple of this is CORBA and Java’s RMI.

2.2. Protégé

In this project, Protégé was used (version 3.0 Beta) to

develop the ontology. Protégé is a

“suite of tools to construct domain models and

knowledge-based applications with ontologies.

At its core, Protégé implements a rich set of

knowledge-modeling structures and actions that

support the creation, visualization, and manipu-

lation of ontologies in various representation for-

mats.” [2]

Protégé is designed for system developers and domain ex-

perts to develop knowledge-based systems [1]. It is a tool

that permits the integration of creating classes and entering

instances of classes. Protégé also makes it convenient for

domain experts to model concepts in a specific domain and

to create applications in it in order to solve problems per-

taining to this domain.

2.3. Jess

As stated earlier a rule engine is needed to control the

distribution of components between service systems and

mobile devices. In this project, Jess was chosen as rule

language to create rule policies. Jess, Java Expert System

Shell, is a rule engine and scripting environment written en-

tirely in Sun’s Java language. Jess rules may be likened to

if...then statements in procedural language. The rules
created in Jess are fired to take actions based on facts which

in this project are items related to instances of classes from

the ontology. An example of Jess rules is shown and de-

scribed below.

Jess> (defrule allowed-person
"If a person is older than 22,

print his (her) name."
?c <- (object (age ?x&:(> ?x 22)))
=>

(printout t (slot-get ?c name)
" is older than 22." crlf))

This rule has two parts, separated by the => symbol (which
can be read as then). The first part is:

705

?c <- (object
(age ?x\&:(> ?x 22))).

The second part consists of the corresponding action:

(printout t (slot-get ?c name)
" is older than 22." crlf))

This rule means that whenever a person (instance) whose

age (property) is more than 22, print his or her name (prop-

erty).

2.4. JessTab

Since we want to make the Protégé ontology and Jess

rules work simultaneously to simulate some interactions un-

der different circumstances, a tool is needed to achieve this

goal. JessTab [12] is a plug-in for Protégé that provides a

console window allowing Protégé interact with Jess when

Protégé is running. See Figure 1 for an example.

Through JessTab, Jess facts can be created from Protégé

instances. In addition, Jess rules may be created which di-

rectly operate on Protégé’s knowledge base (an aggregation

of instances).

Figure 1. Jess running an example for a TV
application

3. Related work

One of the earliest migration-aware applications was pre-

sented by Bharat and Cardelli in [6]. Their applications

could be moved from one platform to another at runtime,

provided that the operating system stayed the same and that

it only allowed the entire application to be moved. Grolaux

et al. [13] have with their system, Migratable, shown how

migratable user interfaces can be used to achieve DUIs, by

partial migration of the interface from one platform to an-

other. They illustrate their approach by solving the painter’s

pallet problem (defined by Ayatsuka et al. in [3]) with only

0.5% extra code. Their research demonstrates that new tools

are needed to allow construction of DUIs in a sound and

professional manner.

Web-Splitter [14] is a project that shows a formal way

of describing the transformation of web resources over a set

of devices. Web-Splitter provides a framework that allows

web pages to be split into personalized partial views de-

pending on the users’ different roles. These partial views

can be further divided into xml-components that can be

transferred to devices located in the users’ proximity, thus

allowing limited mobile devices to handle multimedia by

augmenting them with co-located devices. Another project

that aims to allow web systems to be distributed over a set

of heterogeneous devices is presented by Vandervelpen et

al. in [22]. Their contribution is twofold: it provides means

for distributed user interfaces and a platform for collabora-

tion.

Vandervelpen and Conix [10] show a system for high-

level descriptions of user interfaces called Dygimes, which

rest on a model-based user interface design approach that

can be extended to support DUIs. Their approach is a

step towards frameworks that aid user interface designers

by allowing them to work within a distributed environment

where the interface can be partially split over a set of de-

vices.

The Pebbles project [18] (where handhelds and PCs

work together) aims to spread computing functions and

their related user interfaces over different I/O-devices. In

an extension to the Pebbles project, the personal universal

controller (PUC) project shows how a high-level description

language can be used to describe remote-control facilities

for mobile devices to stationary units such as VCRs, stereos

and TV-sets. The high-level description can then be used

together with automated user interface engines to generate

a limited user interface for the stationary unit on the mobile

device. A more theoretical work is presented by Demeure et

al. in [11] in which they present a schema for classification

of distributed user interfaces, with the aim of providing de-

signers with a mechanism that can express the distribution

of interfaces over different devices.

One trend in computer-supported cooperative work has

been towards cooperative user interfaces, where a common

user interface is shared among the users instead of each user

having their own separate application running with its own

user interface. Pioneering work for cooperative user inter-

faces was presented by Smith and Rodden [21] in Shared

Object Layer (SOL). SOL allows the individual user’s in-

terfaces to be projected to devices from a common, shared

interface definition. This enables users to be presented with

only the tools and functions that they currently need, or are

706

Figure 2. Overview of the ontology

allowed to use.

4. Marve Distribution Manager Ontology En-
gine (MaDoE)

MaDoE allows for a high-level method of describing the

distributions of user-interface components over a changing

set of devices. This is accomplished by using an ontology

and a rule engine which can operate on the knowledge base

described in the ontology. To have an easy way of redesign-

ing and reorganizing the ontology we have used the Protégé

ontology editor, and for this implementation we have cho-

sen to use Jess as the rule engine.

To illustrate the functionality of MaDoE a small ontol-

ogy was created. An overview of the ontology can be seen

in Figure 2. This ontology both describes the different types

of devices (Devices) that will be available as well as the

properties (Features) of those devices. The domain of this

model is oriented to mobile units which include Cellphone,

PDA (Personal Digital Assistant), and Laptop. The Fea-

tures included in this ontology are communication schemes

(Bluetooth, infrared, etc.), operating systems, and interac-

tion capabilities. The ontology also includes information

about the different types of applications (ServiceSystem)

that will be used. In this small example the applications

are oriented in services that may be found within a home.

4.1. Classes

This ontology was implemented using Protégé. Fig-

ure 3 shows the class hierarchy inside Protégé. The ma-

jor classes defined in the ontology are ServiceSystem
and Device which has subclasses Laptop, PDA, and
Cellphone. The class ServiceSystem represents the
different applications available to the end-users. Some other

Figure 3. The class hierarchy in Protégé

classes are needed to represent the different features of

the Devices. The class Features consists of the sub-
classes Communication, OperatingSystem, Pad,
and Screen. The class Communication represents the
wireless communication schemes (WiFi, Bluetooth, and In-

frared) used by devices. The class Pad represents the inter-
action types (Keypad, Keyboard, Touchpad) on which users

can interact with a device. The class Screen represents pa-
rameters related to the device’s screen, such as screen size

and color-depth. For each service in the ontology a set of

interaction-components is defined, called sub-service in the

ontology. These components are then available for distribu-

tion among the different devices.

These features are used by the rule engine to decide

which components can be used on what device. More com-

plex systems, such as MagUbi, containing world knowledge

can take advantage of this to reason about why certain com-

ponents should be placed on certain devices [15]. From

Figure 4 it can be seen that all properties of Device are
defined as Instance-type and arranged specifically to each

subclass of Features and ServiceSystem. Then car-
dinality restrictions are defined and assigned to the proper-

ties of the Device. The following assumptions are made
about the mobile devices in the ontology:

1. Each mobile device has only one operating system

while running.

707

Figure 4. Properties of devices

2. Some mobile devices have been equipped with more

than one pad, for example the Sony PEG-UX50 (PDA)

has both Touchpad and Keyboard.

3. Some mobile devices have more than one communi-

cation port, for example the Acer TravelMate 661xvi

(Laptop) has connectivity through Wi-Fi, Bluetooth

and Infrared. In this work, it is assumed that a de-

vice can connect to a service system through only one

communication method at a time.

4. One single device can run only one application pro-

vided by ServiceSystem.

4.2. Defining Rules

From this ontology we can provide developers with a

high-level mechanism for describing how the applications

in the ontology should distribute their different user inter-

face components as devices are connected and disconnected

from the application. This is accomplished in MaDoE by

using Jess and the JessTab plug-in for Protégé. The JessTab

provides automatic translation between Protégé classes to

Jess facts. MaDoE includes built-in rules to ensure that UI

components are not transferred to devices where they can-

not be used.

For example, MaDoE enforces that a drop-down menu

component is not transferred to a device that does not have

interaction capabilities, like a TV, without simultaneous

connection to, for instance, a cellphone from which the

users make the selection. In this example the TV acts as

a output device and the cellphone acts as the input device.

MaDoE also includes a set of rules that can be compared

to layout mangers in traditional user interfaces. The Ma-

DoE border distribution rule set, compared to Java Swing

BorderLayout, ensures that a component named CENTER

always displays on the largest screen available to the user.

Formal and sound ways of describe application specific

rules for controlling the behavior is also available in Ma-

DoE through Jess rules. MaDoE acts as a plug-in to the

Marve system. As devices are added or removed from an

application in the Marve runtime, Jess rules are triggered

and the underlying platform redistributes the components

accordingly to the information provided by the rule engine.

5. Discussion

Allowing developers to control UI-component distribu-

tion through the use of ontologies and rule engines provides

a sound and formal way of expressing application behavior

as devices are added or removed. A rule engine can en-

sure that components are not transferred to devices where

the components cannot be used. To allow for application

specific behavior, developers also need to be able to de-

scribe their own rules for how an application’s user inter-

face should change over time as the number of devices con-

nected to an application change. As the rules supplied by

programmer might contradict the built in rules in MaDoE, a

set of priorities is required to govern rule precedences. This

is needed but not available today in MaDoE.

In MaDoE, knowledge about devices and applications is

described in an ontology and then transformed into facts

that can be used by the rule engine. This is done to al-

low a higher abstraction level for describing how an appli-

cation should change as the number of connected devices

are changing. The output from the rule engine is then inter-

preted by the Marve platform. In the future there might be a

way of letting the device ontology be available in the Marve

framework and then have a rule engine in the framework it-

self. Today Marve has a small set of distribution managers

which can distribute components according to a predefined

schema with a limited degree of freedom for the application

developer.

6. Conclusion

To provide developers with the right tools to build and

maintain systems that support distributed user interfaces, it

is essential to have formal and sound way of describing how

the application’s user interfaces should change over time as

devices are added or removed. The MaDoE module for the

Marve framework also allows developers to use ontologies

to describe the properties of both devices and information

services. If combined with a system with world knowledge

such as Magubi [15], proper DUIs can be constructed as

well to make sure that mistakes such as displaying the UI

on an inaccessible display do not occur.

Users are today equipped with more and more devices

(such as traditional personal computers, PDAs, cell-phones,

708

or hybrids like smart-phones) for accessing different infor-

mation systems. For the developer it is important to accom-

modate users with adequate interaction capabilities. This

project provides a model of mobile devices as well as a

service system. The description of this model (ontology)

combined with some rules is helpful in designing a service

system. This is especially true with regards to the rule en-

gine that offloads the burden of deciding what goes where

and when in this highly dynamic environment.

A clear hierarchy of defined classes with related infor-

mation (properties, instances, and comments) is illustrated.

This model is created by Protégé. It aims to give design-

ers of service system a rudimental prototype about different

mobile devices, their features, internal structures, etc.

Jess rules created for this model give a way to simu-

late the interaction between mobile units and service sys-

tem. They provide some basic ideas about how to design

rule policies for the rule engine of a service system. Even

though these rules have only been applied in a laboratory

setting so far, they could still be incorporated into research

prototypes of service systems to test how they are going to

work in actual circumstances.

This project shows how developers and system design-

ers can take advantage of such a model in both designing as

well as deploying information systems for mobile devices.

The rule engine also gives developers a high-level method

of defining the requirements and behavior of the system as

a whole. The project also demonstrates how services can be

split up into sub-services (components) to enable the devel-

opment of applications supporting DUIs.

References

[1] The Protege user’s guide. http://protege.
stanford.edu/doc/users_guide/index.html.

[2] What is Protégé? http://protege.stanford.edu/
overview/index.html.

[3] Y. Ayatsuka, N. Matsushita, and J. Rekimoto. Hyperpalette:

a hybrid computing environment for small computing de-

vices. In CHI ’00: CHI ’00 extended abstracts on Human
factors in computing systems, pages 133–134, New York,

NY, USA, 2000. ACM Press.

[4] A. Berglund, E. Berglund, A. Larsson, and M. Bång. The

paper remote: An augmented tv guide and remote control.

Universal Access in the Information Society, Springer, 2004.
[5] E. Berglund and M. Bång. Requirements for distributed

user-interface in ubiquitous computing networks. In

MUM2002, Mobile and Ubiquitous MultiMedia connfer-
ence, 2002.

[6] K. A. Bharat and L. Cardelli. Migratory applications. In

UIST ’95: Proceedings of the 8th annual ACM symposium
on User interface and software technology, pages 132–142,
New York, NY, USA, 1995. ACM Press.

[7] M. Bång, A. Larsson, E. Berglund, and H. Eriksson. Dis-

tributed user interfaces for clinical ubiquitous computing ap-

plications. International Journal of Medical Informatics,
pages 545–551, 2005.

[8] M. Bång, A. Larsson, and H. Eriksson. Nostos: A paper-

based ubiquitous computing healthcare environment to sup-

port data capture and collaboration. In Proccedings of
the 2003 American Medical Informatics Association Annual
Symposium, pages 46–50, 2003.

[9] M. Bång, A. Larsson, and H. Eriksson. Design requirements

for ubiquitous computing environments for healthcare pro-

fessionals. In Proceedings of Medinfo 2004, 2004.
[10] K. Coninx, K. Luyten, C. Vandervelpen, J. V. den Bergh, and

B. Creemers. Dygimes: Dynamically generating interfaces

for mobile computing devices and embedded systems. In

Mobile Human-Computer Interaction - Mobile HCI 2003.
[11] A. Demeure, G. Calvary, J.-S. Sottet, and J. Vanderdonkt.

A reference model for distributed user interfaces. In TA-
MODIA ’05: Proceedings of the 4th international workshop
on Task models and diagrams, pages 79–86, New York, NY,
USA, 2005. ACM Press.

[12] H. Eriksson. The jesstab approach to protégé and jess inte-

gration. In Proceedings of Intelligent Information Process-
ing (IIP 2002), pages 237–248, 2002.

[13] D. Grolaux, P. V. Roy, and J. Vanderdonckt. Migratable user

interfaces: beyond migratory interfaces. In Proceedings of
MOBIQUITOUS 2004. The First Annual International Con-
fere nce on Mobile and Ubiquitous Systems: Networking
and Services, pages 422–30. IEEE Comput. Soc, 2004.

[14] R. Han, V. Perret, andM. Naghshineh. Websplitter: a unified

xml framework for multi-device collaborative web brows

ing. InCSCW ’00: Proceedings of the 2000 ACM conference
on Computer supported co operative work, pages 221–230,
New York, NY, USA, 2000. ACM Press.

[15] M. Ingmarsson. Modelling User Tasks and Intentions
for Service Discovery in Ubiquitous Computing. Num-

ber 1305 in Linköping Studies in Science and Technology.

Linköpings universitet, 2007.
[16] A. Larsson and E. Berglund. Programming ubiquitous soft-

ware applications: requirments for distributed user interface.

In Proceedings of The Sixteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE
04)’, 2004.

[17] B. A. Myers. User interface software tools. ACM Transac-
tions on Computer-Human Interaction, 2(1):64–103, 1995.

[18] B. A. Myers. Using handhelds and pcs together. Communi-
cations of the ACM, 44(11):34–41, 2001.

[19] B. A. Myers, J. Nichols, J. O. Wobbrock, and R. C. Miller.

Taking handheld devices to the next level. Computer,
37(12):36–43, 2004.

[20] M. Sjölund, A. Larsson, and E. Berglund. The walk-away

gui: Interface distribution to mobile devices. In IASTED-
HCI 2005, 2005.

[21] G. Smith and T. Rodden. Sol: a shared object toolkit for co-

operative interfaces. Int. J. Hum.-Comput. Stud., 42(2):207–
234, 1995.

[22] C. Vandervelpen, G. Vanderhulst, K. Luyten, and K. Coninx.

Light-weight distributed web interfaces: Preparing the web

for heterogeneous environmen. In 5th International Con-
ference, ICWE 2005, Sydney, Australia, volume 3579/2005,
pages 197–202. Springer Berlin / Heidelberg, 2005.

709

A Dynamical System approach to Intrusion
Detection Using System Call Analysis1

Nitin Kanaskar, Remzi Seker and S. Ramaswamy
Knowledge Enterprises for Scalable Resilient Infrastructures

Computer Science Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
{nvkanaskar, rxseker}@ualr.edu, srini@acm.org

1 This research work was funded, in part, by an MRI grant from the National Science Foundation (Grant #: CNS – 0619069).

ABSTRACT
Code injections can aid successful intrusion attempts, thereby
allowing viruses and worms to spread. Current research into
intrusion detection is notably focused on application behavior
profiling through system call trace analysis. Studying the
system call layer has been identified as a potential approach to
render revealing details about an application’s behavior.
System call sequences available from the execution trace of an
application can be subjected to different modeling techniques
to approximate the application’s normal execution. This
research views application programs as dynamical systems,
and applies dynamical system analysis tools operating on time
series data, merely the system calls made by an application, to
identify the degree of determinism in a dynamical system.
There is some prior work in the literature analyzing programs
as dynamical systems, but they lack proper utilization of
dynamical system formalisms and associated analysis tools. In
our research we utilize a set of dynamical system analysis tools
composed of Approximate Entropy, Central Tendency
Measure, and Recurrence Plot derived measures. Our initial
results are promising in detecting code injections.

Keywords - System call sequence, Intrusion Detection,
Approximate Entropy, Recurrence Plots, Central Tendency
Measure

1. Introduction
Intrusion detection assumes a vital role in the overall
information security framework of any computing network.
A majority of intrusive activities takes place as the direct
outcome of malicious code injection into an applications’
execution memory space. System call analysis has proven to
be a very effective tool for detecting the code injections, and
therefore, system intrusions. The primary objective of our
work can be described as the attempt at the timely detection
of system call pattern change to recognize abnormal
application behaviors. Through this paper, we introduce the
first thorough application of a dynamical system theory
approach to system call analysis with the distinct goal of
detecting code injection attacks. To accomplish this, we
characterize the normal behavior of the application on the
basis of certain dynamical system characteristics. Values of
these dynamical system characteristics are observed for the
abnormal behavior of the application and compared with its

normal behavior pattern. Collectively, the analysis using
these tools facilitates us to distinctly differentiate between
normal and abnormal behaviors of the application.
Section 2 explains some basic theoretical background on
dynamical system analysis necessary for system call
analysis. Section 3 describes the prototype test environment.
Section 4 explains the various analyses approaches. Section
5 discusses and analyzes the results of our prototype
implementation. Section 6 compares the dynamical system
approach with a few of the relevant research works. Section
7 summarizes the work and presents our conclusions.

2. Dynamical System Approach
Dynamical system theory and chaos theory have been
explored by research communities to understand and explain
many apparently random phenomena in nature like
turbulence in sea, atmosphere, fluctuation in wildlife
populations, accumulation of vehicles on highways, oil flow
in underground pipes, electronic devices and many other
universally diverse events [1]. We believe that a software
application’s behavior evolution over time shows a similar
kind of dynamism. Hence in this paper, we use the system
call trace of a software application as the observable
characteristic of a complex dynamical system whose values
are in the form of a one dimensional time series. Simply put,
a computer program’s normal behavior can be characterized
by applying system behavior analysis techniques used for
studying dynamical systems.
System call trace generated by the application program may
be considered as observable through a one dimensional time
series from which we can reconstruct the state space of the
application. Any activity by an application requires
invocation of a particular sequence of system calls. So,
given a system call, we can predict as to what would be the
next system call within a certain degree of probability, and
hence a degree of determinism. But, in the long run it is
difficult, if not impossible to estimate which system call is
going to be executed. This uncertainty articulates the
randomness inherent in an application’s long term behavior.
We believe an application’s long term behavior dynamics
can be better understood by reconstructing the application’s

710

state space and then applying certain dynamical system
analysis tools to analyze it. We choose Approximate
Entropy, Central Tendency Measure, and Recurrence Plots
analysis techniques to study and characterize applications’
long term behavior. These measures define a system’s
characterization in terms of degree of determinism,
similarity, and rate of variability and are the characteristics
which we find useful for creating an application’s normal
behavior profile. Figure 1 presents our overall approach for
using an application’s system call sequence as a dynamical
system observable.

2.1 Approximate Entropy
Using this measure, we study an application’s behavior from
the perspective of the system’s information complexity and
utilize the state space reconstructed for the application from
its system call time series data. The Approximate Entropy
measure was proposed by Pincus [2] to assess a system’s
information complexity. It is a statistical measure capable of
classifying complex systems with relatively few data points.
Approximate Entropy has been successfully utilized to
quantify complexity in physical systems as well as
physiological systems. It works satisfactorily on small
lengths of time series data to give their complexity measure
[3].

Any kind of intrusive code injection will give rise to a
sudden drift in the application’s system call sequence pattern
which translates into a changed – either increased or
decreased – value of the system’s complexity. Hence, we
study the effect of code injection into the application’s
memory space by its effect on changing the application’s
behavior. We give below a brief description of the
procedure to calculate Approximate Entropy from a one
dimensional time series:

Consider a one dimensional time series

)(),......,3(),2(),1(Nuuuuu ······························ 1

All the scalar components of this time series are equi-spaced
in time. A series of m-dimensional points x(1), x(2),
x(3),….x(N-m+1) is formed from the equation 1 such that

)1()....2(),1(),()(miuiuiuiuix ············ 2

Each of these points specifies a point in the reconstructed m-
dimensional state space. A measure Ci

m is defined as

)1()(mNr NC ij
m
i ······································ 3

Where
Nij = Number of j such that Euclidean distance [x(i), x(j)] <
r; where r is the radius of the sphere in m-dimensional space
centered at x(i)
Euclidean distance is defined to be the length of difference
between two vectors (state space points) which is

1

0

2)]()([)()(
m

k
kjukiujxix ············· 4

We define
1

1

1)()()1(
mN

i

m
i

m rr CmNC ······················ 5

)()(
1

1

1 log)1(rr
mN

i

m
i

m CmN ················ 6

Figure 1: Dynamical System perspective for System Call analysis

711

Approximate Entropy for some fixed values of m and r is
defined as:

)]()([),(1 rrrmApEn mm

N
Lim ·····················7

2.2 Central Tendency Measure
Here, we attempt to establish some measure of the chaotic
behavior in the application’s system call time series by
calculating its central tendency measure (CTM)[4]. CTM is
a metric to evaluate the degree of variability in a given data.
Second order difference plots centered around the origin
give the rate at which data assumes variations in values. The
more these values are distributed around the origin, the more
the randomness is exhibited by the data. CTM has been
employed in the analysis of various physiological processes
like heart rate variability and behavior of schizophrenic
patients.
In our work, variability scores of the program’s behavior
before code injection and the one after code injection need
to be distinguished from one another as degree of variability
is one of the criteria used to distinguish the two scenarios.
Second order difference plot for a time series a(1), a(2),
….a(n) – obtained by plotting a(n+2)-a(n+1) Vs. a(n+1)-a(n)
- acts as a tool to measure this variability factor. In a time
series a(1),a(2),…..a(n),a(n+1),a(n+2) of length N, if r is
denoted as the radius of the sphere around the origin, then

)2(])([
2

1
NCTM

N

i
id ····································8

Where,
)(di =1, riaiaiaiaif })]()1([)]1()2([{ 22 5.0

 = 0, Otherwise··9

The value of radius r is selected depending upon the nature
of data [5].

2.3 Recurrence Plots
This is a recently developed dynamical time series analysis
technique by J. P. Eckmann [6]. It graphically demonstrates
time correlation between different points on the state space
of a dynamical system. Point (i, j) in a Recurrence Plot is
marked black (or 1) if two points representing the system
states at instants i and j are close enough as defined by a
criterion of Euclidean distance r. Thus,

),(jiRP = 1, rjxixdif)](),([···········10
 =0, Otherwise
Points x(i) and x(j) are part of an embedded time series data.
The ith row of this multidimensional vector represents the
system state at ith instant. Recurrence Plots have been
exploited to discern hidden patterns and non-stationeries in
time series data for physiological systems. Different
structural elements in Recurrence Plots denote certain
qualitative aspects of the time series data in terms of

determinism, recurrent patterns. We define Percent
Recurrence, Percent Determinism, and Percent Ratio [7] to
characterize an applications’ normal behavior.

2.3.1 Percent recurrence
Percent Recurrence gives the fraction of points in
multidimensional state space repeating previous system
dynamics. It helps us distinguish a process with periodic
dynamic behavior from that with an aperiodic behavior.
More the points that are observed at same states of a
dynamical system, the more periodicity exhibited by its
reconstructed state space.

2.3.2 Percent Determinism
Percent Determinism is associated with line structures
present in a Recurrence Plot. A Line of Identity (LOI) is
formed on a plot for all points where i=j. This is the line
having the slope of one which passes through the origin and
divides plot area into two congruent triangles. There may
appear other line structure(s) which are parallel to LOI. Such
a line in the plot is formed by points (1’s) that are diagonally
adjacent with no white spaces (0’s) in between. For
example, if pairs of consecutive points [x(i),x(j)],
[x(i+1),x(j+1)], [x(i+2),x(j+2)]…[x(i+N),x(j+N)] in
multidimensional state space of a dynamical system exhibit
the same dynamics, then the corresponding points placed in
the Recurrence Plot form a line parallel to the LOI.
Percentage of points in these lines articulate how much
structure of the state space repeats on consecutive points of
the state.

2.3.3 Percent Ratio
Percent Ratio is the ratio of Percent Determinism to Percent
Recurrence in the plot. This quantity captures the extent to
which the system state space is experiencing sudden
variations. So it is an effective indicator of sudden
transitions in state dynamics of a process. All of the above
defined Recurrence Plot parameters strongly highlight
presence of hidden rhythms, and determinism characteristics
in data.

3. Test Environment
We simulate the code injection event for the test application
by changing its source code and recompiling it into a new
executable program. To mimic code injection, the added
code is a simple ‘for loop’ inserted into one of the main
source files of the application to invoke certain system calls
repeatedly. Since most common viruses and worms execute
certain instructions repeatedly, we believe this to be a viable
scenario for such intrusions. The injected code causes the
runtime executable image of the program to change and this
aptly simulates the code injection phenomenon in such
intrusions. The application chosen for the prototype
implementation of the dynamical system analysis approach
is Apache Web Server 2.2.2 on Fedora Core 4 Linux
platform with the kernel version 2.6.11. First, we observe

712

Apache’s normal behavior profile by viewing its system call
trace after subjecting it to a pre-defined set of HTTP
requests. Then, we set up our test environment such that
Apache is the only network daemon running on the system
to minimize the number of free variables in the system and
to better understand Apache’s behavior profile. The Linux
strace utility is used to capture all of the system calls
invoked by Apache into a text file. One of the source files –
request.c – in the Apache server’s source tree was then
changed to add the injected code mentioned earlier; since
this is the file accessed by Apache for servicing all HTTP
requests. System call trace files for this new Apache server
executable in response to the same set of HTTP requests
were then collected.
Later, with the unique call mappings present in
/usr/include/asm/unistd.h – universally standard to all Linux
platforms – the test files are converted into a numerical
format. For simplicity, the Apache server’s library calls are
ignored for analysis purposes. To reduce the complexity of
processing, the system call parameters are also ignored.
Apache processes invoke – waitpid() and select() system
calls – when they are idle; hence these are also ignored as
our intent is to profile Apache’s behavior when it services
HTTP requests. On Linux platforms, when Apache server
makes a socket related system call, it is redirected to the
respective system call via a common system call –
socketcall(). In other words, the unistd.h file contains
mappings only for socketcall(). As a result, for our
prototype, we map all the invocations of socket related
system calls by Apache to socketcall(). There is a category
of system calls in Linux kernel which are marked as
deprecated. There does not exist a mapping for these system
calls in unistd.h file. We decided to ignore these system calls
from our dynamical system analysis approach. Needless to
say, by taking both the old system calls and the network
system calls into account, a better approximation of the

application’s behavior can be realized.

4. Analysis Approach
4.1 Non-Clustered Analysis
From the one dimensional time series, the state space of
Apache’s behavior is reconstructed by the process of
embedding. Embedding, achieves the aim of better
approximation of the time evolution of the system’s
behavior by reconstructing the state space with specific
embedding dimension m and time delay values.

4.1.1 Subsystem Approach
For all children processes of Apache web server, one
dimensional number time series data are retrieved after the
pre-processing stage. Each of these time series is treated as
an individual subsystem and subjected to the embedding
procedure. Then, these multidimensional time series are
subjected to dynamical system analysis methods -
Approximate Entropy, Recurrence Plots, and Central
Tendency Measure (CTM). For each of the time series, first
1000 data points are processed in a cumulative order starting
with 500 data points with an increment of 100. Average
values of all the measures are plotted against the changing
data lengths using scripts in Matlab™ 7.0.14.

4.1.2 Children Processes as System Dimensions
All of the children processes are considered as individual
dimensions of the application’s state space. We convert the
data from the system call trace of all process specific files
into a single numerical matrix having each process’s trace in
each column of the matrix. Each row represents a point in
m-dimensional space. The matrix data is processed in the
same cumulative fashion as described for the subsystem
approach. A modified definition of Approximate Entropy is
employed for this scenario wherein only m(r) is calculated.
Calculation of m+1(r) cannot be done with the same data

Figure 2: Apache system call trace pre-processing for Clustered and Non-Clustered approach
713

vector by changing the number of dimensions. Hence we
come up with modified definition of Approximate Entropy
(m(r)).

4.2 Clustered Analysis
In this approach, all of the system calls from the trace are
mapped to a particular functional group. Two user defined
configuration files are created for this purpose. One file
contains all the functional categories mapped to unique
numbers. The other file contains all system calls mapped to
the respective functional category. Figure 2 gives the block
diagram representation of the pre-processing stage. After the
pre-processing stage, the trace file contains one dimensional
time series having system call category numbers as equi-
spaced elements.
The intention behind clustering system calls is to capture
Apache’s behavior at a more abstract level. A system call
category is more indicative of Apache’s functionality, and
hence in turn, its behavior.

5. Results and Analysis
A collective analysis of all the selected dynamical system
measures reinforces our confidence level in the decision
making process. The graphs of Approximate Entropy,
Recurrence Plot parameters, and CTM are plotted against
varying data lengths for the pre-code injection and the post-
code injection scenarios.
We investigate the dynamical system characteristics of
Apache web server from several different perspectives: a.

Non-Clustered subsystem approach, b. Non-Clustered
process state variable approach, c. Clustered subsystem
approach, d. Clustered process state variable approach. For
the subsystem approaches (a and c), the first 1000 data

points from the time series are subjected to embedding with
dimension values ranging from 2 to 15 and delay varying
from 1 to 3. CTM is independent of embedding procedure,
thus it is not calculated for the variations of embedding
dimension. The values of embedding dimension (m) and
time delay () that give the best possible results for shortest
data lengths are selected. By best result we mean maximum
discrimination between pre and post code-injection states.
The distinction between the pre-code injection and post-
code injection scenarios need to be achieved for as few data
points as possible (the fewer the system calls needed for
detection, the more responsive and easier the implement the
proposed approach is). For the process state variable
approaches (b and d), the system state variables or
dimensions are assumed to be equal to the number of
children processes; hence they are not subjected to the
embedding procedure.
The graphs for Apache’s system call trace for the embedding
dimension (m) 2 to 5 and time delay () 1 for Non-Clustered
subsystem approach are illustrated in Figures 3 and 4.
Figures 5 and 6 show the graphs obtained with children
processes as state variables, on two different times. We
observe here that the subsystem approach gives superior
results.

To validate the proposed methodology, along with Apache
web server, we tested a few other daemon application
programs like vsftpd, DNS server named, cupsd (Unix
Printing Service) and subjected them to a similar dynamical
system analysis process. Preliminary results substantiate our

claim that a thorough dynamical system approach allows us
to discriminate between pre and post code injection. For
repeatability of the results, we confirmed the validity of
these measures by repeating the whole procedure on two

 m=2

 m=3

Figure 3: Approximate Entropy, Percent Determinism, Percent Recurrence, and Percent Ratio for
 =1. Curve with squares is for post-code injection and the curve with stars is for pre-code injection

scenario. (Non-Clustered Subsystem approach)

714

different times. The behavioral changes due to code
injection are reflected prominently through the graphs we

obtain for these applications. We get the best distinction
results for embedding dimension 2 and embedding delay 1.

m=4

m=5

Figure 4: Approximate Entropy, Percent Determinism, Percent Recurrence, and Percent Ratio for m=4 and
m=5, t=1. (Non-Clustered Subsystem approach)

Date 1

Date 2

Figure 5: Modified Approximate Entropy, Percent Determinism, Percent Recurrence, and Percent Ratio for
the children processes as the state variables on different times
__

6. Comparative Analysis
To distinguish our proposed approach, in this section we
relate our approach with some of the relevant research
approaches proposed in literature until now. Hofmeyr, et.al

[8] proposed the definition of normal application behavior
using small unique sequences of system calls. Using a
simplistic measure of Hamming distance, they identified
abnormal sequences. They unknowingly utilized the process

715

of embedding by defining a database of normal system call
sequences of fixed length. However, they warn that the
Hamming distance is not a formally defined and proven
metric to determine the abnormality of sequences. Thus, the
simplicity advantage is overshadowed by the lack of proper
formal analysis of the system call layer. Our approach is
based on widely proven techniques employed successfully

in diverse fields [1].
Hofmeyr and Kosoreow [9] defined variable length
sequences – macros – and deterministic finite automata
(DFA) to define normal behavior of application. The DFA
tended to be quite large for large applications like sendmail.
There was no ideal method defined to create the DFA and
was created manually for any application to be tested. Our
analysis approach can be fully automated, and is indeed one
future improvement planned for our work.
Jones and Li [10] incorporated temporal information
between system call pairs in the database. Under the
assumption of normal distribution for system call timing,
they ignored some of the normal behavior (e.g. I/O) system
call timing information because of the large variance. We
accommodate all system call sequences for our analysis
except the socket related calls, library calls, and some older
system calls. Our future improvement plan includes support
for the socket calls and the older system calls.
Cabrera, et. al. [11] came up with the concept of anomaly
dictionary consisting of anomalous sequences for the
classification of anomalies. This feature was built upon the
dictionary of normal sequences proposed by Hofmeyr et. al.
[8]. This approach required the creation of the anomaly
dictionary from known anomaly sequences. Our approach,

based on dynamical system analysis techniques is
independent of any such database of anomalous sequences.
Nguyen, et. al. [12] developed Buffer Overflow attack
Detection system with Linux kernel modification. Their
system was based on a database of all children processes
forked by a given process. The main drawback of their

method was there were many processes whose children
processes could not be ascertained apriori. The training
period needed for their prototype to be trained was 3 months
which is quite a long time.
Qiao, et. al. [13] put forth Hidden Markov Model (HMM)
for profiling application behavior profiling. The number of
states in HMM was determined experimentally as there was
no formal method for doing that. The training process of
HMM took a long time.
In comparison to all of the above mentioned approaches, we
have shown that a dynamical system analysis approach can
fare well in many respects. First, experimentally, we have
determined that the minimum number of data points required
for the method to be successful is around 500. Second, this
method does not require a full fledged database to store
normal application sequences. Third, and very importantly,
the method is independent of the timing characteristics of
system calls.
Mutz et al. [14] adopted an entirely different methodology
from all of the above approaches in that they formulated
system call argument models in terms of their lengths and
character distribution. They did not take system call
sequences into consideration. They focused especially on
detection of mimicry attacks which cannot be detected by

 Date 1

 Date 2

Figure 6: Modified Approximate Entropy, Percent Determinism, Percent Recurrence, and Percent
Ratio for the children processes as state variables (Clustered)

716

most of the above research approaches. We plan to
incorporate system call argument modeling into dynamical
system perspective in the future.

7. Discussions and Conclusions
Embedding procedure demands specific attention with
respect to future work. The parameters required by
embedding – the embedding dimension m and embedding
delay – are determined heuristically in our prototype. A
more formal method needs to be devised for the
determination of these parameters which will give their
optimum values for a particular application. However, all
pertinent applications of embedding procedure in the
literature have employed a heuristic approach for
ascertaining m and . We also need to include alternative
scheme for mapping socket system calls and older system
calls. This enhancement will definitely improve the
detection capability of our tool.
By observing the collection of graphs of the dynamical
system characteristics – Approximate Entropy, Recurrence
Plot derived measures, and CTM – we draw certain
inferences. The Subsystem approach gives superior results
than the ‘children process as state variables’ approach.
Embedding dimension (m) value 2 and embedding delay ()
value 1 give the best detection capability for Non-Clustered
as well as Clustered subsystem approaches. As the number
of embedding dimension increases, majority of dynamical
system characteristics tend to be similar for the pre-code
injection and the post-code injection scenarios. As a higher
number of dimensions are used to recreate the system state
space, its attractor is stretched more and this effectively
culminates in dispersing the state space points away from
each other. Hence, the difference between the characteristics
for the two scenarios decreases. Clustered system call
analysis gives us similar results as the Non-Clustered
approach for all the test applications. We have tested the
dynamical system approach on Apache 2.2.2, cups 1.2.7,
vsftp 2.0.5, and bind 9.3.3 on Fedora Core 4 Linux platform.
A collective analysis of the dynamical measures of
information complexity, degree of determinism, and
periodicity for these applications gives us promising results
in term of detecting abnormal sequences from the normal
ones. Through this paper, we have shown that application
behavior modeling founded on the principles of dynamical
system theory can potentially be leveraged to profiling the
behavior of application programs for Intrusion Detection.

REFERENCES
[1] S. Sharma. (2006 March). An Exploratory Study of
Chaos in Human-Machine System Dynamics. IEEE
Transactions on Systems, Man and Cybernetics. [Online],
Part A. 36(2), pp.319-326.
[2] Steven Pincus. (1991 March). Approximate Entropy as a
Measure of System Complexity. Proceedings of the National
Academy of Sciences. [Online]. 88. pp.2297-2301.

[3] M. Akay. (2005 November). Influence of the Vagus
Nerve on Respiratory Patterns during Early Maturation,
IEEE Transactions on Biomedical Engineering. [Online].
52(11), pp.:1863-1868.
[4] M.E.Cohen, D.L.Hudson, P.C.Deedwania. (1996
September). Applying Continuous Chaotic Modeling to
Cardiac Signal Analysis. IEEE Engineering in Medicine and
Biology. [Online]. 15(5), pp. 97-102.
[5] D.L.Hudson, M.E.Cohen, P.C.Deedwania. (1997).
Classification of heart failure patients using continuous
chaotic modeling. Proceedings of the 18th World Congress
on Medical Physics and Biomedical Engineering.
[6] J.-P. Eckmann, S.O.Kamphorst, D. Ruelle. (1987
November). Recurrence Plots of Dynamical Systems.
Europhysics Letters. [Online]. 4, pp. 973-977.
[7] C. L. Webber Jr, J. P. Zbilut. (1994 February).
Dynamical Assessment of Physiological Systems and States
Using Recurrence Plot Strategies. Journal of Applied
Physiology. [Online]. 76(2) pp. 965-973.
[8] Steven Hofmeyr, S.Forrest, A.Somayaji. (1998).
Intrusion Detection using Sequences of System Calls.
Journal of Computer Security. [Online], 6(3), pp.151-180.
[9] Steven Hofmeyr, Andrew Kosoresow. (1997
September). Intrusion Detection via System Call Tracing.
IEEE Software, [Online]. 14(5), pp. 35-42.
[10] Anita Jones, Song Li. (2001 December). Temporal
Signatures for Intrusion Detection. Presented at 17th Annual
Computer Security Applications Conference. [Online].
[11] Joao Cabrera, Lundy Lewis, Raman Mehra. (2001
December). Detection and Classification of Intrusions and
Faults using Sequences of System Calls. ACM SIGMOD
Record. [Online]. 30(4), pp.25-34.
[12] N.Nguyen, P.Reiher, G.Kuenning. (2003 June).
Detecting Insider Threats by Monitoring System Call
Activity. Proceedings of IEEE Workshop on Information
Assurance. [Online].
[13] Y.Qiao, X.W.Xin, Y.Bin, S.Ge. (2002 June). Anomaly
Intrusion Detection based on HMM. Electronics Letters,
[Online]. 38(13), pp. 663-664.
[14]. D. Mutz, F. Valeur, G.Vigna, C.Kruegel, Anomalous
System Call Detection. ACM Transactions on Information
and System Security, Feb 2006.

717

Multi-level Anomaly Detection with Application-Level Data

Swapna S. Gokhale and Jijun Lu
Department of Computer Science and Engineering
University of Connecticut, Storrs, CT 06269, USA

Email: {ssg, jijun.lu}@engr.uconn.edu

Abstract

Anomaly detection based on application-level data of-
fers unique advantages over detection based on network-
level and system-level data, since more meaningful infor-
mation with higher quality and density is available at the
application level. Detection based on application-level data
can be used effectively in the context of general-purpose,
distributed, component-based software applications only if
the data used for detection is independent of the technol-
ogy and platform used to implement the application. In
this paper we suggest the use of performance metrics of
an application as an example of technology-neutral and
platform-independent application-level data for anomaly
detection. Further, to reduce the false positives associated
with anomaly detection, we propose the use of system-level
data, namely, CPU usage, in conjunction with application-
level data. We demonstrate the feasibility of our multi-level
detection methodology on an experimental infrastructure
comprising of a VoIP application.

1 Introduction

The penetration of information technology into our soci-
ety has made our lives dependent on the services provided
by component-based software applications. These applica-
tions are thus attractive targets of malicious attacks, which
are presently the main threats against network and informa-
tion security. Detection, which consists of rapidly identify-
ing the occurrence of an attack is then crucial to mitigate
the damage caused by an attack and to restore the services.

Existing intrusion detection systems can be character-
ized along two dimensions. Of these, the first dimension
addresses the type of attacks (known vs. unknown) that can
be detected. Misuse detection considers known attacks and
comprises modeling of each known attack with a signature
and then comparing the incoming activities with these sig-
nature patterns for detection. Anomaly detection considers
both known and unknown attacks and consists of identify-

ing substantial deviations from the specified normal behav-
ior of users or applications. Anomaly detection is desirable
compared to misuse detection because of its ability to de-
tect previously unseen attacks. However, anomaly detection
typically suffers from a very high false positive rate. The
second dimension is concerned with the data used for detec-
tion, which includes network-level [3, 8], system-level [6]
and application-level data [5, 10, 13]. Many systems base
detection on multiple data types to reduce the false positive
rate associated with anomaly detection [2, 14].

Detection based on network-level and system-level
data is more prevalent compared to detection based on
application-level data. However, since more meaningful in-
formation with higher quality and density is readily avail-
able at the application level, application-level data-based
detection may be a valuable complement to network-level
and system-level data-based detection especially in the con-
text of general-purpose, distributed, component-based soft-
ware applications. Current detection approaches based on
application-level data, however, are not very effective for
these applications because: (i) they use data that is specific
to the technology and the platform used to implement the
application, and (ii) they assume that the entire application
resides only on one host.

In this paper we suggest the use of performance met-
rics of an application as an example of technology-neutral
and platform-independent application-level data for anom-
aly detection. Further, to reduce the false positive rate of
anomaly detection, we propose the use of system-level data
consisting of CPU usage of the host(s) on which the appli-
cation resides, in conjunction with application-level data.
We illustrate the feasibility of our multi-level detection ap-
proach on an experimental infrastructure comprising of a
VoIP application.

The paper is organized as follows: Section 2 motivates
the use of application-level data for detection. Section 3
presents the multi-level detection methodology. Section 4
describes the experimental infrastructure. Section 5 dis-
cusses the emulation of baseline and abnormal scenarios.
Section 6 discusses the experimental results. Conclusions

718

and future directions are presented in Section 7.

2 Advantages of application-level data

The advantages of using application-level data over
network-level and system-level data are as follows. First,
semantic information is readily available from application-
level data without any additional processing and this can aid
in understanding the impact of an attack on the application
services. Although semantic information is also present in
network-level and system-level data, it is scattered and less
structured, and needs to be extracted by additional process-
ing which incurs overhead. This overhead can be miti-
gated by using application-level data and thus exploiting
the processing of network-level and system-level data per-
formed by the application to provide its services. Second,
when an attack is launched by exploiting inherent vulner-
abilities in an application, detection based on application-
level data may also assist in identifying and isolating the
cause of the attack. Third, detection based on application-
level data provides a better possibility of guarding against
illegitimate activities by insiders, or the insider threat [10].

Prevalent application-level data-based detection ap-
proaches suffer from the following limitations. First, the
data used for detection is either generated by a standard
application such as a web server, or is tied to the features
of a specific programming language. Second, these tech-
niques implicitly assume that the application completely
functions within the address space of a single host, rather
than being distributed on multiple hosts. Third, detection
based on source code analysis can be used only if the source
code is available. These drawbacks and assumptions make
the existing approaches inadequate especially in the context
of general purpose, distributed, component-based software
applications. For such applications, components residing
on multiple hosts routinely interact. Also, the components
may be from different sources, and may be developed using
different programming languages. Additionally, the source
code may not be available for all the components.

The above discussion highlights the need to iden-
tify generic, technology-independent, and platform-neutral
application-level data which could be used to detect attacks
against general-purpose, distributed, component-based soft-
ware applications. An example of such data is the perfor-
mance metrics of an application. In the subsequent sections
we demonstrate the feasibility of using performance metrics
of an application for anomaly detection.

3 Anomaly detection methodology

In this section we describe the multi-level anomaly de-
tection methodology. We focus on anomaly detection be-
cause of its potential to detect both known and unknown

attacks. A central aspect of the methodology is the use of
technology-neutral, platform-independent application-level
data consisting of performance metrics for detection. Fur-
ther, to reduce the false positive rate associated with anom-
aly detection, we use CPU usage data from the system level.

The two analysis steps involved in the methodology are
described in the subsequent subsections.

3.1 Step I: Individual data analysis

In the first step, each type of data (performance metrics
and CPU usage) are independently analyzed to generate an
anomaly score. This analysis is based on the χ2 test statistic
and proceeds in the following manner.

The value of the χ2 statistic, denoted χi
2 is computed

using the performance (CPU usage) data Xi for an applica-
tion run i from Equation (1), where X is the mean signaling
performance (CPU usage).

χi
2 =

(Xi −X)
2

X
(1)

Using the values of the χ2 statistic for each measure-
ment, the expected value of the statistic, E[χ2] is computed
using Equation (2). The expected value is then compared
with the preset threshold to generate an anomaly score. The
number of measurements, n, used to compute the expected
value is determined using the sliding window protocol [4].

E[χ2] =
n∑

i=1

χi
2

n
(2)

3.2 Step II: Correlated data analysis

In the second step, we use the Bayesian network (BN) [9]
shown in Figure 1 to correlate the anomaly scores obtained
from the independent analysis of the two data types in the
first step and infer the posterior probability of an attack.

Figure 1. BN for multi-level detection

In Figure 1, the two information nodes represent the
anomaly scores obtained from the analysis of application

719

performance and CPU usage data respectively. A causal
relationship exists between these two information nodes,
since high CPU usage will result in lower performance.
This relationship is depicted by an arrow from the CPU
usage node to the performance node. Each node is asso-
ciated with a conditional probability table, obtained by dis-
cretizing the anomaly scores, to map a continuous variable
to a discrete one. The discrete variable takes two values,
namely, high and low, depending on whether the score ex-
ceeds or is below a specified threshold. The hypothesis node
is a classification that determines whether the application
behavior is anomalous during an interval.

4 Experimental testbed

In this section we describe the VoIP infrastructure used
for the demonstration of our methodology.

VoIP (IP telephony) is the transport of voice traffic by
using the Internet Protocol (IP), rather than the public
switched telephone network. Session Initiation Protocol
(SIP) [12] is a popular signaling protocol used for VoIP. The
peers in a SIP-based session1 are called user agents (UAs).
Figure 2 shows a typical SIP message flow between UAs.

In Figure 2, UA1 initiates the session by sending an IN-
VITE request to UA2. After the INVITE/OK/ACK three-
way handshake [12], the session is established and the two
UAs begin to exchange data. At the end of the data ex-
change, UA2 sends a BYE request to UA1, which causes
this session to be closed bi-directionally. Signaling perfor-
mance used in this paper is defined as the time taken to set
up a session between the two VoIP peers, which is the time
between the instant the caller sends out “INVITE” and the
instant it receives the “180 Ringing” message.

Figure 2. A typical SIP message flow

The experimental infrastructure consists of a public-
domain implementation of a VoIP application [11]. The
hardware platform consists of: (i) a Dell OptiPlex GX260
(Intel P4 2.4GHz, 1GB of RAM), and (ii) an IBM ThinkPad
T40 (Intel P-M 1.5GHz, 512MB of RAM). These are in-

1The terms call and session are used interchangeably in this paper.

stalled with Windows XP Professional SP2 and are con-
nected via a 100M Ethernet connection across a LAN.

5 Normal and anomalous scenarios

In this section, we describe the emulation of normal and
abnormal scenarios for the VoIP infrastructure.

Since the signaling performance is governed by the num-
ber of simultaneous sessions between the two UAs, the
baseline behavior of the infrastructure is obtained by com-
puting the average signaling performance over a number of
incoming session requests when a small number of simulta-
neous sessions are ongoing. The number of sessions should
be low so that the baseline performance would be accept-
able under normal conditions. The average CPU usage un-
der these conditions would also provide the baseline.

A number of simultaneous sessions can be sustained in
the following manner. UA1 is provided: (i) Distribution of
the interarrival time of calls and its parameters, and (ii) Dis-
tribution of the call holding time and its parameters. Using
the interarrival time distribution, UA1 generates a series of
interarrival times {ti}, i = 1, 2, Using {ti}s, the arrival
time of each call {Si} is computed by Si =

∑i
j=1 tj . Using

the holding time distribution, UA1 also generates the hold-
ing time of each call {di}. Then the ending time of each
call is computed by Ti = Si + di. At each arrival time Si,
UA1 automatically sends an INVITE request to UA2 to ini-
tiate a call. This session is held for a duration di. At the
ending time Ti, UA1 sends a BYE request to UA2 to termi-
nate the call. To sustain a number of simultaneous sessions,
the mean holding duration d̄i is chosen to be higher than the
mean interarrival time t̄i. The expected number of simulta-
neous sessions is approximated as the ratio of d̄i and t̄i. The
baseline signaling performance obtained by setting t̄i = 30
sec., and d̄i = 30 sec. is 15.82 msec.

Abnormal conditions are emulated by increasing the
number of simultaneous sessions over what was used to ob-
tain the baseline performance. Thus, abnormal conditions
constitute a Denial of Service (DoS) type attack [1]. We
consider DoS attacks, as they are the leading cause of finan-
cial loss due to cybercrime [7]. The number of simultaneous
sessions can be increased over the norm by: (i) reducing the
mean interarrival time t̄i, or/and (ii) increasing the mean
holding duration d̄i. Abnormal conditions were emulated
by using different combinations of t̄i and d̄i.

The CPU usage on the server machine was also logged
each time signaling performance was measured, resulting
in a one-to-one correspondence between the two data types.
The baseline CPU usage under low-load conditions was
11.41%.

720

6 Results and discussion

In this section we describe the experiments and summa-
rize and discuss their results.

6.1 Experiment set I

In the first set, a mix of abnormal and normal operating
conditions was emulated by dividing each experiment into
four phases. The parameters for these phases are selected so
that the average number of simultaneous sessions in phases
1 and 3, and in phases 2 and 4 are identical. Eight experi-
ments with parameters in Table 1 are conducted in this set.
Referring to the table, for example, in the first experiment,
the mean holding duration d̄i is set to 120 sec. for all the
phases, and the mean interarrival time t̄i is set to 30 sec.
for phases 1 and 3 and 10 sec. for phases 2 and 4. In each
phase, 40 calls are initiated by UA1. A complete log file for
all the four phases (a total of 160 calls) is generated.

Table 1. Parameters of experiment set I
No. Interarrival time and Duration(ti, di) (s)
(�) Phase 1 Phase 2 Phase 3 Phase 4
1 (30, 120) (10, 120) (30, 120) (10, 120)
2 (30, 180) (10, 180) (30, 180) (10, 180)
3 (30, 240) (10, 240) (30, 240) (10, 240)
4 (30, 300) (10, 300) (30, 300) (10, 300)
5 (30, 120) (15, 120) (30, 120) (15, 120)
6 (30, 180) (15, 180) (30, 180) (15, 180)
7 (30, 240) (15, 240) (30, 240) (15, 240)
8 (30, 300) (15, 300) (30, 300) (15, 300)

This continuous log was processed as per the sliding
window method [4], with a window size of 20. This resulted
in 141 windows over 160 calls. We note that two compet-
ing concerns, namely, the possibility of false positives and
false negatives (missing actual attacks) need to be balanced
while choosing the window size. The window size is set to
20 considering the total number of calls in each experiment.

Expected values of the χ2 statistic were computed for
each window for each type of data. The anomaly scores are
obtained by comparing the expected χ2 statistic with preset
thresholds. For illustrative purposes, we consider the two
threshold sets in Table 2. These scores are then processed
through the BN to infer the posterior attack probabilities.

Table 2. Thresholds for anomaly detection
Set Sig. perf. CPU usage
I 15 300

II 30 500

The expected value of the χ2 statistic and posterior at-
tack probabilities are shown for experiments 1 and 4 in Fig-
ure 3. The remaining results are not included due to space

limitations. The figure indicates that within each experi-
ment there are periods of increasing scores, which coincide
with transitions among phases 1 and 2 and phases 3 and 4.
Similarly, the period of decreasing scores coincides with the
transition among phases 2 and 3. Table 1 indicates that the
holding duration is higher in phases 2 and 4 than in phases
1 and 3. Thus, the number of ongoing calls in phases 2 and
4 is higher, resulting in a lower signaling performance and
higher CPU usage. Across experiments, it can be seen that
the peak value of the anomaly score is the highest for exper-
iment 4, because the mean holding duration in phases 2 and
4 is higher for experiment 4.

Next we discuss the posterior attack probabilities pro-
duced by the BN. For experiment 1, the scores generated
from both data types are below their respective thresholds
for both sets. The BN thus infers a very low (close to 0)
posterior attack probability as can be seen in the bottom
plots in Figure 3(a). For experiment 4, both signaling per-
formance and CPU usage exceed their thresholds around the
peak under both sets. This results in high posterior attack
probabilities around the peaks as can be seen in the bottom
figures in Figure 3(b). These figures, however, indicate that
high attack probabilities are inferred during narrower peri-
ods under the second set of thresholds (which are larger) as
compared to the periods under the first set.

These results indicate that only when both signaling de-
lay and CPU usage are high, the BN infers a high posterior
probability of attack. Thus, the thresholds set on signaling
delay and CPU usage will impact the sensitivity of detec-
tion. For lower thresholds, the chance of false positives is
higher. However, for larger thresholds, the detection engine
may miss some attacks and the chance of false negatives
increases. The choice of the thresholds will be governed
by the level of attack tolerance, which will be depend on
the criticality of the application services. For applications
which provide critical services such as emergency response,
the level of attack tolerance is smaller, and hence the thresh-
olds should be set lower. On the other hand, for stream-
ing media applications, the level of attack tolerance may be
higher, due to which coarser thresholds may suffice.

6.2 Experiment set II

In the second set, false alarm scenarios were emulated
as follows. After receiving an “INVITE” request, the callee
delays the response for a certain period. A delay such as this
may be caused by network conditions, or due to the VoIP
implementation of the callee’s provider. It is not due to an
attack resulting in a CPU intensive process on the callee’s
side. However, the ultimate outcome, namely, high signal-
ing delay will occur despite the lack of an attack.

Four experiments, with the parameters in Table 3 were
conducted. In the table, for example, in the first experiment,

721

0 50 100 150
0

20

40

60

χ2 analysis of signaling performance

E
(χ

2)

0 50 100 150
0

200

400

600

800

1000

χ2 analysis of CPU usage
E

(χ
2)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 15, ThCPU = 300)

P
ro

b.
 o

f A
tta

ck

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 30, ThCPU = 500)

P
ro

b.
 o

f A
tta

ck

(a) Experiment 1

0 50 100 150
0

20

40

60

χ2 analysis of signaling performance

E
(χ

2)

0 50 100 150
0

200

400

600

800

1000

χ2 analysis of CPU usage

E
(χ

2)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 15, ThCPU = 300)

P
ro

b.
 o

f A
tta

ck

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 30, ThCPU = 500)

P
ro

b.
 o

f A
tta

ck

(b) Experiment 4

Figure 3. Anomaly scores and posterior attack probabilities (Experiment set I)

the mean interarrival and holding times, ti and di, are set to
15 and 120 sec. After receiving a connection request, the
callee delays the response for a wait time tw of 20 msec.

Table 3. Parameters of experiment set II
No. Interarr. Duration WaitTime
(�) ti (s) di (s) tw (ms)
1 15 120 20
2 15 120 50
3 30 120 20
4 30 120 50

Similar to the first experiment, 160 calls with a slid-
ing window of 20 generated 141 anomaly scores. Fig-
ure 4 shows the expected value of the χ2 statistic for per-
formance and CPU measurements along with the posterior
attack probabilities for experiments 1 and 4.

The results indicate that for experiment 1, the anomaly
scores generated from CPU usage are below their thresholds
for both sets, while the scores for signaling delay fluctuate
around the threshold in the first set and are clearly lower
than the threshold in the second set. Thus, the BN inter-
mittently infers non-zero posterior attack probability with
a peak value of 0.176 under the first set as shown in Fig-
ure 4(a). Under the second set, the attack probabilities in-
ferred are close to zero, as shown in Figure 4(a). In ex-
periment 4, the anomaly scores generated from CPU usage
remain below the thresholds for both sets. However, the sig-
naling delay exceeds the thresholds under both sets. This is
because the waiting time in experiment 4 is higher com-
pared to experiment 1 (Table 3). Despite the fact that the
anomaly scores for signaling delay exceed their thresholds,
the posterior attack probability inferred by the BN remains
low as can be seen in the bottom plots in Figure 4(b). Com-
paring the BN results from experiments 1 and 4, it can be

seen that the posterior attack probabilities in experiment 1
fluctuate between zero and non zero values while the attack
probabilities hold steady above zero in experiment 4. Fur-
ther, the BN accurately reflects the fact that the degree of
abnormality is greater in experiment 4 than in experiment
1, by inferring higher and steady non zero posterior attack
probabilities for experiment 4.

These results indicate that the BN effectively rules out
the possibility of a DoS attack if high signaling delay is
not caused by a corresponding high CPU usage. Thus, they
demonstrate how detection based on data from multiple lev-
els may help in reducing the incidence of false alarms.

7 Conclusions and future research

In this paper we discussed the need for using application-
level data for anomaly detection as a complement to
network-level and system-level data, especially in the con-
text of general-purpose, component-based, distributed soft-
ware applications. We suggested the use of performance
metrics of an application as an example of technology-
neutral, platform-independent, application-level data for
anomaly detection. Further, to reduce the false positive rate
associated with anomaly detection, we proposed the use of
system-level data, namely, the CPU usage of the host on
which the application resides. We demonstrated the feasi-
bility of our multi-level anomaly detection methodology on
an experimental infrastructure of a VoIP application.

Our future research consists of: (i) identifying other
types of generic application-level data and demonstrating
the feasibility of their use for anomaly detection, and (ii) us-
ing performance metrics to detect other types of attacks.

722

0 50 100 150
0

50

100

150

200

χ2 analysis of signaling performance

E
(χ

2)

0 50 100 150
0

200

400

600

800

1000

χ2 analysis of CPU usage
E

(χ
2)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 15, ThCPU = 300)

P
ro

b.
 o

f A
tta

ck

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 30, ThCPU = 500)

P
ro

b.
 o

f A
tta

ck

(a) Experiment 1

0 50 100 150
0

50

100

150

200

χ2 analysis of signaling performance

E
(χ

2)

0 50 100 150
0

200

400

600

800

1000

χ2 analysis of CPU usage

E
(χ

2)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 15, ThCPU = 300)

P
ro

b.
 o

f A
tta

ck

0 50 100 150
0

0.2

0.4

0.6

0.8

1

BN inference (Thsg = 30, ThCPU = 500)

P
ro

b.
 o

f A
tta

ck

(b) Experiment 4

Figure 4. Anomaly scores and posterior attack probabilities (Experiment set II)

Acknowledgments

This research was supported by the National Science
Foundation (NSF) under the following grants: CNS-
0406376 and CNS-SMA-0509271.

References

[1] Denial-of-service attack. http:
//en.wikipedia.org/wiki/
Denial-of-service attack, Feburary 2007.

[2] C. Abad, J. Taylor, C. Sengul, W. Yurcik, Y. Zhou,
and K. Rowe. Log correlation for intrusion detection:
A proof of concept. In Proc. 19th Annual Computer
Security Applications Conference (ACSAC’03), pages
255–264, 2003.

[3] D. Bauer, J. Cannady, and R. C. Garcia. Detecting
anomalous behavior: Optimization of network traffic
parameters via an evolution strategy. In Proc. South-
eastCon, 2001.

[4] M. Burgess, H. Haugerud, , S. Straumsnes, and T. Re-
itan. Measuring system normality. ACM Trans. on
Computer Systems, 20(2):125–160, May 2002.

[5] J. B. D. Cabrera, B. Ravichandran, and R. K. Mehra.
Statistical traffic modeling for network intrusion de-
tection. In Proc. 8th Int’l Symp. on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems, pages 466–473, 2000.

[6] D. Endler. Intrusion detection appplying machine
learning to Solaris audit data. In 14th Annual con-
ference on Computer Security Applications, 1998.

[7] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and
R. Richardson. 2004 CSI/FBI computer crime and
security survey, June 2004. http://www.gocsi.
com/.

[8] M. Iguchi and S. Goto. Network surveillance for de-
tecting intrusions. In Proc. Internet Workshop, 1999.

[9] F. Jensen. Bayesian networks and decision graphs.
Springer, New York, 2001.

[10] A. K. Jones and Y. Liu. Application intrusion detec-
tion using language library calls. In 17th Annual Com-
puter Security Applications Conference (ACSAC’01),
pages 442–449, 2001.

[11] National Institute of Standards and Technology (NIST).
JAIN-SIP project home. https://jain-sip.
dev.java.net/.

[12] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation Protocol, July
2002. RFC 3261.

[13] R. Sion, M. Atallah, and S. Prabhakar. On-the-fly in-
trusion detection for Web portals. In Proc. Int’l Con-
ference on Information Technology: Computers and
Communications (ITCC’03), pages 325–330, 2003.

[14] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi. Collab-
orative intrusion detection system (CIDS): a frame-
work for accurate and efficient IDS. In Proc. 19th
Annual Computer Security Applications Conference
(ACSAC’03), 2003. 234-244.

723

A Four-layered Semantic Grid Architecture

Célia Ghedini Ralha, José Nelson C. Allemand and Alba C. M. Melo
Departamento de Ciência da Computação - Instituto de Ciências Exatas

Universidade de Brası́lia - Campus Universitário Darcy Ribeiro
Caixa Postal 4466 - Brası́lia - Cep 70.910-900
{ghedini,josenelson,albamm}@cic.unb.br

Abstract

In this paper, we present the design and implementation
of a Semantic Grid architecture composed by a knowledge
layer to semantically enhance the grid resource discovery
service. The knowledge layer has a semantic repository,
which enables semantic discovery of different types of com-
puting resources in grid environment. This layer is formed
by an ontology and a reasoner component to interact with
the semantic repository. Our prototype uses existing tech-
nologies, like the Globus Toolkit’s MDS with Ganglia, to
illustrate our four-layered decoupled Semantic Grid archi-
tecture.

1. Introduction

Grid Computing is an emerging technology for enabling

resource sharing and coordinated problem solving in dy-

namic multi-institutional virtual organizations [24, 26, 25].

Grids are used to join various geographically distributed

computational and data resources, and deliver these re-

sources to heterogeneous user communities. These re-

sources may be described in distinct manners since they can

belong to different institutions, have different usage poli-

cies and pose different requirements on acceptable requests.

In summary, this complex environment scenery will greatly

benefit from the Semantic Grid [1].

In the Semantic Grid, information and services are given

a well defined meaning, better enabling people and comput-

ers to work in cooperation [35, 33, 36]. In such an environ-

ment, the ability to describe the grid resources needed by

agents or applications is essential for developing seamless

access to resources on the grid [19]. This environment has a

fundamental task named resource matching, which involves

assigning resources to tasks in order to satisfy task require-

ments and resource policies. These requirements and poli-

cies are often expressed in disjoint application and different

resource models, forcing a resource selector to perform se-

mantic matching among them. In addition, as the grid envi-

ronment is very dynamic, it is desirable and sometimes nec-

essary to automate the resource matching to robustly meet

the application requirements.

There are many grid research initiatives to help on this

challenge. Unfortunately, the most common Globus Toolkit

Monitoring and Discovery System (MDS) [2] supports only

traditional resource matching, which is based on symmet-

ric, attribute based matching and does not support semantic

description of grid resources or services [16, 41]. This ap-

proach is clearly not sufficient in grid environments where

resources are generally owned by different communities,

with varied administration policies and capabilities, where

obtaining and managing these resources is not trivial.

In this paper, we present the design and the implemen-

tation of a prototype of a Semantic Grid architecture with

a knowledge layer for semantic description and discovery

of resources. The knowledge layer is formed by an ontol-

ogy component and a reasoner one, which interact to each

other through the semantic repository. With the proposed

architectural framework we allow user or agent to select re-

sources appropriately to the requirements of the application

based on different constraints and with specific capabilities.

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss related work. The proposed Semantic

Grid architecture is presented in Section 3, focusing on the

knowledge layer. Section 4 describes aspects related to

the implementation work. Some experimental results are

shown in Section 5. Section 6 concludes the paper dis-

cussing about future research work.

2. Related Work

The literature addresses the challenge of Semantic Grid

through different approaches. In practice, work on Seman-

tic Grid has primarily meant introducing technologies from

the Semantic Web to the Grid. The background knowl-

edge and vocabulary of a domain can be captured in on-

tologies, that are machine processable models of concepts,

724

their interrelationships and constraints [30]. According to

[27], the Semantic Grid lacks a reference architecture or

any kind of systematic framework for designing Semantic

Grid components or applications. There are a number of

recent efforts that we can cite and compare to our work

[38, 31, 19, 40, 17, 37].

[38] have designed and prototyped an ontology-based re-

source selector that exploits ontologies, background knowl-

edge and rules for solving resource matching in the grid.

The authors used the Protégé editor to manually create on-

tology instances [3]. They have developed a prototype

matchmaker to support the matchmaking service which did

not include the brokering service at the time of writing the

paper.

In [31], the authors describe the architecture of the

Ontology-based Resource Matchmaker Service (OMMS).

OMMS provides dynamic access to matchmaking capabil-

ity building an online matchmaking service. Their imple-

mentation uses the Globus Toolkit for the grid service de-

velopment, and exploits the monitoring and discovery ser-

vice in the grid infrastructure to dynamically discover and

update resource information.

[19] considered the problem of resource description in

the context of a resource broker at the GRIP Project, with

GT2, GT3 and Unicore middleware systems. They have

shown how the semantic approach, to resource description,

facilitates the current problem of not existing a common

standard to make the grid transparent at the application

level.

[40] presented the Core Grid Ontology (CGO) to provide

a common basis for representing grid knowledge and grid

systems, including basic concepts and relationships of grid

entities and grid resources according to a proposed abstract

grid model. The CGO ontology provides a common basis

for representing grid knowledge and grid systems; it is used

for grid information integration and searching, resource dis-

covery and allocation management. The CGO was de-

scribed using the OWL language [20], which supports the

realization of the Semantic Grid including grid resources,

grid middlewares, services, applications and users. As fu-

ture work the authors intend to support ontology/knowledge

queries related to multi-grid environments for what a suit-

able OWL query language and distributed mechanism to

query needs to be developed.

In [17], the authors describe the Semantic-OGSA (S-

OGSA), which is one of the early results of the EU-IST

project OntoGrid [4]. S-OGSA is proposed as a reference

architecture for the project and has been created with the

aim to become also a reference framework for the Semantic

Grid [28].

In our work, we have designed and prototyped a Seman-

tic Grid architecture based on an ontology template and

rules for intelligent resource matching in the grid. Simi-

lar to [38] we have not included the brokering service at

our architecture, since a decoupled approach allows the use

of different middlewares through an XML format resource

repository. We haven’t focused our work at the ontology

definition, since it can be extended later; but we have han-

dled the reasoner component to allow semantic queries re-

lated to multi-grid environments. In relation to the Seman-

tic Grid architectural framework our aim is not to propose a

reference architecture such as [17] with the S-OGSA, but to

design an architecture able to deal with semantic resource

discovery matching service. Our prototype uses Globus

Toolkit 4 [23] for the grid service development, and exploits

the monitoring and discovery service in the grid infrastruc-

ture to dynamically discover and update resource informa-

tion like OMMS [31].

The work we consider closer to our proposal is [37]. The

authors have proposed a Semantic Grid architecture by in-

troducing a knowledge layer at the top of the Gridbus broker

architecture [5]. The semantic component in the knowledge

layer enables semantic description of grid resources with

the help of an ontology template [39]. The difference is that

their proposed five layered architecture is built on top of the

Gridbus broker, while ours follows a decoupled approach

not allied to a specific broker. Once our resource repository

is an XML file, it allows different brokers to be integrated to

the Semantic architecture. However, the prototypes of both

works have been implemented using MDS component, be-

ing Globus dependent.

3. The Proposed Architecture

For the Semantic Grid infrastructure, we propose a four

layered architecture that implements a knowledge layer on

top of the middleware layer as shown in Figure 1. In this ar-

chitecture, the fabric layer provides the computational and

network resources, storage systems, logical entities such as

distributed storage device to which shared access is medi-

ated by grid protocols.

The middleware layer provides a secure and unified ac-

cess to remote resources and one can choose from different

middlewares such as Globus [6], Unicore [7], Alchemi [8],

among others. In our Java prototype this layer was imple-

mented using Globus Toolkit Version 4 [2, 22]. We also

used the Ganglia MDS information provider written in Perl

[9]. The output of the Ganglia information that gets pub-

lished into MDS is determined by the GLUE-CE Schema

(an abstract modeling for Grid resources and mapping to

concrete schema that can be used in Grid Information Ser-

vices [10]). At the middleware layer, the grid resource data

captured by the Ganglia information provider is stored at

the resources repository in XML format.

The knowledge layer provides semantic resource dis-

covery service from the huge amount of data aggregated

725

Figure 1. The four-layered Semantic Grid ar-
chitecture.

from underlying information services layer stored at the re-

sources repository (XML). We used Jena version 2.4 [11], a

Java framework for building Semantic Web applications, to

capture the grid resource information in XML and to trans-

fer to the semantic repository in the Web ontology language

OWL [20, 34]. Jena’s architecture provides a mechanism

for attaching external reasoners to Jena models. The knowl-

edge layer is the focus of this work since it is responsible

to store, represent and infer on semantic information of grid

resources. There is also an application layer to enable the

use of resources in the grid environment.

3.1. The Knowledge Layer

For the Semantic Grid environment, users and software

agents should be able to discover grid nodes offering re-

quired services and having particular properties. For that,

we propose the knowledge layer, which is formed by the on-

tology and reasoner components. The following paragraphs

describe the implemented components of this layer.

The Ontology Component
An ontology is a specification of a conceptualization

[29]. In this context, specification refers to an explicit rep-

resentation by some syntactic means. In contrast to schema

languages (like XML Schema), ontologies try to capture

the semantics of a domain by deploying knowledge rep-

resentation primitives, enabling a machine to partially un-

derstand the relationships between concepts in a domain.

Additional knowledge can be captured by axioms or rules.

In the Web context, OWL [20, 34] and RDF-Schema [12]

are recommendations from the W3C for ontology modeling

languages.

For the ontology component we used Protégé [3] to se-

mantically deal with grid resources. The Protégé editor

offers versatile libraries or Protégé-OWL APIs to perform

several operations over the ontology: creating and delet-

ing instances of concepts, assigning values to the properties,

among others. For every type of information retrieved from

the grid node, we create instances of appropriate concept

in the ontology template conforming to respective concept

types. In such a way, an instance will be exactly related to

only one concept type and the values of various properties

retrieved are assigned to respective properties of the appro-

priate concepts in the ontology template.

Figure 2. A small ontology template.

In this work, ontology template is defined as a grid

resource ontology that provides an hierarchy of concepts

along with properties to define their characteristics. Fig-

ure 2 shows a small ontology template with concept hierar-

chy considered in our experiments. The values of the prop-

erties considered to define concepts are retrieved fromMDS

of Globus Middleware automatically with Glue/Ganglia

forming the semantic repository of the grid resources

(XML). This repository is updated periodically so that ad-

dition or removal of resources is accounted in the semantic

repository automatically.

The Reasoner Component
Our reasoner component of the semantic discovery ser-

vice relies on the power of Pellet inference engine, an open-

source Java based and OWL DL [21, 13]. Pellet can be

used in conjunction with both Jena and OWL API libraries.

It is based on the tableaux algorithms developed for ex-

pressive Description Logics (DL) [32, 18]. Pellet supports

the full expressivity OWL DL including reasoning about

nominals (enumerated classes). Therefore, OWL constructs

owl:oneOf and owl:hasValue can be used freely. The
Pellet API provides functionalities to see the species val-

idation, check consistency of ontologies, classify the tax-

onomy, check entailments and answer a subset of RDQL

queries. Currently, our prototype supports the following op-

erators: =, >, <, >=, <= and �=. Also, the query mech-

726

anism is designed to support query with single or multiple

constraints.

4. Implementation Aspects

To validate the Semantic Grid architecture for the grid

resource discovery service, we implemented a prototype

using the Globus Toolkit 4.0.3 [22] at the University of

Brası́lia. Figure 3 represents the modules implemented in

the knowledge layer including the ontology and the reason-

ing services. At the Ontology Service module, we first de-

fine the ontology template (with Protégé 3.1.1 build 284)

using some of the defined GLUE Schema 1.1 classes re-

lated to the Ganglia 3.0.3 monitoring system [14]. At this

point, the ontology template with concepts and properties

constitutes the Semantic Repository in OWL language (not

yet bounded to any grid resources).

(Pellet−Jena−Owl)

Resource

Discovery (Protege−Owl)

Ontology

Template

(Java class − JAXB)
Reasoning

Service

Knowledge Layer

Grid
Resource

(GT4|MDS|Ganglia)

Discovery

Ontology Service

(Owl)

Semantic

Repository

XML

Repository
Resources

Binding
Definition

Resource

Glue
Schema

Transcription
Algorithm

(Jena)

Middleware Layer

Figure 3. Implementation of the knowledge
layer.

Once defined the ontology template, the resource mon-

itoring discovery service (using Ganglia) automatically

saves information about the real resources of the grid en-

vironment at a specific time. At this point, the Resource

Repository (XML) has the information provided by the

MDS/GT4 middleware service. We have tested our proto-

type on a grid environment with twenty-two machines lo-

cated in two different laboratories as shown in Table 1.

In order to instantiate the ontology template we had first

to bind the grid resources defined in XML to Java classes

using Java Architecture for XML Binding (JAXB), which

provides a convenient way to bind an XML schema to a

representation in Java code and is available in the Java Web

Services Developer Pack (Java WSDP) 1.5 [15]. After-

wards, we had to develop a transcription algorithm to read

Table 1. Experimental grid environment.
Host O. S. Available RAM

pos-01.cic.unb.br Linux 128

pos-02.cic.unb.br Windows 332

pos-03.cic.unb.br Linux 123

pos-04.cic.unb.br Windows 333

pos-05.cic.unb.br Linux 12

pos-06.cic.unb.br Linux 210

pos-07.cic.unb.br Linux 87

pos-08.cic.unb.br Windows 123

pos-09.cic.unb.br Windows 128

pos-10.cic.unb.br Linux 7

pos-11.cic.unb.br Windows 8

pos-12.cic.unb.br Linux 66

pos-13.cic.unb.br Windows 44

pos-14.cic.unb.br Linux 128

pos-15.cic.unb.br Linux 122

pos-20.cic.unb.br Windows 12

atm-01.cic.unb.br AIX 888

atm-02.cic.unb.br AIX 243

atm-03.cic.unb.br AIX 128

carbona.laico.cic.unb.br Solaris 568

fau.laico.cic.unb.br FreeBSD 354

magicien.laico.cic.unb.br IRIX 564

the resources from the Resources Repository (XML) to in-

stantiate the Java classes (JAXB) which allow to save at

the Semantic Repository the instantiated ontology template

(OWL) with Jena 2.4 framework [11].

At the Reasoning Service part we used the instantiated

Semantic Repository with Jena framework 2.4 and Pellet

1.3 reasoner for semantic retrieval of grid resource infor-

mation. According to the user queries, the reasoner will

provide the best results to direct resource matching and se-

mantic matching.

For the application layer, we developed an interface to

validate the proposal. The screenshot of the resource dis-

covery service is shown in Figure 4. Note that we have

developed two search options - direct and semantic; and

illustrated with two machine resources - Operating sys-

tem installed and available RAM memory (MB). Figure

4 also presents a semantic search query with multiple re-

sources including ?operatingSystemName=AIX and
?ramAvailable=128. The presented results demon-
strate atm-03 as a best match and semantically equivalent

results with pos-14 and pos-01, which have 128 MB and are

Unix compatible. Note that our prototype illustration uses

only two different machine resources related to the concepts

of the ontology template of figure 2. In our implementation,

the ontology template depends on the MDS components as

we are using Globus with Ganglia resource information, but

an extended ontology template can be used to include con-

727

Figure 4. Resource Discovery Service inter-
face.

cepts according to the desired management purposes.

5. Experimental Results

In this paper, we propose a flexible and extensible ap-

proach for performing Grid resource selection using an

ontology-based matchmaker at a Semantic Grid architec-

ture. Unlike the traditional Grid resource discovery service

that describes resource/request properties based on sym-

metric flat attributes, separate ontologies (i.e., semantic de-

scriptions of domain models) are created to declaratively

describe resources requests using an expressive ontology

language. Instead of exact syntax matching, our ontology-

based matchmaker performs semantic matching using terms

defined in the ontology template.

Figure 5 shows the evaluation of the proposed Semantic-

based Grid resource discovery service. For the experiments,

we executed several direct and semantic search queries,

including single and multiple properties of particular re-

sources, e.g., Operating system and available RAM. We es-

timated the performance considering ‘hit’ and ‘miss’ while

searching for the resources. With the direct search, when-

ever the user asks for a resource which is unknown to

the Semantic Repository, an error message is given (this

is considered a ‘miss’ and is shown in Figure 5 as zero

matches). With the semantic search, the most closely re-

lated resource is presented to the user. Note that with the di-

rect search and multiple machine resources (e.g., OS:Linux

and RAM:=128), we have two machines pos-01 and pos-14
(see Table 1). Also note that with the semantic search we

obtain three machines (pos-01, pos-14 and atm-03), since

atm-03 is Unix compatible.

Considering the single resource with the direct search

“OS:AIX”, three machines were retrieved and with seman-

tic search we obtained thirteen since nine are Linux, three

are AIX and one is IRIX, all Unix compatible. Note

m
at
ch
es

Figure 5. Direct vs Semantic Results.

that in Table 1, there are two other machines which are

Unix compatible (carbona.laico.cic.unb.br with Solaris and

fau.laico.cic.unb.br with FreeBSD), but they were not re-

trieved by our semantic resource discovery service (Figure

5) since Solaris and FreeBSD are not included in the ontol-

ogy template (Figure 2). Finally, consider the direct search

like OS:aIX which has no direct search results, but as the

prototype treats case the same thirteen machines were found

with the semantic search.

6. Conclusion

Our proposal focuses on the integration of the semantic

technology for grid resource discovery with MDS through

a Semantic Grid architecture. It is common knowledge that

the use of a Semantic Grid architecture can make easier the

deployment of complex applications, in which several orga-

nizations are involved and diverse resources are shared.

The proposed architecture was prototyped with the Grid

Information Service of Globus Toolkit 4 to aggregate re-

source information and automatically create the semantic

repository using a resource ontology template. The small

ontology template used in our experimental work shows

that more accurate results are possible than conventional

approaches. For future work, the authors intend to develop

a suitable query language to support ontology/knowledge

related to multi-grid environments and extend the reasoner

component to enhance semantic treatment with multi-grid

Information Services.

References

[1] http://www.semanticgrid.org/.
[2] http://www.globus.org/toolkit/mds.
[3] http://protege.stanford.edu/.
[4] http://www.ontogrid.net/.
[5] http://www.gridbus.org/.

728

[6] http://www.globus.org/.
[7] http://www.unicore.org/.
[8] http://www.gridbus.org/˜alchemi/.
[9] http://www.star.bnl.gov/STAR/comp/Grid/

Monitoring/SimpleGangliaIP.html.
[10] http://glueschema.forge.cnaf.infn.it/.
[11] http://jena.sourceforge.net/.
[12] http://www.w3.org/2001/sw/WebOnt/.
[13] http://www.mindswap.org/2003/pellet/.
[14] http://ganglia.sourceforge.net/.
[15] http://java.sun.com/xml/downloads/jaxb.

html.
[16] R. Akkiraju, R. Goodwin, P. Doshi, and S. Roeder. A

method for semantically enhancing the service discovery ca-

pabilities of uddi. In Proceedings of IJCAI - Workshop of
Information Integration on the Web, Acapulco, Mexico, Au-
gust 2003.

[17] P. Alper, O. Corcho, I. Kotsiopoulos, P. Missier, S. Bech-

hofer, D. Kuo, and C. Goble. S-ogsa as a reference architec-

ture for ontogrid and for the semantic grid. In Proceedings
of the 3rd GGF Semantic Grid Workshop (GGF16), Mace-
donia, Feb. 2006.

[18] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and

P. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation and Applications. Cam-

bridge Press, 2003. http://www.cambridge.org/
uk/0521781760.

[19] J. Brooke, D. Fellows, K. Garwood, and C. Goble. Seman-

tic matching of grid resource description. In Grid Comput-
ing - LNCS, volume 3165, pages 240–249. Springer-Verlag,
Berlin/Heidelberg, 2004. ISBN 978-3-540-22888-2.

[20] M. Dean and G. Schreiber. Owl web ontology language

reference w3c recommendation. http://www.w3.org/
tr/owl-ref/.

[21] B. P. E. Sirin. Pellet: An owl dl reasoner. In Proceedings of
the International Semantic Web Conference (ISWC), 2004.
http://www.mindswap.org/2003/pellet.

[22] I. Foster. Globus toolkit version 4: Software for service-

oriented systems. In IFIP International Conference on Net-
work and Parallel Computing - LNCS, volume 3779, pages
2–13. Springer-Verlag, 2006.

[23] I. Foster and C. Kesselman. Globus: A metacomputing in-

frastructure toolkit. International Journal of Supercomputer
Applications and High Performance Computing, 11(2):115–
128, 1997.

[24] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufman, San Fran-

cisco, USA, 1999.

[25] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid ser-

vices for distributed system integration. Computer, 35(6),
2002.

[26] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of

the grid: Enabling scalable virtual organizations. Inter-
national Journal of High Performance Computing Appli-
cations, 15(3):200–222, 2001. http://www.globus.
org/research/papers/anatomy.pdf.

[27] C. Goble. Towards a semantic grid architecture. In C. Goble,

C. Kesselman, and Y. Sure, editors, Semantic Grid: The
Convergence of Technologies, number 05271 in Dagstuhl

Seminar Proceedings, Dagstuhl, Germany, 2005. Interna-

tionales Begegnungs- und Forschungszentrum fuer Infor-

matik (IBFI), Schloss Dagstuhl, Germany.
[28] C. Goble, I. Kotsiopoulos, O. Corcho, P. Alper, and S. Bech-

hofer. An overview of s-ogsa: a reference architecture for

the semantic grid. Journal of Web Semantics, 4(2):102–115,
2006.

[29] T. R. Gruber. A translation approach to portable ontology

specifications. Knowledge Acquisition, 5(2):199220, 1993.
[30] T. R. Gruber. What is an ontology?, 2005.

http://www-ksl.stanford.edu/kst/
what-is-an-ontology.html.

[31] A. Harth, S. Decker, Y. He, H. Tangmunarunkit, and

C. Kesselman. A semantic matchmaker service on the grid.

In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters (WWWAlt.),
pages 326–327, New York, USA, 2004. ACM Press.

[32] I. Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester,
1997.

[33] M. Li, P. V. Santen, D. Walker, O. Rana, and M. Baker.

Sgrid: a service-oriented model for the semantic grid. In

Future Generation Computer Systems, pages 7–18. 2004.
[34] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web

ontology language semantics and abstract syntax. World

Wide Web Consortium, February 2004, http://www.
w3.org/TR/owl-semantics/.

[35] D. Roure, N. Jennings, and N. Shadbolt. The semantic grid:

A future e-science infrastructure. In Grid Computing - Mak-
ing the Global Infrastructure. John Wiley & Sons, 2003.

[36] D. D. Roure, N. R. Jennings, and N. R. Shadbolt. The se-

mantic grid: Past, present and future. In The Semantic Web:
Research and Applications - LNCS, volume 3532, page 726.
Springer-Verlag, Berlin/Heidelberg, 2005. ISBN 978-3-540-

26124-7.
[37] T. S. Somasundaram, R. A. Balachandar, V. Kandasamy,

R. Buyya, R. Raman, N. Mohanram, and S. Varun.

Semantic-based grid resource discovery and its integration

with the grid service broker. Technical Report GRIDS-TR-

2006-10, Grid Computing and Distributed Systems Labora-

tory, The University of Melbourne, Australia, May 2006.
[38] H. Tangmunarunkit, S. Decker, and C. Kesselman.

Ontology-based resource matching in the grid the grid

meets the semantic web. In The SemanticWeb - ISWC 2003
- LNCS, volume 2870, pages 706–721. Springer-Verlag,
Berlin/Heidelberg, 2003. ISBN 978-3-540-20362-9.

[39] S. Venugopal, R. Buyya, and L. Winton. A grid service bro-

ker for scheduling distributed data-oriented applications on

global grids. In Proceedings of the 2nd workshop onMiddle-
ware for grid computing (MGC), pages 75–80, New York,
USA, 2004. ACM Press.

[40] W. Xing, M. D. Dikaiakos, and R. Sakellariou. A core grid

ontology for the semantic grid. In CCGRID ’06: Proceed-
ings of the Sixth IEEE International Symposium on Clus-
ter Computing and the Grid (CCGRID’06), pages 178–184,
Washington, DC, USA, 2006. IEEE Computer Society.

[41] Y. Zhang and W. Song. Semantic description and matching

of grid services capabilities. In Proceedings of the 3rd UK
e-Science All Hands Meeting, UK, September 2004.

729

Performance Analysis of the Active Object Pattern in Middleware

Paul J. Vandal, Swapna S. Gokhale Aniruddha S. Gokhale
Dept. of CSE Dept. of EECS

Univ. of Connecticut Vanderbilt Univ.
Storrs, CT 06269 Nashville, TN

{pvandal,ssg}@engr.uconn.edu a.gokhale@vanderbilt.edu

Abstract

A number of enterprises are turning towards the Service
Oriented Architecture (SOA) approach for their systems due
to the number of benefits it offers. A key enabling tech-
nology for the SOA-based approach is middleware, which
comprises of reusable building blocks based on design pat-
terns. These building blocks can be configured in numerous
ways and the configuration options of a pattern can have
a profound impact on system performance. A performance
analysis methodology which can be used to assess this influ-
ence at design time can guide the selection of patterns and
their configuration options and thus alleviate the possibility
of performance problems arising later in the life cycle.

This paper presents a model-based performance analy-
sis methodology for a system built using the Active Object
(AO) pattern. The AO pattern is chosen because it lies at
the heart of an important class of producer/consumer and
publish/subscribe systems. Central to the methodology is a
queuing model which captures the internal architecture of
an AO-based system. Using an implementation of the queu-
ing model in CSIM, we illustrate the value of the methodol-
ogy to guide the selection of configuration and provisioning
options for a stock broker system.

1 Introduction and motivation

The introduction of distributed components into the
process of Enterprise Application Integration (EAI) has
moved traditional integrations towards a more Service Ori-
ented Architecture (SOA) based approach [6]. The SOA-
based approach offers advantages such as robust, scalable,
and cost-effective systems, achieved by reducing complex-
ity and eliminating redundant code. Since these systems
will be used in many critical domains, they will be expected
to satisfy multiple Quality of Service (QoS) attributes.

A key enabling technology for SOA-based systems is

QoS-enabled middleware [9], which comprises of building
blocks based on design patterns to codify solutions to the
commonly recurring problems. These patterns are highly
flexible since they allow a system to be customized as per
its requirements through an appropriate selection of con-
figuration options. The configuration options of a pattern,
however, exert a strong influence on system performance.
Despite this influence, current trend in the performance
analysis of these systems relies on empirical benchmark-
ing and profiling, which involves measuring the system per-
formance after it is implemented. These types of testing
techniques, which are applicable very late in the life cycle,
can be detrimental to the cost and schedule of a project,
since several design and implementation iterations may be
needed to achieve the expected performance. A systematic
methodology to facilitate design-time performance analysis
can guide the process of selecting patterns and their config-
uration options and may thus alleviate these pitfalls.

In this paper we present a model-based performance
analysis methodology for a system built using the Active
Object (AO) pattern [10, 5]. The AO pattern is chosen since
it is widely used in a class of producer/consumer and pub-
lish/subscribe systems. At the heart of the methodology is
a queuing model that captures the internal architecture of
an AO-based system. Using a CSIM implementation of the
queuing model [11], we illustrate the value of the method-
ology in guiding configuration and provisioning decisions
for a case study of a stock broker system.

The paper is organized as follows: Section 2 provides an
overview of the AO pattern. Section 3 presents the method-
ology. Section 4 illustrates the methodology with a case
study. An overview of related research is in Section 5. Con-
cluding remarks and future directions are in Section 6.

2 Description of the AO pattern

In a multi-threaded application, several threads may re-
quire the utilization of a common resource. These threads

730

then compete for mutually exclusive access to the resource
and utilize it for the total time taken to complete the re-
quired operation. For low request rates and short session
durations, the performance of this architecture may be ac-
ceptable. However, for high request rates and long access
times, performance degradation may be significant. The AO
pattern can be used to alleviate the performance problems in
such a system. This pattern provides concurrency and sim-
plifies synchronized access to the shared resource by decou-
pling method invocation from method execution and creat-
ing the shared resource in its own thread of control.

The AO [9] is composed of the following components:
Proxy, Activation List, Scheduler, Servant, and Method Re-
quests. The interactions between these are initiated by a
client thread invoking a method on the Proxy to the AO.
The Proxy lies in the client thread and provides an inter-
face to the public methods on the shared resource. Instead
of immediately executing the method when invoked by the
client thread, the Proxy constructs a Method Request and
enqueues it on the Activation List of the AO. Thus, from the
client thread’s perspective, the method has been executed.

The Method Request is a structure that carries the para-
meters along with the other information necessary to exe-
cute the request later. It also has guards or synchronization
constraints. The Activation List is a buffer which resides
in the thread of the AO and holds all the pending requests.
A Scheduler monitors the Activation List for requests that
meet their synchronization constraints. It then chooses a re-
quest to be executed, dequeues it, and dispatches it to the
servant, which actually executes the method.

The AO pattern can be used to implement a class of pub-
lish/subscribe and producer/consumer systems. In this pa-
per, we focus on an AO-based producer/consumer system.

3 Performance analysis methodology

In this section we discuss the performance analysis
methodology for an AO-based producer/consumer system.
First, we describe the characteristics of a mutex-based pro-
ducer/consumer system, which is then enhanced through the
use of the AO pattern to mitigate its performance problems.
We then present queuing models of mutex- and AO-based
systems, followed by a discussion of the metrics that can be
used to gauge system performance. Finally, we describe the
implementation of the queuing models in CSIM.

3.1 System characteristics

We consider a producer/consumer system in which two
applications act as producers to a remote consumer applica-
tion. In such a system, the producers and the consumers re-
quire access to a common resource, for example, a message

buffer. The system thus requires a synchronization strategy
to create thread safe access to the resource.

Figure 1 shows a system implementation in which mu-
tex constraints are used for multi-threaded synchronization.
The solution comprises of a Consumer Handler which exists
in its own thread of control and serves as a proxy to the con-
sumer application. This handler contains a Message Queue
for outgoing messages that is implemented with the Mon-
itor Object pattern [10] to allow thread-safe synchronous
access to the queue. It also contains a Message Broker that
is responsible for monitoring the queue for new messages
to be sent to the consumer. When the Message Queue con-
tains messages, the Message Broker will contend with the
producers to access it. Once it gains access, the Message
Broker will get a message from the queue and send it to the
consumer application. Additionally, the two producers con-
tend for access to the Message Queue to put messages into
it. When the Message Broker is actively working on the
get and send functions, the Message Queue is locked from
access. Similarly, the Message Queue is locked when a pro-
ducer is trying to put a message on it. Thus, once an entity
(a producer or the Message Broker) acquires the mutex lock
from the Monitor Object, it retains control of the Message
Queue until its transaction is complete, after which it re-
leases the lock. Thus, the duration of these access times is
defined by network latency. For low to moderate network
loads, these access times are short and the system perfor-
mance may be acceptable. In a congested network, how-
ever, long access times, partly driven by the TCP flow con-
trol, may cause performance problems and starvation of the
entities from accessing the Message Queue.

Figure 1. Mutex-based system

The above issues of the mutex-based system can be al-
leviated by using the AO pattern to decouple producers and
consumers as shown in Figure 2. To decouple a producer,
a Producer Handler Proxy to the Consumer Handler is in-
troduced and implemented as a distributed AO. Its purpose
is to receive messages from the producer and then put them
in the Consumer Handler’s Message Queue. The AO Proxy
resides on the client application and provides an interface
for the method to put messages on the Consumer Handler’s
Message Queue. When the put command is invoked by

731

the client, the Proxy creates the corresponding Method Re-
quest and enqueues it on the Producer Handler’s Activation
List. The synchronization constraint of the put request is
the requirement of the Proxy to gain control of the Message
Queue. When the synchronization constraint is satisfied, the
Scheduler dequeues the request and executes the method to
put the message on the Message Queue. Thus, the time
required to add a message to the queue is reduced to the in-
ternal access time of the middleware, which decouples the
impact of the network latency on the producer side.

To decouple the consumer, the sending mechanism of
the Message Broker is also implemented using an AO. A
proxy interface containing the send method is implemented
inside the Message Broker. When the Message Broker in-
vokes the method to send a message, a Method Request is
created by the Proxy and enqueued on the Activation List
of the consumer-side AO. From the Message Broker’s per-
spective, the sending of the message is nearly instantaneous,
allowing it to relinquish control of the Message Queue after
the small time required to get the message and to invoke the
send command. This allows the affect of network latency
to be decoupled from the system. Further, it also allows the
processes of getting and sending messages to proceed asyn-
chronously. The send Method Request is guarded while a
message is being sent.

Figure 2. AO-based system

3.2 Queuing models

We assume that the arrival process at the producers is
Poisson with rates λ1 and λ2. The times taken to put and
get messages from the Message Queue remotely, over the
network, are assumed to be exponential with parameter μ.
The put and get times are assumed to be identically distrib-
uted for remote access, since these are governed by the net-
work conditions, which are expected to be similar for both
the producers and the consumer. Further, the internal times
taken to put and get messages are assumed to be exponential
with parameter τ . Since the internal access time is expected
to be much lower than the remote access time, τ is at least
an order of magnitude higher than μ.

Figure 3 shows the queuing model of the mutex-based
system. The producers store the incoming messages in the
producer-side buffers PS1 and PS2 until they gain access to
the Consumer Handler’s Message Queue, labeled MQ. The
time taken by a producer to put a message on the queue and
by the Message Broker to send a message to the consumer
application is exponential with rate μ. A producer will not
gain access to the queue if its buffer is empty or if the queue
is full. Similarly, the Message Broker will not gain access
to the Message Queue if the queue is empty.

Figure 3. Queuing model: Mutex-based sys-
tem

Figure 4 shows the queuing model of the AO-based sys-
tem. The producer-side Activation Lists are modeled as
buffers labeled PHAL1 and PHAL2 with capacities N3

and N4 respectively. A producer can continue to invoke the
put method until its Activation List has spare capacity to
enqueue a request. The time taken by a producer to put a
message on its Activation List is exponential with rate μ.
The time taken to enqueue a message on the queue inter-
nally by the producer-side servant is exponential with pa-
rameter τ . The servant can put messages on the Message
Queue as long as it is not full. Also, it will not gain access
to the queue if its corresponding Activation List is empty.

Figure 4. Queuing model: AO-based system

The consumer-side Activation List is also modeled as a
buffer labeled CHAL1 with capacity N5. The time taken
by the Message Broker to dequeue a message from the Mes-
sage Queue is exponential with parameter τ . The rate at
which the servant sends messages to the consumer is μ. The
Message Broker will not gain access to an empty queue.

732

3.3 CSIM implementation

The implementation of queuing models using a general
purpose simulation language/package such as CSIM [11] is
fairly common practice. However, the implementation of
the constraint of mutually exclusive access to the Message
Queue in the producer/consumer systems required careful
consideration and is described here. To allow synchronized
access, we keep track of the threads which are “enabled” or
whose constraints are satisfied and hence can gain access to
the queue, in a single process that runs continuously for the
entire duration of the simulation. An entity is considered to
be enabled to gain access to the queue if its synchroniza-
tion or guard constraints are satisfied. For example, in the
mutex-based system, the producer is allowed access to the
queue if there is at least one message in its buffer and if
the queue is not full. This monitoring process then chooses
one of the enabled entities according to a uniform distribu-
tion. It then provides the chosen entity with a semaphore,
a structure called an “event” in CSIM, for the total time the
entity needs access to the queue. Once the entity has com-
pleted its action on the queue, it releases the event back to
the monitoring process, which then repeats the steps.

3.4 Performance metrics

In this section we define the metrics to gauge system per-
formance. We also discuss their relevance from the user’s
and the provider’s perspectives.

1. Throughput: This is the average rate at which mes-
sages are sent to the consumer application.

2. Loss probability: This is the average probability that
an incoming message will be discarded on the pro-
ducer side, due to a lack of buffer space.

3. Response time: This is the average time taken for a
message to be received at the consumer application
from the point it is created by a producer.

4. Queue length: This is the average queue length of the
various queues in the system, namely, the producer-
side queues and the Message Queue.

A service provider typically needs to balance compet-
ing concerns that consist of offering superior service per-
formance while keeping the service cost acceptable. In
a producer/consumer system, service performance will be
deemed superior if the consumer application can receive
messages at the same rate at which they are produced by
the producers. The loss probability of the messages must
thus be negligible. Further, these messages must be deliv-
ered with an acceptable response time. Thus, the first three
metrics are relevant to a user’s perception of performance.

To ensure acceptable service performance while main-
taining reasonable costs, it is then the responsibility of the
service provider to provision adequate resources. For a pro-
ducer/consumer system, the storage resources consist of the
various buffers used to hold messages. Thus, metric #4 can
provide valuable guidance to a service provider in deciding
the appropriate levels of resource provisioning.

4 Illustrations

In this section, we illustrate the potential of the method-
ology to guide configuration and provisioning decisions us-
ing the case study of a stock broker system [2]. The system
has two producers, one each for creating NYSE and NAS-
DAQ feeds, which we designate as producers #1 and #2 re-
spectively. A remote data mining consumer application re-
ceives these feeds and provides stock data to the stock bro-
kers. Since the stock brokers base important trading deci-
sions on this data, it is extremely necessary that these feeds
be received in a timely manner. Thus, the response time is
a vital performance metric for the stock broker system.

For the sake of illustration, we use the nominal parame-
ter values reported in Table 1. When using the methodology
at design time, these values can be obtained for a specific
hardware and operating environment either by conducting
measurements on similar systems or by consultation with
the experts. The performance metrics for the mutex-based
and AO-based systems for the nominal values are reported
in Table 2. The table indicates that both the systems have
identical throughput, and is the same as the total rate at
which messages are produced. The response time of the
AO-based system, however, is lower than the mutex-based
system. This is consistent with the average queue lengths,
which are higher in the mutex-based system than the AO-
based system. Thus, if the response time of the mutex-based
system is unacceptable then the provider may have to dis-
favor the mutex-based system despite its simplicity and in-
stead use the AO-based implementation.

Table 1. Nominal parameter values
Parameter Value

Arrival rates (λ1, λ2) 15.0/sec.
Service rate (μ) 120.0/sec.

Producer-side buffers (N1, N2) 10
Message Queue (N3) 100

Producer Hdlr. Activation Lists (N4, N5) 1
Consumer Hdlr. Activation List (N6) 1

Internal access rate (τ) 1000.0/sec.

It is important to note that the performance of the AO-
based system is better than the mutex-based system, even

733

when the sizes of Activation Lists in the AOs are 1. When
the Activation List sizes are 1, the producer blocks and
cannot place any message on the Activation List until the
producer-side servant gains access and puts the message it
already has on the Message Queue. This shows that the
AO-based implementation is effective in shielding the sys-
tem from the impact of the network latency even with mini-
mum possible Activation List sizes. This effectiveness may
increase as the sizes of the Activation List increase.

Table 2. Performance of Mutex and AO sys-
tems

Metric Mutex system AO system
Throughput 30.00/sec. 30.00/sec.

Loss probability 0.00 0.00
Response time 0.0326 0.0227

Producer-side queue 0.261 0.146
Message queue size 0.456 0.052

Next we illustrate the utility of the methodology to en-
able sensitivity analysis, which is particularly valuable at
design time, since at this stage the parameter values are not
known with certainty. It is then crucial to determine the
parameter ranges over which system performance is accept-
able for a given set of configuration options. As an example,
in the stock broker system frequent feeds are desirable to
improve the accuracy of the data provided to the stock bro-
kers. However, each feed must be delivered in a reasonable
time. For given configuration options, the maximum rate of
data feeds that can be sustained while providing an accept-
able response time must then be determined. For this pur-
pose, we vary the message arrival rate of the producers from
10.0/sec to 30.0/sec in steps of 5.0/sec. The performance
metrics for both the systems as a function of the arrival rate
are in Figure 5. The top left plot in the figure shows that
the throughput of both the systems is identical over most
of the range, except when the arrival rate is very close to
30.0/sec., at which the throughput of the mutex-based sys-
tem dips slightly. As expected, the queue lengths and the
response time increase as the arrival rate increases, how-
ever, the increase is more pronounced for the mutex-based
system than for the AO-based system. When the arrival rate
exceeds 25.0/sec. the queue lengths and the response time
of the mutex-based system increase sharply, while the in-
crease is still gradual for the AO-based system. Thus, if it
is expected that the feed rates will exceed 25.0/sec., the per-
formance of the mutex-based system may be unacceptable,
mandating a switch to the AO-based system.

The above examples illustrate how the performance
analysis methodology could be used to select an appropriate
pattern and its configuration options to achieve acceptable
system performance.

5 Related research

Performance and dependability analysis of some middle-
ware services and patterns has been addressed by a few re-
searchers. Aldred et al. [1] developed Colored Petri Net
(CPN) models for different types of coupling between the
application components and with the underlying middle-
ware. They also defined the composition rules for com-
bining the CPN models if multiple types of coupling are
used simultaneously in an application. A dominant aspect
of these works is related to application-specific performance
modeling. In contrast, we are concerned with determining
how the underlying middleware that is composed for the
systems they host will perform. Kahkipuro [4] proposed
a multi-layer performance modeling framework based on
UML and queuing networks for CORBA-based systems.
The methodology, however, is for generic CORBA-based
client/server systems rather than for systems built using de-
sign patterns. The research reported in this paper is con-
cerned with performance analysis of a specific design pat-
tern used in the development of producer/consumer sys-
tems. The work closest to our work is in [8], where a
performance model of the CORBA event service is devel-
oped. Our prior research has focused on performance analy-
sis methodologies for other middleware patterns including
the Reactor [3] and the Proactor patterns [7].

6 Conclusions and future research

In this paper we presented a model-based performance
analysis methodology for an AO-based system. It com-
prised of a queuing model which captured the internal ar-
chitecture of an AO-based system. A CSIM implementa-
tion of the model was used to demonstrate the utility of the
methodology in guiding provisioning and configuration de-
cisions on an example stock broker system.

Our future research consists of developing an analyti-
cal/numerical approach for the performance analysis of the
AO pattern. Developing a strategy to compose the perfor-
mance models of patterns mirroring their composition on
the middleware stack is also a topic of future research.

Acknowledgments

This research was supported by the following grants
from NSF: Univ. of Connecticut (CNS-0406376, CNS-
SMA-0509271) and Vanderbilt Univ. (CNS-SMA-
0509296).

References

[1] L. Aldred, W. M. P. van der Aalst, M. Dumas, and
A. H. M. ter Hofstede. “On the notion of coupling in

734

Figure 5. Sensitivity of performance measures to message arrival rates (λ1, λ2)

communication middleware”. In Proc. of Intl. Sympo-
sium on Distributed Objects and Applications (DOA),
pages 1015–1033, Agia Napa, Cyprus, 2005.

[2] G. Banavar, T. Chandra, R. Strom, and D. Sturman.
“A case for message oriented middleware”. In Proc.
of the 13th Intl Symposium on Distributed Computing,
pages 1–18, London, UK, 1999. Springer-Verlag.

[3] S. Gokhale, A. Gokhale, and J. Gray. “Performance
analysis of a middleware demultiplexing pattern”. In
Proc. of Hawaii Intl. Conference on System Sciences
(HICSS), January 2007.

[4] P. Kahkipuro. “Performance modeling framework for
CORBA based distrbuted systems”. PhD thesis, Dept.
of Computer Science, Univ. of Helsinki, Helsinki, Fin-
land, May 2000.

[5] R. Greg Lavender and Douglas C. Schmidt. Pattern
languages of program design 2, chapter Active ob-
ject: an object behavioral pattern for concurrent pro-
gramming, pages 483–499. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, 1996.

[6] ORACLE. “Bringing SOA value patterns to life”.
White Paper, June 2006.

[7] U. Praphamontripong, S. Gokhale, A. Gokhale, and
J. Gray. “Performance analysis of an asynchronous
Web server”. In Proc. of Intl. Conference on Computer
Science and Applications, pages 22–25, 2006.

[8] S. Ramani, K. S. Trivedi, and B. Dasarathy. “Perfor-
mance analysis of the CORBA event service using sto-
chastic reward nets”. In Proc. of the 19th IEEE Sympo-
sium on Reliable Distributed Systems, pages 238–247,
October 2000.

[9] R. E. Schantz and D. C. Schmidt. “Middleware for
distributed systems: Evolving the common structure
for network-centric Applications”. In John Marciniak
and George Telecki, editors, Encyclopedia of Software
Engineering, pages 801–813. Wiley & Sons, 2002.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-Oriented Software Ar-
chitecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[11] H. Schwetman. “CSIM reference manual (revision
16)”. Technical Report ACA-ST-252-87, Microelec-
tronics and Computer Technology Corp., Austin, TX.

735

 Analyzing the Applicability of a Theoretical Model in the Evaluation of
Functional Size Measurement Procedures

Nelly Condori-Fernández, Oscar Pastor
Department of Information Systems and Computation

Valencia University of Technology
Valencia-Spain

{nelly,opastor}@dsic.upv.es

Abstract

A number of current proposals for software
functional size measurement (FSM) exist in the
literature; however there is as yet little validating
evidence and no model to facilitate such validation. In
the absence of tailor-made evaluation models, the
Method Evaluation Model (MEM), used to evaluate
Information Systems (IS) design methods, was adapted
to evaluate three procedures based on two of the
standard FSM methods. This paper analyses the
applicability of the MEM in the software measurement
context, with a review of three empirical studies.

Key words: FSM procedures, Method Evaluation
Model, OO-Method, analyzing empirical studies.

1. Introduction

Software size measurement plays an important role
in understanding and controlling the software
development process and in obtaining deliverable
products, software size being one of the essential
parameters for project productivity and quality
benchmarking. Over four decades a number of size
measurement methods and techniques have been used,
from Lines of Code through Function Point Analysis,
but with the appearance of the ISO 14143 [1] as an
attempt to standardize approaches only four, all
Functional Size Measurement (FSM) methods, have
been duly approved. These are: ISO/IEC 19761
(COSMI-FFP) [2], ISO/IEC 20926 (IFPUG FPA) [3],
ISO/IEC 20968 (MARK II FPA) [4], and ISO/IEC
24570 (NESMA FPA) [5]. However, these methods
are generic, and so far full automation of the
measurement process has proved hard to achieve.

To overcome this limitation, various measurement
procedures have been defined by researchers based on
one of these four methods, in order to obtain the
functional size of specific artifacts developed in

particular contexts. There is increasing interest in this
area but little systematic evaluation of accuracy,
precision and user perceptions. In addition, as yet there
is no evaluation model specifically for FSM.

To remedy this, the MEM model, originally
intended for use in evaluating IS design methods, was
adapted to evaluate three FSM procedures, OOmFP [6]
and OOmFPweb [8], based on ISO/IEC 20926, and
RmFFP [7], based on ISO/IEC 19761.

The objective here is therefore to assess how
successful MEM model use was in this context. An
integrative review of the three empirical studies is
presented, together with a meta-analysis of the MEM
relationships that underpin the MEM, and a discussion
of possible future evaluation work.

This paper is structured as follows. Section 2
explains the main aspects of the MEM. Section 3
contains an overview of the three FSM procedures
evaluated using the MEM. Section 4 includes a
description of the general context, an investigation of
the application of the MEM to the procedures and
results, and an analysis of inconsistencies. The paper
ends with conclusions and future work.

2. The Method Evaluation Model

The Method Evaluation Model (MEM) has been
proposed by Moody [9].

The core of the MEM consists of the same
perception-based constructs as the Technology
Acceptance Model (TAM) [10], but adapted to
evaluate methods. These constructs are called the
Method Adoption Model (MAM) [9], [11]:
• Perceived Ease of Use: the extent to which a

person believes that using a particular method
would be free of effort.

• Perceived Usefulness: the extent to which a person
believes that a particular method will be effective
in achieving intended objectives.

736

• Intention to Use: the extent to which a person
intends to use a particular method.

MAM is extended with additional constructs to
provide inputs and predict final output (i.e. whether the
method will be used in practice), i.e.:
• Actual Efficiency: the effort required to apply a

method. This represents a MAM input variable.
• Actual Effectiveness: the extent to which a method

achieves its aims; also a MAM input variable.
• Actual Usage: the extent to which a method is

used in practice; a MAM output variable.
This model has been applied successfully in some

design methods evaluated by Poels [14], Moody [11].

3. An overview of the FSM procedures
evaluated using the MEM

The specific context of the three FSM procedures
concerned is OO-Method [12], an automatic software
production method based on model transformation, in
which they are used to measure functional size at early
stages of the software production process.

OO-Method is represented by three high-level
models: 1) the Requirements Model, which includes a
set of techniques that allow the capture of the
functional properties that the system requires; 2) the
Conceptual Model, which allows capturing of the static
and dynamic properties of the system’s functional
requirements; and 3) the Execution Model, which
includes a set of transformation rules that permits the
transition from problem space to solution space. From
this model, systematic and automatic software
application can be generated on different platforms.

The three FSM procedures were defined to measure
primitives of the Requirements Model and Conceptual
Model, as described below.

OOmFP is a measurement procedure defined for
sizing OO-Method conceptual schemas [6]. This
procedure maps the primitives used onto the concepts
used by Function Point Analysis, a standard FSM
Method (ISO/IEC 20269).

OOmFPweb [8] is an extension of the above
procedure to the sizing of Web applications, measuring
presentation and navigation schemas that are specified
with the Object-Oriented Web Solutions modeling
approach (OOWS) [13].

The third procedure, RmFFP [7], was defined to
measure the functional size of object-oriented systems
from functional requirements specification obtained
using the Requirements Model. RmFFP is based on the
COSMIC-FFP standard method (ISO/IEC 19761).

4. Applicability of the Method Evaluation
Model

Here we analyze the empirical studies evaluating
the FSM procedures defined for the OO-Method
approach [15],[16],[17]. These FSM procedures were
evaluated in terms of their actual efficacy (accuracy
and reproducibility), users’ efficiency (measurement
time) and how this in turn affects users’ perceptions
(usefulness and ease of use) and intention to use.

4.1. Empirical studies: general context

Table 1 summarizes the general context of these
empirical studies: number of subjects selected, artifact
to be measured (experimental object), the FSM
procedure used (factor), and the variables that it is
assumed will not influence the user’s responses
(parameters).

Table 1. Empirical Studies using MEM
Conditions Study A [15] Study B [17] Study C [16]
Subjects 22 computer science students

enrolled in the “Software
Development Environments”
course.

15 PhD students enrolled in
the “Software Engineering
for Web Environments”
course.

35 computer science students
enrolled in the “Software
Development Environments”
course.

Experimental Object OO-Method conceptual
schema of a Project
Management System.

OOWS conceptual schema
of an e-commerce
application for a
Photography Agency.

OO-Method requirements
specification of a Car Rental
Management System.

Factor OOmFP. OOmFPweb. RmFFP.
Parameters Quality of the OO-Method

conceptual schema,
similarity of knowledge of
OOmFP, familiarity of
subjects using OO-Method.

Quality of the OOWS
conceptual schema,
similarity of knowledge of
OOmFPweb, familiarity of
subjects using OOWS.

Quality of requirements
specification, similarity of
knowledge on FSM.
Familiarity of subjects using
OO-Method Requirements
Model and the RETO Tool.

737

The data recorded by each subject was 1) functional
size of the experimental object, 2) time used to carry
out the measurement with the respective FSM
procedure, 3) perceptions of usefulness and ease of
use, and intention to use a specific FSM procedure.

In order to capture perceptions and intention to use,
a survey, proposed by Moody [11], was adapted and
applied to the three studies. Cronbach’s alpha
statistical test was used to analyze the reliability of the
survey. We found that the reliability for the third study
(C) was low; this meant that we had to redesign the
survey and replicate the study.

Table 2 shows that the mean Cronbach’s alpha
obtained for PEOU construct was reliable (greater than
0.7) and representative (low standard deviation).
However, the mean value for the PU and ITU
constructs was not reliable. On the other hand, if we
analyze the Cronbach’s alpha including the replication
of the third study carried out, the reliability of the ITU
construct improved, although not that of the PU.

Table 2. Cronbach’s alpha for the empirical studies

Without replication With replication
Construct

Mean Standard
Dev. Mean Standard

Dev.
PU 0.65 0.1323 0.69 0.1368
PEOU 0.75 0.0624 0.76 0.0572
ITU 0.67 0.1528 0.71 0.1536

4.2. Meta-analyzing the MEM relationships

In this section we aim to analyze whether the
perceptions of efficiency (PEOU) and effectiveness
(PU) really are the result of actual experience with an

FSM procedure, and whether a measurer’s
performance really has an impact on his/her
perceptions. To do this, we explore the results of
regression analysis (Table 3 below) in terms of the
significance level of the model, and the confirmation of
the MEM relationships. Replication of the third study
solely focused on analyzing the relationships between
constructs of the MEM core, with the aim of improving
the reliability of the PEOU, PU and ITU constructs
(Table 3). Each MEM relationship is explored taking
an integral view of these studies carried out.

With respect to the influence of efficiency on
perceived ease of use, in studies (A) and (C) this causal
relationship was corroborated with a high level of
significance, approximately 60% of the variability of
perceived ease of use. However, efficiency, quantified
as number of size units measurable per unit of time, is
only relevant in manual measurement, as in these
studies. For automated procedures, there is a need for
other variables influencing perceived ease of use to be
identified.

With respect to the influence of effectiveness on
perceived usefulness, a low significance level was
shown in the first and third studies and therefore they
were not confirmed. This result ran counter to
expectations that FSM procedure effectiveness ought
to have a strong impact on perceived usefulness. One
reason for this could be that if this effectiveness is not
perceived directly by the subjects it will be difficult for
them to gauge the usefulness of the FSM procedure.

With respect to the influence of perceived ease of
use on perceived usefulness, this relationship could not
be empirically corroborated in the three last studies,
meaning that perceived ease of use of a FSM procedure
has no significant effect on perceived usefulness.

Table 3. Analysis of regression results for each empirical study

With respect to the influence of perceived ease of
use on intention to use, this also could not be
empirically corroborated.

Although the intention to use a FSM procedure is
influenced significantly by perceived usefulness,
coefficients of determination obtained in these
empirical studies oscillated between 14% and 63.5%.

Excluding the coefficient of the third study, where the
reliability of the constructs PU and ITU was low, a
mean value of 43.3% is obtained. This means that
43.3% of the variability of the intention to use an FSM
procedure can be explained by perceived usefulness.

Therefore, the underlying assumption of the MEM
applied in the FSM context has not been validated. It

Empirical Studies Study A[1] Study B [2] Study C [3] Replication
Study C [4]

MEM Relationships Sig. (p) Confirmed Sig. (p) Confirmed Sig. (p) Confirmed Sig. (p) Confirmed

R1: Efficiency PEOU 0.000 Yes 0.740 No* 0.000 Yes -- --
R2: Effectiveness PU 0.158 No 0.017 Yes* 0.083 No -- --
R3: PEOU PU 0.005 Yes* 0.292 No 0.432 No 0,329 No
R4: PEOU ITU 0.094 No 0.001 No 0.072 No 0.212 No
R5: PU ITU 0.003 Yes 0.028 Yes 0.035 Yes 0.003 Yes

738

would appear that the user’s perceptions are not solely
affected by the measurer’s performance in using a
FSM procedure.

5. Conclusions and further work

This paper describes an analysis of the applicability
of a design-method evaluation model, MEM, in the
evaluation of three FSM procedures based on two ISO-
certified FSM methods.

An integrative review of three empirical studies was
carried out. Each study was designed to evaluate a
specific FSM procedure for measuring certain artifacts
modeled using the OO-Method approach. Divergences
were revealed in certain MEM relationships when the
regression analyses obtained in these empirical studies
were analyzed (a meta-analysis).

According to the MEM, perceived usefulness is
evaluated by looking at how effective the FSM
procedure is in achieving users’ intended objectives.
However, on the basis of the analysis carried out in this
paper, other factors should be included in order to
explain perceived usefulness.

In terms of the perceived ease of use, although the
results of the analysis verify that the efficiency of a
procedure does influence perceived ease of use, this
appears only to be applicable when the procedure is not
automated.

Finally, the empirical studies analyzed corroborate
that intention to use an FSM procedure in practice can
be better predicted by perceived usefulness than
perceived ease of use.

Future research will be necessary to consider other
factors that will need to be included in a specially-
developed model for evaluation of software size-
measurement. Such work will contribute to the
development of a new evaluation model, which will
require further academic and practical empirical
verification.

Acknowledgment

This work has been supported by the DESTINO
project, Ref. TIN2004-03534, Spain.

References

[1] ISO, 1998. ISO/IEC 14143-1, Software measurement-
Functional Size Measurement. Part 1: Definition of
Concepts. International Organization for Standardization,
Geneva, Switzerland, 1998.
[2] ISO, ISO/IEC 19761-COSMIC-FFP-A Functional Size
Measurement Method, International Organization for
Standardization_ISO, Geneva, 2003.

[3] ISO, ISO/IEC 20926:2003, IFPUG 4.1 Unadjusted
functional size measurement method - Counting practices
manual, International Organization for Standardization,
Geneva, 2003.
[4] ISO, ISO/IEC 20968: 2002, Mk II Function Point
Analysis - Counting Practices Manual, International
Organization for Standardization, Geneva, 2002.
[5] ISO, ISO/IEC 24570: 2004, NESMA functional size
measurement method version 2.1 - Definitions and counting
guidelines for the application of Function Point Analysis, Int.
Organization for Standardization, Geneva, 2004.
[6] Abrahao S., Poels G., Pastor O. A Functional Size
Measurement Method for Object-Oriented Conceptual
Schemas: Design and Evaluation Issues. Software & System
Modelling, 5(1): 48-71, Springer Verlag, 2005.
[7] Condori-Fernández N., Abrahão S., and Pastor O. On
the Estimation of Software Functional Size from
Requirements Specifications, Journal of Computer Science
and Technology, Springer-Verlag, 22(3): 358-370, 2007.
[8] Abrahão S., Pastor O., Measuring the Functional Size of
Web Applications, International Journal of Web Engineering
and Technology (IJWET), Vol. 1, No. 1, 5-16 pp. 2003,
Inderscience Enterprises, Ltd., England.
[9] Moody D., The Method Evaluation Model: A
Theoretical Model for Validating Information Systems
Design Methods, Proceedings of the 11th European
Conference on Information Systems, Naples-Italy, June
2003.
[10] Davis F. D., "Perceived Usefulness, Perceived Ease of
Use and User Acceptance of Information Technology", MIS
Quarterly, vol. 3, no. 3, 1989.
[11] Moody D. L., "Dealing with Complexity: A Practical
Method for Representing Large Entity Relationship Models",
PhD. Thesis, Department of Information Systems, University
of Melbourne, Australia, 2001.
[12] Pastor O., Gomez J., Insfran E., Pelechano V., “The
OO-Method approach for information systems modelling:
from object-oriented conceptual modelling to automated
programming”, Information Systems 26, pp. 507-534, 2001.
[13] Pastor, O., Abrahão S. M., Fons J., An Object-Oriented
Approach to Automate Web Applications Development, J.
2nd International Conference on Electronic Commerce and
Web Technologies (EC-Web’2001), Munich, Germany,
September 2001, pp. 16–28, Springer-Verlag.
[14] Poels G., Maes A., Gailly F., Paemeleire R., “Measuring
User Beliefs and Attitudes towards Conceptual Schemas:
Tentative Factor and Structural Equation Model”, Fourth
Annual Workshop on HCI Research in MIS, December 2005.
[15] Abrahão S., and Poels G., Experimental Evaluation of
an Object-Oriented Function Point Measurement Procedure,
Information and Software Technology (IST) 49(4): 366-380,
2007, Elsevier.
[16] Condori-Fernández N., Pastor O., An Empirical Study
on the Likelihood of Adoption in Practice of a Size
Measurement Procedure for Requirements Specification 6th
IEEE International Conference on Quality Software, IEEE
Computer Society, Beijing, China, October 2006.
[17] Abrahão S., Poels G., Further Analysis on the
Evaluation of a Size Measure for Web Applications, 4th
Latin American Web Congress, Puebla, Cholula, Mexico,
October 25-27 2006, IEEE Press, pp. 230-240.

739

Software Documents: Comparison and Measurement

Tom Arbuckle∗, Adam Balaban†, Dennis K. Peters‡ and Mark Lawford§
∗Department of Computer Science and Information Systems, College of Informatics and Electronics,
CSIS Building, University of Limerick, Plassey Park, Limerick, Ireland. Email: tom.arbuckle@ieee.org

†Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland. Email: ab@mimuw.edu.pl
‡Electrical and Computer Engineering, Faculty of Engineering and Applied Science,

Memorial University of Newfoundland, St. John’s NL, Canada A1B 3X5. Email: dpeters@engr.mun.ca
§Department of Computing and Software, Faculty of Engineering, McMaster University,

Hamilton, Ontario, Canada, L8S 4K1. Email: lawford@mcmaster.ca

Abstract—For some time now, researchers have been seeking
to place software measurement on a more firmly grounded footing
by establishing a theoretical basis for software comparison.
Although there has been some work on trying to employ
information theoretic concepts for the quantification of code
documents, particularly on employing entropy and entropy-like
measurements, we propose that employing the Similarity Metric
of Li, Vitányi, and coworkers for the comparison of software
documents will lead to the establishment of a theoretically
justifiable means of comparing and evaluating software artifacts.
In this paper, we review previous work on software measurement
with a particular emphasis on information theoretic aspects, we
examine the body of work on Kolmogorov complexity (upon
which the Similarity Metric is based), and we report on some
experiments that lend credence to our proposals. Finally, we
discuss the potential advantages derived from the application
of this theory to areas in the field of software engineering.

I. INTRODUCTION

In the transition from the idea or concept for an element of

software to be implemented to the code that implements it and

beyond, it is recognised that there are several (possibly over-

lapping) stages (perhaps labeled by analysis, design, coding,

testing and support). In the production of quality software, we

assume that these stages — however they are assigned — are

documented. For the purposes of evaluation and assessment,

we therefore need to be able to compare documents that

describe or specify [1] — or indeed implement — software.
In software engineering, the comparison or measurement

of software documents (including source code and executable

objects) has traditionally been assigned to the subfield of

software measurement – often called ‘metrics’. The task of

characterising something that is effectively infinitely malleable

has been frought with difficulty. It has been difficult to agree

what to measure and the suitability of what is measured, and

to validate the measures against the implementations. Thus

the field has largely become a means of providing indica-

tors, symptoms to be evaluated by experienced practitioners

rather than a means of objectively measuring attributes of

software and their significance. We believe that the Similarity

Metric (of Li, Vitányi and others) can help in this regard.

Kolmogorov complexity, on which the measure is based, in a

very precisely defined sense describes the inherent complexity

of objects. Since the documents produced to describe, specify

or implement code are also ‘objects’ which embody their

intended meaning, we regard them as being inherently suitable

comparands for this method.

To be more specific, we wish to examine ways in which the

Similarity Metric can be employed in software engineering.

This will include the comparison of specifications or descrip-

tions of software before the software is implemented.

This paper is structured as follows. In the next sections,

we introduce software measurement, information theory and

Kolmogorov complexity. There follows an overview of the

work, largely by Li and Vitányi, on the definition of a universal

comparator, the Similarity Metric [2], whose foundation is

the complexity theory of Kolmogorov. In the next section,

we will attempt to relate complexity and measurement from

the viewpoint of the field of software engineering, in par-

ticular software measurement. After a section in which we

apply Cilibrasi’s implementation [3] of an approximation of

the Similarity Metric [4] to a set of software engineering

examples, we discuss what we believe to be the significance of

these techniques to the software engineering field and outline

additional applications beyond those detailed herein. We close

with our conclusions and acknowledgements.

II. SOFTWARE MEASUREMENT

A. Introduction

The field of software measurement has a long history [5],

[6], [7] and a broad literature. We can measure software to

examine its performance; its structure or design; its correct-

ness; its quality; its evolution (in terms of maintenance or

extension); the processes executed by its creators. Broadly

speaking, the field is important because only by performing

measurements (however, defined) on software and comparing

those measurements, can we make objective statements about

these topics. For a good overview of the field of software

measurement, see Fenton and Pfleeger [8].

B. Software Engineering: Metrics and Measures

Largely in agreement with Zuse [9], we define the words

‘measure’, ‘measurement’ and ‘metric’ as follows.

• A measure is a mapping from empirical objects (objects

to be measured) to formal objects (measurement values).

We will define a measurement to be the result of applying
a ‘measure’.

740

• A metric is a means of determining the distance between
two entities. A metric function (of two arguments) must

also (1) return null for identical entities; (2) be symmetric;

and (3) obey the triangle inequality.

In the literature, different definitions for these words are com-

mon. In particular, in software engineering, other conventions

are often followed. Lorenz and Kidd [10], for example, make

the following two definitions.

• Metric A standard for measurement. Used to judge the

attributes of something being measured such as quality

or complexity, in an objective manner.

• Measurement The determination of the value of a metric
for a particular object.

Our definitions are more in agreement with the mathematics

literature but potential for confusion should be borne in mind.

We will not discuss further the extensive literature con-

cerning definitions, axiomatic approaches or properties that

software ‘metrics’ might have [11], [12], [13], [14], [15].

III. INFORMATION THEORY, ENTROPY

In his 1948 paper [16], Shannon was concerned with the

transmission of information from a source to a sink over a

channel. He considered encoding of information, discrete and

continuous encodings, and transmission in the presence or

absence of noise. As a measure of the ‘quantity’ of information

to be passed through a channel, he introduced entropy, an

analogue of the thermodynamic entropy of Boltzmann. In the

discrete case, (Shannon) entropy takes its well-known form

H(X) = −
∑
xεX

pxlogpx (1)

where H(X) is the entropy for a source emitting codes x from
a set X , and the px are the probabilities the codes x occur.
It can be claimed that Shannon’s paper marked the founding

of the field of information theory. Certainly, an indication of

the quantity of information being produced by a source is a

useful concept that has since been applied in many fields [17].

IV. KOLMOGOROV COMPLEXITY

To quote from the book [18] by Li and Vitányi, “Shannon’s

entropy measures the uncertainty in a statistical ensemble of

messages, while Kolmogorov complexity measures the algo-

rithmic information in an individual message.” Also sometimes

known as ‘algorithmic entropy’, Kolmogorov complexity was

introduced independently by Solomonoff [19], Kolmogorov

[20], and Chaitin [21].

More formally, the Kolmogorov complexity, K(x) of a
binary string x is the length of the shortest (prefix-free) binary
program to compute x on a universal computer such as a

universal Turing machine. K(x) represents the number of bits
necessary to (computationally) describe the string x.
Although this definition sounds somewhat abstract, there

are indeed strong connections with the Shannon entropy [22],

[23]. It can be shown, for example, that the expected value

of the Kolmogorov complexity for a random string for any

probability distribution function will have a value to within

an additive constant (dependent only on the executing Turing

machine) of the Shannon entropy.

As might be expected, there are also connections between

Kolmogorov complexity and thermodynamics. Bennett et al.
[24] describe how it can be related to the thermodynamic cost

(minimal entropy increase in the environment) of data trans-

formations. This follows from early work on thermodynamics

in computing by Landauer [25].

V. MEASURING SIMILARITY

A. Information Distance

The idea of being able to calculate a value for the com-

plexity of objects leads naturally to the idea of being able

to compare how similar objects are to each other. In their

1998 paper, Bennett et al. [26] investigated the idea of ‘an
“absolute information distance metric” between individual

objects’ that they have subsequently shown [27] to obey the

(mathematical) metric properties up to an additive constant.

The information distance was to form the basis of the subse-

quent normalised similarity metric. Here, normalisation means

that 0 ≤ d(x, y) ≤ 1 with 0 indicating identical objects.

B. The Similarity Metric

A first attempt at a normalised similarity metric was

presented by Li et al. [28]. However, in their 2004 paper
[27], Li et al. presented an improved version, the normalised
information distance (NID) given by

NID(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)} (2)

Here K(x|y), for example, is the conditional Kolmogorov
complexity of x given y. This is the length of the shortest
program for a universal Turing machine to output x when

given an input y. They showed that this new distance satisfies
the metric properties up to an additive term of O(1/K), where
K is the maximum of Kolmogorov Complexities involved.

Then 1 − NID(x, y) has the natural interpretation of the
number of bits of shared information per bit of information of

the string with more information.

C. Practical Implementation — CompLearn

Since the idea of the NID concerns compression of data,

the normalised information distance can be approximated by

using real compressors, including most commonly known

compressors, which obey certain properties (idempotency,

monotonicity, symmetry and distributivity) [4]. The resulting

measure is called the normalised compression distance (NCD).

NCD(x, y) =
C(xy) −min{C(x), C(y)}

max{C(x), C(y)} (3)

where C(x), for example, denotes the approximation of a
Kolmogorov complexityK(x) by the length of the compressed
data produced by an instance of a real compressor and xy
denotes the concatenation of x and y.
Although the theory for the NID is exact, additional the-

oretical work was carried out by Cilibrasi and Vitányi [4]

741

to show that the NCD was a good approximation whose

difference from the NID was dependent only on the quality of

the approximation of a ‘perfect’ compressor by a real one.

An implementation of the NCD has been made publicly

available as the CompLearn toolkit [3]. We have employed

version 0.9.7 of the toolkit in the experiments that follow. The

toolkit compressors we employ are the Lempel-Ziv zlib algo-

rithm, the bzip2 block-sorting compressor and the blocksort

algorithm provided in CompLearn by Cilibrasi.

VI. SOFTWARE, COMPLEXITY, INFORMATION THEORY

Campbell [29] was already considering whether entropy

could be used as a metric (in the mathematical sense) as

early as 1965. A 1972 paper by Hellerman [30] employed

entropy to measure information in a computer’s memory as

a measure of computational work. However, possibly the first

use of entropy in the discussion of design was van Emden’s

1969 paper [31] and his later thesis [32]. Van Emden’s concern

was the use of a form of entropy (called “surplus entropy”,

or “entropy loading”) to decide how to decompose an object

into subcomponents. This work was taken up by Chanon who

showed [33], [34] how van Emden’s work could be employed

for the structuring of software. See also [35], [36], [37].

Since this early work, numerous authors have sought to

apply information theory concepts to software engineering.

A full review would be a paper in its own right. To list

some examples, judging the information-theoretic complexity

of software specifications was studied by Coulter et al. [38].
Bansiya et al. [39] modeled the complexity of object-oriented
systems using entropy. (See Tegarden et al. for a ‘metrics’
approach [40].) ‘Coupling’, the degree of interconnection or

dependency between software components, and ‘cohesion’,

the degree of internal interconnection, were modeled in in-

formation theoretic terms by Allen et al. [41], [42]. There
are also studies of apportioning complexity [43], [44] and

of the correlation between forms of code complexity and the

likelihood of errors [45], [46].

Research on using information theory based methods for

quantifying software continues, a recent paper by Sarkar et al.
[47] being one good example.

VII. EXAMPLES

A. Experiments in other fields

There should be no doubt that Cilibrasi’s implementation

of Li and Vitányi’s Similarity Metric has already proven its

utility and correctness. Amongst others, it has been applied

to program plagiarism detection [48], genomics [4], cross-

language textual similarity [49], and the classification of

musical styles [50]. Although a subsequent paper by Vitányi

[51] states that the program has also been applied to the

classification of programs written in the languages Ruby and

C, we have not found details of these experiments. In addition,

we are unaware of any descriptions of applications of these

techniques in the field of software engineering.

15

10

Version

5

15
100.0

5
Version

0.25

NCD
0.5

0.75

Fig. 1. ncd operating on sources

B. Sample Experiment — The ‘slocate’ package

The open-source software package slocate [52] is designed
to catalogue and index (as the superuser) all files present in a

specified area of a filesystem but to answer queries such that

the visibility of files is filtered by the authorisation privileges

of the current software user. slocate is an ideal candidate for
one of our experiments: its code is short but performs fairly

complex operations; it has a long history with many publicly

available releases; and it has also been redesigned on at least

one occasion. Reference indices (for use in diagrams) and

source lengths in kilobytes for the releases of slocate that we
studied are as shown in table I.

TABLE I

slocate RELEASES, INDICES, SIZES (KILOBYTES)

Rel. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3.1
Ind. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Size 26.626.724.023.929.731.332.270.372.372.770.773.682.691.392.067.4

1) Source Code: For each version, we applied the ncd
program from CompLearn to the concatenation of all “.h” and

“.c” files whose lengths were shown in table I. A plot of (half

of) the NCD similarity matrix is shown in figure 1.

2) Indexing Trace: Using the strace program which pro-

vides a listing of calls to system functions from user programs,

we created a trace (sequence of program calls) of the operation

of the versions of the slocate program creating a database on

the same data. Figure 2 shows a plot of (half of) the NCD

similarity values.

3) Search Trace: The strace program was again used to

produce a trace of system calls, this time for answering the

same search query on the database produced in the previous

experiment. Figure 3 shows the plot of (half of) the results of

running ncd on these traces.

742

15

10

Version

5

15
100.0

5
Version

0.25

0.5NCD

0.75

Fig. 2. ncd on indexing trace

15

10

Version

5

15
100.0

5
Version

0.1

0.2

0.3NCD

0.4

0.5

0.6

Fig. 3. ncd on search trace

C. Analysis

Each of the figures shows a pairwise similarity between

different versions of slocate. The ncd similarity matrix is
(almost) symmetric and so values below (not on) the main

diagonal of the matrix have been zeroed to permit easier

viewing. Remember that NCD values close to zero denote

similarity and those close to one denote strong dissimilarity.

Let us examine figure 1. From left to right, the columns

represent the NCD values for increasing versions. For indices

1 to 7, we see a steep increase in the degree of dissimilarity

with increasing versions so that, above index 8, the degree

of dissimilarity forms a plateau in the top-left corner. From

index 8 onwards, we see (up the columns) increasing degrees

of dissimilarity leading to a ‘back wall’ for the final index.

This diagram tells us that the author was justified in his

versioning system since the discontinuities correspond to ma-

jor releases (2.0, 3.1). We can also see the gradual differences

between minor versions. We can claim that this is evidence

of good incremental design. We can further claim that this

is evidence of good structure since the changes introduced

between minor versions were permitted by the design without

engendering major modifications.

Figure 2 shows the results of comparing the (system) opera-

tions for building an index with each version of slocate being
run on the same input. Differences between operations for

minor releases of the 1.x code are very apparent. Differences

in operations for the 2.x series are more gradual and there

appears to be some similarity to the operations of the 3.x series

(forming the ‘back wall’ of the figure). We see that NCD is

detecting the right differences for our purposes.

Now examine figure 3 showing the result of a search on the

respective databases. Looking along the columns, indices 1 and

2 show that the first two versions behave differently from the

others. We can see another ‘ridge’ at index 5. The two previous

versions were ‘optimising’ the code whereas this version

adds functionality (globbing, greater compatibility with GNU

locate). We can also see a plateau between (horizontal) indices
6 and 10 for indices 11 to 15 indicating that the final releases

of the 2.x series behave differently from both the 1.x series and

earlier versions of the 2.x series. Again, we note the presence

of the ‘back wall’ in the diagram. The operations performed

by version 3.1 are clearly different from those of the 2.x series.

Finally, compare the diagrams with each other. We see

clear similarities between figures 1 and 2 and clear differences

between these two and figure 3. The building of the database

mirrors the versioning with little work being done on it

between minor releases. The bulk of the change we see is

in the search of the database even within versions.

Suppose a developer has data about their current project

similar to that presented here. The developer is aware of

the changes being made but may not be so aware of their

repercussions. By comparing current behaviour with that of

previous versions, the developer can see where a possibly

small change in the code results in a much larger change in

behaviour (that might not be immediately apparent).

These plots are clearly of great utility to both managers and

coders alike. For minimal investment of time and energy, it is

easy to see important aspects of change throughout the version

history of the project. The successful application of NCD to

strace logs we consider very promising but there are many
other applications for this technique.

The recent trace function method (TFM) [53], a successor

of the earlier trace assertion method [54], permits software

specification in terms of traces as do other formalisms such

as enumerative specification [55], [56], path expressions [57]

and the work of Broy [58]. This suggests the following.

Firstly, using simulation techniques applied to those spec-

ifications we can generate traces for the specified software.

Whereas our earlier experiments required working code and

743

the strace program, we can obtain the data for our comparisons
at the design stage thereby permitting the measurement of the

development progress and of the complexity of the software

before the implementation work has begun. We believe that

even the design should be done in incremental steps and these

tools will be helpful in measuring this. Given a sufficient body

of data, design complexity can be validated and properties of

future designs quantified before coding begins.

Secondly, Peters et al. [59] are seeking to encode program
specifications written using TFM in OMDoc [60] XML files.

These encodings of software specifications exist before the

implementations the specifications describe. Descriptions of

existing software can also be created using this encoding. In

future experiments, we will be interested to examine OMDoc

descriptions or specifications of software.

VIII. DISCUSSION, FUTURE WORK

The work of Li, Vitányi and Cilibrasi provides a fundamen-

tally new and theoretically justified approach that we can apply

to our problems. Its application in the field of software engi-

neering presents many opportunities to help practitioners do

a better job of creating quality software. There are numerous

additional applications of the techniques that we have shown.

• We can automate the monitoring of the evolution of code

as it moves through different phases of implementation,

testing and maintenance. This will allow us to track the

introduction of additional complexity or to see simplifi-

cations made without loss in functionality.

• Once an interface for an implementation is specified,

application of these methods will permit the comparison

of different implementations. We can compare internal

designs for different modules and identify similar mod-

ules as potential refactoring candidates.

• Given some estimate of the complexity of a design, we

will be better able to make management decisions about

the quantities of resources required to complete a given

design or programming task.

• Given a specification, we can implement that specification

in many possible programming languages. If we can find

a common representation of their execution output, we

can compare different languages to see if they aid or

hinder the creation of implementations.

• By measuring the modules that comprise the implemen-

tation, we will be able to make estimates of the relative

complexities of the code for those units. Since error

density has been shown to correlate with code complexity,

we will have better ideas of where to concentrate our

testing efforts and of where errors are likely to occur.

• Gathering requirements and creating usage scenarios al-

lows us to decide what needs to be created and to evaluate

whether a given task is viable. Given a suitable encoding,

the comparison of different sets of requirements for the

same project would permit some evaluation of relative

complexities before going on to design.

• The work of different coders or designers working to

a common specification can be compared using this

method. Planning for future change, a more experienced

designer might produce a more complex design. However,

even the ability to reveal this is of great utility.

• In addition we intuit connections with considerations of

coverage [61] that we would like to investigate.

We are aware that these suggestions do have some draw-

backs. The interpretation of these comparisons requires some

thought. An attempt to compare a ‘large’ set of documents

might fail for practical reasons. More importantly, however,

the question of the coding of the documents needs to be

considered. Vitányi has stated [51] that while the technique is

robust with respect to a change in underlying compressor types

(although see [62]), there are still situations in which a naı̈ve

application of the technique may fail. He states that further

research is necessary to examine the case where the input

strings are overly sensitive to the encoding used. Nevertheless,

we foresee that applying the Similarity Metric in software

measurement will provide many areas for future exploration

and are highly encouraged by our results so far.

IX. CONCLUSION

In this paper, we have shown that the application of the

similarity metric of Li and Vitányi (based on Kolmogorov

complexity theory) in the field of software engineering will

provide a theoretically sound basis on which to found software

measurements. We claim that having a theoretically justified

means of comparison of software documents, at many stages

in the software lifecycle, will have a beneficial effect on

the reproducibility and justifiability of measurement claims.

We have shown that using this method can provide useful

information for software engineers during design, testing and

maintenance. We have described several ways in which this

theory can be applied and, in future publications, we will

elaborate on our suggestions and their practical utilisation.

ACKNOWLEDGMENTS

The authors thank numerous reviewers for their comments

on earlier drafts. This research is supported by Science Foun-

dation Ireland (grants 01/P1.2/C009 and 03/CE3/1405).

REFERENCES

[1] D. L. Parnas, “Precise description and specification of software,” inMDS
’95: Proc. 2nd international conference on Mathematics of dependable
systems II. Oxford University Press, Inc., 1997, pp. 1–14.

[2] M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi, “The similarity metric,” in
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms. SIAM, 2003, pp. 863–872.

[3] R. Cilibrasi, “The CompLearn Toolkit,” 2003. [Online]. Available:
http://complearn.sourceforge.net/

[4] R. Cilibrasi and P. Vitányi, “Clustering by compression,” IEEE Trans.
Information Theory, vol. 51, no. 4, pp. 1523–1545, April 2005.

[5] R. J. Rubey and R. D. Hartwick, “Quantitative measurement of program
quality,” in Proceedings of the 1968 23rd ACM national conference.
New York, NY, USA: ACM Press, 1968, pp. 671–677.

[6] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). New York, USA: Elsevier Science Inc., 1977.

[7] B. H. Yin and J. W. Winchester, “The establishment and use of measures
to evaluate the quality of software designs,” in Proceedings of the
software quality assurance workshop on Functional and performance
issues, 1978, pp. 45–52.

744

[8] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. Boston, MA, USA: PWS Publishing Co., 1998.

[9] H. Zuse, Software Complexity: Measures and Methods. Hawthorne,
NJ, USA: Walter de Gruyter & Co., 1990.

[10] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[11] N. Fenton, “Software measurement: A necessary scientific basis,” IEEE
Trans. Softw. Eng., vol. 20, no. 3, pp. 199–206, 1994.

[12] B. Henderson-Sellers, “The mathematical validity of software metrics,”
SIGSOFT Softw. Eng. Notes, vol. 21, no. 5, pp. 89–94, 1996.

[13] E. J. Weyuker, “Evaluating software complexity measures,” IEEE Trans.
Softw. Eng., vol. 14, no. 9, pp. 1357–1365, 1988.

[14] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software
engineering measurement,” IEEE Trans. Softw. Eng., vol. 22, no. 1, pp.
68–86, 1996.

[15] N. Fenton, “When a software measure is not a measure,” Softw. Eng. J.,
vol. 7, no. 5, pp. 357–362, 1992.

[16] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423 and 623–656, 1948.

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[18] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its
applications (2nd ed.). Springer-Verlag, 1997.

[19] R. J. Solomonoff, “A formal theory of inductive inference. part I and
part II,” Information and Control, vol. 7, no. 1 and 2, pp. 1–22 and
224–254, 1964.

[20] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Probl. Inform. Trans., vol. 1, no. 1, pp. 1–7, 1965.

[21] G. J. Chaitin, “On the length of programs for computing finite binary
sequences: statistical considerations,” J. ACM, vol. 16, no. 1, pp. 145–
159, 1969.

[22] P. D. Grünwald and P. M. B. Vitányi, “Kolmogorov complexity and
information theory with an interpretation in terms of questions and
answers,” J. of Logic, Lang. and Inf., vol. 12, no. 4, pp. 497–529, 2003.

[23] ——, “Shannon information and Kolmogorov complexity,” September
2004, submitted to IEEE Trans. Information Theory.

[24] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. H. Zurek,
“Thermodynamics of computation and information distance,” in STOC
’93: Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing. New York, NY, USA: ACM Press, 1993, pp. 21–30.

[25] R. Landauer, “Irreversibility and heat generation in the computing
process,” IBM J. Res. Develop., vol. 5, no. 3, pp. 183–191, July 1961.

[26] C. H. Bennett, P. Gács, M. Li, P. Vitányi, and W. H. Zurek, “Information
distance,” IEEE Transactions on Information Theory, vol. 44, no. 4, pp.
1407–1423, July 1998.

[27] M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi, “The similarity metric,”
IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3250–
3264, December 2004.

[28] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang,
“An information-based sequence distance and its application to whole
mitochondrial genome phylogeny.” Bioinformatics, vol. 17, no. 2, pp.
149–154, 2001.

[29] L. L. Campbell, “Entropy as a measure,” IEEE Trans. Information
Theory, vol. 11, no. 1, pp. 112–11, 1965.

[30] L. Hellerman, “A measure of computational work,” IEEE Trans. Com-
puters, vol. C-21, no. 5, pp. 439–446, May 1972.

[31] M. H. van Emden, “Hierarchical decomposition of complexity,”Machine
Intelligence, vol. 5, pp. 361–380, 1969.

[32] ——, “An analysis of complexity,” Ph.D. dissertation, Mathematisches
Zentrum, Amsterdam, 1971.

[33] R. N. Chanon, “On a measure of program structure,” in Programming
Symposium, Proceedings Colloque sur la Programmation. London,
UK: Springer-Verlag, 1974, pp. 9–16.

[34] ——, “On a measure of program structure.” Ph.D. dissertation, Carnegie-
Mellon University, 1974.

[35] S. Henry and D. Kafura, “Software structure metrics based on informa-
tion flow,” IEEE Transactions on Software Engineering, vol. 7, no. 5,
pp. 510–518, September 1981.

[36] N. Chapin, “An entropy metric for software maintainability,” in Proceed-
ings of the Twenty-Second Anuual Hawaii International Conference on
System Sciences, vol. II, Jan 1989, pp. 522–533.

[37] W. R. Torres and M. H. Samadzadeh, “Software reuse and information
theory based metrics,” in Proc. 1991 Symposium on Applied Computing,
April 1991, pp. 437–446.

[38] N. S. Coulter, R. B. Cooper, and M. K. Solomon, “Information-theoretic
complexity of program specifications,” Comput. J., vol. 30, no. 3, pp.
223–227, 1987.

[39] J. Bansiya, C. Davis, and L. Etzkorn, “An entropy-based complexity
measure for object-oriented designs,” Theor. Pract. Object Syst., vol. 5,
no. 2, pp. 111–118, 1999.

[40] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “A software
complexity model of object-oriented systems,” Decis. Support Syst.,
vol. 13, no. 3-4, pp. 241–262, 1995.

[41] E. B. Allen and T. M. Khoshgoftaar, “Measuring coupling and cohesion:
An information-theory approach,” in METRICS ’99: Proc. 6th Int. Symp.
on Software Metrics. IEEE Computer Society, 1999, p. 119.

[42] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen, “Measuring coupling
and cohesion of software modules: An information-theory approach,”
in METRICS ’01: Proceedings of the 7th International Symposium on
Software Metrics. IEEE Computer Society, 2001, p. 124.

[43] J. C. Munson and T. M. Khoshgoftaar, “The dimensionality of program
complexity,” in ICSE ’89: Proceedings of the 11th international confer-
ence on Software engineering. ACM Press, 1989, pp. 245–253.

[44] T. M. Khoshgoftaar and D. L. Lanning, “Are the principal components
of software complexity data stable across software products?” in Proc.
2nd Int. Software Metrics Symposium, 1994, pp. 61–72.

[45] D. L. Lanning and T. M. Khoshgoftaar, “Modeling the relationship
between source code complexity and maintenance difficulty,” Computer,
vol. 27, no. 9, pp. 35–40, 1994.

[46] N. E. Gold, A. M. Mohan, and P. J. Layzell, “Spatial complexity metrics:
An investigation of utility,” IEEE Trans. Softw. Eng., vol. 31, no. 3, pp.
203–212, 2005.

[47] S. Sarkar, G. M. Rama, and A. C. Kak, “API-based and information-
theoretic metrics for measuring the quality of software modularisation,”
IEEE Trans. Softw. Eng., vol. 33, no. 1, pp. 14–32, 2007.

[48] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared
information and program plagiarism detection,” IEEE Trans. Information
Theory, vol. 50, no. 7, pp. 1545–1551, July 2004.

[49] K. Koroutchev and M. Cebrián, “Detecting translations of the same text
and data with common source,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 10, October 2006.

[50] R. Cilibrasi, P. Vitányi, and R. de Wolf, “Algorithmic clustering of music
based on string compression,” Computer Music Journal, vol. 28, no. 4,
pp. 49–67, 2004.

[51] P. Vitányi, “Universal similarity,” in Proc. IEEE ISOC ITW2005 on
Coding and Complexity, M. Dinneen, Ed., 2005, pp. 238–243.

[52] K. Lindsay, “slocate,” 1998, Canonical URL is http://slocate.trakker.ca/.
[Online]. Available: http://freshmeat.net/projects/slocate/

[53] D. L. Parnas and M. Dragomiroiu, “Module Interface Documentation
– Using the Trace Function Method (TFM),” 2006, submitted to IEEE
Trans. Softw. Eng.

[54] W. Bartussek and D. L. Parnas, “Using traces to write abstract specifica-
tions for software modules,” in Proc. 2nd Conf. European Cooperation
in Informatics, ser. LNCS 65. Springer-Verlag, 1978, pp. 211–236.

[55] S. J. Prowell, “Developing black box specifications through sequence
enumeration,” in SESD ’99: Proceedings of the Science and Engineering
for Software Development: A Recognition of Harlan D. Mills’ Legacy.
Washington, DC, USA: IEEE Computer Society, 1999, p. 14.

[56] S. J. Prowell and J. H. Poore, “Foundations of sequence-based software
specification,” IEEE Trans. Softw. Eng., vol. 29, no. 5, pp. 417–429,
2003.

[57] S. Andler, “Predicate path expressions,” in POPL ’79: Proceedings of the
6th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. New York, NY, USA: ACM Press, 1979, pp. 226–236.

[58] M. Broy and I. Krüger, “Interaction interfaces - towards a scientific
foundation of a methodological usage of message sequence charts,” in
ICFEM ’98: Proc. 2nd IEEE Int. Conf. on Formal Engineering Methods.
IEEE Computer Society, 1998, pp. 2–13.

[59] D. K. Peters, M. Lawford, and B. T. y Widemann, “Software specifica-
tion using tabular expressions and OMDoc,” 2007, Work in progress.

[60] M. Kohlhase, OMDoc — An Open Markup Format for Mathematical
Documents [V. 1.2], ser. LNAI 4180. Berlin, Germany: Springer, 2006.

[61] G. H. Walton and J. H. Poore, “Measuring complexity and coverage of
software specifications,” Information and Software Technology, vol. 42,
pp. 859–872, 2000.

[62] M. Cebrián, M. Alfonseca, and A. Ortega, “Common pitfalls using
the normalized compression distance: What to watch out for in a
compressor,” Comms. Info. Sys., vol. 5, no. 4, pp. 367–384, 2005.

745

746

Proceedings

Industrial Workshop

(SEKE 2007)

747

748

Workflow Management and Service Oriented Architecture

Theodorich Kopetzky Dirk Draheim

SCCH - Software Competence Center Hagenberg, Softwarepark 21, A-4232 Hagenberg, Austria

E-mail: theodorich.kopetzky@scch.at, dirk.draheim@scch.at

Abstract

The potential of automatization is still huge in modern
enterprises. Flexibility of business processes has always
been and still is considered as an important success factor
for enterprises. Therefore, major information technology
vendors currently focus with their initiatives on flexibility
of information systems and business processes. Recently,
we have seen two major trends in enterprise application ar-
chitecture that address this issue from a different perspec-
tive: business process execution with its several concrete
initiatives like workflow management and business process
management and service-oriented architecture. But how to
exploit the promises of service-oriented architecture in a
workflow-intensive information system scenario? How to
implement workflow logic in a service-oriented manner?
In this presentation we want to discuss tensions between
the two paradigms and possible best practices in bringing
them together in a multi-tier system design. We present our
lessons learned from a three-year project with a major in-
surance company. In this project we had to deal with a lot
of innovative aspects like online-/offline workflow support
and advanced data synchronization techniques.

1. Introduction

In a nearly finished project with the Austrian social in-

surance company for occupational risks, the AUVA1 (as

customer) and two research and development institutions

ventured into the development of a new software system

supporting the business processes of the prevention depart-

ment of the AUVA.

This paper will briefly present in section 2 the context

the AUVA operates in and list the main project goals.

In section 3 on the next page we will give a short survey

of the challenges the team encountered during the advance

of the project.

Finally, we present the most important lessons learned

(in section 4 on the following page).

1AUVA is short for Allgemeine Unfallversicherungsanstalt [1]

2. Domain and Project Goals

The AUVA has more than 5000 employees organized

in different units and covers the occupational risks for ap-

proximately 3 million employees and 1.3 million pupils

and students (numbers as of [4]). It operates rehabilita-

tion and trauma centres for roughly 300.000 people in-

volved in occupational accidents each year. Additionally

each year the AUVA pays 73.000 compensations for vic-

tims (or their families) of occupational accidents or occu-

pational diseases. These numbers are a strong motivation

to prevent occupational accidents and diseases. In order

to support prevention the AUVA employs prevention con-

sultants who are experts in a specific domain, for example

noise control. These consultants visit workplaces and sug-

gest possible improvements of the working conditions to re-

duce the risk of occupational accidents and diseases. Vis-

its of consultants can be requested by the companies (e.g.,

when a new machine begins operation) or can be initiated

by the AUVA. Additionally, the AUVA is bound by law to

serve companies in this regard. The AUVA operates several

offices throughout the country each of which is responsible

for one or more provinces.

2.1. Project Goals

For the purpose of complying with their obligations and

improving their service regarding coordination of consul-

tants, faster delivery of results etc. – to name just a few –

different project goals have been identified. The following

list states some of the most important projects goals.

• Unify the business processes of the different offices.
Each office handles, for example, the core preven-

tion process slightly different, so the resulting system

should unify the process as far as possible and still tol-

erate small deviations of the process.

• Integrate old host data. The AUVA uses some

databases covering nearly 40 years of data. The new

system must integrate this data by migrating it to cur-

rent database technology.

749

• Integrate with an existing system from another depart-
ment. This department already uses software based on

Oracle to support their business processes. The new

system must integrate with this system and give an in-

tegrated view of the different activities happening in

both systems.

• Use web service technology. This was a requirement
of the information management department.

• Enable offline support for the prevention consultants.
As the consultants visit companies they do not have

always network connectivity to the AUVA network.

Necessary data has to be available on the notebook.

Support of part of the business processes must be pos-

sible offline as well.

• Good security regarding workflow and sensitive pa-

tient information, online and offline as well.

3. Challenges

Looking at the goals some challenges are obvious and

some are not so.

One of the early challenges was to find a commercial

platform as basis for the system. Evaluations of Microsoft

Biztalk Server 2004 [3], currently in the version 2006,

and DOMEA ([2], then a product of SER eGovernment

Deutschland GmbH, now Open Text Corporation) and a

strong preference of the customer for Microsoft solutions

led to a prototypical implementation of the business process

using the BizTalk-Server. Among other things problems

with the performance even with very few users of the pro-

totype caused the decision to discard the BizTalk approach.

The new approach was to use IIS and to implement the web

services in C#.

Another challenge was the support for working offline

and offline workflow. An early assumption in the project

was that the aforementioned Oracle Database would be re-

placed in the near future with a Microsoft SQL Server so

the decision was made to utilize Microsoft Desktop Engine

(MSDE) as offline database. Later on it became clear that

the assumption regarding the MS SQL Server was wrong. A

cross-database replication mechanism was not readily avail-

able then, thus a replication concept for Oracle and MSDE

replications has been elaborated.

Another challenge was the lack of an existing security

system. This was covered by the implementation of a

company-wide security system.

4. Lessons Learned

Besides lessons learned regarding requirements engi-

neering [5], lessons were learned regarding the migration

of old databases (e.g., meaning of fields changed on given

dates in the past), the integration of different application

on a data level (complex interaction between involved par-

ties), the object-relational mapping of a complex database

already in use (already existing relations and constraints

proved being difficult for mapping), the transportation of

business objects via web services (object graphs versus hi-

erarchical XML data structures), the transportation of state

(avoidance of long running transactions, transfer of big ob-

jects for current state of workflow), and more.

5. Acknowledgements

The authors gratefully acknowledge support by the Aus-

trian Government, the State of Upper Austria, and the Jo-

hannes Kepler University Linz in the framework of the

Kplus Competence Center Program. The authors would es-
pecially like to thank all project team members for their per-

severance during this project.

References

[1] AUVA: Austrian social insurance company for occupational

risks. http://www.auva.at/, visited April 2007.
[2] DOMEA. http://www.domea.com, visited April 2007.
[3] Microsoft BiztTalk Server 2006. http://www.

microsoft.com/germany/biztalk/default.
mspx, visited April 2006.

[4] AUVA Jahresbericht 2005, 2005. http://www.auva.
at/mediaDB/116926.PDF, visited April 2007.

[5] M. Pichler, H. Rumetshofer, and W. Wahler. Agile require-

ments engineering for a social insurance for occupational

risks organization: A case study. In RE ’06: Proceedings
of the 14th IEEE International Requirements Engineering
Conference (RE’06), pages 246–251, Washington, DC, USA,
2006. IEEE Computer Society.

750

Abstract—With the increasing pressure from business
units to produce more with less -- and faster -- IT
departments are looking for the latest “silver bullet” –
the one big change that can reap the most low-hanging
fruit. Agile Development in its many flavors can
certainly appear on the surface to be just such a
solution. But chances are, what made a development
process slow to begin with was a series of small
missteps across many or all of the domains and
disciplines of software development. It only stands to
reason that the solution will require a series of small
corrections. However, it is all to frequent that IT
Managers approach Agile Development by attempting
to change only the big, tangible aspects of their
software development engine – changes in process,
tools, or terminology. But in software development,
real change is hard, and requires a holistic view. The
paper that follows explains one approach taken by an
IT department’s management to implement its first
Agile project.

I. INTRODUCTION
When the Douglas County CO Government IT
Department was asked to create a custom application
for the Sheriff’s Office to track and manage the
County’s resident convicted sex offenders, the project
estimates using the traditional waterfall-based
methodology proved too long and too costly to gain
approval from its IT Steering Committee. Rather than
cancel the project or purchase a less optimal off-the-
shelf product, we implemented it as our first
Agile/Scrum project. The outcome was a very
successful system implementation delivered in four
months - less than half the original schedule estimate.
But the journey was equally rewarding, and taught us
that “Agile” meant more than just a change to the
project management methodology. For us, it meant
changing almost everything.

To give ourselves the best opportunity for success on
this first agile project, we explored and changed almost
every facet of how we developed software: which
project we chose to first attempt agile development,
how we estimated project size, how we staffed the

project, how interactions between team members
should occur, which technologies we used, and how we
sold the project to our customer, our team, and our IT
Steering Committee. Most parts of the first agile plan
went as designed; other aspects could have gone better.
Key lessons learned on the project were centered on
simplifying process and design approaches, as well as
improving project communication and team dynamics.

II. PLANNING FOR SUCCESS

A. Choice of Project
We took great care in choosing this particular project
as our first attempt at Agile. The project was near ideal
to us for a few key reasons. One, the system did not
require integration with many other existing systems.
This was beneficial in that we were not injecting
changes to other systems that would require re-coding
or re-testing. Two, the business rules were not
complex. Unlike other systems in the County, the
business rules for the application were easy to
understand, and there was a degree of latitude in how
we fulfilled the user’s need. (By comparison, the
County’s system that calculates residents’ Certificate of
Taxes Due, has very complex business rules where one
and only one calculation is correct.) This reduced the
risk that developed functionality would have to be
reworked upon customer review. Three, the size of the
application was smaller compared to other County
systems, but large enough to uncover any issues we
would face if we chose to apply this methodology to
future projects.

B. Trust
Our IT Steering Committee was initially (and
rightfully) wary of our pitch that we could reduce the
project timeline in half with the implementation of a
new methodology. Their experience taught them that
IT groups such as ours would promise “big changes”
with these new approaches to projects, but in reality
would produce little in tangible results. To overcome
their reluctance to our approach, the IT management
team took an educated gamble – we offered a
guarantee. If, after two months of our four month
project, the customer was not happy with our progress,
we would recommend to the Steering Committee that

Implementing Agile Development - More than Changing Methodology

Chuck Fredrick, Douglas County Government, CO

751

the project be cancelled. While we knew this would
increase the pressure on our project team for results,
this tactic helped us gain approval from the Steering
Committee. And after receiving a round of applause
from our customer at the month two demo, it was clear
that we had begun to win some trust in our approach.

C. Staffing
Determining who would work on the project turned out
to be as important as any process or technology
decision we made. We estimated that the size of the
project would require two developers for design and
coding, a QA analyst for testing, and a Scrum Master,
who managed the project. The team members were
hand-picked not just because they were technically
astute, but also because we believed they could absorb
change quickly, be comfortable working under some
ambiguous circumstances, and had some flexibility to
work extra hours, if needed, to recover from mistakes
along the way. Perhaps the most important decision
was staffing the project’s Scrum Master. We chose the
Software Engineering Lead for this role, rather than a
traditional project manager, as he had previous agile
experience and could adapt the process on the fly, was
well suited to provide technical guidance, and could
relate to the developer’s concerns, who were
implementing new processes and technologies under
the gun of the project schedule

D. Team Dynamics
One of our best decisions was to co-locate the team for
the duration of the project. We temporarily moved the
developers and QA analyst into a workroom. While
seemingly a small detail, the project team is united in
its belief that the resulting increase in communication
directly reduced the schedule. Before the project, we
expected that the bigger change would be that the
Scrum process allowed us to “build a little, test a little,”
and give us a big schedule lift from our waterfall-based
project methodology. Although hard to quantify, we
are now certain that co-location was as big a key to
success, especially on our first agile project where the
constant communication cut down on confusion and
wasted time.

E. Estimation
Two techniques new to us were particularly useful to
estimate the project. The first was the creation an
HTML mockup of the core application screens,
developed by the team that investigated the project
scope. The mockup confirmed high-level functionality
and was a useful analogy for the Scrum team to use for

the database schema and UI designs. The second
technique was using story points and nonlinear
estimation techniques, like those elaborated by Mike
Cohn in his book Agile Estimating and Planning
(Prentice Hall, 2005). An estimation scale where the
gaps between values doubled each time (1, 2, 4, 8, 16
hours, etc.) proved valuable, and gave a realistic level
of “accuracy” for complex or ill-defined story points.

F. Design Simplicity
No matter the methodology used, there are upper limits
to a developer’s productivity. Studies have shown that
for Java/J2EE development, a very productive
developer can hand-code about 2,000 source lines of
code (SLOC) per month1. A core strategy for this
effort was to drive out unneeded complexity from the
software architecture, and reduce the amount of hand-
generated code. For example, we excluded the use of
Enterprise Java Beans (EJB’s) – a typical practice for
other J2EE apps developed at the County, as the cost in
developer time outweighed the benefits of such a heavy
approach. In addition, we used Hibernate for the
persistence layer of the architecture. Hibernate is an
open source java-based tool that maps database
relationships to an object-oriented domain model, and
can significantly reduce development time otherwise
spent with manual data handling in SQL. Previous
project strategies required our developers to hand-code
this tedious layer of the software architecture. The
Scrum Master also chose to implement Google Map
APIs for the application’s mapping functionality. This
required less code than using the county’s traditional
mapping solutions, and further reduced the overall
application SLOC count. The final application was
completed with approximately 25,000 SLOC, with over
8,000 SLOC generated through Hibernate. Given the
two-developer, four month project, it is clear that the
project would have extended by months without these
choices being made.

G. Project Management
Tracking progress on an agile project would not have
been possible using the county’s traditional earned
value management and waterfall-based work
breakdown structures. The Scrum Master reported
progress in the IT PMO’s weekly project status
meeting using a visual graph of the team’s burn-down
chart and progress towards that sprint’s story points
(see Figure 3). The approach simplified the data that

1 David Consulting Group, Comparative Sizing and
Measurement is Critical to the Improvement of Software
Application Development and Maintenance, 2006 [copyright date],
February 2, 2007: <
http://www.davidconsultinggroup.com/pdfs/DCG%20Industry%20D
ata%20White%20Paper%2006%20PDF.pdf >

752

needed to be maintained to accurately gauge the
project’s progress, while being as (or perhaps more)
informative, than the traditional project management
measurements.

Fig 3: A simple backlog and Burndown chart was
maintained in MS Excel, and summarized in one
MS PowerPoint slide to communicate the project’s
weekly status.

III. RETROSPECTIVE

A. Organizational Change
We underestimated the anxiety that this move to Agile
would produce within the IT organization. We
communicated that the management team was driving
this first attempt at agile development as a pilot only,
and created and presented a “Scrum 101” presentation
to share the approach. But staff members read between
the lines of our communications and were apprehensive
on the implications of agile development. Business
Analysts were concerned that the closer relationship in
an Agile project between developers and the customer
would eliminate a need for their positions. Project
Managers were concerned that they would need to be
technical experts, as was our pilot’s Scrum Master. IT
Operations was concerned that creating constant builds
would introduce configuration management issues. We
could have spent more time one-on-one with each of
these groups to better manage these concerns.

B. Personal Change
The move to Agile required more personal change for
the project team members than we anticipated.
Developing software in a more cyclic, feature-driven,
less structured approach was a huge paradigm shift.
Moving away from the comfortable patterns with which
the team was most familiar, towards new approaches –
even if we thought they were better – was initially

viewed by them as risk, not opportunity. In hindsight,
we could have prepared more to overcome their initial
resistance to these changes.

IV. CONCLUSION

Our first attempt at an Agile project was driven top-
down by management, and sold to our IT Steering
Committee and project team members. By all
measures, it met or exceeded our expectations. Our
path to faster delivery was not a revolutionary move to
a new methodology, but rather an evolution of many of
our software development processes. Each change we
made chipped away at the schedule, and fit together to
cut the overall project timeline in half. Our advice to
those driving change from the top: spend time
evaluating all aspects of your project management and
development practices for efficiencies, but do not
underestimate the effect of those many changes on the
project team members. The extra effort is sure to result
in improving your project teams’ speed and quality.

APPENDIX – ABOUT THE APPLICATION

The Douglas County Government IT Department
developed an application to (1) automate law
enforcement processes to manage the county’s
convicted sex offender registry, and (2) publish the
registry to the public. The application provides
powerful management and search tools to all of the
police jurisdictions within the county to sex offenders’
files, and transfers them between jurisdictions (see
Figure 2). County citizens can also view the most
accurate sex offender registry available (see Figure 3),
and sign up to receive email notifications if new
convicted offenders move within a designated radius of
their home, children’s schools, or other places of
interest. The public portion of the application is
viewable at:
http://www.douglas.co.us/apps/soso/initPublicIndex.do

753

Fig 2 – Law Enforcement Agencies have a tool to
unify the management of convicted sex offenders
between jurisdictions. The search capabilities
provide investigators with multiple ways to search
for suspects among previously convicted sex
offenders.

Fig 3 – Citizens can search for previously
convicted sex offenders within a designated radius
of any address in the county

754

Knowledge Modeling with UML

Anthony J. Rhem, Ph.D., CKM

A.J. Rhem & Associates, Inc.
500 North Michigan Ave., Suite 300, Chicago, Illinois 60611

Email: tonyr@ajrhem.com

Abstract:

Knowledge Modeling is the visualization of
knowledge patterns. These patterns are
discovered through knowledge acquisition.
During the knowledge acquisition process
the knowledge engineer works with the
domain expert(s) to uncover and document
the results of their meetings. To elicit
feedback from the domain experts the
knowledge engineer will develop certain
knowledge models to visualize what has
been learned from the domain expert(s).

Knowledge acquisition is one of the most
difficult and error-prone tasks that a
knowledge engineer does while performing
knowledge modeling for the purpose of
developing knowledge management
systems. The cost and performance of the
application depends directly on the quality
of the knowledge acquired. An approach in
which to capture knowledge more precisely
is to use a standard notation for modeling
knowledge, along with a standardized
process or framework.

This presentation will demonstrate the use
of applying the Unified Modeling Language
(UML) as a standard notation and the Rhem-
KAF (Knowledge Acquisition Framework)
as a standard process to capture and build
knowledge models. This presentation on
knowledge modeling will focus on three (3)
major representations of knowledge. These
representations include Ladders, Network
Diagrams, and Decision Trees. This
presentation will examine the knowledge

modeling and UML concepts and applying
those concepts to build knowledge models
with UML. A demonstration of the Rhem-
KAF software will be incorporated within
the presentation.

Attendee will learn the following:

- Types of Knowledge
- Methods for Knowledge Acquisition
- Constructing Knowledge Models
- Constructing Knowledge Models

with UML
- Applying Knowledge Modeling –

Sample Problem
- Validating Your Knowledge Models

Audience Expected Knowledge Level:

- In this seminar it is expected that the
attendees be familiar with the
Unified Modeling Language (UML).

- Interest in Knowledge Management
Systems

- Interest and/or experience in
building a Knowledge Based
(Expert) Systems

- Interest and/or experience in
Knowledge Engineering

Audience's Orientation:
- In this seminar it is expected that the

attendees be performing in one or
more of the following roles:
Knowledge Engineer, System
Analyst, or Business Analyst.

755

Sample Presentation Outline:

Knowledge Modeling ...
Concepts...
Instances...
Processes (Tasks, Activities) ...
Attributes and Values...
Rules ..

Knowledge Modeling with UML ..
UML Applied to Knowledge Models ...

Knowledge Use Case Model...
Knowledge Use Case Specification..
Knowledge Production Use Cases ..

Information Acquisition...
Knowledge Claim Formulation..
Knowledge Claim Validation ..

Knowledge Integration Use Cases ..
Searching/Retrieving Stored Data, Information, or Knowledge................
Broadcasting ..
Sharing ...
Teaching...

Knowledge Management Use Cases...
Leadership..
Building External Relationships ..
KM Knowledge Production ...
KM Knowledge Integration ...
Crisis Handling ..
Changing Knowledge-processing Rules ..
Allocating Resources ...

UML to Create Knowledge Models..
Concept Ladder...

Composition Ladder...
Decision Ladder ...
Attribute Ladder...
Process Ladder ...
Network Diagrams ...

Concept Map...
Process Map..
State Transition Network ..
Decision Trees……………………………………………………………………

756

Speaker Bio:

Anthony J. Rhem is an Information Systems
professional with over twenty-four (24)
years of experience focused on
implementation of major application
systems. Specifically Anthony has been
involved as a practitioner in A.I. (Artificial
Intelligence)/Knowledge Based Systems and
Knowledge Modeling since 1989. He has
substantial experience performing
Knowledge Acquisition and Knowledge
Modeling. Some of his work in this area
includes:

- Knowledge Based help desk
application for customer inquiries on
products.

- Knowledge Based System to aid
computer operations in correcting
system errors.

- Knowledge Based System to assist
marketing in the advertising of
product lines.

- Knowledge Based System to assist
the underwriters in making a
decision on mortgage loans.

- Knowledge Based System to assist in
Tariff Pricing for shipments.

- Developing and executing
comprehensive Knowledge Transfer
Plans

- Developing and executing
comprehensive Knowledge
Management Strategies

Anthony is also an author and educator,
presenting the application and theory of
Artificial Intelligence, Knowledge
Management, Business Process Re-
engineering, Knowledge Acquisition,
Requirements Analysis, Unified Modeling
Language (UML) and Rational Unified

Process (RUP). His seminars have been
conducted in the United States, Europe and
Korea and he continues his work in this area
today.

Anthony’s educational background includes
a Ph.D. (honoris causa) from Calamus
International University (2004) and a Ph.D.
in Knowledge Management from Walden
University (expected 2008), Masters of
Science Degree in Information Systems with
a concentration in Artificial Intelligence
from DePaul University (1989), Bachelors
of Science Degree in Management with a
concentration in Marketing and Computer
Science from Purdue University (1982), and
is a Certified Knowledge Manager (CKM –
Knowledge Management Institute).

Anthony is currently the Senior Partner-
Chief scientist for A. J. Rhem & Associates
Inc., IT System Integration and Training
firm focusing on Knowledge Management,
Business Rules Implementation and
Software Methodologies. Anthony
participates on the Industry Advisory Board
– International Conference on Software
Engineering and Knowledge Engineering
(SEKE), Advisory Council - Boardroom
Bound – Chicago Chapter, Entrepreneur
Advisor Board Chairman, BDPA Thought
Leaders. He is a member of The Technology
Council of Advisors for the Gerson Lehman
Group, member of the Advisory Board for
American University Professional Science
Master’s Degree Program, Member of the
National Science Foundation SBIR (Small
Business Innovative Research) Review
Panel and member of the Board of Directors
and CIO of The RHEM Foundation.

757

Reviewers’ Index

A
Silvia Teresita Acuna
Juan Carlos Augusto

B
Doo-Hwan Bae

Maria Teresa Baldassarre
Luciano Baresi
Sami Beydeda

Alessandro Bianchi

C
Danilo Caivano
Gerardo Canfora

Joao W. Cangussu
Christine W. Chan

W.K. Chan
Ned Chapin

Shu-Ching Chen
Panos Constantopoulos

Kendra Cooper

D
Jing Dong

Jin Song Dong
Schahram Dustdar

F
Behrouz Homayoun Far

G
Kehan Gao

Carlo Ghezzi
Holger Giese

Des Greer
Eric Gregoire

Paul Grunbacher

H
Xudong He

Rattikorn Hewett
Mei Hsing

K
Gabor Karsai
Axel Kupper

L
Tao Li

Claudia Linnhoff-Popien
Frank Lin

Xiaodong Liu
Yi Liu
Jian Lu

Zhongyu (Joan) Lu

M.
Antonio Mana

Hong Mei
Ali Mili

Rym Mili
Ana M. Moreno

N
Elisabetta Di Nitto

O
Mehmet Orgun

P
Massimiliano Di Penta

758

R
Marek Reformat
Robert Reynolds
George Roussos
Guenther Ruhe

S
Masoud Sadjadi

Remzi Seker
Naeem Seliya
Yidong Shen
Michael Shin

Nenad Stankovic
Kurt Stirewalt

T
Genny Tortora

V
Michael VanHilst

Sira Vegas

W
Qianxiang Wang

Yingxu Wang
Victor Winter
Guido Wirtz
Eric Wong

Y
Hongji Yang

Z
Cui Zhang

Zhi-Hua Zhou
Hong Zhu

Xingquan Zhu
Eugenio Zimeo
Andrea Zisman

759

Authors’ Index

A
Andreas Abecker, 349

Mohammad Abu-Matar, 628
Silvia T. Acuna, 292

Mohsen Afsharchi, 654
Rashid Ahmad, 261

G.B. Akkus, 698
Sazzadul Alam, 500

Antonio Juarez Alencar, 151, 386
Jose Nelson C. Allemand, 724

Hyggo Almeida, 326
Thomas A. Alspaugh, 185

Jim Alves-Foss, 105
Ana Maria Ambrosio, 51

Mehdi Amoui, 380
Estella Annoni, 191

Joao Araujo, 81
Renata Mendes de Araujo, 337

Tom Arbuckle, 740
Gonzalo Argote-Garcia, 45

Marta Arias, 167
L. Atencio, 456

Colin Atkinson, 404
Danilo Avola, 670

Farooque Azam, 261

B
Ana Paula Terra Bacelo, 9

R. M. Badia, 456
Adam Balaban, 740
Luciano Baresi, 692
Flavia Barros, 129

Samik Basu, 33
A. B. Bener, 232, 698

Devesh Bhatt, 179
Marcos R.S. Borges, 337

C
Kai-Yuan Cai, 374

Ilaria Canova Calori, 686
Joao W. Cangussu, 145

Hervaldo Sampaio Carvalho, 616
Christobal T. Cayaba, 203

Kwok Ping Chan, 163
Ching-Ming Chao, 586

Kai Chen, 39
Mei-Hwa Chen, 117

T.Y. Chen, 163
Tsong Yueh Chen, 141

Yip Cheong, 111
William C. Chu, 541
Lawrence Chung, 535

Darren Cofer, 179
Anne Colendich, 111

Alessio Colzi, 637
Irina Coman, 15

Nelly Condori-Fernandez, 736
Kendra Cooper, 145

Robson Leonardo Ferreira Cordeiro, 416
Mateus B. Costa, 523

Ricardo Costa, 51
Stefania Costantini, 660

Bernard Coulette, 57
Steven E. Cox, 274

Erik R. da Cruz, 649
Gilberto Cysneiros, 552

D
Zhenyu Dai, 117

Qingxu Deng, 320
Ma. del Pilar Galvez Diaz, 87

Yong-Sheng Ding, 570
Dulce Domingos, 215
Bich Thuy Dong, 57
Jin Song Dong, 343
Jing Dong, 374, 473
Zhijiang Dong, 45

Dirk Draheim, 402, 749

760

Rachida Dssouli, 238
Weichang Du, 622

Philippe Dugerdil, 500
Chris Dunn, 251

E
Nina Edelweiss, 416, 680

J. Ejarque, 456
 Abdel-Halim Hafez Elamy, 654

Suzanne M. Embury, 467
Maria Claudia F. P. Emer, 123

Faezeh Ensan, 622

F
Priscila Basto Fagundes, 25

Behrouz Far, 654
Diego de Vargas Feijo, 592

Yankui Feng, 71
Fabiano Ferrari, 157

Armando Leite Ferreira, 151, 386
Fernando Ferri, 664, 670

Lance Fiondella, 643
Beatriz Fiorito, 87
Todd Fitch, 111

Andres Folleco, 487
Nahur Fonseca, 523

Lisandra M. Fontoura, 63
Chuck Fredrick, 751

Yujian Fu, 45
Claudio Naoto Fuzitaki, 592

G
Renata de Matos Galante, 416, 592, 680

Jerry Gao, 111
Adelina Garcia, 87

Raul Garcia-Castro, 410
Ann Q. Gates, 422

Olivier Gendreau, 392
Rosario Girardi, 559

Ankit Goel, 244

Aniruddha S. Gokhale, 730
Swapna S. Gokhale, 643, 718, 730

Marta Gomez, 292
Asuncion Gomez-Perez, 280, 410

Ramiro Goncalves, 29
Patrizia Grifoni, 664, 670

Andreas Grunert, 546
Zonghua Gu, 320

Pedro Guerreiro, 81
Ignacio Garcia-Rodriguez de Guzman, 529

H
Hakim Hacid, 432

Hans-Jorg Happel, 506
Carmem Hara, 438

Xudong He, 45
Marcelo Hecht, 81

Carlos Alberto Heuser, 592
Rattikorn Hewett, 93, 450, 513

Helge Hofmeister, 227
Nora Houari, 654

Chien-Pin Hsu, 111
Shuo-Yan Hsu, 541
Gang Huang, 462

Kuan-Hsian Huang, 610
Shihong Huang, 67

Jason Van Hulse, 487
Oliver Hummel, 404

I
Marcelo Perez Ibarra, 87

E.S. Ilhan, 698
Magda G. Ilieva, 361

Magnus Ingmarsson, 704

J
Werner Janjic, 404
Stan Jarzabek, 308
Wenpin Jiao, 296
Mario Jino, 123

761

Roger Johnson, 197

K
Sven Kaffille, 546
Gail Kaiser, 167

Nitin Kanaskar, 710
Chul-goo Kang, 676
Steven Kearney, 209

Jon Kerridge, 71
Taghi M. Khoshgoftaar, 487
Phongphun Kijsanayothin, 93

Beomjin Kim, 251
Ho-yeon Kim, 676

Tereza G. Kirner, 649
Theodorich Kopetzky, 749

Y. Kosker, 232
Vladik Kreinovich, 422
Roman Krenicky, 467
Ratnesh Kumar, 179

F.-C. Kuo, 135
Fei-Ching Kuo, 141

L
Ling Lan, 462

Anders Larsson, 704
Cecilia Maria Lasserre, 87

Mark Lawford, 740
Daniel Leitao, 129
Adriana Leite, 559

Ge Li, 428
Zhang Li, 261

Hui Liang, 77, 343
Hector Liberatori, 87

Nathalie Rose T. Lim, 203
Yuqing Lin, 221

Alan Liu, 610
Huai Liu, 141

Xiaodong Liu, 71
Christopher Lo, 67

Jian Lu, 2
Jijun Lu, 718

M
Xiaoxing Ma, 2

Thiago Leao Machado, 25
Natanael E. N. Maia, 9

Jose Carlos Maldonado, 157
J. Martinez, 456

Ricardo Martinho, 215
Tommaso Martini, 637

Fatima Mattiello-Francisco, 51
Andrea Maurino, 692

Jose-Norberto Mazon, 477
Adriana Pereira de Medeiros, 332

Hong Mei, 296, 462
Alba C. M. Melo, 724

Sandra Mendez, 87
Alta van der Merwe, 93

Takao Miura, 574
Rabeb Mizouni, 238

Stefano Modafferi, 692
Aicha Mokhtari, 598
Marco Monteiro, 29
A lvaro Moreira, 592

Ana Moreira, 81
Raimund Moser, 519

Leonardo Mostarda, 660
Christian Murphy, 167

Martin A. Musicante, 444
Stefano Mussino, 286

N
Elisa Yumi Nakagawa, 157
Eduardo F. Nakamura, 523

Y. Narahari, 355
Gleb Naumovich, 302

Paolo Nesi, 637

O
Jeff Offutt, 628

Ebenezer A. Oladimeji, 535
Adriana Cristina de Oliveira, 337

Paula Oliveira, 29
Nilda Perez Otero, 87

762

Jinsong Ouyang, 274

P
Jian Pan, 2

Fernando Paniagua, 314
Stefano Paolozzi, 664

Oscar Pastor, 736
Vikram Patankar, 450

Rinkesh Patel, 244
Cesare Pautasso, 255
Witold Pedrycz, 519

Ding Peng, 308
Angelo Perkusich, 326
Dennis K. Peters, 740

Mario Piattini, 477, 529, 565
Marcelo S. Pimenta, 81
Eduardo K. Piveta, 81

Macario Polo, 529
Javier Portillo-Rodriguez, 565

James F. Power, 209
Aurora T. R. Pozo, 444

Roberto T. Price, 63
R. Tom Price, 81

Q
Yu Qi, 374

Viviana E. Quincoces, 87

R
Claudia Raibulet, 286

Damith C. Rajapakse, 308
Celia Ghedini Ralha, 616, 724

S. Ramaswamy, 710
Jaime Ramirez, 280

F. Rava, 483
Franck Ravat, 191

Rodolfo F. Resende, 523
A. J. Rhem, 755

Debra J. Richardson, 185
Luis Anido Rifon, 632

Pierre N. Robillard, 392
Joseph Astrophel E. Rodil, 203

Andre Rodrigues, 326
Gelson Guedes Rodrigues, 151

Davide Rogai, 637
Rafael Romero, 477
George Roussos, 197

J. Nelson Rushton, 396

S
Li Sa, 570

Luis Alvarez Sabucedo, 632
Deise de Brum Saccol, 680
S. Masoud Sadjadi, 19, 456

Aziz Salah, 238
Salamah Salamah, 422
Mazeiar Salehie, 380

Valdivino Santiago, 51
Clesio Saraiva dos Santos, 416
Eluzai Souza dos Santos, 616

Rodrigo Cordeirodos Santos, 438
Ahmad El Sayed, 432
Stephen R. Schach, 39
Kirk Schloegel, 179

Eber Assis Schmitz, 151, 386
Nelly Schuster, 255

Daniel Schwabe, 332
Stefan Seedorf, 506

Marcelo V. Segatto, 523
Chris Seiffert, 487
Remzi Seker, 710

Manuel Serrano, 477
Dimitrios Settas, 604
Weizhong Shao, 428

Aiwu Shi, 302
Leyuan Shi, 45

Michael E. Shin, 314
Alberto Sillitti, 15

Julio C. T. da Silva, 444
Wendell Pereira da Silva, 51

K.-Y. Sim, 135
Adenilso da Silva Simao, 157

T. Soldo, 456

763

Ohm Sornil, 368
Juan Pablo Soto, 565
Ioannis Stamelos, 604
Karthik Subbian, 355
Giancarlo Succi, 519

Bo Sun, 704
Chang-ai Sun, 135
Jing Sun, 77, 343

Xi Sun, 296
Rajshekhar Sunderraman, 580

Sam Supakkul, 535
York Sure, 410

T
Luca Vetti Tagliati, 197
Ladan Tahvildari, 380

S.-F. Tang, 135
Pornpimon Teekayuphun, 368

O. Teste, 483
Olivier Teste, 191

Aashay Thipse, 513
Sujana Tirumalasetti, 111

Arianna Tocchio, 660
Dante Torres, 129
R. Tournier, 483

Dwayne Towell, 396
Dave Towey, 163
Hanh Nhi Tran, 57

Fernando Trigoso, 19
Juan Trujillo, 477

Panagiota Tsintza, 660

U
Luigi Ubezio, 286

Joe Urban, 1

V
Paul J. Vandal, 730

Joao Varajao, 215
Aline Pires Vieira de Vasconcelos, 494

Flavian Vasile, 33
Silvia R. Vergilio, 444

Silvia Regina Vergilio, 123
Patricia Vilain, 25, 173

Boris Villazon-Terrazas, 280
Roberto De Virgilio, 268

Navin Viswanath, 580
Aurora Vizcaino, 565

W
Rand Waltzman, 185
Huaqiang Wei, 105

Claudia M. Werner, 9
Claudia Maria Lima Werner, 494

David Willmor, 467
Kristina Winbladh, 185
Guido Wirtz, 227, 546

Renata Chaomey Wo, 386
Eric Wong, 99, 145, 374

X
Bing Xie, 428

Dianxiang Xu, 99
Haiping Xu, 244
Weifeng Xu, 99

Y
Kyosuke Yasuda, 574

Huilin Ye, 221
Liguo Yu, 39

Ping Yu, 2

Z
Valentin Zacharias, 349

764

Hichem Zait, 598
Alexandre Lazaretti Zanatta, 173

Carlo Zaniolo, 680
Du Zhang, 105, 274
Hongyu Zhang, 308

Lu Zhang, 428
Nuyun Zhang, 462

Lei Zhao, 374
Yajing Zhao, 473

Changyan Zhou, 179
Li Zhou, 296
Yu Zhou, 2

Zhi Quan Zhou, 135
Lei Zhuang, 296
Sven Ziemer, 686

Djamel Zighed, 432
Olaf Zimmermann, 255

Andrea Zisman, 552
G. Zurfluh, 483

765

SEKE 2008 Call For Papers
The Twentieth International Conference on Software Engineering and Knowledge Engineering

Hotel Sofitel, San Francisco Bay, USA

July 1 - July 3, 2008
Organized by

Knowledge Systems Institute Graduate School

The Twentieth International Conference on Software Engineering and
Knowledge Engineering (SEKE'08) will be held at Hotel Sofitel, Redwood
City, California, USA, July 1-3, 2008.

The conference aims at bringing together experts in software engineering and
knowledge engineering to discuss on relevant results in either software
engineering or knowledge engineering or both. Special emphasis will be put
on the transference of methods between both domains.

TOPICS
Solicited topics include, but are not limited to:
Agent architectures, ontologies, languages and protocols
Agent-based learning and knowledge discovery
Agent-based software engineering
Autonomic computing
Agent-based auctions and marketplaces
Adaptive Systems
Artificial Intelligence Approaches to Software Engineering
Artificial life and societies
Automated Reasoning
Automated Software Design and Synthesis
Automated Software Specification
Component-Based Software Engineering
Computer-Supported Cooperative Work
Data cleansing and noise reduction
Data streams and incremental mining
Data visualization
E-Commerce Solutions and Applications
Embedded and Ubiquitous Software Engineering
Electronic Commerce
Enterprise Software, Middleware, and Tools
Formal Methods
Human-Computer Interaction
Industry System Experience and Report
Integrity, Security, and Fault Tolerance
Interface agents
Knowledge Acquisition
Knowledge-Based and Expert Systems
Knowledge Representation and Retrieval
Knowledge Engineering Tools and Techniques
Knowledge Visualization
Learning Software Organization
Measurement and Empirical Software Engineering
Middleware for service based systems
Mobile agents
Mobile Commerce Technology and Application Systems
Mobile Systems
Multi-agent systems
Multimedia Applications, Frameworks, and Systems
Multimedia and Hypermedia Software Engineering
Ontologies and Methodologies
Patterns and Frameworks
Pervasive Computing
Process and Workflow Management
Programming Languages and Software Engineering
Program Understanding
Quality of services
Reflection and Metadata Approaches
Reliability
Requirements Engineering
Reverse Engineering
Runtime service management
Secure mobile and multi-agent systems
Semantic web
Service-centric software engineering
Service oriented requirements engineering
Service oriented architectures

Service discovery and composition
Service level agreements (drafting, negotiation, monitoring and management)
Smart Spaces
Soft Computing
Software Architecture
Software Assurance
Software Domain Modeling and Meta-Modeling
Software dependability
Software economics
Software Engineering Case Study and Experience Reports
Software Engineering Decision Support
Software Engineering Tools and Environments
Software Maintenance and Evolution
Software Process Modeling
Software product lines
Software Quality
Software Reuse
Software Safety
Software Security
Swarm intelligence
System Applications and Experience
Time and Knowledge Management Tools
Tutoring, Documentation Systems
Uncertainty Knowledge Management
Validation and Verification
Web and text mining
Web-Based Tools, Applications and Environment
Web-Based Knowledge Management
Web-Based Tools, Systems, and Environments
Web and Data Mining

CONFERENCE SITE (HOTEL INFORMATION)
The SEKE2008 Conference will be held at the Hotel Sofitel, Red Wood City,
and San Francisco Bay, USA. The hotel has made available for these limited
dates (7/1/2007 - 7/3/2007) to SEKE2008 attendees a discount rate of $89 US
dollars for single/double, not including sales tax.

INFORMATION FOR AUTHORS
Papers must be written in English. An electronic version (Postscript, PDF, or
MS Word format) of the full paper should be submitted using the following
URL: http://conf.ksi.edu/seke08/submit/SubmitPaper.php. Please use Internet
Explorer as the browser. Manuscript must include a 200-word abstract and no
more than 6 pages of IEEE double column text (include figures and
references). Workshop papers should be submitted to the workshops directly.

INFORMATION FOR REVIEWERS
Papers submitted to SEKE'08 will be reviewed electronically. The users
(webmaster, program chair, reviewers...) can login using the following URL:
http://conf.ksi.edu/seke08/review/pass.php.

If you have any questions or run into problems, please send e-mail to:
seke@ksi.edu.

SEKE'2008 Conference Secretariat
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076 USA
Tel: 847-679-3135
Fax: 847-679-3166
E-mail: seke@ksi.edu

IMPORTANT DATES
March 1, 2008 Paper submission due
April 1, 2008 Notification of acceptance
May 1, 2008 Camera-Ready Copy

