
Sponsored by
Knowledge Systems Institute
iCORE
University of Calgary

SEKE
20

04
Alberta, Canada
June 20 to June 24, 2004

Proceedings of the
Sixteenth International
Conference on Software
Engineering & Knowledge
Engineering

PROCEEDINGS

SEKE 2004

The 16th International Conference on
Software Engineering &
Knowledge Engineering

Sponsored by

Knowledge Systems Institute Graduate School, USA

Co-Sponsored by

Informatics Circle of Research Excellence, Canada
University of Calgary, Canada

Technical Program
June 20-24, 2004

Banff Alberta, Canada

Organized by

Knowledge Systems Institute Graduate School

Copyright © 2004 by Knowledge Systems Institute Graduate School

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of the publisher.

ISBN 1-891706-14-4 (paper)

Additional Copies can be ordered from:
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076, USA
Tel:+1-847-679-3135
Fax:+1-847-679-3166
Email:office@ksi.edu
http://www.ksi.edu

Printed in the United States of America

ii

The 16th International Conference on
Software Engineering & Knowledge Engineering

(SEKE'2004)

June 20-24, 2004
Banff, Alberta, Canada

Organizers & Committee

General Chair

Shi-Kuo Chang, Univ. of Pittsburgh, USA

Program Co-Chairs

Frank Mauer, Associate Head, Department of Computer Science, Univ. of Calgary, Canada
Guenther Ruhe, Industrial Research Chair in Software Engineering, Univ. of Calgary, Canada

Publicity Chair

Jens H. Jahnke, Univ. of Victoria, Canada

Program Committee

Silvia Teresita Acuna, Univ. Autónoma de Madrid, Spain
Anneliese K. Amschler Andrews, Washington State Univ., US

Juan Carlos Augusto, Univ. of Ulster,UK
Aybuke Aurum, Univ. of New South Wales, Australia

Frank Bomarius, Fraunhofer IESE, Germany
Paolo Ciancarini, Univ. of Bologna, Italy

William Chu, Tunghai Univ., Taiwan
John Debenham, Univ. of Technology, Australia

Andrea De Lucia, Univ. of Salerno, Italy
Yi Deng, Florida International Univ., US

Schahram Dustdar, Vienna Univ. of Technology, Austria
Haka Erdogmus, National Research Council Canada, Canada

Filomena Ferrucci, Univ. of Salerno, Italy
Alfonso Fuggetta, Politechnico di Milano Technical Univ.y, Italy

Carlo Ghezzi, Politechnico di Milano Technical Univ., Italy

Athula Ginige, Univ. of Western Sydney, Australia
Christiane Gresse von Wangenheim, Universidade do Vale do Itajaí, Brazil

Volker Gruhn, Univ. of Leipzig, Gemany
John Grundy, Univ. of Auckland, New Zealand
Mao Lin Huang, Univ. of Technology, Australia

Hajimu Iida, Nara Institute of Science and Technology, Japan
Letizia Jaccheri, Norwegian Univ. of Science and Technology, Norway

Natalia Juristo, Technical Univ. of Madrid, Spain
Huimin Lin, Chinese Academy of Sciences, China
Mikael Lindvall, Fraunhofer Center Maryland, US

Jiming Liu, Hong Kong Baptists Univ., China
Luqi, Naval Postgraduate School, US

Sandro Morasca, Univ. degli Studi dell'Insubria, Italy
Jurgen Munch, Fraunhofer IESE, Germany

Lakshmi Narasimhan, Univ. of Newcastle, Australia
Paolo Nesi, Univ. of Florence, Italy

Mehmet Orgun, Macquariez Univ., Australia
Michael Richter, Universitat Kaiserslautern, Germany

Ioana Rus, Fraunhofer IESE, US
Walt Scacchi, Univ. of California Irvine, US
Phillip Sheu, Univ. of California Irvine, US

Eleni Stroulia, Univ. of Alberta, Canada
Scott Tilley, Florida Institute of Technology, US

Genny Tortora, Univ. of Salerno, Italy
Jeffrey Tsai, Univ. of California Irvine, US

Sira Vegas, Universidad Politécnica de Madrid, Spain
Giuseppe Visaggio, Univ. of Bari, Italy
Giuliana Vitiello, Univ. of Salerno, Italy
Yingxu Wang, Univ. of Calgary, Canada

Stefan Wermter, Univ. of Sunderland, UK
Xindong Wu, Univ. of Vermont, US
Yiyu Yao, Univ. of Regina, Canada
Kang Zhang, Univ. of Texas, US

Proceedings Cover Designer

Gabriel Smith, Knowledge Systems Institute Graduate School, USA

Conference Secretariat

Judy Pan, Chair, Knowledge Systems Institute Graduate School, USA
Tony Gong, Knowledge Systems Institute Graduate School, USA

C. C. Huang, Knowledge Systems Institute Graduate School, USA
Beverly Huggins, Knowledge Systems Institute Graduate School, USA

Rex Lee, Knowledge Systems Institute Graduate School, USA
Daniel Li, Knowledge Systems Institute Graduate School, USA

http://www.eecs.wsu.edu/~aandrews
http://sistm.web.unsw.edu.au/people/aybuke
http://www.iese.fhg.de/Staff/bomarius/
http://seke.cpsc.ucalgary.ca/seke2004/www.cs.unibo.it/~cianca
http://www-staff.it.uts.edu.au/~debenham/
http://www.dmi.unisa.it/people/delucia/www
http://www.cs.fiu.edu/
http://www.infosys.tuwien.ac.at/Staff/sd/
http://iit-iti.nrc-cnrc.gc.ca/
http://www.dmi.unisa.it/people/ferrucci
http://www.sj.univali.br/~gresse
http://ebus.informatik.uni-leipzig.de/
http://www.cs.auckland.ac.nz/~john-g
http://it.uts.edu.au/about/contact?id=maolin
http://itcw3.aist-nara.ac.jp/~iida
http://www.idi.ntnu.no/~letizia
http://fc-md.umd.edu/fcmd/apps/PeopleRecord.asp?ID=25
http://www.cs.nps.navy.mil/people/faculty/luqi/
http://www.unico.it/morasca
http://www.iese.fhg.de/Staff/muench/
http://www.dsi.unifi.it/~nesi
http://wwwagr.informatik.uni-kl.de/~richter/
http://fc-md.umd.edu/
http://www.ics.uci.edu/~wscacchi
http://www.cs.ualberta.ca/~stroulia
http://www.cs.fit.edu/~stilley
http://www.dmi.unisa.it/people/tortora/www/
http://www.ls.fi.upm.es/udis/miembros/sira/index_e.html
http://serlab2.di.uniba.it/serlab/GVisaggio.html
http://www.his.sunderland.ac.uk/~cs0stw/
http://www.cs.uvm.edu/~xwu
http://www.utdallas.edu/~kzhang

International Workshop on
Knowledge Oriented Maintenance

(KOM’2004)

June 20, 2004
Banff, Alberta, Canada

Organizers

Nicolas Anquetil, Department of Knowledge Management and Information Technology
(MGCTI), Catholic Univ. of Brasília, Brazil
Timothy C. Lethbridge, School of Information Technology and Engineering, Univ. of Ottawa,
Canada

Program Committee

Nicolas Anquetil, Brazil
Giuliano Antoniol, Italy

Françoise Balmas, France
Dirk Deridder, Belgium

Nicolas Gold, United Kingdom
Idris H. His, U.S.A.

Timothy C. Lethbridge, Canada
Andrea de Lucia, Italy
Ettore Merlo, Canada

Rosângela Ap. Dellosso Penteado, Brazil
Eleni Stroulia, Canada

International Workshop on
Ontology In Action

(OIA’2004)

June 21, 2004
Banff, Alberta, Canada

Workshop Co-Chairs

Athula Ginige, School of Computing and Information Technology, Univ. of Western Sydney,
Australia
Káthia Marçal de Oliveira, Catholic Univ. of Brasília, Brasília, DF, Brazil

Program Committee

Bernhard Holtkamp, Fraunhofer Institut Software-und Systemtechnik, Germany
Ricardo de Almeida Falbo, Federal Univ. of Espírito Santo, Brazil
John Domingue, Knowledge Media Institute, The Open Univ., UK

Uma Srinivasan, CSIRO ICT Centre, Australia
Steffen Staab, Univ. of Karlsruhe, Germany
Kerry Taylor, CSIRO ICT Centre, Australia

Giancarlo Guizzardi, Univ. of Twente, The Netherlands
Luigi Ceccaroni, Univ. Politecnica de Catalunya, Spain

Germana Meneses da Nóbrega, Catholic Univ. of Brasília, Brazil
Mike Uschold, The Boeing Company, Seattle, USA

3rd International Workshop on
Software Engineering Decision Support

(SEDECS’2004)

June 22, 2004
Banff, Alberta, Canada

Program Chair

Guenther Ruhe, Industrial Research Chair in Software Engineering, Univ. of Calgary, Canada

Program Committee

Stephan Biffl, Austria
Khaled El-Emam, Canada

Ross Jeffery, Australia
Sandro Morasca, Italy

Dietmar Pfahl, Germany
David Raffo, USA

Iona Rus, USA
Claes Wohlin, Sweden

Foreword

The Sixteenth International Conference on Software Engineering and Knowledge Engineering (SEKE 2004) is held at the
Banff Centre, Banff, Alberta, Canada from June 20 to June 24, 2004. The conference brings together experts in software
engineering and knowledge engineering to discuss relevant results in both disciplines. Special emphasis is put on synergies
between both domains. The conference received nearly 150 technical papers. After a detailed review process, 38% of the
submissions were accepted as long papers and an additional 17% as short presentations. Long papers were accepted based on
their research quality while short papers and workshop submissions usually report on research in progress and new ideas.

The conference presentations cover a wide spectrum of software engineering and knowledge engineering topics including
software processes and process improvement, experience management, quality assurance & testing, requirements
engineering, decision support and fuzzy SE knowledge, web engineering, ontologies and agent technology, design and
patterns, and formal specification. Authors provide new insights and perpectives on future research directions. The papers
included in the conference proceedings speak for themselves.

Several workshops are running in addition to the main conference. The Canadian Agile Network invited to take part in its
Second Canadian Agile Network Workshop. The goal of the workshop is to disseminate ideas, lessons learned and best
practices of adopting agile methods and moving them to the mainstream of software development. This year the main focus is
on agile culture, following organizational change and agile project management.

The Workshop on Knowledge-oriented Maintenance investigates the role of “knowledge” on software maintenance process.
Participants share their experience on the extraction and application of knowledge in software maintenance processes.

The Workshop on Learning Software Organizations (LSO 2004) brings together researchers from industry and academia to
discuss how continuous learning processes can be implemented and supported in software development teams. Its focus is on
practical applications and experience reports.

The Workshop “Ontology in Action” elaborates how shared ontologies can be formalized and used for sharing information
amonst heterogeneous software applications. It focuses on how semantic interoperability can be reached by modeling entities
and their relationships as domain ontologies.

The Workshop on Software Engineering Decision Support is devoted to discuss methodology, tools and experience on
providing support for decision-making in software development and evolution.

We are grateful to all the members of the Program Committee: Silvia Teresita Acuna, Anneliese K. Amschler Andrews, Juan
Carlos Augusto, Aybuke Aurum, Frank Bomarius, Paolo Ciancarini, William Chu, John Debenham, Andrea De Lucia, Yi
Deng, Schahram Dustdar, Haka Erdogmus, Filomena Ferrucci, Alfonso Fuggetta, Carlo Ghezzi, Athula Ginige, Christiane
Gresse von Wangenheim, Volker Gruhn, John Grundy, Mao Lin Huang, Hajimu Iida, Letizia Jaccheri, Natalia Juristo,
Huimin Lin , Mikael Lindvall, Jiming Liu, Luqi, Sandro Morasca, Juergen Muench, Lakshmi Narasimhan, Paolo Nesi,
Mehmet Orgun, Michael Richter, Ioana Rus, Walt Scacchi, Phillip Sheu, Eleni Stroulia, Scott Tilley, Genny Tortora, Jeffrey
Tsai, Sira Vegas, Giuseppe Visaggio, Giuliana Vitiello, Yingxu Wang, Stefan Wermter, Xindong Wu, Yiyu Yao, Kang
Zhang. The program committee did an enormous job to review a large number of submitted papers. Their effort ensured the
final quality of the conference and all the workshops.

In addition to our program committee members, we would like to thank the following reviewers for providing feedback on
submitted papers: Piefrancesco Bellini, Sami Beydeda, Alessandro Bianchi, Kai-Yuan Cai, Zhining Cao, Rosa M. Carro,
Alejandra Cechich, María Dolores Vargas Cerdán, Yurong Chen, Oscar Corcho, Patricia Costa, Feras T. Dabous, Angélica de
Antonio, Vincenzo Deufemia, Oscar Dieste, Paolo Donzelli, Toncan Duong, Pascal Fenkam, Xavier Ferre, Andres Flores,
Rita Francese, Shu Gao, Marisol Giardina, Haitao Gong, Carmine Gravino, Thomas Gschwind, Mariele Hagen, Aaron
Hector, Bayu Hendradjaya, Pilar Herrero, Lorin Hochstein, Siv Hilde Houmb, Hiroshi Igaki, José Antonio Macías Iglesias,
Zhi Jin, Kanta Jiwnani, André Köhler, Jun Kong, Serguei Krivov, Cat Kutay, Guojun Li, Jingzhou Li, Sheldon X. Liang,
Hong-Xin Lin, Pdero Linares, Fabiola Lopez y Lopez, Sergio Di Martino, Nelson Medinlla, Gonzalo Méndez, Abdallah
Mohamed, Ana M. Moreno, Ming Muo, Abhaya Nayak, Josef Nedstam, An Ngo-The, Andrew O'Fallon, Alvaro Ortigosa,
Thomas Østerlie, Luca Paolino, Orest Pilskalns, Martin Pinzger, Giuseppe Polese, Yu Qian, Fethi Rabhi, Jaime Ramírez,
Michele Risi, Omolade Saliu, Marisa Sanchez, Maria-Isabel Sanchez-Segura, Maribel Sanchez-Segura, Giuseppe Scanniello,
Klaus Schmid, Indra Seher, Michele A. Shaw, John Shepherd, Xiaochun Shi, Alejandro Sierra, Almudena Sierra-Alonso,
Janice Singer, Guanglei Song, Lorna Stewart, Weixiang Sun, Magne Syrstad, Cora B. Excelente Toledo, Maximiliano
Paredes Velasco, Qing Wang, Richard Webber, Ying Yang, JingTao Yao, Huilin Ye, InSeon Yoo, Huiqun Yu, Hairong Yu,
Guangcun Zhang, Xu Zhang, Haiyan Zhao, Liming Zhu, Xingquan Zhu

Special thanks to all the sponsors of the conference: The Informatics Circle of Research Excellence (iCORE), the University
of Calgary and the Knowledge Systems Institute Graduate School.

Welcome to SEKE’2004!

Frank Maurer & Guenther Ruhe
SEKE 2004 Program Committee Co-Chairs

Table of Contents

Conference Organization

Foreword

Keynote Papers

Collecting the Dots
Shari Lawrence Pfleeger

Empirically-Based Software Competences: Synergies between Software & Knowledge Engineer-
ing
Dieter Rombach, Technical University of Kaiserslautern & Fraunhofer Institute for Experimental Soft-
ware Engineering

Web Intelligence, World Knowledge and Fuzzy Logic
Lotfi A. Zadeh

Panel Position Paper

SEKE Long Papers

A Methodology for Scenario Development
Giuseppe Della Penna, Benedetto Intrigila, Anna Rita Laurenzi and Sergio Orefice

A Nonparametric Software Reliability Model Based on Kernel Estimator and Optimum Algorithm
Han Fengyan, Qin Zheng and Wang Xin

A Simulation-Based Game for Project Management Experiential Learning
Alexandre Dantas, Márcio Barros and Cláudia Werner

A UML-based Software Engineering Methodology for Agent Factory
Rem Collier, Gregory O’Hare and Colm Rooney

ADAMS: an Artefact-based Process Support System
Andrea De Lucia, Fausto Fasano, Rita Francese and Genoveffa Tortora

Agent Technology Portfolio Manager
K. S. Barber, J. Ahn, N. Gujral, D. N. Lam and T. Graser

AgentService
Antonio Boccalatte, Andrea Gozzi, Alberto Grosso and Christian Vecchiola

An Analytical Framework for Consistency Maintenance Mechanisms in Collaborative Editing Systems
Liyin Xue, Mehmet Orgun and Kang Zhang

An Experience of Fuzzy Linear Regression applied to Effort Estimation
Gerardo Canfora, Luigi Cerulo and Luigi Troiano

○ ○

○ ○

iii

viii

1

2

3

6

7

13

19

25

31

37

45

51

57

○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○

○ ○ ○

○ ○

○ ○

○ ○

An Intensional Tool Applied to French Language Educational Software
Honglian (Elena) Li and William W. Wadge

Analysis of meta-programs: a case study
Stan Jarzabek, Shen Ru, Hongyu Zhang and Sun Zhenxin

Architectural Reflection in Adaptive Systems
Francesca Arcelli, Claudia Raibulet, Francesco Tisato and Marzia Adorni

Automated Assistance for Eliciting User Expectations
Orna Raz, Rebecca Buchheit, Mary Shaw, Philip Koopman and Christos Faloutsos

Automated Support for Knowledge Engineering for A Natural Gas Pipeline Domain
Christine W. Chan

Automatic bug triage using text categorization
Davor Cubrani and Gail C. Murphy

Automatic Mapping of OWL Ontologies into Java
Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle and Julian Padget

Black- and White-Box Self-testing COTS Components
Sami Beydeda and Volker Gruhn

Building on-line sales assistance systems with ADVISOR SUITE
Dietmar Jannach and Gerold Kreutler

Case Study Methodology Designed Research in Software Engineering Methodology Validation
Seok Won Lee and David C. Rine

Data-mining in Support of Detecting Class Co-evolution
Zhenchang Xing and Eleni Stroulia

Defining and Qualifying Components in the Design Phase
Andrew O’Fallon, Orest Pilskalns, Andrew Knight and Anneliese Andrews

Digging into the Visitor Pattern
Fabian B¨uttner, Oliver Radfelder, Arne Lindow and Martin Gogolla

Document Clustering with Adaptive Term Weighting and Feature Reduction Capabilities
T.W. Fox and B.J. Fox

Effort Estimation for Knowledge-based Configuration Systems
A. Felfernig

Enhancing Mediation Security by Aspect-Oriented Approach
Li Yang, Raimund K. Ege and Huiqun Yu

Enhancing the Message Concept of the Object Constraint Language
Stephan Flake

Entering the Heart of Design: Relationships for Tracing Claim Evolution
Shahtab Wahid, C. F. Allgood, C. M. Chewar and D. Scott McCrickard

Future Proofing and Retargeting Application Logic Using O2XML
Marselina Wiharto and Peter Stanski

62

68

74

80

86

92

98

104

110

117

123

129

135

142

148

155

161

167

173

○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

GOLD: A Generalized Parsing System
Devin Cook and Du Zhang

Grammatically Interpreting Feature Compositions
Wei Zhao, Barrett R. Bryant, Fei Cao, Rajeev R. Raje, Mikhail Auguston, Carol C. Burt, and Andrew
M. Olson

Information Integration Architecture Development: A Multi-Agent Approach
Stéphane Faulkner, Manuel Kolp, Tai Nguyen, Adrien Coyette and Tung Do

Level Construction of Decision Trees in a Partition-based Framework for Classi cation
Y.Y. Yao, Y. Zhao and J.T. Yao

Mapping CM3: Upfront Maintenance on CGE&Y’s Process Model
Mira Kajko-Mattsson, Karin Ericsson and Zsofia Szalkai

Mapping UML Diagrams to a Petri Net Notation for System Simulation
Zhaoxia Hu and Sol M. Shatz

Multi-Objective Optimization by CBR GA-Optimizer for Module-Order Modeling
Taghi M. Khoshgoftaar, Yudong Xiao, and Kehan Gao

Noise Elimination with Ensemble-Classifier Filtering: A Case-Study in Software Quality Engineering
Taghi M. Khoshgoftaar and Vedang H. Joshi

On Modelling an e-shop Application on the Knowledge Level: e-ShopAgent Approach
Nenad Stojanovic

Predicting UML Statechart Diagrams Understandability Using Fuzzy Logic-Based Techniques
José A. Cruz-Lemus, Marcela Genero, José A. Olivas, Francisco P. Romero and Mario Piattini

Programming ubiquitous software applications: requirements for distributed user interface
Anders Larsson and Erik Berglund

Requirements Scenarios Based System-Testing
Ridha Khedri and Imen Bourguiba

Reuse of UML Class Diagrams Using Case-Based Composition
Paulo Gomes, Francisco C. Pereira, Paulo Carreiro, Paulo Paiva, Nuno Seco, Jos L. Ferreira and
Carlos Bento

Reusing Knowledge on Software Quality for Developing Measurement Programs
Olga Jaufman, Bernd Freimut and Ioana Rus

Reverse Engineering Software Architecture using Rough Clusters
J. H. Jahnke and Y. Bychkov

Software Architecture Modelling and Performance Analysis with Argo/MTE
Yuhong Cai, John Grundy, John Hosking and Xiaoling Dai

Software Project Risk Evaluation based on Specific and Systemic Risks
Hélio R.Costa, Márcio de O. Barros and Guilherme H. Travassos

Software Traceability via Versioned Hypermedia
Tien N. Nguyen, Ethan V. Munson and Cheng Thao

179

185

192

199

205

213

220

226

232

238

246

252

258

264

270

276

282

288

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

294

300

306

312

318

324

330

336

342

346

350

354

360

366

372

378

384

Specification and Validation of Transactional Business Software: An Approach Based on the Exploration of
Concrete Scenarios
Alexandre Correa and Cláudia Werner

Specification and Verification of Agent Interaction Protocols
Bo Chen and Samira Sadaoui

Supporting the Requirements Prioritization Process. A Machine Learning approach
Paolo Avesani, Cinzia Bazzanella, Anna Perini and Angelo Susi

Team Tacit Knowledge as a Predictor of Performance in Software Development Teams
Sharon Ryan and Rory V O’Connor

Towards Effectively Appraising Online Stores
Ernest Cachia and Mark Micallef

UCDA: Use Case Driven Development Assistant Tool for Class Model Generation
Kalaivani Subramaniam, Dong Liu, Behrouz H. Far and Armin Eberlein

Using A Scenario Specification Language to Add Context to Design Patterns
Reginald L. Hobbs

Visualizing the evolution of software using softChange
Daniel M. German, Abram Hindle and Norman Jordan

SEKE Short Papers

A Framework for Comprehensive Experience-based Decision Support for Software Engineering Technol-
ogy Selection
Andreas Jedlitschka, Dietmar Pfahl and Frank Bomarius

Active Connectors for Component-Object based Software Architecture
Tahar Khammaci, Adel Smeda, and Mourad Oussalah

Analyzing Invariant Condition of Running Java Program
Theodorus Eric Setiadi, Ken Nakayama, Yoshitake Kobayashi, and Mamoru Maekawa

Application Semiotics Engineering Process
Gang Zhao

Applying Aspect-Orientation in Designing Security Systems: A Case Study
Shu Gao, Yi Deng, Huiqun Yu, Xudong He, Konstantin Beznosov and Kendra Cooper

Applying Ontologies in the KDD Pre-Processing Phase
Guillermo Nudelman Hess and Cirano Iochpe

Automated Risk Assessment for Managing Software Projects
B. Ray, T. Klinger, R. Delmonico and P. Santhanam

Clarifying the Relationship between Software Architecture and Usability
Natalia Juristo, Ana M. Moreno and Isabel Sánchez

Commonality and Requirements Analysis for Mesh Generating Software
Spencer Smith and Chien-Hsien Chen

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Contextual Comparison of Discovered Knowledge Patterns
A.G. Büchner, M. Baumgarten, J.G. Hughes and W.D. Patterson

Datawarehouses design: effectivity of the star schema
Coral Calero, Manuel Serrano and Mario Piattini

Distributed Knowledge Based System Using Grid Computing for Real Time Air Traffic Synchronization -
ATFMGC
Weigang Li, Daniel Amaral Cardoso, Marcos Vinícius Pinheiro Dib, Alba Cristina Magalhães and
Alves de Melo

Extracting Minimal Non-Redundant Implication Rules by Using Quantized Closed Itemset Lattice
Yun Li, Zongtian Liu, Wei Cheng, Qiang Wu and Wei Liu

Formal Description Techniques for CSPs and TCSPs
Malek Mouhoub, Samira Sadaoui and Amrudee Sukpan

Handling unanticipated requirements change with aspects
Ana Moreira and João Araújo

Integrating Security Administration into Software Architectures Design
Huiqun Yu, Xudong He, Yi Deng and Lian Mo

Learning to Select Software Components
Valerie Maxville, Chiou Peng Lam and Jocelyn Armarego

Organizational Knowledge: an XML-based Approach to Support Knowledge Management in Distributed
and Heterogeneous Environments
Carmen Maidantchik, Gleison Santos and Mariano Montoni

Sense-and-Respond Grid
Jun-Jang Jeng, Henry Chang, J. Chung, J. Schiefer, L. An and L. Zeng

The KAMET II Architecture for Problem-Solving Method Reuse
Osvaldo Cairó and Julio César Alvarez

Using COSMIC-FFP for Predicting Web Application Development Effort
G. Costagliola, F. Ferrucci, C. Gravino, G. Tortora and G. Vitiello

Web based architecture for Dynamic eCollaborative work
Ioakim (Makis) Marmaridis, Jeewani Anupama Ginige and Athula Ginige

KOM Workshop Papers

Feature Value Propagation Analysis for Natural Language Grammars
Ettore Merlo , Michel Gagnon , Giuliano Antoniol and Dominic Letarte

Recovering Traceability Links between Requirement Artefacts: a Case Study
Andrea De Lucia, Fausto Fasano, Rita Francese and Rocco Oliveto

Reengineering an Industrial Legacy Software Towards an Object-Oriented Knowledge-Based System
Hakim Lounis, Kaddour Boukerche and Houari A. Sahraoui

Towards Knowledge Discovery in Software Repositories to Support Refactoring
Jörg Rech

388

392

396

402

406

411

416

421

427

431

435

439

445

449

453

457

462

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OIA Workshop Papers

Architecture for an Intelligent Web Application
Indra Seher and Athula Ginige

DMTF - CIM to OWL: A Case Study in Ontology Conversion
Dennis Heimbigner

Experiences in Using a Method for Building Domain Ontologies
Ricardo de Almeida Falbo

Learning Materials Ontology and Semantic Web: a case study in Educational Domain
Moysés de Araújo

Non-taxonomic Relations in Semantic Service Discovery and Composition
Michael Lutz

Supporting Interface Integration with a Simple Ontology
Damien Conroy, Jim Buckley and Tony Cahill

SWETO: Large-Scale Semantic Web Test-bed
Boanerges Aleman-Meza, Chris Halaschek, Amit Sheth, I. Budak Arpinar and Gowtham
Sannapareddy

Towards Ontological Modelling of Historical Documents
Vanesa Mirzaee, Lee Iverson and Babak Hamidzadeh

SEDECS Workshop Papers

Applying Evidential Reasoning to Multiple Source Data Integration for Software Engineering Decision
Support
George Shi, Reda Alhajj and Ken Barker

Decision Support for Planning Software Evolution with Risk Management
D. Greer

Machine Learning-Based Quality Predictive Models: Towards an Artificial Decision Making System
Hakim Lounis and Lynda Ait-Mahiedine

Requirements for a Tool in Support of SE Technology Selection
Andreas Jedlitschka and Dietmar Pfahl

Reviewers

Authors Index

466

470

474

478

482

486

490

494

498

503

508

513

517

519

○ ○

○ ○

○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

○ ○

○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○

○ ○

○ ○

Collecting the Dots

Shari Lawrence Pfleeger, PhD

shari_pfleeger@rand.org
Senior Information Scientist

It is often thought that forestalling major threats such as terrorist attacks or epidemics

requires weaving together disconnected pieces of information to reveal broader patterns;

in more common terms, we call this "connecting the dots." In this talk, we see that

connecting the dots cannot happen unless one takes a prior step: "collecting the dots,"

that is, bringing scattered pieces of information into some proximity to each other to

enable pattern recognition. This presentation discusses the dimensions of solving the

problem of "collecting the dots." Any solution involves identifying what information is

important and improving its circulation within communities that are in a position to

connect the dots so collected. The presentation describes organizational and

informational barriers to "collecting the dots" and explores the characteristics of potential

technology-supported solutions to overcoming them.

Empirically-Based Software Competences:

Synergies between Software & Knowledge Engineering

Dieter Rombach

Technical University of Kaiserslautern
&

Fraunhofer Institute for Experimental Software Engineering

Systematic predictive software development and maintenance still lacks sufficient knowledge
about the effects of individual techniques, methods, and tools regarding their impact on
quality, cost and time. Especially, we do not understand the variations of such impact
depending on varying human, project and organizational characteristics. For example, little
testable evidence exists as to the effects of different testing techniques on reliability for small,
medium, or large projects, respectively. Without such knowledge, we cannot expect projects
to get better wrt. predictability, nor can we expect to repeat successes across multiple projects
with varying characteristics. In our discipline of software engineering, this means we have to
establish for all techniques, methods or tools “T” knowledge of the kind “G = = f (T, C)”,
where “G” stands for any aspect of quality, cost or time of interest, “C” stands for all variation
characteristics of interest, “f” stands for the correlation between them, and “= =” indicates that
this relationship is empirical in nature. We call any technique, method or tool “T” a
competence wrt. some environment characterized by “C”, if we have enough empirical
observations in order to conclude that this relationship is stable within empirical bounds and
can be repeated. We call such competence a “law” if the results can be repeated for T, we call
it a “theory” if we can manipulate T so that a specific result can be achieved. The biggest
challenges include (a) establishing an environment to perform sound empirical studies ranging
from controlled to case studies, (b) packaging empirical results into reusable experience (=
knowledge based on projects within one’s own organization), and (c) deciding when one has
enough empirical studies to establish a law.

In this presentation, I will motivate the concept of a “software engineering competence” as
defined above as essential both from a scientific as well as a business perspective. The
scientific model requires observation and that such observational results must be testable and
challengeable. Common business wisdom requires that business competence is achieved by
investing into the key processes in your business process (in our case: development process).
Then I will define the concept of software engineering competences in detail, present a
process for establishing such competences, and discuss some practical examples. I will then
emphasize how software engineering can/should benefit from knowledge engineering
techniques for data analysis, organization of experience bases for packaging empirical results
in a context-sensitive manner, and decision making for effective reuse. Conversely, I will
suggest how knowledge engineering may benefit from software engineering as an application
with very specific characteristics. Finally, I will give an overview of a collection of already
existing empirical observations, laws and theories (Endres & Rombach: A Handbook for
Software and Systems Engineering: Empirical Observations, Laws and Theories; Pearson,
2003), and how they should be used in teaching, research and practice.

Web Intelligence, World Knowledge and Fuzzy Logic

Lotfi A. Zadeh*

In moving further into the age of machine intelligence and automated reasoning,
we have reached a point where we can speak, without exaggeration, of systems which
have a high machine IQ (MIQ). (Fuzzy Logic, Neural Networks, and Soft Computing,
Communications of the ACM—AI, Vol. 37, pp. 77-84, 1994). The Web and especially
search engines--with Google at the top—fall into this category. In the context of the Web,
MIQ becomes Web IQ, or WIQ, for short.

Existing search engines have many remarkable capabilities. However, what is not
among them is the deduction capability—the capability to answer a query by a synthesis
of information which resides in various parts of the knowledge base. A question-
answering system is by definition a system which has this capability. One of the principal
goals of Web intelligence is that of evolving search engines into question-answering
systems. Achievement of this goal requires a quantum jump in the WIQ of existing
search engines.

Can this be done with existing tools such as the Semantic Web and ontology-

centered systems--tools which are based on bivalent logic and bivalent-logic-based
probability theory? It is beyond question that, in recent years, very impressive progress
has been made through the use of such tools. But can we achieve a quantum jump in
WIQ? A view which is advanced in the following is that bivalent-logic- based methods
have intrinsically limited capability to address complex problems which arise in
deduction from information which is pervasively ill-structured, uncertain and imprecise.

The major problem is world knowledge—the kind of knowledge that humans

acquire through experience and education. Simple examples of fragments of world
knowledge are: Usually it is hard to find parking near the campus in early morning and
late afternoon; Berkeley is a friendly city; affordable housing is nonexistent in Palo Alto;
almost all professors have a Ph.D. degree; and Switzerland has no ports.

Much of the information which relates to world knowledge-- and especially to

underlying probabilities-- is perception-based. Reflecting the bounded ability of sensory
organs, and ultimately the brain, to resolve detail and store information, perceptions are
intrinsically imprecise. More specifically, perceptions are f-granular in the sense that (a)
the boundaries of perceived classes are unsharp; and (b) the values of perceived attributes

* Professor in the Graduate School and Director, Berkeley initiative in Soft Computing (BISC), Computer
Science Division and the Electronics Research Laboratory, Department of EECS, University of California,
Berkeley, CA 94720-1776; Telephone: 510-642-4959; Fax: 510-642-1712;
E-Mail: zadeh@cs.berkeley.edu . Research supported in part by ONR N00014-02-1-0294, ONR N00014-
00-1-0621and the BISC Program of UC Berkeley.

are granular, with a granule being a clump of values drawn together by
indistinguishability, similarity, proximity and functionality.

Imprecision of perception-based information is a major obstacle to dealing with

world knowledge through the use of methods based on bivalent logic and bivalent-logic-
based probability theory. What is needed for this purpose is a collection of tools drawn
from fuzzy logic-- a logic in which everything is, or is allowed to be, a matter of degree.
The principal tool is Precisiated Natural Language (PNL).

The point of departure in PNL is the assumption that the meaning of a

proposition, p, drawn from a natural language, NL, can be represented as a generalized
constraint of the form X isr R, where X is the constrained variable; R is the constraining
relation; and r is a modal variable, that is, a variable whose value defines the modality of
the constraint. The principal modalities are: possibilistic (r=blank); veristic(r=v);
probabilistic(r=p); random set(r=rs); fuzzy graph (r=fg); usuality (r=u); and Pawlak set
(r=ps). The set of all generalized constraints together with their combinations,
qualifications and rules of constraint propagation, constitutes the Generalized Constraint
Language (GCL). By construction, GCL is maximally expressive.

A proposition, p, in NL is precisiable if it is translatable into GCL. In this sense,

PNL consists of precisiable propositions, with the understanding that not every
proposition in NL is precisiable. The importance of PNL derives from the fact that it has
a far greater expressive power than predicate-logic-based synthetic languages like LISP,
Prolog, SQL, etc. A concept which plays a key role in PNL is that of a protoform—an
abbreviation of " prototypical form." Informally, the protoform of a lexical entity such as
a proposition, command, question, or scenario is its abstracted summary. For example,
the protoform of p : Eva is young, is A(B) is C, where A is abstraction of age, B is
abstraction of Eva, and C is abstraction of young. Similarly, the protoform of p: Most
Swedes are tall, is Count (B/A) is Q, where A is abstraction of Swedes, B is abstraction
of tall Swedes, Count (B/A) is abstraction of the relative count of tall Swedes among
Swedes, and Q is abstraction of most.

The importance of the concept of a protoform derives from the fact that it places

in evidence the deep semantic structure of the lexical entity to which it applies. In this
sense, propositions p and q are PF-equivalent, written as PFE(p, q), if they have identical
protoforms, that is, identical deep semantic structures. As a simple example, p: Most
Swedes are tall, and q: Few professors are rich, are PF-equivalent.

The concept of PF- equivalence serves as a basis for what may be called

protoform-centered mode of knowledge organization. In this mode, a protoformal module
consists of all propositions which have a specified protoform in common, e.g., A(B) is C.
Submodules of such a module are generated through instantiation of A, B and C. For
example, the partially instantiated protoform: price (B) is low, would represent all objects
in a universe of discourse, U, whose price is low.

An important function of PNL is that of serving as a deduction language. For this
purpose, PNL contains a Deduction Database, DB, which consists of so-called
protoformal rules of deduction. Basically, such rules govern generalized constraint
propagation, with antecedents and consequents expressed as protoforms. Typically, a
protoformal rule of deduction has two parts: symbolic and computational. A simple
example is the compositional rule of inference in fuzzy logic. In this case, the symbolic
part is: if X is A and (X, Y) is B, then Y is C; and the computational part is: C = A°B,
that is, C is the composition of A and B.

The Deduction Database contains a large number of modules and submodules

comprising protoformal rules drawn from a wide range of domains. Examples of such
modules are: the Search module, the World Knowledge module, the Extension Principle
module, the Probability module, the Possibility module, the Usuality module, etc.

In summary, abandonment of bivalence is a prerequisite to achieving a quantum

jump in WIQ. By abandoning bivalence, the door is opened to the use of tools such PNL
for adding to search engines two essential capabilities: (a) capability to operate on
perception-based information; and (b) question-answering capability. What should be
stressed, however, is that achievement of this goal will be a major challenge involving
exploration of many new directions.

Panel Discussion: Do we Really Need Support in Software Engineering Decision-Making?

Decisions must be made during all stages of software development and evolution. Decisions on
software technologies, processes, resources and tools based are the crystallization points to
achieve quality of software-dependent products and services. More effective and more efficient
decision support will improve the quality and cost-benefit ratio of decision-making. The impact
of better decisions on the quality of software will be all the greater since the focus of the project
is on the early stages of the life-cycle.
Computerized decision support should be considered in unstructured decision situations
characterized by high complexity, uncertainty, multiple groups with a stake in the decision
outcome (multiple stakeholders), large amount of information (especially company data), and/or
rapid change in information.

For various types of specific problem during software-lifecycle this support means:
 (i) to facilitate understanding and structuring of the problem under investigations,
(ii) to understand the information needs for making good decisions,
(iii) to provide access to information that would otherwise be unavailable or difficult to
obtain;
(iv) to generate solution alternatives,
(v) to evaluate solution alternatives,
(vi) to prioritize alternatives by using explicit models that provides structure for
 particular decisions, and
(vii) to explain solution alternatives.

Panelists:

Dr. Shari Lawrence-Pfleeger ... see SEKE keynotes

Dr. Dietmar Pfahl is a department head with the Fraunhofer Institute for Experimental Software
Engineering (IESE) in Kaiserslautern, Germany. He has been project leader of several national
and international research and transfer projects with software industry, including organizations
such as Bosch Telecom, DaimlerChrysler, Draeger, Ericsson, and Siemens. He has more than 50
refereed publications.

Dr. David Raffo is a Professor of Information Systems and Computer Science at Portland State
University. Raffo conducts joint research with leading companies developing models to support
software engineering decisions. He has over thirty refereed publications in the field of software
engineering and is co-Editor-in-Chief of the international journal of Software Process:
Improvement and Practice.

Dr. Guenther Ruhe received a doctorate rer.nat degree in Mathematics with emphasis on
Operations Research from Freiberg University, Germany and a doctorate habil.nat. degree from
both the Technical University of Leipzig and University of Kaiserslautern, Germany. From 1996
until 2001 he was deputy director of the Fraunhofer Institute for Experimental Software
Engineering Fh IESE, Germany.He has an Industrial Research Chair in Software Engineering at
University of Calgary and is an iCORE Professor since July 2001.

Mark Stanford

A Methodology for Scenario Development

Giuseppe Della Penna, Benedetto Intrigila, Anna Rita Laurenzi, Sergio Orefice
Dipartimento di Informatica, Università di L’Aquila, Italy
{dellapenna, intrigila, laurenzi, orefice}@di.univaq.it

Abstract

The pervasive use of scenarios in the development of
computer systems and software has motivated the need of
formalisms for the description and manipulation of scenar-
ios. In this paper we propose a scenario–based methodol-
ogy to support requirements engineering. This methodology
enables to exploit the emerging XML technologies in order
to offer powerful ways to create, maintain, distribute and
use scenarios.

1. Introduction

Usually, there are many sources of requirements, such
as customer information, engineering needs, safety con-
straints, legislation and product safety. The elicited re-
quirements have to be translated in a more implementation–
oriented format, becoming the software requirements of the
system being implemented.

In this paper we propose a scenario–based methodology,
namely SMDP (Scenario Model Development Process), to
formalize, manipulate and visualize software requirements.
The SMDP methodology consists of five main phases: sce-
nario definition (the inception phase, where software re-
quirements are organized in the form of scenarios), scenario
refinement (the elaboration of more detailed scenarios), sce-
nario composition (the composition of different scenarios),
scenario transformation (the derivation of other forms of
specification from scenarios) and scenario validation (the
consistency and completeness checking on the scenarios).

The use of scenarios for capturing requirements has at-
tracted increasing interest among requirement engineers
and the literature on scenario methods, models and nota-
tions has proliferated (see Section 3 for a survey of the sce-
nario research area). However, in many scenario–based ap-
proaches, the scenario knowledge is often specified using
semi–formal methods such as tables, structured text or inter-
action diagrams. The use of such informal specifications do
not exploit many of the potential benefits of scenarios and
often introduce inconsistency, ambiguity and redundancy.

Moreover, an informal description of scenarios provides a
limited support for representing scenario composition and
for modelling dependencies between scenarios. This is a
lack, since dependencies between scenarios carry important
information about a system and single scenarios are not able
to give a global description of an application.

The formalism underlying the SMDP methodology is the
SDML (Scenario Description Markup Language) language,
whose syntax is formally defined through an XML Schema.
An early version of SDML can be found in [2]. The SDML
formalism has been extended in order to support the compo-
sition of scenarios. Moreover, we have developed an editing
environment to assist the definition and the refinement of
scenarios, a graphical and hypertextual visualization system
supporting all the SMDP phases, and a prototype applica-
tion for the automatic generation of test documents starting
from SDML specifications.

2. Scenario Model Development Process

The SMDP methodology is an iterative and incremen-
tal process which consists of the following phases: scenario
definition, refinement, composition, transformation and val-
idation.

We assume that user requirements have been previously
documented or explicitly elicited from the stakeholders. In
this way, the SDML user works on an existing user require-
ments document in order to formalize the software require-
ments by applying the methodology.

In the following we give an overview of the single
phases, describing the tasks accomplished in each of them
and their SDML counterpart. We begin with the first three
phases that are grouped in a resulting macro–phase called
scenario construction.

2.1. Scenario Construction

Scenario Definition In the scenario definition phase the
software requirements are formally organized in the form of
scenarios, conceived as concrete sequences of interactions
between the user and a system.

The main tasks accomplished during this phase are the
identification of the actors, the items and the main scenar-
ios. In the actors and items identification, the actors and
items of the scenario, respectively, are extracted from the
informal specification of the problem. Actors are all the ac-
tive agents (human or otherwise) that interact with the sys-
tem, whileas items are the objects of the system application
domain used by the actors to interact with the system. In
the main scenarios identification, the set of goals represent-
ing the system functionalities are identified. For each goal a
main scenario is constructed, which contains a trigger, a set
of preconditions, a flow of interactions ending with success
and a set of postconditions satisfying that goal.

Using the SDML formalism, all the actors and items are
defined in object–oriented structures that formally describe
their properties (attributes) and the actions that can be ap-
plied on them (methods). All the actors and items that be-
long to a particular domain are grouped in separate docu-
ments and assigned to a namespace. The scenarios can then
import one or more namespaces and refer to the actors or
items they define. This allows to give a precise semantics
to each object referred in the scenario and to share the do-
main knowledge between different scenarios. The SDML
language syntax allows to define actor and item namespaces
through the <actorList> and <itemList> elements,
respectively.

Main Flow
<mainFlow>

Condition
<condition>

Interaction
<interaction>

Action
<action>,
<argument>

Actor
<actor>,
<property>

Item
<item>,

<property>

Scenario
<scenario>,
<simple>

Goal
<goal>

Trigger
<trigger>

Preconditions

<preconditions>

Postconditions

<postconditions>

Scenario Definition

Figure 1. SDML scenario definition.

Figure 1 shows the overall scenario knowledge. The sce-
nario goal is described textually and the interactions are
modelled by a main flow containing the scenario knowl-
edge. Such interactions describe the communication be-
tween the user and the system through a formal structure
in terms of a sequence of actor–action–item, and include
the description of the scenario trigger, preconditions and
postconditions. Some interactions could be guarded by a
particular activating condition.

An interaction is represented using the SDML
<interaction> element containing the <actor>,
<action> and <item> elements. The scenario goal,
trigger and the set of preconditions and postconditions have

also a description in the SDML syntax. The goal is repre-
sented by the <goal> element, whileas the trigger and the
preconditions are described through a set of interactions
contained in the <trigger> and <preconditions>
elements, respectively. Finally, the success postconditions
are also specified as a set of interactions contained in
the <success> element at the end of the scenario
<mainFlow>.

To support the definition phase, we have developed a
graphical editing environment which assists the SDML user
in the construction of scenarios. This editor has been imple-
mented in Java using the Xerces and Xalan packages for the
manipulation and transformation of XML, and then results
to be highly portable among different platforms.

Figure 2. Main interface of the SDML editor.

Figure 2 shows the main interface of such editor. The
editor has a left pane that shows the tree–like structure of
the scenarios and of the namespaces contained in the cur-
rent SDML project. Each element in the tree can be clicked
to edit the corresponding data. The right pane of the edi-
tor window contains a view of the selected element, which
can be of different kinds. Typical views consist of a set
of wizard–like dialogs that can be used to fill the various
SDML structures, or of a text editor where the generated
SDML code can be viewed, modified and checked for valid-
ity. In Figure 2 the editor is configured in order to enter the
scenario information. After filling this form, the user can
begin to write the scenario interactions through the “body”
section.

We have also developed a visualization system which
has been implemented through XSLT stylesheets generating
a set of HTML documents animated with Dynamic HTML
As an example, Figure 3 shows how the basic structure of
a scenario is visualized. The visualization is composed of
three parts, showing general information on the scenario (ti-
tle, author, preconditions, etc), all the namespaces used in
the scenario and the scenario interaction flow, respectively.
The interaction flow is decomposed as a sequence of steps,
each one numbered and associated with a textual explana-
tion, and it always terminates with one the keywords SUC-
CESS, FAILURE or GOTO.

Scenario SC2121 "Borrow Books"

Goal User borrows a book
Primary
Actor

User

Secondary
Actors System

Preconditions User - Own - Card
Trigger User - Scan - Card
Success
postconditions

User.borrowed_books > 0
System.state = ready

Author Giuseppe Della Penna

Uses actors from namespace "library"
Uses items from namespace "library", "general"

Main Flow FW1
FW1.1 User - Select_Function (function=Borrow) - Main_Menu
FW1.2 System - Display - Borrow_Menu
FW1.3 User - Scan - Book

FW1.4 System - Print - Loan_Slip
FW1.5 System - Display - FinishMessage

SUCCESS

Figure 3. Visualization of a scenario.

Scenario Refinement In the scenario refinement phase,
scenarios are restructured to make them easy to understand
and more reusable. Unlike other works [9] where refine-
ment operations do not increase the contents of scenarios,
refinement is used in our approach both to add more de-
tails to scenarios (through the notion of variant flow) and to
abstract common functionalities in order to reuse them in
other scenarios (through the notions of inclusions and ex-
tensions).

The main tasks accomplished during this phase are the
identification of redundant flows, extension flows, failing
variant flows and alterative flows. In the identification of
redundant flows, sub-flows of interactions common to dif-
ferent scenarios are individuated in order to create new sce-
narios. These new scenarios will be then recalled in the
starting scenarios through appropriate include rules. The
aim of this task is to remove possible redundancy in the in-
teraction flow through the modularization provided by the
inclusion feature. In the identification of extension flows,
some new flows of interactions are added to the scenarios
through appropriate extend rules. This information provides
further details to the scenarios without changing their post-
conditions. As far as the identification of failing variant
flows is concerned, the failure of a scenario means, in gen-
eral, that its interaction flow does not satisfy the goal. This
happens when some condition leads to a ramification of the
flow that does not terminate with success. The aim of this
task is to identify such kind of conditions and produce the
corresponding variant flows. Finally, in the identification of
alternative variant flows those interaction flows that may be
split in groups of alternative equivalent variant flows are in-
dividuated. These flows allow to have more execution paths
that satisfy the scenario goal.

Scenario Refinement

Main Flow
<mainFlow>

Condition
<condition>

Extension
<extend>

Inclusion
<include>

Variant Flow
<variantFlow>

Scenario
<scenario>,
<simple>

Figure 4. SDML scenario refinement.

Figure 4 shows the overall organization of the SDML
scenario refinement elements. A subsequence of interac-
tions in the scenario main flow can be refined by splitting
it into different sequences of interactions (failing or alterna-
tive variants) that are subject to an activating condition, or
by introducing an optional sequence of interactions in a par-
ticular point of the main flow as a secondary scenario (ex-
tension). Moreover, a scenario can be modularized through
groups of sub–flows of interactions that are included in the
main flow as new scenarios.

The SDML language syntax includes the element
<variantFlow> to contain failing or alternative se-
quences of interactions, and the elements <extend> and
<include> for referring to extensions and inclusions, re-
spectively.

Scenario Composition The role of the scenario composi-
tion phase is to compose different scenarios in order to show
the dependencies and interactions among the corresponding
subsystems. In the SMDP methodology the composition is
accomplished directly at the scenario level without intro-
ducing other formalisms like it often happens in other ap-
proaches.

The main task accomplished in this phase is the identi-
fication of relations among scenarios. In general, different
scenarios can be related through notions like ”sequential”,
”parallel”, ”mutually exclusive”, ”repeated”. The aim of
this task is to identify all these relationship existing among
the involved scenarios and to build a structured composite
scenario where they explicitly appear. Thanks to this, it is
possible to model features of the system that could not be
captured when using a single scenario to describe it.

Figure 5 shows the overall organization of the SDML
scenario composition elements. The SDML language
syntax provides the notion of simple and composite sce-

Scenario Composition

Sequential
Composition

<sequence>

Parallel
Composition

<parallel>

Scenario
<scenario>,
<composite>

Mutual Exclusion

<choice>

Repetition

<repeat>

Figure 5. SDML scenario composition.

nario. In the former case, the scenario is contained into
a <simple> element which describes a main flow with
its refinements. In the latter case, the scenario is con-
tained into a <composite> element whose content is any
valid composition of the <scenario>, <sequence>,
<parallel>, <choice> and <repeat> elements,
with the corresponding usual meaning. Note that each of
these elements can contain in turn other scenarios, thus pro-
ducing nested levels of composition.

SC1000
Get registered

SC2000: Visit Library

SC2100: Use Library Facility

SC2110

Query
Catalogue

SC2120: Conduct Transaction

SC2121

Borrow Books
SC5000

SC6000

SC2122
Return Books

SC2123
Update

Personal Data

SC2200
Exit Library

SC3000
Get deleted

Figure 6. Visualization of the composition in
a scenario.

Figure 6 shows how a composite scenario is visualized
as a diagram in our visualization system. In the diagram,
each component scenario is represented by a box labelled
by its identifier. Moreover, whenever a scenario includes
other scenarios, these are depicted within the former sce-

nario box. Successive steps of the scenario sequential flow
are separated by arrows. Scenarios that must be executed
in parallel are visualized on the same row. Depending on
the type of parallel composition used, the label parallel or
choice appears over the row. Repeated scenarios are instead
visualized inside a dashed box having the label repeat.

As said at the beginning of the section, we use the name
scenario construction to refer to the first three phases of the
SMDP methodology described above. The output of the
construction phase is the scenario model, i.e. a set of sce-
narios which covers the overall user requirements. The sce-
nario model is built through an incremental process where
the requirement coverage gradually increases over iterations
among the scenario definition, refinement and composition
phases. Each incremental step may generate a new main
scenario, refine a scenario adding variants flows, inclusions,
extensions, or integrate several scenarios into a composite
one.

2.2. Scenario Transformation

In the scenario transformation phase, scenarios are trans-
lated in different forms of specification which are used in
other phases of the software development process, such as
validation and testing, and to produce documentation, too.

In general, this task requires a substantial manual effort
and needs the introduction of intermediate formalisms. This
is avoided in our approach where the formalization of the
scenarios allows to directly translate them into target for-
mats.

As an example, in the following let us describe how our
methodology addresses the case of the automatic genera-
tion of testing artifacts such as test cases. A test case for the
specified system contains a sequence of actions that must
be performed during the testing session, followed by the
expected system response. Moreover, a test case includes
a list of preconditions that must be satisfied before its exe-
cution. If the system reacts as expected to the sequence of
interactions, then the test is successful.

We have developed a test case generation algorithm that
takes a SDML document as input and produces in output a
set of test cases by applying three main steps. First of all,
the external references (i.e. extensions and inclusions) are
resolved in order to build a self–contained scenario. Then,
the variant tree is visited and each possible control flow
is written separately. These flows are associated to a set
of true/false values assigned to the conditional steps they
contain, which represent the instance of the preconditions
for the test case generated from each flow. Finally, the in-
teractions in each flow are analyzed to generate the corre-
sponding test table. Each test case is then completed by
adding the preconditions and other information that are di-
rectly copied from the SDML document header. The final

test case is formatted using a standard industrial template
and it is expressed in HTML fashion to be easily viewed
through a common web browser.

2.3. Scenario Validation

The primary goal of validation is to confirm the elicited
requirements and to detect inconsistency, ambiguity and re-
dundancy. The validation should guarantee the correctness
and completeness of the requirement specification respect
to the user intentions. In general, the validation is said to
be static if it does not require the execution of the specified
software artifact on sample input data, dynamic otherwise.

In the SMDP methodology, dynamic checks are accom-
plished on the target formats generated by the transforma-
tion phase, whileas the static verification of some correct-
ness and completeness properties can be directly accom-
plished on the scenario description.

Scenario Validation

Condition
<condition>

Satisfied User
Requirements
<satisfied

Requirements>

Preconditions

<preconditions>

Variant Flow
<variantFlow>

Scenario
<scenario>

Postconditions

<postconditions>

Figure 7. SDML scenario validation.

Figure 7 shows the overall organization of the SDML el-
ements supporting the static validation. Each scenario con-
tains a list of the user requirements that are satisfied through
its interaction flow. This allows to establish a relation-
ship from software requirements towards user requirements.
Moreover, the preconditions and the postconditions are used
to express what the scenario expects to be true when it be-
gins and what it guarantees to be true when it concludes.
Finally, each variant contains a list of the conditions that
must be true to allow its activation. In this way it is possi-
ble, for example, to automatically check if such conditions
are satisfied in the specific point of the main flow where that
variant appears.

As an example, the elements <preconditions>,
<postconditions> and <condition> are used to
model the preconditions, the postconditions and the acti-
vation conditions of scenarios and variants, respectively.

We have also developed a prototype application written
in XSLT based on a meaningful set of quality measures for
scenarios, like for example the max depth of the variant tree
and the max depth of the failing variant tree. In fact, variants
should not be nested too deeply in order to maintain the
scenario complexity under an acceptable level.

3. Related Work

In the last years, much research has been done in the
scenario–based requirements engineering and a number of
approaches has been developed. In the following we give
a brief synthesis of some techniques for representing and
using scenarios that have been developed so far. A wider
survey can be found in [6], where our approach is also more
precisely illustrated in comparison with the scenario litera-
ture.

In the Potts’ et al. approach, [1, 8], scenarios are in tex-
tual form following some tabular notations. The require-
ments engineering process is supported by a hypertext tool
in which scenarios and requirements are annotated with
requirements discussions, rationales and change requests.
Therefore, while inspecting a requirement or a scenario
fragment, the user can retrieve, through hypertext links, the
open questions, responses and arguments that have been
posed on this element and the change requests referring to
it as well.

In [4], a concrete style for single scenario representa-
tion and a new concept for systematically structuring sce-
narios and relationships in a set of scenarios are presented.
The scenario structure is obtained by combining natural lan-
guage text with the formal structure of statecharts. More-
over, interaction flow can contain alternatives and iterations.

Sutcliffe et al., [10], define a meta-schema for modeling
use cases and scenario based knowledge. The methodology
commences by acquisition and modeling of a use case. The
use case is then compared with a library of abstract mod-
els that represent different application classes, where each
model is associated with a set of generic requirements for it
class. The authors also provide the CREWS–SAVRE tool
to support this methodology.

Leite et al., [7], describe a common scenario construc-
tion process and cope with further issues regarding scenario
management, in particular the scenario organization. In this
approach, scenarios are described in a structured way, using
a simple conceptual model together with a form–oriented
language.

Hong et al., [5], propose HOONet, a hierarchical object-
oriented Petri net, as a method to specify the scenarios and
also suggest a technique to integrate scenarios, including
different abstraction levels, as well as redundancy, incom-
pleteness and inconsistency.

Only few works in the scenario–based requirements en-
gineering literature exploit the XML technology. Among
these, Ralyté, [9], presents an implementation using
SGML-HTML to store scenario based approaches in multi-
media hypertext documents and illustrates the retrieval of
components meeting the requirements of the user by the
means of SGMLQL queries.

Duran et al. [3] use XML to represent software require-
ments and XSLT to support the requirements verification in
order to guarantee some quality properties. Nevertheless,
scenario representation continues to be semi–formal. For
example, the scenario steps are not structured, and the vari-
ants miss an activation condition. However, this work is
mainly oriented to the implementation and does not aim to
the reuse of software specifications.

Not only are scenarios a very relevant research topic,
but also they are increasingly adopted in industrial applica-
tions. As an example, a survey on the use of scenarios in the
software development practice can be found in [11], where
fifteen software projects developed using different scenario
based approaches are analyzed and compared among them.

4. Concluding remarks

In this paper we presented SMDP, a formal methodol-
ogy that describes the software specification at various de-
tail levels and allows to reuse the domain knowledge. The
SMDP methodology is supported by the underlying SDML
formalism, which has been enhanced with a visual editing
environment, to create and refine the scenarios, and with a
graphical representation system that supports all the SMDP
phases and allows to dynamically navigate through the sce-
nario model.

The SMDP methodology has been experimented on a
large variety of case studies that have been formalized
through the SDML language. For example, some case stud-
ies concerning banking or library transactions can be found
at the URL http://dellapenna.univaq.it/sdml/examples.asp.
These experiments have also shown how the SDML editor
makes easier the application of the formalism, balancing the
difficulties in the learning and the use of SDML due to the
high level of formalization adopted.

It is worth noting that each SMDP phase has an un-
derlying XML schema, where a set of appropriate ele-
ments has been defined in order to guarantee the trace-
ability among the various phases. Moreover, a spe-
cific <preTraceability> SDML element supports the
traceability of software requirements towards user require-
ments. More details on these elements can be found in [6].

As further research, we plan to enhance the SMDP vali-
dation and transformation phases. In fact, we are currently
studying more powerful verification rules to validate sce-
nario models and we are investigating how to derive dif-

ferent formalisms, such as statecharts and SRDs (software
requirements document), from SDML specifications.

References

[1] A. I. Anton, W. M. McCracken, and C. Potts. Goal decom-
position and scenario analysis in business process reengi-
neering. In Proceedings of the 6th Conference on Advanced
Information Systems Engineering, pages 94–104, 1994.

[2] G. Della Penna, B. Intrigila, A. R. Laurenzi, and S. Orefice.
An xml definition language to support scenario-based re-
quirements engineering. International Journal of Software
Engineering and Knowledge Engineering, June 2003.

[3] A. Duran, A. Ruiz-Cortez, R. Corchuelo, and M. Toro. Sup-
porting requirements verification using xslt. In Proceedings
of IEEE Joint International Conference on on Requirements
Engineering (RE02), pages 165–172, 2002.

[4] M. Glinz. An integrated formal model of scenarios based on
statecharts. In Springer, editor, Proceedings of the 5th Eu-
ropean Software Engineering Conference, pages 254–271,
1995.

[5] Z. Hong and J. Lingzi. Scenario analysis in an automated
tool for requirements engineering. Requirements Engineer-
ing Journal, 5(1):2–22, 2000.

[6] A. R. Laurenzi. An xml based methodology to model and
use scenarios in the software development process. Techni-
cal report, Universitá degli Studi di L’Aquila, 2004.

[7] J. C. S. P. Leite, G. D. S. Hadad, J. H. Doorn, and G. N.
Kaplan. A scenario construction process. Requirements En-
gineering Journal, 5(1):38–61, 2000.

[8] C. Potts, K. Takahashi, J. Smith, and K. Ora. An evalua-
tion of inquiry based requirements analysis for an internet
service. In I. C. Society, editor, Proceedings of the Second
IEEE Symposium on Requirements Engineering, pages 27–
34, 1995.

[9] J. Ralyté. Reusing scenario based approaches in requirement
engineering methods: Crews method base. In I. C. Soci-
ety, editor, Proceedings of the 10th International Workshop
on Database and Expert Systems Applications (DEXA’99),
pages 305–309, 1999.

[10] A. Sutcliffe, N. Maiden, S. Minocha, and D. Manuel. Sup-
porting scenario-based requirements engineering. IEEE
Transactions on Software Engineering, 24(12), December
1998.

[11] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Sce-
narios in system development: Current practice. IEEE Soft-
ware, (34-45), March/April 1998.

A Nonparametric Software Reliability Model Based on
Kernel Estimator and Optimum Algorithm

Han Fengyan, Qin Zheng, Wang Xin
School of Electronic and Information Engineering, Xian Jiaotong University, Xian China

Email: f.han@263.net

Abstract. This paper presents a new nonparametric
software reliability model that is based on kernel failure
rate estimation and optimum algorithm. The core of the
model is our nonparametric failure rate estimator based on
the weighted kernel function method and under the
constraint of failure rate monotonically decreasing.
Because of the introduction of a novel weight parameter
and an improved distance metric, not only the estimator can
converge easily, but also the number of defects of the
software system can be estimated. We apply the model to
some real data sets and compare the results with that come
from some better conventional models. The real data
analysis shows that the method performs as well as these
better conventional models.

1. Introduction

It is very important to estimate and predict the
reliability of a software system in quality engineering. Up
till now, a number of models have been developed for
tracking or predicting software reliability. Generally
speaking, these models assume that the failure data are
drawn from one of a known parametric family of
distributions, and then estimate the parameters by least
square fit or maximum likelihood estimation [1]. This
implies quite strong constraint. Because of the complexity
of software failure, the basic assumptions about these
models are sometimes unsound, and often disputed. In 1991,
A. Sofer and D. R. Miller [2] suggested a nonparametric
model for software reliability. They assumed that the failure
rate is a monotonically decreasing function and then
produced valid results, but the calculation is highly
dependent on the experience of the analyst.

In order to estimate failure rate of a system, some
nonparametric estimators have been developed, among
them is the nonparametric estimator based on kernel
function, which has been discussed adequately [3]. And a lot
of new nonparametric estimators such as estimator based on
neural network and wavelet transform have been developed
recently [4]. To estimate the density and failure rate of
failure rate monotonically decreasing system, P. Hall etc [5]

present a weighted kernel method, which involves giving
weights to data values, and selecting the weights so as to

minimize the distance function to the uniform case, subject
the failure rate to achieving monotonic. The Hall’s method
works well in correcting the local reverse trend estimated
by the unconstrained estimator, but it is difficult to cope
with the large extent reverse trend, and mostly it can not be
applied to the software system in testing.

In this paper, we present a new nonparametric software
reliability model for software system under the assumption
of failure rate decreasing monotonically. Adopting the
Hall’s optimum approach, the model involves a different
failure rate estimator, a new weight parameter, an improved
distance metric and other extensions, so that the model can
be applied to software system in testing. We apply the
model to some real data sets and compare the results with
that come from conventional models. The results show that
the model performs as well as the better conventional
models.

2. Model description

Let the initial number of defects of software system

under testing is N and the ith defect is found at Ti , and stop

testing when the nth defect is found. Thus we get the data

set about the survival time (the time to

be found in testing) of n defects.

ni TTTT ,......,}{ 21

2.1 The basic assumptions

In order to construct the nonparametric software
reliability model, we make basic assumptions as following

Assumption 1. The survival probability of every
defect is independent, and obeys the same probability
distribution, that is the n defects obey independent identical
distribution.

Assumption 2. The defect may be removed when it
was found, and no new defect be introduced to the system
in the correcting process.

Assumption 3. The failure rate of the software
system is decreasing monotonically in the testing process.

2.2 Nonparametric estimation of failure rate

According to assumption1, the survival probability of

every defect is independent and obeys the same probability

distribution with density . Then and

corresponding failure rate can be estimated by kernel

function method as following

)(tf

)t

)(tf

(
[3]

n

i
i hTtK

nh
tf

1
1]/)[(

1
)(ˆ (1)

n

i

i

Ni

hTtK

nh
t

1
1 /1

]/)[(1
)(ˆ (2)

Where, is named kernel function, which is a

no-negative, symmetry and smooth function supported on

[-L, L], and normalized to unity as in equation (3).

)(xK

 (3)
L

L
dxxK 1)(

The parameter h denotes bandwidth, which determines the

smoothing characteristic of the estimated results and is also

named smoothing parameter.

We define censored rate as the ratio of residual

number of defects to the initial number of defects

Nn /1 (4)

Then equation (2) leads to

n

i

i

in

hTtK

h
t

1
1)1(

]/)[(1
)(ˆ (5)

The equation (5) represents the estimation of failure

rate corresponding to an individual defect. Considering the

software system with N initial defects, because the defect

may be removed immediately when it was found, and no

new defect be introduced (assumption2), so after correcting

the ith defect, the residual number of defects will be (N-i) in

the successive time interval. And thus the failure rate of the

software system can be estimated by , that is 1
ˆ)(iN

n

i

i

in

hTtK

h

tIN
t

1
)1(

]/)[()(
)(ˆ (6)

Where denote the failures counted in [0, t].)(tI

In order to obtain estimation of failure rate decreasing

monotonically, weights are introduced in kernel function

method. Let be the weight corresponding toT , and

then the failure rate can be estimated by equation (7)

i i

n

i

ii

in

hTtK

h

n
tINt

1
)1(

]/)[(
)]([),(ˆ

n

i

ii

in

hTtK

h

n
tI

n

1
)1(

]/)[(
)](

1
[(7)

And the derivative of failure rate is estimated by

equation (8)

n

i

ii

in

hTtK

h

n
tI

n
t

1
)1(

]/)[(
)](

1
[),(ˆ

n

i

ii

in

hTtK

h

n
tI

1
)1(

]/)[(
)((8)

Where, the weights satisfy],,,,[21 n

, (9)1 1,...2,1 ni0 i

And normalize to unity,

1
1

n

i

i (10)

The failure rate decreasing monotonically implies that

the derivative of failure rate is no-positive in the estimated

interval, that is

0),(ˆ t (11)

Considering the weights including , we define the

distance between and],1,1[
1

n
0,1, as

)1log()
1

log()(
1

0

n

i

in
D

)1log()1()log(
1

nn
n

i
i (12)

If , equation (12) will retrogress to the standard

distance measure

0

n

i
inD

1
0)log()((13)

It is worth noticing that the distance measure (12) is

no-negative, for all cases, and if

and only if

0)(0D 0)(0D

.

Using equation (7), we can obtain the estimation of

failure rate satisfying the monotonically decreasing

condition, by selecting weights properly to enforce the

failure rate decrease in the estimated interval. In another

words, we can get the estimation of density and failure rate

by solving the optimization problem with objective

function , and under the constraints of equation (9),

(10) and (11), that is

)(0D

))((min 0Dimaze

subject to

1
1

n

i
i (14)

0,0 i , ni ,...2,1

0),(ˆ t , 0 nTt

This is a nonlinear optimization problem with

nonlinear objective function, and under the constraints of

linear equations and nonlinear inequations. The solution of

the optimization problem may results density and failure

rate with failure rate decreasing monotonically.

2.3 Estimation of initial defects

In the process of solving the optimization problem, an

optimized parameter can be obtained, thus we get the

estimated initial number of defects from equation (15).

1
ˆ n

N (15)

2.4 Prediction of failure rate

To predict the failure rate, we approximate the

estimated failure rate by the exponent of a polynomial

 (16)
m

j

j
j tatL

1

)exp()(

and let expression (16) satisfies the condition expressed by

equation (17)

) (17)()(nn ttL

The coefficients may be determined by least square fit,

and thus the future failure rate can be predicted.
ja

3. Real data analysis

3.1 The calculus methods

In the practical calculation, we choose Gaussian

function as the kernel function

2/2

2

1
)(xexK (18)

which is supported on .),(

The estimation results are sensitive to the bandwidth.

If h were too small, the curve estimated will not be smooth

enough, and will be wave acutely in some range. On the

contrary, if h were too large, the curve estimated will be

over-smoothed, and the varieties will be difficult to detect.

To avoid this difficulty, the adaptive bandwidth is used in

the calculation, that is h defined as a local

parameter , where is the so called normal

reference bandwidth

0hkh ii 0h

5/1
0 06.1 nh (19)

Where n is the volume of samples, and is the standard

deviation of the data.

The coefficient increases with density decreasing,

a usual choice of it may be , where is

another smoothing parameter, and k is the geometric

average of the density

ik

)/(ii fkk

 (20)

n
n

j
jfk

/1

1

In practical calculating, I(t) is redefined as (21) so as

to keep the continuity of the failure rate expressed in

equation (7)

ii

i

TT

Tt
itI

1
)(t (21)),[1ii TT

And its derivative may be expressed as

i
ii

ii
ii

Tt
TT

TTt
TT

tI

11

1
1'
2

),(
1

)((22)

The optimization problem of expression (14) can be
solved by sequential quadratic programming (SQP)
technique. The SQP method allows you to closely mimic
Newton’s method for constrained optimization just as what

is done for unconstrained optimization. The principal ideas
of SQP method is that, at each major iteration, an
approximation is made for the Hessian of the Lagrangian
function using a quasi-Newton updating method, thus the
nonlinear optimization problem transformed to quadratic
programming subproblem, and the quadratic programming
subproblem can be solved by general quadratic
programming. Using SQP technique we can get the
satisfactory solution after enough iterations.

We use u-plot to evaluate the predicative quality of the

model. The u-plot is a powerful tool for detecting

systematic bias of the model predictions. It is well known

that if the random variable Ti truly obeys the distribution

, then the random variable U would be

uniformly distributed on (0,1). Thus when we calculate

for a sequence of predictions, we would get a

sequence , which looks like a random sample from a

uniform distribution. A general method of looking for

departure from uniformity is by plotting the sample

distribution function for the { sequence. If the

sequence were truly uniform, this plot should be close

to the line of unit slope.

)(tF

iu

)(ˆ
ii TF

)(ˆ
itF

{ }iu

}iu
}{ iu

nT

3.2 Results and comparison

We apply the nonparametric model and several better
conventional models to the dada set of system T1 (denoted
by DT1) presented by Musa [6], in which the number of
defeats detected n=136, and the nth defeat was detected at

CPU seconds. 88682

3.2.1 The estimated failure rate

The failure rate estimated by our model and several
better conventional models are showed in section and
section of figure 3.1, where NP stands for our
nonparametric model, and JM for Jelinski-Moranda model,
GO for Goel-Okumoto model, MO for Musa-Okumoto
model, YOO for Yamada-Osaki model.

Figure 3.1 Estimated and predicted failure rate

The nonparametric model works well in correcting
the upward trend near t=30000s and near the right
boundary t=88682s, and produces the failure rate
decreasing monotonically.

Compared with the curve estimated by conventional
models, in section (about t=3~40000s), the curve
estimated by our nonparametric model coincides
approximately with that come from Musa-Okumoto

model, while in section (about t=40000~88682s), the
curve estimated by our nonparametric model coincides
with that estimated by Jelinski-Moranda model and the
Goel-Okumoto model. And in this section, the curve of
nonparametric model is seated between the
Musa-Okumoto model and the Yamada-Osaki model.

3.2.2 The predicted failure rate

The long term predictions of failure rate by different
models are showed in section of figure 3.1, which
show that the prediction of our nonparametric model is
coincident with that of the Jelinski-Moranda model and
the Goel-Okumoto model.

The long-term predictions of failure rate by our
nonparametric model after t=88682 seconds, are listed in
table 3.1. The predication may be used to plan the test in
the future. For instance, to reach a failure rate of

one should test the software system for
another 15318 seconds.

4102.2

Table 3.1 Predicted failure rate

t (s) 90000 92000 94000 96000

)10(13s 1.33 1.18 1.04 0.91

t (s) 98000 100000 102000 104000

)10(13s 0.76 0.59 0.40 0.22

3.2.3 The estimated initial number of defeats

To estimate initial number of defects, we apply the

model to censored data subset in DT1. After performing

6 calculations we obtain the estimated initial number of

defects as shown in table 3.2, in which the average of the

estimated N is 187.

Table 3.2 Estimated initial number of defects

n ˆ N̂ n ˆ N̂

131 0.275 180.7 134 0.287 187.8

132 0.293 186.6 135 0.286 189.0

133 0.291 187.5 136 0.279 188.7

Compared with the conventional models, the

estimated initial number of defeats is listed in table 3.3,

which shows that the estimated values by our

nonparametric model are more conservative than other

conventional models.

Table 3.3 Comparison of Estimated N
Models NP JM GO YOO

N̂ 187 142 143 137

3.2.4 The u-plot

The u-plot of the nonparametric model and better

conventional models for DT1 are showed in figure 3.2.

Figure 3.2 The u-plot of DT1

This u-plot reveals that the u of
nonparametric model is nearly uniformly distributed on
(0,1). According to the u-plot, the nonparametric model
is very close to Musa-Okumoto model, and is superior to
Jelinski-Moranda model, Goel-Okumoto model, and
Yamada-Osaki model evidently.

)(ˆ
ii TF

4. Conclusion and discussion

(1)The nonparametric software reliability model
presented in the paper can produce reasonable estimation
of initial number of defects, and results failure rate
decreasing monotonically, which are coincident
approximately with the better conventional models.
Because the assumptions of the nonparametric model are
less strong than that of the better conventional models,
the nonparametric model is a more natural approach.

(2) The nonparametric failure rate estimator with
parameter and can correct the increasing trends
effectively. The parameter may affect on the
estimated results entirely, and is especially important for
correcting the rapid increase of failure rate in the right
boundary.

(3) Not only can this model be applied to failure rate
monotonically decreasing system, but also can be applied
to failure rate monotonically increasing system
theoretically, and hence can be used to test the
assumption of increase or decrease monotonically.

(4) Although real data analysis shows that the
nonparametric model is applicable in cases that failure
rate trends to decrease monotonically, and the model
performs as well as better conventional models, but some
more theoretical searches, such as believe interval etc,
are needed in the future.

References

[1] M.R. Lyu, Handbook of Software Reliability
Engineering, IEEE Computer Society Press, McGraw
Hill, 1996.

[2] A. Sofer, D.R.Miller, a Nonparametric Software
Reliability Growth Model, IEEE Transactions on
Reliability, VOL40, NO.3, 1991.

[3] B. W. Silverman, Density Estimation for Statistics and
Data Analysis. Monographs on Statistics and Applied
Probability. London: Chapman and Hall, 1986.

[4] D.R.M. Herrick, G.P. Nason, B.W. Silverman, Some
New Methods for Wavelet Density Estimation,
Technical Report of University of Bristol, 2001.

[5] P.Hall, L.Huang, J.A.Gifford, I.Gijbels, Nonparametric
Estimation of Failure rate Under the Constraint of
Monotonicity, Technical Report of Australian National
University, 2001. http://www.citeseer.nj.nec.com/236942.html.

[6] Musa, J.D., A. Iannino and K. Okumoto, Software
Reliability: Measurement, Prediction, Application,
McGraw–Hill, New York, 1987.

A Simulation-Based Game for Project Management Experiential Learning

Alexandre Dantas 1, Márcio Barros 1,2, Cláudia Werner 1
{alexrd, marcio, werner}@cos.ufrj.br

1 COPPE / UFRJ – System Engineering and Computer Science Department
Caixa Postal: 68511 – CEP: 21945-970 – Rio de Janeiro – Brazil

2 UNIRIOTEC – Applied Computer Science Department
Av. Pasteur 458, Urca – CEP: 22290-240 – Rio de Janeiro – Brasil

Abstract. The inadequate use of project management
techniques in software projects can be traced to the lack
of efficient project management education strategies,
where learning by experience and motivation are key
issues. An experiential learning process for project
management requires an environment where students can
act as managers without the costs and risks associated to
an unsuccessful software project. Simulation can support
this process, but simulation tools lack the look-and-feel of
a real project development environment. In this paper we
propose a simulation-based game that can be used to
provide experiential learning to project managers. A
System Dynamics model describing a software project, a
simulator, and a game machine that handles user
interactions and presents simulation results in a game-like
fashion compose the game. System Dynamics limitations
to support a game-like user interface are discussed. Also,
we present an experimental study that evaluates an
experiential learning process based on the proposed game.

1. Introduction

Project management can be considered an universal
concept, but according to the software engineering
literature and recent researches [3][11][16] its adoption in
software projects is still inadequate and deficient. The
high number of software projects that are cancelled each
year and the number of project presenting schedule and
cost overruns [3][16] may be consequences of this lack of
project management.

It is widely accepted that experienced project
managers perform better than inexperienced managers in
concluding their projects successfully, that is, within their
planned schedules and budgets. Project management is
strongly dependent on knowledge and still many project
managers are promoted from technical teams due to their

successes in previous projects without proper training and
education to acquire management skills [11].

Thus, education strategies adopted to prepare project
managers play an important role in preventing from
inadequate use of management techniques on software
projects, providing the basis to leverage the present
scenario of so many faulty projects.

This paper discusses current project management
education strategies and their deficiencies. We consider
the application of simulation and games to support
management training. We have developed a game,
namely The Incredible Manager, and used it in two
experimental studies to evaluate our hypotheses
concerning the usefulness of games to a project
management training program. This paper presents the
game structure and results obtained from the studies.

The paper is organized in eight sections. The first one
comprises this introduction. The next section discusses
the deficiencies presented by the traditional professor-
centric education strategy when applied to project
management courses and some research that has been
made to complement this approach with other tools.
Section 3 presents the game that we have developed and
its architecture. The following sections present the major
components that compose this architecture: Section 4
presents the simulation model, Section 5 presents the
simulation model, while Section 6 describes the game
machine. Section 7 discusses the experimental studies that
were executed to evaluate the game usefulness. Section 8
concludes the paper by presenting our final
considerations.

2. Experience in Education

One of the keys for educational success is motivation and
one of the best motivations for learning project

management comes from taking a role in real projects that
failed due to insufficient management [5]. By analyzing
past situations and evaluating a different path that the
project could have taken if specific decisions were made
in particular points, a student can enhance his
management skills and ability to make decisions. This is
similar to the case study approach that was developed
early in the 20th century and is currently applied in
organization planning and administration [6].

However, most of our current project managers are
developers who were promoted considering technical
skills, without proper training to assume their new
responsibilities. Even those who receive some training
usually learn through traditional educational strategies,
which are content-centric: they focus on “what to learn”
instead of “why to learn”. The instructor decides what,
when and how learning will be conducted, usually by
using classes, textbooks and tests [15].

Two characteristics of software project management
present difficulties to the application of the content-
centric educational approach. First, it should be noted that
only adults undertake project management: so, project
management training is adult training. Second, large-scale
software projects are complex elements and their
behaviour is often too complex for mental analysis.

Concerning adult training, pedagogical studies [9]
have shown that the content-centric approach is not
adequate for adult learning, since adults prefer to learn
based on experience and learn better when they can apply
to solve their current problems. Thus, learning by
experience and motivation are key issues for better
management education.

Concerning complexity, the traditional education
approach may not be adequate since project management
strongly depends on past experiences and knowledge.
While analyzing a decision, a manager usually seeks in
his memory for a similar situation in other projects or uses
his perception to capture current reality and mentally
predict its future state according to available alternatives
[4]. This approach requires that the manager has
experienced similar situations in the past.

In the learn-by-error approach to management training
(implicitly taken when no formal management education
is provided to novice managers), this experience comes
from participating in failing projects. In the case-study
approach, this experience comes from creating and
analysing descriptive models of software projects.

However, large software projects are characterized by
dynamic complexity in the form of feedback loops,
delays, and cause-and-effect relationships distant in time.
Their behaviour cannot be efficiently predicted by mental
models [17]. Such interpretation often leads project
managers to wrong decisions. Since project behaviour
cannot be easily derived from basic principles (the content
to be learned), the content-centric approach must be

complemented by mechanisms that support experiential
learning.

Mentoring novice managers through pilot-projects is
an example of such mechanisms. However, it is rarely
possible to create real projects for manager trainees due to
practical constraints on schedule, budget, and risk.

Another alternative could be the adoption of
simulation models of software development projects.
Simulation can reduce training time, budget and risks.
While real projects can last for months and their failures
may have a high cost, students can simulate a similar
project model in a few hours, focusing their attention on
relevant events occurring throughout the project execution
and hiding the details that may confuse the trainee while
learning a major lesson. Simulation models can be
quickly analyzed and configured for several distinct
development situations that could only happen in large
projects, with long schedules and large teams.

The use of simulation to support project management
education has been analyzed by several studies [10][12].
In a recent paper [14], Pfahl et al. present a controlled
experiment to evaluate the effectiveness of using a
simulation model in education. In this study, subjects
were separated in two groups. One group managed a
software project with the aid provided by a simulation
model. The second group acted as a control group, using
the COCOMO model as a predictive tool for project
planning while the experimental group used a simulation
model. The results of the study indicate that the use of
simulation models provides a better understanding about
typical behaviour patterns of software development
projects. However, the unique use of simulation models is
insufficient to project management education. Simulation
is usually a predictive approach: models try to capture
some specific real world issues so as simulation can
present good insights about the results obtained from
particular decisions made. Results are mostly represented
by numbers or graphics that are abstract representations of
what is really happening within the model during the
simulation.

Recently, we have conducted two experimental
studies that illustrate some simulation drawbacks for
educational goals [2]. Both studies consisted of evaluating
the use of simulation to support decision-making on
software project management. Subjects were students
from two different universities (3 D.Sc. students, 26
M.Sc. students, 16 B.Sc. students and 4 B.Sc.). They were
asked to manage a small project with a major objective of
concluding it in the lowest schedule as possible, while
attending to specific quality restrictions.

A project emulator (that is, a software that dictates
project behavior overtime) was used to represent the
proposed project. Subjects interacted with the emulator,
making decision about which developers should take part
in the project team, how many hours should each

developer work per day, if inspections should be included
in the development process, and which developer should
accomplish each project activity. Half of the subjects used
System Dynamics models [7] and simulation to analyze
their options and evaluate their decisions before applying
them in the project emulator. The remaining subjects
managed the project based on their own experience,
without the aid provided by the simulator.

The results of these studies show us positive
correlation between subject experience, interpretation
difficulties and success in attending to project objectives.
This was an unexpected result because modeling and
simulation were supposed to provide more help to
inexperienced managers. Another important issue
observed relates to subject engagement. The lack of
engagement had negative influence over the subjects’
performance. To make modeling and simulation more
useful for inexperienced managers, we shall look for
better ways to present simulation results. It is usually
difficult for a model analyst to trace model observed
results to intermediate behaviour.

A problem with simulation tools is their lack of a real
project development environment look-and-feel. Since the
interaction with the project environment does not
resemble a real situation, student’s motivation can be
limited while using simulation tools. An experiential
learning process for project management requires an
environment where students can act as managers. Besides,
in an artificial learning situation, student motivation and
engagement play an important role. Some special drivers
for such motivation include self-realization, challenge,
victory, rewards, pleasure, and fun. In this sense, games
can be integrated to simulation models, adding fantasy,
visual effects, and a more compelling interaction model
for students. Digital games are also a growing market to
adults: the average American player age is 29 years while
the average task-force age is 39 years [15]. However,
playing is usually considered to be the opposite of
working.

Some current research works present the adoption of
game concepts in software engineering education, such as
the SimSE Tool [13] and the SESAM Project [5].
However, the effectiveness of simulation and game-based
learning is a discussion point. Since the educational
effects of different approaches are difficult to isolate,
measure and trace, their effectiveness is not well
documented and established. There are also many
disturbing factors that must be taken into account in a
comparison, including subjective factors such as the
quality of a teacher or a book. Some approaches may be
more suitable according to some specific situations and
educational goals [8].

3. The Incredible Manager

To evaluate the game-based learning approach, we have
developed a simulation game, called The Incredible
Manager. The diversity of game styles makes it difficult
to establish a game taxonomy, but we consider adventure,
puzzle, and simulation-games well suited for educational
goals aiming at reasoning, judgment, decision-making and
system thinking.

By using the game, a student is asked to act as a
manager, planning and controlling software projects with
success, i.e. within the planned schedule and budget
estimates. The game construction is based on three main
elements, as can be seen in Figure 1: a simulation model,
a simulation machine, and a game machine, which will be
detailed on the following sections.

Figure 1. The game structure

4. The Simulation Model

The simulation model represents the world and the
aspects that will be simulated and presented to the player.
However, software development projects are difficult to
model since they are classified as systems of complex
dynamics [17].

Addressing these difficulties, System Dynamics [7] is
a modeling discipline based on a holistic view to describe
and evaluate the visible behaviour presented by a system.
Such behaviour is determined by the structure of the
elements that participate in the system and the
relationships among them. Such structure and
relationships are described in the model through
mathematical equations. This modeling discipline has
already been used in the development of software project
models [1], which became a base for subsequent reviews
and extensions by other authors.

One of these extensions is the scenario-based project
management paradigm [2], which separates uncertain
aspects from known facts in project models. This
separation occurs by building distinct models (namely
scenario models) for each uncertain aspect that can

SIMULATION
MODEL

SIMULATION
MACHINE

PLAYERGAME
MACHINE

INTERACTS AND
RECEIVES FEEDBACK

MODIFY THE MODEL AND
PRESENTS THE RESULTS

PHASE
DEFINITION

FILE

SIMULATION
MODEL

SIMULATION
MACHINE

PLAYERPLAYERGAME
MACHINE

GAME
MACHINE

INTERACTS AND
RECEIVES FEEDBACK

MODIFY THE MODEL AND
PRESENTS THE RESULTS

PHASE
DEFINITION

FILE

influence a software project. The models can be more
easily developed, modified, integrated and expanded to
embrace management knowledge from the technical
literature and practice.

Scenario models provide a library of generic
management events and theories that an instructor can
integrate to a project model and present to management
trainees during a simulation session. By using
simulations, it is possible to evaluate the impacts of the
desired scenarios over the expected project behaviour.

5. The Simulation Machine

 The simulation machine is the element responsible for
controlling simulation steps, iteratively calculating model
equations to evaluate system elements' behaviour.
Different from ordinary simulators, the simulation
machine for a game must be interactive. Using ordinary
simulators, a student playing the role of a manager should
prepare a plan (configuring model elements and
relationships) and follow it until the end of the simulation.
This static structured simulation does not represent with
confidence the reality: during a software development
project, the manager makes decision all the time during
the development process – not only during the planning
phase –, modifying the original plan (and thus, the model
structure) to better control the project.

The simulation machine developed in our work is able
to translate and simulate System Dynamics models and to
process events during simulation. This dynamic structured
simulation can take into account player actions over the
model structure during the game run without rebuilding
the behaviour generated by previous simulation steps.

6. The Game Machine

The game machine is the element that the player interacts
with and receives visual feedback from the model
simulation. It is able to deal with continuous game phases.
Each phase represents a separate simulation model,
configured externally in a game configuration file. This
flexibility allows the adoption of several different
educational goals using the same game. The player starts
the subsequent phase immediately after finishing the
preceding one, even if the later was concluded without
success.

During a phase, the project development takes place
with hired developers executing a net of project tasks
(defined in the model). The characters who take place in
the game are:

Manager - The player's role, responsible for project
planning and several decision-making;

Developers - The team to develop the project. Each one
has different skills and characteristics such as hourly
cost and work hours per day;
Boss - Represents all the project stakeholders and is
responsible for the project plan acceptance and project
pressure during development.

Each game phase is also divided into five steps: Begin
Phase, Project Planning, Planning Acceptance, Project
Execution and End Phase.

6.1. Begin Phase
The beginning of a phase presents the project to be
managed by the player. The project description document
includes the description product to be delivered, special
scenarios that may impact the development and project
characteristics: tasks and its function points, quality,
schedule, budget demands and constraints.

6.2. Project Planning
In this step, the player is asked to develop a project plan
to be executed. The player must select and hire
appropriate developers from those available in the market.
Once the team is defined, developers must be assigned to
execute the task network. Each task must be executed by
only one developer and the player must determine the
effort (number of days) necessary to complete each task.
The effort on quality assurance activities, such as
inspections, is also up to the player decision: the player
can even remove these activities from the project plan.

The player can modify the project plan at any time
during project execution, firing and hiring developers,
modifying their work-hours or modifying the estimated
duration of tasks. The project plan resume shows the
overall budget and duration estimates to the project.

6.3. Planning Acceptance
Once the project plan is ready, it must be send to the
stakeholders for acceptance. The plan can be approved or
not. A project plan is refused if its overall estimates are
over the constraints described in the project presentation
at the begin phase. If the project plan is refused, the
player must plan for it again until it is accepted.

6.4. Project Execution
The network task of the accepted project plan is then
executed by the allocated team. Figure 2 illustrates the
office room where development takes place. The time and
funds available for development, as shown in the bottom
on the screen, are the ones requested in the accepted
project plan. Project execution runs in continuous turns,
consuming project resources. The player must be aware of

the project behaviour and take corrective actions when
necessary. Visual effects and project reports show the
game characters (and model elements) state, such as
exhausted developers, late tasks, project without funds,
and so on.

To avoid finishing the resources before project
completion, the player may need to modify the original
plan on the fly. According to these decisions, different
players can live the experience of managing the same
project in different ways.

Figure 2. The office room

6.5. End Phase
The phase ends when the project resources are done
without project completion (failure) or when all the tasks
are done and the project is completed with success.

7. Game-based Learning Evaluation

In the software project management context, to depict the
game utility and the improvements that our research
should develop, two runs of a case study were conducted
to evaluate the adoption of The Incredible Manager game
within a training concept. The training was divided into
simulation and discussion sessions, as stated in [11].
However, only one session of simulation and discussion
was applied.

During the simulation session, the subjects were asked
to play one phase of the game. When the simulations were
finished, an instructor and all subjects participated in a
discussion session. The instructor presented common
scenarios and approaches of project management, positive
and negative examples for specific decision-making
situations, allowing the students to better interpret their
actions and performance during the simulation session.

The first study was conducted with 7 subjects (1 D.Sc.
student and 6 M.Sc. students) from a software project

management course of a Brazilian university. The second
study was conducted with 8 subjects (6 M.Sc. students
and 2 B.Sc. students) from a laboratory for industrial
software development within a different university in
Brazil. All subjects received training in project
management topics (e.g. function point estimates) and in
the game utilization. The training session last 20 minutes
in both runs. The first simulation session last between 50
and 120 minutes for the first run and between 55 and 140
minutes for the second run. Although the overall project
function points have been kept, the number of project
tasks was reduced from 20 to 15, in order to reduce the
second study duration, however, without success.

Only one of the subjects reached the end of the game
with success (in the first study). Despite the failure, the
subject's feedback was considered positive. The training
concept with the simulation-game instrument was
considered motivating, dynamic, practical and enjoyable.
Subjects pointed out some important aspects such as
psychological pressures (from continuous-time turns and
compelling visual effects), high difficulty as a motivating
challenge to the player and the entertainment factor while
executing the game without losing the engagement to
achieve the goals. Tables 1 resumes the results of the two
runs.

Table 1. Game-based Learning Evaluation Results

Raised Indifferent Reduced
PM Skill 100% 0% 0%

Interest in PM 87% 13% 0%
Good Indifferent Bad

Game-based
Training 100% 0% 0%

All None Lots Few
Presented

Lessons Learned 0% 0% 100% 0%

Yes No Much Little
Was the training

fun ? 47% 0% 53% 0%

The main limitations and drawbacks reported by
subjects were related to simplifications that were made to
allow the creation of a simulation model for software
projects. For instance, our current model is unable to
represent real-world situations, such as multiple
developers working together in a single task, social
interactions among developers, psychological and
organizational issues. Some subjects demanded the
adoption of a multi-user interface, distance-learning
facilities in the game, and some kind of wizard to trace
and explain the actions, consequences, lessons learned,
and alternative routes for decision-making during the
execution of the game. Such wizard would help users to
evaluate their own performance after executing the game.

8. Final Considerations

In this paper we analyzed the adoption of practical
mechanisms to complement the traditional content-centric
education strategies. The current focus is on training
software project managers, since the lack of knowledge of
management techniques and the inadequate use of
management techniques is considered to be a root factor
that inhibits project success.

Simulation-based games seem well suited to be
introduced in an experiential learning situation, such as
required by manager trainees. They give to the student the
opportunity of experimenting the consequences of
executing or neglecting important project management
functions, confront himself with complex issues that must
be resolved during project development, and test different
approaches and solutions of project management, learning
by observing their consequences.

With the evolution of project simulation models, many
limitations of current simulation-based game will be
addressed to provide a more realistic situation, increasing
the number of training scenarios and enhancing
knowledge transference. The difficulties of formal models
development open a special demand for graphical tools
increasing the abstraction level to real world concepts,
turning the development of complex models more
intuitive and flexible.

To keep up with software project models evolution,
the simulation machine presented in this paper should be
extended to show more state transitions and graphical
feedback, enriching the player perception and
entertainment. The simulation machine is able to deal
with different models developed upon an existing project
management meta-model.

Besides the simulation model, many other research
areas can be highlighted: pedagogical evolutions to the
training concept with games, art evolutions over game
usability and multimedia presentation, research on traces
over player actions and performance, and psychological
researches about cognitive and motivational issues related
to game-based education.

Acknowledgements

The authors would like to thank all the subjects involved
in the studies and CAPES for the financial investment in
this work.

References

[1] ABDEL-HAMID, T.K., MADNICK, S.E., Software
Project Dynamics - An Integrated Approach, Prentice-Hall,
Englewood Cliffs, 1991.

[2] BARROS, M.O.; WERNER, C.M.L.; TRAVASSOS, G.H.,
Supporting Risk Analysis on Software Projects, In: The
Journal of Systems and Software, v. 71, n. 1-2, pp. 21-35,
2004.

[3] BROWN, N., “Industrial-Strengh Management
Strategies”, IEEE Software, v. 13, n. 4 (julho), pp. 94-103,
1996.

[4] DOYLE, J.K., FORD, D.N., RADZICKI, M.J., TRESS,
W.S., Mental Models of Dynamic Systems [online].
Available at
http://www.wpi.edu/Academics/Depts/SSPS/Faculty/Paper
s/27.pdf. [01/07/2003].

[5] DRAPPA, A., LUDEWIG, J., Simulation in Software
Engineering Training. In: Proceedings of the International
Conference on Software Engineering, pp. 199-208,
Limerick, Ireland, June, 2000.

[6] FORRESTER, J.W., System Dynamics and the Lessons of
35 Years, [online]. Available at
http://sysdyn.clexchange.org/sdep/papers/D-4224-4.pdf,
1991. [05/02/2004].

[7] FORRESTER, J.W., Industrial Dynamics, Cambridge, MA:
The MIT Press, 1961.

[8] GRÖßLER, A., NOTZON, I., SHEHZAD, A., Constructing
an Interactive Learning Environment (ILE) to Conduct
Evaluation Experiments. In: Proceedings of the 1999
Conference of the International System Dynamics Society,
Wellington, New Zeland, July 1999.

[9] KNOWLES, M., Andragogy in Action, Jossey-Bass, San
Francisco, CA, 1984.

[10] MAIER, F.H, STROHHECKER, J., “Do Management
Flight Simulators Really Enhance Decision Effectiveness”.
In: Proceedings of the 1996 Conference of the International
System Dynamics Society, Cambridge, USA, July, 1996.

[11] MANDL-STRIEGNITZ, P.; LICHTER, H., A Case Study
on Project Management in Industry: Experiences and
Conclusions. In: Proceedings of the European Software
Measurement Conference (FESMA 98), pp. 305-313,
Antwerp, Belgium, May, 1998.

[12] MERRIL, D., Training Software Development Project
Managers with a Software Project Simulator [online],
Master Thesis Proposal Arizona State University, Tempe,
AZ, USA. Available at http://www.eas.asu.edu/~sdm,
1995. [01/07/2003].

[13] OH, E., VAN DER HOEK, A., “Towards Game-Based
Simulation as a Method of Teaching Software
Engineering”. In: Proceedings of the 2002 Frontiers in
Education Conference, Boston, MA, USA, November,
2002.

[14] PFAHL, D., LAITENBERGER, O., DORSCH , J. RUHE,
G., “An Externally Replicated Experiment for Evaluating
the Learning Effectiveness of Using Simulations in
Software Project Management Education”, Empirical
Software Engineering, v. 8, pp. 367–395, 2003.

[15] PRENSKY, M., Digital Game-Based Learning, McGraw-
Hill, 2001.

[16] STANDISH GROUP, The Chaos Chronicles. The Standish
Group International, 2003.

[17] STERMAN, J.D., System Dynamics Modeling for Project
Management. MIT System Dynamics Group, Cambridge,
MA, USA, 1992.

A UML-based Software Engineering Methodology for Agent Factory

Rem Collier
University College Dublin

Ireland
rem.collier@ucd.ie

Gregory O’Hare
University College Dublin

Ireland
gregory.ohare@ucd.ie

Colm Rooney
University College Dublin

Ireland
colm.rooney@ucd.ie

Abstract

This paper presents the Agent Factory Development
Methodology, an Agent-Oriented Software Engineering
(AOSE) methodology that employs a synthesis of the Unified
Modelling Language (UML) and Agent UML to support the
development of multi-agent systems. We illustrate the use of
this methodology, through a simple case study and briefly
compare it to some other well-known AOSE methodologies.

1 Introduction

With the continuing emergence of the Agent-Oriented
paradigm, there is an urgent need to understand how we
might best support developers assigned the task of build-
ing an agent-oriented application. This need must be ad-
dressed from two perspectives: (1) through the creation of
software engineering artefacts (methodologies, tools, archi-
tectures etc.) that support the development and deployment
of these applications, and (2) through the construction of ex-
emplar applications that act as case-studies illustrating best
practices for the use of these artefacts.

The work presented in this paper is concerned with the
former of these perspectives, namely the creation of soft-
ware engineering artefacts that support the development and
deployment of agent-oriented applications. Specifically, we
introduce the a cohesive methodology that supports the de-
sign, implementation, and deployment of agent-oriented ap-
plications using Agent Factory (AF) [3].

Figure 1, presents a schematic of the AF framework, a
four-layer framework that combine: a purpose-built agent
programming language known as AF-APL, a distributed
FIPA-compliant [5] Run-Time Environment, an integrated
Development Environment that supports the implementa-
tion and debugging of agents written in AF-APL, and fi-
nally, a software engineering methodology that defines a
structured approach to the use of the lower layers. This
framework is implemented in Java.

Figure 1. The Agent Factory Framework

To this end, section 2 describes the AF Development
Methodology, section 3 highlights the use of this method-
ology through an exemplar case study of an agent-based in-
ternet chat system, and finally, section 4 introduces some
related work and presents some concluding remarks. For a
more detailed treatment of AF see [3] [4] [11].

2 The Development Methodology

One of the primary objectives behind AF is the develop-
ment of a cohesive software engineering methodology that
delivers structured support for the design, implementation,
and deployment of multi-agent systems. In designing this
methodology, we sought to address a number of objectives:
(1) to employ, where possible, pre-existing industry recog-
nised design notations; (2) to focus upon the definition of vi-
sual notations; (3) to use models that promote design reuse;
and (4) to maintain a strong link between design and imple-
mentation, opening the way for automated code generation.
We describe the resultant methodology below.

Figure 2. The AF Development Methodology

2.1 The Design Phase

The design phase is concerned with the translation of
system requirements into a well defined model of the tar-
get system that can be easily implemented using agent tech-
nologies. Specifically, we require this methodology to ad-
here to a number of objectives as set down earlier in this
paper. In response to these objectives, we have built the AF
Development Methodology around five key models that em-
ploy a combination of Unified Modelling Language (UML)
and Agent UML [1] diagrams. Figure 2 presents a diagram-
matic overview of this methodology.

Central to these models is the notion of an role. Within
the methodology, roles are used to abstract from fixed agent
entities towards the discrete patterns of activity and interac-
tion that will occur in the system. Our rationale for this is
that we expect different agents to play the same role during
the lifetime of the system. Furthermore, we are able to gain
a degree of decoupling between agent implementations and
the associated interaction patterns. This allows us to encode
best practices for agent interactions as design patterns that
may be implemented in a number of ways. This is in line the
Foundation for Intelligent Physical Agents (FIPA) efforts at
the standardisation of agent interactions (e.g. the Contract
Net protocol).

2.1.1 The System Behaviour Model

The first model we develop is the System Behaviour Model
(SBM). A system behaviour is any distinct set of activi-
ties and / or interactions that take place during the opera-
tion of the system. For example, in mobile computing sys-
tem, key system behaviours may include user movement up-
dates, service registration, and service activation.

The principle activity associated with the SBM is the
identification of both the key system behaviours and the
types of role that the agents will play while engaged in
them. In particular, our model distinguishes between two
types of system behaviour: (1) interaction-oriented be-
haviours are system behaviours that are associated with two
or more roles; and (2) activity-oriented behaviours are sys-
tem behaviours that are associated with a single role.

The SBM is formalised using a customised form of the
UML Use Case Diagram. Use Case Diagrams are a well-
understood approach for modelling how external actors in-
teract with a software system. From an agent-oriented per-
spective, we adopt the view of actors as agents that are play-
ing a specific role, and use cases as the behaviours that one
associates with these roles . Formally, we customise the
UML Use Case Diagram by employing two stereotypes: the
<<role>> stereotype, which identifies actors that repre-
sent roles that will be played by agents, and the <<role-
use-case>> stereotype, which identifies use cases that oc-
cur between agents that are engaged in specific roles.

Upon completion of an initial SBM, the various use cases
are organised by behaviour type. These behaviours are
then analysed further through the Interaction Model (sec-
tion 2.1.2) and the Activity Model (section 2.1.3).

2.1.2 The Interaction Model

The Interaction Model (IM) expands on the SBM through
the analysis of the interactions that will occur within each of
the interaction-oriented system behaviour. Specifically, for
each use case, we identify a number of interaction scenar-
ios, each of which describes a potential set of interactions
that may take place. Typically, each use case is with one
standard scenario (i.e. the one in which everything works
out well), together with a number of alternate scenarios that
describe variations on the standard scenario. For each sce-
nario, we identify the types of message that the agents send
to one another, while playing a role, and the order in which
the agents send them.

Given the objectives to employ, where possible, visual
design notations, we use a customisation of UML Collab-
oration Diagrams, similar to that described in [9], to rep-
resent individual interaction scenarios. Specifically, we in-
troduce two stereotypes: the <<role>> stereotype, which
identifies the objects that represent the agents that are play-
ing specific roles; and the <<fipa-acl>> stereotype, which
constrains the valid message types to the FIPA ACL perfor-
matives specified in the FIPA 2000 standards [5].

The purpose of this model is to support the expansion of
the initial SBM. As such, it is possible (and in fact expected)
that this stage of the process will highlight deficiencies in
the initial SBM. Consequently, we expect that the initial IM
will be iteratively refined as the analysis progresses. How-

ever, it is expected this model will ultimately reach a level
of stability, at which point, it is transformed into a set of
protocols within the Protocol Model (section 2.1.4).

2.1.3 The Activity Model

The Interaction Model (section 2.1.2) facilitates the expan-
sion of the scenarios that underpin interaction-oriented sys-
tem behaviours. While this type of behaviour is predom-
inant within agent-oriented applications, it is not the only
type of behaviour, there are also activity-oriented system
behaviours. To cater activity-oriented behaviours, a third
model, known as the Activity Model (ActM), is introduced.
In contrast with the IM, this model focuses on the activities
that underpin the system behaviours.

The ActM is underpinned by the concept of an activ-
ity scenario. In contrast with interaction scenarios, activity
scenarios focus on the activities that the various agents per-
form while playing associated roles. Initially, this type of
scenario was devised for single agent behaviours. However,
it has also proved valuable when analysing certain activity
intensive multi-agent behaviours. Consequently, the ActM
contains at least one activity scenario for each activity-
oriented system behaviour, and zero or more activity sce-
narios for each interaction-oriented system behaviour. In
addition, each system behaviour may be associated with
multiple activity scenarios. This is because there may be
a number of ways that a given behaviour can be realised.

We formalise the ActM through the customisation of
UML Activity Diagrams in a fashion similar to that pre-
sented in [9]. Specifically, we customise this diagram
through the introduction of a <<role>> stereotype, which
associates swimlanes with roles.

Again, it is expected that, during the formation of the
ActM, various deficiencies in the current design will be
identified. As a result, the model will be iteratively re-
fined as the analysis progresses. However, once the model
reaches a suitable level of stability, work on the ActM
ceases, and the final model becomes an input into the Agent
Model (section 2.1.5).

2.1.4 The Protocol Model

Once the first three design models have reached a suitable
level of stability, the design process switches from identi-
fying roles, interactions, and activities to their formalisa-
tion through two models: the Protocol Model (PM) and the
Agent Model. This section describes the former model.

The PM represents a formalisation of the IM (section
2.1.2). Specifically, the PM refines the various interaction
scenarios into a set of protocols that describe how the agents
will interact, and which encapsulates each of the alternate
scenarios associated with a given system behaviour. Each

Figure 3. VIPER & Send Message Protocol

protocol specified within this model is defined using Agent
UML Sequence Diagrams [1].

It is expected that each interaction-oriented system be-
haviour will map onto exactly one primary sequence dia-
gram. However, this diagram may itself may onto a num-
ber of secondary sequence diagrams that arise from a num-
ber of additional refinement activities that can (optionally)
take place during the formulation of the model. These ac-
tivities include: (1) identification and extraction of com-
mon interactions within the protocols, the reformulation of
these common interactions as template protocols; and (2)
re-factoring of protocols to make use of any appropriate
template protocols, including both those extracted through
the previous activity and any known agent design patterns
(e.g. Contract Net, Dutch Auction, etc.).

One side effect of this re-factoring is that some re-
factored protocols may be linked to system behaviours that
have associated activity scenarios. It is vital that the de-
signer be aware of such dependencies, and must re-factor
these scenarios to reflect the updated protocols.

Tool-based support for protocol creation is provided via
the VIPER [11] visual protocol editor (see figure 3). VIPER
performs two jobs within this methodology: (1) it supports
visual editing of Agent UML Sequence Diagrams, and (2)
it automatically generates agent code based upon these dia-
grams.

2.1.5 The Agent Model

The Agent Model (AgtM) switches the focus of the design
process from the role, interactions, and activities that are
necessary to deliver system behaviours to the agents that
will exist in the deployed system. Specifically, this model
moves the design from a behaviour-centric view to an agent-
centric view of the system.

Within this alternate view of the system, we focus upon
two concepts: roles, and agent classes. Specifically, agent
classes represent the types of agents that will be deployed

in the final system, and consequently how the various roles
will be implemented. We allow a many-to-many correspon-
dence between roles and agent classes. That is, we allow
each agent class to be associated with many roles, and each
role to be associated with many classes.

To achieve this change of view, we perform three steps:
(1) we list each of the roles specified in the SBM, and for
each role, list the associated protocols; (2) we associate each
role with one or more agent classes; and finally, (3) we re-
late each agent class to the associated set of activities spec-
ified within the Activity Model.

Perhaps the most subjective aspect of the AgtM is the
selection of which activities to associate with a given agent
class. As stated in section 2.1.3, a system behaviour can be
associated with a number of activity scenarios. This one-to-
many relationship occurs in recognition of the possibly that
a system behaviour can be realized in a number of ways
(two obvious alternatives are direct realisation versus dele-
gation). The designer must choose which of the potential
activity scenarios a given agent class should employ when
realising the corresponding system behaviour.

This final model is formalised using a UML Class Di-
agram that has been customized to include: a <<role>>
stereotype and an <agent-class>> stereotype. The
<<role>> stereotype represents roles, and takes the form
of a box that contains two compartments: the first compart-
ment contains the stereotype followed by the role identi-
fier, and the second compartment contains a list of protocol
identifiers. Conversely, the <<agent-class>> stereotype
represents agent classes, and takes the form of a box that
contains three compartments: the first compartment con-
tains the stereotype followed by the agent class identifier,
the second compartment contains a list of protocols (not
these specified in the associated roles), and the third com-
partment contains a list of activity identifiers.

2.2 The Implementation Phase

The second phase of the AF Development Methodology
(see figre 2) is the implementation phase. This phase con-
trasts significantly with the earlier design phase, in that it
is tied closely to a specific agent development framework,
while the design phase is not.

Central to the implementation phase is the fabrication
of a set of agent classes. These classes are implemented
in AF-APL [3], an Agent-Oriented Programming language
in which agents are mental entities that are modelled using
mental attitudes, in this case: beliefs and commitments. Be-
liefs describe, using a first-order logic representation lan-
guage, the current state of the agent and its environment,
and commitments describe the current (and future) activities
that the agent has decided to perform. Finally, decisions are
modelled through a set of commitment rules that map situ-

Figure 4. ChatterBot System Behaviour Model

ations (a conjunction of positive and negative beliefs) onto
commitments. These rules are checked repeatedly within a
sense-deliberate-act cycle.

The beliefs of an agent form an internal model of both
itself and its environment. Agent interaction can often
involve an agent communicating information held within
these beliefs to another agent. To ensure that these inter-
nal models are coherent, and to facilitate information dis-
semination between agents, the process commences with
the definition of any application-specific ontologies. Within
AF, an ontology is realised as a well defined mapping of
logical predicates to target domain relations. For example, a
mobile computing ontology may specify that the predicate
position(?lat, ?long) represents a users position in latitude
and longitude.

Upon completion of an initial set of ontologies, the next
activity to be carried out is the generation of any custom
agent components required by the final system. The prin-
ciple (but not only) agent components employed within AF
are perceptor and actuator units. Perceptor units are Java
classes that encapsulate specific sensing abilities (e.g. mon-
itor the users location), and which, convert raw data into be-
liefs. Conversely, actuator units are Java classes that encap-
sulate specific primitive abilities that an agent may directly
execute (e.g. update user profile). The developer identifies
potential perceptor and actuator units by reviewing the ac-
tivities specified in the Activity Model.

In tandem with the construction of agent components,
the developer also builds any custom platform services re-
quired by the final system. A platform service is a ser-
vice that is deployed on a agent platform as specified by
the FIPA-standards [5]. Typical platform services include:
message transport, migration, and persistence services.

Once the agent components and platform services have
been constructed,the final development activity is started,
namely, the generation of AF-APL code that implements
the agent classes specified in the Agent Model. In particular,
AF realises agent classes as text files, entitled role files, that
uses a ”rle” extension, and which contain AF-APL code.
Reuse of AF-APL code is supported through a USE ROLE
construct similar to the #include construct of C. When con-
verting our design into AF-APL code, we assume a one-to-

Figure 5. Activity and Interaction Scenarios

one mapping from agent-classes to role files (i.e. role files
do not map onto roles as specified in the design, although
ongoing work aims to redress this imbalance). Each role file
identifies a set of actuators and perceptors that correspond to
the specified activities, and a number of commitment rules
that describe how those activities should be used.

Finally, the implementation phase concludes with the
testing of the implementation. Two types of testing are un-
dertaken: protocol tests evaluate the correctness of the agent
interaction protocols, and behaviour tests evaluate the cor-
rectness of specific agent behaviours (i.e. that in a given
situation, the agent does the expected set of tasks). Once
testing is complete, the implementation phase draws to a
close, and the system is deployed.

3 Case Study

To illustrate our development methodology, we now
present the ChatterBot case study. ChatterBot is an agent-
based internet chat system, the basic premise of which is
that users are represented by an interface agent that registers
the user with a particular chat room, sends messages to that
room on behalf of the user, and views any messages posted
to the room by other users. When analyzing this system,
three key roles were identified: the User role, which is re-
sponsible for sending and viewing messages, the Moderator
role, that is responsible for validating messages associated
with a given room, and the Room Manager role, which is
responsible for creating new rooms and managing existing
rooms. We formalise this analysis within the System Be-
haviour Model (SBM) as illustrated in figure 4.

The second phase involves the expansion of each system
behaviour specified in the SBM first within context of the

Figure 6. The ChatterBot Agent Model

Interaction Model, and then later within the context of the
Activity Model. the of the interaction to build collaboration
diagrams for each of the tasks that describe the interactions
that should take place between the participants.

By way of illustration, we expand upon the Send Mes-
sage system behaviour. Our initial expansion of this be-
haviour is through the Interaction Model. Specifically, we
define two interaction scenarios for this behaviour: namely
where the User role sends a message that the Moderator role
considers to be valid, and where the User role sends a mes-
sage that the Moderator role considers to be invalid. Figure
5 contains a visual representation of these scenarios.

To help to clarify how the two interaction scenarios
arise, we further expand upon the Send Message system be-
haviour through the Activity Model. Figure 5 presents ac-
tivity scenario that results from this second expansion. In-
formally, this scenario indicates that the User role detects a
new message has been entered, informs the Moderator role
of the new message. The Moderator then validates the mes-
sage and informs the User role of the success or failure of
the validation activity.

As the System Behaviour, Interaction, and Activity mod-
els become more stable (i.e. as a general agreement on how
the system behaviour emerges), work on these three models
stops, and the designer commences work on the Protocol
Model. Specifically, the PM is a formalisation of the IM, in
which the various interaction scenarios are collapsed into a
single protocol. This process is illustrated in figure 3, which
presents the Send Message protocol. This protocol is based
on the interaction scenarios described in figure 5.

Upon completion of the PM, the final step of the design
process involves the formulation of the Agent Model. This
final model switches from a behaviour-oriented view of the
system to an agent-oriented view of the system. Specifi-
cally, this model presents a view of the roles within the sys-
tem, and the set of agent classes that will implement those
roles (section 2.1.5). Figure 6 presents the agent model for
ChatterBox. As can be seen in this model, the three roles are

implemented via two agent classes: the ChatterBox class
implements the User role, and the ChatServer class imple-
ments the Moderator and Room Manager roles.

At this point, the design of ChatterBox is complete and
all that remains is for the developers to implement the sys-
tem. As indicuated in section 2.2, this involves the design
of a number of agent components and the implementation
of the ChatterBox and ChatServer agent classes within AF-
APL. Further details of this process are not described here.

4 Discussion and Conclusion

The methodology presented in this paper represents one
of a number of potential approaches to fabricating multi-
agent systems. Gaia [12] is another methodology, which
supports the analysis and design phases. Gaia differs from
the our methodology in that it is primarily form-based (i.e.
not a visual methodology), employs a non-standard design
notation, and does not provide any support for the imple-
mentation of the designs it produces. In contrast, the MES-
SAGE methodology [2] does employ a visual design no-
tation, and there is tool-based support for the implemen-
tation of multi-agent system. However, while MESSAGE
employs the same meta-modelling language as UML, MES-
SAGE diagrams bear little resemblance to UML diagrams,
which are well understood within the software industry. A
third methodology is that outlined in [6]. Like our method-
ology, Heinze’s methodology does employ UML use cases
and activity diagrams, and does specify the link between de-
sign and implementation. However, Heinze’s methodology
does not account for multi-agent interactions, nor is there
any tool-based support for the development process.

In summary, this paper presents a visual agent-oriented
software engineering methodology that is founded upon the
industry standard UML design notation. Furthermore, the
models underpinning this methodology facilitate both de-
sign reuse, and automated partial code generation. Specif-
ically, partial tool-based support for the methodology cur-
rently exists, in the form of VIPER, a visual protocol editor
[11]. Finally, due to space constraints, this paper has illus-
trated our methodology through a trivial case study. How-
ever, this methodology has been employed in the develop-
ment a number of large scale agent-based applications in-
cluding the WAY System [7], Gulliver’s Genie [10] and the
award-winning ACCESS Architecture [8].

References

[1] B. Bauer, J. P. Muller, and J. Odell. Agent
uml: A formalism for specifying multiagent interac-
tion. In P. Ciancarini and M. Wooldridge, editors,
Agent-Oriented Software Engineering. Springer Ver-
lag, 2001.

[2] G. Caire, W. Coulier, F. J. Garijo, J. Gomez, J. Pavon,
F. Leal, P. Chainho, P. E. Kearney, J. Stark, R. Evans,
and P. Massonet. Agent oriented analysis using mes-
sage/UML. In AOSE, pages 119–135, 2001.

[3] R. W. Collier. Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications. PhD
thesis, Department of Computer Science, University
College Dublin, 2001.

[4] R. W. Collier, G. M. P. O’Hare, T. D. Lowen, and
C. F. B. Rooney. Beyond prototyping in the factory
of agents. In Proceedings of 3rd International Cen-
tral and Eastern European Conference on Multi-Agent
Systems (CEEMAS 2003), Prague, Czech Republic,
2003.

[5] FIPA. Fipa 2000 standards. URL: http://www.fipa.org.

[6] C. Heinze, M. Papasimeon, and S. Goss. Specify-
ing agent behaviour with use cases. In Proceedings
of the Pacific Rim International Workshop on Multi-
Agent Systems (PRIMA 2000), pages 128–142, 2000.

[7] T. Lowen, G. O’Hare, and P. O’Hare. Mobile agents
point the way: Context sensitive service delivery
through mobile lightweight agents. In C. Castel-
franchi and W. Johnson, editors, Proceedings of First
International Joint Conference on Autonomous Agents
and Multi-Agent Systems Conference (AAMAS 2002),
Bologna, Italy, 2002. AAAI Publishers.

[8] C. Muldoon, G. OHare, D. Phelan, R. Strahan, and
R. Collier. Access: An agent architecture for ubiq-
uitous service delivery. In M. Klusch, A. Omicini,
S. Ossowski, and H. Laamanen, editors, Cooperative
Information Agents VII, LNAI 2782. Springer Verlag,
2003.

[9] J. Odell, H. V. D. Parunack, and B. Bauer. Extending
uml for agents. In Proceedings of AOIS Workshop at
AAAI 2000, 2000.

[10] G. O’Hare and M. O’Grady. Gulliver’s genie: A multi-
agent system for ubiquitous and intelligent content
delivery. Computer Communications, 26(11):1178–
1187, 2003.

[11] C. F. B. Rooney, R. W. Collier, and G. M. P. O’Hare.
Viper: Visual protocol editor. In Proceedings of CO-
ORDINATION 2004, Pisa, Italy, 2004.

[12] M. Wooldridge, N. R. Jennings, and D. Kinny. The
gaia methodology for agent-oriented analysis and de-
sign. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

ADAMS: an Artefact-based Process Support System

Andrea De Lucia, Fausto Fasano, Rita Francese, Genoveffa Tortora
Dipartimento di Matematica e Informatica

Università degli Studi di Salerno
Via Ponte don Melillo, 84084, Fisciano (SA), Italy

adelucia@unisa.it, ffasano@unisa.it, francese@unisa.it, tortora@unisa.it

Abstract. We present ADAMS (ADvanced Artefact
Management System), a Web-based system that integrates
project management features such as resource allocation
and process control and artefact management features,
such as coordination of cooperative workers and artefact
versioning, as well as context-awareness and artefact
traceability. Maintaining traceability links (dependencies)
between artefacts supports management of changes
during incremental and iterative software development in
a flexible way. Basically, the traceability layer is used to
propagate events concerning changes to an artefact to the
dependent artefacts, thus also increasing the context
awareness in the project.

1. Introduction

In the last decade a lot of research effort has been devoted
to the development of methodologies and technologies
supporting coordination and collaboration of distributed
software engineering teams. Examples are Computer
Supported Cooperative Work (CSCW) and groupware,
workflow management, and configuration management.
Configuration Management (CM) is among the others
mostly used in software engineering projects to face with
coordination problems. CM tools (see e.g., [5, 11, 18, 21])
help to coordinate the activities of developers, by
providing capabilities that either avoid parallel
development altogether (e.g., locking) or assist in
resolving conflicts (e.g., merging). Independently of the
adopted model (Checkout/Checkin, Composition, Long
Transaction, ChangeSet), existing CM systems are based
on the workspace concept, representing the work
environment of each user [19]. The adoption of such
separate areas causes a lack of context-awareness, as a
developer is informed of work made by others on the
artefacts he/she is working on or on related artefacts, only
after these have been checked-in, thereby significantly
delaying the discovery of potential problems.
Process Support Systems (PSSs) [3, 9, 16], including
Workflow Management Systems (WfMSs) [12, 13, 22]
and Process-centered Software Engineering Environments

(PSEEs) [1, 4, 14], represent a different research area
aiming at supporting the coordination of software
development activities through process modelling and
enactment. Despite the advances made in the field, most
of the solution proposed have not gained wide acceptance
in the industry because the Process Description
Languages (PDLs) they propose for the modeling of
business processes are too complicated to understand and
manipulate. Most of them are activity-based and model
software processes in a top down manner, focusing on the
specification of the control and data flow between
activities. In these systems the modeling of the activities
is often similar to programming, it is difficult and
laborious and, as a consequence, they do not facilitate the
work of the project manager. Most of them do not support
the deviations from the process model when unforeseen
situations (frequently) happen and even when such a
support is provided, it is too complicated to manage these
situations within the process support system. Also, the
production of an artefact is seen as the result of the
execution of an activity and often there is lack of
integration with configuration management systems [3].
With respect to CM tools, most recent PSSs provide a
grater support to context-awareness, by integrating
communication tools and notification mechanisms to
make aware developers about events occurring within
activities [3, 9, 14, 16].
Both PSSs and CM tools generally do not offer an
adequate support to artefact traceability and, as a
consequence, handling changes is difficult. CM tools
mainly enable versioning of artefacts, but traceability
information among different artefacts is lacking and when
supported, the traceability infrastructure fails during the
system evolution [8]. In PSSs dependencies between
artefacts can be derived from the data flow links between
activities but relationships between the artefacts produced
during the software development process is not directly
stored and maintained.
In this paper we present ADAMS (ADvanced Artefact
Management System), a Web-based system that integrates
project management features such as resource allocation

and process control and artefact management features,
such as coordination of cooperative workers and artefact
versioning, as well as context-awareness. Rather than
defining the control and data flow between activities, like
in most PSSs, software processes in ADAMS are
modelled through the produced artefacts and the relations
between them. Maintaining traceability links
(dependencies) between artefacts supports management of
changes during incremental and iterative software
development in a flexible way. Basically, the traceability
layer is used to propagate events concerning changes to
an artefact to the dependent artefacts, thus also increasing
the context awareness in the project.
The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents an overview of
ADAMS, while Sections 4-6 describes features provided
by the system related to artefact management, cooperation
and context awareness, and traceability, respectively.
Finally, Section 7 discusses concluding remarks and
future work.

2. Related Work

Several Configuration Management systems are available,
some of which are open source. BitKeeper [5] is a
scalable CM system supporting distributed software
development. CVS [11] is one of the most used open
source versioning tools: it is based on a central repository
and provides support for branching and merging. Perforce
[18] is a scalable and lightweight tool supporting the
concept of change and change set. StarTeam [21] is an
innovative solution produced by Borland for handling
Web software development.
Palantir [19] is a system that complements Configuration
Management tools by providing support to the context
awareness. It offers a graphical display to the developer
for verifying which remote artefacts are changing and
give an evaluation of the severity and of the impact of
changes.
Recent PSSs also address problems related to the
integration of process modelling and enactment with
artefact management and context-awareness problems [3,
9, 15]. GENESIS is an open source PSS supporting
software engineering processes in a highly distributed
environment [3]. The process modeling language is
activity-based and enables the decomposition of complex
processes into sub-processes that can be distributed and
executed at different organizational sites. GENESIS
integrates an artefact management subsystem, namely
OSCAR [17], designed to non-invasively interoperate
with work-flow management systems, development tools,
and existing repository systems. Similarly to ADAMS,
artefacts in OSCAR have a type hierarchy, similar to the
object-oriented style. Every artefact possesses a collection
of standard meta-data, and is represented by an XML

document containing both the meta-data and the artefact
data.
PROSYT, like ADAMS, adopts an artefact-based
approach [9]. Each artefact produced during the process is
an instance of some artefact type, which describes its
internal structure and behaviour. PROSYT also allows for
distributed enactment facilitated by an event-based
middleware [10]. It is able to tolerate deviations from the
process model during enactment.
Maurer proposes a tool named MASE (MILOS for Agile
Software Engineering) that enables virtual software teams
to adopt distributed extreme programming [15]. It is
based on the MILOS system [16], that supports the
dynamic coordination of distributed software
development teams over the Internet. In particular,
MILOS is a web based WfMS allowing for dynamic
changes on the project plan during project enactment and
provides a notification mechanism which tracks product
changes and informs involved people.
The Ophelia project aims at developing a platform
supporting software engineering in a distributed
environment [20]. Among the others, it offers a
traceability layer that enables traceability across all
project artefacts. In Ophelia artefacts of the software
engineering process are represented by CORBA objects.
A graph is created to maintain relationships among these
elements and can be used for navigating between them.
ADAMS also offers such browsing facility. In addition,
ADAMS enables developers to subscribe events on
artefacts of interests, in order to receive notifications
about changes to these artefacts.
Chen and Chou [7] have proposed a method for
consistency management in the Aper process
environment. The method is based on maintaining
traceability relations between artefacts and using triggers
to identify artefacts affected by changes to a related
artefact.
Cleland-Huang et al. [8] have developed EBT (Event
Based Traceability), a traceability method based upon
event-notification. Software artefacts are linked by a
publish-subscribe relationship. When a change occurs on
a given artefact having the publish role, notifications are
sent to all the subscriber (dependent) artefacts.
The latter two papers are very closed to the approach
developed in ADAMS. However, unlike ADAMS, they
do not offer facilities to developers to directly subscribe-
unsubscribe events. Indeed, the main problems of EBT,
are the higher number of messages that are generated
within a process if too many links are maintained [8] and
the fact that often traceability links are not correctly
maintained during a software development process [2].
ADAMS gives developers the possibility of customizing
the set of events they would like to be notified about, thus
avoiding undesired notifications on one hand and
receiving notifications that are not planned by the

traceability layer on the other hand. Another distinctive
feature of ADAMS with respect to these two related
approaches is the support for the management of the
entire life cycle of artefacts that includes a checklist-based
inspection and review phase.

3. ADAMS overview

ADAMS (ADvanced Artefact Management System) is an
artefact-based process support system. It enables the
definition of a process in terms of the artefacts to be
produced and the relations among them, supporting a
more agile software process management than activity-
based PSSs, in particular concerning the deviations from
the process model.
ADAMS poses a greater emphasis to the artefact life
cycle by associating software engineers to the different
operations that can be performed on an artefact. In
particular, ADAMS provides support for the definition of
artefact types with related standard templates and for a
checklist-based inspection and review phase of the
artefact life cycle. Software engineers are given the
possibility to subscribe for particular events concerning
artefacts and projects, thus increasing the context-
awareness level.
ADAMS provides functionality to manage resources,
projects, and artefacts. In particular, the system enables
the definition of roles within a project. Standard roles are:

Administrator, who manages the system itself,
including artefact types and human resources; he/she
also defines projects and the corresponding project
managers and allocate resources to them;
Project Manager, who manages the resources allocated
on a project, defines the artefacts to be developed and
the corresponding artefact managers, allocate
resources to artefacts, and define artefact
dependencies;
Artefact Manager, who manages the evolution of an
artefact and defines roles and permissions for software
engineers working on it.

ADAMS has a web-based architecture. The system is
decomposed into six subsystems with a layered
architecture (see Figure 1). These modules are
independent, so that it is possible to change one of them,
without affecting the global system integrity. The
presentation layer is implemented in HTML and JSP. The
application logic layer is composed of four subsystems,
namely the Artefact Management Subsystem (AMS), the
Project Management Subsystem (PMS), the
Administration Subsystem (AS), and the Event
Management Subsystem (EMS). The first three
subsystems are implemented as Java Servlets and use the
EMS that is responsible for managing subscriptions and
notifications of events. In particular, the AMS manages

artefact types, the lifecycle of the artefacts, and the
traceability layer, while the PMS provides functionalities
for project creation, resource allocation, calendar and
scheduling activities. Access to the database is achieved
through the functionalities offered by the persistent data
access subsystem.

Presentation
Layer

Artefact
Management
Subsystem

Administration
Layer

Project
Management
Subsystem

Event &
Notification

Management
Subsystem

Data
Layer

Communication
Subsystem

Figure 1. ADAMS architecture

4. Artefact Management in ADAMS

Artefacts play a central role in ADAMS. The
administrator can define artefact types according to the
standards included in the quality manual of the subject
organization. Artefact types can be associated to standard
templates as defined in the quality manual. These can be
customized during the definition of the quality plans of
specific projects and as starting point for the development
of artefact type instances. Besides a standard template, a
checklist can be associated to an artefact type and used
during the review phase of the artefacts of that type.
Artefacts can be either simple files or can be a hierarchy
of simpler artefacts. For example, a software requirement
specification document includes several functional and
non-functional requirements; each requirement can be
considered a simpler artefact that might affect different
parts of the software architecture and evolve
independently of other artefacts of the same type. To this
aim hierarchies of artefact types can be defined in a
recursive way starting from file types. A Document Type
Definition (DTD) is automatically created and associated
to each artefact type and used to check that artefacts of
that type respect the artefact type definition.
Artefacts in ADAMS follow the general life cycle
depicted in Figure 2. This, together with the resource
permissions definition and management, represents a first
process support level and allows the Project Manager to
focus on the practical problems involved in the process
and avoid to get lost in the complexity of the process

modelling, like in workflow management systems.
ADAMS also enables the management of the process in a
flexible way, giving managers the possibility of changing
the state of an artefact or the resources associated with it
and the related permissions.
The higher level artefacts to be produced within a project
are defined (scheduled) by the project manager, who also
associates the needed resources to work on them and
choose the artefact managers. The artefact manager
uploads the template and checklist defined in the project
quality plan, defines permissions of resources to work on
the artefact and activates it. The artefact manager can also
schedule the sub-artefacts the subject artefact is composed
of and associate resources to them. Also, he/she can give
permissions to define sub-artefacts to other resources,
although he has the duty of linking the sub-artefacts to the
higher level artefact.

Template Upload / BranchCount=0

Accept

End Project

SCHEDULED ACTIVE

REVISION

CLOSED

Merge [BranchCount==0]

LOCKEDUNLOCKED

Check-Out / BranchCount++

Check-In [draft] / BranchCount--

DRAFT

Reject

Branch / BranchCount++
Open

BRANCH

DRAFT REVISION

Check-In [draft]

Check-In [revision] / BranchCount--

Check-Out / BranchCount++

Branch / BranchCount++

Check-In [revision] / BranchCount--

Figure 2. Artefact life cycle

Once activated, several draft versions of an artefact can be
created and maintained by ADAMS. When scheduled, the
manager can decide if branches are allowed during the
production of an artefact. If branches are not allowed,
each resource can lock the artefact (check-out) and work
on it until a new version is uploaded and checked-in.
Otherwise, different branches can be produced and
worked independently by each resource (see Figure 3),
who can also produce different versions of each branch.
When all branches are closed, they can be merged in a
new version of the artefact. Completed non-branch
versions of an artefact undergoes the revision process and
are either approved and closed or sent back to the draft
state.
In hierarchical artefacts, leaves are associated with files
(simple artefacts) and follows the life cycle described
above, while internal nodes define composite artefacts.
Therefore, operations that can be performed on internal

artefacts just aim at modifying the artefact composition
(adding/deleting sub-artefacts). Operations on internal
artefacts cannot be performed in branch mode; rather,
each time an internal artefact is locked for an updating
operation, sub-artefacts are locked too as well as higher
level artefacts. Each time a new version of a sub-artefact
is created, a new version of higher level artefacts is
created too, to maintain consistency and record the
operations made on each artefact (see Figure 4).

Artefact No.17 Card

Name SOURCE

Status BRANCH

Creation Date 23/01/03

Start Date 01/02/03

End Date 30/06/03

Manager Fausto Fasano

Project ADAMS

Artefact Type SOURCE

Last Version 2.0

Branch Allowed

Branches 2

Concurrent Users Fausto Fasano
Andrea De Lucia

Figure 3. Artefact information visualization

Figure 4. Versioning of hierarchical artefacts

5. Support for cooperation and context awareness

The support for cooperation is offered by ADAMS
through typical features of a configuration management
system. ADAMS enables groups of people to work on the
same artefact, depending on the required roles. Software
engineers can cooperate according to a lock-based policy
or concurrently, if branch versions of the artefact are
allowed. At any time it is possible to see the people who
are working on an artefact (see Figure 3). As discussed in
the previous section, ADAMS also provides support for
software inspection.
Besides these functionalities, the system has been
enriched with features to deal with some of the most
common problems faced by cooperative environments, in

particular context awareness and communication among
software engineers.
Context awareness is mainly supported through event
notifications: software engineers working on an artefact
are notified when another branch is created by another
worker. This provides a solution to the isolation problem
for resources working on the same artefact in different
workspaces: in fact context awareness allows to identify
possible conflicts before they occur, since the system is
able to notify interested resources, as soon as an artefact
is checked-out and potentially before substantial
modifications are applied to it.
ADAMS also enables software engineers to subscribe
events they would like to be notified about. Events mainly
concern the operations performed on artefacts and
projects. For example, an event could be the modification
of the status of an artefact or the creation of a newer
version for it. A number of events are automatically
notified without any need for subscription. Examples
include notifying a software engineer he/she has been
allocated to a project or an artefact.
Events concerning the production of new versions of an
artefact are also propagated through the traceability layer
of ADAMS to the artefacts (and consequently to their
managers) depending directly or indirectly on it (see
Section 6).
ADAMS provides direct communication mechanisms
between software engineers, such as e-mails. Moreover,
cooperation between software engineers during iterative
software processes is supported through the possibility of
sending feedbacks concerning software artefacts.
Software engineers that make use of previously developed
artefacts to produce new artefacts might send feedbacks to
the input artefacts in case of problems (see Figure 5).
Feedbacks are then notified to artefact mangers to make
decisions about. Feedbacks and event-based traceability
are the two mechanisms used by ADAMS to support
process management.

6. Support for traceability

Besides providing versioning and composition of
artefacts, ADAMS provides support for artefact
traceability. The project and artefact managers can create
and store traceability links between artefacts either in the
same hierarchy (e.g., between two functional
requirements in the requirement document) or in different
hierarchies (e.g, between a functional requirement and a
module in the design document).
The traceability links between artefacts involved in the
same project are modelled in terms of dependences
between them. A dependence consists of a relation
between two artefacts, together with some additional
information to specify the type of dependence, as starting
conditions, production constraints and output rules.

Besides being useful for impact analysis during software
evolution, traceability links in ADAMS are also useful to
manage the software process and notify software
engineers that the production of a given artefact can start,
or that an artefact has to be changed, because of some
changes in artefacts it depends on. Dependencies can be
mandatory or optional for the software development
process. Through the dependencies it is possible to
specify several things of the development process, such as
whether the production of an artefact needs a previously
developed artefact in draft or complete form and if the
new artefact will be an update of a previous artefact or the
latter has to be considered only as an input for the
production of the new artefact.
This event-based traceability approach to process
management, in addition to feedbacks, is much more
flexible than activity-based workflow management
systems, in particular with respect to the deviations from
the process model. In addition to event propagation
through the dependencies, the traceability links can be
visualized by a software engineer, while showing the
artefact he/she is working on (see Figure 5), and browsed
to look at the state of previously developed artefacts and
download latest versions, or to subscribe events on them,
in order to receive notifications concerning their
development.

Figure 5. Traceability visualization and event
subscription

7. Conclusion and future work

In this paper we have presented ADAMS, an artefact
based process support system that integrates project
management and artefact management features. Besides
coordinating distributed software engineers working on
the same artefact and providing versioning facilities like
configuration management systems, ADAMS also
support context-awareness through event subscription and
notification and artefact traceability. Traceability links are
used to propagate events concerning changes to an
artefact to the dependent artefacts, thus also increasing the
context awareness in the project.
ADAMS has been implemented as a web-based system
using Java technologies, Apache Tomcat 4.1 as web

server and MySql 4.0 as Database Management System.
The user interface of the system is implemented by 63
Java Server Pages. The code for the application logic and
data layer is composed of about 35K lines of java code,
spread among 20 servlets implementing the application
logic subsystems and 65 java beans providing data layer
functionalities. The database is composed of 32 database
tables.
ADAMS is currently being experimented in the Software
Engineering course of the Computer Science program at
the University of Salerno (Italy). Experimentation
includes about 60 students involved in seven different
projects.
Future work includes the integration and experimentation
in ADAMS of information retrieval techniques to support
a technical manager in correctly identifying and
maintaining traceability links between evolving software
artefacts [2]. Indeed, one of problems we have noticed
from the preliminary results of the experimentation of
ADAMS is the fact that often software engineers fail in
identifying and maintaining traceability links between
software artefacts in incremental and iterative processes.
Another advantage of using these techniques in ADAMS
is the fact that they can provide feedbacks concerning the
consistent use of domain terms within related software
documents.

References

1. V. Ambriola, R. Conradi, and A. Fuggetta, “Assessing
Process-Centered Software Engineering Environments”,
ACM Transaction on Software Engineering and
Methodology, vol. 6, no. 3, 1998, pp. 283-328.

2. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering Traceability Links between Code
and Documentation”, IEEE Transaction on Software
Engineering, vol. 28. no. 10, 2002, pp. 970-983.

3. L. Aversano, A. De Lucia, M. Gaeta, and P. Ritrovato,
“GENESIS: a Flexible and Distributed Environment for
Cooperative Software Engineering”, Proceedings of 15th

International Conference on Software on Software
Engineering and Knowledge Engineering, S. Francisco,
California, USA, 2003, pp. 497-502.

4. S. Bandinelli, E. Di Nitto, and A. Fuggetta, “Supporting
Cooperation in the SPADE-1 Environment”, IEEE
Transactions on Software Engineering, vol. 22, no. 12,
1996, pp. 841-865.

5. BitKeeper Home Page. http://www.bitkeeper.com.
6. F. Casati, S. Castano, M. Fugini, I. Mirbel, and B.

Pernici, “Using Patterns to Design Rules in Workflows”,
IEEE Transactions on Software Engineering, vol. 26,
no. 8, 2000, pp. 760-784.

7. J.Y.J. Chen and S.-C. Chou, “Consistency Management
in a Process Environment”, The Journal of Systems and
Software, vol. 47, 1999, pp. 105-110.

8. J. Cleland-Huang, C. K. Chang, and M. Christensen,
Event-Based Traceability for Managing Evolutionary

Change, IEEE Transaction on software Engineering,
vol. 29, no. 9, 2003, pp. 796-810.

9. G. Cugola, “Tolerating Deviations in Process Support
Systems via Flexible Enactment of Process Models”,
IEEE Transactions on Software Engineering, vol. 24 no.
11, 1998, pp. 982-1001.

10. G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI
Event-Based Infrastructure and Its Application to the
Development of the OPSS WFMS”, IEEE Transactions
on Software Engineering, vol. 27, n. 9, 2001, pp. 827-
850.

11. CVS Home Page. http://www.cvshome.org.
12. P. Grefen, B. Pernici, and G. Sánchez (Eds.), Database

Support for Workflow Management: The WIDE Project,
Kluwer Academic Publishers, February 1999; ISBN 0-
7923-8414-8.

13. D. Georgakopoulos, H. Hornick, and A. Sheth, “An
Overview of Workflow Management: from Process
Modelling to Workflow Automation Infrastructure”
Distributed and Parallel Databases, vol. 3, no. 2, 1995,
pp. 119-153.

14. J. C. Grundy, M. D. Apperley, J. G. Hosking, and W. B.
Mugridge, “A decentralized architecture for software
process modeling and enactment”, IEEE Internet
Computing, vol. 2, no. 5, 1998, p 53-62.

15. F. Maurer, “Supporting Distributed Extreme
Programming”, Proceedings of 2nd Conference on XP
Agile Universe, Chicago, IL, USA, 2002, Springer
Verlag, Lecture Notes in Computer Science Series, vol.
2418 pp. 13-22.

16. F. Maurer, B. Dellen, F. Bendeck, S. Goldmann, H.
Holz, B. Kötting, and M.Schaaf, “Merging Project
Planning and Web-Enabled Dynamic Workflow for
Software Development”, IEEE Internet Computing,
vol. 4, no.3, 2000, pp. 65-74.

17. D. Nutter, S. Rank, and C. Boldyreff, “Architectural
requirements for an Open Source Component and
Artefact Repository System within GENESIS”. In
Proceedings of the Open Source Software Development
Workshop, University of Newcastle (UK), 2002,
pp. 176-196.

18. Perforce Home Page. http:/www.perforce.com.
19. A. Sarma and A. van der Hoek, “Palantír: Coordinating

Distributed Workspaces”, Proceedings of the 26th IEEE
Annual International Computer Software and
Applications Conference, Oxford, UK, IEEE Computer
Society Press, 2002, pp. 1093-1097.

20. M. Smith, D. Weiss, P.Wilcox, and R.Dewer, “The
Ophelia traceability layer”, in Cooperative Methods and
Tools for Distributed Software Processes, A. Cimitile,
A. De Lucia, and H. Gall (editors), Franco Angeli, 2003,
pp. 150-161.

21. StarTeam Home Page. http://www.starbase.com.
22. Workflow Management Coalition, “Workflow

Management Coalition Interface 1: Process Definition
Interchange Process Model”, Document no.
WFMC-TC-1016-P, 1999, available from
http://www.aiim.org/wfmc/standards/docs/if19910v11.pdf.

Agent Technology Portfolio Manager

K. S. Barber, J. Ahn, N. Gujral, D. N. Lam and T. Graser
The Laboratory for Intelligent Processes and Systems, Electrical and Computer Engineering,

The University of Texas at Austin, Austin, TX 78712
{barber, jsahn, ngujral, dnlam, graser}@lips.utexas.edu

Abstract. Software agents are becoming a new means
of designing and building complex, distributed
software systems. Developing large-scale agent
systems requires the proper selection of agent
technologies where selection is based on where
adherence to the agent architecture structure and
satisfaction of domain (functionality, data, timing) and
installation requirements. The diversity of agent
technologies and the lack of a common framework for
describing these technologies challenges designer
attempting to evaluate, compare, and potentially reuse
agent technology. The technology selection and
evaluation process requires an adequate
representation of agent technologies in the context of
the agent-oriented competencies (e.g. sensing,
modeling, planning, acting) it can fulfill, the domain-
related functionality it can perform, and its
requirements of installation. This paper describes a
repository of agent technologies, Technology Portfolio
Manager (TPM) toolkit, which will assist the agent
designer in evaluating and selecting technologies
which map to the desired agent architecture and
requirements.

1. Introduction

Software agents have become an expressive and
useful archetype for developing complex software
architectures. Software agents encapsulate
functionality that enables them to perform activities on
their own or through interaction (e.g. coordination). To
help software architects manage the complexity of
specifying an agent-based architecture and selecting
appropriate agent-related technologies, an Agent
Competency Framework has been defined [2]. Agent
competencies define the minimum capabilities an agent
should have, and thus, defined the functional notion of
agency. In terms of functionality, an agent is an entity
that senses and acts in its environment, models the
environment and objects in its environment, and
deliberately plans or reacts towards a given goal [1].
Thus, the core agent competencies are sensing,
modeling, planning and acting (Figure 1).

Communication, organization and coordination are
additional competencies required to conduct some/all
of the core competencies within multi-agent systems
(as opposed to a single agent system). Agent
Competencies (ACs) offer fundamental building blocks
for defining and specifying all types of agents [7].
Given an agent architecture which results from
Designer’s Agent Creation and Analysis Toolkit [7],
the architect can use the Technology Portfolio Manager
to browse available agent-based technologies that
satisfy the competencies included in the architecture.

 A multi-agent system (MAS) designer is guided
by specific desired capabilities and properties, in the
context of a particular domain, for the entire system
and/or a particular agent. Thus, agent technologies are
developed / selected for a MAS by considering their
application to a particular domain and their ability to
offer desired capabilities (competencies).
Consequently, the designer must have a means for
viewing and comparing agent technologies with respect
to both competencies provided and domains supported.
However, when attempting to compare various agent
technologies or simply understand the breadth of agent
technologies, the designer encounters obstacles that
include the disparity in how agents are modeled and
the lack of separation between domain functionalities
and domain independent functionalities (Agent
Competencies). As a result of this diversity, agent
developers have difficulty comparing different views
of agent technology or even different implementations
of the same agent technology on some common basis
[7].

This research effort populates a tool, the
Technology Portfolio Manager (Figure 2), with four
sets of information and the relationships between these
sets: agent competencies, agent infrastructure services,
domain tasks in a particular domain (in this case UAV
surveillance) and agent technologies. Using the
Technology Portfolio Manager, the designer can
effectively compare technologies using a common
representation for describing agent technologies and an
intuitive interface that relates technologies to agent
competencies and domain tasks. Furthermore, the tool

allows the designer to interrogate the repository from
the perspective of:

technologies (displaying related domain tasks
and competencies satisfied by the selected
technologies),
domain tasks (displaying related competencies
and technologies capable of delivering
selected domain tasks),
agent competencies (displaying related
domain tasks and technologies capable of
satisfying the selected competencies).

The basic definition of the agent competency
ontology is described at Section 2. The complete
functionality and the scope of the agent technology
repository specified in the Technology Portfolio
Manager will be discussed in the following sections.

2. Agent Competency Ontology

The Agent competency ontology is the key for
describing (1) the critical criteria for agency and (2)
correlate domain tasks such as “Generate UAV
routing” to domain-independent competencies such as
“planning” and, in general, (3) offer a common
framework for representing and comparing agent
technologies. The Agent Competencies provide a
specification of agent capabilities that distinctly
delineate agent functionalities. By specifying agent
technologies in terms of these agent functionalities,
different views of agent design can be functionally
compared and a common understanding among agent
software engineers is promoted. Agent competencies
were based on the essential set of domain-independent
functionalities an agent delivers.

As seen in Figure 1, there are two types of agent
competencies that form the framework for specifying
agents. Core Competencies (CCs) define the essential
functionalities of an agent. Pluggable Competencies
(PCs) are also defined because agents interact with
other agents and entities in the system. PCs are not
essential in single-agent systems, but they need to be
considered in multi-agent systems [1] [7].

In addition to agent technologies, agent
implementations may depend on many infrastructure
related technologies necessary for design, run-time
operations, and analysis [5][6][8]. The following
subsections describe the agent competencies and
infrastructure services.

2.1. Sensing

The agent needs to acquire appropriate data from
other agents and the environment. The sensing
competency is composed of two sub-competencies,
data acquisition and data preprocessing.

Data acquisition is the internalization of data that is
external to the agent obtained by sensors or other
agents. Data preprocessing is the preliminary
manipulation of data that can be utilized by the agent.
The output of sensing is the sensed data useful for the
agent reasoning processes, such as semantic variables
and variables packaged into data structures.

2.2. Modeling

Modeling is the maintenance of the information
specified by the developer and/or derived from sensed
data. This information is critical for the performance
of the agent. If the information about the agent’s
environment is inaccurate, it may behave in seemingly
undesirable ways. An agent may model information
about itself, other agents in the system, available
resources, the environment, and objects in the
environment.

The modeling competency is decomposed into two
sub-competencies – variable characterization and
model revision. Variable characterization is the
association of properties to a variable. Given variables
originating from sensor readings or other agents, the
agent can associate properties. Model revision is the
integration of beliefs from variable characterization
into the current model. An agent can collaborate by
sharing beliefs and coordinate on verifying the
consistency of models.

Figure 1: Decomposition of Agent Competencies

2.3. Planning

For each goal that an agent has selected to achieve,
the agent must select actions to perform and schedule
the execution of those actions in an effective manner as
to achieve the goal or bring the agent closer to the goal.
In the pursuit of goals, agents need the capability to
generate actions that are possible in its current
situation, choose the appropriate action(s), and decide
when and by whom those actions will be executed.
The planning competency is decomposed into three
sub-competencies - plan generation, task allocation,
and plan integration.

2.4. Acting

Schedules of actions are received and handled by
the acting competency of the agent, which filters out
actions that are not relevant and executes the
appropriate actions at the appropriate times. The
acting competency is decomposed into two sub-
competencies – schedule realization and actuation.

2.5. Pluggable Competencies

In addition to CCs, when an agent operates in a
multi-agent system, it should also have the
functionality to communicate, to form organization(s),
and to coordinate with other agents in the multi-agent
system (MAS). These competencies are not included as
core competencies since single-agent systems may not
need such functionality. Instead, communication,
organization, and coordination are Pluggable
Competencies (PC) because they work in conjunction
with and in the context of CCs. PCs support the inter-
agent functionality that CCs may require in a MAS.

The communication competency is used to
interoperate with other agents, which is essentially the
intentional transfer of information. An organization
imposes societal structure on an otherwise disorderly
multi-agent system and establishes the relationships
among agents. Since data and control are distributed
among the agents, coordination is needed to prevent
conflicts or inconsistencies that occur among agent
tasks.

2.6. Infrastructure Services

Agent competencies (especially core competencies)
are associated with notion of agency. Additionally
every agent implementation has an associated
infrastructure, thus some of the agent technology
providers focus on infrastructure services. Tom
Wagner and Omer Rana [3] have pointed out that
building multi-agent systems requires a large amount
of software infrastructure and many systems require

planning, scheduling, transport, coordination,
communication, simulation, and module integration
technologies. Star and Ruhleder [4] mentioned that
infrastructures have the general character of being
embedded inside other structures; transparent (not
needing reinvention or re-assembly each time); of wide
reach or scope; learned as part of community
membership; linked to conventions and norms of
community practice; embodying standards, shaped by
pre-existing installed bases of practice and technology;
and invisible in use yet highly visible upon breakdown.

Therefore, we propose agent infrastructure services
categorized by: design, run-time, analysis.

design services are used during the design process
to specify multi-agent system (e.g., design
methodology),

run-time services are used as part of a multi-agent
system execution environment (e.g., security
module),

analysis elements are needed for analyzing the
behavior of multi-agent systems (e.g., evaluation
module).

3. Knowledge Acquisition Process

For this research effort, technologies to be
described in the Technology Portfolio Manager (TPM)
were developed as part of the Defense Advanced
Research Project Agency - Taskable Agent Software
Kit program. The TASK program was initiated with
the specific intent to advance state-of-the-art agent
technology as well as promote tools for easy agent-
oriented design and analysis. The process of populating
the repository was conducted in several phases
beginning with the collection of all the information
available about a technology in presentations and
papers posted by the technology providers (e.g.
researchers) involved in the DARPA TASK program.
Following initial modeling efforts, every Technology
Provider was interviewed to (i) verify the technology
models, specifically the mappings and (ii) obtain
additional information which might have been missed
during the interpretation phase from the gathered
papers and presentations. Mappings are the
relationships between the domain-specific capabilities
of the technology, and the domain independent agent
competencies and infrastructure services.

The models for mapping between the respective
technology, agent competencies and the domain-
specific capabilities were verified with the technology
providers. During the mapping process it was realised
that not all technologies were designed to offer agent
competencies but instead provided a foundation design,
operation or evaluation for the MAS through their
services. The notion of infrastructure services was
introduced in order to map these technologies in the
repository tool. Thus, the Knowledge Acquisition

Yellow

Red
Blue

Green

Reports, document the sources of the information as
well as the rationale for the mappings between the
technologies, CCs, PCs, ISs and the Domain Tasks.
The mappings and the rationale were confirmed or
verified through individual meetings with the
technology providers. After the mapping between the
technologies and the competencies was finalized, the
information and relationships were populated into the
TPM.

4. Technology Portfolio Manager (TPM)

In the context of the Technology Portfolio Manager, a
“technology portfolio” is defined as a collection of
technologies where the specifications of respective
technologies offered by different solution providers can
be showcased in order to understand their potential
contribution to an MAS design. The TPM is intended
to aid a designer when deciding, which technologies to
select for an agent design, depending upon the
competencies those technologies cover in a particular
domain. There are different queries that can be asked
depending upon what the user desires. This section will
explain the queries that can be issued by the user, the
intent or motivation of the user or designer in issuing

that query and then explain the results or outputs from
the tool. For this example, the TPM has been loaded
with the DARPA TASK Agent Technology
Repository, a collection of agent technology
specifications acquired and represented by UT-Austin
in the DARPA TASK program for the UAV
surveillance domain. As seen in Figure 2, the screen
displays (1) Agent Competency and infrastructure
service ontology; (2) agent technologies from various
providers; (3) domains to which agent technologies
have been applied; and (4) tasks in a selected domain.
The interface also allows users to issue queries by
selecting one or more competencies, infrastructure
services, technology providers, technologies, domains,
or tasks. The different areas of query formation can be
seen as tabs on the tool main window (Figure 2). The
issued query can be seen at bottom of the screen.

4.1. Queries selecting Agent Competencies and
Infrastructure Services

The most common query is: “For one or more agent
competencies and/or infrastructure services, what
technologies provide the selected competencies or
infrastructure services, and which domains and domain

Figure 2: Query with respect to Agent Competencies

Yellow

Red
Blue

Green

tasks are supported by those technologies?” This query
is issued by simply selecting (mouse click) one or more
agent competencies or infrastructure services in the left
most column. The MAS designer may want to know if
there are some technologies which are able to provide
some or all of the desired competencies or
infrastructure services. Additionally, for those
technologies shown to deliver the selected
competencies or infrastructure services the TPM
displays domain and domain tasks the technologies can
deliver. For the first part of the query it can be seen
that the tool responds by indicating the user-selected
core-competency in blue (in this case “Planning”) and
colors the related technologies. Technologies (in the
second column) in red do not support the competency,
while technologies in green and yellow fully and
partially support the competency, respectively. The
result of the second part is not shown here which
shows the highlighting of the domains and domain
tasks which are supported by the technologies in green
and yellow (Figure 2).

This query helps the designer in comparing the
technologies based on desired competencies related to
domains and domain tasks. If the designer wants to
know in detail if there are some technologies which are
able to provide some or all of the desired sub-
competencies or infrastructure sub-services and to
discover if those technologies support any domains and
constituent domain tasks then the query will be: “For
the given agent sub-competencies or infrastructure sub-
services, what technologies provide given sub-
competencies or infrastructure sub-services, and which

domains and tasks are supported by those
technologies?” This query is much similar to the first
query described but requires the user to select sub-
levels of the competencies or infrastructure services.
The tool lets the user select multiple competencies or
infrastructure services (both core and sub) as the
criteria for making a query.

4.2. Queries selecting Technologies

By selecting a technology provider or a respective
technology the user issues the following query: “For
given technology providers (technologies), what
competencies and infrastructure services do technology
providers (technologies) support, and to which
domains
and tasks have those technologies been applied?” The
designer for MAS may want to know which
competencies and infrastructure services are provided
by the selected technology providers and/or
technologies. The results of the above query are shown
in the Figure 3. For the first part of the query it can be
seen that the TPM responds by indicating user-selected
technology provider of interest in blue (in this case
“Metron”) and coloring the related competencies.
Competencies are colored based on the constituent sub-
competencies supported by the technology: red for
none, yellow for some, and green for all. Domain tasks
to which one of the technology provider’s technologies
has been applied are colored in green, and the “UAV”
domain is colored in yellow, indicating that the
technology provider does not have technologies that

Figure 3: Query with respect to Technologies

Figure 4: Query with respect to Domains

Yellow

Red
Blue

Green

Yellow

Red
Blue

Green

cover all the tasks defined under the “UAV” domain.
This query helps the designer in getting a crystal
picture of how much a technology provider covers a
particular domain, the agent competencies, and
infrastructure services.

The other query under this area of interest could be:
“For given technologies, what competencies and
infrastructure services do technologies support, and to
which domains and tasks have those technologies been
applied?” This query is more detailed, targeting one or
more technologies. The designer may want to go into
more detail to know which are the sub-competencies
and infrastructure sub-services provided by some or all
of the desired technologies and if those technologies
have been applied to respective domains and their
domain tasks.

4.3. Queries selecting Domains

The user might also be interested in the domain,
thus the query in this case would be: “For the given
domain(s), what technologies have been applied to
given domain(s), and which competencies and
infrastructure services do those technologies support?”
The designer may want to know which technologies
have been applied to the selected desired domains and
if the technologies support any of the competencies and
infrastructure services. As shown in Figure 4, the tool
responds to the user selecting a domain by highlighting
in blue all tasks associated with the “UAV” domain,
and coloring green all technologies (and corresponding
technology providers) that have been applied to at least
one of the “UAV” domain tasks (Column 4).
Competencies and sub-competencies are colored green
if they are supported by any of the highlighted
technologies. This query helps the designer in getting a
coherent view of how much a domain has been worked

on by different technology providers and the
competencies that can be applied to the domain and its
tasks.

4.4. Queries selecting Domain Tasks

By selecting one or more domain tasks, the user
asks: “For the given domain tasks, what technologies
have been applied to given domain tasks, and which
competencies and infrastructure services do those
technologies support?” When using this query, the user
is asking if any of the technologies have been applied
to some or all of the desired domains tasks and if the
technologies support some or all of the competencies
and infrastructure services. As shown in Figure 5, the
tool responds to the user-selected domain tasks by
highlighting the corresponding domain (in this case
“UAV” domain) and coloring green all technologies
(and corresponding technology providers) that have
been applied to at least one of the selected domain
tasks. Competencies and sub-competencies are colored
green if they are supported by any of the highlighted
technologies. This query helps the designer in getting a
coherent view of how much every or a group of
domain tasks has/have been covered by different
technology providers and the competencies that are
mapped to these domain tasks.

5. Related Work

To date, researchers have developed some fairly
sophisticated theories and technologies to be used in
agent systems. With the ever-increasing demand for
new software and the improvements in multi-agent
systems, widespread use of well-designed and well
supported agent technology offers tremendous
opportunity [10]. However, progress in this area of

Figure 5: Query with respect to Domain Tasks

agent software design is largely dependent on the
creation of better technology component libraries and
improved access mechanisms. Numerous design tools
for developing agent-based system have been
proposed. (e.g., agentTool [11], JAF [12], RETSINA
[13], Agentbuilder [14]). But building large scale
multi-agent systems from existing technology
components still remains a distant reality [9]. The
Technology Portfolio Manager (TPM) described herein
assists the designer in comparing technologies using a
common representation for describing agent
technologies and an intuitive interface that relates
technologies to agent competencies and domain tasks.
Through TPM, the designer can easily access existing
agent technologies and select technologies which map
to the desired agent architecture and requirements.

6. Summary

When designing a software system architecture
using available technology components, an architect
evaluates various technology combinations with
respect to the degree to which selected technologies
meet stated requirements. For a Multi-Agent System
architecture, technologies are evaluated with respect to
(i) agent-related “competencies” provided (core
capabilities that characterize agency including
planning, acting, sensing, modeling, communication,
organization and coordination), (ii) “infrastructure
services” offered (e.g. design, runtime, and analysis
services), and (iii) domain tasks supported (i.e., the
problem domain being addressed by the agent system).
The Technology Profile Manager (TPM) described in
this paper provides the designer with a tool for
browsing a repository of agent technology
specifications. Unique features of the tool include the
following: (i) The designer can evaluate how well
different technologies map to the desired agent
competencies or infrastructure services. (ii) The
respective coverage of every technology and its
provider can be analyzed with respect to a domain and
respective domain tasks.

These features support the designer when
performing the types of trade-off and what-if analysis
that are associated with selected agent technology and
deriving agent-based system designs.

In addition to describing the Technology Portfolio
Manager, this paper outlined the procedure followed
for building a repository within the TPM modeling
agent technologies developed by participants in the
DAPRA TASK program in the context of a UAV
search and surveillance domain. A significant step in
the procedure involved interpreting technology
information obtained from technology providers and
mapping that information to the “agent competency”
and “infrastructure services” ontology defined by
researchers at the University of Texas at Austin.

As part of ongoing research, the current repository
mappings will be extended to incorporate refinements
to the existing “competency” and “infrastructure
service” ontology. The TPM tool will also be
integrated into a suite of tools being developed to
support agent-based architecture definition and
analysis.

7. Acknowledgement

This research is sponsored in part by the Defense
Advanced Research Project Agency (DARPA)
Taskable Agent Software Kit (TASK) program,
F30602-00-2-0588. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation
thereon. The views and conclusions herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Project Agency.

8. References

[1] K. S. Barber and D. Lam, “Specifying and
Analyzing Agent Architectures using the Agent
Competency Framework,” 15th International
Conference in Software Engineering and
Knowledge Engineering, Redwood City, CA,
2003, pp. 232-239.

[2] K. S. Barber and D. N. Lam, “DACAT: Designer's
Agent Creation and Analysis Toolkit,” The
University of Texas at Austin, Austin, TX,
Technical Report TR2003-UT-LIPS-007, May 20,
2003.

[3] T. Wagner and O. Rana, Preface in Lecture Notes
in Artificial Intelligence: Infrastructure for Agents,
Multi-Agent Systems and Scalable Multi-Agent
Systems, Volume 1887, Springer-Verlag Berlin
Heidelberg, January, 2001.

[4] S. L. Star and K. Ruhleder, “Steps to an Ecology
of Infrastructure,” Information Systems Research,
vol. 7, 1996, pp. 111-138.

[5] L. Gasser, “MAS Infrastructure: Definitions,
Needs and Prospects,” In Lecture Notes in
Artificial Intelligence: Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent
Systems, Volume 1887, Springer-Verlag Berlin
Heidelberg, January, 2001, pp. 1-11.

[6] K. S. Barber, A. Goel, D. C. Han, J. Kim, D. N.
Lam, T. H. Liu, M. T. MacMahon, R. M. McKay,
and C. E. Martin, “Sensible Agents: An
Implemented Multi-Agent System and Testbed,”
The Autonomous Agents and Multi-Agent Systems
(AAMAS-2001), Montreal, Canada, p. 92-99."

[7] K. S. Barber, D. N. Lam, “Architecting Agents
using Core Competencies”, Autonomous Agents &

Multiagent Systems (AAMAS-2002), Bologna,
Italy, pp. 90-91.

[8] Mihhail Matskin, Ole Jorgen Kirkeluten, Svenn
Bjarte Krossnes, Oystein Sale “Agora: An
Infrastructure for cooperative work support in
multi-agent systems,” In Lecture Notes in
Artificial Intelligence: Infrastructure for Agents,
Multi-Agent Systems, and Scalable Multi-Agent
Systems, Volume 1887, Springer-Verlag Berlin
Heidelberg, January, 2001, pp. 28-39.

[9] D. Garlan, R. Allen,J. Ockerbloom “Architectural
Mismatch or Why it’s hard to build systems out of
existing parts” Proceedings of the Seventh
International Conference on Software
Engineering, Seattle, Washington, April, 1995, pp.
179-185.

[10] K.S. Barber, Sutirtha Bhattacharya “A
Representational Framework for Technology
Component Reuse”, Proceedings of the 13th

International Conference on Software and Systems
Engineering and their Applications (ICSSEA
2000), Grenoble, France, pp. 285-288.

[11] Scott A. DeLoach & Mark Wood, “Developing
Multiagent Systems with agentTool.” in Intelligent
Agents VII. Agent Theories Architectures and
Languages, 7th International Workshop, Lecture
Notes in Computer Science, Vol. 1986, Springer
Verlag, Berlin, 2001, pp. 46-60.

[12] Vincent, Regis; Horling, Bryan; and Lesser,
Victor. “An Agent Infrastructure to Build and
Evaluate Multi-Agent Systems: The Java Agent
Framework and Multi-Agent System Simulator”.
In Lecture Notes in Artificial Intelligence:
Infrastructure for Agents, Multi-Agent Systems,
and Scalable Multi-Agent Systems, Volume 1887.
January, 2001, pp. 102-127.

[13] K. Sycara, J.A. Giampapa, B.K. Langley, and M.
Paolucci, "The RETSINA MAS, a Case Study,"
Software Engineering for Large-Scale Multi-Agent
Systems: Research Issues and Practical
Applications, Alessandro Garcia, Carlos Lucena,
Franco Zambonelli, Andrea Omici, Jaelson Castro,
ed., Springer-Verlag, Berlin Heidelberg, Vol.
LNCS 2603, July, 2003, pp. 232-250.

[14] AgentBuilder, Inc, “Agent Construction Tools”
http://www.agentbuilder.com/AgentTools/, 2/2001

AgentService

Antonio Boccalatte1 Andrea Gozzi2 Alberto Grosso3 Christian Vecchiola4

Department of Communication, Computer, and System Sciences
{1nino, 2gozzi, 3agrosso, 4cristian}@dist.unige.it

Abstract

AgentService is an agent-programming framework based
on the Common Language Infrastructure (CLI). AgentSer-
vice exploits CLI’s innovative features like the applica-
tion domains and remoting to design its core elements.
In this paper, the modular architecture, the angent model,
and the scheduling system of AgentService will be dis-
cussed. Particular attention will be given to the issues that
make AgentService a productive, effective, and customiz-
able agent-programming environment.

1. Introduction

The need of interoperability with new technologies has
made software complex. Software developers no longer
have the time to build real and effective applications from
scratch, thus a great emphasis is now placed on reusable
code, reusable components, and reusable patterns [1]. To-
day’s programmers rely on pieces of code from many dif-
ferent sources that work together correctly and reliably, pro-
viding new applications with useful features. Component
Software [2], a development methodology in which inde-
pendent pieces of code are combined to create application
programs, has arisen in response to this trend. Component-
aware software environments are now widely adopted in
professional software development.

Object-oriented programming and Component Software
are definitely valuable technologies, but sometimes a dif-
ferent approach is more useful and effective. Dynamic en-
vironments where relations among components frequently
change are designed and implemented effectively by using
the agent-oriented paradigm. Agents’ theory was especially
designed for these scenarios: agents adapt their behaviour
to the mutable conditions of the environment and interact to
achieve the best performance. Multi-agent systems (MASs)
are the common expression of agent-oriented programming.
Building a multi-agent system is difficult: MASs applica-
tion programming requires skills in traditional distributed
and concurrent systems. Furthermore, additional difficul-

ties arise from flexibility requirements and the need of so-
phisticated interactions.

This paper presents a solution that takes advantage of
both agent-oriented programming and Component Soft-
ware. AgentService is an agent-programming framework
based on the Common Language Infrastructure (CLI). The
CLI is the programming and execution environment of
AgentService: agents developed with AgentService have
full access to the wide world of components and can seam-
lessly exploit the wide set of services offered by means of
the CLI. In the following sections, the architectural model
and the design decisions made in the implementation of
AgentService will be discussed: particular attention will
be given to those issues that make AgentService a produc-
tive, effective, and customizable agent programming envi-
ronment.

2. Background

2.1. Agents and Multi-agent Systems

A software agent is an autonomous software entity with
some level of ”intelligence” [3]. While a complete defini-
tion of software agent is still an open issue [4], some qual-
ities that characterize this concept are widely accepted by
the community of researchers. Agents are situated in an en-
vironment and interact with it in order to meet their design
objectives. By means of cooperation, negotiation, and com-
petition agents interact with other agents to enhance their
performance. These qualities characterize the agent’s so-
cial ability. Pro-activity and reactivity make the agents ex-
hibit a flexible and autonomous behaviour. Pro-activity is
the ability to show goal directed behaviour by taking ini-
tiative, while reactivity is the ability to cope with the en-
vironmental changes in a timely fashion. Pro-activity and
reactivity define agents as intelligent software entities. For
these reasons, agents are more sophisticated structures than
objects: they have control over their behaviour (not only
over their state); agents interact with a set of messages that
define a conversation (not by method invocation). Never-
theless, they are implemented as autonomous, concurrent,

and self-contained objects.
Agents have been designed to operate in a community.

Such a community is normally called a multi-agent sys-
tem (MAS) [5]. MASs are decentralized systems with dis-
tributed control and asynchronous computation, they pro-
vide a runtime environment and define the infrastructure
for the agent interaction and communication. MASs pro-
vide a set of useful services to agents as message transport
system and directory services. An abstract specification of
a generic MAS was proposed by the Foundation of Intel-
ligent Physical Agents (FIPA) [6], an international organi-
zation promoting standards for agent technologies. The ar-
chitectural model proposed by FIPA is commonly used as a
reference in comparing different MASs implementations.

2.2. The Common Language Infrastructure

Common Language Infrastructure is an ECMA [7] and
ISO-IEC [8] standard that defines a virtual execution envi-
ronment. CLI is a component oriented programming plat-
form where language-agnostic modules of code are exe-
cuted in a secure manner.

The Common Language Infrastructure has been de-
signed to serve different programming languages. It offers a
full-featured class library and a wide set of runtime services
that guarantee proper code execution. Language interop-
erability is one of the most interesting features of the CLI:
modules written in different programming languages can be
seamlessly and effortlessly integrated without building ad-
hoc software connectors. Although language interoperabil-
ity can also be implemented with other technologies (i.e.:
the java virtual machine), such a possibility has not been
exploited while it is possible to write CLI-oriented applica-
tions in more than 20 programming languages.

The Common Language Infrastructure comes with two
innovative concepts: application domains and remoting.
The application domain is the unit of execution inside the
CLI and also defines the granularity of the security policies
applied to code execution. Many application domains can
be hosted in a single process and each application domain
can have different permissions. Application domains are
”lightweight address spaces” and CLI enforces restrictions
on passing data between domains: objects that wish to com-
municate across domain boundaries must use special com-
munication channels and behave according to specific rules.
This technique, referred to as remoting, can be used to com-
municate between application domains running on different
physical computers, operating systems, and processors.

Different implementations of the CLI made this pro-
gramming and executing environment available on many
operating systems and hardware platforms. A shared source
implementation of CLI is SSCLI also known as Rotor [9].

3. The AgentService Programming Platform

AgentService is an agent-programming platform devel-
oped on top of the common language infrastructure. The
core features of AgentService are:

• a new agent model that simplifies the design and the
implementation of agents;

• a multi-agent system that hosts agents and define their
runtime environment;

• language support to the development of agents with
Agent Programming eXtensions (APX);

• a complete integration with the CLI that allows access
of the wide world of components to the agents.

In the following the previously described features will be
investigated in detail and a particular attention will be given
to the scheduling of the agents and their activities.

3.1. Agent Model

Within AgentService, agents are designed as software
entities whose activity is defined by a particular managed
set of data (Knowledge objects) and performed by a set of
concurrent tasks (Behaviour objects). Knowledge objects
hold all the information shared by different behaviour ob-
jects and they set and constitute the knowledge base of the
agent. Knowledge objects are persisted and maintained by
the platform in order to have a fail-safe recovery in case
of system crash. In this way, agents are able to maintain
their state safely. Behaviour objects define the agent tasks
and contain all the agent computational logic. Behaviours
have been designed to be concurrent and they do not have
to be divided into different steps to allow concurrency (con-
currency is guaranteed by the run-time environment of the
agents). Behaviours can also have proper private data, but
such data are not persisted like the knowledge objects.

The distinction between activities and data allows a clear
decomposition of the agent definition. Furthermore, it is im-
portant to note that knowledge objects can hold any type of
objects defined in the CLI, while behaviours are designed as
components so they can fully exploit all the features of the
object-oriented model defined in the CLI. Such a flexible
structure allows the developers to perform a fast prototyp-
ing of agents: new behaviour and knowledge types can be
programmed, or they can be chosen from ready-to-use li-
braries. Hypothetically, the agent designer only needs to
know the features of the components and assemble them
into an agent definition without writing any line of code for
the agent computation. Of course, this is not likely to hap-
pen, but the simple reusability of already designed compo-
nents (i.e. knowledge and behaviour objects) is an impor-
tant advantage since it speeds up the implementation and

allows the design of safer code (components already used
probably contain less bugs than new ones).

While many agent programming frameworks adopt the
BDI architecture [10], AgentService offers a more flexible
model. The BDI architecture, as well as other agent archi-
tectures, can be effortlessly implemented with the proposed
model. As pointed out by Rao and Georgeff [11], the im-
plementation of a BDI architecture leads to the definition of
the following elements:

• belief set;

• goal set;

• plans.

Beliefs and goals can be easily modelled with knowledge
objects, while a proper implementation of plans is given by
the behaviour objects. An additional behaviour acting as the
BDI engine needs to be designed. Such a behaviour looks
at the knowledge representing the goals and schedules the
proper beahviour plans according to the information stored
in the knowledge representing the belief set.

AgentService distinguishes between the definition of
agent and its live instance at run-time. The formers are
called agent templates, while the others are the real agents.
The relationship between the two entities is similar to the
relationship between the class type and its instances: each
agent instance acts according to the corresponding agent
template. It is worth noting that the instances of agents do
not strictly have the type of their template, but complete
different classes are instantiated at run-time. By means of
reflection, the agent template is inspected and the agent in-
stance is created according to that model. The running in-
stance of the agent has all the necessary stubs to exploit
the platform services and to interoperate with other agents,
while the agent templates and the behaviour objects deal
with proxies of these services only. The advantages of such
separation are:

• the behaviour designer is able to program the be-
haviour components as if they were plugged in the run-
time host that is the agent instance;

• the agent definition and the agent instance remain
loosely coupled;

• the run-time support can be easily customized also by
varying the implementation of those stubs needed by
the agent template;

• the run-time support can be also modified in its struc-
ture without affecting the agent template interface (in
case of inheritance relationship this task is harder to
accomplish).

The separation between the agent definition and its running
instance offers interesting advantages. Common implemen-
tations of the agent model use an abstract agent class spe-
cialized by inheritance in order to define new agent types.
The types used at runtime are the same defined by the pro-
grammers. Such a model leads to high coupling and reduces
the possibilities of customization. By using the proposed
agent model, different components and hosts can be config-
ured for the AgentTemplate derived classes, so that a more
effective support can be obtained. Even if AgentService is
built on a portable runtime, specific platform services can
be adopted to enhance the performance. The high level of
componentization allows the easy integration of these ser-
vices.

3.2. Platform Architecture

The AgentService platform has been designed follow-
ing the FIPA abstract architecture specifications [12]. The
FIPA guidelines require the presence of some compulsory
components that handle the core functionalities of the multi-
agent system. These components are implemented as agents
and they are:

• the agent management system (AMS): it is the super-
visor and the controller of the MAS, it is responsible
for the agent scheduling;

• the directory facilitator (DF): it offers directory ser-
vices (i.e. yellow pages) to the agents of the platform
and its external clients;

• the message transport system (MTS): it handles the
messaging system of the platform and the inter-
platform communication.

By using the multi-behavioural model previously described,
the different tasks performed by each component have been
modelled with the abstraction of the behaviour. Since these
agents represent the core components of the platform, par-
ticular attention has been given to their design: while the
communication among the agents programmed by develop-
ers can occur by the messaging systems only, each agent
has a direct access to the core agents. This is a critical is-
sue because agents lose the control over their behaviour by
direct method invocation. It is worth to noting that agents
have access to these elements by using strict interfaces and
proxies that prevent agents from having explicit object ref-
erences to the core agents. In this way AMS, DF, and MTS
maintain their autonomy and provide the best performance.

The platform is divided into several modules that can be
configured in order to adapt the platform to different con-
texts; some services might be not critical for the platform
activity and can be switched off if they are not required.

Fundamental modules have the same degree of customiza-
tion of the complementary ones; moreover, ad-hoc imple-
mentations can be provided to better exploit the features of
the operating system that hosts the platform. These modules
cover:

• the messaging subsystem and infrastructure;

• the persistency subsystem;

• the storage management system.

AgentService provides a standard implementation of these
components relying only on the Common Language In-
frastructure services, yet specific and ad-hoc implementa-
tion can be provided during installation time. AgentService
deals with them seamlessly by means of clear-cut interfaces:
AMS, MTS, and DF are automatically configured with the
installed components in a transparent manner. These com-
ponents along with the core agents constitute the bulk struc-
ture of the AgentService architecture.

The messaging subsystem provides the agents with a
communication channel for message exchange. The de-
fault implementation is based on CLI remoting in order to
provide this service. Different implementations can be in-
stalled: administrator of MASs might decide to rely on ex-
ternal messaging systems like Message Queuing systems in
order to provide a wider set of service.

The persistency subsystem is responsible of saving and
restoring the knowledge base of agents in case of system
crash. The default implementation relies on object serial-
ization and uses the file system as storage. High critical
scenarios should require a more robust persistence system,
i.e. a relational database.

The storage management system handles the installa-
tion of the assemblies containing the definition of agent
templates, behaviour objects, and knowledge objects. Ev-
ery time a new agent type is deployed on the platform, all
the dependent assemblies need to be placed in the storage.
When an agent is instantiated all the necessary information
for its creation and its execution have to be found in the
storage.

3.3. Agents Scheduling

Agents scheduling is one of the innovative features of
AgentService: the scheduling model used by the platform
guarantees the required autonomy to the agents and of-
fers a real multi-threading context to the programmers.
Scheduling of agents is based on CLI application domains:
AgentService uses an application domain for each agent
running on the platform while the multi-behavioural activ-
ity of agents is obtained by assigning one thread to each be-
haviour object used by the single agent. Concurrency and

race conditions among behaviours are avoided by using syn-
chronization structures built inside AgentService.

Agent programming frameworks deal with the critical is-
sue of scheduling by proposing two solutions: the creation
of a separate process for each running agent and the use of
one thread for each agent. The implementation of agents
as operative system processes ensures isolation: each agent
has a separate address space and resource sharing among
processes is achieved by an explicit cooperation. Processes
cannot be easily managed from other processes: only the
operative system scheduler has complete control of their ex-
ecution. An alternative solution is given by assigning one
thread to each agent. The use of threads allows an easy
management of agents: by using the common operative sys-
tem APIs, agents can be started, stopped, resumed, and ter-
minated. Threads do not guarantee the required isolation
since threads in the same process share the same address
space. Furthermore, threads cannot be given different ex-
ecution permissions and they normally run with the same
privileges of the owning process. Nonetheless, the common
adopted solution for agent scheduling is the use of threads.

Application domain are a better solution for agents’
scheduling since they solves many of the problems previ-
ously listed. Application domains are lightweight processes
that live inside a process and they can run with user privi-
leges different from the owning process and have a separate
address space; the only way to communicate with them is
using remoting. These features guarantee the required au-
tonomy and isolation for each agent running. Application
domains allow multi-threading: this characteristic gives the
agents a real multi-behavioural activity. Finally, applica-
tion domains can be managed as threads by the owning pro-
cess and their setup is lighter than the process setup. The
easy management of application domains allows the plat-
form scheduler to control the agent activity in a smart and
simple way. It is worth noting that the platform is the only
entity that needs to control the activity of agents and the
platform process is the only process that store references to
the dependent application domains. This does not break the
isolation and the autonomy requirements of the agent pro-
gramming model.

Many advantages gained with application domains can
also be obtained by implementing ad-hoc infrastructures
and layers of code that perform the missing functionalities.
This task is time consuming and unnecessary when a de-
velopment platform gives you the built-in components that
perform the same work and they are completely integrated
with the run-time environment. Application domains are
fundamental elements within AgentService and simplify the
scheduling system of the platform: most of the work is per-
formed by the hosting operating system that reasonably of-
fers a reliable service. AgentService also has a scheduling
subsystem that controls the agents’ activity and assigns to

them the required user privileges and the appropriate exe-
cution priority. Such a component relies on the CLI sched-
uler but custom implementations can be provided in order
to give a more sophisticated scheduling policy. This is a
critical task and a custom scheduler should be implemented
only when it is very necessary.

3.4. Services and Interoperability

AMS, DF, and MTS provide services not only to agents
running on the platform, but also to external clients. Interac-
tion with other FIPA compliant platforms and legacy soft-
ware is obtained by exposing these components by means
of standard technologies and protocols as HTTP, HTML,
and Web Services. AgentService relies on remoting in or-
der to provide access to the FIPA components: AMS, MTS,
and DF simply open a remoting channel to serve external
requests. Ad-hoc adapters have been designed to provide
a web interface and a web service front the end: these
components simply act as a bridge between the different
technologies, and make available platform services through
worldwide standards. These elements are not components
of the AgentService core and use the proprietary technol-
ogy (i.e. ASP.NET) that is not part of the CLI. This archi-
tecture clearly separates the proprietary technologies from
the AgentService portable core and it allows the use of third
party implementations that can substitute the common com-
ponents.

3.5. Language support

AgentService simplifies the definition of agent tem-
plates, behaviours, and knowledge types by using the Agent
Programming eXtensions (APX) [13]. The Agent Program-
ming eXtensions package provides the developer with a set
of templates for the design and the implementation of soft-
ware agents. APX also include a tailored compiler targeting
agents to the AgentService platform. APX are built on top
of the Common Language Infrastructure and they strongly
rely on language interoperability. APX does not implement
a general-purpose language: there are no first class types
but run-time managed templates that can be programmed
by the agent developer in a C#-like syntax. The advantages
obtained by using APX are the following:

• APX have a clear agent oriented interface: the key el-
ements of the agent model are exposed with specific
constructs that are part of the language;

• APX have a semi-automatic handling of concurrency:
knowledge objects can only be accessed inside syn-
chronization blocks and are not visible outside of these
blocks;

• APX offer exactly what the agent designer needs: the
developer can only define agent templates, knowledge
types, and program behaviours and rely on the other
programming languages to define the object oriented
aspects of the software project. Programmers cannot
design illegal code (i.e.: storing references to agents);

• APX syntax is very similar to C#-syntax: the grammar
for expression and statements is almost identical to the
C# one. Few productions have been added and they
are used to express the key elements of the underlying
agent model;

• APX are a full client of the object-oriented model:
each component designed for the CLI can be imported
and instantiated as in any other CLI compliant pro-
gramming language.

The reduced grammar of APX can appear incomplete: APX
defines templates and does not allow the management of
these templates inside the language. This is a particular de-
sign choice that clearly reflects the underlying agent model:
the programmer does not have to manage the types it defines
since this task is performed by the platform. Furthermore,
APX does not allow the definition of classes or interfaces
but leverage on language interoperability to have full access
to object-oriented model defined in the CLI. This aspect
underlines the clear agent oriented interface of the exten-
sions: APX have been designed to work in synergy with the
other programming languages while keeping the two pro-
gramming models separate.

4. Conclusions

This paper presented AgentService an agent oriented
framework. The key factors of AgentService are the agent
model, the scheduling of agents and its modular architec-
ture. While many agent-oriented frameworks adopts Java
as implementation technology, AgentService is built on top
of the Common Language Infrastructure and it exploits all
innovative features of CLI. In particular, the use of appli-
cation domains and remoting has been a successful design
choice, which has favoured the implementation of a flexible
and reliable run-time structure for the agents hosted in the
multi-agent system.

AgentService has been designed in order to be portable
on different operating systems and platforms. Thanks to its
modular architecture, it can be tailored to exploit the spe-
cific advantages of the hosting operating system. Further-
more, the Agent Programming eXtensions offer an effec-
tive way to design and to implement agents. The full inte-
gration with CLI and the use of language interoperability,
make APX offer a powerful programming environment by
maintaining a clear agent oriented interface.

All these features make AgentService a valuable agent-
programming framework that supports the software devel-
oper in every phase of the software project: from the design
to the deployment.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, ”De-
sign Patterns: Elements of Reusable Object-Oriented
Software”, Addison Wesley, Reading, Massachusetts,
1994.

[2] C. Szyperski, ”Component Software - Beyond Object-
Oriented Programming” 2nd Ed., Addison-Wesley,
ACM Press, 2002.

[3] M. Wooldridge, N. R. Jennings, ”Intelligent Agents:
Theory and Practice”, The Knowledge Engineering
Review, 10(2):115-152, 1995.

[4] S. Franklin, A. Graesser, ”It is an Agent, or just
a Program?: A Taxonomy of Autonomous Agents”,
Proceedings of the Third International Workshop
of Agent Theories, Architectures, and Languages,
Springer-Verlag, 1996.

[5] G.Weiss, ”Multiagent Systems - A Modern Approach
to Distributed Artificial Intelligence”, G.Weiss Editor,
MIT Press.

[6] Foundation of Intelligent Physical Agents (FIPA),
http://www.fipa.org

[7] Standard ECMA-335: Common Language In-
frastructure (CLI) 2nd Editino, Dec. 2002,
ECMA, available at: http://www.ecma-
international.org/publications/standards/Ecma-
335.htm.

[8] Standard ISO/IEC 23271:2003: Common Language
Infrastructure, March 28, 2003, ISO.

[9] Microsoft Shared Source CLI, available at:
http://msdn.microsoft.com/library/default.asp?url=
/msdnmag/issues/02/07/sharedsourcecli/toc.asp

[10] A. Rao, M. Georgeff, ”BDI Agents from theory to
practice” in Proc. 1st Int. Conf. on Multi-Agent Sys-
tems (ICMAS-95), San Francisco, USA, April 1995.

[11] A. Rao, M. Georgeff, D. Kinny, ”A methodology and
modelling technicque for systems of BDI Agents”
in Proc. 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World (MAA-
MAW’96), January 22-25, 1996, Eindhoven The
Netherlands.

[12] FIPA Abstract Architecture Specification, available at
http://www.fipa.org/specs/fipa00001/

[13] C. Vecchiola, M. Coccoli, A. Boccalatte, ”Agent Pro-
gramming Extensions relying on a component ori-
ented infrastructure”, Proceedings of the 2003 IEEE
International Conference on Information Reuse and
Integration (IRI - 2003), Oct. 26-29, 2003, Las Vegas,
NV.

An Analytical Framework for Consistency Maintenance Mechanisms in
Collaborative Editing Systems

Liyin Xue
Dept of Computing

Macquarie University
Sydney, NSW 2109 Australia

lyxue@ics.mq.edu.au

Mehmet Orgun
Dept of Computing

Macquarie University
Sydney, NSW 2109 Australia

mehmet@ics.mq.edu.au

Kang Zhang
Dept of Computer Science

University of Texas at Dallas
Richardson, TX 75083-0688,USA

kzhang@utdallas.edu

Abstract. This paper proposes an analytical framework for
consistency maintenance mechanisms in collaborative editing
systems. Unlike the existing frameworks, it takes into account
the involvement of human users in the consistency
maintenance process. The framework classifies consistency
maintenance mechanisms into four categories, i.e., rule-based
automatic conflict prevention, conflict prevention by user-
centred meta-negotiation, rule-based automatic conflict
resolution, and conflict control by negotiation. It suggests
some new consistency maintenance issues in Internet-based
real-time collaborative editing environments.

1. Introduction

With the development of the Internet, groupware systems have
become more widespread. Collaborative editing systems or
group editors are a particular type of groupware systems. They
are designed to support multiple users to jointly edit, annotate,
and revise a shared document. The goal is to support the
cooperation and collaboration processes between co-authors
[28].

In terms of time dimension, collaborative editing systems
can be classified into synchronous (or real-time) and
asynchronous ones [12]. Asynchronous collaboration occurs
when co-authors work on the same document at different
times. A real-time group editor is a system that allows multiple
users to simultaneously edit a document without the need for
physical proximity [25].

In terms of system architecture, there are three categories
of collaborative editing systems: centralised, replicated, and
hybrid [8]. Generally, centralised systems are easier to
implement and particularly suitable for tightly-coupled
collaboration in local area network (LAN) environments. The
replicated or hybrid systems have a more responsive interface
but need more effort to implement. They are suitable for
loosely-coupled collaboration over the Internet.

Since a shared document is under the editing of multiple
users, consistency maintenance becomes a major issue to the
system designers. In a loosely-coupled, distributed, real-time
group editing environment based on the Internet, the What
You See Is What I See (WYSIWIS) property cannot be
guaranteed, that is, each user cannot instantly see changes
made by other users to shared objects, so users may
unknowingly happen to edit the same part of the document at

the same time [22]. Therefore, the major challenge of
consistency maintenance is the management of multiple
streams of concurrent activities so that document consistency
can be maintained in the event of conflicts [9]. Many existing
systems use various techniques (e.g. locking) invented for
database systems to prevent such a contention [13, 22].
However, the conflict prevention strategy of database systems
is in contradiction to the spirit of collaboration in groupware
systems. A consistency maintenance mechanism must
facilitate the discussion and negotiation process amongst the
involved users rather than inhibit the expression of their
different opinions or intentions.

There have been some efforts in proposing innovative
techniques for consistency maintenance in real-time
collaborative editing systems, which take into account human
users’ intentions and are particularly suitable for wide area
network environments, like the Internet [6, 27, 30, 31, 33, 34,
35, 36, 38]. However, it is not clear how these techniques are
related to the traditional ones invented for database systems. It
is necessary to have an analytical framework to systematically
examine the existing consistency maintenance mechanisms,
which may shed light on new directions for the exploration of
new mechanisms.

The rest of the paper is organised as follows. Section 2
proposes our new taxonomy of consistency maintenance
mechanisms. Based on it, four categories of consistency
maintenance mechanisms are systematically examined from
section 3 to 6. Finally, Section 7 compares our work with
related work and summarises the major contributions of this
paper.

2. An Analytical Framework

Consistency maintenance is a well-studied topic in distributed
systems, mobile systems, and database systems. Generally, the
consistency maintenance mechanisms implemented in these
systems are system-oriented in the sense that consistency is
predetermined or automatically enforced by the systems
without the involvement of end users. Many research
prototypes of groupware systems simply adopted the
mechanisms implemented in these systems. In order to
provide support for the situated negotiation among
participating users, some prototypes took into account human
user intentions [20, 32, 38]. Therefore, our first dichotomy of
consistency maintenance mechanisms is users’ involvement in

or detachment from the maintenance processes. Conceptually,
it captures the fundamental difference between database
systems and collaborative systems. Technically, it is useful in
classifying the existing consistency mechanisms that are either
system-oriented or user-centred.

Theoretically, we can reach a unified view of consistency
by arguing that consistency is an agreement (or inter-
subjectivity) among human users in groupware systems [37].
With such a user-centred interpretation, the system-
predetermined consistency is simply an agreement reached in
advance (i.e., before the ongoing collaborative work) among
the group members. In contrast, the agreement reached after
situated negotiation among the users is referred to as emergent
consistency. From this perspective, the end users’ actions and
interaction become the focus of our examination.

A single-user editor provides the users with interaction
functions such as tailoring (configuring), browsing, editing,
and annotating, etc. Each of them has a corresponding
category of user actions. More importantly, multi-user editors
must deal with communication and collaboration aspects of
interaction in addition to those supported in single-user editors.
We introduce two actions that are more group oriented, i.e.,
meta-negotiation and semantic-negotiation, to model these
aspects of user actions.

All user actions could be broadcast to remote sites.
However, a user may not be allowed to activate a particular
function of an editor. By meta-negotiation we mean that users
may not have been granted the necessary right to browse, edit,
or annotate particular part of the data, or to tailor specific
functionality of the application, thus they need to negotiate
with others in order to have the right before they can activate
the functions. For example, access control is an example of
meta-negotiation. Whether a user has the right to access a data
item is pre-determined by the system administrators or its
owner in many groupware systems. The meta-negotiation
functions are defined and implemented in advance, and
configured by system administrators. Meta-negotiation could
be user-centred in the sense that the access right is a result of
negotiation between users during the ongoing cooperation
process. For example, if a data item is locked, a user may
activate a meta-negotiation command to ask whether the
current lock owner can release his/her lock. It is up to the lock
owner to make the decision.

Semantic-negotiation is an act of message exchanges by
various user actions or their combinations in order to reach
certain agreement among users, whereas meta-negotiation is
about the right to activate a particular action. Obviously,
semantic-negotiation is a higher-level user action, which may
involve various other user actions. Negotiation may happen as
users browse, modify, or annotate the data.

Now it is clear that consistency maintenance mechanisms
are functions that a system provides to support meta-
negotiation and semantic-negotiation among end users. These
functions may be automatically enforced by the system or
explicitly invoked by the end users.

Concurrency control is generally used to prevent
inconsistent concurrent updates in database and distributed
systems. This is the major meaning of the concept in the
literature, though it is sometimes intended to mean the general
consistency maintenance. We will use it in the more restrictive

sense. Meta-negotiation is related to the coordination of users’
access to the data or the functionality of the system in the
course of cooperative working. It can be supported by access
control and concurrency control mechanisms.

Since conflict prevention approaches are inherently
restrictive, some cooperative editing systems dispense with
any concurrency control altogether [12, 29]. In fact, these
systems rely upon social protocols and users’ awareness of
others’ actions to prevent conflicts, and hope that if conflicts
do occur, they can be quickly and easily resolved. However,
since the WYSIWIS property cannot be maintained in an
environment with a non-deterministic communication latency,
such as the Internet, preventing conflicts based on awareness
may not function well.

Without proper conflict prevention, conflicts seem
inevitable, and supporting mechanisms are needed to help
users resolve them. Conflict regulation, conflict resolution,
conflict control, and conflict management have been used to
mean consistency maintenance in groupware literature,
particularly in the area of asynchronous groupware systems.
We restrict them to mean mechanisms supporting human users
in resolving conflicts due to concurrent activations of some
functions of a collaborative editing system by different users,
or due to alternative intentions of multiple users to act upon the
same part of data. Semantic-negotiation can be supported by
conflict control mechanisms.

Based on the above discussion, our second dichotomy for
the classification of consistency maintenance mechanisms can
be identified as conflict prevention and conflict control.
Consistency maintenance covers not only conflict prevention
but also conflict control.

Rule-based automatic
conflict resolution

Conflict control by
negotiation

Rule-based automatic
conflict prevention

Conflict prevention by user-
centred meta-negotiation

SYSTEM USER

CONFLICT
CONTROL

CONFLICT
PREVENTION

Rule-based automatic
conflict resolution

Conflict control by
negotiation

Rule-based automatic
conflict prevention

Conflict prevention by user-
centred meta-negotiation

SYSTEM USER

CONFLICT
CONTROL

CONFLICT
PREVENTION

Figure 1 Taxonomy of consistency maintenance
mechanisms

With the above two dimensions, i.e., system-user and
prevention-control, we can classify consistency maintenance
mechanisms into four categories: rule-based automatic conflict
prevention, conflict prevention by user-centred meta-
negotiation, rule-based automatic conflict resolution, and
conflict control by negotiation. The taxonomy is illustrated in
Figure 1. Generally, on the one hand, with the absence of
human user’s involvement, the system prevents or resolves
conflicts automatically; on the other hand, the system may

provide some support to facilitate human users in preventing
or controlling conflicts in the coordination and cooperation
processes. In the following four sections, we will examine the
four categories of consistency maintenance mechanisms in
detail by illustrating some representative ones. It is worth
noting that our examination focuses on the analytical
framework rather than the individual mechanisms.

3. Rule-based Automatic Conflict Prevention

Access control and locking are the most widely used rule-
based automatic conflict prevention approaches in both
database systems and groupware systems [2, 13, 19]. They are
well-understood mechanisms in terms of both implementation
and system usage. There are some other variants based on
them. Conflicts are prevented automatically by the system
according to the rules configured in advance.

Predetermined turn-taking: With the predetermined
turn-taking approach, only one user at a time has the
“token/floor” to edit the shared data or to hold the group
pointer (e.g., in the case of computer-based teleconferencing).
Access to the token/floor is controlled by internal technical
protocols. The system passes the token/floor to each user
according to pre-specified rules (e.g., time-sharing scheme).
Users are in a passive state controlled by the system.
Obviously it does not support concurrent user actions.

Locking: With the locking approach, a shared data item is
first locked under the implicit or explicit request of a user
before it is updated [13]. So only one user at a time is able to
update it. Conflicts can be prevented by locking, but locking is
undesirable because it interrupts users in their work, inhibits
collaboration, and causes unnecessary overhead in
collaborative systems. The overhead of requesting and
releasing locks will increase response time of user actions in
distributed environments.

4. Conflict Prevention by User-centred Meta-
negotiation

With the conflict prevention by user-centred meta-negotiation
approaches, there is no more than one user editing the shared
data item at any time, and the right to have access to the data
item is a result of negotiation among the involved participants.
The central point of user-centred meta-negotiation is how the
process of negotiation for access to data is supported.

Negotiable turn-taking: Unlike the predetermined turn-
taking, access to the token is controlled by external social
protocols in the negotiable turn-taking approach. For example,
whenever a user wants to have access to a data item, s/he
needs to negotiate with the coordinator or current token holder.
Similar to predetermined turn-taking, it is not suitable for
collaboration sessions with much parallelism among
participants. It may overly inhibit the free and natural flow of
information among participants [10]. However, it is suitable
for and widely used in audio and video conferencing systems.

Negotiability: It is a class of mechanisms that support the
negotiation between a requestor (or activator) who wants to
use an application function and a coordinator (or affected user)
by offering a technical channel of communication and by

allowing the affected user to intervene against the decision of
the activator by technical means [34]. The negotiability
approach is mainly for the negotiation between two users
involved in an asynchronous groupware system. To explicitly
negotiate on the right to activate a function is time consuming
if it involves multiple users in synchronous environments.

5. Rule-based Automatic Conflict Resolution

With rule-based automatic conflict resolution approaches,
users are allowed to edit the shared data freely, and any
conflict will be automatically resolved by the system in terms
of pre-determined rules. They are different from each other in
how a conflict is automatically resolved.

Centralised ordering (pessimistic serialisation): Assume
that data items are replicated over all user workstations, and
there is a central controller process (server) sitting on one of
them. The server receives user requests for operations and
distributes the operations received to every client (including
the one that issued the operations). Since the requests are
always granted, this approach simply imposes a global
ordering on the operations issued by different users, i.e., the
operations are performed in the same order at all participating
sites. It has been implemented in many systems such as Villa
[3]. The major drawback of this approach is its
irresponsiveness if the communication latency is high, since an
operation is executed only after it is received from the server
rather than when it is requested, i.e., pessimistic execution.

Decentralised ordering (optimistic serialisation): Unlike
the pessimistic scheme, operations issued at a site are
immediately executed at the local site in the decentralised
ordering approach. The operations are usually time-stamped
using logical clocks such that a global order can be enforced
[17, 26]. The requests for ordering as required in the
centralised ordering scheme are not necessary. When two or
more semantically conflicting operations have been executed
concurrently, one (or more) of these operations is undone and
re-executed in the correct order such that replica convergence
is guaranteed. This serialisation mechanism is implemented in
GroupDesign [15] and LICRA [14]. Karsenty and Beaudouin-
Lafon use information about commutativity and masking of
operations to minimise the number of undo operations in their
ORESTE algorithm [16]. This approach is very responsive (in
the local user interface).

Operational transformation: Similar to the optimistic
serialisation approach, when an operation is requested, the
local editor performs the operation immediately, and then
multicasts it to the remote sites. However, with the operational
transformation approach, when an operation is received from a
remote site, the local editor needs to check whether there are
concurrent operations executed, if so, the operation needs to be
transformed such that the requestor’s original intention is
preserved [10, 30]. The primary advantage of this approach is
that users’ concurrent intentions are preserved if they are not
conflicting with each other [36].

The major problem of the rule-based automatic conflict
resolution mechanisms is intention violation. Only one of the
concurrent conflicting intentions will be preserved. For
example, if two users concurrently change the colour of an
object to red and green respectively, the final execution effect

will be either red or green depending on the global order
defined in the serialisation approaches, thus the intention of
one of the two users will be violated.

6. Conflict Control by Negotiation

Automatic conflict resolution has the advantage of being
efficient. Nevertheless, it is generally infeasible for the system
to have the knowledge to properly resolve conflicts among
users. Conflicts are best resolved by end users, with the system
providing explicit information about users’ actions and
negotiation support mechanisms. The question now is what
supporting mechanisms the users need. They depend on the
characteristics of the conflict, the effort the users would like to
take, the availability of communication channels, and the
prestigious status of individual users in the decision process.
There are too many parameters that can affect the process of
conflict resolution. Consequently, negotiation support
mechanisms can be classified in various ways. Here, we
present different mechanisms of negotiation support in terms
of their roles in different stages of a negotiation process, that
is, from conflict notification, mediation support, coordination
support, to final decision support. The mechanisms for each
stage are further classified. A negotiation support system may
employ a combination of these mechanisms.

6.1. Conflict Notification and Visualisation

Supporting responsiveness, any lazy consistency approach
(without conflict prevention) contains inherent race conditions.
So collaborative editing systems need to detect conflicts after
they occur and make the users be aware of them. These are the
basic functionality of conflict awareness mechanisms that
differ from each other in what to report to and how to notify
the involved users.

Temporal conflict and simple notification: Stefik et al
use time-stamps of operations to detect conflicts between
them, which are then resolved manually by the involved users
[29]. The conflict is defined at time-stamp level without
operation semantics being taken into account. How a conflict
is notified is not clear from their paper. For a simple
notification, a popup message can be delivered on the screens
of the involved users, which describes the place of the conflict
in the document. The drawback is the users have to locate the
conflict and identify its nature.

Syntactic or semantic conflict and conflict
visualisation: If the system can use operation semantics to
identify the nature of conflicts and present them visually, the
involved users can then focus on how to resolve them. Diffing
approaches have been widely used in document merging [21].
With interactive diffing, the system can point out the
differences between two versions of a document and ask for
the user to make decisions. The PREP system’s flexible diff
can visually report conflicts in various granularities such that
users can detect the conflicts without being distracted from
more appropriate tasks [24].

Any system supporting negotiation must provide some
conflict notification or visualisation mechanism. For example,
all real-time graphics editors supporting multi-versioning

visualise conflicts in multiple versions [6, 20, 36, 38]. Conflict
detection and visualisation are important issues that need to be
further studied in real-time collaborative editing systems.

6.2. Mediation Support

Being aware of the conflict, the involved users will start a
negotiation process to resolve it. Negotiation can be mediated
in different ways in terms of the communication media and the
organisation of messages. However, we will focus only on the
visible referential artifacts of the negotiation process, which
are shared by the involved users. A referential artifact could be
the base document or any annotation to it. With the former,
the users may be allowed to edit the document during the
process of negotiation, or to browse it first and then update it
only when they have reached a consensus via an extra
communication channel (e.g., voice). With the latter, the
content of the referential artifact may be a new version or
simply some comments on the base document. We categorise
three alternatives of mediation support mechanisms as follows:

Commenting annotation: Annotation is widely used in
asynchronous group work. For example, PREP [23] and Quilt
[18] are well-known asynchronous systems supporting
annotation. Recently, there are a number of researches on web
annotation for supporting group work [5]. In many real-time
groupware systems, commenting annotation mechanism is
usually implemented as a voice channel. A popup message
window is also useful. For example, the Anchored
Conversations prototype provides a synchronous text chat
window that can be anchored to a specific point within a
document, and moved around like a post-it note [7].

Intrusive negotiation: It is a common practice that people
discuss with each other about a document on a piece of paper
or about a figure on a whiteboard in the same place and at the
same time. They can modify the document or the figure while
the discussion is in progress. This is also possible in real-time
distributed group editors if people would follow the required
social protocols of negotiation. The drawback is that it may
make the document become “dirty” due to the nature of
unpredictable negotiation dynamics. There are some group
editors supporting intrusive negotiation by embedding
multiple versions of the same object in conflict into the
document, for example, Tivoli [20] and GRACE [6, 32]. The
versions created are mixed up with the base document. The
advantage is that all individuals’ intentions are visualised, thus
facilitating the negotiation process. However, the embedded
versions change the context of the object in conflict. This may
confuse the users. The following alternating annotation
mechanism can solve this problem.

Alternating annotation: If multiple authors disagree with
each other on a particular chunk of the document, each of
them can propose her own version but none of them will be
included into the final document before a consensus is
reached. Each user can edit her own version while the
negotiation is in progress. Therefore the document is annotated
with versions rather than embedded with them. The Quilt
system supports both commenting annotation and alternating
(called revision) annotation in an asynchronous way [18]. To
the best of our knowledge, POLO is the only real-time group
editor implementing such a mechanism [38].

Obviously, mediation support is related to the issue of
multi-user interface design that is a challenging issue in real-
time group editors. The way in which a mediation support
mechanism can be integrated into the general editing process
is an interesting direction for further research.

6.3. Coordination Support

Concurrency control is employed to prevent potential conflicts
from happening. With unconstrained and responsive editing
without conflict prevention, if conflicts occur, coordination
mechanisms may be needed to harness them such that they do
not become unmanageable. Therefore, concurrency control (or
coordination support for conflict prevention) and coordination
support for negotiation are rather similar. They differ in that
the former prevents any conflict to occur before users make
any change to the data, whereas the latter prevents any
unmanageable conflict to occur or controls further conflicts
after users have been involved in conflicts.

Unconstrained multi-versioning: Multi-versioning
mechanisms provide a basic level of coordination that
guarantees a convergent document state for all users and
preserves all individuals’ concurrent conflicting intentions [6,
20]. They are extensions of conventional version control
mechanisms in real-time and multi-replica environments. An
unconstrained multi-versioning scheme is able to support
unconstrained editing. The price it pays is a higher degree of
difficulty of semantic conflict resolution. The users rely on
social protocols to coordinate their conflict resolution process.

Predetermined post-locking: Post-locking is a class of
mechanisms for coordinating users in resolving the conflicts
which result from unconstrained accesses to shared data [35].
Only when a conflict occurs will the system automatically lock
the object in conflict. It is different from the well-studied
conflict prevention lock, which we call pre-lock. The system
can assign the lock ownership of the created versions to
corresponding users. However, the assignment schemes are
static, i.e., predetermined by the system configuration.

Negotiable lock transferring and assigning: Generally,
mechanisms which involve the users are appropriate and
valuable in groupware applications. Similar to the negotiability
mechanisms, post-locking can be made dynamic or negotiable.
For example, if there are two users involved in a conflict, the
system may first give the right of modifying the object to one
of the users. Later on, the two users may negotiate with each
other on the access right to the object. Here, the negotiable
turn-taking mechanism may be applicable. If the multi-version
approach is employed, users may transfer lock ownerships on
different versions dynamically such that group discussion and
negotiation are smoothly facilitated. This topic is worthy of
further investigation. It may open up a new research direction
for applying the conventional concurrency control
mechanisms in a new context.

6.4. Decision Support

Decision support is a grand concept that may also cover all the
steps of negotiation we have just discussed. However, we
restrict it to mean activities involved in the final step of

negotiation, when several alternatives for the resolution of the
conflict may have been proposed for a final decision after
rounds of discussion and negotiation. The final decision may
be made by a representative or by all the involved users via
voting.

Representative decision: This is a very efficient way of
conflict resolution. Only one user represents the group to
resolve the conflict, or to execute the agreed upon group
intention. The GINA system supports synchronous group
editing [1]. When conflicts occur, it provides a selective
undo/redo mechanism for one of the involved users to resolve
them.

Participatory decision: With participatory decision or
voting, each involved user has a say on the final result.
Although it is more democratic than the representative
decision, it may be less efficient. The POLO system
implements such a mechanism [38].

7. Comparison and Conclusion

Many reviews on consistency maintenance mechanisms have
been presented in the groupware literature. Unfortunately,
some of them simply gave a list of some of the mechanisms
without pointing out their relationships, though they captured
their respective characteristics [11, 16, 22, 31]. Others did
provide analytical frameworks to examine the consistency
mechanisms. However, they are only applicable to a subset of
the mechanisms having been examined in this paper. In other
words, they cover only one or two of our four categories. For
example, Greenberg et al provided a taxonomy for various
locking and serialisation approaches (i.e., some of the
mechanisms in the categories of rule-based automatic conflict
prevention and rule-based automatic conflict resolution) [13].
Wulf classified conflict regulation mechanisms for
asynchronous groupware systems, which are mainly in our
conflict prevention by user-centred meta-negotiation category
[34]. Bhola et al presented a taxonomy for a set of ordering
mechanisms, which are those mechanisms in our rule-based
automatic conflict resolution category [3, 4]. Sun and Ellis
systematically analysed existing operational transformation
schemes [30]. Obviously, none of them covered the
consistency mechanisms comprehensively, although they are
complementary to our work.

In summary, we have proposed an analytical framework
for the examination of consistency maintenance mechanisms
in collaborative editing systems, which is comprehensive and
able to capture the fundamental characteristic of groupware
systems, that is, the involvement of human users. Although we
analyse all the four categories of consistency maintenance
mechanisms, we put more efforts on the conflict control
mechanisms, which are different from conventional conflict
prevention ones and have the potential to support Internet-
based unconstrained real-time collaborative editing. In
particular, we have examined the conflict control by
negotiation category in detail. The examination suggests some
new consistency maintenance issues, such as, how to detect
and visualise conflicts, and how to mediate and coordinate a
negotiation process, in real-time collaborative editing
environments. None of the existing analytical frameworks
covered this category of mechanisms. Finally, although our

focus is on collaborative editing systems, the framework
presented in this paper is general and applicable to other
groupware systems.

References

[1] T. Berlage. A selective undo mechanism for graphical user interfaces
based on command objects. In ACM Transactions on Computer-Human
Interaction, 1(3), 1994, pp. 269-294.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. Addison-wesley, Reading MA, 1987.

[3] S. Bhola and M. Ahamad. The design space for data replication
algorithms in interactive groupware. In Georgia Institute of Technology
Technical Report GIT-CC-98-15, 1998.

[4] S. Bhola, G. Banavar, and M. Ahamad. Responsiveness and consistency
tradeoffs in interactive groupware. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work, Nov. 1998.

[5] J.J. Cadiz, A. Gupta, J. Grudin. Using web annotation for asynchronous
collaboration around documents. In Proceedings of ACM Conference on
CSCW, Dec. 2000, pp.309-318.

[6] D. Chen and C. Sun. A distributed algorithm for graphic objects
replication in real-time group editors. In Proceedings of the ACM
Conference on Supporting Group Work, Nov. 1999, pp.121-130.

[7] E. F. Churchill, J. Trevor, S. Bly, L. Nelson, and D. Cubranic. Anchored
conversations: chatting in the context of a document. In Proceedings of
the ACM CHI’2000, The Hague, Amsterdam, pp.454-461.

[8] P. Dewan. Architectures for collaborative applications. In M. Beaudouin-
Lafon (ed.), Computer Supported Cooperative Work, John Wiley & Sons,
1999, pp.169-193.

[9] P. Dourish. Consistency guarantees: exploiting application semantics for
consistency management in a collaboration toolkit. In Proc. of the ACM
Conference on CSCW, Nov. 1996, pp.268-277.

[10] C.A. Ellis and S.J. Gibbs. Concurrency control in groupware systems. In
Proceedings of the ACM SIGMOD Conference on Management of Data,
May 1989, pp.399-407.

[11] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: some issues and
experiences. In Communications of ACM, 34(1), Jan.1991, pp.39-58.

[12] S. Greenberg, M. Roseman, D. Webster, and R. Bohnet. Issues and
experiences designing and implementing two group drawing tools. In
Proceedings of the 25th Annual Hawaii International Conference on the
System Sciences, January 1992, pp.139-250.

[13] S. Greenberg and D. Marwood. Real time groupware as a distributed
system: concurrency control and its effect on the interface. In Proceedings
of the ACM Conference on CSCW, Oct. 1994, pp.207-217.

[14] Kanawati. LICRA: A replicated-data management algorithm for
distributed synchronous groupware application. In Parallel computing,
vol. 22, 1997, pp.1733-1746.

[15] A.Karsenty, C. Tronche, and M. Beaudouin-Lafon. GroupDesign: shared
editing in a heterogeneous environment. In Usenix Journal of Computing
Systems, 6(2), 1993, pp.167-195.

[16] A.Karsenty and M. Beaudouin-Lafon. An algorithm for distributed
groupware applications. In Proceedings of the 13th International
Conference on Distributed Computing Systems, May 1993, pp.195-202.

[17] L. Lamport. Time, clock, and the ordering of events in a distributed
system. In CACM 21(7), July 1978, pp.558-565.

[18] M.D.P. Leland, R.S. Fish, R.E. Kraut. Collaborative document
production using Quilt. In Proceedings of the ACM Conference on
CSCW, 1988, pp. 206-215.

[19] A.Michailidis and R. Rada. A review of collaborative authoring tools. In
R. Rada (ed), Groupware and Authoring, Academic Press Limited, 1996,
pp.9-44.

[20] T. P. Moran, K. McCall, B. van Melle, E. R. Pedersen, and F.G.H.
Halasz. Some design principles for sharing in Tivoli, a white-board

meeting support tool. In S. Greenberg, S. Hayne, and R. Rada (eds.),
Groupware for Real-time Drawing: A Designer’s guide, McGraw-Hill,
1995, pp.24-36.

[21] J. P. Munson and P. Dewan. A flexible object merging framework. In
Proceedings of the ACM Conference on CSCW, Oct. 1994, pp.231-242.

[22] J. P. Munson and P. Dewan. A concurrency control framework for
collaborative systems. In Proceedings of ACM Conference on CSCW,
1996, pp. 278-287.

[23] C.M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris. Issues in
the design of computer support for co-authoring and commenting. In
Proceedings of the ACM Conference on CSCW, Nov. 1990, pp.183-193.

[24] C.M. Neuwirth, R. Chandhok, D. S. Kaufer, P. Erion, J. Morris, and D.
Miller. Flexible diff-ing in a collaborative writing system. In Proceedings
of the ACM Conference on CSCW, Nov. 1992, pp.147-154. Also in R.
Rada (ed.): Groupware and Authoring, Academic Press Limited, 1996,
pp.189-204.

[25] A.Prakash. Group editors. In M. Beaudouin-Lafon (ed.), Computer
Supported Cooperative Work, John Wiley & Sons, 1999, pp.103-133.

[26] M. Raynal and M. Singhal. Logical time: capturing causality in
distributed systems. In IEEE Computer Magazine, 29(2), Feb. 1996,
pp.49-56.

[27] M. Ressel and R. Gunzenbaeuser. Reducing the problems of group undo.
In Proceedings of the ACM SIGGROUP Conference on Supporting
Group Work, Nov. 1999, pp.131-139.

[28] T. Rodden. A survey of CSCW systems. Interacting with Computers, 3
(3), 1991, pp.319-353.

[29] M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L.
Suchman. Beyond the chalkboard: computer support for collaboration
and problem solving in meetings. In Communications of ACM, 30(1),
1987, pp. 32-47.

[30] C. Sun and C.A. Ellis. Operational transformation in real-time group
editors: Issues, algorithms, and achievements. In Proceedings of ACM
Conference on Computer Supported Cooperative Work, Nov. 1998,
pp.59-68.

[31] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence,
causality-preservation, and intention-preservation in real-time cooperative
editing systems. In ACM Transactions on Computer-Human Interaction,
5(1), March 1998, pp.63-108.

[32] C. Sun and D. Chen. A multi-version approach to conflict resolution in
distribute groupware systems. In Proceedings of International
Conference on Distributed Computing Systems, April 2000.

[33] N. Vidot, M. Cart, J. Ferrie, and M. Suleiman. Copies convergence in a
distributed real-time collaborative environment. In Proceedings of ACM
Conference on CSCW, Dec. 2000, pp.171-180.

[34] V. Wulf. On conflicts and negotiation in multiuser applications. In A.
Kent and J. G. Williams (eds.): Encyclopedia of Microcomputers, Marcel
Dekker, New Basel, Vol 23, Suppl. 2, 1999, pp. 63-88.

[35] L. Xue, K. Zhang, and C. Sun. Conflict control locking in distributed
cooperative graphics editors. In Proceedings of the 1st International
Conference on Web Information Systems Engineering (WISE’ 2000),
Hong Kong, IEEE CS Press, June 2000, pp.401-408.

[36] L. Xue, M. Orgun, and K. Zhang. Intention preservation by multi-
versioning in distributed real-time group editors. In Proceedings of The
International Conference on Engineering and Deployment of
Cooperative Information Systems (EDCIS’ 2002), Beijing, China).
Lecture Notes in Computer Science, Vol. 2480, 2002, pp.510-524.

[37] L. Xue, M. Orgun, and K. Zhang. A user-centred consistency model in
real-time collaborative editing systems. In Distributed Communities on
the Web (DCW’ 2002), Lecture Notes in Computer Science, Vol.2468,
2002, pp.138-150.

[38] L. Xue, M. Orgun, and K. Zhang. Group-based time-stamping scheme for
the preservation of group intention. In DCW’ 2002, Lecture Notes in
Computer Science, Vol.2468, 2002, pp.125-137.

An Experience of Fuzzy Linear Regression applied to Effort Estimation

Gerardo Canfora, Luigi Cerulo, Luigi Troiano
RCOST — Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy
{canfora, lcerulo, troiano}@unisannio.it

http://cise.rcost.unisannio.it

Abstract

Predicting the exact quality index number in software as-
sessment is often not necessary. Software managers, espe-
cially in early phases, prefer to deal with fuzzy data such
as intervals, ranges, and orders of magnitude. Possibilis-
tic models may be used as a viable alternative to allow this
type of analysis. This paper reports an experience of the ap-
plication of fuzzy linear regression for predicting the main-
tenance effort of a software project.

1 Introduction

Effort estimation is a key aspect of risk management in
software industry, and its assessment is usually addressed
by predictive models. Statistical regression analysis, both
linear and non linear, is widely adopted for predicting the
effort on past projects data. However, Statistical Linear Re-
gression (SLR) analysis works fine if data meets certain as-
sumptions [17], such as:

• The distribution of residuals is normal;

• The variance of the residuals is constant with regard to
every set of values for the independent variable;

• The error term is additive

• The expected (mean) value of the residuals is zero

• The mean of the error term is zero

• The expected correlation between residuals is zero

• Independent variables are uncorrelated with the error
term

• No independent variables are a perfect linear function
of other independent variables

Unlike other engineering disciplines, in Software Engi-
neering (SE), as it is inherently knowledge intensive, these
assumptions can be violated. In particular, normality of er-
ror distribution and constant variance of residuals could be
not verified. Limitations of SLR have been discussed in lit-
erature and alternative solutions stemming from the area of
Computational Intelligence have started to be investigated.
For example [7] uncertainty and causal modelling for risk
assessment are addressed using bayesian networks, and in
[18] a fuzzy non linear regression technique is used to pre-
dict software faults. Other regression model approaches
have been proposed in literature [5]. Among these, there
is the Fuzzy Linear Regression (FLR) method.

Fuzzy regression was introduced by Tanaka et al. [16]
to model situations in which the practitioner cannot accu-
rately measure the dependent variable. It is a nonstatisti-
cal method and the deviation between observed and esti-
mated values are assumed to be dependent on the vague-
ness of parameters which govern the system structure, not
on its measurement errors [10]. This assumption is coherent
in Software Engineering where usually measures are error-
free, and functional models are only possible approximation
of data sets. In SLR analysis the optimal criterion for curve
fitting is the minimization of the error, while in fuzzy re-
gression is the minimization of the vagueness of the depen-
dent variable. It has been stated that fuzzy regression may
be more effective than statistical regression when the ba-
sic assumptions are violated, as for example, when human
judgment are involved [16], ambiguous processes must be
explained [8], and when only a small amount of data are
available and the aptness of the regression model are dif-
ficult to justify [1]. This kind of considerations led us to
investigate how FLR behaves with regard to effort estima-
tion, comparing results with SLR analysis in a case study
that have shown to be well analyzed by statistical approach.

This paper reports an initial experience of applying FLR
analysis to an industrial case study aimed at building a pre-
diction model for software production effort. The remainder

of the paper is organized as follows: Section 2 provides an
overview of the FLR technique adopted in our experience;
Section 3 describes the case study and reports results from
the application of SLR; Section 4 discusses results from
the application of FLR; Section 5 concludes the paper and
presents some future directions.

2 An overview of Fuzzy Linear Regression

A linear model has the form

y = a0 + a1x1 + . . . + anxn (1)

An SLR (crisp) model is modified as

y = a0 + a1x1 + . . . + anxn + ε (2)

where ε (known as error term) is a stochastic variable de-
scribing the discrepancy between data samples and pre-
dicted values. A FLR model assumes a fuzzy linear function
as

Y = A0 + A1X1 + · · · + AnXn (3)

where independent variables X1, X2, . . . , Xn, or parame-
ters A0, A1, . . . , An, or both, can be fuzzy numbers refer-
ring the uncertainty of data and vagueness of model.

In our experience, data are referred to factors precisely
quantified such as the number of software code components
(SC) or the number of candidate impacts (CI). Therefore,
we will refer to crisp input data, and fuzziness is only con-
sidered with regards to parameters such as

Y = A0 + A1x1 + · · · + Anxn (4)

The problem that arises is how to determine fuzzy parame-
ters. There several methods to approach the problem: fuzzi-
ness of model fitness minimization [16, 14, 3, 15]; least
squares of errors [2, 6, 13, 4], interval analysis [9]. In our
experience we considered the first approach.

The method adopted is aimed at finding a regression
model that fits all data within a specified fitting criterion.
According to Zadeh’s extension principle [19], dependant
variable Y is still fuzzy. Since, fuzzy numbers are described
by possibility distributions [11], variable Y describes a set
of linear models in possibility. Parameters take usually the
form of symmetric triangular fuzzy numbers Ai = (ci, si)
represented by the following membership function:

µAi(x) = max
(

0, 1 − |x − ci|
si

)
(5)

in which ci is the central value and si is the spread value.
Consequently

µY (y) = max

0, 1 −

∣∣∣∣y − (c0 +
n∑

i=1

cixi)
∣∣∣∣

s0 +
n∑

i=1

si|xi|

 (6)

The Decomposition Theorem [11], states that a fuzzy num-
ber can be fully described by the set of intervals [aλ, bλ]
each with an associate possibility level of λ (α-cuts).

Then, fuzzy coefficients A1, . . . , An are determined so
that Y has the minimum spread while satisfying a degree of
belief h. The term h ∈ [0, 1] can be regarded as the desired
level of compatibility between the data and the model. This
means that crisp data must be in the fuzzy spread of Y with
the at least a value of possibility h. This means that Y as-
sumes the possibility value h at the farthest data point. The
higher is the level of confidence required, the wider is the
fuzzy spread of Y .

Determination of parameters can be seen as an optimiza-
tion problem. Let x1j , . . . , xnj are the j-th input values of
independent variables. For a given degree of belief h the
fuzzy regression algorithm determines the spreads and the
center values of the parameters by resolving the following
linear programming problem

J = min

ms0 +

m∑
j=1

n∑
i=1

si|xij |

 (7)

yj ≥ c0 +
n∑

i=1

cixij − (1 − h)

(
s0 +

n∑
i=1

si |xij |
)

(8)

yj ≤ c0 +
n∑

i=1

cixij + (1 − h)

(
s0 +

n∑
i=1

si |xij |
)

(9)

ci ≥ 0, i = 1, 2, . . . , n.

Given m data, there is an optimal solution for a given
value h.

Ah
i = (ci, si), i = 0, 1, . . . , n (10)

A useful theorem states that an optimal solution for h′ �= h
can be obtained from the optimal h-level solution as

Ah′ =
(

ch, sh
1 − h

1 − h′

)
(11)

3 Case study: adaptive maintenance of an in-
dustrial project

The case study we considered has been analyzed in [12]
for predicting the maintenance effort by using the ordinary
statistical linear regression technique. It stems from the past
project data of a major international software enterprise,
namely EDS Italia Software. From 1996 to 1999 EDS has
conducted several Y2K and EURO projects by adopting an
adaptive maintenance process based on a preliminary as-
sessment phase aimed at decomposing an application port-
folio into loosely coupled work-packets that could be inde-
pendently and incrementally modified and delivered. The

application portfolio was composed of about 40,000 soft-
ware components, including 7,082 COBOL programs and
6,850 JCL procedures, and was decomposed in 123 work-
packets. The project started on January 2 1999 and finished
on January 14 2000. The total effort spent was 457 man
months. The average staff was 146 people. The maximum
peak, reached in March 1999, was 179 people; altogether,
253 different people were employed. The project was con-
ducted by maintenance teams distributed on three different
sites.

Several metrics were collected during the different
phases of the project. In particular:

• SC, as the number of software code components

• I, as is the number of candidate impacts

• AI, as the number of actual impacts; SAI as the number
of actual standard impacts

• Effort, as the actual effort measured as man-days

• Staff, as the number of employed maintainers

• Duration, as the actual duration measured as number
of calendar days

Table 1 reports some descriptive statistics of the collected
metrics and Table 2 shows the parameters of three regres-
sion models as reported in [12]. The models were devel-
oped considering the metrics correlation matrix and regres-
sion analysis verifications.

Table 1. Descriptive statistics of the data set
Metric Min Max Mean StdDev
SC 2 1243 364.43 334.260
CI 8 6646 1109.84 1490.490
AI 1 504 40.306 91.278
SAI 0 461 25.209 76.340
NSAI 0 122 15.096 22.118
TC 1 9382 702.14 1876.950
Effort 3 278 56.654 54.244
Staff 2 27 6.95 4.375
Duration 3 127 27.925 20.465

Table 2 shows the performance of the models in terms of
the determination coefficient R2, and adjusted determina-
tion coefficient adjR2, which is an extension of R2 taking
into account the number of independent variables of the re-
gression model. It assesses the capability of the model for
fitting the sampled data and it is computed as:

R2 =

m∑
i=1

(y∗
i − y)2

m∑
i=1

(yi − y)2
(12)

Table 2. Ordinary regression model parame-
ters

model coefficients p-value R2 adjR2

SC 0.141094 1.64E11 0.843 0.839
CI 8.925E-03 2.94E02
sqrtSC 2.452531 2.52E10 0.915 0.914
sqrtAI 7.022846 5.76E10
sqrtSC 2.262565 5.31E08 0.921 0.918
sqrtNSAI 4.660045 6.10E-04
sqrtSAI 7.115134 3.65E05

where y∗
i is the predicted value, yi is the observed value,

and y is the mean of the observed values.

4 Experimental results

We have repeated the empirical study reported in [12]
by applying the fuzzy regression analysis. The fuzzy mod-
els were obtained on the same data set and considering the
same independent variables. Table 3 shows the fuzzy coef-
ficients of the fuzzy linear equation 4 obtained with a com-
patibility level h = 0.5. A comparable assessment of the the
fuzzy regression approach is difficult because performance
indexes of statistical linear regression are correlated to their
basic assumptions which are quite different from the fuzzy
approach. For example, from equation 12, if y∗

i is a fuzzy
number then R2 is a fuzzy number and becomes difficult
to compare it to the corresponding crisp number obtained
from the statistical model. In order to make a compara-
ble quantitative assessment of the performance of the fuzzy
regression model we have defuzzified the output values by
choosing the output central value; i.e. the value at possi-
bility level equal to 1. Then in equation 12 y∗

i becomes
c∗i which is the central value of the output fuzzy number.
Table 4 shows the performance in term of R2 and adjR2

computed in this way. Substantially, from R2 performance
perspective and for this particular case study, SLR and FLR
have almost the same behavior. This is due to the fact that
the quality of the collected metrics meets all the statistical
regression assumptions.

Although the performance makes both methods seem
similar, there are some qualitative differences that make
FLR peculiar. Figures 2, 1, and 3 shows for each model
the behavior of the fuzzy output variable in correspondence
to each observed data point. On the y-axis is reported the
effort level, while on the x-axis is reported a set of 26 data
point in ascending order with the observed effort. At each
data point the output fuzzy number is represented with the
central value and the corresponding spread extremes for two
different compatibility levels (h = 0.7 and h = 0). The

Table 3. Fuzzy regression model parameters
(h=0.5)

model coefficients
(68.72593, 323.16480)

SC (0.38862, 0.00233)
CI (0.39947, 0.24728)

(-328.6298, 276.7716)
sqrtSC (39.6513, 0.0000)
sqrtAI (52.3985, 5.3925)

(-104.2148, 0.0000)
sqrtSC (27.2810, 29.1034)
sqrtNSAI (24.3339, 0.0000)
sqrtSAI (49.5368, 8.7168)

Table 4. Fuzzy regression model performance

Model R2 adjR2

SC 0.880 0.870
CI
sqrtSC 0.905 0.897
sqrtAI
sqrtSC 0.902 0.889
sqrtNSAI
sqrtSAI

main characteristic of FLR analysis is to provide a fuzzy
estimation model Y that can be regarded in different ways:

1. for any fixed x, the fuzzy model provide a range of
possible values for y, meaning that estimation is not
precise and should be assumed with a certain level of
confidence;

2. Y groups a continuum of linear regression models: in
SLR there is one model, and discrepancy between the
data and the model are considered error; in FLR data
points are considered error-free and several models are
possible. This sounds reasonable in the context of SE
metrics, where data is usually not affected by error, and
a differences of data and functional dependency is only
due to model approximation;

3. when, we fix y, there is a range of x within that esti-
mation is possible with different degrees of possibility:
there is one x value that gets possibility 1 in corre-
spondence to y; wandering from that value, leads to
x value for which that estimation is less and less true,
until reaching zero.

Therefore FLR analysis enriches the amount of informa-
tion available for evaluation. However, this does not neces-

Figure 1. Fuzzy regression model (SC, CI)

sarily mean that the perception of the model is made sim-
pler. One advantage of SLR is that the model is very simple
and provides an immediate comprehension of phenomena,
in exchange of model fitness. Differently FLR seems to pro-
vide more information and a higher fitness, but with a com-
prehension of phenomenon that could provide more difficult
to the decision maker. More investigation should be made
in order to better understand cognitive implications.

5 Conclusions and future works

In this paper we reported an initial experience of fuzzy
linear regression aimed at estimating effort in software
projects. In particular we adopted the possibility approach
developed by Tanaka. The model provided a response
that is comparable with a conventional statistical regression
model, although assumptions are very different. Because
of the fact that usually data points in Software Engineer-
ing are not affected by error, and uncertainty derives from
suitability of a simplified model to available data, SLR and
FLR approaches show different meaning and interpretation.
The paper provided a brief qualitative comparison of both.
At the moment no evident conclusion can be gathered. The
initial result encourages a more deeper investigation of the
usage of FLR analysis in SE in order to better understand
application benefits and limitations. In particular, it would
be useful to understand how differences in model can affect
the evaluation of dependent variables in the context of SE,
especially when statistical assumptions are violated.

Figure 2. Fuzzy regression model (sqrtSC,
sqrtAI)

6 Acknowledgements

We would like to thank Silvio Stefanucci for the help he
gave us in interpreting the data of the case study [12].

References

[1] A. Bardossy, I. Bogardi, and W. Kelly. Fuzzy regression for
electrical resistivity - hydraulic conductivity relationships.
In North American Fuzzy Information Processing Society
Workshop, pages 333–352, 1987.

[2] A. Celmins. Least squares model fitting to fuzzy vector data.
Fuzzy Sets and Systems, 22(3):245–269, 1987.

[3] P. Chang and E. Lee. Fuzzy linear regression with spreads
unrestricted in sign. Comput. Math. Appl., 28(4):61–70,
1994.

[4] Y.-H. Chang and B. Ayyub. Reliability analysis in fuzzy
regression. In Proc. Annual Conf. of the North American
Fuzzy Information Society, pages 93–97, Allentown, PA,
USA, 1993. NAFIPS.

[5] Y.-H. O. Chang and B. M. Ayyub. Fuzzy regression meth-
ods – a comparative assessment. Fuzzy Sets and Systems,
119(2):187–203, 2001.

[6] P. Diamond. Fuzzy least squares. Inf. Sci., 46(3):141–157,
1988.

[7] N. Fenton, P. Krause, and M. Neil. Software measure-
ment: Uncertainty and causal modeling. IEEE Software,
19(4):116–122, /2002.

[8] M. Gharpuray, H. Tanaka, L. Fan, and F. Lai. Fuzzy linear
regression analysis of cellulose hydrolysis. Chemical Engi-
neering Communications, 41:299–314, 1986.

[9] H. Ishibuchi. Fuzzy regression analysis. Fuzzy Theory and
Systems, 4:137–148, 1992.

Figure 3. Fuzzy regression model (sqrtSC,
sqrtNSAI, sqrtSAI)

[10] K. J. Kima, H. Moskowitzb, and M. Koksalanc. Fuzzy ver-
sus statistical linear regression. European Journal of Opera-
tional Research, 92(2):417–434, 1996.

[11] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic; Theory
and Applications. Prentice Hall, Upper Saddle River, N. Y.,
1995.

[12] A. D. Lucia, E. Pompella, and S. Stefanucci. Assessing the
maintenance processes of a software organization: an em-
pirical analysis of a large industrial project. The Journal of
Systems and Software, 65(2):87–103, Feb. 2003.

[13] D. A. Savic and W. Pedrycz. Evaluation of fuzzy linear
regression models. Fuzzy Sets and Systems, 39(1):51–63,
1991.

[14] H. Tanaka and H. Ishibuchi. Identification of possibilistic
linear systems by quadratic membership functions of fuzzy
parameters. Fuzzy Sets and Systems, 41(2):145–160, 1991.

[15] H. Tanaka, H. Ishibuchi, and S. Yoshikawa. Exponential
possibility regression analysis. Fuzzy Sets and Systems,
69(3):305–318, 1995.

[16] H. Tanaka, S. Uegima, and K. Asai. Linear regression anal-
ysis with fuzzy model. IEEE Transaction Systems Man Cy-
bernet, 12:903–907, 1982.

[17] S. Weisberg. Applied linear regression. Wiley, New York,
1985.

[18] Z. Xu, T. M. Khoshgoftaar, and E. B. Allen. Prediction of
software faults using fuzzy nonlinear regression modeling.
In Fifth IEEE International Symposium on High-Assurance
Systems Engineering, Albuquerque, New Mexico 2000.

[19] L. Zadeh. The concept of a linguistic variable and its ap-
plication to approximate reasoning-1. Information Sciences,
8:199–249, 1975.

An Intensional Tool Applied to French Language Educational Software

Honglian (Elena) Li, William W. Wadge
Department of Computer Science

University of Victoria, P.O. Box 3055
Victoria, BC, Canada V8W 3P6

elenali@uvic.ca, wwadge@csr.uvic.ca

Abstract. We present a Web-based French language
educational software tool, French e-Flash Card (FFC),
authored using our Intensional Markup Language (IML).
The FFC site is interactive and dynamic and incorporates
AI for French language grammar. These special features,
lacking in most language educational tools (which are
typically language-independent), are made possible by
IML, which allows rule based markup in an intensional
(possible worlds) logic. The IML source files, relatively
small, define whole families of pages indexed by
parameters which specify (for example) the particular
subject matter, the degree of difficulty, even the choice of
vocabulary and agreement constraints on French example
sentences generated on demand. We describe the FFC
site, give an overview of IML, and describe our design
methodology, which should be applicable to many similar
projects.

1. Introduction

This article presents three related topics: the French
language educational software known as French e-Flash
Card (FFC), the design approach used in creating FFC,
and the authoring tool employed, Intensional Markup
Language.

The French e-Flash Card was designed and implemented
by the authors. It is based in part on Wadge and Wadge’s
original French Sentence Maker program. [1] The French
Sentence Maker was programmed directly in ISE, a low-
level Perl-like language with intensional features. FFC is
a more ambitious project made possible by IML, which is
not a programming language but rather a high-level
markup language. IML is a rule-based extension of
HTML which allows large chunks of ISE to be replaced
by simple macro calls. It makes it much easier to produce
the source for parameterized sentences and for tables,
popup menus, search forms and the like.

FFC is in some ways typical logic based web application;
it has a knowledge base, a logic engine, user selectable
input parameters and a presentation layer for answers. It is
an intelligent way to present the logical relations and rules
underlying French grammar. It goes beyond most
conventional Web based software in that it is not just a
visual interface to a database. Since the FFC rules
embody knowledge of French grammar, it is capable of
generating student questions and example utterances that
have not been explicitly entered in a database.
Furthermore, the intensional logic behind IML supports
an inheritance relation between contexts. This makes it
easy to express the rules in terms of general principles and
exceptions (and exceptions to exceptions, and so on). We
provide a detailed description of the usage of the tool. We
also investigate the difference between IML and the
conventional web authoring tools.

We present the problem and our motivation in section 2;
the design approach is explicated in section 3; we
describe the use of intensional programming tool—IML
in section 4; intensional logic and intensional
programming are defined in the section; we illustrate the
implementation of FFC in section 5; we conclude our
work in the last section.

2. Problem Definition

Current French class-based educational software mainly
sees French grammar knowledge as built up from small,
simple facts; for example, the form a particular adjective
takes in the feminine plural, or conjugated form of a
particular verb in a particular person, number and tense.
Students are typically taught and tested on their
knowledge of these atomic facts. However, even simple
French expressions use a surprisingly large number of
these atomic facts. Therefore, beginning students of
French often get frustrated when they attempt to use what
they are learning in class. Some students can’t even make
well-formed sentences in a simple conversation.

Students need training in the basic facts of grammar but
this knowledge alone in practice is not enough to allow
them to easily produce complete sentences. They need to
see plenty of examples of complete sentences.

There are quite a few French grammar websites or
applications available nowadays. In reviewing them, we
found that most of them still employ the class-based
educational model. They usually move the contents of the
French grammar textbooks online and include some
exercises that are also based on the questions in particular
grammatical units. These websites are simply electronic
version of the grammar textbook. They are not really
practical for students who try to use their learning.

These electronic textbooks have the same problem as their
paper based counterparts: they provide only a limited
supply of examples of complete sentences, namely the
ones explicitly written, one by one, by the authors. There
may be hundreds of them, but a student who spends even
one week in France, immersed in French, will hear or read
thousands and thousands. The electronic versions of the
textbooks often have AI which automates the production
atomic grammatical facts, but not that of complete
utterances or even complete phrases.

FFC is a modest first effort to remedy this deficiency. The
(still relatively simple) AI in FFC automates the
production of complete phrases and sentences, as well as
that of atomic facts. French e-Flash Card tries to provide
as many sentences as possible in each grammatical unit,
in order to present typical uses of the grammar facts. For
example, in the possessive adjective section, the author
built a set of examples that cover all possible uses of
possessive adjectives: singular, plural, masculine and
feminine. Of special importance is the fact that the student
can guide the generation of the example sentences by
choosing the vocabulary employed, so that, for example,
she can see the difference between saying (in French) “the
house is big”, “the car is big”, “the houses are big”, “the
cars are big”, and so on. The student will discover, for
example, that the French word for “big” has a different
form in each of these four examples.

In designing and implementing this sentence-making
function, it is necessary to solve the following technical
problems:

1. How to make sure the user who has only limited
knowledge of French grammar and vocabulary
can make not only grammatically correct but
also semantically meaningful sentences.

2. How to improve the customizability of the
example sentences

3. How to provide dynamic examples to meet the
user’s specific requirement and improve
interaction between the user and the software

4. How to arrange the contents in a web interface in
order to contain such a large quantity of example
sentences.

3. FFC Design Approach

FFC offers the student a choice for each of the major
elements of a sentence, such as subjects, predicates and
objects. The students choose appropriate vocabulary items
that they want to use in the sentence, without having to
know the exact form and position these items will take in
the complete sentence. Then FFC itself will handle the
grammar rules interwoven in the sentence and generates
the sentence for the user. The students can choose
different vocabulary items or move to different
grammatical sections to repeat the sentence-making
process. As the result, the student can learn grammar by
making sentences whose meaning he or she already
knows but whose exact form he or she may not yet be
able to produce.

The FFC French Grammar Knowledge Base handles not
only the rules for atomic facts but also those (e.g. for
subject-verb agreement or word order) needed to combine
the atoms into a complete sentence. FFC can therefore
answer questions of the type “but how do you say …”
which normally require the presence of a native speaker.

In order to improve the customizability and interactivity,
FFC uses the parametric method to provide the user with
a customized version of web page. These sentence
elements are listed in a table or in a menu. It allows the
user to customize his or her sentences with appropriate
vocabulary items. Each option in a menu or each item in a
table is an intensional link which consists of a version
dimension and its version value. Once it is selected by
clicking the mouse, the current version expressions will
be changed. These different customized versions of the
pages are not pre-stored on the server side; instead, they
are generated on demand by the same sort of parametric
(intensional) logic that the IML implementation uses to
generate the French sentences. Figure 1 shows the
architecture of the FFC.

Figure 1. FFC is a logic based application

4. The Intensional Tool

Intensional Markup Language is the front end authoring
tool to implement FFC. It is one of the intensional
programming languages which are developed on the base
of intensional logic by Wadge [2].

4.1. Intensional Logic

Intensional logic is the underpinning of intensional
programming. “Intensional logic is therefore the logic of
expressions in which the intension of sub-expressions
(and not just extensions) has to be taken into account.” [3]
It is very common in natural language. For instance, we
can’t judge “It is raining” true or false unless we know the
context such as when and where. Entities which vary
according to context are called intensions, and each
particular value determined by a particular context is
called an extension.

Contexts are also called possible worlds, attributed to
Leibniz by Chellas [4], Honderich [5] and others. Many
variants of intensional logic have been described using
possible worlds semantics, such as assignment of truth or
false to a statement. For FFC, the set of possible worlds is
a set of possible versions a sentence, or a whole page, or a
whole site. In the simplest case, a version is a set of
values for parameters. The logic used by FFC has a
refinement relation The fact that A B means that the
version B is a refinement of version A, which in turn (in
the simplest case) means that B is consistent with A. But
B assigns values to extra parameters not specified by A.
In the logic used by IML, the refinement relation is a
reverse inheritance relation. This means that version B of
a page defaults to version A of that page, unless there the
author provides explicit information about version B
which overrides this default.

4.2. Intensional Programming

Intensional programming is programming using
intensional logic. The obvious characteristics of
intensional programming are using intensional operators
to manipulate different versions.

The first intensional programming language is Lucid
invented by Wadge and E. A. Ashcroft in 1974. [3] Its
possible worlds if are a programmer-defined
multidimensional space, where each dimension is defined
as a non-negative integer. It has several operators,
allowing access to the value at the next index in a
dimension, the previous index, or all indices meeting
some criteria. There is no direct connection between
Lucid and IML. In particular, Lucid did not have a
context refinement relation. However they share the same
fundamental system which is demand-driven
multidimensional processing.

4.3. Intensional Markup Language (IML)

The backbone of IML is ISE, a Perl-like CGI language
with run-time parameterization. [2]. An IML package is a
collection of Groff macro definitions. It conceals the
complexity of ISE from the general web authors by using
Groff macro definitions instead of the intensional
expressions of ISE. [6] When all these tags are replaced
by their definitions, the result is an ISE program.

It is ISE which implements the version space and
refinement operation. In particular, ISE has a special case
statement (the vswitch) whose alternatives are labelled
with versions. On execution it chooses the alternative
whose label is closest (in terms of refinement) to the
current context. The vswitch with its best-fit principle is
the main feature which implements the default/override
logic vital to the construction of both example sentences
and customized pages.

IML itself is a simple markup language that extends
HTML. It is constructed on top of ISE. [6] The IML
source is translated (once) into a corresponding ISE
program which, when run with specific parameter
settings, produces the HTML which renders to the desired
version of the requested page. [2]

IML utilizes the parametric approach. It makes it possible
for many members of a website community to share the
pages by sharing parameters. Furthermore, it makes
customization of web pages possible by altering the
parameters. For instance, the user visits noun section of
FFC, then the URL looks like the follows.

http://i.csc.uvic.ca/elenali/FFC/new/ffc.ise<top:noun>

User
selected
facts

French Grammar
knowledge base

IML
Reasoning
engine

Answers

The former part is regular URL. The ending
“<top:noun>” is the parameter expression which present
the user’s specific request for the noun section of FFC.

We use the IML “Autolink” construct to allow the student
to add or delete parameters or to change their current
values. As described before, different versions of a web
page family are presented and invoked with different
version parameters. Therefore, autolinks can be used for
inter-version swap. The format of an autolink is:

.balink version_dimension:version_value
anchor_name
.ealink

The phrase in italic typeface is user-definable. An
automatic link consists of a pair of tags “.balink” (begin a
link) and “.ealink” (end a link) as well as the anchor
name. A version expression, which consists of a version
parameter and its desired value, follows the tag “.balink”.
Once the user clicks the autolink anchor, the version
expression is sent with the original URL to the web server
reasoning engine. Then the best-fit version of the web
page is calculated and sent to the user.

The FFC knowledge base is represented mainly using the
IML “.gmod” and “.gcase” macros, which allow the
author to specify rules for altering or adding parameter

values in the current context. Naturally, the rules are
interpreted using best-fit logic.

.bgmod

.gcase current_version:value set_version:value

.egmod

If the current version dimension is null, then the set
version dimension will be the vanilla version expression.
Also, multiple gcase phrases can be nested.

The first rule specifies the default gender as masculine,
while the other three override this default for the words
salade, chaise and voiture. For example, when the user
selects the noun “salade” by clicking the link which
changes the current version as “nom:salade”, this block of
code returns the gender version expression as “gen:e”,
which encodes the fact that “salade” is a feminine word in
French. Figure 2 is the implementation screenshot..

.bgmod

.gcase "" gen:-

.gcase nom:salade gen:e

.gcase nom:chaise gen:e

.gcase nom:voiture gen:e

.egmod

Figure 2. Screenshot of the gender of noun section in FFC

5. FFC Implementation

FFC is a typical application of intensional programming.
The FFC site is a family of pages with thousands of
versions, like the Noun section which has gender, number
and article sub-sections. Each of these grammatical
sections is defined as one of versions of web pages of
Noun section. Although, their grammatical parameters
encode information such as gender, number and article,
they share same source of graphics and other attributes of
a page such as top menus or footnotes. Therefore, the
entire web site can be considered as versions of a single
web page and related members can share source. The
reasoning engine, as a version control system, allows code
sharing between versions.

In FFC each composition of these elements of sentences
is in fact a specific version of the web page family. FFC
presents new examples as a new version of the web page
on the user’s demand. Therefore, FFC is a typical
multiversion web application which has a concise layout
and clear presentation.

5.1. Data Structure

The data structure of FFC is “tree” structure. There are a
total of four levels of files. The file in the top level is
ffc.m. The second level files include JavaScript menu
files topic_menu_array.js, the layout files including
topicM.i and topicR.i. The third level files are the
example sentence generators for each subtopic, e.g. enR.i
file is used to create examples for pronoun “en”. The
lowest level files are generic macrocodes, e.g. noun
analysis macro definition file announ.i.

5.2. Functions

 Number-alternative menu

The options in a series of menus can alternate between
singular form and plural form. The change is decided by
the current context. For example, the possessive adjective
example generator employs the alternative menu. There
are three menus: object menu, possessive adjective menu
and the number menu, which controls the object in its
plural or singular format. Any of these three menus can
interact with the others. For instance, if the user chooses
plural option from the third menu, the options in object
menu and possessive adjective menu will change into
plural form.

 Vocabulary-alternative menu

The options in vocabulary-alternative menus can be
changed into completely different vocabularies according
to the previous selections of the user.

For example, the example sentence generator of gender.m
in French noun topic employs the vocabulary-alternative
menu. The user can choose verb and object from verb
menu and object menu respectively. Each verb matches
with a different set of objects. Once the user selects one
verb, then the corresponding set of options for object will
be presented in the object menu. What’s more, the verb
menu will present the corresponding conjugated verb
according to the selection of subject.

 Verb Conjugation Search Engine

FFC allows the user to look up the conjugation of the verb
in present tense in Verb Conjugation Search Engine. The
user can input his or her inquiries in the blank, and FFC
takes the inquiry and searches for the conjugation form.
The search engine works in the following way: First, it
catches the user’s input and stores the string as a version
dimension. Second, the verb analysis process is invoked
to cut the string into single letters and store the last two to
six letters into a word endings array, and the other letters
into word a root array. Third, FFC will analyze the verb
ending. It depends on the grammatical rules of French
verb conjugation. Fourth, FFC goes through the irregular
verb conjugation database to check whether the verb is
irregular verb. The server side will use the best-fit
algorithm to facilitate the search. If the verb falls into one
of the irregular conjugation categories, it will be
conjugated according to the specific rule. If the verb is
just a regular verb, then the normal conjugation rule will
be applied. Fifth, the conjugated verb ending will be
added to the verb root in order to compose the
conjugation verb. The last step is that FFC returns the
result.

Let’s see two examples. First, the regular verb “aimer”
will be separated into two parts the verb root “aim” and
the verb suffix “er”. After checking through the irregular
verb database, there is no record for “aimer”. Therefore, it
is automatically defined as a regular verb. The regular
conjugation rule is applied to “aimer”. Finally, FFC
returns the result to the user.

The second example shows the irregular verb “manger”.
Verbs ending in –ger are irregular verbs which are
defined in the irregular verb database. So FFC will
conjugate the verb according to the specific rule and
return the result to the user.

5.3. Comparison

Compared with current French language educational web
applications, FFC breaks through the limitations of the
traditional model of conventional language web
applications, which is web interface plus database. In
contrast, FFC is built on knowledge based model,
containing French grammar knowledge base, logic
reasoning engine and interface layer.

FFC has dynamic contents and layout. It has many more
examples, generated from the different options selected
by students themselves. Because the sentences change
according to different selections chosen by the student,
the student is rarely able to go through all the examples at
one time. So the longer the student uses the application,
the more contents and examples they can exploit from the
application. It allows students to generate new sentences
and examples, thus keeps their interest longer. Therefore,
FFC promote an active learning curve.

FFC incorporates artificial intelligence. It employs all
kinds of changeable menus, which can change the options
according to the context. Moreover, it facilitates a
semantic filtering out function. FFC is easy to maintain
and be reused with simple and clear codes.

The methodology that we used to create this multiversion
French educational application is an authoring formalism
in which one can specify whole families of related pages
with only modest additional effort to that required to
specify a single page. After setting up the grammar rules
for some cases, it can produce sentences after taking input
from users. This is the artificial-intelligence incorporated
in FFC, which is the distinctive characteristic of FFC.

6. Conclusion

The objective of this paper is to propose an innovative
application of intensional programming in educational

language software. The objective is achieved through the
development of the intensional multiversion web
application French e-Flash Card. We presented FFC in
terms of prototype design, intensional web engineering
approach and implementation. In the process of
describing the development of FFC, we also explicate the
use of the intensional programming tool Intensional
Markup Language. Moreover, the advantages of IML tool
were discussed through the comparison with other
intensional programming tools and conventional web
authoring tools. What’s more, we demonstrated the
methodology of developing multidimensional web
application through the developing of the application
FFC.

References

[1] W. W. Wadge and C. Wadge, “Multidimensional French” ,
Proceeding of the Eleventh Annual International
Symposium on Language for Intensional Programming,
May 1998, Palo Alto, California, USA, W. W. Wadge, Ed.,
pp.109-117.

[2] W. W. Wadge, “Intensional Markup Language,” in
Distributed Communities on the Web, Third International
Workshop, DCW 2000, Quebec City, Canada, June 19-21,
2000, Proceedings, ser. Lecture Notes in Computer
Science, P. G. Kropf, G. Babin, J. Plaice, and H. Unger,
Eds., vol. 1830. Springer, 2000.

[3] W. W. Wadge, Intensional Logic in Context. Intensional
Programming II, World Scientific Publishing, Singapore,
2000, 1-13.

[4] Brian F. Chellas. Model Logic: An Instruction. Cambridge
University Press, 1980

[5] Ted Honderich, editor. The Oxford Companion to
Philosophy. Oxford University Press, 1995.

[6] P. Swoboda, “Practical Languages for Intensional
Programming,” M. Sc. Thesis, University of Victoria,
Canada (1999)

[7] J. Girardet and J. Cridlig, Panorama de La Langue Française,
ISBN 2.09.033709.5, CLE International, 2000

Analysis of meta-programs: a case study

Stan Jarzabek1, Shen Ru1, Hongyu Zhang2 and Sun Zhenxin1

1School of Computing
National University of Singapore

Lower Kent Ridge Road, Singapore 117543
stan@comp.nus.edu.sg

2School of Computer Science and Information
Technology, RMIT University

Melbourne 3001, Australia
hongyu@cs.rmit.edu.au

Abstract
Meta-programs are incomplete and adaptable programs

that are instantiated to meet a range of different
requirements. Meta-programs in XVCL facilitate reuse and
are organized into a hierarchy of meta-components, called
x-frames, from which the XVCL processor generates
concrete, executable programs. To aid in understanding of
x-frames, we developed an x-frame query language, FQL
for short. In FQL, we can formulate questions about x-
frame properties. A FQL query processor automatically
answers queries. An important finding from our study is
that traditional static program analysis techniques are not
directly useful for meta-programs. Interesting and useful
queries require partial processing (that is instantiation) of
a meta-program. While the details of analysis methods
depend on a specific meta-programming technique, we
believe readers interested in meta-programming techniques
in general will find lessons from our experiment interesting
and useful.

1. Introduction
Meta-programs represent a class of programs in generic

form. Customized programs derived from the meta-
program may differ in requirements, design decisions or
platforms. Meta-programming techniques [2] facilitate
reuse - customized programs form a product line, with a
meta-program being a product line architecture.

Generic meta-programs are more difficult to describe
and understand than concrete programs. Static analysis
methods have been applied to ease understanding and
maintenance of programs - can similar methods be used for
meta-programs?

An important finding from our study is that traditional
static program analysis techniques are not directly useful
for meta-programs. Interesting and useful queries require
partial processing (that is instantiation) of a meta-program.
In this paper, we describe problems in understanding meta-
programs built with XVCL [4][5] and a query system, our
solution to some of those problems. XVCL, XML-based
Variant Configuration Language, is a meta-language,
method and tool for enhanced maintainability and

reusability developed at the National University of
Singapore http://fxvcl.sourceforge.net. While the details of
analysis methods depend on a specific meta-programming
technique, readers interested in meta-programming in
general may find lessons from our experiment interesting
and useful.

2. An overview of XVCL
XVCL is based on Frame technology [1]. Frame

technology has been extensively applied in industry to
manage variants and evolve multi-million-line, COBOL-
based, information systems. The excellent record of frame
technology in large-scale software applications was the
main reason which led us to implementing XVCL. Unlike
original frames, XVCL blends with contemporary
programming paradigms and complements other design
techniques.

XVCL works on the principle of constructing custom
systems by composing generic, reusable meta-components,
after possible adaptations. Any location or structure in a
meta-component can be a designated variation point,
available for adaptation by ancestor meta-components. This
“composition with adaptation” process turns meta-
components into concrete components of the custom
system we wish to build. Program generation rules are
100% transparent to a programmer, who can fine-tune and
re-generate code without losing prior customizations..

To facilitate effective reuse, we split a program into
generic, reusable and adaptable meta-components, called x-
frames. An x-frame can be viewed as a component
parameterized for change and reuse. Usually, from a small
number of x-frames we can generate many concrete
components that differ in various characteristics such as
functional requirements or design decisions.

XVCL commands allow the composition of the meta-
components, selection of pre-defined options based on
certain conditions, etc. Meta-variables and expressions
provide a powerful parameterization mechanism.

We organize x-frames into a layered meta-component
architecture called an x-framework (Figure 1). An x-
framework is designed into layers to enhance reuse. It is
also “normalized” to eliminate redundancies.

an xan x--framework: framework: generic, adaptable, generic, adaptable,
reusable metareusable meta--component architecturecomponent architecture

menumenu

editoreditor

toolbartoolbar

optionoption buttonbuttoniconicon

Part Of

x-frame

an xan x--framework: framework: generic, adaptable, generic, adaptable,
reusable metareusable meta--component architecturecomponent architecture

menumenu

editoreditor

toolbartoolbar

optionoption buttonbuttoniconicon

Part Of

x-frame

menumenu

editoreditor

toolbartoolbar

optionoption buttonbuttoniconicon

menumenu

editoreditor

toolbartoolbar

optionoption buttonbuttoniconicon

Part OfPart Of

x-frame

example: x-framework for Editors

XVCL processorXVCL processor

specificationsspecifications of of
a custom programa custom program

customcustom
programprogram

example: a Notepad

Figure 1. XVCL at work

XVCL is supported by a processor. The processor
traverses x-framework, interprets XVCL commands
embedded in visited x-frames and emits a custom program
into one or more files. In our example, the output is emitted
to a single file. The processor's traversal order is dictated by
<adapt> commands embedded in x-frames. The <adapt>
command tells the processor to customize and include the
specified x-frame. This customization process of the x-
framework is directed by instructions contained in the
specification x-frame, called SPC for short.

2.1 Essential XVCL commands
We shall now describe a subset of XVCL that is

sufficient for the purpose of this paper. We refer the reader
to XVCL Web site for complete description of XVCL.

<x-frame> command:
<x-frame name= ”name” >

x-frame body: mixture of code and XVCL commands
</x-frame>

An x-frame body contains the program code
instrumented for ease of changing with XVCL commands.
Attribute name defines the name of x-frame.

<adapt> command:
<adapt x-frame=”name”>
 adapt-body : mixture of <insert>, <insert-before>,
<insert-after> commands
</adapt>

(or)
<adapt x-frame=”name”/>

The <adapt> command instructs the processor to:
• adapt the x-frame defined in “x-frame” attribute and

apply the commands listed in the adapt-body,
• include the adapted x-frame into the current x-frame,
• resume processing of the current x-frame.

The x-frame name may be a character string specifying
the name of a concrete x-frame (e.g., “A”) or a reference to
a variable whose value specifies x-frame name. Variable
reference has a form “@V” (explained later in more
details).

The adapt-body may contain a mixture of <insert>,
<insert-before> and <insert-after> command.
Customization commands may affect any x-frame reached
in a sequence of <adapt> commands from a given one. For
example, in x-framework of Figure 1, customization
commands specified in <adapt x-frame=”editor”> may
refer not only to x-frame editor , but also to x-frames menu
and toolbar.

<break> command:
<break name =”break-name”>

break-body
</break>

The <break> command marks a point at which an x-
frame can be adapted by ancestor x-frames via <insert>,
<insert-before> and <insert-after> commands. The break-
name is either character string or variable reference. The
break-body defines the default code that may be replaced or
extended by <insert>, <insert-before> and <insert-after>
commands.

<insert> command:
<insert break = ”break-name”>

insert-body
</insert>

The <insert> command replaces the break point “break-
name” in the adapted x-frame and its descendents with the
insert-body. The <insert-before> command inserts the
insert-body before the break point “break-name” in the
adapted x-frame and its descendents. The <insert-after>
command inserts the insert-body after the break point
“break-name” in the adapted x-frame and its descendents.

The insert-body may contain a mixture of code and
XVCL commands to replace or extend at matching break
point defined in “break” attribute.

<set> command:
<set var = ”var-name” value = ”value” />

The <set> command is used to define a single-value
variable. The <set> command assigns a value defined in
value attribute to single-value variable var-name defined in

var attribute. Value is either a string or a reference to a
variable.

<set-multi> command:
<set-multi var=”var-name” value=”value1, value2, …” />

The <set-multi> command is used to define a multi-
value variable. The <set-multi> command assigns multiple
values (value1, value2,…) define in “value” attribute to a
multi-value variable name var-name define in var
attribute.<value-of> command

<value-of expr = ”variable-ref” />
The value of the “variable-ref” is evaluated and the

result is inserted in place of the <value-of> command.
Variable reference can be direct or indirect such as:

“@v” – value of variable v (direct reference)
“@@v” – value-of(value-of(v)) (indirect reference)
“@…@v” –multi-level indirect reference

Variable scoping rules:
Variable scoping rules are the same for both single-value

and multi-value variables. While many x-frames may
include <set> commands for the same variable, only <set>
commands from one x-frame take effect during each run of
XVCL processor through x-frames. The <set> command(s)
in the ancestor x-frame takes precedence over <set>
commands in its descendent x-frames. That is, once x-
frame X sets the value of variable v, <set> commands that
define the same variable v in descendent x-frames (if any)
visited by the processor will not take effect. However, the
subsequent <set> commands in x-frame X can reset the
value of variable v. Variable v becomes undefined as soon
as the processor returns the processing to the parent x-
frame that adapts x-frame X.

Variables become undefined as soon as the processing
level rises above the x-frame that effectively set variable
values. This makes it possible for other x-frames to set and
use the same variables and prevents from the interference
among variables used in two different sub-trees in the x-
frame hierarchy.

The above scoping rule has important implication on
reuse. Lower level x-frames must be generic so that they
can be reused in many systems. Such x-frames define
default values of variables in their respective <set>
commands. However, ancestor x-frames often need to adapt
lower level x-frames for reuse in different contexts. Some
of adaptations are done by setting values of variables.
Therefore, ancestor x-frames must have a power to override
defaults defined in lower level x-frames. Variable scoping
rules in XVCL reflect the above thinking.

Definition of <select> command
<select option = ”var-name”>
 select-body: may contain options listed below
</select>
select-body:

 <option-undefined> (optional)
 option-body

</option-undefined>
<option value = ”value”> (0 or more)
 option-body

 </option>
<otherwise> (optional)

 option-body
 </otherwise>
The <select> command selects from a set of options

based on variable “var-name” as follows:
 <option-undefined> is processed, if the variable

“var-name” is undefined,
 <option> is processed, if value of “var-name”

matches <option>’s “value”,
 <otherwise> is processed, if none of the <option>’s

“value” is matched.
The option-body may contain a mixture of textual

content and XVCL commands.

Definition of <while> command:
<while using-items-in=”multi-var”>

 while-body
</while>
The <while> command iterates over while-body using

the values of multi-var defined in using-items-in attribute.
The i’th iteration uses i’th value of the multi-valued
variable “multi-var”. Inside while-body, multi-var with the
i’th value can be used as single-value variable. The while-
body may contain a mixture of code and XVCL commands.

3. Questions about x-frameworks
To effectively work with x-frameworks we must:

• understand the chain of x-frame inclusions triggered by
<adapt> commands from SPC or from any internal
point of an x-framework;

• understand the impact of such inclusions on properties
of the resulting custom program

• understand the data flow relations at meta-level
Here are examples of specific queries programmers ask

when trying to understand an x-framework:
1. Select all the <adapt> commands from all x-frames
2. Select variables that are modified in x-frame X
3. Select x-frames that modify value of variable COLOR
4. Select x-frames that adapt x-frame X
5. Select XVCL select structures that adapt x-frame X
6. Select x-frames adapted directly or indirectly from

XVCL command at line 10 in x-frame X
7. Select x-frames containing break point named BP
8. Select x-frames that adapt x-frame X with modification

at break point BP
9. Select x-frames that set variable v before adapting x-

frame X
10. Select x-frames that use variable v in some <adapt>

command
11. Select x-frames that are adapted directly or indirectly

from x-frame X and modify variable V, and make

selection (in XVCL <select> command) based on
variable v

4. An x-framework query language (FQL)
Answering the above queries is difficult and error-prone,

as one has to inspect multiple x-frames and emulate XVCL
processing to find the result. To ease understanding of x-
frameworks, we designed a query language, called FQL (x-
frame query language), and a FQL query system to
automatically answer queries.

Ad hoc approach to supporting queries won’t work as
the list of queries is endless. We applied concepts from an
earlier project on static program analysis [3] to design an x-
framework query system in a systematic way as follows:
1. we start by identifying an useful class of x-frame

queries such as those we listed in section 3,

2. we create a conceptual information model of x-frames
that is needed to answer the queries,

3. we define the X-frame Knowledge Base (XKB), a
repository to store the x-frame information,

4. we design a front-end to parse the x-framework and to
generate the XKB contents

5. we implement an interpreter to evaluate x-frame
queries written in FQL,

6. finally, we design x-frame view projector to display the
results of x-frame queries.

Figure 2 depicts a conceptual model of XVCL
commands described in section 2.

x-frame
+x-frameName

break
+breakName

adapt
+x-frameName

insert
+breakName

+type: rep, after, before

command
+line#

set
+varName

while
+multi-var-list

select
+varName

option
+type : undef, def, etc.

line numbers (line#) are for the
purpose of reference in queries

set-single

+single-value

set-multi
+value-list

value-of
+variable ref

Figure 2. XVCL command model

com m and

+line#

Follows

Follows*

com m and

+line#

com m and

+line#

Contains Contains*

Figure 3. XVCL command structure model

x-frame
+x-frameName

x-frame
+x-frameName

Adapts

Adapts *

command
+line#

command
+line#

Next

Next *

Figure 4. Command processing order model

The following relationships among XVCL commands
are of interest for querying purpose:

Relationship Follows (Figure 3) depicts the sequential
order of commands in an x-frame. Relationship Follows* is
a transitive closure of Follows. Relationship Contains

models direct nesting among commands. Relationship
Contains* models direct or indirect nesting among
commands.

Relationship Adapts (x, y) (Figure 4) holds if x-frame x
adapts x-frame y in a processing context under
consideration. Notice that x-frame x may contain a
command <adapt x-frame ="y"> but still this command
may not be executed. Relationship Adapts* is transitive
closure of Adapt. Relationships Next and Next* model
processing control flow processing among any XVCL
commands: Next (c, d) holds if commands c and d are in
the same x-frame and command d is executed after
command c. Relationship Next* (c, d,) holds if command d
is executed after command c, independently of whether
commands c and d are in the same or in different x-frames.

Relationship Modifies (x, v) (Figure 5) holds if
command x directly sets the value of variable v.
Relationship Modifies*(x, v) holds if Modifies (x, v) or
there exist y such that Adapts *(x,y) and Modifies (y, v).
Relationships Uses and Uses* are defined in a similar way.

com m and

+line#

variable

+varName

com m and

+line#

variable

+varName

Modifies

Modifies *

Uses

Uses *

Figure 5. XVCL variable usage model

Relationships Affects and Affects* (Figure 6) model
data flow among variable definition and reference points.
Relationship Affects (s, ref) holds if value of variable v
assigned in <set> command s can be actually used in
reference to this variable ref. Relationship Affects* (s, ref)
holds if there is a chain of variable definitions and
references, starting at <set> command s and ending at
variable reference ref, such that s affects (directly or
indirectly) ref.

set
+varName

var-ref

Affects

Affects*

Figure 6. Data flow model

4.1 Querying x-frameworks in FQL
FQL queries are expressed in terms of x-frame

information model described in the previous section. A
typical query has the following format:

Select … from … such that … with …
Here are examples of queries:

Q1. Select all the adapt commands from all x-frames
Select adapt

Q2. Select all the <adapt> commands from x-frame “CAD”
x-frame x ; adapt a ;
Select adapt from x with x.x-frameName=“CAD”
or simply: Select a from “CAD”

Q3. Select all the <insert> commands directly nested within
<adapt> commands

Select insert such that Contains (adapt, insert)

Q4. Select variables whose values are modified in x-frame
X and used in x-frame Y

variable v ; x-frame x, y ;
Select v such that Modifies (x, v) and Uses (y, v) with
x.x-frameName = “X” and y.x-frameName = “Y”

Q5. Select x-frames that modify value of variable
“COLOR"

Select x-frame such that Modifies (x-frame, “COLOR”)

Q6. Select x-frames that adapt x-frame X directly or
indirectly

Select x-frame such that Adapts* (x-frame, “X”)

Q7. Select all references to variable v affected by <set>
command at line number 20 in x-frame “CAD”

var-ref ref ;
Select ref from “CAD” such that Affects (“CAD”.20, ref)

5. Interpretation of queries
As XVCL is a dialect of XML, we started prototyping

FQL query evaluator using an XML query language XQL
[6] and a public domain XML parser, JAXP from Sun Inc.
[7]. We used JAXP parser for parsing XVCL files and
extracting information about x-framework. The extracted
information included the x-frame structure, adaptation
hierarchy of x-frames, breakpoint settings, etc. We stored
the extracted information in the XML format. We translated
queries written in FQL into equivalent queries written in
XQL and then used the XQL query engine to evaluate
queries.

In this prototype solution, we could address only queries
that could be answered by simple search for XML tags
representing XVCL commands. Our evaluator could
answer queries related to syntactical structure of x-frames
(e.g., modeled by relationships Follows and Contains) and
queries that required searching for different types of XVCL
commands in x-frames. However, many useful queries
depend on values of variables and cannot be answered by
simple search for XML tags. For example, consider query:
Select x-frame such that Adapts (x-frame, “X”)

To answer this query, it is not enough to search for x-
frames containing command <adapt x-frame = “X”/>. We
must also consider commands <adapt x-frame = “@V”/>
and check possible values of variable V. For this, we have
to interpret the x-framework.

Variables are heavily used to parameterize x-
frameworks: x-frame names in <adapt> or break names in
<insert> are most often expressed in terms of variable
references. Also, <value-of> is commonly used to represent
class and method names in generic way. Such
parameterization is an important technique to achieve reuse.

Interpretation of an x-framework depends on the context.
The context is defined by specification x-frame SPC. The
SPC usually sets values to many variables. Most of the
variables have also default values that are defined anywhere
in the x-framework. Therefore, we allow a programmer to
specify the context in which a query is to be evaluated:
1. The default context in which no user-defined SPC is

provided.
2. The customized context in which a programmer

provides a SPC x-frame. Our FQL system also provides
a user interface that allows a programmer to override
default values of variables to set up a context for query
evaluation.

6. Conclusions
In this paper, we described an analysis technique for

meta-programs created with XVCL. In XVCL, we partition
programs into generic, adaptable meta-components called
x-frames and organize x-frames into a hierarchical structure
called x-framework. An x-framework is meta-program that
forms a product line architecture. To aid in understanding
an x-framework, we developed a query language, FQL (x-
frame query language). In FQL, we formulate questions
related to adaptations and compositions of x-frames. A
FQL query processor can automatically answer a class of
useful queries aiding in understanding of x-frameworks.

An important finding of our study is that traditional
static program analysis techniques are not very much useful
for meta-programs. Interesting and useful queries require
partial processing (that is instantiation) of a meta-program.
Our query evaluator is, therefore, integrated with XVCL
processor. We re-designed the XVCL processor and
provided an API to facilitate invocation of XVCL
processing functions during query evaluation. In addition,
we provided an interactive environment for a programmer
to set up a context for query evaluation (e.g., to set up

values of undefined variables) and to view the intermediate
results.

In this paper, we described problems in understanding
meta-programs built with XVCL and a query system FQL,
and our solution to some of those problems. While the
details of analysis methods to much extent depend on a
specific meta-programming technique, the approach
described in the paper can be applied to any mate-
programming technique in which meta-components are
parameterized for changes and composed after adaptations
to build a specific program.

Flexible manipulation of programs, central in software
reuse, is the strength of meta-programming. We believe that
methods and tools for understanding and debugging of
meta-programs are essential for wider acceptance of meta-
programming as an effective approach to software
development.

Acknowledgments
This work was supported by NUS Research Grant R-

252-000-178-112.

References
[1] Bassett, P. 1997. Framing software reuse - lessons from real

world, Yourdon Press, Prentice Hall
[2] Czarnecki, K. 2000. Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, Reading, MA,
2000

[3] Jarzabek, S. 1998 “Design of Flexible Static Program
Analyzers with PQL,” IEEE Transactions on Software
Engineering, March 1998, pp. 197-215

[4] Jarzabek, S., Basset, P., Zhang, H. and Zhang, W. “XVCL:
XML-based Variant Configuration Language,” Proc. Int.
Conf. on Software Engineering, ICSE’03, May 2003,
Portland, pp. 810-811

[5] Wong, T.W., Jarzabek, S., Soe, M.S., Shen, R. and Zhang, H.
2001 “XML Implementation of Frame Processor,”
Symposium on Software Reusability, SSR’01, Toronto,
Canada, May 2001, pp. 164-172

[6] W3C 1998, XML Query Language (XQL) Retrieved Oct 10,
2000 from the World Wide Web
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[7] SUN Java Technology and XML. Sun Microsystems, Inc.
Retrieved July 23, 2000 from the World Wide Web:
http://java.sun.com/xml/.

Architectural Reflection in Adaptive Systems

Francesca Arcelli, Claudia Raibulet, Francesco Tisato, Marzia Adorni
Università degli Studi di Milano-Bicocca,

DISCo - Dipartimento di Informatica, Sistemistica e Comunicazione,
Via Bicocca degli Arcimboldi, 8, I-20126 – Milan, Italy

{arcelli, raibulet, tisato, adorni}@disco.unimib.it

Abstract. Architectural reflection enables software
systems to observe and control their own structure and
behavior. This fact is particularly useful in enhanced
distributed systems that should adapt dynamically to the
mobility of users, the heterogeneity and ever changing
access devices and networks, and/or other run-time
modifications that may influence the access of
applications (i.e., information and services).
The architecture proposed by this paper introduces a
reflective layer which aims at capturing those features of
a system that are relevant at run-time for the overall
system adaptability. These features are expressed in terms
of quality of services. The paper focuses on the
description of the reflective layer, including its position
within the overall system architecture and its specification
using the object-oriented paradigm.

1 Introduction

Enhanced distributed systems should enable various types
of devices and networks to be dynamically integrated
within their structure [8, 14]. And this is primarily
because of the mobility of users [2, 3, 17] and the
heterogeneity [2, 6, 8] of devices and networks through
which applications are accessed.

To achieve this challenging issue, a system should be
able to adapt itself: either to adapt applications [15, 17,
22] (i.e., information, services) to the system features
(i.e., devices/network features), or to adapt the system
features [2, 20] (whenever it is possible) to applications’
requirements. However, adaptability [2, 17] is a complex
argument being required at various levels (i.e., from
physical networks to communication protocols, from
physical resources to applications, etc.) and regarding a
wide range of issues that are determinant at run-time (i.e.,
resource usage, location, costs, computational and
communication performances, etc.).

 There are various approaches [2, 15, 17, 20, 22] that
aim at addressing adaptability. They may be divided in
two categories: (1) rather ad-hoc solutions which address
adaptability only at the application level, and (2)

enhanced solutions which address adaptability also at the
architectural level. In this context, reflection [1, 12] seems
to be particularly suitable to address adaptability in that it
enables a system to inspect its internal structure and
behavior. Architectural reflection [4, 20] represents
explicitly architectural aspects of a system, and moreover,
exploits these aspects.

Generally, architectural reflection introduces an
additional layer which plays an intermediary role between
the system representation and applications. This layer
enables applications to adapt to system features, and vice-
versa, systems to adapt (whenever it is possible) to
applications’ requirements. In this context, a reflective
layer should capture only information that is related to the
system representation and that is meaningful at run-time.
This information consists of non-functional aspects. A
reflective layer is causally connected to the logical layer,
which models system components and functionalities.

This paper presents a reflective architecture for
adaptive systems. The reflective layer defined by the
architecture captures the quality of services (QoS) [5, 9,
19] of the system components. We consider that QoS are
particularly relevant for an adaptive system in that its
adaptability is partially (if not totally) determined by its
capability to provide services which are characterized by
various levels of QoS. We have extended the term QoS
also to devices (computational components), hence we
call QoS all device and network features that determine
system performances at run-time. The reflective layer is
specified in object-oriented terms.

In addition to its fundamental objective (of enabling
the observation and control of a system components), the
reflective layer aims at being as light as possible in order
to avoid increasing significantly the number of software
components and consequently, reducing overall
efficiency. Further, the layer has been designed to be
flexible enough to allow modifications of itself without
causing overall damage.

The rest of this paper is organized as follows. Section
2 describes the reflective architecture of an adaptive
system. The reflective layer is presented in Section 3.
Section 4 introduces implementation considerations

regarding an adaptive system that uses our reflective
architecture. Related work is discussed in Section 5.
Conclusions and further work are dealt within Section 6.

2 Architectural Issues

The architectural model described in the following has
been designed for a multi-channel adaptive system [13]
enabling users to access information and services through
various types of devices and networks. The architecture is
characterized by the following layers (see Figure 1).

Figure 1 – The Architectural Layers

The technological layer provides the visibility of the
system objects via platform-dependent mechanisms.

The logical layer represents an abstraction of the
technological layer in that it enables the composition of
physical components into logical aggregates.

The base reflective layer defines basic reflective
classes allowing QoS features to be observed and
controlled in a platform- and standard-independent way.
According to the separation of concerns principle, such
classes do not embed any policy.

The extended reflective layer embeds best-effort
strategies which provide an improved level of QoS.

The application layer consists of domain specific
applications. Figure 1 does not highlight that, in general,
applications perform their job by exploiting domain-
specific knowledge via functional, non-reflective features
of the system objects. Reflective applications exploit both
domain and reflective knowledge. They either rely on
best-effort strategies (Appication A) or implement domain
specific strategies on the base reflective layer
(Application B).

The base and extended reflective layers provide the
same interface to the application layer even if their
implementations do not coincide.

3 The Base Reflective Layer

The goal of the base reflective layer is to define basic,
fundamental abstractions which capture information of an
adaptive system in terms of QoS. This section presents the

core classes of the base reflective layer, which may be
further specialized for actual systems.

In order to avoid confusions between non-reflective
(i.e., classes specified by the technological and/or logical
layers) and reflective classes (i.e., classes specified by the
base and/or extended reflective layers) a naming
convention has been adopted: “R_” (Reflective) prefix is
used to denote reflective classes.

R_Object is the superclass of any reflective class.
As shown in Figure 2, an instance of R_Object may be
associated by a causal connection relationship to an
instance of Object (the superclass of non-reflective
system objects). In this way, R_Object reflects (being a
meta-representation of) the Object. The specification of
non-reflective classes is out of the scope of the reflective
layer, which instead implements causal connection
mechanisms between reflective and non-reflective
information (see Section 3.4). Note that there may exist
R_Objects that do not have a direct causal connection
to Objects. (i.e., R_CompositeComponents which
model R_Components aggregations - see Section 3.1).

Figure 2 – The Core Reflective Classes

R_Object provides methods to discover and specify
which are the QoS-related features for a specific object
(getFeatures() and setFeatures()). Further, it
provides methods to inspect which QoS features are
visible (i.e., observable and controllable) for a specific
object. getQoS() and setQoS() methods are used to
inspect and define the QoS value provided by a specific
feature. Concrete subclasses of R_Object are expected
to implement getQoS() and setQoS() methods by
exploiting the proper subclasses of QoS (see Figure 3).

QoS features are identified by symbolic names
(Strings). For example, in a Java implementation of
the base reflective layer, the introspection mechanism
[21] can be exploited both to implement the inspection
methods and to invoke them by symbolic names.

R_Object supports the publish-subscribe pattern [7]
(i.e., an observer can subscribe a specific feature in order
to be asynchronously notified about its change). This is

particularly important for adaptive applications that may
exploit this mechanism to be notified about any
modification in a system.

There are four main subclasses of R_Object.
R_Component models computational components that
are relevant for their QoS features. R_Node models
network components through which R_Network
Services may be reached. R_NetworkLink models
the QoS of an actual connection between an R_Node and
an R_NetworkService.

The QoS class (see Figure 3) used by R_Object is
the superclass of any QoS feature. Due to the fact that
QoS depend strongly on the application domain, it has
been considered useful to define a general scheme that
establishes how QoS should be defined, rather than
providing a list of possible QoS features. In this way, the
same component may exhibit different QoS features
depending on the application domain.

Figure 3 – The QoS UML Class Diagram

The diagram shown in Figure 3 indicates how QoS
classes should be defined. Subclasses of QoS are types
(i.e., classes whose attributes are of elementary types) that
quantify the QoS of specific features. Note that QoS
features are modeled as leaves in the hierarchical
diagram. Hence, leaves can be added and/or removed
without influencing other parts of the model. For instance,
Size and Resolution are modeled as subclasses of
ScreenQoS. The naming convention specifies that for
example, Size/Resolution is the subclass of the
QoS that quantifies the QoS feature “Size”/”Resolution”.

3.1 Computational Components

R_Component (see Figure 4) models the QoS of any
computational entity of an adaptive system. Examples of
R_Components are: PCs, PDAs, memory, processors,
software components, etc. Note that R_Component
may model something that does not correspond to an
actual component at the technological layer, but to an
aggregate at the logical layer. For example, an
R_CompositeComponent may be a logical
aggregation of two or more R_Elementary
Components, hence it does not have a technological

equivalent. As it can be easily observed the model
exploits the Composite Design Pattern [7].

An R_Component has associated a Location,
which indicates the physical location of an R_Object.
Location may be expressed in absolute, relative,
geographical coordinates, etc. For instance, to locate the
PCs in a building, the building plan may be used.

Figure 4 – The R_Component UML Class Diagram

An R_ElementaryComponent models a
technological and/or logical object that can be effectively
observed and/or controlled. It reflects the QoS of a piece
of software and/or hardware (i.e., a peripheral and its
related driver) which can be considered atomic from the
QoS point of view (its internal structure is not
meaningful). Examples of elementary components are:
screen, keyboard, processor, router, network interface,
etc. A particular example that may require further
explanation is the R_NetworkInterface. This class
models the components that enable the access to a (type
of) network (i.e., net card, wireless card, etc.).

R_CompositeComponent models the QoS of a
component which is meaningful from the QoS point of
view, but which is not directly associated to a
corresponding Object. The R_Composite
Component is an aggregation of subcomponents (which
can be both R_ElementaryComponents and
R_CompositeComponents). Examples of composite
components are: PC, PDA, application service, etc.. Note
that a PC or a PDA may be seen as
R_ElementaryComponents, too, if their structures
are not meaningful for a particular application domain.

3.2 An Actual Example: R_Screen

Generally, a screen provides a visualization service. The
QoS of this service are determined by screen’s
dimensions, resolution, color quality, etc.

An example of a Screen component is shown in
Figure 5. Note that Screen and R_Screen are two
different classes that are causally connected to each other.
Screen is characterized by three attributes that express

the Size and Resolution of a screen. The class
provides methods to get and set its attributes, and to
display images. R_Screen describes a screen through
two QoS features: Size (observable) and Resolution
(observable and controllable). Size is translated into
inches within the Screen class, while Resolution
into horizontal and vertical resolution.

Figure 5 – R_Screen and Screen Classes

The behaviour of a reflective (adaptive) application
that observes and controls the QoS of a Screen is
described by the collaboration diagram shown in Figure 6.
The application displays images on a screen. It observes
the “Resolution” feature by invoking
getQoS(“Resolution”). After obtaining the
“Resolution” value, the application verifies that the image
may be displayed properly using the actual resolution. If
the answer is no, the application requires the modification
of the resolution to the R_Object (which automatically
generates the modification of the resolution values in the
Screen object by being causally connected to the last).
Then, the application displays the image invoking the
display() method. This is a typical case in which
system features adapt to the application requirements.

Figure 6 – The Collaboration Diagram for Observing
and Controlling a QoS Feature

3.3 Network Components

An R_NetworkComponent (see Figure 7) is an
R_Component that is actually connected in a network.

Conceptually, it makes the link between
R_Component class diagram (which models

computational components) and R_Node class diagram
(which models network components). For instance, a
laptop connected to a network becomes an R_Node.

A network may consist of inner nodes (R_Nodes)
and of end-nodes (that may either R_Nodes or
R_NetworkComponents). We have considered that an
R_Node is meaningful at the reflective layer in that it
provides a network address through which
R_NetworkServices may be accessed. The actual
connection of an R_Node to an R_NetworkService
is described by the association class R_NetworkLink,
which provides all the QoS of the connection.

Figure 7 –The Network UML Class Diagram

As R_Components, also R_NetworkServices
may be composed. Hence, the Composite Design Pattern
has been used to describe R_NetworkServices. An
R_ElementaryNetworkService is the equivalent
of the R_ElementaryComponent, while the
R_SegmentedNetwork corresponds to the
R_CompositeComponent.

As the class names suggest, the approach of
describing networks is top-down: having an R_Network
Service, we obtain improved QoS if we are able to
segment it and consequently to observe and control its
sub-components. While, in the case of R_Components,
the approach is bottom-up: we obtain improved
(computational) QoS if we aggregate simple components.

3.4 Causal Connection

To achieve causal connection between non-reflective and
reflective objects, two strategies have been considered

Observation strategy uses the update() method,
which aligns the information of the reflective layer to the
information of the logical/technological layer. Implicitly,
this method enables applications to observe the system
features and to adapt themselves accordingly.

Control strategy uses the force() method, which
aligns the information of the logical/technological layer to
the information of the reflective layer. This method
enables applications to control the system features and to

force components to adapt to application requirements.
Note that this method is not always successful.

Figure 8 – Causal Connection Strategies

These two strategies are independent of any strategy
defined at the extended reflective or application layer.

4 Implementation Issues

An actual multichannel adaptive system example is
presented within Figure 9. Being designed as a
decentralized system, the architecture of each device
conforms to the model described within Section 2 (see
Figure 1).

Currently, the initialization of technological, logical,
and reflective objects are performed using a configuration
file specified in XML terms. The network description is
stored in a centralized repository.

Applications access and use both reflective objects
and logical/technological objects of a device. Further,
they interrogate the network repository to find out which
are the network services (R_NetworkServices) a
device may access via its R_NetworkInterfaces,
and which are the available devices (R_Components)
accessible through a specific network service.
Applications are implemented in Java.

The application example considered for testing our
architecture regards remote display of images. We have
individuated two types of images. The first claims that the
entire image should be displayed to maintain its
significance (i.e., an image showing a person, pet,
landscape). Hence, the application asks the remote device
about its display QoS features. If there are any QoS
features that are controllable, the application tries to force
(if possible) the remote device to change accordingly to
its desired QoS requirements (i.e., resolution, color
quality, etc.). Then, the application itself tries to adapt the
image to the remote device features. Finally, it sends the
image to the remote device to be displayed.

The second case regards images in which a part of an
image may substitute the entire one. For example, images
that show colours or textures conserve their meaning even
if not displayed entirely. For such images, the application
asks the remote device about its display QoS features and
sends a part or the entire image (if possible) to the remote
device to be displayed.

Figure 9 – An Example of a Multichannel System

Note that transmission of images to the remote device
takes into consideration network QoS features. Hence,
applications may adapt (i.e., compress) further images
according to network QoS.

Further work on this example aims at enabling devices
to discover network services and their related information
through multicast/broadcast message, and without using a
centralized repository. In this way we aim at
implementing a totally decentralized multichannel
adaptive system.

5 Related Work

Approaches that address adaptability through reflection
are presented in [2, 3, 11, 15, 17, 20]. They are designed
for specific types of systems or application domains such
as mobile environments, Internet applications,
multimedia, and multi-channel systems. The advantage of
our approach is that it is independent of any specific
application domain. It provides a set of general rules that
can be further specialized and personalized for specific
applications. Hence, we provide an adaptable solution that
provides support for developing adaptive systems.

Examples of research projects that address
adaptability especially in Internet, mobile-enabled
environments, and multi-channel systems are: Odyssey
[18], which defines a platform to manage adaptive
applications for various mobile devices, Ninja [16], which
defines a software infrastructure for Internet applications
based on Web Services by providing composition,
customization, and accessibility from a wide range of
devices, Chisel [10], which defines an open framework
for dynamic adaptation of services in a policy-driven,
context-aware manner, and MAIS [13], which aims at
providing methodologies, environments, and tools for
developing multi-channel adaptive information systems.

6 Conclusions and Further Work

This paper has presented an approach to address
adaptability through architectural reflection. The main
goal of our solution has been to define abstractions that
enable the observation and control of systems’ features at
run-time.

Our solution presents at least two advantages. First,
separation of concerns is achieved. This aspect is related
both to the separation of system objects from domain
objects, and to the separation of the base reflective objects
(defined at the base reflective layer) from strategies
(defined at the extended reflective or application layer)
that may exploit these objects. Second, the reflective layer
ensures flexibility by separating reflective classes from
strategies and by defining QoS externally to the reflective
classes. In this way, modifications of strategies and/or
QoS classes do not influence the reflective model.

Another interesting aspect of our approach is that it
takes into consideration also QoS features related to
computational elements, which may influence the
performances of a system or an application. Obviously,
computational elements provide only few QoS aspects
which may change seldom with respect to the QoS related
to the network. Network QoS have been only mentioned
in this paper because similar solutions are available in
other works [2, 17]. However, there are cases in which
these aspects may influence significantly the overall
performances of a system or application.

Part of this work has been performed within the
research project MAIS1 – “Multichannel Adaptive
Information Systems” [13]. Further work consists in the
refinement of the base reflective layer, the
implementation of best-effort strategies at the extended
reflective layer, and the implementation of other
applications (especially disaster recovery) to test and
validate our solution.

References

[1] C. Bekker, P.Putter, “Reflective Architectures: Requirements
for Future Distributed Environments”, Proceedings of the
Fourth Workshop on Future Trends of Distributed
Computing Systems, 1993, pp. 112-118.

[2] G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F.
Costa, H. Duran, N. Parlavantzas, K. Saikoski, “A
Principled Approach to Supporting Adaptation in
Distributed Mobile Environments”, Proceedings of the
International Symposium on Software Engineering for
Parallel and Distributed Systems, 2000, pp. 3-12.

[3] L. Capra, “Mobile Computing Middleware for Context-
Aware Applications”, Proceedings of the 24th International
Conference on Software Engineering, 2002, pp.19-25.

[4] W. Cazzola, A. Savigni, A. Sosio, F. Tisato, “Rule-Based
Strategic Reflection: Observing and Modifying Behaviour
at the Architectural Level”, 14th IEEE International
Conference on Automated Software Engineering, 1999, pp.
263-266.

1 The MAIS research project is financed by MIUR – “Ministero
dell’Istruzione, dell’Università e della Ricerca° in the context of
the FIRB program – “Fondo per gli Investimenti della Ricerca di
Base”.

[5] D. Chalmers, M. Sloman, “A Survey of Quality of Service
in Mobile Computing Environments”, IEEE
Communications Surveys, 1999, pp. 2-10

 [6] V. Demesticha, J. Gergic, J. Kleindienst, M. Mast, L.
Polymenakos, H. Schulz, L. Seredi, “Aspects of Design and
Implementation of a Multi-channel and Multi-modal
Information System”, Proceedings of the IEEE
International Conference on Software Maintenance, 2001,
pp. 312-319.

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns: elements of reusable object-oriented software”,
Addison Wesley, Reading MA, USA, 1994.

[8] D. Garlan, “Software Architecture: a Roadmap”,
Proceedings of the Conference on The Future of Software
Engineering, 2000, pp. 91-101.

[9] J. Gozdecki, A. Jajszczyk, R. Stankiewicz, “Quality of
Services Terminology in IP Networks”, IEEE
Communications Magazine, Vol. 41, No. 3, 2003, pp. 153-
159.

[10] J. Keeney, V. Cahill, “Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework”, Proceedings of
the Fourth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2003, pp. 3-14.

[11] F. Kon, F. Costa, G. Blair, R.H. Champbell, “Adaptive
Middleware: The Case for Reflective Middleware”,
Communications of the ACM, Vol. 45, No. 6, 2002, pp. 33-
38

[12] P. Maes, “Concepts and Experiments in Computational
Reflection, Proceedings of the Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA’87), 1987, pp. 147-155.

[13] MAIS project - http://www.mais-project.it/
[14] A. Maurino, S. Modalferi, B. Pernici, “Reflective

Architectures for Adaptive Information Systems”,
Proceedings of the Workshop on Multi-Channel and
Mobile Information Systems, 2003.

[15] P. Motuzenko, “Adaptive Domain Model: Dealing with
Multiple Attributes of Self-Managing Distributed Object
Systems”, Proceedings of the 1st International Symposium
on Information and Communication Technologies, 2003,
pp. 549-554.

[16] Ninja - http://www.gigascale.org/mescal/forum/17.html.
[17] B. Noble, “System Support for Mobile, Adaptive

Applications”, IEEE Personal Communications, Vol.7, No.
1, 2000, pp. 44-49.

[18] Odyssey - http://www-
2.cs.cmu.edu/afs/cs/project/coda/Web/docs-ody.html.

[19] QoS Cisco- http://www.cisco.com/univercd/cc/td/doc/
cisintwk/ito_doc/qos.htm.

[20] J. Suzuki, Y. Yamamoto, “OpenWebServer: An Adaptive
Web Server Using Software Patterns”, IEEE
Communications Magazine, Vol. 37, No. 4, 1999, pp.46-52

[21] Sybex, Inc.: Enterprise Java 2, J2EE 1.3 Complete, Sybex
Inc, (2003)

[22] J.W. Yoder, F. Balaguer, R. Johnson, “Architecture and
Design of Adaptive Object-Models”, ACM SIGPLAN
Notices, Vol. 36, No. 12, 2001, pp. 50-60.

Automated Assistance for Eliciting User Expectations
Orna Raz†, Rebecca Buchheit‡, Mary Shaw†, Philip Koopman∗, Christos Faloutsos†
†School of Computer Science, ‡Civil Engineering Department, ∗ECE Department

Carnegie Mellon University
Pittsburgh PA 15213 USA

E-mail:{orna.raz, rebecca.buchheit, mary.shaw, koopman, christos}@cmu.edu

Abstract
People often use software for mundane tasks and expect

it to be dependable enough for their needs. Unfortunately,
the incomplete and imprecise specifications of such every-
day software inhibit many dependability enhancement tech-
niques because these require a model of proper behavior
for failure detection. We offer a user-centered approach
for creating a model of proper behavior. This approach is
based on satisfying the user expectations—software behav-
ior the user relies on—rather than demanding perfect spec-
ifications. It utilizes data mining through a novel template
mechanism, to help users make their expectations precise.
The resulting precise expectations can then serve as proxies
for missing specifications in detecting unexpected data be-
havior. We concentrate on data feeds: continuous streams
of data, a challenging example of everyday software. Using
our method on a real world data feed, it took just hours to
detect problems that had taken the data providers months
to detect independently. These problems surprised even
our user—a domain expert that had previously analyzed the
same data feed. Systematic analysis further supports the
usefulness of our method.

1. Introduction

If all software had perfect specifications—precise, com-
plete, and correct, increasing the dependability of everyday
software elements would be straightforward: use the speci-
fications as a model of proper behavior and detect a failure
when the software’s behavior is outside the specifications.

Unfortunately, specifications are rarely, if ever, perfect.
Moreover, it is neither cost-effective nor feasible to strive
for perfect specifications for everyday software elements—
elements incorporated in applications that are neither mis-
sion nor safety critical. Yet, the utility of such elements
would greatly increase with increased dependability.

Data feeds are an example of everyday software ele-
ments and the one we use in our work. A data feed is a time
ordered sequence of observations on output. Data feeds
may remain under the control of their providers and may
have many users relying, in different ways, on behavior the
providers did not anticipate. Many challenging, real world
software elements fall under the category of data feeds, in-

cluding Internet services and software elements that process
sensor data or perform monitoring activities. Examples in-
clude quotes for a stock, weather forecasts, and the truck
weigh-in-motion data we use in this paper.

We propose a user-centric approach for coping with in-
complete specifications of data feeds. Our method helps
users make their expectations about data feed behavior pre-
cise. It can then automatically detect semantic anomalies—
data feed behavior that falsifies these expectations. It ap-
plies statistical and machine learning techniques to help dis-
cover meaningful information in the data. These techniques
precisely characterize various aspects of the data. However,
to characterize relevant behavior, our method must elicit the
user expectations as well. It does so via a novel template
mechanism. In essence, templates document the predicates
of the inference techniques.

The template mechanism is the main contribution of this
paper. The case study provides empirical evidence in sup-
port of its usefulness.

Each user relies on a data feed in a certain way and ex-
pects the behavior of the data feed to support this usage.
Therefore, a given user may only care about a subset of the
data feed properties. Moreover, a user may care about be-
havior that is missing from existing specifications or even
unnoticed by the providers. However, users’ expectations
are informal and imprecise, though they are reasonably ac-
curate. For example, a user may expect trucks reported by
an on road scale to be physically feasible but may not be
able to specify all the properties and values that define such
feasibility.

Our approach has the advantages of (1) requiring no
knowledge about inputs or implementation details, includ-
ing source code or binaries and (2) requiring no user data
mining expertise. All it assumes is that (1) it can observe
the data feed over time, as the user uses it, (2) this usage will
tolerate recognition and repair of faults rather than require
prevention, and (3) the user has enough domain knowledge
to select predicates from a list our method automatically
generates. We talk about anomalies rather than failures be-
cause our approach, like any dynamic analysis, is poten-
tially unsound. However, our case study shows it can be
highly useful in practice.

Our approach is domain independent. Encouragingly, it

was able to produce results that were interesting within the
application domain of our case study: monitoring systems
in civil engineering; domain specific details and results are
described in a paper intended for civil engineers [21].

Our case study is a real world truck “weigh-in-motion”
(WIM) system using a standard data feed from the Min-
nesota Department of Transportation. Jackson [13] uses a
similar example to introduce his problem frames. Truck
WIM data is common in the transportation domain, where
civil engineers use it for analyses such as road wear. A
scale located in a traffic lane of a road weighs every axle
that passes over it. It records the weight on the axle, the
time of day, the lane the axle was in, and any error codes.
Software components analyze this data to map axle data to
vehicles, estimate the speed and length of the inferred ve-
hicles, calculate a measure of load on an axle called ESAL
(Equivalent Standard Axle Load), classify the vehicle type,
eliminate passenger cars from the data, and (purportedly)
filter out unreasonable values.

In our case study, a domain expert (the second author) in-
teracted with the template mechanism to create a model of
proper behavior for the WIM data feed from her informal
expectations. These informal expectations can be summa-
rized as: (1) vehicles in the same class should be similar and
(2) vehicles should be physically feasible. Our method suc-
cessfully turned these vague expectations into precise pred-
icates. We used the resulting model for anomaly detection
and compared it to existing documentation of the data feed.
We show that the template mechanism is effective; we mea-
sure effectiveness both by the insights the user gains (the
usefulness of the process) and the detection and misclassi-
fication rates (the usefulness of the resulting model).

2. The template mechanism of our approach

Our approach has three major stages: (1) setting up a
model of proper behavior by eliciting precise user expec-
tations; this stage relies on a novel template mechanism
and is the focus of this paper, (2) using the precise expecta-
tions as a proxy for missing specifications to detect seman-
tic anomalies in the data feed; previous work [22] discussed
this stage, and (3) updating the precise expectations to ac-
count for evolving system behavior or user expectations; we
defer this stage to future work.

These three stages may be viewed as a process governing
the data and control flow among the mechanisms underlying
our approach. These mechanisms are: (1) the technique tool
kit—a collection of existing statistical and machine learn-
ing techniques that we support and adapt; Section 2.2 pro-
vides details, (2) the template mechanism—a mechanism
that guides the human attention required in making expec-
tations precise using templates that document the predicates
a particular technique can output; Sections 2.1–2.2 provide
details , and (3) the anomaly detector—a mechanism that

checks the predicates that are the precise user expectations
and reports as anomalies data feed observations that falsify
predicates. The anomaly detector utilizes the precise expec-
tations as a model of proper behavior.

2.1. Process and premises

We characterize a predicate inference technique by the
types of predicates it can produce. Templates capture the
form of these predicates. For example, an inference tech-
nique may find a probable range for the values of a given
attribute, e.g., the length attribute. The corresponding tem-
plate would be #≤length≤ #, where # is a numeric value.

The template mechanism operates as follows:
1. Select tool-kit techniques appropriate to the data and

problem.

2. Run the selected techniques to infer predicates over
subsets of the data.

3. Ask the user to classify each predicate as either “ac-
cept”, “update”, or “reject”.

4. Use the classification to instantiate templates.

5. Use the instantiated templates to filter the output of the
tool kit techniques.

6. Give the filtered output to the anomaly detector and
present to the user the resulting anomalies and their
templates. Allow the user to change the classification.

7. Goto 2 or terminate when the user is happy with the
classification.

An inferred predicate is a “complete instantiation” of a tem-
plate. The template mechanism uses this complete instan-
tiation for templates of “accept” predicates. Classifying a
predicate as either “reject” or “update” may make the tem-
plate instantiation partial by rendering the instantiation of
all the numeric values in one or more dimensions void. See
Section 2.2 for examples.

The template mechanism treats the predicate inference
techniques as black boxes and uses the instantiated tem-
plates to filter the predicates a technique infers. It constructs
and updates the model of proper behavior from instantiated
templates of “accept” and “update” predicates. It will never
present the user or the anomaly detector with predicates that
match templates of previously rejected predicates. The tem-
plate mechanism eliminates techniques that are not relevant
for this user and data: it will not employ an inference tech-
nique if the user rejects all the predicates that are associated
with this technique.

Premises of our template mechanism include (1) it is eas-
ier for a user to choose from a list of inferred predicates than
to create this list, so having a machine synthesize the list is
helpful and (2) it is easier for a user to understand expecta-
tions about data behavior when presented with examples. It
is especially useful to examine examples of anomalous be-
havior, with the predicates that flagged them as anomalous.

2.2. Inference techniques and their templates

Our technique tool kit currently consists of five existing
techniques that is supports and adapts: Rectmix (described
below), Percentile (described below), K-means [19] (a clus-
tering algorithm with hard membership), Association Rules
[1] (a technique that produces probabilistic rules in an ’if
then’ form), and Daikon [10] (a program analysis tool that
dynamically discovers likely invariants over program exe-
cutions). We selected these techniques because they expose
different aspects of the data and because their output is easy
for a human to understand.

To select the most promising techniques for the problem,
our method looks at the match between: (1) the data type
and a technique (utilizing measurement scales [11]) and (2)
the user expectations and the vocabulary of a technique. For
the WIM data, this analysis found that the most promis-
ing techniques are Rectmix and Percentile: the predicates
they output match the data types and describe data behavior
relevant to the expert expectations. For this data feed, the
other techniques either describe irrelevant behavior or pro-
duce predicates that are less precise or redundant with re-
spect to the Rectmix and Percentile predicates. Therefore,
we concentrate on the Rectmix and Percentile techniques
and describe their templates. Details about the other tech-
niques can be found in [20].

2.2.1 The Rectmix technique

Rectmix [18] is a clustering algorithm that supports soft
membership (a point can probabilistically belong to multi-
ple clusters). The clusters it finds are hyper-rectangles in
N-space. Rectmix provides a measure of uncertainty called
sigma (an estimate of the standard deviation) for each di-
mension. Anomalies are points that are not within a rectan-
gle. Though clusters rarely have a hyper-rectangle shape in
reality, Rectmix has the significant advantage of producing
output that is easy to understand: a hyper-rectangle is sim-
ply a conjunction of ranges, one for each attribute (see Table
1). Rectmix has two parameters: the number of rectangles
and the number of sigmas of uncertainty to allow.

Rectmix always outputs hyper-rectangles, so it has a sin-
gle template: # ≤ A1 ≤ #∧...∧# ≤ An ≤ #, where n is
the number of attributes. The dimensionality of a template
is the number of attributes in the template. Table 1 gives an
example of user classification for predicates that Rectmix
outputs for a subset of the WIM data. The corresponding
templates have numeric values in one dimension—the axle
attribute—because the user chose to void the other attribute
values. For example, the template for the first predicate is
#≤length≤# ∧ #≤ESAL≤# ∧3≤axles≤3 ∧ #≤weight≤#.

2.2.2 The Percentile technique

Percentile outputs a probable range for the values of each
attribute. The x percentile of a distribution is a value in

Class Length ∧ ESAL∧ Axles ∧ Weight
Update 20–42 0–.43 3–3 12–29
Update 23–44 0–1.2 2–3 26–47
Reject 13–100 0–.45 2–7 7–40
Update 23–29 0–6.7 2–4 27–71

Table 1. Example of Rectmix predicates classification

Class Predicate Template
Update 40≤speed≤88 #≤speed≤#
Update 17≤length≤39 #≤length≤#
Reject .06≤ESAL≤.9 #≤ESAL≤#
Update 3≤axles≤3 #≤axles≤#
Update 12≤weight≤49 #≤weight≤#

Table 2. Example of percentile predicates classification
and instantiated templates

the distribution such that x% of the values in the distribu-
tion are equal or below it. Percentile calculates the range
between the x and 100-x percentiles and allows y% uncer-
tainty. Percentile only assumes that the distribution values
are somewhat centered and is insensitive to extreme values.

Percentile has a single template: #≤A≤#. Table 2 gives
an example of user classification and resulting instantiated
templates for predicates that Percentile infers over a subset
of the WIM data. Percentile (x=25, y=25%) works well for
speed, length, axles, and weight, but not for ESAL (ESAL
seems to be exponentially distributed).

Rectmix and Percentile differ: Rectmix finds correla-
tions among common attribute values whereas Percentile
simply finds common values for a single attribute.

3. Case study hypothesis
The case study explores the hypothesis that the template

mechanism is effective in eliciting precise user expecta-
tions and that the resulting precise expectations are a “good
enough” engineering approximation to missing specifica-
tions, for the purpose of semantic anomaly detection.

The case study supports the hypothesis by showing that
(1) The precise expectations are useful in detecting seman-
tic anomalies in the WIM data and (2) The user gains in-
sights about the WIM system through interaction with the
template mechanism and through analysis of anomalies.

4. Data and methodology
In a WIM system multiple algorithms process raw sensor

data, as introduced in Section 1. Unfortunately, processing
and sensors are error prone. Errors may manifest as real
vehicles that are not in their correct class (they are very dif-
ferent from other vehicles in their assigned class) or vehi-
cles that are physically improbable. These are the kind of
anomalies our expert cares about.

The data we use in our experiments is experimental data
the Minnesota Department of Transportation collected by

its Mn/ROAD research facilities between January 1998 and
December 2000. The data has over three million observa-
tions for ten vehicle types that characterize commercial ve-
hicles. Vehicle types differ mainly by their number of axles
and whether they consist of a single unit, a single trailer,
or multi trailers. The number of observations the system
collects varies by vehicle type.

We characterize the WIM data feed as a time-stamped
sequence of observations. Each observation has attribute
values for a single truck: date and time (accurate to the
millisecond), vehicle type (one of ten classes), lane (one
of two classes), speed (mph), error code (one of twenty five
classes), length (feet), ESAL (dimensionless), number of
axles, and weight (kips—kilo-pounds).

We first look for clusters and select attributes (details can
be found in [20].). As a result, the template mechanism in-
teracts with the user for each vehicle type (class) separately
and gives the selected attributes to techniques in the tool kit.

For the purpose of validating our template mechanism,
we selected three out of the ten vehicle types the data con-
tained: the most common vehicle type (type 9, about two
million observations) and two additional types (types 4 and
6, about one hundred thousand observations each).

A domain expert set up a model of proper behavior. We
gave the model to the anomaly detector. To simulate the
nature of on-line data, we divided the data into subsets of
two thousand consecutive observations each.

5. Results

We briefly summarize the results of our case study. We
present graphs and tables for one of the three vehicle types
we examined (type 6). The results for the other two types
(types 4 and 9) are rather similar.

The “update” predicates of Tables 1 and 2 are an example
of precise user expectations for vehicle type 6.

The detection rate calculates how many attributes the
model flags as anomalies out of the total number of at-
tributes. It is an objective measure because the results of
using the model for anomaly detection are binary: normal
or anomalous.

Figure 1 shows the detection rate of the Percentile pred-
icates. The analogous figure for Rectmix is similar.

The y-axis in a plot gives the total number of anomalies
in one of the data subsets, according to the criterion the plot
specifies, e.g., length anomalies. Notice that the y-axis scale
differs among plots. The x-axis is the sequential subset in-
dex. The first column in Figure 1 summarizes the number
of anomalies for each attribute. The plots in the second and
third columns summarize the anomalies that are due to at-
tribute values that are lower or higher, respectively, than the
range bounds.

Table 3 summarizes the average detection rate over the
subsets of each vehicle type. It gives the detection rate over

0 50 100
0

500

1000

sp
ee

d
: t

ot
al

0 50 100
0

500

1000

sp
ee

d
<

40
.0

0

0 50 100
0

1

2

sp
ee

d
>

88
.0

0

0 50 100
0

500

1000

1500

le
ng

th
: t

ot
al

0 50 100
0

200

400

600

le
ng

th
<

17
.0

0

0 50 100
0

500

1000

le
ng

th
>

39
.0

0

0 50 100
0

500

1000

ax
le

s
: t

ot
al

0 50 100
0

200

400

600

ax
le

s
<

3.
00

0 50 100
0

200

400

600

ax
le

s
>

3.
00

0 50 100
0

200

400

600

w
ei

gh
t:

to
ta

l

Subset index
0 50 100

0

100

200

300

w
ei

gh
t<

12
.0

0

Subset index
0 50 100

0

200

400

w
ei

gh
t>

49
.0

0

Subset index

Figure 1. Counts of anomalies detected using Percentile
predicates for vehicle type 6

Vehicle Average detection rate (%)
Rectmix type Total Length ESAL Speed Axles Weight

4 15.5 42.5 7.7 4.4 7.4
6 10.9 37.7 0.4 0.6 4.8
9 2.3 5.0 3.4 0.0 0.9

Percentile 4 8.4 8.1 0.8 10.2 14.6
6 20.2 30.5 22.2 17.0 11.3
9 0.8 1.0 0.3 0.0 1.9

Table 3. Average detection rate

all attributes and a break-down by attribute.
Small differences in the ranges for length and weight re-

sult in large differences in the detection rate, indicating that
the values for these attributes are closely concentrated. The
exact cut-off point between normal and anomalous is, there-
fore, not clear from the data.

The overall misclassification rate is defined as
FP+FN

Nor+Ab
= Ab+FP−TP

Nor+Ab
[23], where True Positives

(TP) are correctly detected anomalous data, False Positives
(FP) are normal data falsely detected as anomalous, False
Negatives (FN) are undetected anomalous data, Normal
(Nor=TN+FP) is data that is actually anomaly-free, and
Abnormal (Ab=TP+FN) is data with actual anomalies.

Determining the above measures is subjective even
though WIM documentation exists. This is because, on the
one hand, the documentation is sometimes incomplete and
imprecise, and on the other hand, it sometimes describes
behavior that neither Rectmix nor Percentile can express.

To determine Ab, FP, and TP, our expert set constraints
based on analyzing both the anomalies flagged by the
anomaly detector and the differences between the inferred
and documented models. Table 4 summarizes the result-
ing misclassification rate, averaged over the data subsets of

Vehicle type Average misclassification rate (%)
Rectmix Percentile

4 8.5 3
6 2.3 2.3
9 1 .8

Table 4. Average overall misclassification rate

each vehicle type. The rates are reasonable for a human to
handle.

6. Analysis

The user gained insights by interacting with the tem-
plate mechanism and by analyzing the resulting anomalies.
This is an especially encouraging result because not only is
our user a domain expert, but she also previously analyzed
this data (though for a different purpose) [5]. In addition,
the techniques inferred predicates that confirmed the expert
knowledge about the system. This raised our confidence in
the results and contributed to better understanding how the
system works.

We first enumerate data behavior that surprised our ex-
pert. We then present her suggestions for explaining this
behavior and enumerate the insights she gained by becom-
ing aware of this behavior.

When looking at the anomalies detected by using her
precise expectations as a model of proper behavior, the ex-
pert found the following data behavior surprising. This be-
havior is depicted in Figure 1. The data shows
• A large number of axle anomalies. In particular, the

data shows a surprisingly large number of one axle ve-
hicles. However, trucks should have at least two axles
and the WIM system software should have detected
such anomalies.

• A large number of slow vehicles.

• A large number of over-length vehicles. In particular,
for type 6 vehicles, a large number of anomalies have
the value of a system built-in length limit.

• A correlation between slow and over-length vehicles.

• A substantial decrease in the above anomalies starting
with data subset number 54 (observed at Nov. 1999).

• An exception to all of the above for the most common
truck type (type 9): the exceedingly large number of
anomalies does not apply to it.

The expert suggested causes for this surprising behav-
ior: The large number of anomalies may be due to (1) in-
accurate physical sensing, (2) unintended interaction effects
among the various software components. E.g., the compo-
nent that should eliminate infeasible values— the filtering
algorithm—may not properly clean the output of the com-
ponent that should identify the vehicle type—the classifica-
tion algorithm, and (3) boundary problems in the classifica-
tion algorithm.

The decrease in the number of anomalies may be due to
a software update in the classification or filtering algorithms
or a re-calibration of the WIM scale. The similar behavior
of multiple attributes and vehicle types suggests this change
or update was system wide. The exception for the common
vehicle type suggests that the system is tuned for this type.

The correlation between slow and over-length vehicles
corroborates the expert knowledge.

The major insights our expert gained from the above
analysis are as follows:
• The data behavior strongly suggests that there was

a system-wide change in the WIM system starting
November 1999.

• The system (both hardware and software) seems to be
calibrated for the most common type of trucks. This, in
turn, seems to adversely affect the accuracy of vehicle
identification and classification of other types.

• The interaction of the various software components
seems to occasionally have undesirable effects.

The data providers confirmed the expert insights and
cause analysis, including the system wide change in Nov.
1999. They were unaware of the behavior that surprised our
expert until recently. It turns out that the WIM scale has
two different modes for weighing an axle. The various al-
gorithms made inconsistent assumptions about the weigh
mode. As a result, they occasionally assigned values to
the wrong attribute. The next algorithms in the chain did
not recognize the problem and made calculations based on
the incorrect data. Type 9 vehicles are cleaner because one
of the many software providers recognized a problem and
made an undocumented correction for type 9. In addition,
the system is physically calibrated for this type.

The above strengthens our belief in the usefulness of our
method and demonstrates the benefits of automated elicita-
tion support. To set up the model, the expert invested less
than 10 hours. The anomaly detection was fully automated
and quick (a few minutes). In comparison, it had taken the
data providers several months to independently notice the
same problems.

7. Related work
The main contribution of this paper is the template

mechanism— a means of specifying user expectation and
consequently checking these expectations to detect anoma-
lies. Work most closely related includes approaches that
either have a similar emphasis on users and their intent
[16, 24, 15, 17] or perform various dynamic analysis based
on observable behavior [10, 9, 2, 8, 14, 12]. However, that
work often requires source code, binaries, or cooperation
from the software providers and has a different domain.

We use existing unsupervised learning techniques. Co-
training [4] tries to reduce the effort that labeling data for
supervised learning requires. Active learning [7] tries to

select good training data for a technique. We ask the user to
classify the output of a technique, rather than its input.

Many people have been analyzing WIM data. How-
ever, most are concerned with transportation issues, not data
quality. [6, 5] did domain specific quality analysis.

8. Conclusions

We introduced a promising means for eliciting user ex-
pectations about data behavior: the template mechanism.
Our case study provides empirical evidence in support of
the effectiveness of the template mechanism: (1) The model
was useful for anomaly detection. It enabled detecting ac-
tual anomalies that the expert cared about: classification
problems and unlikely vehicles. In addition, the misclas-
sification rate was reasonable for a human to handle. (2)
The expert gained insights about the WIM system. The data
providers confirmed the expert insights.

Moreover, the case study results corroborate the bene-
fits of interacting with the template mechanism to make ex-
pectations precise and of analyzing the resulting anomalies.
Our method: (1) detected hardware and software problems
from observed data only. It detected, for example, prob-
lems that were caused by mis-calibration, software modifi-
cations, or state changes, (2) promptly detected these prob-
lems, and (3) increased the understanding of existing doc-
umentation. For example, the exact cut-off point between
normal and anomalous was not clear from the data though it
was clear (for upper bounds) from the documentation, sug-
gesting the documentation bounds may be too strict.

9. Acknowledgments

We thank the Auton Lab [3] for making their dataset
processing and analysis software (SPRAT) available to us,
the Minnesota Department of Transportation for their WIM
data, and Dan Pelleg for allowing us to use his Rectmix
code and for his comments. This research is supported by
NSF under Grant ITR-0086003, by the Sloan Software In-
dustry Center at Carnegie Mellon University, by the NASA
High Dependability Computing Program under cooperative
agreement NCC-2-1298, and by the General Motors Collab-
orative Research Laboratory at Carnegie Mellon. This ma-
terial is based in part upon work supported by the National
Science Foundation under Grant Number 9987871, and by
the EUSES Consortium via the National Science Founda-
tion (ITR-0325273).

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association

rules between sets of items in large databases. In SIGMOD
93, 1993.

[2] G. Ammons, R. Bodik, and J. Larus. Mining specifications.
In POPL, 2002.

[3] Auton Lab. URL: http://www.autonlab.org. Ac-
cessed April 2003.

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In COLT: Workshop on Computational
Learning Theory, 1998.

[5] R. Buchheit. Vacuum: Automated Procedures for Assess-
ing and Cleansing Civil Infrastructure Data. PhD thesis,
Carnegie Mellon University, Civil Engineering Dept., 2002.

[6] R. Buchheit, J. Garrett Jr., S. McNeil, and M. Chalkline. Au-
tomated procedures for improving the accuracy of sensor-
based monitoring data. In AATT, 2002.

[7] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning
with statistical models. Journal of Artifi cial Intelligence Re-
search, 4:129–145, 1996.

[8] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. In ICSE, 2001.

[9] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In 18th ACM Symposium on Operat-
ing Systems Principles, 2001.

[10] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynam-
ically discovering likely program invariants to support pro-
gram evolution. In TSE, 2000.

[11] N. E. Fenton and S. L. Pfleeger. Software Metrics, chapter 2.
PWS Publishing Company, 2nd edition, 1997.

[12] S. Hofmeyr and S. Forrest. Architecture for an artificial im-
mune system. In Evolutionary Computation Journal, 2000.

[13] M. Jackson. Problem Frames: Analysing and Structur-
ing Software Development Problems, chapter 4.3.3, 5.4.
Addison-Wesley, 2001.

[14] T. Lane and C. E. Brodley. Approaches to online learning
and concept drift for user identification in computer security.
In KDD, 1998.

[15] P. Langley. The computational support of scientific discov-
ery. International Journal of Human-Computer Studies, 53,
2000.

[16] S. McCamant and M. Ernst. Predicting problems caused by
component upgrades. In ESEC/FSE, 2003.

[17] R. C. Miller and B. A. Myers. Outlier finding: Focusing user
attention on possible errors. In UIST, 2001.

[18] D. Pelleg and A. Moore. Mixtures of rectangles: Inter-
pretable soft clustering. In ICML, 2001.

[19] P. H. R. Duda and D. Stork. Pattern Classifi cation,. John
Wiley and Sons, 2nd edition, 2000.

[20] O. Raz, R. Buchheit, M. Shaw, P. Koopman, and C. Falout-
sos. Eliciting user expectations for data behavior via invari-
ant templates. Technical report, CMU-CS-03-105, 2003.

[21] O. Raz, R. Buchheit, M. Shaw, P. Koopman, and C. Falout-
sos. Detecting semantic anomalies in truck weigh-in-motion
traffic data using data mining. Journal of Computing in Civil
Engineering (JCCE), 2004. Accepted.

[22] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly de-
tection in online data sources. In ICSE, 2002.

[23] P. Runeson, M. Ohlsson, and C. Wohlin. A classification
scheme for studies on fault-prone components. In Product
focused software process improvement, 2001.

[24] J. Sousa and D. Garlan. Aura: An architectural framework
for user mobility in ubiquitous computing environments. In
IEEE/IFIP Conference on Software Architecture, 2002.

Automated Support for Knowledge Engineering for

A Natural Gas Pipeline Domain

Christine W. Chan
Software Systems Engineering

Faculty of Engineering
University of Regina

Regina, Sask S4S 0A2
Canada

Email: Christine.Chan@uregina.ca

Abstract This paper presents application of the
Knowledge Modeling System that supports users in
documenting knowledge elements acquired for
development of knowledge-based systems. The system
was developed based on a knowledge modeling
technique called the Inferential Modeling Technique. It
facilitates building an application ontology of a domain
by explicitly storing and structuring both domain and
task knowledge elements of any industrial problem
domain. The system also can support knowledge sharing
by converting the ontology into XML. Application of the
system for constructing an application ontology in the
natural gas pipeline domain is also presented.

Keywords: knowledge modeling, ontology construction,
natural gas pipeline operations, expert systems

1. Introduction

This paper presents the Knowledge Modeling System
that supports users in building an application ontology
from knowledge acquired for developing a knowledge
based system. Knowledge acquisition is the process that
extracts the required knowledge from available sources,
such as experts, textbooks and databases, for
incorporation into a knowledge-based system. This is an
acknowledged bottleneck in the development of
knowledge based systems. But it is also a crucial
process in the development of knowledge-based expert
systems because quality of the elicited and represented
knowledge determines effectiveness and efficiency of
the knowledge based system eventually constructed.
The problem of modeling knowledge is especially
difficult for knowledge engineers faced with the task of
creating a knowledge model for a domain with which
they are unfamiliar.

This paper presents application of a tool for
knowledge modeling called the Knowledge Modeling

System (KMS) to a natural gas pipeline domain. The
tool was developed based on the Inferential Modeling
Technique [1,2]. The objective of developing the
knowledge modeling tool is to provide automated
support for representing knowledge obtained during
knowledge acquisition as a step towards construction of
an application ontology. An ontology is an explicit
specification of a conceptualization that provides a
comprehensive foundation specification of knowledge in
a domain. The Knowledge Modeling System
implemented based on the Inferential Modeling
Technique supports acquiring and storing knowledge
items on a domain. In the current version, the repository
of knowledge items resides in a relational database,
which can be translated into the sharable representation
of XML. The knowledge model expressed in XML can
function as a sharable and reusable ontology of an
application domain.

2. Background

Different definitions of ontology have been proposed.
An ontology can be defined as a description of the most
useful, or at least most well-trodden, organization of
knowledge in a given domain. The organization
involves explicit specification of the objects, and
relationships that make up some world [6]. An ontology
can also be considered as an explicit specification of a
conceptualization. It provides a comprehensive
foundation specification of knowledge in a domain. In
the simplest case, an ontology can be represented as a
hierarchy of concepts related by subsumption relations.
In more complex cases, a variety of axioms can be added
to express relationships and constraints among domain
concepts. Ontological analysis as a knowledge modelling
technique was used in various research efforts . For
example, the CommonKADS methodology suggested
knowledge categorization in the model of expertise to

consist of the two major types of domain theory and
control knowledge, the latter includes inference, task,
and strategic knowledge (see e.g. Flores-Mendez et
al.[4]). Within this field of practical knowledge level
modeling, the Inferential Modeling Technique (IMT)
supports developing knowledge level models for diverse
task and domains. Similar to the CommonKADS
methodology, the IMT emphasizes both domain and task
specific elements [1,2]. This technique suggests
modelling the domain objects and relations first before
deciding what tasks are involved and what problem-
solving methods to adopt. Assigning first priority to
modeling domain objects and relations does not connote
these are more important knowledge elements than the
task knowledge. Both domain and task characteristics
are equally significant and intricately related.

3. The Inferential Modeling Technique

The Inferential Model and Inferential Modeling
Technique have been presented in [1,2]. The high level
content theory implicit in the Inferential Modeling
Technique provided the theoretical basis for developing
the Knowledge Modeling System, and implicit
assumptions of the Inferential Modeling Technique also
guided formulation of the Knowledge Modeling System.
The Inferential Modeling Technique is presented as
follows.

The template of knowledge types specified by the
Inferential Model serves to guide the elucidation of the
search space for a given problem domain. The model
can be operationalised as a procedure which facilitates
the development of the "specific categories" for a given
domain by presenting the knowledge engineer (KE) with
a template of knowledge types and a sequence of steps
whereby the elicited units can be classified. The
Inferential Modeling Technique consists of the following
steps:

1. specify the physical objects in the domain,
2. specify the properties of objects identified in

Step 1,
3. specify the values of the properties identified in

Step 2, or,
4. define the properties as functions or equations,
5. specify the relations associated with objects and

properties identified in Steps 1 and 2 as
functions or equations,

6. specify the partial order of the relations
identified in Step 5 in terms of strength factors
and criteria associated with the relations,

7. specify the inference relations derived from
objects and properties identified in Steps 1 and
2,

8. specify the partial order of the inference
relations identified in Step 7 in terms of
strength factors and criteria associated with the
relations,

9. specify the tasks in the problem,
10. decompose the tasks identified in Step 9 into

inference structures or subtasks (which invoke
units identified in Steps 1, 2, 5, and 7),

11. specify the partial order of the inference and
subtask structures identified in Step 10 in terms
of strength factors and criteria,

12. specify strategic knowledge in the domain,
13. specify how strategic knowledge identified in

Step 12 is related to task and inference
structures specified in Steps 9 and 10,

14. return to Step 1 until the specification of
knowledge types is satisfactory to both the
expert and KE.

This procedure supports an iterative-refinement of
the knowledge acquired for a problem domain and
provides top-down guidance on the knowledge types that
are required for problem solving. The termination of this
procedure occurs when both the knowledge engineer and
expert are reasonably satisfied that the knowledge model
that emerges represents the problem solving expertise.

4. Design of the Knowledge Modeling System

The IMT provided the theoretical basis for developing
the Knowledge Modeling System, which supports
construction of an application ontology. The Knowledge
Modeling System (KMS) has been designed to support
acquiring and storing both static and dynamic knowledge
elements of a domain. The two modules correspond to
the orthogonal axis of static and dynamic knowledge of a
problem domain as specified in the IMT. The two
components are complementary and together can
adequately represent most types of knowledge implicit in
an industrial application domain. The system accepts
user input through the user interface to either the class or
task component. All the knowledge obtained from the
user are stored in relational database tables implemented
as .mdb files in MS Access (trademark of Microsoft).
The databases can be converted into XML format for
knowledge sharing and dissemination on the web The
two main components of KMS are described as follows.

4.1. Class component

The class component corresponds to the domain and
inference levels in the IMT and consists of the domain
and inference classes, attributes, and values. This
component elicits from the user static knowledge on an
application domain such as classes of objects, the
attributes and values associated with each class, and
relationships between the classes. The classes specified
can be referring to either concrete or conceptual entities
in the real world. The KMS also supports specification
of binary relationships between classes. In the current
version of the system, only the inheritance or isa
relationship between parent and child classes is

supported. Hence, the attributes specified for the parent
or super class can be inherited by the children or sub-
classes. In addition, a class can also have its own
specific attributes. Based on the inheritance
relationships, the KMS can automatically configure a
classification hierarchy of all the classes and subclasses
in the domain. In the current version of the KMS, only
binary relationships between two classes are supported.
If a class is involved in a ternary or higher order
relationship, it is specified as a “constraint” in text.

4.2. Task Component

The task component of the system elicits knowledge
about the dynamic aspect of an application domain.
Based on the IMT, a task is regarded as an organized
structure or sequence of activities that is performed to
accomplish some objective. In KMS, objectives and
tasks are independent and managed separately. A task is
linked to an objective provided the latter needs the
former to complete itself. The detailed steps involved in
a task structure are described as behaviour. Similar to
the hierarchical structure relating classes and subclasses,
tasks are organized into a hierarchical structure so that a
task can be divided into subtasks. Again similar to the
notion of attributes for classes, properties can be defined
in KMS to describe tasks. Some sample characteristics
associated to a task include its preconditions,
dependencies, objects involved in a task and its
documentation. A task can also be associated to more
than one objective. The percentage of completion states
the extent to which the task is finished. The behavior of
the task specifies the steps involved in the task structure
needed to complete the task, this can be defined in
pseudo code.

4.3. Interaction between class and task
components

According to the IMT, the dynamic knowledge of a
problem domain is intricately intertwined with the static
knowledge. That is, the tasks and subtasks manipulate
classes of objects in order to accomplish an objective. In
KMS, the interaction between tasks and classes is
implemented as the task component invoking particular
class objects defined in the class component of the tool.
In applying the IMT, the knowledge engineer first
defines the static knowledge elements of a domain
before the dynamic knowledge elements. Similarly,
users of KMS need to first define the classes of objects,
their attributes and values in the class component. Then,
the task component of the system can invoke specific
objects that belong to classes already defined in the
system and instantiate the tasks with objects.

5. Application Problem Domain

In natural gas pipeline operations, a dispatcher is
responsible for making two vital decisions: (1) increase
and decrease compression, and (2) select individual
compressor units to turn on/off. These decisions have a
significant impact on effectiveness of the natural gas
pipeline operation. When the demand for natural gas
customers increases, the dispatcher adds compression to
the pipeline system by turning on one or more
compressors; and when customer demand for natural gas
decreases, the dispatcher turns off one or more
compressors to reduce compression in the pipeline
system.

To better focus the development efforts, a small
section of the natural gas pipeline in Saskatchewan
Canada called the St. Louis East compressor station was
modeled. A schematic of the St. Louis East system is
shown in figure 1.

The system consists of two compressor stations,
Melfort and St. Louis. These compressor stations are
used to supply natural gas to two customer locations,
Nipawin and Hudson Bay. In St. Louis, there are three
compressor units. Two of these units are electrical
compressor units and the other is a gas compressor unit.
In Melfort, there are two gas compressors. An electrical
compressor unit provides 250 horsepower and a gas unit
provides 600 horsepower. The demand for natural gas
from the customers fluctuates depending on the season.
In the winter, the demand for natural gas is usually
higher than in the summer. In addition, the demand for
natural gas also changes depending on the time of day.

Nipawin

H u d s o n B a y

Elec t r ic i ty compressor

G a s c o m p r e s s o r

St . Louis
c o m p r e s s o r

s ta t ion

Melfor t
c o m p r e s s o r

s ta t ion

Figure 1 Schematic of the St. Louis East system

Knowledge modeling was conducted for developing
an expert decision support system called Gas Pipeline
Operations Advisor (GPOA). It can aid the dispatcher in
optimizing natural gas pipeline operations in order to
satisfy customer demand with minimal operating costs.
The purpose of GPOA is to inform the dispatcher
whether compression should be added or reduced in a
pipeline system and the horsepower requirement needed
to satisfy customer demand, based on the total inline

flows and the current system conditions. In the process
of knowledge acquisition, the expert dispatchers
suggested a primary consideration in pipeline operations
was linepack level, which is a key variable used to
measure the value of the comfort zone. Linepack is
defined as the volume of natural gas that exists between
the compressor discharge pressure and the customer end-
point delivery pressure.

Some key concepts identified in this domain
consisted of the following. First, the four major
conditional variables in pipeline operations include rate
of change of pressure at the end point, current linepack
level, change of pressure at the end point, total flow in
the pipeline, and the decision variable of the state of the
linepack, which measures the value of the comfort zone.
Secondly, in the St. Louis East subsystem, there are two
types of compressors and a total of five compressors.
The dispatcher operates them to control pressure in the
pipeline system. Thirdly, the demand for natural gas is
higher in the winter than summer. The time of the day
also affects the demand for natural gas.

After acquiring the knowledge, the IMT was applied
for knowledge analysis. The IMT provides a template of
the possible knowledge types in a domain, and supports
the knowledge engineer in identifying the knowledge
types in the gas pipeline domain. According to the IMT,
some sample knowledge elements in this domain include
the following:
• A class of objects: A class of concrete or abstract

objects, e.g. a pipeline is a concrete class, which is a
medium between a compressor station and
customers,

• an attribute: an attribute describes a class, e.g
temperature is a property that describes the state of
the pipeline,

• value: a value for an attribute can be numeric or
symbolic; in the natural gas pipeline network
operations domain, a value can be a numeric or
logical (Boolean) value. An example of a numeric
value is capacity of a gas compressor at St. Louis
station is 600 BHP. An example of a logical value
is status of the gas compressor at St. Louis, which is
either on or off.

• relation: a relation between two or more classes of
objects, e.g. the inheritance relationship is a
relationship between an electrical compressor and
its parent, the compressor, and it is expressed as “an
electrical-compressor isa compressor”

• task: a task is a set of activities that accomplish an
objective, e.g. the task of compressor selection
involves selecting a compressor in order to put
additional pressure into the pipeline.

These knowledge elements were explicitly documented
in KMS, and were configured into an application
ontology.

6. Knowledge Representation Using KMS

The knowledge elements clarified using IMT provided
the basis for an ontology of the domain. Figure 2 shows
a sample input screen of KMS that allows a knowledge
engineer to enter information on classes, sub-classes,
attributes and values of objects belonging to a domain.
The top left panel of the screen shown in figure 2 shows
the classes and subclasses. For example, the class of
pipeline has the subclass of gas pipeline, and the class of
supplier station has the subclass of gas supplier station,
etc. All the classes are listed on the lower left panel of
the screen. The highlighted class is gas -pipeline, and its
class-specific and inherited attributes are listed on the
lower left panel of the screen. The inherited attributes
are prefixed with “#”. The attribute of “change of
pressure at end point (COP)” is highlighted, and its
possible values are listed in the top right panel of the
screen.

Task knowledge can also be represented in KMS. To
determine the BHP requirement, the linear equation used
was: BHP=277411 × (St. Louis Flow + Melfort Flow) -
1132. This equation was provided by the domain
experts.

For example, if the load is 900×103/day, the BHP
requirement can be calculated to be 1400. In addition,
the dispatcher can also consult the following prioritized
list of compressors to be turned on at different ranges of
BHP requirement (where G1 is gas compressor
numbered 1 and E1 is electrical compressor numbered 1
etc.):

1. Free flow (no compression)
2. (0 < BHP = 800) St. Louis G1
3. (800 < BHP =1200) St. Louis G1 and Melfort

G2
4. (1200 < BHP = 1600) St. Louis G1, Melfort

G2, and St. Louis E1
5. (1600 < BHP = 2000) St. Louis G1 and E1,

Melfort G2 and G3
The prioritized list of compressors constitutes

important information for the dispatcher, and it was
documented in the task component of KMS. The top left
panel of the screen in figure 3 shows the task objectives
in the problem domain of monitoring and control of gas
pipelines. All the tasks involved in the highlighted
objective of “determine horsepower requirement” are
listed in the middle panel of the screen. On the top right
panel, a decomposed list of the tasks and subtasks in the
domain are shown. For example, the second task in the
top right panel states “compressor selection”. The
subtask under this is the prioritized list of compressors.
By clicking on “follow the order from 1 to 5 based on
BHP requirement”, the prioritized list for operating the
compressors at the two stations is displayed in the
bottom right panel of the screen.

Figure 2 Representation of classes, attributes and values in KMS

7. Conclusion and Future Work

This paper has presented application of KMS for
construction of an application ontology from acquired
expertise. While the system can convert the specified
knowledge into XML format, this function is not fully
developed and needs further refinement. The KMS can
be compared to other ontology engineering tools along
the three dimensions of (1) development methodology,
(2) use of ontology, and (3) software usability issue as
suggested in [7]. Similar to other ontology engineering
tools like OntoEdit that is based on On-To-Knowledge
[8], and WebODE that is based on Methontology [3],
the KMS is solidly grounded in the Inferential
Modeling Technique which provided the theoretical
basis for developing the tool. In terms of sharing of
ontology, KMS is similar to OntoEdit, Hozo and
WebODE in that they all support conversion to some
sharable formalisms such as XML, DAML+OIL, or
RDF. Although this feature needs refinement, it is
functional in the current version. In terms of usability
of the interface, KMS is similar to the other ontology

engineering tools in that it has sophisticated interface
capabilities.

The key role that an ontology assumes in knowledge
modeling and knowledge based system development
has been widely discussed (see for example [5]). Mark
et al. [6] suggested that an ontology can serve as
software specification in knowledge-based system
development. Like software architecture, an ontology
provides guidance to the development process. The
former provides guidance to the development process
by specifying the interdependencies that deal with
stages or aspects of a problem-solving process. By
contrast to a software architecture, however, an
ontology involves not only the stages of a process, but
also the taxonomy of knowledge types. The two
aspects are referred to as task-specific and domain-
specific architectures [6]. There is much room for
improvement in the current version of KMS. For
example, more features can be incorporated into the
system such as support for strength factors on
relationships, facilities for modeling uncertainty in
both static and dynamic knowledge, representing non-
binary relationships among classes, and manipulation
of attributes by the task component. These will be left
for future research.

Figure 3 Representation of task knowledge in KMS

Acknowledgements

The author would like to thank W. Jin and V. Uraikul for
their contributions to this work, and also would like to
acknowledge the generous support of a Research Grant
and a Strategic Grant from the Natural Sciences and
Engineering Research Council of Canada.

References

[1] C.W. Chan, "Development and Application of A
Knowledge Modeling Technique", Journal of Experimental
and Theoretical Artificial Intelligence, Vol. 7, No. 2, 1995, pp.
217-236.
[2] C.W. Chan, “A Knowledge Modelling Technique and
Industrial Applications”, invited book chapter, Chapter 34 in
Volume 4 of C. Leondes, Ed., Knowledge-Based Systems
Techniques and Applications, 4 volumes Academic Press,
USA, 2000.
[3] O. Corcho, M. Fernandez-Lopez, A. Gomez-Perez and O.
Vicente, “WebODE: An integrated workbench for ontology
representation, reasoning, and exchange”, Proc. of EKAW
2002, Springer LNAI 2473, 2002, pp. 138-153.
[4] R.A. Flores-Mendez, P. van Leeuwen, and D. Lukose,
“Modeling expertise using KADS and MODEL-ECS”, in
Proceedings of Banff Knowledge Acquisition Workshop ’98,
Banff Canada, October 1998.

[5] N. Guarino and R. Poli, eds., Formal Ontology for
Conceptual Analysis and Knowledge Representation,
Dordrecht/Norwell, MA: Kluwer Academic, 1994.
[6] W. Mark, J. Dukes-Schlossberg, and R. Kerber,
“Ontological commitment and domain specific architectures:
experience with Comet and Cosmos”, In Towards Very Large
Knowledge Bases, Armsterdam, Tokyo:IOS Press, Ohmsha,
1995.
[7] R. Mizoguchi, "Ontology Engineering Environments",
In Handbook on Ontologies, S. Staab and R. Studer, eds.,
2003, pp. 275-295.
[8] Y. Sure, S. Staab, M. Erdmann, J. Angele, R. Studer and D.
Wenke, “OntoEdit: Collaborative ontology development for
the semantic web”, Proc. of ISWC 2002, 2002, pp. 221-235.

Automatic bug triage using text categorization

Davor Čubranić
Department of Computer Science
University of British Columbia

201–2366 Main Mall
Vancouver, BC, V6T 1Z4
cubranic@cs.ubc.ca

Gail C. Murphy
Department of Computer Science
University of British Columbia

201–2366 Main Mall
Vancouver, BC, V6T 1Z4
murphy@cs.ubc.ca

Abstract

Bug triage, deciding what to do with an incoming bug re-
port, is taking up increasing amount of developer resources
in large open-source projects. In this paper, we propose to
apply machine learning techniques to assist in bug triage
by using text categorization to predict the developer that
should work on the bug based on the bug’s description. We
demonstrate our approach on a collection of 15,859 bug
reports from a large open-source project. Our evaluation
shows that our prototype, using supervised Bayesian learn-
ing, can correctly predict 30% of the report assignments to
developers.

1 Introduction

Large software development projects require a bug track-
ing system to manage bug reports and developers who work
on fixing them. A ubiquitous example of such a system
is Bugzilla,1 an open-source system first introduced in the
development of the Mozilla web browser, but now used in
numerous other projects.

Bug tracking systems are particularly important in open-
source software development, where the team members can
be dispersed around the world. In such widely-distributed
projects, the developers and other project contributors may
rarely, if ever, see each other. Consequently, the bug track-
ing system is used not only to keep track track of problem
reports and feature requests, but also to coordinate work
among the developers.2

Most bug-tracking systems allow posting of additional
comments in bug reports. With communication channels

1http://www.mozilla.org/projects/bugzilla.
2The bug tracking system therefore serves to track more than just bugs,

and it may be more appropriate to call it “issue tracking system”. We use
the terms “bug tracking system” and “bug report” for historical reasons,
but in their wider, all-inclusive, sense.

between open source team members limited by their geo-
graphical and time separation, this feature has evolved to
fill a niche for focused, issue-specific discussion. The com-
ments on the bug report serve as forum for discussion of
implementation details or feature design alternatives. De-
velopers who can help in design deliberations because of
their expertise and insight, and stakeholders whose code
will be impacted by the proposed modifications, or who will
have to implement and integrate them, are quickly brought
into the discussion by “CC-ing” them on the bug report.3

Other members of the project with interest in the issue, of-
ten users who urgently need the feature or the bug fix, also
join in. More contentious issues—usually requests for new
features—can take months to resolve and can involve over
a hundred comments from dozens of people.

In many ways, the bug tracking system is the public face
that an open source development team presents to its user
community. Therefore, it is important that new bug reports
be dealt with as quickly as possible. Few things will turn
the users away—and kill the project’s community—faster
than the perception that the developers are not responsive
and ignore the users’ bug reports and feature requests.

However, successful large open source projects are faced
with the challenge of managing the incoming deluge of
new reports.4 Effectively deciding what to do with a new
report—bug triage in Mozilla parlance—can be a problem:
it takes time to figure out whether the report is a real bug
or a feature worth considering, to check that it is not a du-
plicate of an existing report, and to decide which developer
should work on it. Past a certain rate of new bug reports,
the time commitment for triage becomes too much of a bur-
den for an experienced developer, whose attention is more
valuable elsewhere. Projects such as Mozilla and Eclipse5

3All developers on the CC list for a given bug report are automatically
emailed notifications of changes to the report’s status and new comments.

4The Mozilla project has received an average of 168 new bug reports
per day in the week of 9 February 2004, for example.

5An extensible integrated development environment developed by IBM

have therefore been forced to introduce team members who
are dedicated to bug triage [2]. This solution is not ideal,
however, because it requires an additional step before the
developer can start working on a bug. It also introduces po-
tential errors, and more delays, if the triager makes a wrong
decision to which developer to assign the report.

In this paper we present our investigation of using ma-
chine learning, and in particular text categorization, to “cut
out the triageman” and automatically assign bugs to devel-
opers based on the description of the bug as entered by the
bug’s submitter. The method would require no changes to
the way bugs are currently submitted to Bugzilla, or to the
way developers handle them once the bugs are assigned.
The benefit to software development teams would be to
free up developer resources currently devoted to bug triage,
while assigning each bug report to the developer with ap-
propriate expertise to deal with the bug.

We begin this paper with a brief overview of related
work, followed by an introduction to the classification
framework used and the theory behind it. We then present
an experiment in which we applied these techniques to a
selection of bug reports from the Eclipse project and tested
their accuracy in assigning reports to developers. We con-
clude the paper with a discussion of results and possible
avenues for future work.

2 Related work

We are aware of no other work on computer-assisted bug
report triage, although there are some key insights on the
interrelationship between bug reports, source code, and the
developers that we share with the following two projects:

Fischer et al. mapped program features to the source
code where they were implemented, and then tracked the
code changes against problem reports involving those fea-
tures [4]. They then visualize the established relationships
to search for feature overlap and dependencies. Such visu-
alization of the evolution of features across time can then be
used to find locations in the code where there may be ero-
sion in the software architecture of the system, indicating
future problem spots for software maintentance.

Bowman and Holt have analyzed which developers
worked on each file in a software system to determine its
ownership architecture [1]. The ownership architecture
complements other types of architectural documentation. It
identifies experts for system components, and can be used to
infer the project’s internal organization into sub-teams. The
ownership archtecture can also show non-functional depen-
dencies: in their example device drivers for a given archi-
tecture could be easily seen, even if they otherwise shared
no code and resided in separate portions of the filesystem

as open source software, http://www.eclipse.org.

hierarchy, because they were “owned” by the same small
group of developers.

Although our purpose is different, our approach bridges
Bowman and Holt’s idea that there is a correspondence
between a system’s components and individual developers
with that of Fischer et al. on the link between bug reports
and program features. We also note that all three projects
are for support of managing software development, even if
they mine the source code for the relevant information.

Machine learning and data mining techniques have al-
ready been applied to source code and program fail-
ure reports, although so far only to support the code-
writing/debugging component of the software development
effort. For instance, Zimmermann et al. mined source
version histories to determine association rules which can
then be used to predict files (or smaller program elements,
such as functions and variables) that usually change to-
gether [11]. Such predictions can help prevent errors due
to incomplete changes or show program couplings that
wouldn’t be visible to methods such as program dependency
analysis.

Also, Podgurski et al. use machine learning to cluster
software failure reports to automatically determine which
ones are likely to be manifestations of the same error [9].
The failure reports in this case are automatically generated,
unlike the bug reports we deal with, and consist of stack
traces at the moment of program crashes.

3 Classification framework

We treat the problem of assigning developers to bug re-
ports as an instance of text classification, or “the problem of
assigning a text document into one or more topic categories
or classes” [6]. More specifically, it is a multi-class, single-
label classification problem: each developer corresponds to
a single class, and each document (that is, a bug report) is
assigned to only one class (that is, a developer working on
the project). Furthermore, it is a supervised learning prob-
lem, since we can view the correspondences of developers
with the bugs that they fixed in the past as the training data.

A variety of techniques for supervised learning have
been applied to text classification in recent years, for ex-
ample: regression models, k-nearest neighbour, Bayes be-
lief networks, decision trees, support vector machines, and
rule-learning algorithms. (See Yang [10] for an overview of
these approaches and a comparative evaluation of their per-
formance.) In this paper, we report on the use of Bayesian
learning approach for this project, because it is conceptually
elegant, is easily adapted to multi-class classification, and
performs well. The algorithm used, introduced by Kalt [5]
and further developed by Nigam et al. [8] is presented in
the following section, followed by the explanation of how
we applied it in the bug triage domain.

3.1 Naive Bayes classifier for multinomial word-
document model

The following are the framework’s assumptions: the
data set is represented as a collection of documents, D =
{d1, . . . , d|D|}, and each document has a class label c ∈
C = {c1, . . . , c|C|}. Documents in D are generated by a
mixture model and there is a one-to-one correspondence be-
tween mixture components and classes in C. Mixture com-
ponents, in turn, are parametrized on θ. Therefore,

P (di|θ) =
|C|∑

j=1

P (di|cj , θ)P (cj |θ) (1)

Furthermore, the documents are represented as “bags of
words”: each document di consists of words wt drawn from
vocabulary V = {w1, . . . , w|V|}. The naive Bayes assump-
tion is that the words are independently and identically dis-
tributed (i.i.d.): the probability of each word is independent
of its context and position in the document. Thus, the doc-
uments are drawn from a multinomial distribution:

P (di|cj , θ) =
|V|∏

t=1

δNti
tj (2)

where δtj = P (wt|cj , θ) and Nti is the number of times
word wt occurs in the document di. While the naive Bayes
assumption is clearly false in many real-world situations,
classifiers based on it perform surprisingly well, and it turns
out that it is not a mathematically unreasonable assumption
to make in classification tasks [3].

Using the Bayes rule, a previously unseen document di

can then be assigned label cj which maximizes:

P (cj |di, θ) =
P (cj |θ)P (di|cj , θ)

P (di|θ) (3)

∝ P (cj |θ)
|V|∏

t=1

δNti
tj (4)

The priors are estimated from the training data:

P (cj |θ) =
∑|D|

i=1 P (cj |di)
|D| (5)

where P (cj |di) = {0, 1} as given by the training set labels
(that is, P (cj |θ) equals the number of times cj occurred in
the test set divided by the size of the test set); and

P (wt|cj , θ) =
∑|D|

i=1 NtiP (cj |di)
∑|V|

m=1

∑|D|
i=1 NtiP (cj |di)

(6)

(That is, P (wt|cj , θ) equals the number of times word wt

occurs in class cj divided by the total number of all word

occurrences in that class.) In practice, a Laplace prior is
often used to avoid zero probabilities of words occurring
infrequently in V and was used here as well:

P (wt|cj , θ) =
1 +

∑|D|
i=1 NtiP (cj |di)

|V| + ∑|V|
m=1

∑|D|
i=1 NtiP (cj |di)

(7)

3.2 Bug triage as a Naive Bayes classifier

Our dataset D is a collection of bug reports
{d1, . . . , d|D|} entered into the bug tracking database.
When a new bug report is submitted, it is given a one-line
summary and a longer description. The bug report di thus
consists of a set of words wt that appear in its summary and
description. The order of words does not matter, but we do
keep track of multiple occurrences of a word in a single
bug report, Nti.

The developers working on the project form our set of
classes C = {c1, . . . , c|C|}. Although in real world a bug
report di may be handled by a number of people, only one
of them, cj ultimately resolves it—implements a bug fix or
a requested feature, rejects a proposed enhancement, deter-
mines that the report is not really a bug, etc.—and therefore
we assign to di the class label cj .

Once we have built our model θ using the existing bug re-
ports as training data, bug triage of a new bug report d|D|+1

simply follows from Equation 3: we assign it to the devel-
oper c ∈ C for whom P (c|d|D|+1, θ) is maximized.

4 Experimental results

To test the approach, we applied it to a selection of bug
reports from the Eclipse project and tested its accuracy in
assigning reports to developers.

4.1 Data set

We selected all reports entered into Eclipse’s bug track-
ing system6 between January 1, 2002 and September 1,
2002. A total of 15,859 reports were selected. The sys-
tem records for each bug the id of the user 7 who submitted
it (the submitter), a one-line summary accompanied with a
longer free-text description of the problem (which may in-
clude steps to reproduce it, or information from the error
logs, core dumps, and stack traces), and various attributes
such as its status (new, resolved, etc.), who it is assigned to,
and the list of users on the “CC” list who are automatically
notified of any changes to the report. The report can also

6Available online at https://bugs.eclipse.org
7“User” in this section denotes the user of the bug tracking system,

who may be a developer actively working on the project, and occasional
contributor, or simply a user of the software with interest in certain issues
or features

contain a list of free-text comments which can be made by
any user, and which include the author’s id and time of post-
ing. Finally, each report stores a timestamped history of all
the changes to its attributes, including the assigned-to.

To determine a document’s class (that is, the developer
to whom it should be assigned), a straightforward approach
would be to choose whoever was the report assigned to in
the bug tracking system. However, this obvious approach
is misleading for two reasons: first, in many cases this
assigned-to “user is actually an email alias for a whole sub-
team that deals with the module in question; second, just as
often, the developer who actually implements the fix for the
bug or requested feature—or who makes the decision to re-
move it from further consideration—is not the developer to
whom the bug was nominally assigned in the bug tracking
system.

Instead, we used our observations and experiences with
the bug tracking and development procedures in the Eclipse
project and devised the following heuristic to determine a
report’s class (developer who should handle it from the out-
set):

1. If the report was resolved by the assigned-to developer,
the report is labelled by his or her class regardless of
who the submitter was or what the report’s resolution
was (e.g., fixed, duplicate, invalid, later, etc.). This is
clearly the case of a developer who was in charge of
the report and who has completed processing it.

2. If the report was resolved by someone other than the
assigned-to developer, but not by the person who sub-
mitted it, we label the report with the class of the de-
veloper who marked it resolved. The reasoning is that
whoever made the decision to resolve the report is the
person to whom it should have been assigned all along.

3. If the report was resolved as fixed, regardless of who
the resolver was, we assume that this is the developer
who implemented the fix and label the report with the
class of that developer, as this is probably the person
who had done the real work on the report. This rule
covers the frequent case where an Eclipse developer
files a report, which is then assigned to somebody else
or a sub-team alias by default, and then later imple-
ments the fix himself.

4. If the report was resolved as non-fixed (i.e., with reso-
lution duplicate, invalid, etc.) by the person who sub-
mitted it, and who was not also assigned to it, the re-
port is labelled with the class of the first person who
responded to the reporter. This handles the many cases
of a submitter throwing the report away after being in-
formed that it is a feature and not a bug, or after being
prompted by a developer for details of his or her setup
and discovering that the bug does not exist any more.

We choose the first responder to the report rather than
the assigned-to person for reasons outlined above.

5. If the report was resolved as non-fixed by the submit-
ter who was not the assigned-to developer, and nobody
responded, we assume that the report was submitted
in error—for example, not knowing the proper oper-
ation of Eclipse—and that the mistake was caught by
the submitter before anyone could react. These reports
are removed from the training set, as they cannot be
reliably labelled.

6. If the report was not resolved, we label it with the class
of the most recent assigned-to developer.

These heuristics are not perfect, and we have noticed three
or four examples where they are definitely not correct.
However, based on a non-exhaustive examination of its
results, they perform much better than always simply la-
belling a report with the class of the assigned-to developer.
The labelling heuristics are obviously tailored to the devel-
opment practices of the Eclipse project, and may need var-
ious amounts of modification before they could be applied
to a different project. Mozilla, for example, uses a strict
code review practice in which two senior developers need
to check off on a proposed implementation (usually a patch
that’s attached in the Bugzilla database), and so it is usu-
ally the reviewers who close the bug and not the developer
responsible for the implementation.

During the labelling, we threw away 189 reports as de-
scribed in step 4, for a total of 15,670 labelled documents
(reports) and 162 classes (developers). We then extracted
the summary and description of each report, tokenized all
alphabetic sequences of characters (lower-cased and disre-
garding words in the standard SMART system stoplist of 524
common words such as “the”, “a”, etc.), and used that as the
content of the document in classification. No stemming of
words was done, except where so noted in the results sec-
tion.

4.2 Methodology and measures

The data set was divided into a test set and a train set
by randomly selecting a percentage of the documents from
the data set for placing into the train set, with the remainder
going to the test set. The model was learned using the train
set, and then tested for label predictions of documents from
the test set. We used the Bow toolkit [7], and configured it
with the parameters as described above.

The classification accuracy was calculated as the per-
centage of documents for which the algorithm predicted
the correct label. The predictions of course exist for all
classes (that is, we calculate all the P (cj |di, θ), where∑

j P (cj |di, θ) = 1), but only the top prediction counts

when determining accuracy. The results reported below are
the average over multiple runs, where each run used a new
randomly built training and test sets (three runs per data
point).

4.3 Results

In our experiments, we varied the size of the test set, the
size of the vocabulary, and the criterion used to truncate the
vocabulary. Figure 1 shows the classification accuracy as a
function of the train/test set split, when the full vocabulary
V of words found in bug reports is used.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (p

er
ce

nt
ag

e)

Percentage of test data

No stemming
With stemming

Figure 1. Classification accuracy without vo-
cabulary truncation.

As we can see, the algorithm corectly assigns just under
30% of the bugs, when 90% of the document corpus is used
as training and 10% as the test set. The accuracy slowly
declines to 27% as the test set’s size is increased to 50% of
the corpus.

Figure 1 also shows the results when the vocabulary was
created using stemming, which identifies most grammati-
cal variations of a word—such as “see,” “sees,” “seen,” for
example—and treats them as a single term.8 The results are
virtually unchanged, and any differences between the two
conditions are within about one standard deviation at each
data point.

Figure 2 shows the classification accuracy when the vo-
cabulary was truncated to eliminate words that do not occur
in at least d documents, for d = {1, 2, 5, 10, 20}. The ac-
curacy is slightly lower than when the full vocabulary was
used for d = 1, and almost a third worse (just above 20%)
for d = 20. There is a slight downward trend as the size of
the test set increases, but not in all cases.

8The standard Porter stemming algorithm was used.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (p

er
ce

nt
ag

e)

Percentage of test data in the data set

d(w)>1
d(w)>2
d(w)>5
d(w)>10
d(w)>20

Figure 2. Classification accuracy when words
occurring in fewer than d documents are re-
moved from the vocabulary.

Figure 3 also shows the classification accuracy of a trun-
cated vocabulary, but using a different truncating criterion.
In this case, we eliminated all words that occur fewer than
T times in the entire collection, for T = {5, 10, 20, 40, 80}.
Again, the classification accuracy is slightly lower for T =
5 than when the full vocabulary is used, and falls to just over
20% for T = 40 and to around 18% for T = 80. Interest-
ingly, for higher values of T , the accuracy improves with
smaller training set, indicating some overfitting was occur-
ring otherwise.

5 Discussion and future work

Overall, the performance of the algorithm was lower than
expected, although the results are sufficiently promising to
warrant further investigation. For example, we expected
that truncating the vocabulary would have helped, by re-
ducing the danger of overfitting, but that was clearly not the
case, although smaller vocabulary speeds up the classifica-
tion.

Also, we would like to involve the developers from the
Eclipse project to evaluate the classification results based
on their own subjective experience. For example, in those
cases when a document is mis-classified, is the classifica-
tion still “reasonable”—such as to a colleague on the same
sub-team, who could handle the bug himself.

Our heuristics for deducing the developer-bug assign-
ment in the data set could be improved further. It is cur-
rently based on our own observations of the bug-handling
process, and could benefit from insight gained by directly
involving the project’s developers. Also, we build our set of

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (p

er
ce

nt
ag

e)

Percentage of test data in the data set

T(w)>5
T(w)>10
T(w)>20
T(w)>40
T(w)>80

Figure 3. Classification accuracy when words
occuring in the collection fewer than T times
are removed from the vocabulary.

possible labels automatically from user ids in the bug track-
ing system. We could limit this set only to those users that
we know are real developers on the team. This would elimi-
nate labels corresponding to people who were perhaps only
the bug submitters or interested bystanders, and who were
falsely determined to be the bug “owners” by our heuristic.

Another weakness and a potential avenue of improve-
ment is that in the process of creating the data set used in
training and testing of the classifier, we either force a bug
to a developer’s class, or throw it away. This is the conse-
quence of the naive Bayes classifier algorithm that we use,
which cannot deal with unlabelled documents in the corpus.
However, there are extensions to this algorithm that com-
bine it with Expectation Maximization (EM) methods to
achive very good results classifying a document corpus that
contained a high proportion of unlabelled documents [8].
An interesting variation would be to label the documents
with a range of probabilities, rather than just 1 or 0 we cur-
rently use, which would allow us to reflect our degree of
certainty in the classification during the learning phase.

6 Summary

In this paper, we described an application of super-
vised machine learning using a naive Bayes classifier to
automatically assign bug reports to developers. We eval-
uated our approach on bug reports from a large open-source
project, Eclipse.org, achieving 30% classification accuracy
with current prototype. We believe that the system could be
easily incorporated into current bug-handling procedures to
decrease the resources currently devoted to bug triage. New

bug reports would be automatically assigned to the devel-
oper predicted to be the most appropriate to the content.
Mispredictions could be handled in a light-weight fashion
by their assignee, “bouncing” them to a dedicated triager
for human inspection and classification. Clearly, even the
classification accuracy we can currently achieve, would sig-
nificantly lighten the load that the triagers face under the
present conditions.

References

[1] I. T. Bowman and R. C. Holt. Reconstructing own-
ership architectures to help understand software sys-
tems. In Proc. of IWPC 1999, pp 28–37. IEEE Press.

[2] T. Creasey. Personal communication, 14 July 2003.
Eclipse developer, IBM Canada.

[3] P. Domingos and M. Pazzani. Beyond independence:
Conditions for the optimality of the simple Bayesian
classifier. In Proc. of ICML 1996, pp 105–112. Mor-
gan Kaufmann.

[4] M. Fischer, M. Pinzger, and H. Gall. Analyzing and
relating bug report data for feature tracking. In Proc.
of WCRE 2003, pp 90–99. IEEE Press.

[5] T. Kalt. A new probabilistic method of text classifica-
tion and retrieval. Technical Report IR-78, Center for
Intelligent Information Retrieval, University of Mas-
sachussetts, Amherst, MA, 1996.

[6] A. McCallum. Multi-label text classification with a
mixture model trained by EM. In AAAI Workshop on
Text Learning, 1999.

[7] A. K. McCallum. Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classification and clus-
tering, 1996.

[8] K. Nigam, A. K. McCallum, S. Thrun, and T. M.
Mitchell. Learning to classify text from labeled and
unlabeled documents. In Proc. of AAAI 1998, pp 792–
799. AAAI Press.

[9] A. Podgurski, D. Leon, P. Francis, W. Masri,
M. Minch, J. Sun, and B. Wang. Automated support
for classifying software failure reports. In Proc. of
ICSE 2003, pp 465–475. IEEE.

[10] Y. Yang. An evaluation of statistical approaches to text
categorization. Information Retrieval, 1(1–2):69–90,
1999.

[11] T. Zimmermann, P. Weißgerber, S. Diel, and A. Zeller.
Mining version histories to guide software changes. In
Proc. of ICSE 2004, to appear. IEEE Press.

Automatic Mapping of OWL Ontologies into Java

Department of
Computer Science

niversity of
Maryland,

MD 20 2 SA
aditya@cs.umd.edu

Department of
Computer Science

niversity of
ath, ath A2

A ,
dani@pitaweb.com

ewlett Packard
Labs,

ristol S3 Q ,

steve.battle@hp.com

Department of
Computer Science

niversity of
ath, ath A2

A ,
jap@cs.bath.ac.uk

armonIA

An individual which satisfies the property restrictions,
belongs to the class

A declared instance of the class is constrained by the field
restrictions enforced through the class accessor methods

armonIA

nto ava

SmartGuide’

avadoc

nto ava (

Prot g

Prot g

et al

(set get methods)

constraint-checker

(set get
methods)

listeners

Thing

subClass f intersection f one f

A

A equivalentClass

 subClass f A

A
intersection f(,C)

A union f(,C)

A complement f
dis ointWith

A one f(I1, I2)

.2.1 Domain

Thin

IntX

intersection

.2.2 Range

Collection

List

RangeChecker

VetoableChangeListener
RangeChecker

vetoableChange
fireVetoableChange

vetoableChange

throwing

PropertyRangeException FunctionalPropertyException
MinCardinalityException asValueException

PropertyVetoException

has rother
Male

has rother List
RangeMaleChecker

vetoableChange RangeMaleChecker
if-then

Male instanceof

PropertyRangeException

has rother
Male Son.

Range rotherChecker
RangeMaleChecker RangeSonChecker

union f

vetoableChange

P domain A

Range

Functional

InverseFunctional

Symmetric

Transitive

EquivalentPropert
y

SubProperty f

Inverse f

Cardinality

asValue

SomeValuesFrom

AllValuesFrom

domain
range

Functional Symmetric
Transitive

minCardinality
hasValue) Anonymous Classes

Supply Chain Management

Company

businessName
contactAddress contactPhone,
businessID

has usinessCategory
hasWork rder hasPurchase rder

Automobile
Company

Company

has usinessCategory
Automobiles

Product

productName
productID

Company
hasMaker

uyer Company
hasPurchase rder

Purchase rder rder
Work rder

Automobile Product Product

hasMaker,
Automobile Company

Company Product
Purchase rder

rder Work rder

Automobile Company
Automobile Product

IntProduct
Product

productName hasMaker

String
Company

r u t nt r u t
IntProduct

IntCompany
Company

IntAutomobileProduct
,

Automobile Product. IntProduct

subClass f

someValuesFrom hasMaker.

SVFAutomobileCompanyChecker

VetoableChangeListener
vetoableChange

ut m bile m an .

hasValue, allValuesFrom .

SVFAutomobileCompanyChecker
hasMaker

AutomobileProduct
IntAutomobileProduct.

Automobile Product,
Product,

hasMaker, Product,

hasMaker,
IntProduct

IntAutomobileProduct,
Int uyer

uyer
Company minCardinality
hasPurchase rder

intersection f minCardinality
subClass f someValuesFrom

IntPurchase rder

Purchase rder
dis ointWith Work rder

Purchase rderWork rder locker

IntPurchase rder IntWork rder

IntPurchase rder
IntWork rder

Company, Product

arm n
armonIA

ntology Creator

armonIA
ntology Creator armonIA

ntology Creator

owl:InverseFunctionalProperty
owl:sameAs

,

armonIA

Black- and White-Box Self-testing COTS Components∗

Sami Beydeda and Volker Gruhn
University of Leipzig

Chair of Applied Telematics / e-Business
Klostergasse 3

04109 Leipzig, Germany
{beydeda,gruhn}@ebus.informatik.uni-leipzig.de

Abstract

Development of a software system from existing compo-
nents can surely have various benefits, but can also entail
a series of problems. One type of problems is caused by
a limited exchange of information between the developer
and user of a component, i.e. the developer of a component-
based system. A limited exchange of information cannot
only require the testing by the user but it can also compli-
cate this tasks, since vital artifacts, source code in particu-
lar, might not be available. Self-testing components can be
one response in such situation. This paper describes an en-
hancement of the Self-Testing COTS Components (STECC)
Method so that an appropriately enabled component is not
only capable of white-box testing its methods but also ca-
pable of black-box testing.

1 Introduction

Quality assurance, including testing, conducted in devel-
opment and use of a component can be considered accord-
ing to [12, 11] from two distinct perspectives. These per-
spectives are those of the component provider and compo-
nent user. The component provider corresponds to the role
of the developer of a component and the component user to
that of a client of the component provider, thus to that of the
developer of a system using the component.

The use of components in the development of software
systems can surely have several benefits, but can also intro-
duce new problems. Such problems concern, for instance,
testing of components. The component user has often to test
a component, particularly a third-party component, prior to
its integration into the system to be developed. The various
reasons obligating the component’s testing by the compo-

∗The chair of Applied Telematics / e-Business is endowed by Deutsche
Telekom AG.

nent user are outlined in [7] with an overview of existing
approaches to testing components.

In this paper, we describe an enhancement of the Self-
Testing COTS Components (STECC) Method [4, 6]. The
main idea of the STECC method is to augment a component
with self-testability, so that the component user can test it
thoroughly without necessitating the component provider to
disclose certain information. In particular, a STECC self-
testing component allows white-box tests without access to
the component’s source code. Source code information is
processed within the component in an encapsulated manner
not visible to the component user.

The enhancement of the STECC method addresses the
need that the component user often not only needs to white-
box test the component, but also black-box test according
to the component’s specification. For this purpose, the in-
ternal model encapsulated in a STECC self-testing compo-
nent, which is particularly used for test case generation, has
been augmented to also embrace information extracted from
its specification. We, however, have not developed a new
model, but rather use one which reached a certain matu-
rity in testing classes, the Class Implementation Specifica-
tion Graph (CSIG) [8]. Note that in the following a com-
ponent is assumed to be implemented as a class, such as
components according to the Enterprise JavaBeans Specifi-
cation [9]. A positive side effect of CSIGs is that they do
not only allow an integrated black- and white-box testing,
the total number of test cases required for black- and white-
box testing can be less than in the case when both tasks are
carried out separately [8].

2 Self-Testing COTS Components Strategy

The component provider and component user generally
need to exchange information during the various phases
of developing the component and a component-based sys-
tem [6]. Various factors, however, impact the exchange of

information between the component provider and compo-
nent user. The information requested by one role and deliv-
ered by the other can differ in various aspects, if it is deliv-
ered at all. It can differ syntactically insofar that it is, for
instance, delivered in the wrong representation and it can
also differ semantically in that it, for instance, is not in the
abstraction level needed.

A lack of information might require the testing of a
component by its user prior to its integration in a system,
and might significantly complicate this task at the same
time. The component user might not possess the informa-
tion required for this task. Theoretically, the component
user can test a component by making certain assumptions
and approximating the information required. Such assump-
tions, however, are often too imprecise to be useful. For
instance, control-dependence information can be approxi-
mated in safe-critical application contexts by conservatively
assuming that every component raises an exception, which
is obviously too imprecise and entails a higher testing effort
than necessary [12, 11].

Even though often claimed, source code as one type
of information often required for testing purposes is not
required by itself for testing purposes. It often acts as
the source for obtaining other information, such as that
concerning control-dependence. Instead making source
code available to allow the generation of such informa-
tion, the information required can also be directly deliv-
ered to the component user, obviating source code ac-
cess. This type of information is often referred to as meta-
information [17]. Even though the information required
might already be available from own testing activities, the
component provider might nevertheless not deliver this in-
formation to the component user. One reason may be that
detailed information, including parts of the source code,
can be deduced from it depending on the granularity of the
meta-information. Therefore, there is a natural boundary
limiting the level of detail of the information deliverable to
the user. For some application contexts, however, the level
of detail might be insufficient and the component user might
not be able to test the component according to certain qual-
ity requirements.

The underlying strategy of the method proposed differs
from those discussed thus far. Instead of providing the com-
ponent user with information required for testing, compo-
nent user tests are supported by the component explicitly.
The underlying strategy of the method is to augment a com-
ponent with functionality specific to testing tools. A com-
ponent possessing such functionality is capable of testing
its own methods by conducting some or all activities of the
component user’s testing processes, it is thus self-testing.
The method is thereby called the Self-Testing COTS Com-
ponents (STECC) method. Self-testability does not obviate
the generation of detailed technical information. In fact,

this information is generated by the component itself dur-
ing runtime and is internally used in an encapsulated man-
ner. The information generated is transparent to the com-
ponent user and can thus be more detailed than in the case
above. Consequently, tests carried out by the component
user through the self-testing capability can thereby be more
thorough as in the case of meta-information. Self-testability
allows the component user to conduct tests and does not
require the component provider to disclose source code or
other detailed technical information. It thereby meets the
demands of both parties. The STECC method does not only
benefit the user of a component in that the user can test
a component as required. It can also benefit its provider,
as self-testability provided by an appropriately augmented
component can be an advantage in competition.

From a technical point of view, a STECC self-testing
component maintains a model of its own and generates test
cases with regards to an adequacy criterion specified by the
tester, who can particularly be the component user. The
STECC framework, which implements the various relevant
algorithms, determines the paths to be traversed accord-
ing to the specified criterion and generates the necessary
test cases as possible. The test case generation algorithm
employed for this purpose is the Binary Search-based Test
Case Generation (BINTEST) Algorithm [5]. The internal
model used by the component is a control flow graph. It
can be replaced by another control flow graph as long as
its syntactical representation does not change. This is ex-
actly the enhancement of the STECC method described in
this paper. CSIGs are control flow graphs which also em-
brace specification information and thus allow generation of
black-box test cases.

3 Class Implementation Specification
Graphs

3.1 Motivation

Analysis and testing tasks are usually conducted using a
model of the program under consideration which abstracts
from certain aspects and focuses on others assumed to be
more significant. Typical examples of such models are con-
trol flow graphs or finite state machines. Models used in
analysis and testing are often constructed on the basis of the
implementation, such as control flow graphs, or the specifi-
cation, such as finite state machines, of the program under
consideration, they seldom cover both. However, we often
need to analyze and test a program according to both in-
formation sources. In the case of class-level analysis and
testing, one answer to this need are Class Specification Im-
plementation Graphs (CSIGs) [8].

The distinguishing feature of CSIGs from existing class
models is that they combine the specification and imple-

mentation of a class. Each method is represented by two
control flow graphs in possibly different abstraction lev-
els, i.e. control flow as specified and control flow as imple-
mented. We refer to the former as the specification view and
the latter as the implementation view of a method. There-
fore, this model is called the class specification implementa-
tion graph (CSIG) of a class to emphasize the combination
of the two different views. Although the method views can
differ in abstraction level, the difference does not affect the
integration, as the integration is carried out at control flow
graph level. As control flow graphs are used to model spec-
ification and implementation, structural techniques, such as
the BINTEST algorithm, can be used for test case genera-
tion. An important feature of a CSIG is that generated test
cases can cover both specification and implementation.

3.2 A demonstrative example

The example consists of a component, called account,
which simulates a bank account. This component pro-
vides the appropriate methods for making bank account
deposits (deposit()) and withdrawals (withdraw()).
Furthermore, it provides methods for paying inter-
est (payInterest()) and for printing bank statements
(printBankStatement()).

Figure 1 shows the specification of component account
in form of a class state machine (CSM) [14]. In this
figure each state of component account is represented
by a circle, while each transition is depicted by an ar-
row leading from its source state to its target state.
These transitions are formally specified through 5-tuples
(source, target, event, guard, action) below this figure.
A transition consists – besides a source and a target state –
of an event causing the transition, a predicate guard which
has to be fulfilled before the transition can occur, and an
action defining operations on the attributes during the tran-
sition. There are also two special circles labeled initial and
final. These two circles represent the state of a component
before its instantiation and after its destruction, respectively.
Thus, they represent states in which the attributes and their
values are not defined, meaning that these two states are not
concrete states of a component instance. For the sake of
brevity, below the CSM in figure 1 only the transitions with
event type deposit() are given.

A possible implementation of method deposit() is:

33 public void deposit(double amount) {
34 balance += amount;
35 t[idx++] = new transaction("Deposit ",
36 amount, balance);
37 }

With transaction implementing a financial transac-
tion stored in an array t for later generation of bank state-
ments.

initial

over-
drawn

inCredit

final

blocked

t1

t t t t2 3 4 5

t19
t6 t7

t8 t9 t10t11 t15t16t17

t22
t21

t12t13

t20

t18

t14

inCredit balance>=0

blocked balance<limit
overdrawn balance<0 && balance>=limit

:=
:=
:=

t2 = (inCredit, inCredit, deposit(amount),
true, balance += amount;)

t7 = (overdrawn, inCredit, deposit(amount),
balance+amount >= 0, balance += amount;)

t8 = (overdrawn, overdrawn, deposit(amount),
balance+amount < 0, balance += amount;)

t14 = (blocked, overdrawn, deposit(amount),
limit <= balance+amount && balance+amount < 0,
balance += amount;)

t15 = (blocked, blocked, deposit(amount),
balance+amount < limit, balance += amount;)

t19 = (blocked, inCredit, deposit(amount),
balance+amount >= 0, balance += amount;)

Figure 1. Specification of component account
by a class state machine

3.3 CSIG constituents

Figure 2 shows the CSIG of component account. Each
method of a component is represented by two control
flow graphs in its CSIG. One of them is a control flow
graph generated on the basis of the method specification
(method specification graph), whereas the other is a control
flow graph determined using the method implementation
(method implementation graph). In figure 2, method speci-
fication graphs are drawn light gray whereas method imple-
mentation graphs are drawn dark gray. For convenience, the
two control flow graphs are called method graphs, if they do
not have to be distinguished. Thus, the CSIG of a compo-
nent shows each method from two different perspectives,
namely what the method should do and what the method
actually does.

The two method graphs of each method are embedded
within a frame structure called a class control flow graph
frame (CCFG frame). Generally, a component cannot be
tested without a test driver, which creates an instance of the

26

27

28

29

25

24

30

frame entry

frame call
constructors

frame return
constructors

frame loop

frame call

s1

a1

g1 error

error

account()

35

34

42

41

40

50

49

48

54

53

55

61

58

59

frame exit

2s

a2

g2

error

7s

g7

a7

a8

g8

error

14s

g14

a14

a15

g15

error

a19

g19

error

3s

a3

g3 9s

g9

a9

a12

g12

error

errorg6

a6

a18

g18

error

5s

a5

g5 11s

g11

a11 error

error 17s

g17

a17 error

error

68

67

66

4s

a4

g4 10s

g10

a10

a13

g13

error

error

a16

g16

error

16s

error

frame return

deposit() withdraw() payInterest() printBankStatement()

intra-method control flow edge
inter-method data flow edge
(black-box definition-use pair)
CCFG frame edge
guard i
action iai

gi

error change to the error state
CCFG frame
Method specification graph
Method implementation graph

61

Figure 2. Class specification implementation graph of component account

component, invokes the corresponding methods in a partic-
ular order, and finally deletes the instance. A CCFG frame
represents an abstract test driver fulfilling this task1. In fig-
ure 2, the CCFG frame nodes are drawn without shading.

Three types of edges can be distinguished within a CSIG:

1. Intra-method control and data flow edges
Intra-method control and data flow edges depict con-
trol and data dependencies within a single method
graph. For instance, an intra-method data flow edge
connects a node representing a definition of a local
variable with another node representing a use in the
same method (as a simple example of a def-use pair).
In figure 2, these edges are drawn as solid arrows.

2. Inter-method control and data flow edges
Edges of this type model control and data flow between
two method specification graphs and two method im-
plementation graphs, respectively. Assume that G1

1A CCFG frame is a part of a CCFG suggested by Harrold et al. [13]
for class-level data flow testing. As we only need the frame structure as an
abstract test driver, we do not introduce CCFGs in this paper.

and G2 are the method implementation graphs of
methods M1 and M2, respectively. Then, an invo-
cation of method M2 within the implementation of
method M1 is modeled by an inter-method control
flow edge leading from the corresponding node in G1

to the entry node of G2. In figure 2, these edges are
shown as gray arrows. For the sake of simplicity, this
type of edges is only given for method specification
graphs.

3. CCFG frame edges
The third type of edges in a CSIG consists of nodes,
which either connect two CCFG frame nodes or the
CCFG frame with entry and exit nodes of method
graphs. In figure 2, this type of edges is shown as dot-
ted arrows.

Method implementation graphs are generated on the ba-
sis of the implementations of the respective methods. Con-
trol flow graph generation is, for instance, described in [1].
The generation of method specification graphs is conducted
on the basis of method prototypes, which are constructed us-

ing the finite state machine specification of the component.
For the construction of method prototypes, a prototype is

generated for each transition t = (source, target, event,
guard, action) in the form of a nested if-then-else

construct:

if (source)
if (guard)
action;

else throw new ErrorStateException();
else throw new ErrorStateException();

source refers to the predicate of the source state. For
instance, the predicate of state inCredit is defined as
balance ≥ 0.

After generating these prototypes, those having the same
event type are combined. For instance, transitions t2, t7, t8,
t14, t15 and t19 share the event deposit(). Their proto-
types can be merged to the following method prototype:

deposit(double amount) {
s2 if (balance >= 0)
g2 if (true)
a2 balance += amount;

else throw new ErrorStateException();
else

s7 if (balance < 0 && balance >= limit)
g7 if (balance + amount >= 0)
a7 balance += amount;

else
g8 if (balance + amount < 0)
a8 balance += amount;

else throw new ErrorStateException();
else

s14 if (balance < limit)
g14 if (limit <= balance + amount

&& balance + amount < 0)
a14 balance += amount;

else
g15 if (balance + amount < limit)
a15 balance += amount;

else
g19 if (balance + amount <= 0)
a19 balance += amount;

else throw new ErrorStateException();
else throw new ErrorStateException();

}

Generation of control flow graphs for method prototypes
can again be carried out as described in [1]. The process
of embedding the various control flow graphs into a CCFG
frame is explained in [13].

In the STECC method as initially designed, a compo-
nent encapsulates an ordinary control flow graph modeling
source code information. Tests as conducted by a STECC
self-testing component were therefore solely white-box ori-
ented. An enhancement of the STECC method to also cover
black-box tests can be achieved by using CSIGs instead of
ordinary control flow graphs. CSIGs also model specifica-
tion information and tests conducted are thus also black-
box oriented. Specifically, the total number of test cases re-
quired can even be less than in the case when black-box and
white-box testing separately. A suitable test suite reduction
technique is described in [8].

4 Related work

The STECC approach can be compared to built-in test-
ing approaches in the literature. A number of built-in testing

approaches have been proposed in the literature, e.g. [19],
[16, 18, 10, 3] and [15, 2]. Similar as the STECC approach,
built-in testing approaches aim at tackling difficulties in
testing components caused by a lack of information, diffi-
culties in test case generation in particular. The STECC ap-
proach has the same objective and the approaches can thus
be directly compared to it. A comparison of them highlights
several differences.

Firstly, the built-in testing approaches are static in that
the component user cannot influence the test cases em-
ployed in testing. A component which is built-in testing
enabled according to one of these approaches either con-
tains a predetermined set of test cases or the generation,
even if conducted on-demand during runtime, solely de-
pends on parameters which the component user cannot in-
fluence. However, the component user might wish to test
all components to be assembled with respect to an unique
adequacy criterion. Built-in testing approaches usually do
not allow this. The STECC approach does not have such a
restriction. Adequacy criteria, even though constrained to
control flow criteria, can be freely specified.

Secondly, built-in testing approaches using a predefined
test case set generally require more storage than the STECC
approach. Specifically, large components with high inher-
ent complexity might require a large set of test cases for
their testing. A large set of test cases obviously requires a
substantial amount of storage which, however, can be dif-
ficult to provide taking into account the storage required in
addition for execution of large components. This is also the
case if test cases are stored separately from the component,
such as proposed by component+ approach. In contrast, the
STECC strategy does not require predetermined test cases
and does also not store the generated test case.

Thirdly, built-in testing approaches using a predefined
test case set generally require less computation time at com-
ponent user site. In such a case, the computations for test
case generation were already conducted by the component
provider and obviously do not have to be repeated by the
component user, who thus can save resources, particularly
computation time, during testing. Savings in computation
time are even magnified if the component user needs to fre-
quently conduct tests, for instance, due to volatility of the
technical environment of the component. Storage and com-
putation time consumption of a built-in testing enable com-
ponent obviously depends on the implementation of the cor-
responding capabilities and the component provider needs
to decide between the two forms of implementation, pre-
defined test case set or generation on-demand, carefully in
order to ensure a reasonable trade-off.

Fourthly, none of the existing built-in testing approaches,
at least those known to the authors, are capable of providing
or generating test cases for both black- and white-box test-
ing. This is to our opinion the most significant difference.

5 Conclusions

The STECC strategy addresses the needs of both the
component provider and component user. A situation
particularly encountered in the case of commercial com-
ponents, thus COTS components, is that the component
provider might not wish to disclose information, particu-
larly source code, which the component user might require
for testing purposes. Our research started with the obser-
vation that existing approaches do not appropriately tackle
such a situation.

The STECC strategy is a response to such situations.
It allows the component user to test the component and
to ensure suitability of the component to the target appli-
cation context regarding its quality without requiring the
component provider to publish specific information. It thus
meets the demands of both parties. The STECC strategy
can lead to a win-win situation insofar that both the compo-
nent provider and component user can benefit from it. The
benefit of the component user is obvious. The STECC strat-
egy, or more clearly self-testability of a component, can
be a valuable factor in competition. This potential benefit
of the component provider from the STECC strategy be-
comes more obvious taking into account the specific type
of components which are the most appropriate candidates
for STECC self-testability, COTS components.

We have shown that an enhancement of the STECC
method is easily possible using CSIGs. CSIGs represent
both specification and implementation information and tests
conducted are thus black- and white-box oriented. Specif-
ically, the total number of test cases required can even be
less than in the case when black-box and white-box testing
separately.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, princi-
ples, techniques, and tools. Addison Wesley, 1988.

[2] C. Atkinson and H.-G. Groß. Built-in contract testing
in model-driven, component-based development. In ICSR
Workshop on Component-Based Development Processes,
2002.

[3] B. Baudry, V. L. Hanh, J.-M. Jezequel, and Y. L. Traon.
Trustable components: Yet another mutation-based ap-
proach. In W. E. Wong, editor, Mutation testing for the new
century, pages 47–54. Kluwer Academic Publishers, 2001.

[4] S. Beydeda. The Self-Testing COTS Components (STECC)
Method. ISBN 3-89975-462-X, Martin Meidenbauer Verlag,
München, 2004.

[5] S. Beydeda and V. Gruhn. BINTEST - binary search-based
test case generation. In Computer Software and Applications
Conference (COMPSAC), pages 28–33. IEEE Computer So-
ciety Press, 2003.

[6] S. Beydeda and V. Gruhn. Merging components and testing
tools: The self-testing COTS components (STECC) strategy.

In EUROMICRO Conference - Component-based Software
Engineering Track (EUROMICRO), pages 107–114. IEEE
Computer Society Press, 2003.

[7] S. Beydeda and V. Gruhn. State of the art in testing com-
ponents. In International Conference on Quality Software
(QSIC), pages 146–153. IEEE Computer Society Press,
2003.

[8] S. Beydeda, V. Gruhn, and M. Stachorski. A graphical rep-
resentation of classes for integrated black- and white-box
testing. In International Conference on Software Main-
tenance (ICSM), pages 706–715. IEEE Computer Society
Press, 2001.

[9] L. G. DeMichiel. Enterprise javabeans specification, version
2.1. Technical report, Sun Microsystems, 2002.

[10] D. Deveaux, P. Frison, and J.-M. Jezequel. Increase soft-
ware trustability with self-testable classes in java. In Aus-
tralian Software Engineering Conference (ASWEC), pages
3–11. IEEE Computer Society Press, 2001.

[11] M. J. Harrold. Testing: A roadmap. In The Future of Soft-
ware Engineering (special volume of the proceedings of the
International Conference on Software Engineering (ICSE)),
pages 63–72. ACM Press, 2000.

[12] M. J. Harrold, D. Liang, and S. Sinha. An approach to
analyzing and testing component-based systems. In Inter-
national ICSE Workshop Testing Distributed Component-
Based Systems, 1999.

[13] M. J. Harrold and G. Rothermel. Performing dataflow test-
ing on classes. In Second ACM SIGSOFT Symposium on the
Foundations of Software Engineering (New Orleans, USA),
volume 19 of ACM SIGSOFT Software Engineering Notes,
pages 154–163. ACM Press, 1994.

[14] H. S. Hong, Y. R. Kwon, and S. D. Cha. Testing of object-
oriented programs based on finite state machines. In Sec-
ond Asia-Pacific Software Engineering Conference (Bris-
bane, Australia), pages 234–241. IEEE Computer Society
Press, 1995.

[15] J. Hörnstein and H. Edler. Test reuse in cbse using built-in
tests. In Workshop on Component-based Software Engineer-
ing, Composing systems from components, 2002.

[16] J.-M. Jezequel, D. Deveaux, and Y. L. Traon. Reliable ob-
jects: Lightweight testing for oo languages. IEEE Software,
18(4):76–83, 2001.

[17] A. Orso, M. J. Harrold, and D. Rosenblum. Component
metadata for software engineering tasks. In International
Workshop on Engineering Distributed Objects (EDO), vol-
ume 1999 of LNCS, pages 129–144. Springer Verlag, 2000.

[18] Y. L. Traon, D. Deveaux, and J.-M. Jezequel. Self-testable
components: from pragmatic tests to design-to-testability
methodology. In Technology of Object-Oriented Languages
and Systems (TOOLS), pages 96–107. IEEE Computer So-
ciety Press, 1999.

[19] Y. Wang, G. King, and H. Wickburg. A method for built-in
tests in component-based software maintenance. In Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 186–189. IEEE Computer Society Press,
1999.

Building on-line sales assistance systems with ADVISOR SUITE

Dietmar Jannach and Gerold Kreutler
Institute for Business Informatics and Application Systems, University Klagenfurt

{dietmar,gerold}@ifit.uni-klu.ac.at

Abstract. Online sales advisory systems guide customers
through the decision and buying process and provide
added value for online customers, especially in domains
where a wide range of comparable products is available
and differentiation between the products requires deep
technical knowledge. In this paper we present ADVISOR

SUITE, an expert system that combines knowledge-based
approaches for personalized product recommendation
with an adaptive user interface, which is used to guide the
customer through the requirements elicitation process
according to his personal needs and preferences. A par-
ticular focus of the presented system lies on the reduction
of costly knowledge engineering and maintenance times,
which is addressed by a consistent set of graphical tools,
and a personalization approach that enables the automatic
generation of large parts of the user interface of the advi-
sory application.

1. Introduction

In today’s competitive markets, customers can choose
among multiple suppliers for the desired goods whereby
in many cases the differences between the products are
only understandable for an expert with deep technical
knowledge. In an electronic shop, customers can, for in-
stance, choose among several hundreds of digital cam-
eras; clients of a bank have a choice of hundreds of dif-
ferent funds or other forms of investments. In the classical
sales channel, an experienced sales assistant will query
his customer about his preferences and needs. Conse-
quently, he will adapt the communication style in this
dialogue depending on, e.g., the customer’s (technical)
knowledge or interests and then use his domain knowl-
edge to propose a ranked list of suitable product alterna-
tives [12, 1]. At the end of the dialogue, the sales person
will give the customer an explanation for his recommen-
dation and provide additional hints. In the online-buying
channel, however, there has only been little support in
that area for a long time and only in recent years the im-
portance of the added-value of online sales assistance was
recognized and suitable methods were developed [18],
e.g., personalized recommender systems based on col-
laborative filtering [13, 16], data mining techniques, or

expert systems based on decision trees or case-based rea-
soning techniques [14, 19, 3, 4].

The ADVISOR SUITE framework presented in this pa-
per is a knowledge-based approach for building sales as-
sistance systems in arbitrary domains that simulate the
behaviour of an experienced sales person. Beside dia-
logue-based requirements elicitation and constraint-based
product selection, the system also comprises a framework
for rapid development of adaptive and personalized user
interfaces that adapt themselves to the knowledge level of
the current customer [1]. In order to reduce the typically
high development and maintenance costs for such knowl-
edge-intensive expert system applications, we developed
a consistent set of graphical and intuitive knowledge en-
gineering tools. Our experiences show that these tools can
be used by the domain experts themselves after a short
training phase which significantly reduces development
and maintenance times for the applications.

The paper is organized as follows. After the presenta-
tion of the novel constraint-based approach for personal-
ized product selection and ranking, we discuss how advi-
sory dialogues can be modeled with ADVISOR SUITE and
how this knowledge is then exploited by a generic and
parameterizable user interface component. Then, we pre-
sent the overall architecture of the system, make a com-
parison with related work in the field and end with a dis-
cussion of practical experiences of several industrial ap-
plications.

2. Recommendation Techniques

For determining the set of suitable products for the
customer (“filtering”), we apply a constraint-based ap-
proach which exploits explicit knowledge about product
features and customer requirements. Thus, it is possible to
represent the domain knowledge of an experienced sales
person in a declarative knowledge base. The structure of
the knowledge base can be sketched as follows. Products
are characterized by a fixed set of attributes, whereby
these attributes take one or several values from a pre-
specified domain (like numbers, text, or predefined enu-
merations). Note, that in particular multi-valued attributes
are common in practical settings, e.g., a digital camera
can support multiple image formats. Customer properties

represent the current user’s characteristics, skills and in-
terests. The domain expert defines a set of questions (and
possible answers) that he would pose in order to acquire
the customer preferences. Together, product attributes and
customer properties define the variables in the filtering
mechanism. The expert rules for recommendations are
denoted as filter constraints; typical examples for such
rules within the financial domain are, for instance:

• If the customer is not interested in emerging markets
or can only take low risks, we would propose conser-
vative investments.

• In any case, only propose products where the
monthly payments correspond to the customer’s pref-
erences plus/minus 10 percent.

• If the customer responded with “yes” to questions A
and B, only recommend long-term investments.

The system’s language for describing the expert rules
therefore includes arithmetic and relational operators on
customer properties and product attributes, text manipula-
tion, if-then-else style constructs, as well as set operations
for multi-valued attributes. The knowledge acquisition
process for the expert rules is supported by a graphical
user interface (see Figure 1) with online input assistance
and a simplified user-oriented notation.

Besides explicitly questioning a customer about his
preferences, the proposed framework supports the deriva-
tion of additional customer properties based on indirect
questions. In particular, this is helpful in situations where
the end-user of the system is no domain expert [1]. As an
example, an investment advisor will ask several questions
about the customer’s financial or family situation in order
to determine the suitable risk class of investments.

One of the major criticisms of filter-based approaches
is that there might be situations where all of the products
are filtered out by the constraints [4], which is undesirable
in practical settings. Therefore, ADVISOR SUITE imple-
ments a filter-relaxation algorithm based on the Hierar-
chical Constraint Satisfaction [17] technique. The system

evaluates the user inputs in the current state of the interac-
tion and determines, which of the products should be pro-
posed, i.e., which of the filter constraints have to be ap-
plied. When there are no products left or the number of
remaining products does not reach a defined threshold,
the system iteratively retracts filters until the desired num-
ber of products is reached. For that purpose, each of the
filter constraints in the knowledge base is annotated with
priority values which are typically defined by the domain
expert; in many domains there are also strict rules that
have to be obeyed, e.g., that one should not propose
investments of high risk if the customer has no spare capi-
tal. Conversely, there might be non-strict expert rules,
regarding, e.g., the major target industry sectors of an
investment fund, which can potentially be ignored.

During the computation of the recommendation, the
system keeps track both of the expert rules that are ap-
plied and those that were relaxed. When the result is fi-
nally presented to the customer, these rule sets are used in
order to generate adequate explanations based on the
natural-language annotations stored in the knowledge-
base. Consequently, the explanations consist of a set of
justifications like “Given the information about your cur-
rent financial situation, we recommend low-risk invest-
ments" as well as explanations for relaxed rules like "We
also included products in the recommendation that do not
match your wishes on the industry sectors of your invest-
ments.".
As the initial priorities defined by the domain experts do
not necessarily match the preferences of customers, the
users can interactively apply or relax filter constraints
dynamically. If one of the applied expert rules is not im-
portant for a certain user, he can instruct the recommender
engine to ignore it or force the application of a particular
rule vice versa which gives the user the required degrees
of freedom in the recommendation process.

Ranking. After the application of the filters a person-
alized ranking of the products according to the customer’s

Figure 1: Graphical Knowledge Acquisition Tool

preferences is made. The initial ranking of the products is
based on Multi-Attribute-Utility-Theory (MAUT) [23,1].
Similar to classical value-benefit analysis for product
comparison, we can define several high-level product
dimensions, like quality or economy, and define utility
functions, i.e. relations from product properties to these
ranking dimensions. While in classical value-benefit
analysis the relative weight among the high-level dimen-
sions is static or has to be entered manually, in the im-
plemented MAUT approach, these relative weights are
adjusted dynamically based on the customer’s inputs. By
using the questions about the user’s preferences, the sys-
tem derives the personal importance of the several prod-
uct aspects for the customer and uses this data to subse-
quently personalize the product ranking.1

.Nonetheless, the design of ADVISOR SUITE offers the
possibility to embed external algorithms for determining
the ranking based on other customer’s average rating, if
such information is available.

3. Personalized Dialogues

Virtual (and real-world) sales assistance and product
recommendation are highly interactive processes, typi-
cally dialogues consisting of questions and answers, hints
and recommendations, whereby the dialogue flow must be
adapted to the customer’s expertise, and preferences.
Depending on the customer’s answers, the system has to
pose different further questions and select a suitable inter-
action style with the customer. A typical example is the
choice of technicality of the questions, depending e.g., on
the user’s self assessment of his expertise.

Therefore, in ADVISOR SUITE, the way how the system
interacts with the user is regarded as another important
piece of domain specific knowledge of a sales expert be-
side the core recommendation knowledge. Consequently,
the knowledge-based approach is extended with a concep-
tual model for a declarative definition of web-based sales
assistance dialogues:

• A recommendation dialogue consists of a set of
pages; each one of them contains one or more ques-
tions, where the possible answers are presented in a
given layout style, for instance as a radio button.

• The dialogue can optionally be organized in phases,
in order to give the user an overview of the progress
of the recommendation session.

• Within the application there exists a set of special
pages, like result presentation, explanations, or addi-
tional hints.

• For each page we can define in a declarative way
where to proceed, i.e., which page to display next,

1 Further details on using MAUT for personalized user interac-
tion can be found, e.g., in [1].

whereby this decision depends on the user inputs.
The evaluation of these conditions happens at run-
time, when a controller page is invoked.

We intentionally used a conceptual model with a strong
relation to the final web application to narrow the gap
between the design model and the resulting application.

Dialogue design. Figure 2 depicts the graphical knowl-
edge acquisition tool for defining the page flow of the
sales assistance dialogue: On the left hand side, the de-
signer of the application defines the individual phases and
pages as well as the questions that have to be displayed on
pages. In a detailed view, the designer can determine sev-
eral parameters for each page, for instance, the style in
which the question should be displayed.

Figure 2: Modeling the interaction flow

On the right hand side, all possible paths through the in-
teractive dialogue can be defined in a graphical way: ver-
tices represent individual pages, edges link possible suc-
cessor pages, whereby the links are annotated with transi-
tion conditions. These conditions are entered using the
high-level language that is also used for the definition of
filter constraints, e.g. ‘‘Follow this link, if the user stated
to have low experience.”. When using this style of page
flows that depend on direct or indirectly derived inputs, it
is possible to design a personalized interaction flow that
immediately reacts on the user’s behaviour and adapts the
dialogue to the current situation. For modeling the flow of
interaction, we do not directly rely on standard techniques
for modeling dynamics in user interfaces, like State-
Diagrams, Petri Nets, or UML-like extensions for model-
ing e-Commerce applications [15, 8], because our experi-
ences have shown that domain experts and even web-site
developers have significant problems in understanding
these technical concepts. Instead, we decided to use a
simplified, less technical notation similar to state dia-
grams, which ensures that this concept is understandable
for domain experts, but still has a formal semantics.

Hints. There are situations in real sales dialogues, where
the sales advisor actively interrupts the dialogue. First,
there might be conflicting answers, e.g., some questions
of the dialogue may be used to cross-check the plausibil-
ity of previous answers. If such a conflict arises, the sales
assistant will suggest his client to reconsider his answers.
Second, another point of dialogue interruption can occur
when the sales assistant offers additional hints or explana-
tions; in real-life sales conversations these interruptions
are also often used for cross- or up-selling purposes.

ADVISOR SUITE allows the designer of advisory appli-
cations to model interruptions of those two kinds, i.e.,
hints that relate to conflicting user input as well as hints
that represent additional information for the customer.
The moment in time when such a hint has to be displayed
during the dialogue is modeled as a condition in the
graphical knowledge acquisition tool, by using either the
tool’s standard constraint language or explicit tables of
compatible and incompatible user input combinations

In general, the ADVISOR SUITE framework supports
acquisition and maintenance arbitrary text fragments, e.g.
for explanations. Each of these knowledge chunks can be
maintained in different personalized variants, i.e., be an-
notated with a condition on the customer properties. At
run-time, the correct personalized version of these infor-
mative texts is automatically selected by the system.
Thus, maintenance of domain-specific texts can be carried
out without working at the HTML-code level.

User interface generation. In order to accelerate the de-
velopment process of the graphical user interface of an
sales assistance system, a framework for automatic gen-
eration of dynamic HTML pages from the declarative
definitions of the interaction flow was developed. This
framework follows the Model-View-Controller2 approach
which strictly separates interaction control from presenta-
tion issues and the underlying repository content.

The web-based advisory application consists of gener-
ated Java Server Pages3 which are used for displaying
questions, answers and informative texts and provide
standard navigation which enables the customer to move
freely through the dialogue. Additionally, the application
includes a generic interaction module that handles user
inputs (e.g. manages revisions of previously given an-
swers), evaluates whether additional hints have to be
given, and steers the interaction flow based on the defini-
tions from the knowledge base. Furthermore, we make
extensive use of Custom Tags4 such that the display of
questions or possible answers can be performed in HTML
like style without scripting code which in turn shortens
the page adaptation process.

2 http://java.sun.com/blueprints/patterns/MVC.html.
3 Java Server Pages, see http://java.sun.com.
4 Java Server Pages - Tag libraries, see http://java.sun.com.

Figure 3: An automatically generated page

Figure 3 shows such a generated page that is built
from predefined and easy-to-maintain templates. The
problem of changes in the generated code is taken into
account by the integration of an elaborated template
mechanism for page generation. Additionally, hooks are
integrated in the generated pages where custom code can
be incorporated by the web developer, whereby this code
will be unchanged in cases the pages are re-generated
after maintenance activities, e.g., after a new page was
introduced in the dialogue.

4. Architecture and Implementation

The overall system architecture is depicted in Figure 4.
The complete knowledge for recommendation and per-
sonalization is maintained using graphical knowledge
acquisition tools and stored in a central repository which
is built on top of a relational database system. After gen-
eration of the user screens, the advisory application runs
as application on a Web server, whereby for each cus-
tomer an Interaction Agent manages the user interaction
and performs the required personalization steps.

Integration with existing systems (like a Web-store or
other enterprise applications) and extensibility are key
issues for successful deployment of e-Commerce applica-
tions. Therefore, the system was built using Java-based
technology as well as XML-based interfaces for data ex-
change. We did not rely on available expert system shells
or special programming environments like Prolog in or-
der to minimize the need for specialist developer knowl-
edge. Our experiences show that this consistent use of
state-of-the-art technologies significantly reduces the de-
velopment and maintenance costs for expert systems with
a web-based user interface. The usage of non-standard
technology, for instance as a backend reasoner, would
typically require programming experts and the implemen-
tation of additional interfaces between the knowledge-
base, reasoner, and the user interaction components.

In the proposed system, performance issues com-
monly related with Java technology are addressed by ex-

tensive caching as well as pre-compilation of expert rules
into an optimized internal representation.

5. Comparison

Recommendation technique. Over the last years, several
techniques for personalized or non-personalized product
recommendations have been successfully applied,
whereby the most prominent examples are probably Ama-
zon.com’s5 or CDNow’s6 online stores. From the perspec-
tive of the recommendation techniques, we can
distinguish the following – often conjointly applied – ap-
proaches, compared to, e.g., [11, 5]:

• Collaborative These systems exploit explicit ratings
on the available items made by the users. They also
try to identify users that are similar to the current user
and consequently extrapolate the items that are rec-
ommended.

• Content-based Compared to pure collaborative ap-
proaches, these systems utilize features of the items,
like e.g., the genre of a book for user classification
and for improving recommendation results.

• Demographic Beside the user ratings these systems
also collect demographical and social information
about the user to estimate the user’s preferences [2].

• Utility-based They use information about item fea-
tures and utility functions over the items that describe
the user preferences.

• Knowledge-based These systems exploit explicitly
acquired user needs and knowledge about feature
items and about how these items match the user’s
preferences to infer recommendations.

All of these techniques have their specific advantages
and problems. Collaborative techniques, for instance, are
very well studied and have shown to be able to compute

5 www.amazon.com
6 www.cdnow.com

recommendations that are appreciated by the users. More-
over, this technique does not require information about
the products, i.e., no knowledge engineering or mainte-
nance activities are required. However, a typical draw-
back of this technique is that no good recommendations
can be made for new users or new items where no ratings
exist. On the other hand, knowledge-based approaches
make the expert knowledge explicit and allow the re-
commender system to generate plausible explanations of
its recommendations, whereby for these systems possibly
costly knowledge-engineering processes are required for
acquiring both the expert and the product knowledge.

As a consequence, hybrid approaches are used to
overcome the drawbacks of individual techniques [5]. In
ADVISOR SUITE, such a hybrid approach was adopted. We
exploit explicit expert knowledge for inferring user pref-
erences by using direct and indirect questions and by fil-
tering the available items based on a constraint-based
technique. The remaining items are then ranked based on
the expected utility for the user. In order to reduce the
costs for knowledge elicitation, significant efforts have
been made to simplify this process, e.g., by defining a
high-level business rules language or by providing a con-
venient graphical user interface.

The main reasons for this choice lie in the targeted ap-
plication domains, namely complex products or services.
In these domains, e.g., electronic goods like digital cam-
eras or investment decisions, the user typically would
need deep domain knowledge about the items in order to
select a product that matches his real preferences and de-
mands. Even more, recommendations in these domains
require good explanations for the suggested items to in-
crease the customer’s confidence in his buying decision.

User interaction. For a long time, research on re-
commender systems was mostly focused on the underly-
ing algorithms that steer the product selection and rec-
ommendation processes. However, in particular when
using content-based approaches that exploit knowledge

Figure 4 Overall architecture

Run timeDesign time

Advisor Suite Repository

Knowledge Acquisition Tools

JSP

<html>
<head>
</head>

......
</html>

JSP

<html>
<head>
</head>

......
</html>

GUI
Generation

Module

Advisor Suite
Server

Interaction &
Personalization

Agent

HEWLETT
PACKARD

Web Server
Virtual advisory session

Dynamic Web
pages

about user preferences and product properties, more com-
plex user interaction is needed. In turn, this makes dia-
logue design and dialogue efficiency important topics in
the field [14, 19, 22, 20, 21, 9, 1].

Dialogue efficiency is directly associated to the dia-
logue’s length, i.e., shortening the dialogue makes it more
efficient and increases user satisfaction. Recent work on
recommender systems based on case-based reasoning
techniques for instance aim at improving the incremental
requirements elicitation process in different ways. [14]
describes an approach for a product attribute selection
strategy that allows the system to terminate the dialogue
prematurely without loss of solution quality. [19] pro-
poses an adaptive selection strategy that can re-focus its
recommendations based on user inputs dynamically.

Another aspect of recommender systems is personal-
ization. Following the classification from [12], ADVISOR

SUITE applications both adapt the content, the structure
and the presentation of the sales dialogue. Beside the
computation of personalized product proposals, the
knowledge-based approach for adapting the dialogue flow
according to the customer’s answers allows us to person-
alize the communication by taking the customer’s knowl-
edge and preferences into account.

From our perspective, the final goal for online sales
assistance dialogues is to provide the customer a natural
language conversational user interface enhanced with a
virtual character with which the user can establish an
emotional relation. First ideas and approaches are for in-
stance described in [21, 9] or [22]. In our view, the com-
plexity of natural-language interfaces still hampers the
application of such systems on a broad basis because of
the high costs and set-up times. Therefore, we currently
rely on adaptive, form-based user interaction with the
possibility of including pages and hints which makes the
dialogue more natural. Further work, however, will focus
on incorporating mechanisms in this direction.

Application Design and Development. The ADVISOR

SUITE framework enables the domain expert to com-
pletely design the recommendation dialogue using graphi-
cal tools and to automatically generate a web-based appli-
cation. This allows us to bridge the gap between require-
ments elicitation and the subsequent development phases.
Existing model-based approaches like, for instance
WebML or OO-HMethod [6, 7, 10, 15], aim at providing
general methodologies for designing web applications on
a conceptual level. Compared to that work, ADVISOR

SUITE is limited to web-based sales advisory applications.
This allows us to use a specific, simplified modelling no-
tation which also allows domain experts to specify the
dialogue flow. In addition, the designer only has to model
one single dialogue flow (steered by the users’ inputs)
instead of multiple flows for different contexts, e.g. for
different users or user groups [7], which also improves
simplicity and clarity. In contrast to general conceptual

modeling approaches, the automatic generation of the
recommender application in our system allows us to im-
mediately test and use of the application, even during the
prototyping phase, whereas purely conceptual approaches
potentially exhibit a gap between the design model and
the final web application.

6. Experiences from Practical Settings

Up to now, several instances of advisory applications
built with ADVISOR SUITE system were deployed in vari-
ous domains like in the financial sector, for “technical”
goods like digital cameras or skis, as well as for “quality-
and-taste” domains like cigars. From the development
perspective we encountered that the development times
for the core application are in fact very short and the basic
knowledge-base could be developed in a few workshop
days. Note that the initial knowledge bases were typically
not created by the domain expert alone, but together with
a knowledge engineer. After this phase, however, the ex-
pert was able to carry out the necessary maintenance tasks
on his own requiring the engineer’s help only in a few
cases. Quite interestingly, the number of business rules
defined by the experts is rather small, i.e., only a few
dozen rules, which is a promising small number with re-
spect to overall knowledge acquisition and maintenance
costs. In this context, our experiences have shown that the
modeling language and the graphical notation are easy to
comprehend for the domain expert. Additionally, the
automatic generation of the application is very helpful
especially in the set-up phase of the knowledgebase,
where the impact of changes can be tested immediately.
Furthermore, the structure and the layout of the templates
and the generated pages have shown to be simple enough
to be adapted by a web developer in order to fit the corpo-
rate design of a company.

One of the key factors of the acceptance of advisory
applications by end users lies in the quality, up-to-
dateness, and completeness of the underlying product
data. In most cases, a major part of the data is already
available in electronic form but had to be manually en-
riched, e.g., with additional properties. Both the real-time
access of product data in existing databases and the peri-
odical data import via the provided XML interface ensure
a satisfying quality of the data. Regarding user accep-
tance, we measured that in a project on one of Austria’s
largest e-Commerce sites with respect to daily users, over
eighty percent of the sessions were successful, i.e., the
customers stepped through the whole dialogue to the re-
sult page showing the proposals.

As a side effect, companies offering online advisory
systems do not only profit from increased customer satis-
faction by the value adding online service, but also from
the new information provided by the system. Since all
information about user interactions are stored and can be

evaluated online, they can learn about their customers in
the sense of improved Customer Relationship Manage-
ment. For instance, knowing whether one’s online cus-
tomers rate themselves to be experts, can serve as an aid
for the company to tailor the online service to this target
group. On the other hand, the evaluation of click-
behaviour of the online users can help us improving the
advisory application itself, e.g., we can determine when
the dialogue is terminated by the user prematurely. Future
work will therefore include advanced web mining tech-
niques for automatic identification of such situations.

7. Conclusion

Product recommendation and virtual sales assistance
are areas that can create significant customer benefit and
improve customer relations on the online channel. We
have presented a software framework for rapid develop-
ment of personalized, interactive advisory systems for
arbitrary domains following a content- and knowledge-
based approach. Our practical experiences have shown
that a knowledge-intensive approach can be successful, if
adequate graphical knowledge acquisition and mainte-
nance tools are available and the underlying concepts are
presented to the domain expert using an easy-to-
understand terminology. Finally the usage of a common
development technology throughout the system allows us
to apply standard industrial software engineering practices
for the development of an expert system that has to be
tightly integrated with a web-based user interface.

References
[1] L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, M.

Zanker, and R. Schäfer. A framework for the development
of personalized, distributed web-based configuration sys-
tems. AI Magazine, 24(3):97-110, 2003.

[2] C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
classification: Using social and content-based information
in recommendation. In AAAI/IAAI, pp. 714-720, 1998.

[3] R. Bergmann, R. Traphoner, R. Schmitt, P. Cunningham,
B., and Smyth. Knowledge-intensive product search and
customization in electronic commerce. In E-Business Ap-
plications. Springer Verlag, 2003.

[4] D. Bridge. Product recommendation systems: A new direc-
tion. In R.Weber and C. Wangenheim, editors, Procs. of the
Workshop Programme at the Fourth International Confer-
ence on Case-Based Reasoning, pp. 79-86, 2001.

[5] R. Burke. Hybrid recommender systems: Survey and ex-
periments. User Modeling and User-Adapted Interaction,
(4):331-370, 2002.

[6] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Lan-
guage (WebML): a modelling language for designing Web
sites. Computer Networks 33:137-157, 2000.

[7] J. Gómez, C. Cachero and O. Pastor. Extending a Concep-
tual Modeling Approach to Web Application Design. In

Proceedings of the 1st International Workshop on Web-
Oriented Software Technology, Valencia, Spain, June
2001.

[8] M. Green. A Survey of Three Dialogue Models. In: ACM
Transactions on Graphics, 5(3):244-275, 1986.

[9] T. Gurzki, P. Schweizer, and C.-T. Eberhardt. A virtual-
sales-assitant architecture for e-business environments. In
E-Business Applications, pp. 77-86. Springer Verlag, 2003.

[10] M. D. Jacyntho, D. Schwabe, and G. Rossi. A Software
Architecture for Structuring Complex Web Applications.
Journal of Web Engineering 1(1):37-60, 2002.

[11] A. Jameson, J. Konstan, and J. Riedl. AI Techniques for
Personalized Recommendation. Tutorial Notes. In 18th In-
ternational Conference on Artificial Intelligence, Acapulco,
Mexico, August 2003.

[12] A. Kobsa, J. Koenemann, and W. Pohl. Personalized hy-
permedia presentation techniques for improving online cus-
tomer relationships. The Knowledge Engineering Review,
16(2):11-155, 2001.

[13] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl. Grouplens: applying collaborative fil-
tering to usenet news. Communications of the ACM,
40(3):77-87, 1997.

[14] D. McSherry. Increasing dialogue efficiency in case-based
reasoning without loss of solution quality. In 18th Interna-
tional Joint Conference on Artificial Intelligence, pp. 121-
126, Acapulco, Mexico, August 2003. Morgan Kauffman.

[15] O. Pastor, S. Abrahao, and J. Fons. Building e-commerce
applications from object-oriented conceptual models. SI-
Gecom Exchanges, 4(2):28-36, 2001.

[16] P. Resnick and H. R. Varian. Recommender systems.
Communications of the ACM, 40(3):56-58, 1997.

[17] T. Schiex, H. Fargier, and G. Verfaille. Valued constraint
satisfaction problems: Hard and easy problems. In Interna-
tional Joint Conference on Artificial Intelligence, pp. 631-
639, Montreal, Canada, 1995.

[18] J. J. B. Shafer, J. Konstan. Recommender systems in e-
commerce. In ACM Conference on Electronic Commerce
(EC-99), pp. 158-166, 2001.

[19] B. Smyth and L. McGinty. The power of suggestion. In
18th International Joint Conference on Artificial Intelli-
gence, pp. 127-132, Acapulco, Mexico, August 2003. Mor-
gan Kauffman.

[20] K. Swearingen and R. Sinha. Beyond algorithms: An HCI
perspective on recommender systems. In ACM SIGIR 2001
Workshop on Recommender Systems, New Orleans,
Lousiana, 2001.

[21] U. Thiel, M. Abbate, A. Paradiso, A. Stein, G. Semeraro,
and F. Abbattista. Intelligent e-commerce with guiding
agents based on personalized interaction tools. In E-
Business Applications, pages 61-76. Springer Verlag, 2003.

[22] C. A. Thompson, M. Goeker, and P. Langley. A personal-
ized system for conversational recommendations. In Tech-
nical Report UUCS-02-013, School of Computer Science,
University of Utah, Salt Lake City, 2002.

[23] D. von Winterfeldt and W. Edwards. Decision Analysis and
Behavioral Research. Cambridge University Press, Cam-
bridge, UK, 1986.

Case Study Methodology Designed Research
in Software Engineering Methodology Validation

Seok Won Lee1 and David C. Rine2,3

1Dept. of Software and Information Systems, University of North Carolina at Charlotte
9201 University City Blvd, Charlotte, NC 28223, USA.

2Dept. of Computer Science, George Mason University, Fairfax, VA 22030, USA.
3NASA NET Research Group, George Mason University, USA.

seoklee@uncc.edu, drine@gmu.edu

Abstract. One of the challenging research problems in
validating a software engineering methodology (SEM),
and a part of its validation process, is to answer “How to
fairly collect, present and analyze the data?”. This
problem adds complexity, in general, when the SEM
involves the use of human knowledge in its methods
(phases). How should such created knowledge be
captured in the methodology during a SEM process? How
can such knowledge be made available for continued
SEM process improvement? How can such knowledge be
used in validating the SEM? Measuring such knowledge
is hard, but we can benefit from the “Case study research
design” which is a valuable and an important empirical
research alternative in designing a research plan that
establishes a logical link from the data to be collected to
the initial questions of study. In this paper, a case study
research methodology (CSM) designed is presented with
its application to the validation of a software requirements
engineering methodology (SREM). The preliminary
results show the evidence used to validate the SREM as
well as the potential usage of CSM as a goal-oriented
research design, practice and teaching methodology.

1. Introduction

A case study design, as a technology empirical evaluation
research methodology and a way to generalize from
observed case study outcomes, builds a basis for valid
inferences from the case study events and evidence
collected. An invented SEM may be such a technology.
For an effective research case study, as an empirical
research methodology applied as a validation exercise –
applied to an ‘invented software (systems) engineering
methodology,’ it is necessary for the validation exercise
to first have designed a case study methodology specific
to the characteristics of this invented SEM. More
specifically, those characteristics are: 1) the
characteristics of this invented SEM that required
interventions from the domain Subject Matter Expert
(SMEs) or the software engineer in order to perform on
demand each appropriate step in the SEM; and 2) the
characteristics of the invented SEM validation that cannot

favor the invented SEM over alternatives because of the
uniqueness of the invented methodology or the relative
different level of understanding of the domain and
analytical skill of SMEs in the actual case study
‘experimental’ conditions. Therefore, the consideration of
these two above characteristics motivated development of
the case study design in this paper, based on the theories
and guidelines from [11]. In addition, the theoretical
framework of the case study and the application of this
case study to the invented Proxy Viewpoints Model-based
Requirements Discovery (PVRD) methodology [5, 6] will
provide better understanding of the PVRD methodology,
and guidance to researchers from academia and real
practitioners from industry.

In this paper, the invented SEM (technology) to be
validated by a case study empirical approach is the PVRD
methodology. In the following sections, a brief
introduction of the PVRD methodology and the
components in the research case study design will be
outlined.

2. The PVRD Methodology

The Proxy Viewpoints Model-based Requirements
Discovery (PVRD) is a methodology [5, 6] that provides
an integrated framework to reason about “missing natural
language system requirements” problems. The PVRD
methodology consists of four models: viewpoints model,
enterprise model, missing requirements types
categorization model, and requirements discovery and
analysis model. The viewpoints model [7, 4, 9] represents
different perspectives or views for a coverage of direct
and indirect stakeholders that need to be identified and
incorporated into the legacy status software system
requirements. The enterprise model [1] provides a way of
categorizing requirements based on systems engineering
design process models. The missing requirements types
categorization model provides a method to project a
requirements space that may contain specific types of
missing requirements. The requirements discovery and
analysis model provides a method to retrieve
requirements of interest by using the requirements term

expansion method [8, 2] that automatically generates a list
of “potential query terms” [10] which could assist
analysts in acquiring more knowledge about the domain
of interest by performing a “complete search” of available
requirements resources.

Based on this integrated framework, the PVRD
methodology is able to create a proxy viewpoints model
and provide a new way of discovering missing natural
language system requirements while improving the legacy
natural language requirements representation space
through the modeling of a new indexing structure that
supports multiple viewpoints from many stakeholders in a
large-scale complex software system.

The PVRD methodology is applicable in the use of
existing natural language software requirements
specifications (SRS) in further improved development of
legacy systems by 1) discovering missing requirements,
especially, when it is necessary to reconstruct the original
legacy SRS, and 2) eliciting new requirements for system
changes that will take place or creating a new system
from a similar legacy system. Figure 1 shows the
overview of the steps in the PVRD methodology. More
detailed descriptions of the PVRD methodology are in [5,
6].

Figure 1. Overview of the PVRD Methodology Steps

3. Case Study Research Design Components

The goal of the PVRD research is “the development of a
new methodology that can discover missing natural
language requirements and reduce the number of
incomplete requirements while reorganizing the
requirements representation space that incorporates and
supports multiple viewpoints in legacy status, large-scale,
information system requirements specifications”.

In order to show how and why (“explanatory” type of
case study in [11]) the PVRD methodology can achieve
this research goal, the following five important

components will be defined during the case study design
process [11]:

• A study’s questions,
• Study propositions,
• Unit(s) of analysis,
• The logic linking of the data to the propositions, and
• The criteria for interpreting the findings.

Figure 2 shows the inter-relationships between these
five components in the explanatory case study design.
The study questions can be mapped and further
decomposed into a set of more detailed study
propositions. These propositions contain metric terms and
are used to develop measure data capture questionnaires.
The application by the SMEs of the developed PVRD
methodology to the units of analysis can then generate
results observed and reported by the SMEs in the
questionnaires, i.e. measure data collection instruments.
The results are then linked back to the study propositions
as evidence through the criteria (using metrics) for
interpreting these findings.

Figure 2. Case Study Design Components

3.1. Study Question

Study questions need to be clarified precisely [11]. For
instance, in this case study design, the study question
“How and why can the PVRD methodology discover
missing requirements from natural language software
requirements specification documents that involve
multiple viewpoints while reorganizing and improving the
quality of a requirements representation space?” needs to
be clarified by further decomposition of that research
question into sub questions or propositions. In this case
study, these natural language software requirements
specification documents identified in this study question
are the case study units of analysis.

3.2. Case Study Propositions

Case study propositions, derived from the case study
questions, become assertions that should be examined,
through measure-valued questionnaire items, to answer a

study question within the scope of the case study. For
instance, in this case study design, the general study
proposition is “the PVRD methodology can achieve its
research goals because of its integrated framework that
benefits by the synergism between the embedded models
and methods”. And four more specific case study
propositions derived from this proposition are as follows:

The PVRD methodology and its integrated framework
can 1) Reduce the number of incomplete requirements by
discovering missing requirements; 2) Discover
requirements defects of various types; 3) Discover
requirements relationship and workflow process
relationship chains in the requirements space; and 4)
Create new requirements indexing structures based on the
embedded models.

3.3. Units of Analysis

Units of analysis are the selected resources to be
examined through the application of the invented
technology (e.g. PVRD methodology) by the SMEs in the
case study. For instance, in the case study methodology
designed for the research reported here, the PVRD
methodology will be applied to the (units) “set of
software requirements specification documents” that is
expressed in natural language. These requirements (units
of analysis) are from the legacy status information-based
software system that includes many stakeholders (e.g.
interactive systems). Also the SMEs and other software
development resources (other than SRSs, such as business
process descriptions, operational concepts etc.) need to be
involved due to their influences in the requirements
classification (e.g. assigning requirements to viewpoints)
of each model (i.e. Viewpoints Model, Enterprise Model,
Missing Requirements Types Categorization Model,
Requirements Discovery and Analysis Model) in the
PVRD methodology. From the PVRD methodology point
of view, the models and methods in the PVRD
methodology, and the properties associated with the
PVRD methodology, are the subjects to be examined
during a case study using this case study design.

Table 1 presents the ‘Requirements Discovery
Summary Sheet’ (RDSS) that is used by a team of SMEs
during a case study using this case study design. Each
step in the RDSS sheet corresponds to the steps in Figure
1. This RDSS sheet is utilized for SMEs to serve the
following roles during a case study:

Provides a template of how to apply the PVRD
methodology to the units of analysis in a case study.
Combined with the given instructions during a case
study, SMEs can identify the units that need to be
examined (analyzed) and results to be recorded.
Captures evidence and findings using the criteria
defined by metrics with measures (combination of
qualitative and quantitative analysis in section 3.5)

that will be used to support/reject the case study
propositions (in section 3.2). Without having such
specific propositions with metric criteria word
attributes in them, an investigator might be tempted
to collect “everything” which is impossible to collect
[11] and meaningless. For instance, as shown in
Table 1, the results from the ‘Discovery types’ [SID-
8-DID-1] and ‘Level of significance of discovery’
[SID-8-DID-2] from the RDSS sheet will be used to
support/reject the case study propositions 1, 2, and 3.
Also the results from the ‘Viewpoints identification’
[SID-4-1], ‘Requirements category identification in
enterprise model’ [SID-5-1], ‘Proxy viewpoints
model creation’ [SID-6-1], and ‘Newly indexed
requirements’ [SID-8-DID-7] will be used to
support/reject the case study proposition 4.
Guides SMEs in a step-by-step approach while
conducting the PVRD methodology case study.
SMEs follow each step of the PVRD methodology
and record their findings and observations (unit by
unit) under each step in the RDSS sheet.

In Table 1, steps 1 – 6 focus on the process of the proxy
viewpoints model creation, and steps 7 – 8 focus on the
requirements analysis and discovery process based on the
created proxy viewpoints model. Therefore, the questions
under each step from 1 to 6 and the evidence collected by
SMEs would capture the idea of “how SMEs created the
proxy viewpoints model from the given requirements set”.
In step 7, SMEs collect their units PVRD methodology
analysis results from the created proxy viewpoints model.
The fine-grained questions (units) in step 8 would capture
the specific evidence to support/reject the propositions
related to the requirements discovery process. In the
questionnaire, some questions (i.e. SID-8-DID-2, SID-8-
DID-7, SID-8-DID-8) will be interpreted based on the
qualitative measures and some questions (i.e. SID-8-DID-
1) will be interpreted based on the quantitative measures.
The following Table 1 summarizes important aspects of
the RDSS sheet.

In addition to collecting specific evidence to
support/reject specific propositions, it is also important to
collect evidence of the ‘entire process’ wherein the
methodology is applied to the given requirements set
(units of analysis). This is because the specific evidence is
captured in the middle or after the application of the
PVRD methodology, and it did not come from an
independent evidence collection process. Also the
collection of evidence from the ‘entire process’ must be
used, wherein the PVRD methodology is used to
support/reject the general proposition in section 3.2 (also
the study question in section 3.1).

Having the RDSS with clearly identified steps and
interpretation criteria (metric and measures) is important
and related to the general ‘repeatability’ of the case study
methodology.

Table 1. Evidence Collection through Requirements Discovery Summary Sheet
Questions

(Units)
Evidence captured by SMEs

(Requirements Discovery Summary Sheet - RDSS)
Step/Model/Method

in the PVRD
Related Propositions
that support/reject

SID-1-1 SMEs record the goal(s) of requirements
search/investigation.

Step 1 General Proposition
(GP)

SID-2-1
SID-2-2
SID-2-3

SMEs record the selected ‘key domain terms’.
SMEs record the reason for the selected terms.
SMEs record the specific type of ‘missing requirements
types’ if it is used in the selection of domain requirements
terms SID-2-1 (with explanation).

Step 2,
Missing Requirements
Types Categorization

Model

GP

SID-3-1 SMEs record the number of requirements in the initial
requirements search space created (with requirement ID).

Step 3 GP

SID-4-1 SMEs record identified viewpoints (VP) for each
requirement with its ID.

Step 4,
Viewpoints Model

GP, Proposition 4

SID-5-1 SMEs record identified category of enterprise model (EM)
for each requirement with its ID.

Step 5,
Enterprise Model

GP, Proposition 4

SID-6-1 SMEs check each requirement index based on the VP and
EM and create a proxy viewpoints model and the layout.

Step 6,
Proxy Viewpoints Model

GP, Proposition 4

SID-7-1 SMEs analyze the PVRD layout and record any discovery
patterns found in the created proxy viewpoints model.

Step 7, Requirements Discovery and
Analysis Model

GP

SID-8-DID-1 SMEs record the types of discovery patterns found in the
created proxy viewpoints model.

Step 8, Requirements Discovery and
Analysis Model

GP, Propositions 1,
2 and 3

SID-8-DID-2 SMEs record the level of significance of the discovery
patterns found.

Step 8, Requirements Discovery and
Analysis Model

GP, Propositions 1,
2 and 3

SID-8-DID-3 If the term expansion method is used in the discovery
process, SMEs record specific steps taken (with detailed
explanation of how this method is used and contributed to
this discovery process).

Step 8,
Term Expansion Method,

Requirements Discovery and Analysis
Model

GP

SID-8-DID-4 SMEs record the ‘requirements distance’ from this
discovery.

Step 8, Requirements Discovery and
Analysis Model

GP

SID-8-DID-5 If ‘missing requirements types’ are used in this discovery,
SMEs record the specific type and explanation of how it is
used in this discovery.

Step 8, Missing Requirements Types
Categorization Model, Requirements

Discovery and Analysis Model

GP

SID-8-DID-6 If new types of missing requirements are discovered, SMEs
record this new type and specific explanation of what they
are.

Step 8, Missing Requirements Types
Categorization Model, Requirements

Discovery and Analysis Model

GP

SID-8-DID-7 SMEs record their observation about the newly indexed
requirements representation (through the VP and EM),
compared to the original requirements structure.

Step 8,
Proxy Viewpoints Model

GP, Proposition 4

SID-8-DID-8 SMEs record their observation about the PVRD
methodology contribution for this discovery.

Step 8, Proxy Viewpoints Model,
Requirements Discovery and Analysis

Model

GP

SID-8-DID-9 SMEs record their comments about their experience with
the PVRD methodology for this discovery.

Step 8, Proxy Viewpoints Model,
Requirements Discovery and Analysis

Model

GP

3.4. Linking Data to Study Propositions

Linking data to propositions represents the data analysis
step in the case study design research [11]. The PVRD
methodology is applied to the units of analysis and plays
a role in connecting the generated measure data results
back to the study propositions.

In a case study using this case study design, the
generated measure data results can be based on any mix
of qualitative and quantitative evidence. In this case
study, the generated results will be collected by SMEs in
the form of RDSS sheet in Table 1 and also the notes
from the lessons learned meeting. In addition, a case
study need not always include a direct, detailed
observation as a source of evidence [11]. Therefore, in

this case study, a set of evidence, its analytical
interpretations, and lessons learned are sources of
evidence as summarized in Table 1.

From the findings through the RDSS sheet, Table 1
serves as qualitative and quantitative evidence, such as 1)
whether or not the discovered missing requirements are
defining, mandatory or optional requirements (as
qualitative measures defined in section 3.5); and 2)
numbers and types of discoveries found (as quantitative
measures).

Figure 3 shows how the findings are linked in the
support of corresponding study propositions (an explosion
of the link between the ‘study propositions’ and ‘linking
data to propositions’ in Figure 2). The findings will be
collected through the RDSS sheet in Table 1 by SMEs
during a case study.

Figure 3. Linking Data to Study Propositions through
Discovery Summary

3.5. Criteria for Interpreting a Case Study’s
Findings

Criteria for interpreting a case study’s findings
correspond to the metric and measures used in evaluating
the results from the properties of requirements defects
types defined in the PVRD methodology (such as
incomplete, inconsistent, redundant, and ambiguous, as
well as requirements relationship chain and workflow
process relationship chain). In other words, the results
from the requirements discovery and analysis model [5, 6]
focus on the findings of significant defects of
requirements and improvement of requirements quality as
well as the quantitative analysis of how many
requirements defects discovered. One example of such
findings of significant defects that will be focused on is
whether or not the discovered missing requirements or
defects are one of defining, mandatory or optional
requirements. The discovery of defining or mandatory
requirements is much more critical than discovery of
optional requirements. Therefore, the
“importance/significance of the discovered requirements
defects” serves as a metric in the analysis of the findings
and three different requirements types “defining,
mandatory or optional requirements” serve as qualitative
measures in deciding the significance of the requirements.
Also the number of requirements defects of various types
serves as quantitative measures. Therefore, the metrics
and measures will be all interpreted from a combined
qualitative and quantitative analysis perspectives based on
the summary of RDSS sheet in Table 1. All five
components in the case study design described will guide
a case study and become the fundamental basis in
validating the PVRD methodology.

4. Multiple Case Studies

One of the most important points made in Yin’s case
study design approach [11] is the design of a theoretical
case study framework which is presented in section 3.

Also, it is important to understand the importance of
‘analytical generalization’ – case studies (as with
experiments), compared to ‘statistical generalization’ –
survey research, in case study design. In statistical
generalization, an inference is made about a population
(or universe) on the basis of empirical data collected
about a sample (i.e. surveys). In analytical generalization,
the investigator is striving to generalize a particular set of
results to some broader theory [11].

The evidence from multiple cases is often considered
more compelling, and the overall study is therefore
regarded as being more robust [3, 11]. A theory must be
tested through replications of the findings in a second or
more case that will lead to an analytical generalization.
Under the development of a theoretical framework in
[11], a literal replication (each case predicts the similar
results) can explain the conditions under which a
particular phenomenon is likely to be found, a theoretical
replication (each case produces contrasting results but for
predictable reasons) can explain the conditions when it is
not likely to be found. Multiple case studies were carried
out for the PVRD methodology validation and established
a literal replication. For each individual case, collected
evidence indicated how and why a particular proposition
was demonstrated (or not demonstrated).

5. A Case Study in Educational Information
Management System (EMS)

This particular case study is performed by a team of
domain independent SMEs from industry (more than 10
years software requirements engineering & software
development experiences) based on the CSM in order to
formally confirm and validate the case study propositions
of the PVRD methodology. For this case study, SMEs are
trained to understand and apply the PVRD methodology
through an orientation/workshop to practice performing a
case study independently. The purposes of the
workshop/orientation are to educate SMEs about the
PVRD methodology case study, the methodology,
embedded models, and methods, and going through step-
by-step approach. It is also important that the researcher
conducting the case study must have no interaction with
the SMEs once the case study exercise is underway so as
not to bias or prejudice SMEs' judgement. The EMS
requirements documents size was over 300 pages. The
findings and evidence are recorded and collected through
the RDSS sheet using a given set of instructions.

Figure 4 shows the PVRD model that SMEs
constructed during this case study in which became the
basis of the discovery process. Each requirement
represented in this PVRD model has been applied to each
model and method embedded in the methodology, and
corresponding relationships are established across the
models.

By using the designed case study methodology as
presented in this paper, evidence that can support/reject
the case study propositions is collected as well as all the
detailed observational descriptions by SMEs. Three
investigations’ results are summarized in Table 2. Other
case studies that were carried out (but are not reported in
this paper), more detailed description of the case and
experimental set up are in [5].

VP EP MNS OC IR DR

(partial list)
1-2-3
(EMS)

2-I

(end) user 2-1-1.1 2-11-4.1.2.11.3
EMS-SS - System support
component of the EMS

2-1-1.2 2-12-4.1.2.11.11

EMS Software 2-14-4.1.2.15
EMS Network missing 1
EMS Hardware 2-22-5.2.5
student administration

resource management

1-2-4
Architecture

2-21-5.2.3
Atchitecture

Documentation

curriculum management
1-3-5.3
Strategy

curriculum delivery

AU
2-1-2

(threat)

other Governmental
Components

2-3-4
(Capability)

missing 2 2-3-4.1 Needs both
1-2-3 and 2-
3-4.

medical facility 2-3-4.1.2 2-5-4.1.2.1.4
OSD - Office of the Scretary
of Defense

2-5-4.1.2.1.5

other computer system
2-11-4.1.2.10.1.2

Scheduling
(external) network
(user) distributed operational
environment

2-14-4.1.2.14.1

open standard infrastructure
2-18-5.2.1

open architecture 2-19-5.2.2.3
modular approach 2-19-5.2.2.14
response time 2-20-5.2.2.24
interface 2-21-5.2.3.1

2-21-5.2.3.3 2-21-5.2.3.3.1
2-21-5.2.3.3.2

2-23-5.2.8
2-24-5.3 2-24-5.3.2.3

2-26-7.1

2-22-5.2.3.4
2-22-5.2.4
2-25-6.1

2-25-6.3
(Communication -
Interoperability)

2-20-5.2.2.17

Figure 4. The PVRD Model

Table 2. EMS Case Study Results Summary
Results

Category
Investigation 1

(SME #1)
Investigation 2

(SME #1)
Investigation 3

(SME #2)

Discoveries 4 3 2
Missing Reqts 1 1 1
Other types of
defects

Redundant (1)
Inconsistent/

Ambiguous (1)

Redundant (1)
Inconsistent/

Ambiguous (1)
Reqts
Relationship
Chains

1 (Requirements
relationship)

 1 (Workflow
process

relationship)
‘Defining’
Reqts Discovery

1

‘Mandatory’
Reqts Discovery

2 1 2

‘Optional’
Reqts Discovery

1 2

New missing
reqts types
category, reqts
distance, etc.

New missing
reqts type,

Requirements
distance (>20)

Requirements
distance (>20)

Requirements
distance (>20)

The PVRD
methodology
contribution to
the discovery
process

Strongly (1) –
missing

requirements,
Moderately (3) –

others

Strongly (1) –
missing

requirements,
Moderately (2) –

others

Strongly (2)

Supporting
Propositions

General,
Propositions
1,2,3, and 4

General,
Propositions 1,2,

and 4

General,
Propositions 1,

3, and 4
Rejecting
Propositions

 Proposition 3 Proposition 2

Overall
Supporting
Propositions

General Proposition, Propositions 1,2,3 and 4

6. Conclusion and Future Work

Case studies are multi-perspective/dimensional analyses
that need to consider many aspects in collecting evidences
from various resources during their design and
executions. For example, the use of the CSM in validation
of the PVRD methodology considers not only the
technical aspects but also the interactions with SMEs in
capturing data and knowledge acquired.

The CSM can leverage its usage as follows: 1) a
“goal-oriented” research design, practice and validation
methodology (through effective evidence collection,
presentation and analysis); 2) a flexible but theoretically
powerful and solid methodology that can cover various
interdisciplinary research domains’ characteristics; and 3)
a teaching methodology in education to cultivate student’s
integrative analytical and problem-solving skills. As a
future work, more in-depth study of the application of the
CSM to knowledge-intensive software engineering
methodology validation is planned.

References

[1] Buede, D. M. The Engineering Design of Systems : Models
and Methods, New York: Wiley, December. 1999.

[2] Faloutsos, C. and Oard, D., A Survey of Information
Retrieval and Filtering Methods, CS-TR-3514, University
of Maryland, 1995.

[3] Herriott, R.E. and Firestone, W.A. Multisite qualitative
policy research: Optimizing description and
generalizability. Educational Researcher, 12, 14-19. 1983.

[4] Kotonya, G. and Sommerville, I. Requirements
Engineering with Viewpoints, BCS/IEE Software
Engineering Journal, Vol. 11, No. 1, pp.5-18. 1996.

[5] Lee, S. W. “Proxy Viewpoints Model-based Requirements
Discovery” PhD Dissertation, George Mason University,
Fairfax, VA. 2003.

[6] Lee, S.W. and Rine, D.C. “Missing Requirements and
Relationship Discovery through Proxy Viewpoints Model,”
In Proceedings of the 19th annual ACM Symposium on
Applied Computing (SAC 2004), Software Engineering,
March, Cyprus, ACM Press, 2004.

[7] Nuseibeh, B., Kramer, J. and Finkelstein, A. A Framework
for Expressing the Relationships Between Multiple Views
in Requirements Specification, IEEE Trans on Software
Eng, 20(10):760-773, IEEE CS Press, October. 1994.

[8] Salton, G. The SMART Retrieval System – Experiments in
Automatic Document Processing. Prentice-Hall Inc.,
Englewood Cliffs, New Jersey. 1971.

[9] Sommerville, I. and Sawyer, P. Viewpoints: Principles,
Problems and a Practical Approach to Requirements
Engineering. Annual Soft Eng, Vol. 3. pp. 101-130. 1997.

[10] Xu, J. and Croft, B. Improving the Effectiveness of
Information Retrieval with Local Context Analysis. ACM
Trans on Info Systems, Vol.18, No.1, pp.79-112. Jan. 2000.

[11] Yin, Robert. K. 1994. Case Study Research: Design and
Methods. 2nd Edition. Thousand Oaks: Sage Publications,
Applied Social Research Methods Series Vol. 5.

Data-mining in Support of Detecting Class Co-evolution

Zhenchang Xing and Eleni Stroulia
Computing Science Department

University of Alberta
Edmonton AB, T6G 2H1, Canada
{xing, stroulia}@cs.ualberta.ca

Abstract

In an evolving system maintained over a long time
period, there exist many non-trivial relationships among
system classes, such as class co-evolutions, which usually
are not easily perceivable in the source code. However,
unfortunately, the continuing evolution of large, long-lived
systems leads to lost information about these hidden
relationships. In this paper, we propose a method for
recovering such lost knowledge by data mining method.
This method relies on the UMLDiff algorithm that, given a
sequence of UML class models of a system, surfaces the
design-level changes over its life span, thus eliminating
the need for high quality modification reports and non-
intuitive software code-based metrics. We employ Apriori
association rule mining algorithm to the transactional
database of class modifications, which elicit previously
unknown or undocumented co-evolving relations among
two or more classes. The recovered knowledge facilitates
the overall understanding of system evolution and the
planning of future maintaining activities. We report on one
real world case study evaluating our approach.

1 Introduction

The objective of software reverse engineering is most
often to gain a sufficient design-level understanding in
support of maintenance, adaptation and feature extension
[6]. In object-oriented systems, classes model abstractions
of real-world entities around which these systems are
designed. In an evolving system maintained over a long
period, there exist many non-trivial relationships among
system classes, which may not be intentional and usually
are not easily perceivable in the source code.

A particularly interesting such relation is class co-
evolution. Frequently, classes not explicitly related in the
system design exhibit parallel evolution history. This
phenomenon may indicate an implicit inter-dependence
which, when understood, can be valuable in guiding
subsequent evolution of the system in question. First, the
system maintainers may decide to restructure the system in
order to eliminate this interdependence, thus evolving it
into a more modular and less coupled design. Alternatively,
they may document the inter-dependence as a predictor of
maintenance activities, so that when some of the co-

evolving classes have to be modified the rest of the cluster
is also examined and retested.

Recovering and making explicit such “lost knowledge”
to increase the overall comprehensibility of a given system
is one of the major objectives of reverse-engineering
research. And, as many have already recognized [3,13],
this task can benefit from Artificial Intelligence (AI), and
more specifically data-mining, techniques. More
specifically, Shirabad [15] recently proposed a method
based on inductive-learning algorithm to address the
problem of detecting the co-evolution of two code
modules. Based on past maintenance experience, recorded
in the form of change requests and code-update records, he
explored the supervised inductive-learning method for
recognizing co-updated modules and using this relation to
predict whether updating one source file may require a
change in another file.

An important shortcoming of this work is its
knowledge requirements. It essentially assumes the
existence of a fairly detailed change-tracking system in
which all change requests are recorded. Then these
requests are co-related with the code updates committed in
response to “closing” the requests. These co-related
requests and updates become the examples input to the
learning algorithms. Unfortunately, however, such
consistently kept change-tracking systems are not always
available [6].

In our work on detecting class co-evolution, we have
adopted class-design models of subsequent system
snapshots (which may be released versions or simply
snapshots checked-out in regular time intervals) as the
primary input of our method. These class-design models
are easily obtainable, given a version-management system
and any of a variety of existing round-trip software-
development tools [23,24]. The fundamental intuition
underlying our class co-evolution detection method is that
by comparing a sequence of snapshots of system’s class
models, one can extract a history of the evolution of each
individual class in terms of the “additions”, “deletions”,
“moves”, “renamings” and “signature changes” of its
super- and sub- classes, interfaces, and their fields and
methods. Then rule- or sequence- mining algorithms, such
as Apriori for example, can be used to detect common
change co-occurrences among these class histories, thus
uncovering co-evolving classes.

In addition to its simpler knowledge assumptions, our
approach exhibits two advantages over Shirabad’s method.
First it is unsupervised: unlike Shirabad’s method that
requires a set of co-evolution examples in the form of sets
of modules that were updated for the same change request,
our method does not require labeled training examples.
Second, it is relatively more scalable because it focuses on
the changing system classes instead of all its modules.

The remainder of the paper is structured as follows.
Section 2 relates this work to previous researches. Section
3 presents the overall methodology and rationale of our
approach. One case study illustrating our approach is
discussed in section 4. Finally, Section 5 concludes with a
summary of the lessons we have learned to date and our
plans for future work.

2 Related work

Our class co-evolution detection work spans over two
related-research themes: first, the general area of
employing artificial-intelligence methods in support of
software reverse engineering, and second, the semantic
manipulation of UML design models.

2.1 AI in support of reverse engineering
Artificial-intelligence methods can benefit several

reverse-engineering processes, and design recovery in
particular. We have already discussed the work most
similar to ours in terms of objectives and types of AI
algorithms employed.

Shirabad et al. [15] applied inductive machine learning
method to elicit co-update file pairs of a subject system.
The inductive learning method they applied, requires pre-
defined classes, and need a lot of effort to select and
extract features and label training samples, which
significantly affect the quality of learned concepts or
models. Besides, their methods require high quality
change reports that are not always readily available. Gall
et al. [10] use information in the product release history of
a system to uncover logical coupling among modules
based on sequence matching. Zimmermann et al. [19]
identify (heavily dependent on visualization of historical
data stored in CVS archive) the fine-grained coupling
between program entities like methods and fields.

Devanbu et al. [7] employed expert system and
knowledge base as their underlying technology to assist in
representing and deducing the relationships among
components of software system. They built a system called
LaSSIE, which integrates architectural, conceptual, code
views of a large software system into a knowledge base
represented in formal knowledge representation language
and provides a semantic reasoning mechanism based on
formal inference for developers to discover the structure of
software system. Such knowledge-based system generally
requires trained knowledge engineers to interview experts
and build knowledge base and need a great effort to
maintain and evolve knowledge base as system evolves.

Furthermore, they employ deduction algorithms that are
computationally demanding.

2.2 Semantic UML model manipulation
There has been some work at analyzing the changes to

software at the design level. Egyed [8] has investigated a
suite of rule-based, constraint-based and transformational
comparative methods for checking the consistency of the
evolving UML diagrams of a software system. Selonen et
al. [14] have also developed a method for UML
transformations, including differencing. However, these
projects have not explored the product of their analyses in
service of evolution understanding.

3 Methodology

In this section, we present the structural modification
detection algorithm, UMLDiff. We discuss the transaction
database of class evolution histories and the Apriori
algorithm used for detecting co-evolving classes given
such a database. Finally, we discuss potential applications
of recovered class co-evolution knowledge in the context
of software maintenance.

3.1 UMLDiff: Class-modification detection
The overall problem of detecting and representing

changes to data is important for version and configuration
management. It is an active research area on its own in the
area of data management. Probably the most well known
algorithm for textual comparisons, GNU diff, was
discussed as the string-to-string correction problem using
dynamic programming in [17]. Used in the context of code
differencing, it reports changes at the code line level rather
than at higher level of abstraction of system structural
modifications.

As more data and documents are stored in XML format,
some sophisticated version control systems include XML-
aware features to handle XML documents. The general
tree-to-tree correction problem has been studied
extensively [2], and has been applied to show differences
between XML data [22]. However, such general tree-
differencing algorithms report changes as “XML element
modifications” ignoring the domain-specific semantics of
the nodes. Let us consider XMI, the XML Metadata
Interchange for UML models, as an example. When a
class implements a new interface, a general XML-
differencing tool would only report that a set of XML
nodes were inserted but would not recognize the
implementation of a new interface, since it does not
understand the XMI semantics. For the same reason, if an
attribute or a method were moved from one class to
another, the change would most likely be reported as two
separate activities of node addition and the deletion.

Recognizing changes while taking into account the
UML-specific semantics of XMI documents is exactly the
purpose of UMLDiff. Relying on the semantics of the
model data, it identifies “moves” by hypothesizing

correspondences between additions and deletions of
similarly-named elements of the same type. In the context
of software evolution, where local transformations, such as
refactoring, frequently involve moving features from one
class to another, recognizing such “moves” is essential. As
one of the most elementary operation of refactoring, a
“move” often represents the redistribution of information
or the reorganization of the class hierarchy, frequent
perfective-maintenance modifications, such as, for
example, moving methods from classes suffering strong
coupling. Figure 1, discussed below, shows an example of
such “move” operations.

In general, the problem of detecting the class-model
changes between two snapshots of an object-oriented
system can be viewed as a graph-difference problem, since
class models can be viewed as specific types of directed
graphs. This problem is NP-complete which makes an
automatic approach impractical. Therefore, we have
limited our initial exploration to considering only the
inheritance hierarchies of the class model. UMLDiff is
essentially a domain-specific tree-differencing algorithm,
aware of the UML semantics captured by the XMI syntax.
It takes as input two UML class models, corresponding to
two snapshots of the system under analysis, represented in
XMI. Such class models can be either produced in the
software-design phase by the system developers, or they
can be reverse engineered from the system code, using any
of the currently available software engineering tools [24].

The first step of the algorithm is to parse the input
forests of class models into two labelled tree structures, in
which the tree nodes are labelled with the type of objects,
such as class, method, etc., and their corresponding
attributes, such as modifiers, data type, parameter list, etc.
The target representation contains the application classes
and interfaces, their fields, their methods and their
inheritance, implementation, and nested class relations.
Nested classes of a particular class are enclosed in a
special element in the context of the containing class to
distinguish them from its subclasses. Multiple-inheritance
is handled by duplicating the class node (not including its
children) under each of its super classes.

The next step of the algorithm is to identify the after-
before changes between the two tree structures, in terms of
the “additions”, “removals”, “moves”, “renamings” and
“signature changes” of super- and sub- classes, interfaces,
and their fields and methods. Currently, the comparison is
based on simple identifier matching of the signatures of
the various object-oriented entities of the same type.

This UML differencing process brings to the surface
structural modifications to the software design from one
snapshot to another. The results are represented as change
trees, i.e., trees of structural modifications, which, if
applied to the before version would result in the after
version. Change trees are represented in an XML-based
syntax and are visualized to the user as shown in Figure 1.

The different icons to the left of each node represent the
different object-oriented entities: “class”, “interface”,
“method”, and “field”. The top-right adornments show the
modifiers of the object, for example, “abstract”, “static”,
etc. The bottom-right adornments represent the status of a
particular object. It can be plus sign for “add”, minus sign
for “remove”, filled triangle for “rename”, empty triangle
for “change signature”, arrow with minus sign for “move
out from source”, arrow with plug sign for “move into
target”. Figure 1 shows that a new abstract class,
“Statement”, was created with three newly created abstract
methods, “eachRentalString”, “footerString”, and
“headerString”. The “value” methods of its two subclasses,
“HTMLStatement” and “PlainStatement”, were pulled up
into the new class “Statement”. This change tree
corresponds to the differences between version 27 and 28
of the extended refactoring sample from Fowler’s book [9]
as found in [20]. It represents the modifications to the
class model after an “Extract Superclass” refactoring,
which is described as follows: “if you have two classes
with similar features, then create a superclass and move
the common features to the superclass [9]”

Figure 1 An example of change tree

3.2 The detection of co-evolving classes

UMLDiff reports the structural changes between two
snapshots of a system’s class models. There are N such
models in an evolving software system with N successive
snapshots, and consequently UMLDiff can be applied N-1
times to generate the differences between the (I+1)th and Ith

versions, where 1 I <N. Thus, N-1 change trees can be
obtained that record the structural modifications, in terms
of the “additions”, “removals”, “moves”, “renamings” and
“signature changes” of classes, interfaces, and their fields
and methods, when software evolves from one snapshot to
another.

We think of a change tree, plus the first snapshot, as a
transaction that records the system classes that have been
modified (including creation and deletion) in the
corresponding snapshot. For a software system with N
snapshots, a database with N transactions is generated that
describes the class level evolution of software system.
Each transaction T contains a set of classes with a unique
identifier, the snapshot ID (SID). Table 1 shows a
hypothetical transaction database. We assume that the

system, in its final version, has five classes C1, C2, C3, C4,
C5. Its first snapshot contains only C1, C2, C5 and in the
next version, class C2 is modified and class C4 is added,
and so on.

Table 1 Transaction database for class evolution
SID Set of classes
S01 C1, C2, C5
S02 C2, C4
S03 C2, C3
S04 C1, C2, C4
S05 C1, C3
S06 C2, C3
S07 C1, C3
S08 C1, C2, C3, C5
S09 C1, C2, C3

We apply the Apriori association-rule mining algorithm
(we used its implementation in the Weka [25] toolkit) to
discover co-evolving classes, in most cases previously
undocumented or unknown, that have common change
behaviors. We describe briefly the Apriori algorithm here.
Interested readers are referred to [1] for more details.

Given a set of transactions, the original Apriori
algorithm generates all association rules with at least some
user-specified minimum support and confidence. The
algorithm involves two subproblems. First, generate all
sets of items (itemsets) that have transaction support above
minimum support. The support for an itemset is the
number of transactions that contain the itemset. Itemsets
with minimum support are called large itemsets and all
others are small itemsets. Next, the large itemsets are used
to generate the desired rules. The general idea is that, if
ABCD and AB are large itemsets, then the rule AB CD
holds if its confidence, i.e., the ratio
support(ABCD)/support(AB) is greater than the user-
specified minimum confidence. Note that the rule will
surely have minimum support because ABCD is large.

However, the so-called strong rules generated by
support-confidence framework may not be interesting to
the user, since the antecedent and consequent may be
negatively associated, which means the occurrences of one
of them may decrease the likelihood of the occurrence of
the other. The alternative measure lift can be used to
measure the statistical dependence (correlation) between
the occurrences of itemsets. The Weka toolkit also support
support-lift framework, which we are using to generate
correlation rules.

For the transactional data shown in Table 1, if the
minimum support is set to 20% and the minimum
confidence to 40%, then we can generate the rules C1
C2 C5 or C5 C1 C2, which indicate a co-evolution
relation among these three classes. Note that the rule
allows a consequent to have more than one item, which is
the advantage by applying association rule method over
classification method.

3.3 Understanding co-evolution in the context
of software maintenance

In this section, we discuss how uncovered co-evolution
relations may assist software engineers in their task of
understanding software evolution and planning future
maintaining activities.
3.3.1 Intentional co-evolution

Class co-evolution may be the consequence of the
original design and implementation decisions. For
example, an approved design may require certain classes
to be modified for every new feature addition.
Unfortunately, such design intent is not always
documented; the software developers just “know” that
they have to modify a certain set of classes when make a
certain kind of change. However, such knowledge is easily
lost with staff turnover.

In this sense, detecting co-evolving classes can be
thought of as a design recovery process that provides a
way to identify high-level relations among classes, which
increases the overall understanding of a long-lived
evolving system. This co-evolution relation can be used as
the basis for advice on maintenance activities. For
example, if three classes were often changed together,
when a developer modifies two of them, it would be
recommended to examine if a change is also necessary to
the third one.
3.3.2 “Maintenance smells”

Fowler [9] describes the “when” of refactoring in terms
of smells where suggest the possibility of refactoring.
Some of them can be characterized as “evolution smells”,
which are not obvious in a single snapshot of system but
can be identified by analyzing changes made to system
over time. Two examples of such evolution smells are the
following:

Shotgun Surgery: whenever a kind of change is made
necessitating many little changes to many different
classes.
Parallel Inheritance Hierarchies: whenever
subclassing one class results in having to subclass
other classes (a special case of shotgun surgery).

The most observable evolution characteristic of these
smells is the classes that have been changed together over
time. Therefore, the identification of co-evolving classes
may help software engineers discover whether the system
suffers from these smells. For example, the original design
of a software system may have followed the
Model/View/Controller (MVC) model. However, due to
side effects of changes that the system has gone through
over its life span, a cluster of classes, belonging in the
presentation layer and the data-model layer, are discovered
to evolve in parallel. That may reveal the high coupling
between presentation and data model layer, which means
that the current system implementation deviates from the
original design intent. A “Separate presentation from data

model” refactoring could be applied to improve the
cohesion and reduce the coupling.
3.3.3 System instability

In addition to enabling maintenance advice and
providing evidence of “smells” necessitating particular
refactorings, class co-evolution may also used as an
indicator of general “system instability”.

Bianchi et al. [5] and Hassan et al. [11] claim that the
entropy of a software system is a good indicator of the
degree of disorder of its structure. The term “entropy”
refers to the amount of uncertainty related to information
in a distribution. Intuitively, in the context of software
evolution, if a software system is being modified across all
its modules, it will have highest entropy, and the software
maintainers will have a hard time keeping track of all the
changes. Both researches rely on maintenance
documentation to determine the relations among system
components.

In a similar vein, Bevan [4] defines software instability
as a set of related artifact elements that have often changed
together. She uses a static dependence graph to visually
identify such related software artifacts. We believe that the
co-evolving classes detected by applying association rule
mining could provide a good primary input for system
instability analysis. We plan to evaluate the overall
development process by analyzing the knowledge revealed
by co-evolving classes. We expect to be able to identify
abnormal phases of software evolution due to class co-
evolution.

4 The case study

The overall objective of our design-level evolution
analysis work is to support software practitioners to
understand software evolution at a higher level of
abstraction by automatically identifying and analyzing the
evolution characteristics of system and its components. In
this section, we report on a case study we have conducted
in order to assess our class co-evolution method.

Mathaino [12] is a research prototype tool that can be
used to migrate text-based legacy interfaces to modern
web-based platforms. It underwent 91 builds from July
2000 till February 2001. The first version has 29 classes,
284 methods, and 256 attributes. The last version has 144
classes and about 1800 methods and 1800 fields. We
reverse-engineered Mathaino to generate 91 class models
from it source code versions and run UMLDiff to surface
the structural modifications when software evolves from
one version to another.

By applying Apriori mining, we discovered several co-
evolving class clusters, for example, (a) “AbstractForm”,
“AbstractInputField” and “AbstractOutputField”, and (b)
“FormNavigator”, “MathainoXHTMLGUITranslator” and
“TaskDataExtractor”. Note that the classes in the first
cluster share the same prefix or suffix; the developer of
Mathaino followed a principled notation convention,

which might enable the discovery of the co-evolution
relation through code inspection. At the same time, given
the naming convention, the prefix similarity may indicate
that the co-evolution is intentional. This is not the case for
the second cluster, however. It might also be intentional
co-evolution. But it cannot be recovered by simply
checking class names.

By analyzing the evolution of the first 18 versions, we
also discovered that a set of classes,
“MathainoCreatePlugin”, “MathainoParserPlugin”, and
their subclasses were originally co-evolving, but not after
the 20th version. The names of these classes suggest that
there may exist a parallel inheritance hierarchy in the
system. In the 19th version, we identified the instance of
“Extract Superclass” refactoring that involves the newly
created ancestor abstract class “MathainoPlugin”, which
suggests that the developer of Mathaino probably made
some structural changes to remove this co-evolving in the
19th version. His report [16] validated our intuition based
on the analysis of evolution of these classes. Until its 18th

version, Mathaino had two separate plugin hierarchies, one
for the “creator” and the other for the “parser”, and two
separate plugin loaders and registries respectively. This
design was not flexible enough to handle new types of
interactions and would easily result in “parallel
inheritance”. At the code level, a lot of code was
duplicated. It would seem then that the Mathaino
developer noticed the problem and made a design decision
in the 19th version to “Extract Superclass” from these two
separate plugin class hierarchies, and their corresponding
plugin loaders and registries, which reduced the code
duplication and made the system architecture much more
maintainable.

5 Conclusion and future work

In this paper, we discussed our method for detecting
clusters of two or more co-evolving classes in an object-
oriented software system. The method relies on readily
available data, as opposed to consistently documented
software project change requests. It takes as input a
sequence of class models of the system represented in
XMI, reverse-engineered from a corresponding set of code
versions. These models are compared using the UMLDiff
algorithm to detect various types of changes to the
system’s classes, interfaces, and their fields and methods.
Finally, the extracted class-evolution histories are mined,
using Apriori, to extract association rules indicating class
co-evolutions.

We have discussed three potential application of class
co-evolution discovery in the context of software
maintenance: advice regarding the scope of future
maintenance activities, guidance for particular refactorings
and, potentially, recognition of system instabilities. In our
Mathaino case study, we discovered several class co-
evolution instances and we also found evidence that the
project developer acted according to the advice that our

theory would have generated, had it been in place during
the system’s development.

The approach of detecting co-evolving classes
presented in this paper has been implemented as a part of
one of two analysis plugins in Eclipse [21], in the context
of the JRefleX project [18]

For the future work, we are investigating whether a
more specific notion of co-evolution, in terms of the
specific modifications identified by UMLDiff, would
enable more precise maintenance and refactoring advice.
The more specific co-evolution notion would enable us to
answer such question as “Are there any classes in some
part of the hierarchy that are often restructured when some
classes are added into another part of the hierarchy?”

We also plan to conduct a similar case study on a much
more complex software system, Eclipse [21], which is
built on an extensible plugin framework. The core of
Eclipse has more than 60 plugins, most of which have
several dozens of revisions. Its core plugins have been
divided into several subgroups, such as compare support,
team support, search, user interface, etc., which have been
developed in separate IBM research branches. More
important, it is an “active” project in contrast to the
“closed” case study, discussed here. Eclipse will provide a
good test bed to evaluate the scalability, “on-going” usage
and effectiveness of our method.

Acknowledgment

This work was supported by an Eclipse Innovation
Grant and by CSER, the Consortium for Software
Engineering Research, and NSERC the National Sciences
and Engineering Research Council of Canada.

References
1. R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules”, Proceedings of the 20th International
Conference on Very Large Databases, September 1994.

2. D. Barnard, G. Clarke and N. Duncan, "Tree-to-tree
Correction for Document Trees", Technical Report 95-375,
Queen's University, January 1995.

3. B. Bellay and H. Gall, “An evaluation of reverse
engineering tool capabilities”, Journal of Software
Maintenance: Research and Practice, 1998, 10(5):305-331.

4. J. Bevan and E.J. Whitehead, “Identification of software
instabilities”, Proc. of the 10th Working Conference on
Reverse Engineering, 2003, pp. 134-143.

5. A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio,
“Evaluating software degradation through entropy”,
Proceedings of the 11th International Software Metrics
Symposium, 2001, pp. 210-219.

6. E.J. Chikofsky and J.H. Cross, “Reverse engineering and
design recovery: A taxonomy”, IEEE Software, January
1990, pp 13-17.

7. P. Devanbu, R.J. Brachman, P.G. Selfridge and B.W.
Ballard, "LaSSIE: A knowledge-based software information
system" Communications of the ACM, May 1991, 34(5):35-
49.

8. A. Egyed, “Scalable Consistency Checking between
Diagrams - The VIEWINTEGRA Approach,” Proceedings of
the 16th IEEE International Conference on Automated
Software Engineering, San Diego, USA, 2001.

9. M. Fowler, “Refactoring: Improving the Design of Existing
Code”, Addison-Wesley, 1999.

10. H. Gall, K. Hajek and M. Jazayeri, “Detection of Logical
Coupling Based on Product Release History”, Proceedings
of the International Conference on Software Maintenance,
Bethesda, Washington D.C., November 1998.

11. A.E. Hassan and R.C. Holt, “Studying the chaos of code
development”, Proc. of the 10th Working Conference on
Reverse Engineering, 2003, pp. 123-133.

12. R. Kapoor and E. Stroulia, “Mathaino: simultaneous legacy
interface migration to multiple platforms”, Proceedings of
9th International Conference on Human Computer
Interaction, 2001.

13. K.A. Kontongiannis and P.G. Selfridge, “Workshop report:
The two-day workshop on research issues in the interaction
between software engineering and artificial intelligence”
Automated Software Engineeing, 1995, 2:87-97.

14. P. Selonen, K. Koskimies, M. Sakkinen, “Transformations
between UML Diagrams”, Journal of Database
Management, Vol. 14, No. 3, 2003.

15. J.S. Shirabad, T.C. Lethbridge, and S. Matwin, “Supporting
Software Maintenance by Mining Software Update
Records”, Proceedings of 17th International Conference on
Software Maintenance, Italy, 200, pp. 22-31.

16. E. Stroulia and R. Kapoor, “Metrics of Refactoring-based
Development: An Experience Report”, Proceedings of the
7th International Conference on Object-Oriented
Information Systems, 27-29 August 2001, pp. 113-122,
Springer Verlag.

17. R. A. Wagner and M.J. Fischer, “The string-to-string
correction problem”, Journal of the ACM, January 1974,
21(1):168-173.

18. K. Wong, W. Blanchet, Y. Liu, C. Schofield, E. Stroulia,
and Z. Xing, “JRefleX: Towards Supporting Small Student
Software Teams”, IBM Eclipse Workshop at OOPSLA
2003.

19. T. Zimmermann, S. Diehl, and A. Zeller. “How History
Justifies System Architecture (or not)”, Proceedings of
International Workshop on Principles of Software Evolution,
Helsinki, Finland, September 2003.

20. http://www.cs.unc.edu/~stotts/COMP204/refactor.
21. Eclipse, http://www.eclipse.org.
22. Mosell EDM Ltd, http://www.deltaxml.com.
23. Rational Rose, http://www.rational.com.
24. Together, http://www.togethersoft.com.
25. Weka, http://www.cs.waikato.ac.nz/~ml/weka

Defining and Qualifying Components in the Design Phase

Andrew O’Fallon, Orest Pilskalns, Andrew Knight, Anneliese Andrews
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA 99164�
aofallon, orest, aknight, aandrews � @eecs.wsu.edu

Abstract

Component based development in the design phase ne-
cessitates a comprehensive look at both static and dynamic
UML views. If a design is to incorporate third-party com-
ponents, one must define component interfaces. We propose
a method for defining components in the design phase that
can be used for qualification purposes. Coupling and fre-
quency metrics are used to make component definition deci-
sions. Component interface definitions allow for qualifying
candidate components.

1. Introduction

Software design is increasingly including component
based software development [3]. This happens from two
perspectives: (1) a software designer wants to use compo-
nents and needs to define how components fit with the re-
mainder of the design. Then candidate components must be
evaluated whether they fit into the design. The latter is part
of component qualification. (2) a software designer wants
to design components for reuse. This could be as part of a
product line architecture, or as part of a set of components
developed for reuse.

In either case, one needs to determine the component
boundaries and interfaces. Second, candidate components
need to be evaluated how well they fit into the overall de-
sign. i. e. how well they fit the component boundaries.

We propose an analysis method that works for designs
expressed in UML Class Diagrams and Sequence Dia-
grams. It is derived from Pilskalns et al. [11]. In [11], a
model is derived from Class Diagrams and Sequence Dia-
grams that integrates both structural and behavioral charac-
teristics of the design. It is used to generate and execute
tests. This paper uses the same model to evaluate compo-
nent boundaries and define components with high cohesion
and low coupling. Candidate components are then qualified
by how well they fit the interfaces of the component with
the rest of the design.

Section 2 describes existing work on component selec-
tion and qualification. Section 3 explains the approach used

for component definition. Section 4 defines the method for
component qualification. Section 5 illustrates the analysis
method on an example. Section 6 draws conclusions and
suggests further work.

2. Background

In [6, 7] Kontio et al. apply a selection and evaluation
method to multiple case studies. The method investigated
is referred to as OTSO (Off-The-Shelf Option). OTSO de-
scribes a systematic approach to selecting packaged compo-
nents. The method includes six phases: search, screening,
evaluation, analysis, deployment, and assessment. Lester
et al. [8], apply the idea of using stereotypes, class com-
partments, and association rules for qualifying the reuse of
software artifacts. These UML constructs are used to define
search criteria for reuse candidates. The stereotype is used
to limit the search of objects to those objects that contain
the stereotype or are derived from the object with the stereo-
type. Attribute-Value classification can be used to provide a
structured way to integrate association roles into the search
criteria of an object.

The COTE (COmponent TEsting) project [5] is con-
cerned with developing an integrated environment (IE) for
qualifying and testing components. The research is primar-
ily interested in using the IE for components modeled in
UML. Sequence diagrams are used to generate UML test
profiles.

These methods are more concerned with component
evaluation and qualification than definition. Further, they
are fairly high level. We see our method as a more detailed
analysis approach whose results can be used in the context
of an OTSO evaluation. Similarly, our component qualifica-
tion method can be seen as a method for selecting candidate
components that can then be tested using COTE.

3. Defining Components

We define components by (1) creating a model that
merges the static and dynamic information of UML Class

and Sequence diagrams, (2) applying an operation profile
to the model to collect metrics, and (3) analyzing the met-
rics to identify boundaries in the model for defining poten-
tial component interfaces. The first step in defining com-
ponents is to convert the class diagrams and sequence dia-
grams into a directed acyclic graph that can be analyzed for
cohesion [1] and coupling (Constrained Object Method Di-
rect Acyclic Graph or COMDAG). We do this in two steps
based on Pilskalns et al. [11]. First we convert classes
into constrained class tuples (CCTs) that describe attributes,
methods, and inheritance relationships of a class. A CCT
is contained in each node of the COMDAG and represents
an instantiated class. A set of CCTs can be used to de-
fine a component, since all of the interface information is
available. The sequence diagrams are converted into graphs
(COMDAG), starting with the first method call, following
the paths through the sequence diagram. Nodes are defined
by the method, object, and classes involved. Edges connect
method sequences as specified in the sequence diagram. Ta-
ble 1 shows the definition of the CCT as specified in [11].
Here we do not need all parts of this definition, since we do
not need to generate and execute test cases.

The COMDAG can be constructed by mapping elements
of the Sequence Diagrams to a graph. The COMDAG is
a tuple � � � � � 	 � where � is a set of vertices, � is the set
of edges, and 	 is the starting vertex. Each vertex, � , is
defined by the triple � � � � � � � � � � � � � � � � , where � is
an object, � � � is a method tuple, � is a class. An edge
E, represented by the tuple � � " � � % � , consists of a pair of
vertices that represent the ordering between vertices � " and

� % defined by the sequence diagram.

Once the CCT and COMDAG are defined, it is possible
to define a set of (connected) COMDAG vertices with the
smallest number of connections ((� � + +). To define and de-
sign a component and its boundaries select, a set of nodes

� - � where every node is directly connected to at least one
other member in the set. (e.g. a connection is defined as

� � / � � / 2 " �). Since each node contains a CCT, the newly
defined component contains a complete description of the
potential interface. A min–cut algorithm can be employed
or a designer can manually identify potential component
boundaries. In addition, we assume an operational profile
has been defined for use cases; that is, each use case is as-
sociated with a (relative) frequency. Execution as in [11]
or tracing a use case through the COMDAG identifies how
often interfaces are activated ((3 � 5). A decision on which
nodes are part of a defined component are then made based
on � (� � + + � (3 � 5 � . The designer can then choose either
the interface with the fewest connections, or the interface
with the fewest activations. Alternatively, the designer may
have set a threshold for (3 � 5 and then selected the interface
with the fewest (� � + + that falls within the threshold. The
component � - � identified with this approach is a subset of

the vertices in the COMDAG. The activation and connec-
tions need not be the only metrics we use. Since the CCT
contains attribute and method information, metrics can be
collected for class size, method signatures, attribute types,
etc. For instance, one of our criteria for a potential com-
ponent may only select classes that have a maximum of ten
methods. The CCTs that define our component will be used
in the next section to qualify candidate components.

4. Qualification

This approach determines if an implemented candidate
(COTS) component qualifies for the current design and ar-
chitecture of the system. The analysis is based on com-
paring the interfaces of the design component as defined in
the prior section with a list of implemented candidate com-
ponents. Interfaces are described in terms of information
about the methods, parameters, and attributes as contained
in a Constrained Class Tuples (CCT), of Table 1.

Interface analysis determines if an implemented candi-
date component satisfies the requirements of the system.
The set of attributes and methods is described in the form
shown in rows 4 and 5 of Table 1, respectively. We assume
that a component 8 may contain multiple attributes and
methods, hence many different attribute and method signa-
tures. We will define an interface as comprising multiple
attribute and method signatures.
Step 1: The first step to asserting that a candidate com-
ponent is sufficient for a designed component is to extract
the necessary information from the signatures of both the
designed and candidate components. Information must be
extracted from both the method and attribute sets.

Attribute Extraction, - 5 5 ; � 8 � , is a function that extracts
pertinent attribute information, for component qualification
from component 8 . Component 8 contains a set of at-
tributes of the form seen in Table 1 row 4. - 5 5 ; � 8 � returns
the set of all (attribute type, invariant) pairs of component

8 . We define a metric (- 5 5 ; � 8 � which is equivalent to= - 5 5 ; � 8 � =
.

Method Extraction, � ? 5 @ � 8 � , extracts pertinent
method information, for component qualification from
component 8 . Component 8 contains a set of methods
of the form in Table 1 row 5. � ? 5 @ � 8 � returns the set of
all (return type, invariant, parameter) triples of component

8 . We define a metric (� ? 5 @ � 8 � which is equivalent to= � ? 5 @ � 8 � =
.

The method triples Meth(X) and attribute pairs Attr(X)
of a component are called its signature.
Step 2: Next we determine if the interface of a candidate
component D matches the interface of a designed compo-
nent - . Each method triple and attribute pair of - is com-
pared to each method triple and attribute pair of D . A com-
plete match is found if the signature of the method or at-

Reference � Identifier Definition
1 CCT(class name) � � � � � � 	 � �
 � � � � � �
 	 � � � � 	 � � � � � � � � � � � �
 � 	 � � � �
 � � � � � 	 �
2 Attribute � � 	 � �
 � � � � � � � � �
 � � �
 � � � 	 # � � � � 	 � � � � � � � �

3 Method � � 	 � �
 � �
 � � � 	 � � �
 � # � � � � � � � � � � � � 	 # � � � � 	 � � � � � � � �
 �
 � � � �
4 � � � � � � � � �
 � 	 � � � 	 � �
) � � � � � � � � �
 � � �
) � � � 	 # � � � � 	 �) � � � � � �) � � � � 	 � �
 . �

� � � � � � � �
 � � �
 . � � � 	 # � � � � 	 � . � � � � � � . � � � � � �
� � 	 � �
 � � � � � � � � � �
 � � �
 � � � � 	 # � � � � 	 � � � � � � � � � � 	

5 � �
 � � � � � 	 � � � 	 � �
) � �
 � � � 	 � � �
) � # � � � � � � � � �) � � � 	 # � � � � 	 �) � � � � � � �
 �
 � � �) � �
� � 	 � �
 . � �
 � � � 	 � � �
 . � # � � � � � � � � � . �

� � 	 # � � � � 	 � . � � � � � � �
 �
 � � � . � � � � � � � � 	 � �
 1 � �
 � � � 	 � � �
 1 �
# � � � � � � � � � 1 � � � 	 # � � � � 	 � 1 � � � � � � �
 �
 � � � 1 � 	

Table 1. A constrained class tuple and its elements.

tribute in � has the same return type, invariant, and param-
eter tuple or attribute type and invariant of the method or at-
tribute, respectively, in 2 . A partial match is found only if
some of the elements of the method or attribute signature in

� match the method or attribute signature in 2 . For a match
we need to recursively search through � ' � CCT and Parent
CCT for methods and attributes whose signatures match the
signatures of 2 (refer to Table 1 row 1).

Step 3: The third step is to determine if the interface of a
candidate component 2 exceeds the interface of a design
component � . The interface of 2 safely exceeds the inter-
face � if it contains enough methods and attributes to match
all signatures of methods and attributes in � . Essentially the
signature of � , as defined by its attribute pairs Attr(A) and
method triples Meth(A), must be a proper subset of the sig-
nature of 2 .

This helps to determine whether or not a given design
that requires attributes described by component � can be
satisfied by candidate component 2 . For example, imag-
ine a component � which requires five cards to represent
a poker hand. Each of the cards is represented as a String.
If candidate component 2 contains six cards represented as
Strings, then component � is a proper subset of component

2 .

Step 4: We determine a qualification measure. We need
to perform operations on sets of attributes and methods of
components in order to determine if a candidate compo-
nent satisfies the requirements. We perform weighted oper-
ations on both the attribute and method sets of components.
The attribute sets are weighted (* and the method sets are
weighted (� according to the Analytic Hierarchy Process
(AHP) [12]. In the following sections, the fitnesses and cov-
erages computed for both attribute and method sets are also
weighted by AHP.

Given two components � and 2 , with attributes
� � �) � � � . � � � , � � � � � � � � 	 and � � �) � � � . � � � , � � � � � � � 1 	 re-
spectively, the difference between component � ' � and com-
ponent 2 ' � attributes is defined in equation 1.

� � � � � 0 #
 � 3 2 � � 4 5 � � � � � 3 2 4 2 � � � � � 3 � 4 (1)

The difference in equation 1 is the number of attribute
elements in � � � � 3 2 4 , but not in � � � � 3 � 4 .

The difference between two components and their at-
tributes is considered the attribute overhead of the compo-
nent. For example the design of a poker game needs a com-
ponent � which has five cards all represented by Strings,

� � � � �) � � � � � . � � � � � , � � � � � 3 � � � � � 4 	 . Consider a candidate
component 2 which contains six cards all represented by
Strings, and a game type represented as an integer number,

� � � � �) � � � � � . � � � � � , � � � � � 3 � � � � � 4 � � � � � 5 � 6 � �
 � � �
 	 .
Applying � � � � � 3 2 4 2 � � � � � 3 � 4 to the two components
results in � � � � � 0 #
 � 5 � � � � � � 6 � �
 � � �
 	 . The dif-
ference in this case represents the attribute overhead of
the components. Representing the attribute overhead as a
percentage is defined, refer to equation 2.

� � � � 0 #
 � 9 5
� � � � � 0 #
 �

� � � � � 3 2 4 ;
< = =

(2)

For this example the percentage of overhead is > ? @ 5
> A 9 .

Given two components � and 2 , with
methods � � �) � � � . � � � , � � � � � � � � 	 and

� � �) � � � . � � � , � � � � � � � 1 	 respectively, the differ-
ence between component � ' � and component 2 ' � methods
is defined in equation 3.

� �
 � � 0 #
 � 3 2 � � 4 5 � �
 � � 3 2 4 2 � �
 � � 3 � 4 (3)

The method difference is the number of method ele-
ments in �
 � � 3 2 4 , but not in �
 � � 3 � 4 . The differ-
ence between two components and their methods is consid-
ered the method overhead of the component. For example
the design of a poker game needs a component � which
has a deal and shuffle method, � 6
 � E � 	 � 3 4 � � � � I I �
 3 4 	 .

If a candidate component � is available which con-
tains methods for getHand(), shuffle(), and get-
Bet(), � � � � � � � � � 	 � � � 	 	 � � � 	 � � � � � � � � 	 , then applying

� � � � � � � 	 � � � � � � � � 	 to the two components results
in � � � � � � � � ! � � � � � � � � 	 . The method overhead of
the components as a percentage is defined in equation 4.

� � � � � � � � ! � � � � � � � �
� � � � � � � 	 �

� � �
(4)

For this example the percentage of overhead is
� � � !� � � .

The intersection of two components � and
� , with attributes � � � # � � � $ � � � � � � � � � � � � and

� ! � # � ! � $ � ! � � � � � � � ! � (respectively, is defined in
equation 5.

� � � � � � � ! + � � � � � 	 � � � � � � 	 +
(5)

The attribute intersection is the number of attribute ele-
ments in both � � � � � 	 and � � � � � 	 .

The intersection between two components indicates cov-
erage. Thus all attribute elements that are present in

� � � � � 	 and in � � � � � 	 represent the attribute coverage.
Attribute coverage can be calculated as in equation 6.

� � � . / � � ! � � � � � � � � � 	 � � � � � � � �
� � � � � � 	 	 �

� � �
(6)

For example, the design of a poker game needs
a component � which has five cards all represented
by Strings, � 1 � � # � 1 � � $ � 1 � � � � 1 � � $ � 1 � � % .
If a candidate component � is available which
contains six cards all represented by Strings, and
a game type represented as an integer number

� � 1 � � # � 1 � � $ � 1 � � � � 1 � � $ � 1 � � % � 1 � � ' � � � � � �) * � 	 ,
then applying � � � � � 	 � � � � � � 	 , results in

� ! � 1 � � # � 1 � � $ � 1 � � � � 1 � � $ � 1 � � % . Thus,+ � � � � � 	 + ! � and � � � � � � � ! � , which indicates
that the coverage is

� � � � � � 	 ! � � � � . However, the
attribute coverage must be weighted by , - � . The attribute
fitness of the component is defined in equation 7.

� � � � . � � ! � � � � � � � � � �� � � 	 �
� � �

(7)

The attribute fitness is
� � � � 1 2 or 3 � � . The attribute

fitness must also be weighted by , - � .
The intersection of two components � and � ,

with methods � � � # � � � $ � � � � � � � � � � � � and
� ! � # � ! � $ � ! � � � � � � � ! � (respectively, is defined in
equation 8.

� � � � � � � � ! + � � � � � � 	 � � � � � � � 	 +
(8)

Where method intersection is the number of method ele-
ments in both � � � � � � 	 and � � � � � � 	 .

The intersection between two components indicates cov-
erage. Thus all method elements that are present in

� � � � � � 	 and in � � � � � � 	 represent the method coverage.
The method coverage is calculated as in equation 9.

� � � � . / � � ! � � � � � � � � � � 	 � � � � � � � � �
� � � � � � � 	 	 �

� � �
(9)

For example, the design of a poker game needs a
component � which has a deal and shuffle method,

� � � � � � � � � 	 � � � 	 	 � � � 	 . If a component � is available
which contains methods for getHand(), shuffle(), and get-
Bet(), � � � � � � � � � 	 � � � 	 	 � � � 	 � � � � � � � � 	 , then applying

� � � � � � 	 � � � � � � � 	 to the two components results in
� ! � � � � � � � � � 	 � � � 	 	 � � � 	 . Thus,

+ � � � � � � 	 + ! 1 and
� � � � � � � � ! 1 , which indicates that the method coverage
is

� � � 1 � 1 	 ! � � � � . However, the method coverage must
be weighted by , � � The method fitness of the component
is defined in equation 10.

� � � � � . � � ! � � � � � � � � � � �� � � 	 �
� � �

(10)

The method fitness is
� � � � � �

or � 3 � . The method
fitness must also be weighted by , � � .

A component � properly satisfies a component � if and
only if the fitness and coverage is � for both attributes and
methods. A component � satisfies a component � if and
only if the fitness and coverage is at least) for both at-
tributes and methods, where � �) and � � � � � . If the
fitness and coverage for both attributes and methods is less
than) , then a different component should be considered.
The sum of attribute fitness and attribute coverage should
be as close to

� � � � as possible to ensure that a given com-
ponent attribute qualification satisfies the requirements of
the system. Also, the sum of method fitness and method
coverage should be as close to

� � � � as possible to ensure
that a given component method qualification satisfies the
requirements of the system. Adding the results of the at-
tribute qualification and the method qualification together
and dividing by 1 , results in the overall qualification of the
component for the system.

5. Example: Analysis & Qualification

We created a UML designed application to demonstrate
the component definition and qualification processes. The
application creates a two-dimensional convex polygon filled
with either a solid color or Gouraud shading. The inputs to
the program are two filenames: an input file and an image
file. The input file contains the size, a list of coordinates,

Use Case: Create Polygon
Intent: Create polygon image from input file
Pre Conditions: Input file is correctly specified
Post Conditions: Polygon image file created
Description:

1. User executes program with 2 command line arguments
2. System returns polygon image file

Figure 1. Polygon Use Case

and color values. The image file can have five different for-
mats: BMP, GIF, JPG, PNG, or a TIF.

The original class diagram contained 14 classes. Figure
2 shows a simplified version, with many classes hidden be-
hind the image interface. The sequence diagram, Figure 3,
has been simplified as well. Both diagrams were designed
using UML 2.0 [9]. The COMDAG, Figure 4, was derived
from the sequence diagram. The loops in the COMDAG
have been retained to reduce the size, but in practice they
would be unraveled into a directed acyclic graph.

Polygon(in filename : String)
Fill()
CreateFile(in filename : String)

Polygon

+ScanLine()
+WriteLine()

ScanLine

CreateImage(in width : int, in height : int)
Load(in x : int, in y : int, in r : int, in g : int, in b : int)

CreateFile(in filename : String)

«type»

IImage

*1

«Interface»

«uses»«uses»

Interpolator(in file : String, in type : int)

InterpolateLine(in y : int) : ScanLine
IncrementEdges()

Interpolator

*

11

1

Figure 2. Polygon Class Diagram

«type»
IImage

ScanLineInterpolatorPolygon
«Interface »

CreateImage(width, height)

Interpolator(file, type)

Interpolator(0, 0)

WriteLine(y)

Load(x, y, r, g, b)

IncrementEdges()

ScanLine()

InterpolateLine(y)

CreateFile(filename)

[(0,300)]
loop

loop
[(0,300)]

Figure 3. Polygon Sequence Diagram

In our definition process we use an Operational Profile
consisting of Use-Cases and their frequency of execution.
For this example, we use one of the primary Use-Cases,
see Figure 1, to simulate execution. There are three nodes
directly connected to the Image Component: 1, 10, and 15.
Despite only 3 connections, when we simulate the Use-Case

there are 90,002 activations. Obviously the boundaries to
the image interface should also be our component bound-
aries. Therefore, our component is defined in terms of the
CCT’s describing image interface.

1 2 3 4
5 6 7 8

16 15
14 13 12

11
10

9

loop
[(0,300)]

loop [(0,300)]

� � �
p,

�
CreateImage, � 300, int � , � 300, int � � , Polygon �

� � �
IImage,

�
return � , IImage �

� � �
p,

�
Interpolator, � filename, string � , � type, int � � , Polygon �

� � �
i,

�
return � , Interpolator �

� � �
p,

�
InterpolateLine, � y, int � � , Polygon �

� � �
i,

�
ScanLine, null � , Interpolator �� � �

s,
�

return � , Scanline �	 � �
i,

�
return � , Interpolator �
 � �

p,
�

WriteLine, � y, int � � , Polygon �
� � � �

s,
�

Load, � x, int � , � y, int � , � r, int � , � g, int � , � b, int � � , ScanLine �
� � � �

IImage,
�

return � , IImage �
� � � �

s,
�

return � , ScanLine �
� � � �

p,
�

IncrementEdges, null � , Polygon �
� � � �

i,
�

return � , Interpolator �
� � � �

p,
�

CreateFile, � filename, string, [Type = bmp, gif, jpg, png, tif] � � , Polygon �
� � � �

IImage,
�

return � , IImage �

Figure 4. Polygon COMDAG

The purpose of the Image Component is to provide a way
for the program to write an image file. We need to be able
to specify the image size, the RGB value for each pixel, and
create one of five file types. While the tasks the component
should perform are quite simple, the component function-
ality may not conform to our definition. A third party im-
age component may not allow us to create the desired file
types, or the interface for loading information may be non-
compliant. Other complications arise if the third party com-
ponent supports extra operations that our program does not
use. Although extra functions can be useful, when unused,
the excess overhead increases code size without increasing
effectiveness.

Attr (P) Attr (IIC)

Position int x, int y int x, int y

Color int r, int g, int b int r, int g, int b, int a

File Type bmp, gif, jpg, png, tif bmp, gif, jpg, png, tif, pbm, pgm, ppm, tga

Table 2. Attributes Required vs. Provided
We will apply Set Analysis to qualify the Imaginary Im-

age Component (� � �), a COTS component. � � � runs on
the Java platform, and the interface is provided as a class.
The component allows the specification of a generic file,
which can be saved as nine different types. � � � allows the
image file to be changed one pixel at a time through the
specification of a Position and a Color. Although, neither
the position nor color class are used in the Polygon specifi-
cation, we can use CCT’s to unravel each structure down to
their base types, and perform the comparisons there. Table
2 shows the unraveled attributes. After the image has been
created, IIC provides a variety of methods to alter the image

Meth (P) Meth (IIC)

CreateImage(int width, int height) SpecifyImage(int w, int h)

Load(int x, int y, int r, int g, int b) LoadPixel(Position p, Color c)

CreateFile(String filename) CreateFile(String name)

Rotate(int degree)

Flip()

Scale(int percentage)

StretchWidth(int percentage)

StretchHeight(int percentage)

Crop(Position tl, Position br)

Invert()

Table 3. Methods Required vs. Provided

appearance. Table 3 shows a complete list of methods in the
IIC component.

Everything required by Polygon that is provided by
� � � is listed in normal font. By examining Table 2 & 3,
it is also apparent that � � � is sufficient to cover Polygon’s
requirements. Because � � � is sufficient, coverage is 100%
for both attributes and methods.

� � � � � �
 � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �
� � � � � 	 � � � � � � � � � �

� � � � � 	 � � � � � � � � � �
� � � � � �
 � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �
� � � � � 	 � � � � � � � � � �

� � � � � 	 � � � � � � � � � �

Although � � � is sufficient, only 2 methods have a
complete match. LoadPixel is only a partial match because
of the extra alpha attribute in the color parameter. All other
portions of � � � safely exceed Polygon’s requirements.
The overhead is the portion of � � � that safely exceeds
Polygon’s requirements. In Table 2 & 3, the overhead is
denoted with italics.

� � � � � � � � �
� � � � � 	 � � � � � � � � 	 �

� � � � � 	 � � � � �
� � � � � � � � � � �

� � � � # % � � &
% � � � � � �

� � � � � � � � �
� � � � � 	 � � � � � � � � 	 �

� � � � � 	 � � � � �
� � � � � � � � � � �

� � � � # % � � &
% � � � � � �

The component qualification is determined by averaging
the coverage and overhead together. In this case the overall
qualification is 76.75%, making � � � fairly qualified as a
component for the polygon program.

(� & � � � � �) % ' � � � � * + � ' � � � �) % ' � � � � * + �
� � � � � 	 �

6. Conclusion

This paper showed how to define a design component as
part of a UML design. It also defined a method to use the
component interface definition to qualify candidate compo-

nents and compute fitness metrics for the degree of fit. An
example illustrates how the method works.

Since the method is based on information that can be
extracted automatically from a design, it is possible imple-
ment a tool that can help in component definition and quali-
fication. This could become a valuable design aid. Automa-
tion is our next step.

References

[1] J. Bieman, L. Ott, “Measuring Functional Cohesion”, IEEE
Trans. Software Eng., vol. 20, no. 8, pp 644–657, Aug. 1994

[2] M. Fowler, K. Scott, UML Distilled Second Edition,
Addison–Wesley, 2000.

[3] G. Heineman, W. Councill, Component–Based Software En-
gineering: Putting the Pieces Together, Addison–Wesley,
Boston, MA, 2001.

[4] S. Henninger, “Supporting the Construction and Evolution
of Component Repositories”, Proceedings of the 18th Inter-
national Conference on Software Engineering, pp. 279–288,
March 25–29, 1996.

[5] C. Jard, S. Pickin, “COTE - Component Testing Using the
Unified Modelling Language”, ERCIM News, No. 48, pp
49–50, Jan 2002.

[6] J. Kontio, “A Case Study in Applying a Systematic Method
for COTS Selection”, Proceedings of the 18th International
Conference on Software Engineering, pp. 201–209, March
25–29, 1996.

[7] J. Kontio, S-F Chen, K. Limperos, R. Tesoriero, G. Caldiera,
and M. Deutsch, “A COTS Selection Method and Experi-
ences of Its Use”, 20th Software Engineering Workshop,
NASA Software Engineering Laboratory, Greenbelt, MD,
1995.

[8] N. G. Lester, F.G. Wilkie, and D.W. Bustard, “Applying
UML Extensions to Facilitate Software Reuse”, UML ’98
Beyond the Notation – International Workshop, pp 393–405
1998.

[9] Object Management Group, “UML 2.0 Draft Specification”,
http://www.omg.org/uml, 2003.

[10] S. Pickin, C. Jard, T. Heuillard, J. Jezequel, and P. Desfray,
“A UML-Integrated Test Description Language for Compo-
nent Testing”, Proceedings PUML Workshop 2001, pp 208–
223, 2001.

[11] O. Pilskalns, A. Andrews, R. France, S. Ghosh, “Rigorous
Testing by Merging Structural and Behavioral UML Rep-
resentations”, Proceedings UML 2003, Oct 20–24, pp 234-
248, 2003.

[12] T. Saaty, The Analytic Hierarchy Process, New York, NY,
McGraw–Hill, 1980.

Digging into the Visitor Pattern

Fabian Büttner, Oliver Radfelder, Arne Lindow, Martin Gogolla

University of Bremen, Computer Science Department
E-mail: {green,radfelde,lindow,gogolla}@tzi.de

Abstract

In this paper we present an alternative to the VISITOR

pattern, DYNAMIC DISPATCHER, that can be applied to ex-
tend existing software in a nonintrusive way, and which
simulates covariant overriding of visit methods. It allows
to express polymorphic operations through visitor classes
in a more natural way than the original VISITOR pattern.
Our solution DYNAMIC DISPATCHER can be applied with-
out touching existing domain classes. Therefore, it is espe-
cially useful to extend frameworks and libraries. We have
implemented DYNAMIC DISPATCHER as a small framework
in Java and conducted performance measurements which
show that the overhead should be acceptable in many real
world scenarios.

1. Introduction
In the area of software development, agile method-

ologies like Extreme Programming [3], the Unified Pro-
cess [12], and others have evolved and lots of projects are
done based thereon. These approaches consider analysis,
design, implementation, and testing as parallel activities.
As a consequence, software design artifacts change contin-
uously. This effect is intended to achieve a design which is
constantly adequate to the emerging problem domain.

Design patterns [11] are instruments to obtain a robust,
maintainable, and extensible design. One general intention
of design patterns is to decouple individual concerns, so that
as many parts as possible of a design remain stable accord-
ing to requirement changes.

One of the most controversly discussed patterns is the
VISITOR pattern. The general intention of the pattern is to
allow defining operations separated from the classes they
operate on. Several problematic properties of VISITOR are
mentioned in the literature, for example in [13, 15]. We
will target two problems especially: First, applying the
pattern to existing software is very intrusive. Thus, it of-
ten cannot be used to extend existing software, particularly
frameworks, as discussed in [19]. Second, in mainstream
object-oriented programming languages like Java, C++, C#,

and others that do only support invariant method overrid-
ing [4, 7], VISITOR cannot express specialization. There-
fore, VISITOR is not able to extract inherited operations into
Visitor1 classes.

In this paper we present an alternative to the VISITOR

pattern, DYNAMIC DISPATCHER, that can be applied to ex-
tend existing software in a nonintrusive way, and which
simulates covariant overriding of visit methods. It allows
developers to express polymorphic operations through visi-
tor classes in a more natural way than the original VISITOR

pattern. DYNAMIC DISPATCHER can be applied without
touching existing domain classes. Therefore, it is especially
useful to extend frameworks and libraries.

To demonstrate that it is easily realizable, we have im-
plemented DYNAMIC DISPATCHER as a small framework in
Java using several strategies. Since we achieve the dynamic
dispatching by executing additional code, there is the dan-
ger of a substantial performance impact. We conducted per-
formance measurements which show that the relative over-
head should be acceptable in many real world scenarios.

This paper is structured as follows: Section 2 introduces
a simple design example, on which we apply the VISITOR

pattern. In Sect. 3, we discuss the problems of VISITOR

that motivate our variant DYNAMIC DISPATCHER, which
is explained in Sect. 4. In Sect. 5, we present how DY-
NAMIC DISPATCHER can be implemented as a framework in
Java. Section 6 shows the results of the performance mea-
surements we conducted with this framework. Finally, in
Sect. 7, we make a conclusion and present future work.

2. Graphics Example
In the following we will present the design of a simpli-

fied, hypothetical vector graphics software on which we will
discuss some problems of VISITOR. The UML class dia-
gram in Fig. 1 shows the static structure of the example:
a picture can be composed of shapes, which can be lines,
arrows, and other pictures. The reader may notice this re-
flexive relationship as the COMPOSITE design pattern. Two

1We use the following conventions: ‘VISITOR’ refers to the pattern,
‘Visitor’ refers to the class in the pattern, and ‘visitor’ refers to the general
concept.

for e : Shape in elements
 e.scale(factor)Arrow

persist(stream)

x1 := x1 * factor
y1 := y1 * factor...

Shape
elements
1..*scale(factor)

persist(stream)

Picture

persist(stream)
scale(factor)

Line

persist(stream)
scale(factor)
x1,y2,x2,y2

Figure 1. Graphics example

error

for e : Shape in p.elements
 scale(e)

Scale
factor
scale(l : Line)
scale(p : Picture)
scale(s : Shape)

l.x1 := l.x1 * factor
l.y1 := l.y1 * factor...

Figure 2. Extracted operation (not working)

operations are defined for shapes: scale and persist. Both
operations are recursive as they descend into the tree of el-
ements formed by the composition. For example, scale is
applied to all elements within a picture, which may be pic-
tures themselves, and so on.

Both shape operations are redefined (overridden) in the
child classes Line and Picture. While class Arrow overrides
persist it does inherit scale. Therefore, the implementation
language is required to late-bind method invocation to cor-
rectly call scale and persist for lines, arrows, and pictures.
Java, C++, C#, and most other static typed OO program-
ming languages support this kind of method binding2.

This is common object-oriented programming style.
However, in certain situations the software developer may
want to separate behavior from state, i.e., to define (some)
operations outside the domain classes Shape, Line, Arrow,
and Picture. Although this conflicts with common under-
standing of object-oriented programming in a certain sense,
there are at least two recurring motivations in software en-
gineering that justify this violation: One is to keep domain
classes independent from operations in order to enable their
reuse and to keep them stable when operations change. The
other motivation is the use of libraries or frameworks. Since
libraries typically cannot be changed, there is no alternative
to defining new operations some other place. In general,
this place is another class.

For example, in our graphics software the scale opera-
tion could be separated from our domain classes into a class
Scale, as depicted in Fig. 2. The class Scale consists of three

2We use ‘method’ to refer to an implementation, otherwise we use ‘op-
eration’

Line
x1,y1,x2,y2

accept(v : Visitor)

Arrow

accept(v : Visitor)

accept(v : Visitor)

v.visit(self)

stream
visit(l : Line)
visit(a : Arrow)
visit(p : Picture)

PersistVisitor
factor
visit(l : Line)
visit(a : Arrow)
visit(p : Picture)

ScaleVisitor

visit(l : Line)

Visitor

visit(p : Picture)
visit(a : Arrow)

elements
1..*

Shape

accept(v : Visitor)

Picture

Figure 3. Graphics example - VISITOR applied

scale methods, one for each occurrence of scale in the do-
main classes before. One needs an instance of this class to
scale shapes.

Unfortunately, this code does not work in mainstream
object-oriented programming languages. The method
scale(l:Line) is never called from within scale(p:Picture).
Instead, scale(s:Shape) is executed regardless of the run-
time type of the elements in the picture. That is because
these languages do not support double-dispatch of method
invocations. Instead, the method to be invoked is chosen
solely based on the runtime type of the receiver (self). If we
had omitted scale(s:Shape), Scale would not even compile.
scale is only overloaded and the call scale(e) is statically
bound to a method according to the argument’s reference
type. An in-depth comparison of the different late-binding
signatures of Java, C++, C# and others can be found in [4].

A common solution to this problem is the VISITOR pat-
tern. The basic idea is to call an (invariantly) overridden
method accept in the class hierarchy you work on. In turn,
this method calls the correct visit method (as persist is now
named) on the caller. Figure 3 shows the static structure
of our graphics example after applying VISITOR. The ac-
cept method always consists of the same piece of code:
visit(self). Consequently, the early-bound call to the over-
loaded method persist is replaced by a late-bound call to
the overridden method accept. The type of self is always
the type of the class, therefore it is always different and
the correct overloaded method is selected in the caller at
compile-time. Some people append the type name to Visi-
tor methods, i.e. visitline, visitarrow, and so on to make this
fact clearer, but there is no difference at this point between
overloading and renaming. Since nothing special happens
in the accept method, we can reuse it for all operations we
want to move out of the class hierarchy, like scale, persist,
etc. The classes that implement these operations must ad-
here to the contract that they understand a visit call for each
concrete class in the hierarchy. This is achieved through a
common abstract base class (or an interface) Visitor. Conse-
quently, the functionality of scale must be included in both

Picture

accept(v : Visitor)
 e.accept(v)

v.visit(self)
for e : Shape in elements

elements
1..*

Shape

accept(v : Visitor)

...

Figure 4. Traversal encoded in the objects

ScaleVisitor::visit(e:Line) and ScaleVisitor::visit(e:Arrow).
We will discuss this issue in Sect. 3.2.

Considering the dependencies between shapes and oper-
ations, we notice that shapes are now decoupled from sub-
classes of Visitor in the way that concrete Visitors (Scale-
Visitor, PersistVisitor) are not known to concrete Shapes at
compile-time. As an effect, we may change or add new
operations on shapes without recompiling Shape, Line, Ar-
row, or Picture. Another side-effect regards attribute and
method visibility: Since the scale methods now reside in
Scale, they must have either access to the attributes in Line
and Picture, or there must be some state-exposing interface
in these classes. It is evident that applying VISITOR may
break encapsulation, since at least the visitors need access
to the object states.

A common variant of the VISITOR pattern is to leave the
traversal through the object structure in the accept meth-
ods (Fig. 4). If all algorithms use the same way to iter-
ate through the objects, redundant traversal code can be
avoided. Perhaps even more important, the kind of com-
position can be left private, weakening the visitor’s depen-
dency. On the other hand, future visitors are restricted to
one kind of traversal. Thus, it seems to us, that this vari-
ant of the VISITOR pattern requires a lot of foresight, and
should be applied carefully. Other design patterns may be
used instead to avoid duplicated traversal code in the visi-
tors (e.g. STRATEGY, ITERATOR [11]).

3. Problems Induced by VISITOR

Apart from problems that are intrinsic to the general idea
behind VISITOR, like breaking encapsulation and introduc-
ing a level of indirection, there are several other problems
that are solved in certain approaches. We address three of
those problems with our DYNAMIC DISPATCHER.

3.1. Visitor is Intrusive
It is obvious that applying VISITOR to extend existing

software by either extracting or creating new operations
is a very intrusive procedure. Firstly, the domain classes
must provide an accept method. Furthermore, for inherited
methods explicit delegation code must be created due to the
problem of having no implementation inheritance (see be-
low). Therefore, VISITOR is definitely a heavy-weight pat-
tern, which may not be applicable to existing software in

several cases. This problem is also discussed in [16], which
presents a generic ‘Walkabout’ class to replace accept.

Another undesirable effect of VISITOR is the cyclic de-
pendency relationship between classes and subclasses: su-
perclasses know their subclasses, because Visitor knows all
domain classes through the parameter types of its visit meth-
ods, and each domain class knows Visitor. [14] and [15]
avoid cyclic dependency in ACYCLIC VISITOR and EX-
TRINSIC VISITOR.

3.2. No Implementation Inheritance

The VISITOR design pattern does not support implemen-
tation inheritance. In a design without a visitor (operations
are defined in the classes they operate on), subclasses inherit
the methods they do not override. In our example, Arrow in-
herits scale from Line. Nevertheless, ScaleVisitor needs to
implement scale(a:Arrow) - which may call scale(l:Line).
Thus, implementation inheritance must be manually simu-
lated when applying VISITOR in the general case.

Assuming we left out visit(a:Arrow) in the Visitor class,
arrows would be handled as lines in each subclass of Visi-
tor (i.e. in each extracted operation). As soon as one vis-
itor must differentiate between lines and arrows, all visi-
tors must do so. The reason is again the typical OO lan-
guage’s uni-dispatch late-binding: because calls to visit are
early bound with regard to the argument type, visit can
not be specialized in a visitor. If our language supported
covariant method overriding (or multimethods) like Dy-
lan [2] and CLOS [9], this kind of specialization would be
possible. Manually simulating implementation inheritance
can become time-consuming, hard to maintain, and error
prone: If one Visitor needs a special method for a certain
domain class not yet present in the Visitor base class, all
other visitors must be changed as well. Therefore, as dis-
cussed in [19], it is not possible to use VISITOR in frame-
works/libraries, because the framework user cannot change
the interface of the visitor base class, even if she is allowed
to introduce new domain subclasses. In all cases, changes
to the inheritance relationship between domain classes must
be reflected in the manually coded delegation, with the dan-
ger of introducing hardly traceable errors.

One solution to overcome these problems is DEFAULT

VISITOR [15], which introduces a common base class (De-
faultVisitor) for visitors to inherit from. In DefaultVisitor,
each visit method calls the next more general method, up to
the most general argument type. Thus, individual visitors
only need to override some visit methods. Still, DEFAULT

VISITOR is not applicable to frameworks.
Another solution is to move the dispatching to the correct

visit method into its own method (dispatch) in the visitor.
This method checks the runtime type of its argument and
calls the most specific visit method. This way, implementa-
tion inheritance is simulated, and additional Shape classes

domain classes and visitors
overloaded visit method based on
the runtime type of x

T1 T2 Tn

Visitors do not need
to contain visit methods
for all domain classes

dispatch(o : Object)
Dispatcher

create(visitor : Object) : Dispatcher

DispatcherFactory

<<generated>>
DispatcherImpl
dispatch(x : Object)

creates

Visitor

...
visit(x : Tn)

visit(x : T1)

visitor
1

...these methods call the appropriate

Figure 5. Structure of DYNAMIC DISPATCHER

are not intrused with accept methods. The major drawback
of this approach is that we must manually maintain several
dispatch methods (e.g. one for Scale and another for Per-
sist). This solution is called EXTRINSIC VISITOR by [15].

4. Dynamic Dispatcher

Reconsidering how we motivated applying VISITOR, we
recall that we tried to separate polymorphic operations
from the domain objects they work on. VISITOR was
motivated by the fact, that Java and most other common
object-oriented programming languages only support uni-
dispatch late-binding. If we had a language which supports
at least double-dispatch method binding, it would not be
necessary at all. Especially for Java, several approaches
were discussed to introduce double-dispatch method bind-
ing (e.g. [10]). Most approaches we know require a modi-
fied compiler, or a modified virtual machine, they may not
be adoptable for many applications. One exception is the
Java Multi-Method Framework [18], which covers general
multi-methods via reflection, but introduces a significant
performance overhead to normal method invocation.

In the following, we present another solution DYNAMIC

DISPATCHER, which specially targets the cases where VIS-
ITOR may be applied, and which does not require any
changes to the compiler, virtual machine, or runtime. At its
heart, we introduce a Dispatcher object, that dynamically
chooses the most appropriate visit method. Thus, DYNAMIC

DISPATCHER replaces the accept methods of the VISITOR

pattern by an explicit dispatching object. This object is gen-
erated at runtime by passing a visitor object to a factory that
dynamically derives the dispatcher object.

4.1. Structure

The general structure is depicted in Fig. 5. The classes
Dispatcher and DispatcherFactory are part of the dispatch-
ing framework, while Visitors are arbitrary user defined
classes that declare some visit methods. There is no abstract

DispatcherImpl
dispatch(x : Object)

factor
ScaleVisitor

visit(l : Line)
visit(p : Picture)

1 visitor

Dispatcher
dispatch(x : Object) target.visit((Line) x)

 target.visit((Picture) x)

 raise dispatch error
else

if x instance of Line

else if x instance of Picture

Figure 6. Dynamic dispatcher for Scale

base class Visitor, as in the original pattern, which requires
a fixed set of visit methods to be defined.

A DispatcherImpl object is generated by DispatcherFac-
tory::create and holds a reference to its visitor. The dis-
patching, i.e. calling the appropriate visit method, is done
in the overridden dispatch method. Notice, that although
not shown here, a Visitor may need a reference to the Dis-
patcher to (recursively) invoke its own visit methods, like
in traversal operations. Although not strictly necessary, the
DispatcherImpl class should be typically generated at run-
time, as explained below.

4.2. Choosing Appropriate Visit
What does choosing the appropriate visit method for an

argument x of dispatch mean? Basically, if there is more
than one visit method with an argument type to which x is
assignable, the one with the most specific argument type
should be called. In general, in programming languages
with subtyping (see [6, 1]), there may be no most specific
type. This is the case if none of the assignable argument
types is a subtype of all others. If there is no most specific
type for x, then there is no most appropriate visit method.
We regard this situation as an ambiguity error.

For Java and C#, we can avoid this ambiguity by restrict-
ing the allowed argument types in the visit methods to class
types. Because Java and C# prohibit multiple inheritance
between classes, this restriction ensures that if there is at
least one compatible visit method for x, there is always a
most specific method. Less restrictive solutions exist (e.g.,
[5],[18]), but they are more complicated. However, if our
intention was to move operations out of a class hierarchy,
we do not impose any restrictions, because the only place a
method can be defined in Java is a class.

Let us explain a dispatcher generated for a ScaleVisitor
that works on our shape-hierarchy, as depicted in Fig. 6.
The visitor consists of visit methods for Line and Picture.
The dispatch method sequentially checks the parameter
against the types of the visit methods, and calls the appro-
priate one. Notice, that we gained ‘implementation inheri-
tance’. In the previous section, we have defined Arrow as a
subclass of Line, so that the expression x instance of Line
yields true for an instance x of Arrow. Hence, passing
an Arrow object to dispatch results in the execution of

Visitor
...

 target.visit((T1) x)
else if x instance of T2
 target.visit((T2) x)

else if x instance of Tn
 target.visit((Tn) x)
else
 raise dispatch error

if x instance of T1

...
visit(x : Tn)

dispatch(x : Object)

DispatcherImpl

Dispatcher

dispatch(x : Object)
1 visitor

visit(x : T1)

Figure 7. Simple dispatch algorithm

Seq=<T3,T2,T6,T4>

T5 T6T3

T2T2

T1

T4
visit(x : T2)
visit(x : T3)
visit(x : T4)
visit(x : T6)

Visitor

Figure 8. Deriving a sequence for dispatch

visit(l:Line). This corresponds with our intention that scal-
ing arrows is inherited from scaling lines.

In contrast, persisting shapes differentiates between ar-
rows and lines, expressed by a separate visit(a:Arrow)
method in PersistVisitor. Therefore, the corresponding dis-
patcher must also check against class Arrow. Actually, this
check must happen before the one against Line, otherwise
visit(l:Line) would be called unintendedly.

In general, the dispatch method can be implemented
as a sequence of if -statements. The inheritance tree be-
tween classes (without multiple inheritance) can be trans-
formed into a sequence T1, . . . , Tn, so that the dispatch
method looks like Fig. 7. For T1, . . . , Tn , (Ti subtype of
Tj) ⇒ i < j must hold to ensure that more specific types
are checked first.

Figure 8 illustrates how to derive such a sequence from a
set of types. The grey-shaded boxes in the class diagram are
the classes occurring as argument types of the visit methods.
The depicted sequence of types is one of the four valid se-
quences for the simple dispatch algorithm used in Fig. 7.

One may argue that the implementation as a sequence of
if-statements is against the spirit of object-orientation. Af-
ter all, the removal of conditional statements is one major
advantage of OO. Yet, dispatch enables us to express vis-
itor objects in a far more natural way. We gain simplicity
in many other places by violating the OO paradigm in one
place. Furthermore, as shown later, the dispatcher imple-
mentation can easily be generated on demand at runtime,
removing the drawback of manually coded if-statements.

Other implementation techniques of dispatch are possi-
ble. For deep class hierarchies, it may be more efficient
to reorder the if-statements to perform a tree search along
the class hierarchy to find the appropriate visit method.
More complex, already found method resolutions may be

cached (e.g. in a hash table), or precomputed (e.g. as in
[17]). Unfortunately, the presence of dynamic linking and
multi-threading requires synchronization. We experienced
that the simple linear search algorithm is sufficient in many
cases (see Sect. 5).

4.3. Consequences and Requirements

In Sect. 3 we discussed three major problems of the
VISITOR pattern: intrusiveness, cyclic dependencies, and
the lack of implementation inheritance. DYNAMIC DIS-
PATCHER addresses these problems.

Our variant allows to define new functionality over do-
main classes in the same way VISITOR does. In contrast to
VISITOR, it does not require changes to the domain classes.
Thus, it is not intrusive and can be applied to extend ex-
isting frameworks and libraries. As a consequence of the
fact that domain classes do not need an accept method in
our approach, DYNAMIC DISPATCHER does not introduce
cyclic dependencies between domain classes.

Finally, we simulate covariant overriding of visit meth-
ods. Therefore, DYNAMIC DISPATCHER allows to simu-
late implementation inheritance in visitor operations. This
means that developers who add visitor operations to domain
classes can specialize them for individual domain classes
in the same natural way they do when they simply over-
ride methods in the domain class hierarchy. Consequently,
DYNAMIC DISPATCHER based implementations are better
maintainable and more robust against future changes to do-
main classes as well as changes to individual visitors. Also,
it allows developers to express functionality clearer and
more concise than VISITOR, because no dispatching code
clutters the visitor class.

In languages with dynamic linking of types, the dispatch-
ing algorithm cannot be derived at compile time. At least,
we need some kind of runtime type reflection mechanism
to analyze the method signatures of a certain visitor class.
That is, which visit methods are available and which are
more special than others. We also need a way to determine
if an object is an instance of a certain type to find the most
appropriate method.

The actual dispatching of an invocation can be imple-
mented via reflection, if dynamic method invocation is sup-
ported. Alternatively, dispatching code can be generated on
the fly. We present a small framework in Sect. 5, which we
used to evaluate both dispatching variants for Java.

There are two weak points in comparison to VISITOR:
The first is, DYNAMIC DISPATCHER may decrease perfor-
mance due to the additional dispatch code to be performed.
We will discuss some performance measurements we con-
ducted in Sect. 6. The second is, DYNAMIC DISPATCHER

performs type checking at runtime. If no appropriate visit
method is found, some kind of dispatch error must be raised.
Therefore, in DYNAMIC DISPATCHER type errors can occur

at runtime, whereas they are detected by the compiler in the
VISITOR pattern.

5. Implementation
For evaluation purposes, we have developed a small

framework that realizes DYNAMIC DISPATCHER in Java. In
the following, we give a brief overview of the implementa-
tion and discuss some performance results.

We have realized three different dispatcher factories.
One can choose each of these to create an instance of Dis-
patcher for a particular object that contains visit methods.

Our first solution (SCDispFactory) is straightforward:
SCDispFactory::create analyzes the given visitor object for
visit methods. The argument types are extracted, and or-
dered as depicted in Fig. 8. Then, source code for a Java
class that implements dispatch as in Fig. 6 is written to
a temporary text file and compiled at runtime by the Java
Compiler interface. The resulting class is loaded through a
custom class loader and finally an instance of it is and re-
turned.

The second solution (ReflectiveDispFactory) reuses a
generic class that is initialized with the type sequence as
described above. Whenever dispatch is called on this object
it iterates over the sequence until the first assignable type is
found and invokes the corresponding method by reflection.

Both solutions suffer from several problems which we
will discuss later on. Our last dispatcher factory (BCDisp-
Factory) avoids these problems. It works similar to the
source code generator, but instead of compiling the dis-
patcher class from a temporary text file it directly defines
the class in byte code. The byte code is generated using
the free Bytecode Engineering Library (BCEL) [8] which
provides helper classes for writing Java byte code.

6. Performance Analyis
To estimate the impact of our DYNAMIC DISPATCHER

implementation, we have conducted two performance suites
where we compared the three aforementioned dispatcher
factories with the original visitor, and of course with the
initial, object-oriented form. We will discuss the results at
the end of this section. All tests were executed on a single
user, 1.2 GHz Pentium III machine running Windows XP
and J2SDK, Version 1.4.2.

6.1. Test Suites and Results
The first suite (‘raw’) is meant to estimate the cost of a

single method dispatch. Because our three dispatcher im-
plementations all perform a linear search to find the appro-
priate method, we parameterized this suite with the number
of classes n. For a single run we create n subclasses Ci of
a Base class, each overriding the Base methods f and ac-
cept. For VISITOR and DISPATCHER, we measure the time

610
340

1 10 20 50 100

sourcecode+bytecode

initial

visitor

reflective

79000ms
(reflective)

ms

classes

12450

6050

3800

1030

1 000 000500 0001

470

510

reflective

bytecode

visitor
initial

0

runs

ms
sourcecode

1500

Figure 9. Performance comparison

to invoke visit through accept resp. dispatch with randomly
chosen Ci instances as arguments. For the initial form, we
measure the time of a simple call of f. To eliminate the ef-
fects of test setup, we perform a large number of dispatches
(ten millions) and show the total time. In our simplistic lin-
ear search approach it makes no difference whether the class
hierarchy is flat or deep.

The left-hand side in Fig. 9 shows the results of this suite:
the initial form, which is a simple method invocation of f,
takes a constant amount of time. As estimated, the execu-
tion time of source and byte code generated dispatchers is
nearly equal, as they only differ in the way they are gener-
ated. They grow in a linear way with the number of classes
n. For n = 1 they take twice as much time to execute
as the initial form, with n = 100 they take ten times the
amount. The reflective dispatcher is much slower: its ratio
grows from 18 at n = 1 to 230 at n = 100. The visitor
takes always about twice the amount of the initial form, ex-
cept for n = 1, where they are equal. We wondered about
this point and found out, that this break out vanishes, when
Java’s just-in-time compiler is deactivated.

While the first suite measures the raw cost of method
invocations, the second one (‘scale’) measures the overall
effect of using a dispatcher in a complete algorithm. We
have implemented the Scale algorithm in Fig. 1 and 2 in all
forms (initial, visitor, byte code, source code, and reflec-
tive dispatcher). Then we scaled a simple picture, which
consists of arrows and lines multiple times, and measured
the overall execution time. In contrast to the first suite, we
included the time required to construct the dispatcher and
visitor objects.

The result is shown in the right-hand side of Fig. 9. As
expected, all graphs increase in a linear way. The reflec-
tive dispatcher is by far the slowest while the others per-
form nearly equal. After one million runs, the difference
between byte code dispatcher and the initial form is less
than ten percent. The source code generated dispatcher in-
creases by the same degree as the byte code generated dis-
patcher, but takes a quite large amount of time to construct
the dispatcher class.

6.2. Performance Consequences
Our test suites are not exhaustive, but they give some

hints about how expensive our approach is. Method invo-
cation through the byte code generated dispatcher is slower
than normal method invocation and invocation through an
accept method. However, the relative overhead decreases
significantly if some (even little) code is executed within
the invoked method. To provide a number, the overhead in
our graphics example is about ten percent. We expect that
this overhead is negligible in many real world scenarios.

If only few calls are to be performed, the reflective dis-
patcher may also be sufficient. Its advantage is that it can
be implemented as a single generic reusable class.

7. Conclusion and Future Work
We presented a variant of the VISITOR pattern that is

more suitable for framework designs and more natural for
software developers in certain situations. It can be applied
to extend software without affecting existing code. We un-
derstand it as another tool that is especially useful in agile
software development.

We demonstrated how DYNAMIC DISPATCHER can be
implemented as a small framework in Java. We could have
done this in C# and the .NET framework as well, since .NET
also provides the required reflection capabilities. For C++,
at least the sketched generated source code dispatcher can
be implemented. Our evaluation showed that the perfor-
mance tradeoff implied by the implementation should be
acceptable in many real world situations.

One of the drawbacks of DYNAMIC DISPATCHER is that
type errors can occur at runtime. We are currently working
on an extension to achieve more static type checking. Ba-
sically, we are going to allow to specify a user defined base
type for the dispatcher object.

Apart from these technical aspects we are going to fur-
ther evaluate the applicability of DYNAMIC DISPATCHER

for a larger project in which the aforementioned problems
of VISITOR arise. We are going to realize the project with
both variants. We expect that the DYNAMIC DISPATCHER

solution will take less time to be completed and results in a
simpler overall design.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects.
Springer, New York, 1996.

[2] Apple Computer, Eastern Research and Technology.
Dylan: an object-oriented dynamic language, 1992.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] A. Beugnard. OO languages late-binding signa-
ture. Ninth International Workshop on Foundations
of Object-Oriented Languages, 2002.

[5] J. Boyland and G. Castagna. Parasitic methods: Im-
plementation of multi-methods for Java. In Confer-
ence Proceedings of OOPSLA ’97, Atlanta, volume
32(10) of ACM SIGPLAN Notices, pages 66–76, New
York, NY, 1997. ACM.

[6] L. Cardelli and P. Wegner. On understanding types,
data abstraction, and polymorphism. ACM Computing
Surveys, 17(4):471–522, 1985.

[7] G. Castagna. Covariance and contravariance: Conflict
without a cause. ACM Transactions on Programming
Languages and Systems, 17(3):431–447, 1995.

[8] M. Dahm. Byte code engineering with the BCEL API.
In C. H. Cap, editor, Java Informationstage ’99, Infor-
matik aktuell, pages 267–277, 1999.

[9] L. G. DeMichiel and R. P. Gabriel. The Common Lisp
Object System: An overview. In J. Bezivin et al., ed-
itors, ECOOP ’87, European Conference on Object-
Oriented Programming, Paris, France, pages 151–
170. Springer, New York, NY, 1987. LNCS, Volume
276.

[10] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and
W. Holst. Multi-Dispatch in the java virtual machine:
Design and implementation. In Proceedings of the 6th
USENIX Conference on Object-Oriented Technologies
and Systems (COOTS-01), pages 77–92, 2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Elements of Reusable Object- Oriented
Software. Addison-Wesley, 1997.

[12] C. Larman. Applying UML and Patterns: An Intro-
duction to Object-Oriented Analysis and Design and
the Unified Process. Prentice Hall, 2001.

[13] R. C. Martin. Acyclic visitor. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Lan-
guages of Program Design 3, pages 93–104. Addison-
Wesley Publishing Co., Reading, MA, 1998.

[14] R. C. Martin. Agile Software Development. Principles,
Patterns, and Practices. Pearson Education, 2002.

[15] M. E. Nordberg. Default and extrinsic visitor. In R. C.
Martin, D. Riehle, and F. Buschmann, editors, Pat-
tern Languages of Program Design 3, pages 105–123.
Addison-Wesley Publishing Co., Reading, MA, 1998.

[16] J. Palsberg and C. B. Jay. The essence of the visi-
tor pattern. In Proc. 22nd IEEE Int. Computer Soft-
ware and Applications Conf., COMPSAC, pages 9–15,
1998.

[17] C. Pang, W. Holst, Y. Leontiev, and D. Szafron. Multi-
method dispatch using multiple row displacement.
LNCS, 1628:304–329, 1999.

[18] Remi, F. Etienne, and D. Gilles. Java multi-
method framework. International Conference on
Technology of Object-Oriented Languages and Sys-
tems (TOOLS’00), 2000.

[19] J. Vlissides. Visitor in frameworks. C++ Report,
11(10):40–46, 1999.

Document Clustering with Adaptive Term Weighting and Feature Reduction
Capabilities

T.W. Fox and B.J. Fox
Intelligent Engines

tfox@bm.net

Abstract. Document clustering is a powerful data mining
technique for topic discovery that can be used to organize
a document corpus into groups of similar documents.
This paper introduces adaptive term weighting to
simultaneously discover the document clusters and the
discriminatory terms. The use of adaptive term weights
can increase the total F-measure of the final cluster
hierarchy by as much as 32% over previous term
weighting methods. A document feature reduction method
is introduced to remove non-discriminatory terms from
the document feature space without degrading the final
cluster hierarchy. This method can be used to reduce the
storage requirement of the clusters by as much as 79%.

1. Introduction

The World Wide Web (WWW) continues to grow at an
amazing speed. Consequently, hand-built directories that
group similar documents are becoming increasingly
difficult to maintain for the internet and for other large
repositories of documents. A more practical solution is to
discover topic hierarchies using an unsupervised
document clustering method.

Document clustering is a common data mining
technique for topic discovery. A document cluster is a
homogeneous group of documents that are more strongly
associated with each other than documents in different
groups [1]. Document clustering provides convenience
for exploring the content of a document corpus because
document clustering organizes the document corpus into
groups of similar documents. Document clustering can be
used to organize search results into groups based on
document similarity, which helps the user find relevant
documents more quickly [2]. Document clustering is also
useful for Information Retrieval (IR). In Clustered Based
Retrieval (CBR), a query vector is compared to each
cluster centroid [3]. Documents contained in the most
relevant clusters are retrieved [3].

K-means is widely used in large scale document
clustering because of its speed and simplicity [1,2]. K-
means begins by initializing K cluster centroids to random

locations in the document feature space. Each data point
is assigned to the nearest (most similar) cluster centroid.
Each cluster centroid is then re-calculated. The k-th
cluster centroid rk is computed as the vector mean of the
data points that are assigned to the k-th cluster. This
process of assigning data points and re-calculating cluster
centroids is repeated until the cluster centroids converge.

Variants to K-means have been presented in the
literature. For example, Scatter/Gather [4] uses K-means
to refine the results from hierarchical clustering. In this
method, hierarchical clustering [1] is used to determine K.
Unfortunately, the hierarchical clustering portion of
Scatter/Gather can be slow [1]. Consequently,
Scatter/Gather is most suited for smaller data sets.
Bisecting K-means [5] uses K-means to partition the
dataset into two clusters. The largest cluster is partitioned
into two clusters. This process repeats until K clusters
have been discovered. Unfortunately bisecting K-means
can be slow for large data sets because K-means is used in
each iteration to re-partition the data.

Despite its widespread use, K-means has several
limitations when applied to document clustering. K-
means does not reduce the dimensionality of the feature
space. This is of concern mainly for document clustering
because of the large number of features (terms) required
to represent documents [1] (typically above 10,000).
Consequently, storage requirements for the final clusters
can be extremely high. The dimensionality of the
document feature space can be reduced prior to clustering,
as is suggested in [2,6]. Dhillon, Kogan and Nicholas
present a term variance quality measure in [6], which
ranks each unique term in the corpus. They suggest that
terms with low term variance quality values can be
removed from the feature space. Similarly, the method
presented in [2] reduces the document feature space to the
top twenty terms as ranked using Term Frequency-Inverse
Document Frequency (TF-IDF) weighting. Unfortunately
both of these methods may inadvertently remove terms
that are essential to obtain the optimal cluster hierarchy,
as the results presented in [2] suggest. In contrast, this
paper presents a new document clustering method to

preserve terms that are essential to the cluster hierarchy
(discriminatory terms) while removing terms that are not.

Adaptive term weighting is introduced in this paper to
identify discriminatory terms. During each iteration, the
adaptive term weights are chosen to optimize the within
cluster metric. Discriminatory terms are given high
values, and non-discriminatory terms are given low
values. An algorithm is presented to selectively remove
terms with low weights from the document feature space
without affecting the final cluster hierarchy. It is shown
that it is possible to reduce the storage requirement by as
much as 79% without degrading the final cluster
hierarchy. The use of adaptive term weights also
increases the total F-measure of the final cluster hierarchy
by as much as 32% over previous weighting methods.

2. Description of the Proposed Document
Clustering Method

The proposed document clustering algorithm is based
on K-means. However, new term weighting and feature
reduction methods have been incorporated. Each unique
term in the document corpus is given a weight, called an
adaptive term weight, whose value changes with each
iteration. The adaptive term weights can take on values
between zero and one. A value close to one signifies that
the term is discriminatory, and a value close to zero
signifies that the term is non-discriminatory.

The proposed document clustering algorithm begins
by extracting features from the document corpus to form
vectors. A vector is created for each document. Section
2.1 describes the application of the vector space model to
represent documents as vectors. The algorithm then
initializes K cluster centroids to random locations in the
feature space. The adaptive term weights are determined,
as described in Section 2.3. Each document is assigned to
the most similar cluster centroid. Section 2.2 presents the
weighted cosine similarity measure, which is used to
quantify the similarity between documents. The cluster
centroids are re-calculated. The k-th cluster centroid rk is
computed as the vector mean of the data points that are
assigned to k-th cluster. This process of updating the
adaptive term weights, assigning data points and re-
calculating cluster centroids is repeated until the cluster
centroids converge. The last step is feature reduction.
The final values of the adaptive term weights are used to
selectively remove features without degrading the
document clusters. Section 2.4 presents the feature
reduction method.

2.1. Document Representation

The document clustering method proposed in this paper
uses the vector space model, which was introduced in
[7,8]. In the vector space model, each document is

represented as a vector, and each document vector has p
elements, where p is the total number of unique terms in
the corpus. A document vector is as follows:

T
pjjjj tttv],,,[21 (1)

where vj is the j-th document vector. The value tij

quantifies the occurrence of i-th term in the j-th
document. The principle advantage of using the vector
space model is that vector arithmetic operations can be
used to quantify similarity between documents.

Term Frequency (TF) and Term Frequency-Inverse
Document Frequency (TF-IDF) weighting are commonly
used in the vector space model [1]. In TF weighting, tij

TF

represents the number of times the i-th term occurs in the
j-th document [1]. TF-IDF weighting is defined as [1]:

)/log(ijij
IDFTF

ij TFNTFt (2)

where N is the total number of documents in the corpus
and TFij is the term frequency of the i-th term in the j-th
document [1].

TF and TF-IDF weighting do not consistently produce
high values for discriminatory terms and low values for
non-discriminatory terms [6]. Instead, this paper
introduces adaptive term weighting to consistently assign
high values for discriminatory terms and low values for
non-discriminatory terms.

The adaptive term weight for the i-th term in the j-th
document is expressed as

ijki
adaptive
ij TFwt (3)

where wki is the adaptive term weight of the i-th term for
documents that belong to the k-th cluster (Kk ,,2,1).

Each document cluster is given its own set of adaptive
term weights because the distribution of words can vary
drastically from one cluster to another. Documents that
belong to the k-th cluster use the k-th set of adaptive term
weights to calculate tij.

The value of wki is resolved during clustering. As the
clusters form, the adaptive term weights increase in value
for discriminatory terms and decrease in value for non-
discriminatory terms. In contrast, TF-IDF weighting is
constant throughout clustering. TF-IDF weighting cannot
be used to consistently detect discriminatory terms
because TF-IDF weighting is computed with no regard to
the cluster structure. Section 2.3 presents a method to
update wki at each iteration of the clustering process.

The chief disadvantage of the vector space model is its
high dimensionality. It is not uncommon for the vectors
to have more than 10,000 elements. To reduce
dimensionality and to improve cluster quality, word

stemming and stop words are used. Stop words are non-
content bearing words, such as “and” and “or”, that can
be removed without affecting clustering results. Word
stemming involves the removal of any attached suffixes
and prefixes from the word to yield the word stem. Word
stemming therefore reduces the number of distinct terms,
which reduces storage and processing time. The method
proposed in this paper uses Porter’s algorithm [9] to stem
all of the words in the corpus.

2.2. Quantifying Similarity Between Documents

Various vector arithmetic operations can be used to
calculate the similarity between documents, such as
Euclidean distance or cosine similarity [1,6]. Cosine
similarity between two vectors, v1 and v2, with p elements
is defined as [1]

p

i
i

p

i
i

p

i

vv

vv
vvS

ii

1

2
2

1

2
1

1
21

21),((4)

The cosine similarity measure is the cosine of the angle
between the two vectors [1]. The values of this similarity
measure are constrained between zero and one because
each vector element must be greater or equal to zero for
the document clustering problem [1]. Very similar
documents have cosine values close to one, and very
dissimilar documents have cosine values close to zero [1].
The cosine similarity measure is better suited for
document clustering than Euclidean distance because the
cosine similarity measure offers greater numerical
separation between dissimilar documents [1].

We now modify the cosine similarity measure to
accommodate adaptive term weights. The proposed K-
means algorithm compares a document vector to a cluster
centroid. Each cluster is associated with an adaptive term
weight vector. Documents that are similar to the cluster
centroid must contain cluster discriminatory terms, which
have high adaptive term weights. The other non-
discriminatory terms should have reduced effect on the
similarity measure. To this end, we define the weighted
cosine similarity measure as:

p

i
ki

p

i
ij

p

i
kiijki

kjw

rTF

rTFw
rvS

1

2

1

2

1),((5)

where wki is the i-th term weight of the k-th cluster, TFij is
the frequency of the i-th term in the j-th document, rk is
the k-th cluster centroid vector and vj is the j-th document

vector. Each term weight is permitted values between
10 kiw . During clustering, discriminatory terms are

given weights approaching one and non-discriminatory
terms are given weights approaching zero. In this way,
discriminatory terms numerically dominate the weighted
cosine similarity measure. As with the cosine similarity
measure, very similar documents have weighted cosine
values approaching one, and very dissimilar documents
have cosine values close to zero.

The within clustering (distortion) metric for the
document clustering problem is defined as [1]

K

k Cv
k

k

rvSCwc
1

),()((6)

where C represents the set of K clusters, v corresponds to
a document vector and rk is the k-th cluster centroid.
Higher values for wc(C) are desirable because they
indicate that data points within the clusters are very
similar to their assigned cluster centroids. The weighted
with-in clustering metric is defined as:

K

k Cv
kww

k

rvSwCwc
1

),(),((7)

2.3. Updating the Adaptive Term Weights

The adaptive terms weights are chosen to reflect the
relevance of each term to a given cluster and to increase
wc(C). The term weights can be chosen by solving the
following constrained optimization problem:

Maximize)(w (8)

Subject to 10 kiw

for pi ,,2,1 and (9)Kk ,,2,1

where w is a matrix composed of the individual adaptive
term weight vectors

],,,,[321 Kwwwww (10)

and)(w is calculated using the Algorithm (1).

Calculating)(w does not alter the document

assignments or cluster centroids. This constrained
optimization problem is very difficult to solve. It is not
uncommon for wk to contain over 10,000 parameters.
Also the objective function is discontinuous, which
precludes the use of derivative based optimization
methods. Derivative-free optimization methods, such as
Simulated Annealing [10] and the downhill simplex
method [11] can be modified to solve this optimization

problem. However, the computational time required to
solve this optimization problem (with over 10,000
variables) is extremely high. Instead this section
introduces a faster optimization algorithm that can be
used to provide approximate solutions to this constrained
optimization problem.

Algorithm 1. Calculating the value of)(w .

The proposed optimization method first uses a
heuristic to generate an initial trial solution and then uses
a random local search to improve upon this initial trial
solution. The heuristic is as follows:

Algorithm 2. Generation of an initial trial solution.

The above heuristic yields an initial trial solution to
the optimization problem defined by equations (8) and
(9). Each term weight equals the normalized contribution
of each term to wc(C) raised to a power e. Power e is
chosen to maximize such that .)(e 10 e

The normalized contribution of the i-th term in the k-
th cluster to wc(C) provides a guess of the solution to the

problem defined by equations (8) and (9). The one-
dimensional optimization problem defined by equations
(12) and (13) refines this guess.

This initial trial solution is feasible but it may not
correspond to a constrained local maximum. A random
local search is used to improve upon this initial trial
solution. In this random local search, xc is the current
position vector in the parameter space and xt is a trial
solution vector. The algorithm is as follows:1. Save the current document cluster assignments

and cluster centroids.
2. Assign documents to the most similar cluster

centroid using Sw.
3. Recalculate the cluster centroids.
4. Set)()(Cwcw .

5. Restore the original document cluster
assignments and cluster centroids.

Algorithm 3. A random local search used to
calculate the adaptive term weights.

1. Obtain an initial trial solution using Algorithm 2.
2. Repeat the following Ntot times:

a. Set ct xx , where is a random

vector with each element drawn from
interval [], such that 10 tix
for pi ,,2,1 . The constant is a

small number.

b. If)()(ct xx then set tc xx .

c. Terminate if xc has converged.

1. Calculate the normalized contribution of the i-th
term in the k-th cluster to wc(C) using the
following relation:

kj

kj

Cv jk

ijkiki

Cv
k

ki
TFr

TFwr

rvS),(
1 (11)

where rki is the i-th element in the k-th
centroid, vji is the i-th element in the j-th
document vector, and TFj is the term
frequency vector used in vj.

2. Set the i-th element of the k-th term weight as

follows: e
kikiw

3. The exponent e is chosen to solve the following
one-dimensional optimization problem:

Maximize (12))(e

Subject to 0 (13)1

Because of the high dimensionality of this
optimization problem, significant computational time
must be expended to converge on a constrained local
minimum. Setting Ntot to a finite value limits the
computational time. The resulting solution will be
feasible but it may not correspond to a constrained local
minimum.

Algorithm 4. Document feature reduction.

e

1. Set w0=w, =small number, , =0.01%.
2. Repeat the following until all changes in w are

rejected:
a. Set all elements of w to zero that are less

than or equal to .

b. If
100),(

),(),(

0

0

wCwc

wCwcwCwc

w

ww then

accept the change in w and increase .
Otherwise reject the change.

2.4. Feature Reduction

The final cluster hierarchy must be stored for future use.
Because of the high dimensionality of the vector space
model, the storage requirement for the final cluster

hierarchy is very high. This section proposes a method to
reduce the storage requirement by as much as 79%.

The adaptive term weights are fixed after the
clustering process has completed. Each term has a weight
value between zero and one. Terms that have weights
close to one are considered discriminatory and contribute
significantly to wcw(C). Terms that have zero weight do
not require storage in the database because those terms do
not contribute at all to wcw(C). Terms that have near zero
weight contribute very little to wcw(C). Many of these
terms can be removed from the feature space without
affecting the cluster hierarchy.

Algorithm 4 can be used to select which terms to
remove from the feature space at the expense of a slight
change to wcw(C), which is controlled by . Increasing
the value of reduces the feature space, but at the
expense of altering the cluster configuration (if K-means
is re-started). A small value of should be used to ensure
that the cluster configuration does not change if K-means
is restarted. Experimentation revealed that setting
=0.01% is sufficiently low to preserve the cluster
configurations for the test documents used in this paper.

The example presented in the next section
demonstrates that it is possible to reduce the feature space
by one-fifth. This reduction in feature space does not
affect the final cluster hierarchy because restarting the
clustering algorithm after feature reduction does not alter
any document assignments.

The feature reduction method proposed in this section
differs significantly from previous feature reduction
methods. The feature reduction methods presented in
[2,6] ranks each term in the feature space prior to
clustering. The top ranked terms are retained while the
bottom ranked terms are removed. Clustering occurs after
the feature space has been reduced. Unfortunately this
approach may inadvertently remove terms that are
essential to obtain the optimal cluster hierarchy, as the
results presented in [2] suggest. In contrast, the method
proposed in this paper discovers the cluster hierarchy and
discriminatory terms simultaneously. This information is
used to reduce the feature space without affecting the
cluster hierarchy.

3. Experimental Verification

This section demonstrates that the proposed method
can be used to significantly reduce the dimensionality of
the feature space without degrading any of the clusters.
This section also demonstrates that the quality of the
clusters obtained using adaptive terms weights is
significantly higher than using either term frequency or
TF-IDF weighting.

A pool of multi-page documents has been collected
and categorized by human judges. Our cluster evaluation
method compares how closely each cluster generated by

the clustering system matches the set of categories
previously assigned to the documents by human judges.

The “total F-measure” discussed in [2] is used to score
cluster quality. To calculate the total F-measure, the
following data must be available:

N1 = number of documents judged to be of
topic T in cluster X [2].
N2 = number of documents in cluster X [2].
N3 = number of documents judged to be of
topic T in the corpus [2].

With this data, the precision and recall for cluster X
can be calculated using the following relations:

2

1),(
N
N

TXP (14)

and

3

1),(
N
N

TXR (15)

where R measures recall and P measures precision. The F-
measure for cluster X is [2]

RP
PR

TF
2

)((16)

The total F-measure is defined as [2]

MT
tot

MT
tot

tot T

TFT
TF

)(
)((17)

where M is the set of topics, Ttot is the total number
documents of topic T.

Three test document data sets have been used to
evaluate performance. The first data set, Corpus 1, is
composed of 255 documents from the proceedings of the
1983 to 1985 Principles of Database Systems (PODS), the
proceedings of 1997 ACM Special Interest Group on
Management of Data (SIGMOD), and the proceedings of
the 1975, 1980 and 1981 International Conference on
Very Large Databases (VLDB). The second dataset,
Corpus 2, is composed of 61 documents drawn from
VLDB 1975, SIGMOD 1997, and from the proceedings
of the 2000, 2001, 2002 IEEE International Symposium
on Circuits and Systems (ISCAS). Documents from this
data set can be divided into four categories: digital filters,
power electronics, database performance and relational
theory. The last data set, Corpus 3, is the same as Corpus

2 except additional papers dealing with Orthogonal
Frequency Division Multiplexing (OFDM) have been
added to the aforementioned documents. Corpus 3
contains 76 documents.

Table 1 shows the feature reduction results and Table
2 shows total F-measure results for the proposed method.
Feature space storage is calculated as the total number of
bytes required to store the final cluster hierarchy. Tables
1 and 2 also show results for K-means with term
frequency and TF-IDF weighting.

Table 1. Feature Reduction Results

Term
Weighting

Cluster
Storage for
Corpus 1,
K=2 (bytes)

Cluster
Storage for
Corpus 2,
K=4 (bytes)

Cluster
Storage for
Corpus 3,
K=5 (bytes)

Adaptive 3151576 844016 962828
TF-IDF 14725208 3147800 3783212
TF 14725208 3147800 3783212

Table 2. Ftot Results

Term
Weighting

Ftot for
Corpus 1,
K=2

Ftot for
Corpus 2,
K=4

Ftot for
Corpus 3,
K=5

Adaptive 0.86 0.89 0.90
TF-IDF 0.76 0.72 0.74
TF 0.7 0.66 0.68

The storage requirement for clusters generated by the
proposed method is significantly lower than the storage
requirement for clusters generated by K-means using
either term frequency or TF-IDF weighting. For Corpus
1, the storage requirement for clusters generated by the
proposed method is one-fifth that of clusters generated by
TF and TF-IDF term weighting.

The feature reduction method proposed in this paper
discovers the cluster hierarchy and discriminatory terms
simultaneously. This information is used to remove non-
discriminatory terms that do not affect the final clusters.
Reducing the feature space in this way does not affect the
final clusters because restarting the algorithm after feature
reduction does not alter any document assignments.

Table 2 demonstrates that adaptive term weighting
significantly increases the total F-measure. For Corpus 3,
the total F-measure for adaptive term weighting is 0.22
and 0.16 higher than for TF and TF-IDF weighting
respectively, which corresponds to a 32% and 21%

increase respectively. For each iteration, the adaptive
term weights are chosen to optimize wc(C).
Consequently, adaptive term weighting biases the search
to favour cluster configurations that have high wc(C)
values. In contrast, TF and TF-IDF weighting is static
throughout clustering. Static weighting does not
consistently force the search into high wc(C)
configurations.

4. Conclusion

Adaptive term weighting has been introduced to discover
discriminatory terms during clustering. Adaptive term
weighting biases K-means to favour cluster configurations
with high wc(C) values. This paper has also presented a
feature reduction method to selectively remove non-
discriminatory from the feature space without degrading
the clusters. It is possible to reduce the storage
requirement by as much as 79%.

References

[1] D. Hand, H. Mannila, and P. Smyth, Principles of data
mining, MIT Press, 2001.

[2] B. Larsen and C. Aone, “Fast and effective text mining
using linear-time document clustering”, Proc. KDD, San
Diego, 1999, pp. 16-22.

[3] F. Can and E.A. Ozkarahan, “Concepts and effectiveness of
the cover-coefficient-based clustering methodology for text
databases”, ACM Trans. Database Systems, Vol. 15, No. 4,
Dec. 1990, pp. 483-517.

[4] D.R. Cutting, D.R. Karger, J.O. Pedersen, and L.W. Tukey,
“Scatter / Gather: A Cluster-based Approach to Browsing
Large Document Collection”, Proc. ACM SIGIR, 1992, pp.
318-329.

[5] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison
of Document Clustering Techniques”, Proc. TextMining
Workshop, KDD, 2000.

[6] M.W. Berry. Survey of text mining: clustering,
classification and retrieval, Springer, New York, 2004.

[7] G. Salton, The SMART Retrieval System. Prentice-Hall,
Englewood Cliffs, NJ, 1971.

[8] G. Salton and M.J. McGill, Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[9] M.F. Porter, “An algorithm for suffix stripping”, Program,
Vol. 14, No. 3, 1980, pp. 130-137.

[10] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi,
"Optimization by Simulated Annealing", Science, Vol. 220,
No. 4598, 1983, pp. 671-680.

[11] J.A. Nelder and R. Mead, A simplex method for function
minimization”, Computer Journal, Vol. 7, 1965, pp. 308-
313.

Effort Estimation for Knowledge-based Configuration Systems

A. Felfernig
Business Informatics and Application Systems, University Klagenfurt

email: felfernig@ifit.uni-klu.ac.at

Abstract

Knowledge-based configuration is a successful applica-
tion of Artificial Intelligence techniques in industrial envi-
ronments. The increasing size and complexity of configu-
ration problems, more expressive and model-based knowl-
edge representation formalisms led to the implementation of
large configuration applications. In this context an effective
support of cost estimation for configuration software devel-
opment is a crucial factor for project management. Based
on our experiences in implementing configurators in vari-
ous industrial environments we discuss aspects of the ap-
plication of Function Point Analysis (a widely applied cost
estimation approach in Software Engineering) in the con-
text of knowledge-based configuration projects.

1. Introduction

Knowledge-based configuration is an Artificial Intelli-
gence technique successfully and frequently applied in dif-
ferent industrial environments (e.g. in the telecommunica-
tion industry or in financial services). Informally, configu-
ration can be seen as a special kind of design activity [13],
where the final product is built of a predefined set of compo-
nent types and attributes, which can be composed conform-
ing to a set of corresponding constraints. Configuration sys-
tems are of strategic importance for enterprises dealing with
highly variant products and services, e.g. response and de-
livery times to the customer are reduced and invalid orders
can be prevented by automatically checking the customer
requirements w.r.t. given marketing constraints, technical
constraints and constraints related to production processes.

Since the development of the product and the product
configurator has to be done concurrently, configurator de-
velopment time and maintenance time are strictly limited,
i.e. the implementation of configuration systems is a critical
task and organizations dealing with the provision of highly
variant products and services recognize the importance of
available measures for analyzing the efforts associated with
the development and maintenance of configuration systems.

Effort estimation is a crucial factor when determining the
feasibility of a project, creating an offer, or managing re-
sources. As a rule, configuration systems are not standalone
systems but have to be integrated into already existing soft-
ware environments. In this context project managers im-
plementing configuration applications should not be forced
to apply additional effort estimation methods but rather be
instructed how to effectively apply Software Engineering
approaches to knowledge-based systems development. In
this paper we show how Function Point Analysis (FPA) can
be applied to effort estimation in knowledge-based config-
uration systems development. FPA is based on a user (re-
quirements) centered view on the software and is platform-
independent. The method has first been proposed by [2]
with the goal to provide an effort measure for the functional
size of software - together with the counting rules it has
been adapted several times. Currently it is maintained by
the International Function Point Users Group (IFPUG).

In the following we discuss the issue of effort estima-
tion for developing, maintaining and extending knowledge-
based configuration systems. Applying and adapting FPA
to configuration software development extends the scope of
Software Engineering estimation approaches to knowledge-
based systems development. Thus knowledge-based sys-
tems development is made transparent within industrial
software development processes and effort estimation for
traditional software development projects is integrated with
effort estimation for knowledge-based software develop-
ment projects. The remainder of the paper is organized as
follows. In Section 2 we discuss and exemplify basic prin-
ciples of knowledge-based configuration. In Section 3 we
show how and under which conditions FPA can be applied
to effort estimation in configurator development. In Sec-
tion 4 we discuss experiences from applying the presented
concepts. Section 5 contains related work.

2. Configuration knowledge representation

As pointed out in [16] the modeling of configuration
knowledge is a critical task - any framework must address
the issues of expressiveness and representational power and

Textedit

hasspellcecker : Boolean

<<Component>>

Texteditors
<<ComponentInterface>>

1..n1..n

DataMining

supportedFormats : enum{’XML’,’ARFF’,’CSV’}

<<Component>>

DataMiningTools
<<ComponentInterface>>

1..n1..n

HDUnits
<<ComponentInterface>>

CPUs
<<ComponentInterface>>

Videocards
<<ComponentInterface>>

Software

neededcapacity : Integer
price : Integer
version : String
name : String

<<Component>>

HDUnit

capacity : Integer
price : Integer

<<Componen...

1..n1..n

CPU

clockrate : 100..5000
price : Integer
name : String

<<Component>>

1..n1..n

Videocard

price : Integer

<<Component>>

1..n1..n

Computer

price : Integer

getPrice()
addTextedit()
deleteTextedit()
...()
getMBPrice()
getHDUnitCapacity()

<<Component>>

0..1000..100

1..61..6

MB

price : Integer
busrate : Integer
name : String

insertVideoCard()
deleteVideoCard()

<<Componen...

1..21..2

11

1..21..2

MBs
<<ComponentInterface>>

1..n1..n

// BR 1: Pentium CPU requires Intel-Xeon motherboard
context MB inv: self.CPU->select(oclIsTypeOf(Pentium))->count>0
 implies self.oclIsTypeOf(Intel-Xeon)

// BR 2: The needed software installation capacity must
 not exceed provided HD capacity
context Computer inv: self.Software.neededcapacity->sum <=
 self.HDUnit.capacity->sum

name: MWord, price: 200, ..., hasspellchecker: true
name: UltraEdit, price: 40, ..., hasspellchecker: false ...

name: Pentium, price: 250, ..., clockrate: 2048
name: 486, price: 40, ..., clockrate: 120 ...

name: Socket-A, ...
name: Intel-Xeon, ...

Figure 1. Example configuration model.

provide mechanisms for coping with the high rate at which
knowledge changes. In many cases the used description lan-
guages for building configuration knowledge bases are not
integrated into industrial software development processes.
These description languages are difficult to communicate
to domain experts which makes it demanding for software
development departments to incorporate such technologies
into their standard development process. For the realization
of configuration systems the Unified Modeling Language
(UML, [12]) can be used as notation in order to simplify
the construction of a configuration knowledge base [7]. The
usage of UML for configuration knowledge representation
makes sense for the following reasons:

� UML is widely applied as standard design language in
industrial software development.

� UML is extensible for domain-specific purposes, i.e.
(using profiles) the semantics of the basic modeling
concepts can be further refined in order to be able to
provide domain-specific modeling concepts (e.g. mod-
eling concepts for the configuration domain).

� UML has a built-in constraint language (the Object
Constraint Language (OCL) [15]). UML and OCL are
the perfect combination of representation concepts for
designing configuration applications.

In the following the simple UML configuration model of
Figure 1 will serve as working example. This model rep-
resents the generic product structure, i.e. all possible vari-
ants of a configurable computer. The basic structure of the
product is modeled using component types (basic building

blocks the final product can be built of), generalization hi-
erarchies, aggregations and interfaces to different product
catalogs1. The set of possible products is restricted through
a set of business rules (BR1, BR2 in Figure 1) related to
technical restrictions, economic factors and restrictions ac-
cording to the production process. In the literature such a
generic description of a product structure is also denoted as
domain description (DD) [8]. The used modeling concepts
are defined in an UML configuration profile [7] and can be
interpreted as an ontology in the sense of [5], i.e. ontologies
are theories about the sorts of objects, properties of objects,
and relations between objects that are possible in a specified
domain of knowledge2.

Most configuration tasks incorporate additional restric-
tions (e.g. customer requirements) defining components or
attribute settings which must be part of the final configura-
tion. These requirements are called systems requirements
specification (SRS) [8]. Examples for customer require-
ments are the following: set the maximum overall price of
the configuration to ���� or tell me the price of the actual
configuration. A configuration result calculated by a con-
figuration system (configurator) can be interpreted as an in-
stantiation of the configuration model, where all business
rules and customer requirements are satisfied. A configu-
ration result can be represented as UML instance diagram
[7].

1Note that not all product catalog instances (related to component in-
terfaces) are shown here completely.

2For a detailed discussion on the modeling elements of a configuration
ontology and their translation into an executable representation see [7].

3. Effort Estimation for Implementing
Knowledge-based Configurators

There exists a number of approaches investigating the
application of Function Point Analysis (FPA) for object-
oriented software development (e.g. [9, 14]). However, a
direct application to effort estimation in configuration soft-
ware development results in significant deviations. The
main reasons for these deviations are the following:

� Knowledge-based systems development: existing
approaches to FPA (see [1]) do not provide a standard
way of accounting for the size of certain types of func-
tional user requirements, notably complex sequences
of rules as found in knowledge-based systems.

� Adjustment factors: important adjustment factors
currently not included in the FPA have to be introduced
within the context of knowledge-based configuration.
Furthermore, statistical spread resulting from the anal-
ysis of empirical data exceeds the standard deviation of
FPA adjustment factors, i.e. the calculation of adjusted
function points has to be adapted.

� Counting function points: based on our experiences
in implementing configuration applications in indus-
trial environments, function point values for different
complexity classes in configurator projects differ from
those in conventional software development. In order
to assure appropriate prognoses, function points have
to be determined depending on the applied configura-
tor development environment.

Our approach to FPA in knowledge-based configurator de-
velopment as well assumes a user-centered view on a sys-
tem. The functionality of the configurator application is de-
fined by the following factors (see Figure 2).

Business
Rules (BR)

Configuration
Process

Configuration
Knowledge

Base

Product
Catalog

External Inputs [EI]

External Inquiries
[EQ]

External Interface Files (EIF)

Internal Logical Files (ILF)

External Output
[EO]

SRS DD
Customer

Figure 2. FPA areas

1. EI - External Input, i.e. those SRS related to func-
tions which change the actual configuration setting,
e.g. inserting a new software component or limiting
the maximum price of the overall configuration. Using
EI functions a user can add, change and delete basic
settings of a configuration.

2. EQ - External Query, i.e. those SRS related to func-
tions displaying specific data from the current config-
uration setting, e.g. the price of a certain CPU part of
the actual configuration. External Query (EQ) func-
tions allow users to select and display specific data
from configuration settings. For this purpose the user
enters selection criteria which are used to match with
configuration data, i.e. no data manipulation but a di-
rect retrieval is performed by External Queries.

3. EO - External Output, i.e. those SRS related to
functions generating output for the user (generation is
based on calculations), e.g. the determination of the
minimum hard-disk capacity needed for the installa-
tion of a certain text editing environment.

4. ILF - Internal Logical File. EIs, EQs, and EOs op-
erate on an instance of the domain description (DD).
In terms of FPA, the configuration knowledge base is
denoted as a set of Internal Logical Files (ILFs), i.e.
knowledge elements which are maintained within a
configuration application. ILFs allow users to utilize
data they are responsible for maintaining.

5. EIF - External Interface File. Product catalogs can
be seen as an example for External Interface Files
(EIF), i.e. knowledge elements which are maintained
outside the configuration application. EIFs allow users
to utilize data they are not responsible for maintain-
ing (e.g. product data from an external Enterprise Re-
source Planning system).

6. BR - Business Rule. Conventional FPA approaches
[1] do not explicitly consider the complexity of busi-
ness logic - configurators are knowledge-based appli-
cations where knowledge complexity has a great influ-
ence on development time and costs. In order to con-
sider this important aspect in our estimation approach,
we introduce Business Rules as an additional complex-
ity dimension.

In the following EI, EQ, and EO are denoted as transac-
tional function types, ILF, EIF and BR are denoted as data
function types. Figure 3 shows the four steps necessary to
determine function points for a configuration application.

1. Data Functions and Transactional Functions: ILFs,
EIFs, BRs, EIs, EOs and EQs can be directly identi-
fied from a given UML configuration model - rules for
identifying those units are discussed in Section 3.1.

2. Complexity of Data Functions: for each data func-
tion, Record Element Types (RETs) and Data Ele-
ment Types (DETs) are counted as basic parameters.
Based on those parameters the complexity (low, aver-
age, high) of each data function can be determined.

Step 1: Data
Functions and
Transactional
Functions

Step 2:
Complexity of
Data Functions
(using Tables

1,2)

Configuration
Model

ILF1..n
(RETs/DETs per ILF)

EIF1..m
(RETs/DETs per EIF)

Step 3:
Complexity of
Transactional

Functions (using
Tables 3,4)

BR 1..l

(RETs+DETs per LF,
BRLF per LF)

EI1..k
(FTRs+DETs per EI)

EO 1..s

(FTRs+DETs per EO)

EQ 1..t
(FTRs+DETs per EQ)

Step 4:
Unadjusted

Function Points
(using Table 5)

EIF1..m
(complexity class per EIF)

ILF1..n
(complexity class per ILF)

BR 1..l

(complexity class per LF)

EI1..k
(complexity class per EI)

EO 1..s

(complexity class per EO)

EQ 1..t
(complexity class per EQ)

Unadjusted
Function Points

(UFPs)

Figure 3. FPA process

3. Complexity of Transactional Functions: for each
transactional function, File Types Referenced (FTRs3)
and Data Element Types (DETs) are counted as basic
parameters for determining the complexity (low, aver-
age, high) of the transactional function.

4. Unadjusted Function Points: by applying Tables 1-4
the complexity of each data function and each transac-
tional function can be determined. The application of
Table 5 results in a value for unadjusted function points
(UFPs) for the configuration application, i.e. ���

= ������ + ������ + ������ + ������ +
��	���� + �������.

3.1. Data Functions

Definition 1: Identification of Logical Files Logical
Files (�
) can be identified using the following criteria
which are based on a variant of the approach presented in
[4]. A logical file (i.e. either an ILF or an EIF) is identified
by combining the following two basic rules.

1. Count an entire aggregation structure as a single logi-
cal file, recursively joining lower level aggregations.

2. Given an inheritance hierarchy, consider as a different
logical file the collection of classes comprised in the
entire path from the root superclass to each leaf sub-
class, i.e. inheritance hierarchies are merged down the
leaves of the hierarchy. �

Merging superclasses makes sense since leaf classes with
all inherited structures are instantiated during a configura-
tion process. Figure 4 contains an abstract example for the
application for the above mentioned rules, i.e. 	�� repre-
sents those classes forming a partof hierarchy,	�� and	��

3Referenced Logical Files - see Section 3.3.

B
<<Component>>

C
<<Component>>

D
<<Component>>

A
<<Component>>

B1
<<Component>>

F
<<Component>>

B2
<<Component>>

LF1

LF2

LF3

Figure 4. Identification of Logical Files

represent logical files derived from the different paths to leaf
subclasses in the generalization hierarchy, where 	�� also
includes the partof relationship between classes �� and �
(combination of rule 1 and rule 2)4.

Example 1: Identification of LFs In the configuration
model of Figure 1 the following LFs can be determined:

� ILFs: {Computer, Software, HDUnit, MB, CPU,
Videocard}, {Software, Textedit}, {Software,
DataMining}.

� EIFs: {Texteditors}, {DataMiningTools}, {HDUnits},
{CPUs}, {Videocards}, {MBs}. �

The Logical Files identified for the example configuration
application are shown in Figure 5.

3.2. Complexity of Data Functions

Definition 2: Complexity of LFs For each LF (ILF and
EIF) the number of Data Element Types (DETs - unique
user-recognizable fields of LFs) and the number of Record
Element Types (RETs - user-recognizable and logically re-
lated data as subgroups of LFs) is computed.

1. Each class within a LF is interpreted as 1 RET.

2. Each attribute within a LF is interpreted as 1 DET.

3. Each involvement of a class in an association with mul-
tiplicity>1 is interpreted as 1 DET within a LF.

4. Each discriminator to a subclass in a generalization hi-
erarchy within a LF is interpreted as 1 DET. �

Depending on the number of RETs and DETs the complex-
ity of ILFs and EIFs can be determined (see Table 1).

4Note that this is one of several alternatives for the identification of
Logical Files (see [4]).

LF3

Textedit
<<Component>>

Texteditors
<<ComponentInterface>>

1..n1..n

DataMining
<<Component>>

DataMiningTools
<<ComponentInterface>>

1..n1..n

HDUnits
<<ComponentInterface>>

CPUs
<<ComponentInterface>>

Videocards
<<ComponentInterface>>

Software
<<Component>>

HDUnit
<<Component>>

1..n1..n

CPU
<<Component>>

1..n1..n

Videocard
<<Component>>

1..n1..n

Computer
<<Component>>

0..1000..100 1..61..6

MB
<<Component>>

1..21..2 11

1..21..2

MBs
<<ComponentInterface>>1..n1..n

LF2

LF1

EIF2EIF1 EIF3 EIF4

EIF5

EIF6

Figure 5. Logical Files of example application

Example 2: Complexity of ILFs and EIFs Based on the
entries of Table 1 the data complexity of the computer con-
figuration example can be determined as follows5:

� ILFs: {{Computer, Software, HDUnit, MB, CPU,
Videocard}/[6, 18, average], {Software, Textedit}/[2,
6, low], {Software, DataMining}/[2, 6, low]}.

� EIFs: {{Texteditors}/ [1,6,low], {DataMiningTools}/
[1,6,low], {HDUnits}/ [1,3,low], {CPUs}/ [1,4,low],
{Videocards}/ [1,2,low], {MBs}/ [1,4,low]}6. �

1-19 DET 20-50DET >50DET

1 RET low low average
2-5RET low average high
>5RET average high high

Table 1. Complexity of Data Functions (DF)

Definition 3: Complexity of BRs Depending on the
number of RETs and DETs referenced by BRs within a LF
and the number of BRs related to a LF (BRLF - BRs per
LF), the complexity of BRs is determined (see Table 2). �

RET+DET 1-4BRLF 5-9BRLF 10-18BRLF

1-16 low low average
17-40 low average high
> 40 average high high

Table 2. Complexity of Business Rules (BR)

This approach provides a measure for the complexity of
business rules defined within a LF. In cases, where the limit
of 18 BRLF is exceeded, an additional multiplicative factor
is added to the determined complexity [6].

5We use the notation [#RETs,#DETs,complexity].
6We assume that the number of component interface attributes is equal

to the number of corresponding component attributes.

1-4DET 5-15DET >16DET

0-1FTR low low average
2FTR low average high

>2FTR average high high

Table 3. Complexity of EIs

1-5DET 6-19DET >19DET

0-1FTR low low average
2-3FTR low average high
>3FTR average high high

Table 4. Complexity of EOs and EQs

Example 3: Complexity of BRs Based on the entries of
Table 2 the BR complexity of the computer configuration
example can be determined as follows7:

{{Computer, Software, HDUnit, MB, CPU,
Videocard}�����

/[10, 2, low], {Software, Textedit}���
/[2,

1, low], {Software, DataMining}���
/[2, 1, low]}. �

Note that �����
/[10, 2, low] in Example 3 is derived by

counting RETs+DETs referenced by ��� and ��� in the
corresponding Logical File (���: {Computer, Software,
HDUnit, MB, CPU, Videocard}).

3.3. Complexity of Transactional Functions

The following transactional functions address the user’s
capability to access configuration knowledge in ILFs and
EIFs, i.e. maintaining, putting out and inquiring of con-
figuration process-specific knowledge. In this context LFs
are called FTRs (File Types Referenced - see Tables 3 and
4), i.e. a FTR denotes an ILF which is maintained or refer-
enced by a transactional function or it denotes an EIF which
which is referenced by a transactional function.

Example 4: Complexity of EI EIs are represented by
������	��
	��, ����	����	��
	��,
���	�
���������,
����	��
���������. By each of these operations only one
FTR exists. For the purposes of our example we assume
low complexity for each of these operations. �

Example 5: Complexity of EO EOs are represented by
��	��
����, ��	����
����. One FTR and one DET is
referenced by the method ��	��
����, i.e. the method has
low complexity - the same holds for ��	����
����. �

Example 6: Complexity of EQ EQs are exemplified
by ��	����
	�����
	������
	�. Two FTRs and one
DET are referenced, i.e. the method has low complexity. �

7We use the notation [#RETs+#DETs,#BRLF,complexity].

3.4. Unadjusted Function Points

Based on the assignment of function points to differ-
ent complexity classes (see Table 5) unadjusted function
points (UFP) can be determined for the identified data- and
transaction functions. These function points represent aver-
age values from projects conducted in different application
domains using standard configurator development environ-
ments. Summing up these function points (see Table 6) re-

Complexity ILF EIF BR EI EO/EQ

low 1,5 0,5 1 0,5 0,5
average 2 1 1,5 1 1,5

high 4 2,5 3 2 3

Table 5. Determination of Function Points

sults in 14,5 unadjusted FPs for our example which approx-
imately corresponds to an effort of 1,5 man-months (MMs).
This first estimation does not consider special properties of
the actual project, i.e. UFPs must be adjusted using a set of
adjustment factors (related to general system characteristics
- GSC). GSCs are divided into two basic groups8.

� Product characteristics, i.e. characteristics related to
properties of the configuration application (e.g. re-
quirements for distributed configuration support).

� Project characteristics, i.e. characteristics related to
management strategies and project team (e.g. how well
are configuration concepts known by the team?).

low average high sum

ILF 2 1 0 5
EIF 6 0 0 3
BR 3 0 0 3

EO/EQ 2/1 0 0 1/0,5
EI 4 0 0 2

UPFs 14,5

Table 6. UFPs for example application

Adjusted Function Points (FPs) are determined as follows:
�� = ���� ���� � ���� � ������. ��� represents the
Total Degree of Influence calculated from GSCs. Based on
this formula efforts related to our example can vary between
0,7 MMs and 4,4 MMs depending on the influence of GSCs.

8A detailed overview on different GSCs and their role in knowledge
based configuration can be found in [6].

4. Experiences from projects

The development of the presented effort estimation ap-
proach has been conducted within the scope of a set of con-
figuration projects in different application domains (e.g. in
the banking industry and in the telecommunication indus-
try). We have made excellent experiences in applying the
presented estimation concepts - improvements and exten-
sions of the current metrics are still ongoing.

As a rule, early estimations in a project are based on as-
sumptions on the number of classes/attributes/methods, the
number of constraints, RETs+DETs accessed by constraints
and FTRs+DETs accessed by methods. The full range of
presented concepts can be applied when maintaining or ex-
tending a configuration application or measuring efforts for
an already existing configurator.

Especially within the context of knowledge-based sys-
tems development, tool support and experience of the
project team play a very critical role. A graphical knowl-
edge acquisition support can significantly reduce the devel-
opment costs for the configuration system. The same holds
for a project team where people already have experiences in
developing configuration systems.

The used function point values represent average values
for standard configurator development environments. These
values are repeatedly improved using data from completed
configurator projects. Note that the presented UFPs as well
as GSCs degrees of influence are intended as starting point
when introducing FPA for estimating configurator applica-
tion development effort. In order to be more exact and use-
ful, these values have to be adapted for the special purposes
of the company, i.e. domain-dependent customizations con-
cerning configurator development environment (UFPs) and
product/project characteristics (GSCs) have to be under-
taken.

5. Related Work

The identification of sources of variations in effort es-
timation can significantly contribute to more reliable esti-
mations for software projects [11]. In this paper configu-
rator development is identified as such a source of varia-
tion which is tackled by adapting FPA to the special condi-
tions of knowledge-based configurator development. There
exists a number of approaches applying FPA to object-
oriented software development (e.g. [9, 14]). A direct appli-
cation of these approaches to configurator development ef-
fort estimation results in significant and unacceptable devi-
ations. The COSMIC [1] approach is a ISO standard effort
estimation approach within the context of conventional soft-
ware development projects. Although the method provides
an interface for introducing additional measures, COSMIC
does not explicitly take into consideration effort estimation

support for knowledge-based systems development. Within
the context of our projects we chose to apply conventional
FPA, however the integration of our concepts into COSMIC
is the subject of future work. The Feature Point approach
(see [10]) is an extension to FPA which introduces (beside
data functions and transactional functions) the complexity
of algorithms as an additional parameter influencing effort
estimation. Compared to our approach, Feature Points con-
sider algorithms rather than business rules in knowledge
bases - the direct application of this approach as well results
in unacceptable deviations. Effort estimation approaches in
knowledge-based systems development provide a number
of metrics (e.g. size metrics such as rule set density) but
do not provide any experimental data to relate metrics to
concrete effort sizes. [3] discuss factors influencing devel-
opment efforts in configurator development - neither rela-
tionships to concrete efforts are presented nor explanations
are given for the counting approach.

6. Conclusions

We have shown the application and extension of Func-
tion Point Analysis (FPA) for effort estimation in the de-
velopment of knowledge-based configuration systems. A
direct application of FPA to configurator development ef-
fort estimation results in unacceptable deviations. Conse-
quently, we have adapted the counting of function points
to the special conditions of configurator development and
extended the FPA approach by special counting rules con-
sidering the complexity of business rules.

References

[1] A. Abran, J-M. Desharnais, S. Oligny, D. St-Pierre,
and C. Symons. COSMIC-FFP Measurement Man-
ual. The COSMIC Implementation Guide for ISO/IEC
19761:2003, 2003.

[2] A. Albrecht. Measuring Application Development
Productivity. In IBM Applications Development Sym-
posium, Monterey, CA, 1979.

[3] M. Aldanondo and G. Moynard. Deployment of Con-
figurator in Industry: Towards a Load Estimation. In
ECAI 2002 Workshop on Configuration, pages 125–
130, Lyon, France, 2002.

[4] G. Antoniol, F. Calzolari, L. Cristoforetti, R. Fiutem,
and G. Caldiera. Adapting Function Points to Object
Oriented Information Systems. In Advanced Infor-
mation Systems Engineering, CAISE’98, pages 59–76,
Monterey, CA, 1998.

[5] B. Chandrasekaran, J. Josephson, and R. Benjamins.
What Are Ontologies, and Why do we Need Them?
IEEE Intelligent Systems, 14(1):20–26, 1999.

[6] A. Felfernig. Effort Estimation for Knowledge-based
Configuration Systems. In University Klagenfurt, ed-
itor, Technical Report KLU-IFI-2003-22, 2003.

[7] A. Felfernig, G. Friedrich, and D. Jannach. UML
as domain specific language for the construction of
knowledge-based configuration systems. IJSEKE,
10(4):449–469, 2000.

[8] A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner,
and M. Zanker. Configuration knowledge representa-
tions for Semantic Web applications. Artificial Intel-
ligence for Engineering Design, Analysis and Manu-
facturing, 17:31–50, 2003.

[9] T. Fetcke, A. Abran, and Tho-Hau Nguyen. Mapping
the OO-Jacobson Approach into Function Point Anal-
ysis. In Proc. TOOLS ’97, Santa Barbara, CA, 1998.

[10] T. Hastings. Adapting Function Points to contempo-
rary software systems - A review of proposals. In Aus-
tralian Software Metrics Association, editor, Proc. 2nd
Australian Conference on Software Metrics, 1995.

[11] C.F. Kemerer and B.S. Porter. Improving the Relia-
bility of Function Point Measurement: An Empirical
Study. IEEE Transactions on Software Engineering,
18(11):1011–1024, 1992.

[12] J. Rumbaugh, I. Jacobson, and G. Booch. The Uni-
fied Modeling Language Reference Manual. Addison-
Wesley, 1998.

[13] D. Sabin and R. Weigel. Product Configuration
Frameworks - A Survey. In B. Faltings and E. Freuder,
editors, IEEE Intelligent Systems, Special Issue on
Configuration, volume 13,4, pages 50–58. 1998.

[14] T. Uemura, S. Kusumoto, and K. Inoue. Function-
point analysis using design specifications based on
the Unified Modeling Language. Journal of Software
Maintenance and Evolution: Research and Practice,
13:223–243, 2001.

[15] J. Warmer and A. Kleppe. The Object Constraint Lan-
guage - Precise Modeling with UML. Addison Wesley
Object Technology Series, 1999.

[16] B. Wielinga and G. Schreiber. Configuration Design
Problem Solving. IEEE Expert/Intelligent Systems
and their Applications, 12,2:49–56, 1997.

Enhancing Mediation Security by Aspect-Oriented Approach �

Li Yang, Raimund K. Ege, Huiqun Yu

School of Computer Science
Florida International University

Miami, FL 33199, USA
�lyang03�ege�yhq�@cs.fiu.edu

Abstract

Research on mediation techniques to integrate data
from heterogeneous data sources has made comprehen-
sive progress. However, mediation poses extensive security
problems. Protecting proprietary data from unauthorized
access is recognized as one of the most significant barriers
to the mediation systems. Neither traditional access control
methods are adequate to model the flexible access control
requirements, nor are they amenable to manage the evolv-
able security features of mediation systems. This paper ad-
dresses to enhancing mediation security by aspect-oriented
approach. The basic functionality components and secu-
rity concerns are separated, independently specified, and
then systematically integrated into a unified model. Our ap-
proach benefits in both decreasing design complexity of me-
diation systems and increasing flexibility and dependability
of security enforcement.

Keywords: mediation system, security, aspect-oriented,
specification

1. Introduction

To gain information from many heterogeneous data
sources is the trend for future information system. The me-
diation [22] task is an extended amalgamation of searching,
querying and updating in traditional information systems.
Such task can be accomplished via a mediation strategy, i.e.
semantic mapping [7, 5] and answering query by source de-
scriptions [21, 11]. In such a mediation strategy, mediators
are typically employed to provide an integrated view of in-
formation from heterogeneous sources [1, 6]. A mediator
provides a mapping of complex models to enable interoper-

�Supported in part by the NSF under grants HRD-0317692 and CCR-
0226763, and by NASA under grant NAG 2-1440

ability between clients and sources. One important issue is
how to enforce protection for data sources such that every
access to a system is controlled, and only those authorized
access can take place.

Traditional access control method such as mandatory ac-
cess control (MAC) and discretionary access control (DAC)
[13] are inadequate to reflect the dynamic mediator envi-
ronment and the flexible access control requirements. Role-
based access control (RBAC) [17, 10] models are receiv-
ing increasing attention as a generalized approach to ac-
cess control. Its basic notion is that permissions are as-
sociated with roles, and users are assigned to appropriate
roles. This greatly simplifies security management. How-
ever, security concerns are usually scattered across the en-
tire system, which is difficult to design and manage when
the target system is large and complex. A promising new
approach to constructing systems with evolvable security
features is suggested by the work of Aspect-oriented pro-
gramming (AOP) [12], which addresses separation of con-
cerns in software development by using specialized mech-
anisms to encapsulate concerns whose behavior crosscuts
essential application functionality.

Inspired by the idea of AOP, we propose a method to
enhance mediation security in specification level. Based on
our previous work [8, 23], we show how to specify the secu-
rity concerns and apply them to the mediator modular spec-
ification in a uniform way. Datalog is used to specify the
mediator functional modules, and first-order predicates are
employed to specify the security aspects independently. In
logic view, the predicate of security aspects can serve as
the condition part of the Datalog specification in mediator,
which makes it possible to weave the security aspects into
the mediator specification.

The rest of the paper is organized as follows: Section
2 explains our adaptive three-layered mediation framework
that features an open adornment-based data model; Section
3 constructs the secure mediation framework via aspect ori-
entation; Section 4 is the conclusion.

2. Our Mediation Framework

2.1. A Three-Layered Mediation Architecture

Our mediator architecture organizes sets of intermediate
mediators into layers to handle requests from a user which
can be any special device or mobile computing unit (as in
Figure 1). The mediator sets will play intermediate roles
between users and data sources, to help establish streams to
and from the heterogeneous data sources. A user can either
query or update heterogeneous data sources.

4

588 5

Mediator_composerMediator_composer

GM(Global Mediator)

93

PM(Presence Mediator)
1

2 Server

Incoming Request

4

DBn M_connectorDB1 M_connector

Initiation
Session

......
Information)

DBn (Prescription

Information)

DB1 (Personal

7676

Homogenization

Presence

Integration

Figure 1. A three-layered mediation architecture

The framework features three layers: presence, integra-
tion and homogenization/connector. The upper level is the
presence layer that makes the data source seem ever-present
to the user and communicates directly with the user. The
presence layer is responsible for translating heterogeneous
requests from the user into an XML format, extracting the
data type of request represented by an XML schema, and
translating the response from the XML format into the orig-
inal user request format. The presence layer makes it fea-
sible that the mediation architecture handles requests from
any kind of devices or in any kind of formats via a the two-
way format translation. Therefore the work of the underly-
ing layers is encapsulated.

The middle integration layer resolves the schema dif-
ferences between the user needs and the source availabil-
ity by schema mapping [3]. The entities in the integration
layer are the “Mediator composers” who are able to decom-
pose the schema if necessary and locate the destination data
source for a specific schema via a distributed hash table

algorithm (DHT) [19]. Upon every request from a client,
the session initiation server coordinates with the “Medi-
ator composers” group to elect the global mediator. This
process of global mediator election dynamically determines
the hierarchical structure in the integration layer for each
request. This procedure makes the architecture more adap-
tive to both the network capability and mediator load, and
then more efficient for the multimedia data operation, i.e.
streaming, than a fixed architecture.

The bottom level homogenization layer contains “Medi-
ator connectors” that resides on top of actual data sources,
and maps the data source schemas to XML schemas. The
“Mediator connectors” stream the actual data or update the
underlying data sources upon the request from mediators
in the integration layer. They make heterogeneous data
sources appear to have a unifying XML schema. As such,
we establish an adaptive mediation architecture to han-
dle the two-way data (could be multimedia data) operation
(query or update) between the heterogeneous requests and
heterogeneous databases.

2.2. Data Model

The primary motivation for mediation technology is to
provide support for a broad spectrum of heterogeneous data
which are available in different formats. A sound solution
to the data integration task requires a clean abstraction of
the different formats: any data must be mapped to an ex-
change model from which it is therefore accessible without
the use of specific software. Some systems, e.g. SIMS [4] or
DISCO [20], or MMM [9], have a fixed application schema
like conventional databases. But many systems, e.g. HER-
MES [2] or Garlic [16], allow for flexible adaptation of the
schema as further sources are integrated.

We introduce a lightweight exchange model based on
XML, enhanced via security (and potentially other) adorn-
ments. It is called the adorned XML model (AXM). AXM
is flexible in data organization, both in the structures that
can be described and in the differences in terminology. The
security adornment of AXM is essential for the system se-
curity. An AXM object has five attributes:

1. Object ID. It may be constructed by the mediators to be
an expression describing where the object came from.
It may also be a pointer to an object in the workspace
used to answer the query.

2. Label tells what the object represents. Labels are ex-
pected to have human-understandable definitions that
may be retrieved easily by the user.

3. Adornment. Adornment entry identifies the security
properties that affect the data processing and system
execution. Security adornment indicates a mapping

of principal identities and/or attributes thereof with al-
lowable actions. It is a kind of security policy expres-
sion that is often essential in the access control in or-
der to protect resources against unauthorized access.
Security adornment plays an important role in the pro-
cess by which use of resource is regulated according to
a security policy and is permitted by only authorized
system entities according to that policy.

4. Type of its value, either complex type or a simple type
like string.

5. Value, either an atomic value or a set of objects.

With these primitives, it is possible to simulate all the struc-
tures that are found in more conventional object-oriented
type systems. The adornments can be used not only to
define the permissions of the objects in data sources but
also to define the roles of the access user.

adn

adn adn

patient patient

ssn
name

adn

adn 666

Alice

777adn

adn 6786

adn a.jpg
ssn phone

xray

Figure 2. A collection of AXM objects

Figure 2 shows a collection of AXM objects. At the top is
a root object whose label is patientGroup. Its value is a set
of patient objects, so its type is complex. To model semi-
structured information sources, we do not insist that data is
as strongly structured as in standard database models. For
instance, name information is sometimes given and some-
times missing.

3. Aspect-Oriented Approach to Enhancing
Mediation Security

3.1. The Aspect-Oriented Method

The major issues involved in aspect-orientation for medi-
ation systems are (1) how to separate various concerns, and
(2) how to weave aspect models into an integrated system.
Issue 1 (Separation of concerns) is to separate the function-
ality modules of mediation systems from the security as-
pects, which consists of the following steps:

� Identifying basic functionality components in the me-
diation systems and specifying these components.

� Specifying security requirements.

� Defining the crosscutting section (join points) of the
functionality components and security aspects.

Issue 2 (Aspect weaving) generates an integrated system by
weaving aspect models with the functionality components.
The steps include:

� Locating the joinpoints where the functionality com-
ponents and security aspects interact.

� Defining the behavior of the system in order to en-
force security policies on the basic functionality com-
ponents.

� Integrating aspect models with the functionality com-
ponents.

3.2. The Component Specification

In our mediation architecture the mediators in the inte-
gration layer form the components. Given a set of data
sources exported from the homogenization layer, we build
mediators to integrate and refine the information. The ap-
proach is in the spirit of the declarative specification of me-
diators in Tsimmis [15]. The query interpretation process
is analogous to expanding a query against a conventional
relational database view. We will use an example to illus-
trate the mediator specification and the query interpretation
against the mediator specification.

Let us consider two mediators called med and max that
export objects with label patient. The patient objects fuse
information about patients that have the same social security
number and are exported by the sources ��, �� and ��. In
particular, if source �� contains a patient and his name, the
exported patient object contains the corresponding name.
If �� contains the x-ray examination for the patient and ��
contains the address information, then the xray and addr
sub-objects are also included in the patient. A specification
consists of rules that define the view exported by the media-
tor. Each rule consists of a head followed by a � � and a tail.
The head describes view objects, whereas the tail describes
conditions that must be satisfied by the source objects. In
general, the heads and tails are based on patterns of the form
��object-id adornment label value��.

The specification of the patient object appears in two
mediators specification (“MS1” and “MS2”); each rule in
the specifications describes the contribution of the sources:
(MS1) (R1.1)

 <(adn P) patient {<(adn P) ssn S> <(adn P) name N>}>@s1

 (R1.2)

 <(adn P) patient {<(adn P) ssn S> <(adn P) xray X>}>@s2

 AND role_assign() AND check_permission()

 AND role_assign() AND check_permission()

<pid(S) (adn R) patient {<(adn R) name N>}>@med :−

<pid(S) (adn R) patient {<(adn R) xray X>}>@med :−

 <(adn P) patient {<(adn P) ssn S> <(adn P) addr A>}>@s3
<pid(S) (adn R) patient {<(adn R) addr A>}>@max :−

<pid(S) (adn R) patient {<(adn R) xray X>}>@max :−
 <(adn P) patient {<(adn P) ssn S> <(adn P) xray X>}>@s2

(MS2) (R2.1)

 (R2.2)
 AND role_assign() AND check_permission()

 AND role_assign() AND check_permission()

The first rule declares that:

� if there is a pair of binding s and n for variables S
and N (variables are identifiers starting with a capi-
tal letter) such that �� contains a patient top-level ob-
ject that has a ssn sub-object with value s and a name
subobject with value n, the user was assigned a role
after authentication by role assign() predicate, and the
data access permission was check against source �� by
����� ��������	
�� predicate,

� then mediator med exports a patient object, with
object-id pid(s), that has a name subobject with value
n and a unique system-generated object-id.

The semantics of the second rule in MS1 (“R1.2”) and in
the two rules in MS2 are defined accordingly. As stated in
Section 2.1, each mediator has the potential to be elected as
the global mediator and take care of the authentication job.

To illustrate how to interpret the query against the medi-
ator specification, assume that a client wants to retrieve all
data of patient’s with object-id pid(‘666’). The query can
be expressed as:
(Q1)

 <pid(‘666’) (adn P) patient PT>
<pid(‘666’) (adn R) patient PT}> :−

The object pattern (or patterns in the general case) that ap-
pears in the query tail is evaluated against the object struc-
ture of the mediator in exactly the same way that the me-
diator specification rule tails are evaluated against the ob-
ject structures of the �����	� �	

��	�. The object pat-
tern of the query head does not include the usual “@” nota-
tion because it is implied that the objects described by the
query head refer to the result that will be materialized by
the client.

After evaluation the tail of sample query (Q1) against the
head of the rules in (MS1) and (MS2), (Q2), (Q3) and (Q4)
are sent to the sources ��, �� and �� respectively.

 <(adn P) patient {<(adn P) ssn ‘666’> <(adn P) name N>}>@s1

(Q2)
<pid(‘666’) (adn R) patient {<(adn R) name N>}> :−

(Q3)

 <(adn P) patient {<(adn P) ssn ‘’666> <(adn P) xray X>}>@s2
<pid(‘666’) (adn R) patient {<(adn R) xray X>}> :−

(Q4)

 <(adn P) patient {<(adn P) ssn ‘666’> <(adn P) addr A>}>@s3
<pid(‘666’) (adn R) patient {<(adn R) addr A>}> :−

The three answer objects received from ��, �� and �� are

then merged into a single patient object.

3.3. The Security Aspect Specification

We use RBAC as the underlying security model of medi-
ation systems, and consider two security aspects specifica-
tion. The RBAC model has the following components:

1. � , �, � and � (users, roles, permissions and sessions
respectively),where � is the Cartesian product of op-
eration OP and objects Obj,

2. �� � � � �, a many-to-many permission to role
assignment relation,

3. �� � ���, a many-to-many user to role assignment
relation,

4. ����, � � � , a function mapping each session ��
to the single user �������� (constant for the session’s
lifetime), and

5. �	���: � � ��, a function mapping each session ��
to a set of roles �	������� � ������������� �� � ���
(which can change with time) and session �� has the
permissions ������������������ �� � ���.

ASSIGN−
METN MENT

ASSIGN−
PERMISSION

UA PA
OP Obj

CONSTRAINTSSESSIONS

U
USERS

R
ROLES

PERMISSIONS

s
s
.
.

s

USER

Figure 3. An RBAC model

In RBAC model permissions are associated with roles, and
users are assigned roles based on their responsibilities and
qualifications. In the mediation system, the security consid-
eration permeates throughout the entire systems. It is possi-
ble to express security policies about the system that apply
generically to a consideration, and then have the policies
be applied through the system automatically. Two security
aspects are identified as follows.

Aspect 1. check-role For the separation of duties princi-
ple, the same user can not be assigned to any two mutual
exclusive roles simultaneously. Mutual exclusion in terms
of user assignment specifies that one individual cannot be
a member of both roles in exclusive sets. For instance, one

user can not play patient and doctor role in the same hos-
pital simultaneously. The mediator specification in Section
3.2 only authentication the user and assign role to that user,
but the mutual exclusive role checking is void.

Aspect check role() prevents us from assigning the mu-
tual exclusive roles �� and �� to the same user simulta-
neously. This aspect can be specified by the following
predicate: ���� �� � ����� � �����	
� ��
���� �
�� � �����	
� ��
���� � ��� �� ����, where
�����	
� ��
���� denotes the set of roles assigned to the
user �. This aspect is from the the constraints on the user
assignment.

Aspect 2. check-view In the scenario that the user is al-
lowed to retrieve data name and xray from source �� and ��
by ssn respectively, but the tuple (name, xray) is sensitive
global information. The mediator specifications described
in section 3.2 failed to provide the global information fil-
tering mechanism, although they provide the functionality
to check the data permission against the data source by the
predicate check permission(). When the constraints on the
local sources can not protect the information properly by
its own, the global level security checking need be enforced
into the mediator specifications. It can be used to automat-
ically perform global security checking on sensitive global
data retrieval.

Aspect check view() filters the global sensitive data
�	��
� ����� by checking the mediator views. Check view
aspect can be specified by the following predicate:
��� 	��
�� ������ ��	�� 	��
�� ��	�� ������

��
������ 	��
�� ������ � �
������ ��	�� 	��
�� �

������ ��	�� ������� ��	� �� ��	���,
where predicate
������ 	��
�� ������ denotes that
the view � can simultaneously feedbacks the attribute
	��
’s value 	��
� and ����’s value �����, and

������ ��	�� 	��
�� denotes that the view � can
simultaneously feedbacks the attribute ��	’s value
��	� and 	��
’s value 	��
�. Similarly does

������ ��	�� ������. This aspect is from the constraints
on the permission assignment.

3.4. Aspect Weaving

The purpose of aspect weaving is to process the com-
ponents specification and the aspects specification, and to
compose them properly into an integrated specification. Es-
sential to aspect weaving is to specify the join points, where
the functionality components and security aspects interact,
and to define advices, which encode the appropriate behav-
iors at the join points.

The component specification language is Datalog and the
join points are security-related predicates ��
 �����	 and

��
�� �
�������	. The aspect specification language is
based on first-order logic. Once a join point is met, there
are several types of locations we can operate upon:

� Replacing the join point by well-defined procedure;

� Adding some codes before the join point;

� Adding some codes after the join point.

In our case, we only use the third option, i.e., adding
��
�� ��
 after ��
 �����	, and adding ��
�� ��
� af-
ter ��
�� �
�������	. In addition to Datalog system, a
theorem prover such PVS [14] can be used to automate the
query process.

4. Conclusion

This paper proposes an aspect-oriented approach to en-
hancing security systems. RBAC serves as the security pol-
icy model and aspect-oriented approach is applied to iso-
late, compose and resue the aspect specification. Two se-
curity aspects: global information leaking and mutual ex-
clusive roles are identified and specified. And the identified
weaver can integrates the aspect specification into the me-
diator specification.

The AOD method provides a rigorous way to identify
notions in both functionality and security aspect specifica-
tions of mediation systems. The method supports reusable,
and reliable design of secure mediator architectures. Se-
curity aspects express the essential issues of security re-
quirements and security enforcement mechanisms, and are
reusable across different systems. One can express security
policies that are intended to be applied across a family of
systems as aspects.

Several interesting research topics are: (1) How to
properly partition the properties to be modeled by different
aspect models, e.g. what information should be included in
the base functionality model; (2) What is the dependency
between the aspect models; (3) How to coordinate the
security enforcement between mediation systems with
local DBMSs; (4) How to automate the design process by
efficient algorithms and tools.

References

[1] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Sub-
rahmanian. Query caching and optimization in distributed
mediator systems. In SIGMOD Conference, pages 137–148,
1996.

[2] S. Adali and R. Emery. A uniform framework for integrating
knowledge in heterogeneous knowledge systems. In ICDE,
pages 513–520, 1995.

[3] C. Altenschmidt and J. Biskup. Explicit representation of
constrained schema mapping for mediated data integration.
In 2nd Workshop on Databases in Networked Information
Systems, number 2544, Aizu, Japan, 2002.

[4] Y. Arens, C. Y. Chee, C. Hsu, and C. A. Knoblock. Retriev-
ing and integrating data from multiple information sources.
International Journal of Cooperative Information Systems,
2(2):127–158, 1993.

[5] J. Biskup and D. Embley. Extracting information from het-
erogeneous information sources using ontologically spec-
ified target views. Source Information Systems archive,
28(3):169–212, May 2003.

[6] M. Carey and L. H. et al. Towards heterogeneous multime-
dia information systems: The Garlic approach. In Interna-
tional Workshop on Research Issues in Data Engineering:
Distributed Object Management, Taipei, 1995.

[7] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learn-
ing to map between ontologies on the semantic web. In
The Eleventh International WWW Conference, Hawaii, US,
2002.

[8] R. K. Ege, L. Yang, Q. Kharma, and X. Ni. Three-layered
mediator architecture based on dht (in press). In Interna-
tional Symposium on Parallel Architcture, Algorithm and
Networks (I-SPAN), Hong kong, 2004. IEEE press.

[9] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Lid-
dle, Y. Ng, D. Quass, and R. D. Smith. Conceptual-model-
based data extraction from multiple-record web pages. Data
Knowledge Engineering, 31(3):227–251, 1999.

[10] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-based
access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274,
2001.

[11] A. Y. Halevy. Theory of answering queries using views.
SIGMOD Record (ACM Special Interest Group on Manage-
ment of Data), 29(4):40–47, 2000.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), LNCS 1241,
pages 220–242. Springer-Verlag, 1997.

[13] J. McLean. Security models. In J. Marciniak, editor, Ency-
clopedia of Software Engineering. Wiley & Sons, 1994.

[14] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, September 1998.

[15] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Ob-
ject exchange across heterogeneous information sources. In
Proc. ICDE Conf., pages 251–60, 1995.

[16] M. T. Roth and P. Schwarz. Don’t scrap it, wrap it! a wrap-
per architecture for legacy sources. In 23th VLDB Confer-
ence, pages 266–275, Athens, 1997.

[17] R. Sandhu and E. Coyne. Role-based access control models.
IEEE Computer, 29(2):38–47, 1996.

[18] C. Souza dos Santos, S. Abiteboul, and C. Delobel. Vir-
tual schemas and bases. In Proceedings of the Inter-
national Conference on Extensive Data Base Technology
(EDBT’94), Cambridge, UK, pages 81–94. Springer-Verlag,
Berlin, 1994.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service

for internet applications. In Proceedings of ACM SIG-
COMM, San Diego, August 2001.

[20] A. Tomasic, L. Raschid, and P. Valduriez. Scaling hetero-
geneous databases and the design of disco. In International
Conference on Distributed Computing Systems, pages 449–
457, 1996.

[21] V. Vassalos and Y. Papakonstantinou. Expressive capabil-
ities description languages and query rewriting algorithms.
Journal of Logic Programming, 43(1):75–122, 2000.

[22] G. Wiederhold. Mediators in architecture of future informa-
tion systems. IEEE Computer, 25:38–49, 1992.

[23] L. Yang and R. K. Ege. Modeling and verification of real-
time mediation systems (in press). In Advanced Simulation
Technologies Conference, Arlington, Virginia, April 2004.

Appendix

A. A Brief Introduction to Datalog

Some standard definitions and terminology on Datalog
are introduced here.

An atom is a formula ����� � � � � ���, where � is a pred-
icate symbol and each �� is a term(in the usual first-order
logic sense). A term or an atom is said to be ground if
it is variable free. A fact is a ground atom. A ��������

is a finite set of facts. A 	
�� is a formula written as
�� �� � � � � � (in clausal form: ����� � � �����,
where ���� � � � � � are atoms; � is called the head
and �� � � � � � the body of the rule. A logic program
is a finite set of rules together with a database. A goal
is a formula written as � �� � � � � � (in clausal form:
�� � � � � � ��). A query is a finite set of rules together
with a goal. All variables in rules and goals are implicitly
universally quantified.

B. View

The notion of view is particularly important since it is
used to consider the same object form various perspectives
or with various precisions in its structure (e.g., for the inte-
gration of heterogeneous data). We need to specify complex
restructuring operations. The view technology developed
for object databases can be found in [18].

Declarative specification of a view: Following [18], a
view can be defined by specifying the following: (i) how
the object population is modified by hiding some objects
and creating virtual objects; and how the relationship be-
tween objects is modified by hiding and adding edges be-
tween objects, or modifying edge labels.

This following example illustrates how to hide the
person’s salary by exporting the view ���	���� ��������
from the stored database ���	���� ����	�� by the Datalog.
���	���� �������� � ����	���� ����	�� � ����	� � ����

Enhancing the Message Concept of the Object Constraint Language

Stephan Flake

C-LAB, Paderborn University, Fuerstenallee 11, 33102 Paderborn, Germany

E-mail: flake@c-lab.de

Abstract

The textual Object Constraint Language (OCL) is an of-
ficial part of the Unified Modeling Language (UML). A new
concept in the recently adopted OCL version 2.0 is the no-
tion of OCL messages that enable modelers to put restric-
tions on messages sent.

However, this concept shows some shortcomings with re-
spect to the existing OCL language concepts. On the one
hand, the proposed syntax does not quite conform to the es-
tablished notation of OCL. On the other hand, the formal
OCL semantics still lacks an integration of OCL messsages.

This article reviews the syntax and semantics of OCL
messages and presents a new approach to better integrate
this concept with the rest of OCL 2.0.

1 Introduction

The Object Constraint Language (OCL) is a declara-
tive expression language that enables modelers to formulate
constraints in the context of a given UML user model [12].
Recently, OCL version 2.0 has been adopted by the Object
Management Group (OMG) as part of the new UML 2.0
standard [9]. OCL is mainly used to specify invariants at-
tached to classes and pre- and postconditions of operations,
but OCL is also applied to formulate well-formedness rules
in the metamodel definition of the official UML specifica-
tion.

As an application example, assume that we have a model
with classes Machine and Buffer and an association be-
tween these classes (see Figure 1). The following invariant
requires that each instance of class Machine has at least one
associated buffer:

context Machine

inv: self.buffers->notEmpty()

The class name that follows the context keyword spec-
ifies the class for which the following expression should

Figure 1. Sample Class Diagram

hold. The keyword self refers to each object of the con-
text class. Attributes, operations, and associations can be
accessed by dot notation, e.g., self.buffers results in a
(possibly empty) set of instances of Buffer. The arrow no-
tation indicates that a collection of objects is manipulated
by one of the predefined OCL collection operations. For
example, operation notEmpty() returns true when the ac-
cessed set is not empty.

In operation postconditions, modelers can put restric-
tions on messages sent. For example, consider the following
requirement for buffer objects.

During execution of operation load(), a report-
ing message has to be sent to the machine to
which the buffer belongs.

A corresponding operation specification in OCL may look
like this:

context Buffer::load(i:Item)

pre: storedItems < capacity

post: myMachine^reportNewItem(i)

The expression myMachine^reportNewItem(i) is a bool-
ean expression that results in true when at least one mes-
sage reportNewItem(i) has been sent to the associated
machine object during operation execution.

However, the syntax and semantics of such message
specifications have some significant shortcomings that are
discussed in the remainder of this article. In particular, we
consider the following issues as being problematic, both in
terms of usage by UML modelers as well as w.r.t. the un-
derlying semantics:

1: msg.hasReturned() : Boolean
2: -- Returns true if the message denotes an operation call and if the invoked operation has already returned.
3:
4: msg.result() : OclAny -- Note: the actual return type is the return type of the invoked operation.
5: -- Returns the result of the invoked operation if the message denotes an operation call and the invoked
6: -- operation has already returned. Otherwise the operation returns OclUndefined.
7:
8: msg.isSignalSent() : Boolean
9: -- Returns true if the message represents a signal.

10:
11: msg.isOperationCall() : Boolean
12: -- Returns true if the message represents an operation call.

Figure 2. Operations on OCL Messages

• Each OCL message expression requires the explicit
specification of a destination object.

• The syntax used for message operators, i.e., ^ and ^^,
is unnecessarily cryptic.

• The expressions for common message specifications
are unnecessarily complex.

• Concerning the evaluation of OCL expressions, a mes-
sage specification can refer to a destination object that
might has already been destroyed.

• The OCL semantics description becomes quite com-
plex due to the required data structure that stores the
history of messages sent (cf. [4]).

The remainder of this article is structured as follows. In
Section 2, we outline the concept of OCL messages as de-
fined in OCL 2.0. Section 3 then discusses the identified
shortcomings of the current definition of OCL messages. In
Section 4 we then present our redefinition of the OCL mes-
sage concept. Related work is outlined in Section 5, and
Section 6 concludes the article.

2 OCL Messages

Based on the work by Kleppe and Warmer [6, 7], OCL
messages have been newly introduced in OCL 2.0 to specify
behavioral constraints over messages sent by objects. An
OCL message refers to a particular signal sent or a (syn-
chronous or asynchronous) operation called. While signals
sent are asynchronous and the calling object simply contin-
ues its execution, synchronous operation calls make the in-
voking operation wait for a return value. An asynchronous
operation call is like sending a signal, such that a poten-
tial return value is simply discarded. For more details about
messaging actions we refer to the action semantics of UML
[10, Section 2.24].

2.1 Syntax

The parameterized type OclMessage(T) is part of the
OCL Standard Library, where the template parameter T

refers to an operation or signal. A concrete OclMessage

type is therefore described by (a) the referred operation or
signal and (b) all formal parameters of the referred opera-
tion or all attributes of the referred signal, respectively. Four
operations on OCL messages are predefined (see Figure 2).

OCL messages are obtained by the message operator ^^
that is attached to a destination object. For example, the ex-
pression myMachine^^reportNewItem(i) results in the
sequence of messages reportNewItem(i) that have been
sent to the object determined by myMachine during execu-
tion of the considered operation – recall that the considered
expression must have been specified in an operation post-
condition. Each element of the resulting sequence is an in-
stance of type OclMessage(T). For example, the exact type
of the OCL expression myMachine^^reportNewItem(i)

is Sequence(OclMessage(reportNewItem(i:Item))).
One can make use of so-called unspecified values to indi-

cate that an actual parameter does not need to have a specific
value. Unspecified values are denoted by question marks,
e.g., myMachine^^reportNewItem(?:Item).

The hasSent operator ^ can be used to check whether
a message has been sent. This has already been illustrated
for the OCL expression myMachine^reportNewItem(i)

in Section 1. Note that this operator can easily be de-
rived from the message operator ^^. Each expression of the
form destObj^msgName(parameters) can be replaced
by destObj^^msgName(parameters)->notEmpty().

2.2 Semantics

The OCL 2.0 specification provides two semantic de-
scriptions. The first semantics is a metamodel-based ap-
proach, i.e., the semantics of an OCL expression is given
by associating each value defined in the semantic domain
(i.e., the Values package) with a type defined in the meta-
model (i.e., the AbstractSyntax package), and by asso-
ciating each evaluation with an expression of the abstract

syntax. Given an overall snapshot of the running system,
these associations allow to yield a unique value for each
OCL expression, which is the result value of OCL expres-
sion evaluation. Secondly, a formal semantics is defined
based on the mathematical notion of an object model. This
is discussed in more detail in Section 3.

A semantic integration of OCL messages with the rest
of OCL is currently only available in the metamodel-based
semantics [9, Section 10.2]. In this context, the Values

package has a class for local snapshots. Local snapshots are
kept as an ordered list which allows to access the history of
the values of an object, e.g., attribute values at the begin-
ning of an operation execution. In particular, local snap-
shots keep track of the sequence of messages an object has
sent. However, there is no dynamic semantics, such that it is
undefined which snapshots of a running system are actually
stored, i.e., it is not clear how local snapshots are created
and handled at runtime. Moreover, there is no official for-
mal semantics of OCL messages available, which motivated
our previous work [4].

3 Review of the Formal OCL Semantics

The formal OCL 2.0 semantics is defined by a set-
theoretic approach called object model based on work by
Richters [11]. The object model of OCL 2.0 is a tuple

M =
〈

CLASS,ATT,OP,ASSOC,≺,

associates, roles,multiplicities
〉

with a set CLASS of classes, a set ATT of attributes, a set
OP of operations, a set ASSOC of associations, a general-
ization hierarchy ≺ over classes, and functions associates,
roles, and multiplicities that give for each as ∈ ASSOC

its dedicated classes, the classes’ role names, and multiplic-
ities, respectively.

In the remainder of this article, we call an instanti-
ation of an object model a system. A system changes
over time, i.e., the (number of) objects, their attribute val-
ues, and other characteristics change during system exe-
cution. System states keep corresponding information to
be able to evaluate OCL expressions. In OCL 2.0, a sys-
tem state σ(M) is formally defined as a triple σ(M) =
〈ΣCLASS,ΣATT ,ΣASSOC〉 with the set ΣCLASS of cur-
rently existing objects, the set ΣATT of attribute values of
the objects, and the set ΣASSOC of currently established
links that connect the objects.

However, the information stored in this system state
triple is not sufficient to evaluate expressions that reason
about messages sent; messages are not considered at all in
the formal model so far. We therefore added appropriate
components to the object model and system states. Thus,

the resulting extended system state is a tuple

σ(M) =
〈

ΣCLASS,ΣATT ,ΣASSOC ,ΣCONF ,

ΣcurrentOp,ΣcurrentOpParam,

ΣsentMsg,ΣsentMsgParam,

ΣinputQueue,ΣinputQueueParam

〉

that now additionally comprises

• the set ΣCONF of active state configurations over ac-
tive objects (see [5] for more details about OCL and
UML State Diagrams),

• for each currently existing object, the set ΣcurrentOp

of its currently executed operations,

• for each current operation execution, the set ΣsentMsg

of sent messages, and

• for each currently existing object, the set ΣinputQueue

of received messages that are still waiting to be dis-
patched.

Parameter values of executed operations and sent/received
messages are kept in separate structures for technical rea-
sons. The resulting structure of system states has become
comparatively complex, but all listed components are in
fact necessary in order to (a) provide a formal semantics for
OCL messages and (b) give a dynamic semantics of OCL.
We defined a dynamic OCL semantics by means of traces,
i.e., sequences of system states, based on a set of notewor-
thy changes that identify all changes relevant for the evalu-
ation of OCL constraints [4]. While that work is primarily
intended to complete the formal semantics of the OCL 2.0
standard, this article reviews and enhances the concept of
OCL messages.

4 Our Approach

To motivate our approach, we first review a message
specification found in the OCL 2.0 specification [9, Section
7.7.2]:

context Person::giveSalary(amount : Integer)
post: let message : OclMessage = company^getMoney(amount)

in
message.hasReturned() -- getMoney was sent and returned
and
message.result() = true -- getMoney returned true

Unfortunately, this postcondition has a type mismatch;
the expression company^getMoney(amount) does not re-
turn an OCL message, but rather a boolean value, as the
hasSent operator is applied. We therefore revise the post-
condition and use the message operator ^^ to extract the
corresponding message(s) sent. Additionally, we adjust the
type of variable messages to be a sequence of messages:

context Person::giveSalary(amount : Integer)
post: let messages : Sequence(OclMessage) =

company^^getMoney(amount)
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
messages->forAll(msg:OclMessage | msg.result() = true)

The postcondition above now requires that all messages
getMoney(amount) sent to object company have already
returned with result value true. But this does not have the
originally intended meaning any more. Instead, the actual
requirement is that (a) all messages getMoney(amount)

have already returned and (b) exactly once the return result
is true. Returning true stands for getting the money from
the company – and the money must not be granted more
than once by the company. The correct specification is then
as follows.

context Person::giveSalary(amount : Integer)
post: let messages : Sequence(OclMessage) =

company^^getMoney(amount)
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
messages->select(msg:OclMessage | msg.result() = true)

->size() = 1

The example already exhibits some of the shortcomings
of the current approach in OCL 2.0. Firstly, the syntax ^ and
^^ for message specifications easily leads to errors in the
specification. The two different operators are very similar in
appearance but have totally different results; one denotes a
boolean expression, while the other results in a sequence of
OCL messages. Secondly, a unique destination object has to
be specified together with each referred message. Instead,
one might often be interested in a specific message sent to
different object (e.g., broadcasts). In such cases a message
specification becomes rather complex.

Assume now that a person can have more than one em-
ployer, such that self.companies refers to the set of
Company objects that represent the person’s employers. In
the context of an operation collectBonus() that deter-
mines the total amount of bonus payments, we require that
at least one message getBonus() is sent to each employer
and that all these messages have returned at the time of post-
condition evaluation.

context Person::collectBonus()
post: let messages : Sequence(OclMessage) =

self.companies->collect(c:Company |
c^^getBonus(self.maritalStatus))

in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
self.companies->forAll(c:Company |

c^^getBonus(self.maritalStatus)->notEmpty())

We can directly express the desired, i.e., flattened, se-
quence of all messages sent to all associated companies with

Figure 3. Redefined Type OclMessage

the predefined collect() operation.1 But still, the expres-
sion is quite cumbersome to formulate and relatively diffi-
cult to understand. For this kind of specification, one would
prefer to simply specify the message name without the need
to refer to an explicit destination object each time.

4.1 Redefinition of OCL Messages

We suggest a different way to obtain a sequence of mes-
sages sent. We define new attributes for type OclMessage,
i.e., attributes that refer to the source and destination object
and to the types of the source and destination object (the
latter attributes are for technical purposes as explained in
the remainder). The resulting type definition is illustrated
in Figure 3. Note that we make use of an enhanced OCL
type system that allows to refer to OCL types on the UML
user level M1 [3].

With a new operation named sentMessages() defined
for the general type OclAny, which is the supertype of
all OCL types, the collectBonus() example can then be
specified as follows.

context Person::collectBonus()
post: let messages : Sequence(OclMessage) =

self.sentMessages(getBonus(self.maritalStatus))
in
messages->forAll(msg:OclMessage | msg.hasReturned())
and
self.companies = messages.destObj->asSet()

Firstly, the cryptic and error-prone message operator ^^
can simply be replaced by a new operation on the general
supertype OclAny as demonstrated above. Secondly, we

1 Note that one might also assume that the resulting structure is nested,
i.e., the result is of type Set(Sequence(OclMessage)), but operation
collect automatically returns the flattened collection. However, as nesting
of collections is necessary in many other cases, OCL 2.0 now provides a
corresponding operation collectNested().

avoid the explicit specification of a destination object in
front of a message declaration. Instead, the new attribute
destObj for OCL messages leads to a simplified, yet better
understandable, formulation of OCL messages, especially
in the case of broadcasted and multicasted messages. More-
over, this notation is in line with the established OCL syntax
that uses only dot/arrow notation for navigation and applies
operation names with arguments. Note here that our formal
semantics of OCL messages [4] has only marginally to be
adjusted w.r.t. the formal definition of the message tuples.

4.2 Message Destination Objects

A more serious problem arises when a message destina-
tion object does not exist anymore at the time of postcon-
dition evaluation. Explicitly referring to such an object in
a postcondition does then not make sense. The constraint
cannot be evaluated, as the message specification results in
an undefined expression. Nevertheless, a message to that
object might actually have been sent to that object.

In contrast, our approach captures this situation. We can
separately check the value of the attribute destObj. If it
has the predefined OCL value OclUndefined (i.e., the only
instance of type OclVoid, see Figure 3), the destination ob-
ject is no longer existing. In fact, this even gives us the
chance to explicitly require that certain message destination
objects must still exist or must have been destroyed.

Additionally, the attributes referring to the source and
destination types of messages allow to restrict the kind of
participants of message exchanges. For example, we can
require that messages getBonus() may only be sent to ob-
jects of type Company:
context Person::collectBonus()
post: let messages : Sequence(OclMessage) =

self.sentMessages(getBonus(?:Status))
in
messages->forAll(msg:OclMessage |

msg.destType().oclIsTypeOf(Company))

Similarly, we can restrict receptions of messages in pre-
conditions or even invariants. Accessing received messages
is discussed in the next section.

4.3 Received Messages

While it is already possible to reason about messages
sent in OCL 2.0, there is currently no means to access and
reason about the messages received by an object.

At this point we have to discuss whether it is really nec-
essary to formulate constraints on received messages with
OCL. First of all, there are already other UML means to
specify behavioral constraints over received messages, e.g.,
Protocol State Diagrams and Sequence Diagrams. How-
ever, it might be necessary to specify invariants over re-
ceived messages that go beyond the specification means of

State Diagrams, e.g., to define a priority scheme after recep-
tion of two different signals or to specify a more complex
reaction after reception of an external signal. This issue is
of particular interest in the domain of embedded real-time
systems, where additional real-time properties have to be
considered. But as UML and OCL are intended for general
purpose modeling, there is no inherent notion of time, such
that a dedicated UML profile should be considered in this
case.

However, causal relationships concerning requests and
acknowledgments might still need to be modeled and are of
interest in the context of OCL specifications as well. This
soon leads to temporal extensions of OCL that have already
been proposed, e.g., in [1]. Unfortunately, such extensions
make use of temporal logics to provide a formal semantics,
which is definitely out of the scope of the OCL standard
in its current state. We therefore stick to our first-order
predicate semantics presented in [4]. We make use of the
system state component ΣinputQueue to provide a seman-
tics for our new operation receivedMessages() on type
OclAny (cf. Figure 3).

Such a semantics is given in the form of a denotational
interpretation function I[[op]](〈σ(M), β〉) for an operation
signature op = (ω : tc × t1 × . . . × tn → t) ∈ OP over
a system state σ(M) and an OCL-specific variable assign-
ment β.2 In operation signatures, ω is the operation name,
c is the class for which the operation ω is defined, and tc
is the respective OCL type. t1, . . . , tn are the parameter
types, and t is the result type of the operation.

We define the semantics of OCL message operation
receivedMessages() over a system state σ(M) and vari-
able assignment β in the context of a given currently exist-
ing object oid ∈ ΣCLASS,c. The semantics of operation
receivedMessages() is formally notated by

I[[receivedMessages()]](〈σ(M), β〉)(oid).

The evaluation result is simply determined by the set
σinputQueue,c(oid), where σinputQueue,c is a function over
the set ΣinputQueue of incoming messages that are waiting
to be dispatched. We only have to add the corresponding
parameter values stored in ΣinputQueueParam,c to each el-
ement of σinputQueue,c(oid). However, a detailed formal-
ization is omitted here only for the sake of concision.

We decided that operation receivedMessages() re-
turns a set of messages rather than a sequence, as the latter
would require some kind of ordering predicate on incoming
messages. But the order of incoming events is a well-known
semantic variation point in UML. One can use the built-in
operation sortedBy() to induce a sequence of messages if
this is desired.

2Variable assignment β determines values for OCL-specific variables,
i.e., local variables defined in let-expressions and iterator variables used
in collection expressions.

5 Related Work

A good overview of approaches that define a semantics
for (parts of) different versions of OCL is given in [2]. How-
ever, our own recent work [4] so far provides the only for-
mal integration of OCL messages into the rest of OCL.

We know of only one other proposal to enhance the no-
tion of OCL messages, i.e., the work by Kyas and de Boer
[8]. They distinguish between local and global specifica-
tions for OCL constraints. Additional built-in types such as
OclEvent with attributes sender, receiver, and an event
kind (send, receive, invoke, return) are introduced. Using
these types, new predefined attributes localHistory and
globalHistory are presented that allow to access the se-
quence of sent and received messages. This approach also
avoids the rather cryptic message operators ^ and ^^. How-
ever, an integration into the semantical OCL framework
(either the metamodel or the formal semantics) is not de-
scribed.

In contrast, we can provide a formal definition of our
enhancement of the OCL message concept based on the
formal notions of our previously proposed extended object
model and extended system states.

6 Conclusion

We identified shortcomings in the syntactical and seman-
tical definition of OCL messages and proposed correspond-
ing enhancements that keep compliant to the established no-
tation and language concepts. Our changes in the definition
of OCL messages affect other parts of OCL, e.g., the type
system that has to be adjusted to be able to refer to OCL
types at the UML user level M1. The OCL community is
aware of this problem in the current type system and we
expect that this issue will be resolved in the context of the
finalization of OCL 2.0.

The formal semantics of OCL 2.0 is relatively complex.
However, the underlying logic is still restricted to pure first-
order predicate logic, i.e., temporal logic is so far not ap-
plied. It should nevertheless be investigated in the future
whether temporal logic should be considered both for direct
application in user-defined OCL constraints and as an ap-
proach to formulate the underlying formal OCL semantics.
This could, e.g., avoid the explicit storage of the history of
messages sent.

Although there are already some OCL tools available
(see http://www.klasse.nl/ocl for an overview), there is cur-
rently no tool available that supports OCL messages. We
hope that our work can influence the development of appro-
priate tools in the near future.

Acknowledgments. The work described in this article re-
ceives funding by the DFG project GRASP within the DFG

Priority Programme 1064 ’Integration von Techniken der
Softwarespezifikation für ingenieurwissenschaftliche An-
wendungen’.

References

[1] J. Bradfield, J. Küster Filipe, and P. Stevens. Enriching OCL
Using Observational Mu-Calculus. In R.-D. Kutsche and
H. Weber, editors, 5th International Conference on Funda-
mental Approaches to Software Engineering (FASE 2002),
April 2002, Grenoble, France, volume 2306 of LNCS, pages
203–217. Springer, 2002.

[2] M. V. Cengarle and A. Knapp. OCL 1.4/1.5 vs. OCL 2.0
Expressions: Formal Semantics and Expressiveness. Soft-
ware and Systems Modeling (SoSyM), Springer, 3(1):9–30,
March 2004.

[3] S. Flake. OclType – A Type or Metatype? In UML
2003 Workshop ”OCL 2.0 – Industry Standard or Scien-
tific Playground?”, October 2003, San Francisco, CA, USA,
Electronic Notes in Theoretical Computer Science. Elsevier,
Amsterdam, The Netherlands, 2003.

[4] S. Flake. Towards the Completion of the Formal Semantics
of OCL 2.0. In V. Estivill-Castro, editor, 27th Australasian
Computer Science Conference (ACSC 2004), Dunedin, New
Zealand, volume 26 of Australian Computer Science Com-
munications, pages 73–82, January 2004.

[5] S. Flake and W. Mueller. Semantics of State-Oriented Ex-
pressions in the Object Constraint Language. In 15th Inter-
national Conference on Software Engineering and Knowl-
edge Engineering (SEKE 2003), July 2003, San Francisco
Bay, CA, USA, pages 142–149. Knowledge Systems Insti-
tute, 2003.

[6] A. Kleppe and J. Warmer. Extending OCL to Include Ac-
tions. In A. Evans, S. Kent, and B. Selic, editors, UML 2000
- The Unified Modeling Language. Advancing the Standard.
York, UK, volume 1939 of LNCS, pages 440–450. Springer,
2000.

[7] A. Kleppe and J. Warmer. The Semantics of the OCL Action
Clause. In T. Clark and J. Warmer, editors, Object Modeling
with the OCL: The Rationale behind the Object Constraint
Language, pages 213–227. Springer, 2002.

[8] M. Kyas and F. de Boer. On Message Specifications in
OCL. In UML 2003 Workshop on Compositional Verifi-
cation of UML Models, October 2003, San Francisco, CA,
USA, Electronic Notes in Theoretical Computer Science. El-
sevier, Amsterdam, The Netherlands, 2003.

[9] OMG, Object Management Group. UML 2.0 OCL Final
Adopted Specification. OMG Document ptc/03-10-14, Oc-
tober 2003. ftp://ftp.omg.org/pub/docs/ptc/03-10-14.pdf.

[10] OMG, Object Management Group. Unified Modeling Lan-
guage 1.5 Specification. OMG Document formal/03-03-01,
March 2003.

[11] M. Richters. A Precise Approach to Validating UML Mod-
els and OCL Constraints. PhD thesis, Universität Bremen,
Bremen, Germany, 2001.

[12] J. Warmer and A. Kleppe. The Object Constraint Language
– Getting Your Models Ready for MDA. Addison-Wesley,
2003.

Entering the Heart of Design: Relationships for Tracing Claim Evolution

Shahtab Wahid, C. F. Allgood, C. M. Chewar, D. Scott McCrickard
Center for Human-Computer Interaction and Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106 USA

 {swahid, callgood, cchewar, mccricks}@vt.edu

Abstract
Designers need guidance in tracing knowledge to support
the iterative development of interactive software
interfaces. Claims show promise in capturing design
knowledge with concise descriptions of an artifact’s
psychological effects on users, but adoptions and
modifications made during design processes result in new
claims. The manner in which new claims are created
based on previous claims establishes unique knowledge
relationships not well captured by existing research. This
paper proposes six claim relationship types presented with
general concepts and examples, allowing a more robust
claims analysis process to emerge. The definition of
relationships acknowledges claim evolution methods
inherent in design, facilitating knowledge reuse and
providing structure to advance the science of design.

1. Introduction

The advancement of HCI as a science hinges upon the
transfer of knowledge over time within the field. Just as
important as the transfer method (design approaches,
reuse paradigms, etc.) is the form and structure of the
knowledge itself. What better to encapsulate this
knowledge than claims, design rationale that
unapologetically captures both the good and the bad of an
artifact? The claim structure proposed by Carroll
describes the psychological effects of a designed interface
artifact in a usage scenario [1][2][3][10]. Claims address a
variety of situational and interface aspects that affect the
compatibility of the design and user’s models, such as
user satisfaction and feeling of reward, color and object
layout, and strength of affordances. Inherently objective,
claims provide designers with an unadulterated view into
what makes an artifact live and breathe, grounded in
theories and observations of user experiences.

To illustrate the concept of a claim, we consider a
generic timeline artifact that could be used to view all
activities and deadlines related to a project. Timelines
have been used extensively in information management,
resulting in numerous broad statements about their usage

Timelines that dominate the organization, monitoring, and
filtering of data . . .

+ add historical context and aid temporal logic by
organizing work, correspondence, and transactions
in the order that they occur

+ provide a natural guide to experience as a
universal skeleton-key
BUT can subsume metaphors suggested by other
interface artifacts and hierarchical categorizations
BUT may add to confusion by giving an improper
timestamp to data with ambiguous temporal
characteristics

Figure 1. Claim about a timeline artifact, from [4].

summarized as an example claim in Figure 1. This
construct concisely illustrates the tradeoffs of using a
timeline with the upsides and downsides of the claim.
Through design research and innovation, we try to
preserve the upsides and mitigate the downsides.

Therefore, it is important to examine claims as they
change and evolve, are created and reused. Just as there
are a multitude of human relationships as new generations
are born and they themselves reproduce, we propose that
there are many claim relationships that exist during the
development and evolution of design artifacts. Recording
and understanding these relationships provides deeper
insight into the overall design process.

Why is this important? Recognizing claim relationship
types during the design of an artifact impacts both current
and future designs. It enhances the current process by
providing a more detailed view of the design history so
better decisions can be made during future iterations.
Claim relationship types supply valuable knowledge of a
claim’s origin and development for its potential reuse in
another context. In summary, explicit relationships aid in
the transfer of claim-embodied knowledge in both the
short-term and the long-term.

A need exists for a rich set of classifications for claim
relationships. We propose six new claim relationship
types in this paper. We also illustrate how our relationship
types may come to exist during the development of a
system, building from the timeline example above. These

relationship types are by no means exhaustive or all-
encompassing. Rather, they are the beginning of a new
perspective on the depths of claims and a science of HCI.

2. Related Work

Claims analysis supports the practice of mediated
evaluation [9] in human-computer interaction and
provides process for evolving a record of design rationale,
an argument introduced more than a decade ago [3]. As a
form of mediated evaluation, claims analysis blends the
benefits of intrinsic evaluation (where a design is
described in terms of the performance characteristics it
supports) and payoff evaluation (where success in
meeting design goals is determined near the end of a
project)—it allows explicit and deliberate goal formation,
testing, and revision early and often throughout the course
of design. As an evolving record of design rationale, the
set of claims forming a claims analysis is a series of
hypotheses and observations about an artifact in use.
While potential benefits have been recognized for making
and reusing claims [10], formal and complete guidance
for describing relationships among claims is not available.

Claims are one component in Carroll’s task-artifact
framework [1] and scenario-based design process [8] that
helps designers recognize tradeoffs implicit in the design
as users form a goal, act toward its achievement, and
evaluate progress. Articulating these tradeoffs as useful
generalizations for future design work provides a
mechanism for generative problem-solving and design,
integrating theory development with design evaluation
[3]. Based on the task-artifact framework and the notion
of claims reuse, Carroll and Sutcliffe have developed a
gradient of progressively powerful object-oriented design
analysis techniques whose potential can only be realized
with a more clearly defined claim structure [1][10][11].

Certainly, other approaches to design knowledge reuse
are prevalent in the software engineering community,
especially patterns and object modeling. In our thinking,
claims are compatible with both the HCI processes
embedded in scenario-based design and patterns
records—with claims as the heart of a pattern (from an
HCI perspective) and the focus of usability engineering
work, expressing the key psychological tradeoffs of the
reusable artifact modeled by the pattern. Claims-to-
pattern relationships are likely to be a many-to-one.

3. Claim Relationship Types

We propose six new claim relationship types that respond
to the need for richer descriptions of claim structures and
iterative processes within claims analysis. This section
defines each relationship type in turn using general
concepts, while Section 4 illustrates integrated
relationships in a working example.

Figure 2. Postulating/Predicating Claims

3.1. Predicating/Postulating Claims

The first key relationship type between claims is the
predication/postulation relationship apparent in the
process of mediated evaluation. In a claims analysis, a
designer assigns credit or blame attributions to artifacts,
which are continuously refined in subsequent design
activities. Design activities typically iterate through three
processes, from requirements analysis to general activity
design to specific design of features—a pattern paralleled
by the themes addressed in each claims analysis. In each
process, a designer collects evidence to assert postulating
claims to guide the next process, while alleviating or
refuting claims from the previous process with
predicating claims based on new ideas or evidence.

As illustrated in Figure 2, a designer would make
Claim 1 to express aspects of the problem domain based
on requirements analysis. This leads to the creation of
Claim 1.1 as a potentially valuable new user activity
through postulation. As specific interface features are
conceptualized (Claim 1.1.1) to support the desired user
activity (Claim 1.1), Claim 1.1.1 can be referred to as a
postulating claim of Claim 1.1. All of the claim upside
and downside tradeoffs could be elaborated with
scenarios, illustrated with storyboards or other prototypes,
and tested with users. Through these design development
processes, designers gain inspiration about new ideas—
here, an alternate feature (described by Claim 1.2) is
found to offer better support for the activity described by
the predicating claim, Claim 1.1. Likewise, proposed or
validated activity concepts (Claim 2) would be predicated
by a claim about the problem domain (Claim 1).

Relating claims in this manner preserves their role
within an evolving design rationale context. Recognizing
claims in a role as open propositions provides an impetus
for continued design development and testing.
Alternatively, antecedents or propositions backed by solid
evidence suggest a potentially reusable design artifact.

3.2. Executing/Evaluating Claims

Norman presents an argument for interface design as a
cognitive engineering discipline, where designers assist
the user with progressing through stages of action [7]. He

Figure 3. Evaluating/Executing Claims

describes two key hurdles within the stages—crossing the
Gulf of Execution (after which goals and specific action
sequences are decided upon) and the Gulf of Evaluation
(where the user appraises the current state of a system).
Rosson and Carroll’s scenario-based design methodology
describes how information design decisions influence the
stages of action required for crossing the Gulf of
Evaluation, and how interaction design addresses the Gulf
of Execution [8]. In information design, interface choices
such as use of color, animation, visualization techniques,
and layout are made about specific features. Interaction
design is more concerned with selection of controls,
widgets, affordances, and input techniques.

Certainly, a given artifact may be the subject of both
information and interaction claims, and it would be
helpful to have a relationship to describe this linkage.
Other artifacts may only support the user in one of the
Gulfs, but may typically be used with other artifacts that
address either the same or opposite Gulf. Therefore, the
relationship between two feature claims can be described
according to the “destination claim.” A destination claim
in the Gulf of Execution can be the executing claim for
claims in either Gulf. Likewise, a claim in the Gulf of
Evaluation could be the evaluating claim for other claims
in the same or opposite Gulfs.

The user task flow determines where the execution
and evaluation relationships exist between claims. For
instance, if a user’s task flow involved Claim 1.1.1, then
Claim 1.1, then Claim 2, and so on (see Figure 3), the
claim relationships could be described as follows: Claim
4.2 is the executing claim for Claim 2 and is further
executed by Claim 3.1.1; Claim 2 extends Claim 1.1 by
elaborating evaluation features; and Claim 1.1 is the
evaluating claim for Claim 1.1.1. To preserve the context
of the task flow, the chain of claims should be related as
precisely as possible (for instance, Claim 2 should not be
described as an evaluating claim for Claim 3.1.1, without
including the intermediate links).

Having a simple vocabulary to describe the
relationship of claims across the stages of action and

Gulfs operationalizes Carroll and Kellogg’s notion of
“task coverage” [2]. As a heuristic for sufficient detail in
a claims analysis, task coverage is achieved when at least
one claim describes each major artifact state within the
task flow across the Gulfs of Execution and Evaluation. In
later work, Carroll specifically cautions against replacing
a single artifact or claim within a series of task coverage
claims, lest the context of task flow be broken [3]. As we
move toward developing libraries of claims for reuse,
keeping execution and evaluation relationships explicit
will preserve task context and assist designers with
establishing task coverage in claims analyses.

3.3. Generalizing/Specifying Claims

Claims can have different scopes depending on the
granularity of the artifact components which they
describe. A general claim might describe psychological
effects that result from the holistic design or several
distinct portions (combinations of widgets) used in a
variety of contexts. General psychological effects can be
elaborated by claims that have a narrower scope. These
claims apply to very specific parts of an interface (a
particular button), usage instances, or user characteristics.
They are most useful in guiding component reuse, since
they describe an interface at its finest detail and raise in-
depth issues related to the interface. However, the
“general idea” of a specific claim will often have more
frequent applicability to new design problems.

In our framework of claim relationships, the
generalization/specification relationship is the linkage
between two claims with different scopes. A generalizing
claim is the consequence of taking a specific claim and
generalizing it to apply to a courser artifact or usage
context granularity. A specializing claim is the opposite,
in that it is the result of narrowing the scope of a general
concept. The process of generalizing allows one to create
claims applicable to many situations (see Claim 2 in
Figure 4). This course of action permits one to take ideas
from a specific problem and reuse them in a new context
to solve design issues—sowing the seeds for innovation
and technology transfer. A key concern in generalizing
and specifying new claims is with extending or narrowing
the scope in an invalid manner, thus, losing the support of
empirical or theoretical evidence grounding the original
claim. For example, a generalizing claim can only be
reliably used in a narrower context, as it inherits upsides
and downsides characteristic to specific conditions.

Sutcliffe and Carroll propose a factoring method [10]
for evolving between the two types of claims mentioned,
although they use the terms “parent claim” and “child
claim.” This process involves an analysis of the claim and
the situation in which it is used, and allows production of
new claims from existing claims. The method is used to
examine how a claim’s generalized form spans different

contexts. In the context of this method, since one analyzes
a specific claim in order to generate a general claim, the
parent is the specific claim and the derived (general)
claim is the child claim. Unfortunately, the terms are
misguiding. With Sutcliffe and Carroll’s terminology, a
specific claim that leads to the creation of a general claim
would be described as “a child spawning a parent.” The
terms do not distinguish between directions the scope of a
claim can change, motivating our argument for the use of
generalization and specification relationship types.

3.4. Translating Claims

Existing claims may not be directly applicable to new
design problems. Often though, existing claims provide
the basis for the generation of new claims due to
recognized similarities between the current problem
domain and the one in which the original claim exists.
The relationship from the original claim to the new claim
is called translation. Ultimately, claims linked via the
translation relationship indicate where cross-domain reuse
has occurred in the development of a system (e.g.,
translation from Claim 1 to Claim 2 in Figure 4).

The crux of translating is the establishment of a
correlation between the existing claim and the claim to be
created. To accomplish this, the designer is required to
consider the existing claim at a deeper level of
abstraction, or a generalized version of the claim. While
no explicit generalized claim is created, as suggested by
Sutcliffe [11], the general form of the original claim exists
in the mind of the designer. Then, the specific aspects of
the original claim are altered to fit its new context of use,
thus creating a new translating claim. Ideally, many of the
original tradeoffs will still apply in this new context;
however, situating the claim requires re-evaluation of
upsides and downsides with respect to this context.

3.5. Fusing/Diffusing Claims

The fusion relationship between claims is the outcome of
the combination of two or more claims into a new fusing
claim. A developer recognizes that certain aspects of
various claims can be applied together in a new and
innovative way, such as Claim 3 in Figure 5. The result is
a sort of hybrid claim that is pieced together with artifacts
and design rationale from each of the supplemental
claims. In addition, further design rationale may be
required due to novel application of the original artifacts.

Similarly, a designer could break a claim into smaller
claims, taking only a fraction of what exists in the original
claim to produce a diffusing claim (e.g., Claims 2.1 and
2.2 in Figure 5). This time, the designer focuses on part of
a larger claim and elaborates on artifacts and tradeoffs
that pertain to the new, smaller claim. This practice may
result in the creation of multiple smaller claims,

depending on how the original claim is divided (i.e. there
were equal acting parts of the original claim). This
relationship between the original super-claim and the
resulting fractional claim is called diffusion.

Relating claims in this manner can illustrate progress
throughout design iterations as well as where claim reuse
has occurred. During the design process, testing and
evaluation provide the basis for the validation or
alleviation of claims. Another result of this process may
be the fusion of two claims that seem to demonstrate
strong positive results in combination or the diffusion of a
claim that exhibits distinctively different results for
different aspects of its makeup.

Additionally, two existing claims from completely
different problem domains may be fused into a new and
innovative claim. This process was noted, but not named
by Carroll and Kellogg [2]. An intermediate step, similar
to the generalization process described above, requires the
designer to consider “what” the claim does, as opposed to
“how” this is accomplished. This distinction depends on
the level of abstraction at which the claim is considered.
In this instance, fusing claims is similar to integration as
described by Krueger [6]: the designer “must clearly
understand . . . those properties of the artifact that interact
with other artifacts.” This is accomplished by considering
an abstract version of the claim “in which the internal
details of the artifact are suppressed.”

Figure 4. Generalizing/Specifying, Translating Claims

Figure 5. Fusing/Diffusing, Mitigating Claims

3.6. Mitigating Claims

The strength of a claim relies on the explicitness and
poignancy of its upsides and downsides. Upsides can
represent the potency of an interface, while downsides
dictate adverse consequences resulting from the interface
design. Explicitly identifying weaknesses of a design
often expedites improvement of usability—a process that
should be repeated as new flaws are uncovered.

Scenarios are descriptions of a sequence of mental and
physical actions a user of an interface may go through.
Carroll suggests that one can use scenarios in order to
construct new alternative scenarios [1]. The process of
analyzing the psychological design rationale within a
scenario allows designers to identify alternative scenarios
which may be appropriate for other possible usage
scenarios. Alternate scenarios are created in a way so that
they can handle or correct disadvantages and at the same
time maintain or improve strengths of other scenarios.

This same process is valid for claims. A mitigation
relationship is the result of a process in which a new
claim is created in order to manage limitations of another
claim. As previously mentioned, claims make their

downsides explicit, clearly identifying areas for which
designers must also find solutions. The purpose of a
mitigating claim is to resolve the downside in order to
improve the overall design (Claim 2.2.1 in Figure 5
removes a downside and gains an upside on Claim 2.2).
The method of creating mitigating claims can be repeated
as many times as needed until designers are satisfied.

After designers make improvements to an interface in
design iteration, usability testing must validate the
improvements by testing the performance of the
mitigating claims. Thus, mitigating claims become a trace
of the design improvements that are made over time.

The repetition of mitigating claim creation and testing
for verification produces a chain of mitigating claims.
Each claim mitigates a downside in the previous claim. In
such a chain, solutions to problems can easily be found,
helping general reuse. Typically, the beginning of the
chain may contain solutions to slightly more general
problems. As more specific problems are identified,
mitigating claims find solutions that are more specific. A
claim that is further down the chain may turn out to
mitigate, not only the claim used to create it, but claims
that are even higher up the chain.

Figure 6. Claim relationships for the ClassroomBRIDGE project; boxes represent claims referenced in Section 4.

4. Example—Claim Relationships in Design

To illustrate how claim evolution takes place in usability
engineering efforts, we turn to our development of
ClassroomBRIDGE, a collaborative project management
tool for middle school science classes [5].
ClassroomBRIDGE built on several previous efforts, both
internal to our group and drawn from other researchers,
making it rich with examples of claim evolution.

One of the first requirements was developing interfaces
that could be used by students at their desk and teachers
throughout the classroom. The central technological
addition to our suite of classroom tools was a large screen
display, positioned at the front of the room. Even though
the interfaces were used in different ways—students
constantly study the desktop systems, while teachers

quickly get guidance from a large screen—we recognized
that both requirements could be expressed as a
generalizing claim for ubiquitous awareness (see “1” in
Figure 6). We postulated that using a timeline metaphor
for activity awareness supports both user requirements.

In initially brainstorming appropriate activity design
approaches, we were intrigued by the Timeline Claim (see
Figure 1). We realized that our idea of a timeline
metaphor suggested a specifying claim regarding the
utility of timeline displays expressed in the original
Timeline Claim. However, we did not wish to employ the
full power of the Timeline Claim as put forth by the
authors; instead we created a diffusing claim in which we
maintain many of the upsides of timelines yet still provide
alternate views to the data (see “2” in Figure 6).

Extensive use of a prior, similar system developed by
our group revealed limitations in our overall approach—

predicating claim downsides of the alternate view
implementation would apply, creating usability concerns.
Specifically, the student interface contained a planning
tool with the downside: created pages were rarely viewed
and never updated after creation. We mitigated this
downside in our new interface with links in the timeline to
the planning tool pages. The timeline links provided a
constant reminder of recently added pages, encouraging
review and update by the students (see “3” in Figure 6).

In designing specific features (see “4” in Figure 6), we
realized that the large screen display would provide
teachers with a constant progress view of all student
teams on a timeline similar those on student computers.
However, our multi-platform system also necessitated that
we support many system elements, like the timeline, on
both desktop systems and the large screen display. As
many elements of the desktop systems were already
created and tested, we had to translate much of the
information to the large screen display, often reusing
elements like the work artifact icons and deadline
markers. This was done by making translating claims
from desktop systems to the large screen for each artifact.

As we discussed previously, the timeline view is not
the only view available to students. One challenge in
building ClassroomBRIDGE was in connecting the
timeline to a concept map, notification banner, chat tool,
editor, and other views. Our solutions resulted in
numerous evaluating, executing, and fusing claims. For
example, we color coded related elements in different
views to bridge the gap between perception and
interpretation in users, two stages in the Gulf of
Evaluation and the basis for one of our evaluating
claims—deadlines were shaded with yellow in both the
notification banner and the timeline view. As a second
example, to assist users with forming new action plans
and initiating execution within the timeline view (Gulf of
Execution stages), we implemented tooltips showing
authors and dates of work items that would launch
appropriate tools when clicked. The tooltip executing
claim would help a user initiate an update action for a
document they recognized to be out of date.

5. Conclusions and Future Work

We have proposed a framework in which claim relations
can be named and described as claims evolve over time.
A lot of previous work has been done on claims, but little
has focused on claim relationships. Our work fills a need
for identifying and defining types of claims and links that
may exist among this reusable design knowledge.

The primary purpose of such definitions is to make
explicit an individual claim’s role within the larger claims
analysis and derivation across multiple design studies.
Since an interface is the aggregate expression of many
claims working together, each claim establishes

relationships with other claims. The six relationships we
define allow designers to more richly describe claims in
the widest context possible by describing relationships to
other claims. By enabling a record of claim evolution, our
framework permits one to understand the process used to
derive a new claim or reuse a claim in another domain.

Our future work consists of developing a tool based
on this framework to organize a claims analysis. This
visualization will show all the claims being used in an
interface development process along with relationships to
claims in a design knowledge repository.

We envision our framework as not only being able to
describe pro forma design rationale, but to provoke
reflection and creative thought processes that would not
otherwise be explored by designers. Many of the implicit
processes used to generate new claims may be innate for
experienced designers, but this formalism will be valuable
for design education. With the many benefits of our
claim-type definitions, we lay the foundation for a science
of design within human-computer interaction.

References

[1] Carroll, J. M. Making use: a design representation,
Communications of the ACM 37(12). December 1994.

[2] Carroll, J. M. and Kellogg, W. A. Artifact as theory-nexus:
Hermeneutics meets theory-based design. In Proceedings
of the Conference on Human Factors in Computing
Systems (CHI’89), ACM. New York, 1989. 7-14.

[3] Carroll, J. M., Singley, M. K., and Rosson, M. B.
Integrating Theory Development with Design Evaluation,
Behavior and Information Technology 11, 1992.

[4] Freeman. Eric and Gelernter, David. Lifestreams: A
Storage Model for Personal Data. SIGMOD Record (ACM
SIG on Management of Data 25(1), 1996.

[5] Ganoe, C., Somervell, J., Neale, D., Isenhour, P., Carroll, J.
M., Rosson, M. B., and McCrickard, D. S. Classroom
BRIDGE: Using Collaborative Public and Desktop
Timelines to Support Activity Awareness. In Proceedings
of the ACM Conference on User Interface Software and
Technology (UIST '03), Vancouver BC Canada, Nov 2003.

[6] Krueger, Charles W. Software Reuse, ACM Computing
Surveys (CSUR) 24(2), June 1992.

[7] Norman, D. A. (1986). Cognitive engineering. In D. A.
Norman & S. W. Draper, Eds. User Centered System
Design, 31-62, Hillsdale, NJ: Erlbaum.

[8] Rosson, M. B. and Carroll, J. M. (2002). Usability
Engineering: Scenario-Based Development of Human
Computer Interaction. Morgan Kaufmann Publishers.

[9] Scriven, M. (1967). The methodology of evaluation. In R.
Tyler, R. Gagne, & M. Scriven (Eds.), Perspectives of
curriculum evaluation. Rand McNally, 39-83.

[10] Sutcliffe, Alistair G. and Carroll, John M. Designing claims
for reuse in interactive systems design, International
Journal of Human-Computer Studies 50. 213-231, 1999.

[11] Sutcliffe, Alistair. On the effective use and reuse of HCI
knowledge, In ACM Transactions on Computer-Human
Interaction, 7(2), 197-221, June 2000.

Future Proofing and Retargeting Application Logic Using O2XML

Marselina Wiharto and Peter Stanski
School of Computer Science and Software Engineering, Monash University, Australia

Marselina.Wiharto@csse.monash.edu.au, Peter.Stanski@stanski.com

Abstract. The software engineering tasks associated with
software retargeting to new languages and future
platforms are formidable when performed by hand. In this
paper, we present one possible way that may be used to
optimise the porting process. Through the usage of
eXtensible Markup Language (XML) technologies and
compiler code generator backend, we present a
framework for rapid application logic transformations and
its abstraction from programming languages.

1. Introduction

In the recent years, we have seen a greater convergence
on core software industry platforms into J2EE and .NET
technologies. Whilst these technologies are relatively
young, they often require the interoperability with more
mature software investments as parts of a complete
solution.

Some of the older technologies now need to be either
migrated or made to interoperate with more recent
technologies. The interoperability (interop) path is more
appealing from a project delivery timeframe perspective.
However, some older technologies are unable to
interoperate without significant reworking. Thus, this is
one of the main appeals for XML Web Services, which
can abstract and hide legacy components. However, once
these systems are made to interoperate, they frequently
suffer from scalability and reliability issues. This is
usually attributed to those systems never being designed
for the higher levels of demand.

The second more expensive option is that of
application porting, or more precisely the extraction of
business rules and functions, and their rewriting in a more
recent programming language. Some software automation
conversion tools are available to help, however these
struggle with semantic mappings from one language to
another. Thus, automation can only port parts of the
application logic and may itself introduce hard to find
bugs during the mapping operations.

In an ideal world, if all application logic was stored in
a semantically rich source code format, this would
simplify the migration and retargeting automation

process. New versions of the same business rules could be
generated (stamped out) in other programming languages
by migration tools without any manual porting activities,
which are time consuming.

With this in our minds, we set out to investigate this
proposition. Thus, the above model was used as the basis
for our prototype system described herein.

2. Introducing O2XML

Object Oriented XML (OO XML), or O2XML in brief, is
a language neutral XML based markup language.
O2XML is aimed at representing OO languages in
general. However, our current version of O2XML focuses
on representing C#, J#, Java, and VB .NET source codes.

Source codes, which are used to express application
logic, can be broken down into smaller components. For
example, a class definition can be made up of variable
declarations and method declarations and definitions. A
method definition can be decomposed further into even
smaller constructs, such as assignments, If statements, For
loops, and method invocations.

In O2XML, these constructs are represented using
elements with or without attributes. The current O2XML
schema supports 27 fundamental constructs ranging from
class declarations and definitions down to If statements
and binary expressions.

The following Code Listing 1 presents an example
O2XML document: SimpleMathematics.xml, which
represents the SimpleMathematics class. This class has
been simplified to include only one method, which is the
Square function. This function takes an integer as an
argument and returns the result of multiplying this integer
with itself.

As can be seen from this O2XML document, a class is
represented by the class element with the class name
stored in the name attribute of the class element. The
class_definition element houses the methods element,
which in turn consists of a method element. This method
element represents the Square function. Embedded within
the implementation element of the method element is a
return_statement element, which returns the result of the
self-multiplication of the method’s integer parameter.

Code Listing 1: Sample O2XML Document:
SimpleMathematics.xml

3. Prototype System

The main functionality of the prototype system is to
produce source codes and executables in multiple
languages from any given O2XML document. The current
prototype system includes the O2XML and two
components that produce C#, J#, Java, and VB .NET
source codes and executables. The functionality of these
two components overlaps but they are based on two
different technologies. The first component uses the
eXtensible Stylesheet Language Transformation (XSLT)
[6] approach and the second component uses the
CodeDOM technology [5].

XSLT. XSLT is an XML based technology. It is an XML
based scripting language that can be used to transform
XML documents to other document formats, such as text
and HTML [6].

CodeDOM Technology. The CodeDOM technology is a
subset of the Microsoft .NET Framework. The core of this
technology is the System.CodeDom [9] and the
System.CodeDom.Compiler [10] namespaces. These
namespaces work together to create a language
independent in-memory representation of source codes
and produce source codes as well as executables (DLLs
and EXEs) in different supported languages from this
representation [5].

In the CodeDOM world, each source code component
is represented by an object. For example, a class is
represented by a CodeTypeDeclaration object, while an If
statement is substituted by a CodeConditionStatement
object. Similar to source code structure, these objects can
also be nested, such that a CodeConditionStatement

object will be indirectly housed in a CodeType
Declaration object.

3.1. XSLT Transformer

The XSLT transformer component relies heavily on the
XSLT scripts to transform O2XML documents into
language specific source codes. The number of XSLT
scripts required corresponds directly to the number of
languages, in which source codes can be produced. The
current XSLT transformer is capable of outputting C#,
Java, and VB .NET source codes. The core of the XSLT
transformer component includes three XSLT scripts, i.e.
C#, Java, and VB .NET XSLT scripts.

The XSLT transformer does not directly output
executables. However, a simple tool that compiles the
outputted source codes can be written to allow the XSLT
transformer to also output executables.

3.2. CodeDOM Generator

As reflected in its name, the CodeDOM generator is based
on the CodeDOM technology. This generator is able to
produce more outputs in comparison to the XSLT
transformer. It is capable of outputting C#, J#, and VB
.NET source codes, DLLs, EXEs, ILs, .NET XML Web
Services, and console applications from any given
O2XML document.

The last two output types (i.e. .NET XML Web
Services and console applications) are essentially
variations of the basic DLL and EXE outputs. At the core
of a .NET XML Web Service is a DLL and a console
application takes the form of an EXE.

These various prototype components are put together to
constitute the prototype system with a graphical user
interface as shown in Figure 1 below.

Figure 1: The Graphical User Interface of the
Prototype System

Examples of a .NET XML Web Service and a console
application generated (using the prototype system) based
on the sample O2XML document in Code Listing 1 are
shown respectively in Figure 2 and Figure 3. The .NET
XML Web Service has been generated in C#, while the
console application is a VB .NET executable (EXE).

Figure 2: SimpleMathematics .NET XML Web
Service in C#

Figure 3: Command Line Execution of the Square
Function of the VB .NET SimpleMathematics Console

Application

4. Related Works

The idea of representing source codes using an XML
based markup language is not new. A number of research
projects has introduced several XML based markup
languages to represent source codes of languages, such as
C++ and Java. Despite their various motivations, the
following research projects are presented to illustrate the
different XML based markup languages and how they
have been exercised.

4.1. JavaML

Badros [4] from University of Washington proposes the
use of Java Markup Language (JavaML) to represent Java
source codes. He claims that by having such a
representation, programs can work with source code
without requiring a parser. Instead, XML tools can be
used to manipulate the corresponding XML based

representation of the source codes, i.e. JavaML. In his
paper [4], he demonstrates the parsing of Java source
codes to produce JavaML and the transformation of
JavaML to obtain Java source codes back. He also shows
that source code statistics and HTML documentation can
be produced from JavaML.

4.2. srcML

Maletic and colleagues [7] propose a similar XML based
markup language, which they named SouRce Code
Markup Language (srcML). Despite its generic name, the
current implementation of srcML focuses on giving
structures to C++ source codes. In another paper [8], they
outline a lightweight C++ fact extractor, which is of a
parallel concept with the source code statistics produced
by Badros. This extractor obtains information such as the
number of occurrences of certain constructs from the
srcML representation of the C++ source codes.

4.3. JavaML, PascalML, and PLIXML

Another similar research project to ours is by McArthur
and colleagues [3] who present three XML based markup
languages: JavaML, Pascal Markup Language
(PascalML), and PL/IX Markup Language (PLIXML).
These markup languages are used to represent Java,
Pascal, and PL/IX source codes respectively. In their
paper, they focus on PLIXML and the possibility to use
PLIXML to help migrate legacy applications written in
PL/IX to a more recent programming language.

4.4. CppML, JavaML, and OOML

In University of Waterloo, Mamas and Kontogiannis [2]
put forth three XML based representation as part of their
software engineering environment. They use C++ Markup
Language (CppML) to represent C++ source codes and
JavaML to represent Java source codes. Subsequently,
they represent CppML and JavaML using OO Markup
Language (OOML) by transforming them to OOML using
XSLT. By doing this, they only need to develop a single
component to analyse both C++ and Java source codes as
they are uniformly represented by OOML.

5. Evaluation

In comparison with the related research above, O2XML is
different as it attempts to represent more than one
programming language. Moreover, our prototype system
has been distinctly developed to generate source codes as
well as executables in multiple OO languages, which is
not demonstrated by any of the research project
previously presented. Additionally, the prototype system

also generates .NET XML Web Services and console
applications as an example of retargeting application logic
to different types of components in different languages.

In this section, we present the evaluation of the prototype
system in two main aspects, which are the size of the
O2XML documents compared to the size of the
corresponding source code files generated and the
performance of the XSLT transformer and the CodeDOM
generator in producing source codes and executables
(DLLs and EXEs).

This evaluation was performed on 15 sample O2XML
documents that represent calculation as well as sort and
search algorithms. The size of these files ranges from
1,246 to 39,729 bytes.

A total of 10 test runs were carried out. Using the 15
sample O2XML documents, in each run, C#, Java, and
VB .NET source codes (15 files each) were generated
using the XSLT transformer and C#, J#, and VB .NET
source codes, DLLs, and EXEs (15 files each) were
generated using the CodeDOM generator.

5.1. Size Comparison

The size comparison between O2XML documents and
their corresponding source code files can be grouped into
two sets of graphs. The first set of graphs contrasts the
size of the O2XML documents against the size of the
XSLT generated C#, Java, and VB .NET source code
files. The second set of graphs evaluates the size of the
O2XML documents against the size of the CodeDOM
generated C#, J#, and VB .NET source code files.

These graphs are depicted respectively in the
following Figure 4 and Figure 5. The comparison is
measured in byte figures, which are obtained from
averaging the byte sizes of the relevant files.

Figure 4: Size Comparison between O2XML
Documents and XSLT Generated C#, Java, and VB

.NET Source Code Files

Figure 5: Size Comparison between O2XML
Document and CodeDOM Generated C#, J#, and VB

.NET Source Code Files

These two graphs show that the size of the O2XML
documents is on average 2.9 to 4.7 times larger than the
size of the corresponding source code files. Meanwhile,
the trend across the languages is the same within the two
graphs. Java/J# source codes have the lowest average byte
size, while VB .NET source codes have the highest
average byte size.

Contrasting the two sets of graphs, the CodeDOM
generated source codes have higher average byte sizes
compared to the XSLT generated source codes. This is
because the CodeDOM generator uses white spaces to
align the source codes, while the XSLT scripts uses tab
characters to help format the source code alignment.
Another reason is that the CodeDOM generator also
outputs additional new line characters when it generates
constructs such as nested binary expressions.

5.2. Performance Evaluation

Two performance evaluations were carried out. The first
evaluation compares the performance of the XSLT
transformer with the performance of the CodeDOM
generator in producing C#, Java/J#, and VB .NET source
codes. The second evaluation focuses on the performance
of the CodeDOM generator in outputting C#, J#, and VB
.NET DLLs and EXEs.

The test runs for the performance evaluation were
executed on a machine with the following specifications:

CPU Speed: Pentium IV CPU 2.40 GHz
RAM Size: 480MB RAM
Operating System: Microsoft Windows XP
Professional, Version 2002 Service Pack 1

The results that compare the performance of the XSLT
transformer and the CodeDOM generator in producing
C#, Java/J#, and VB .NET source codes are given in
Figure 6 in millisecond measurement.

Figure 6: Performance of XSLT Transformer vs.
CodeDOM Generator in Outputting C#, Java/J#, and

VB .NET Source Codes

The graph above shows that the average time taken to
output C#, Java, and VB .NET source codes using the
XSLT transformer only varies around 2 to 2.7
milliseconds. Using the CodeDOM generator, the
variation is down to less than one millisecond (0.2 to 0.7
millisecond).

Comparing the performance of the XSLT transformer
against the CodeDOM generator, however, indicates a
more significant difference. The XSLT transformer takes
on average 3.6 times longer to generate the source code
files.

It needs to be noted that the performance figure of the
CodeDOM generator in the above graph does not include
the warm up overhead. A warm up overhead is the extra
time required to generate the first source code file using
the CodeDOM technology. This extra time is mainly
dedicated to initialise the various CodeDOM objects that
are required to represent the source code components, and
for the .NET runtime environment to JIT compile them.

If the warm up overhead is taken into account, the
average time required to generate the source codes can go
up to 31 milliseconds. This, however, only alters the
graph of the language, in which the first source code file
was generated. In our test runs, the first source code
output was in C#. With the C# average being 31
milliseconds, the overall averages of time taken to
generate source codes using the XSLT transformer and
the CodeDOM generator are fairly close (XSLT
transformer: 14.9 milliseconds to CodeDOM generator:
13.1 milliseconds on average).

In general, both generator components require a
reasonably short amount of time to generate the source
codes, i.e. a maximum average of 31 milliseconds, which
is less than a twentieth of a second.

The next graph in Figure 7 presents the performance
of the CodeDOM generator in outputting DLLs and EXEs
measured also in milliseconds.

Figure 7: Performance of CodeDOM Generator in
Outputting C#, J#, and VB .NET DLLs and EXEs

From the graph, it can be noted that across the three
different languages, there is a similar trend with C#
DLL/EXE generation taking the least amount of time and
VB .NET DLL/EXE generation taking the most amount
of time. In general, using the CodeDOM generator, it
takes less than one fifth of a second to generate a DLL or
EXE from an O2XML document.

In summary, although the O2XML documents are
generally larger in size compared to their corresponding
source code files, the prototype system (i.e. the XSLT
transformer and the CodeDOM generator) is still capable
of outputting source codes, DLLs, and EXEs from these
documents in a considerably short amount of time.

6. Future Works

The current prototype system still has plenty of
opportunities for future improvements. To improve the
current prototype system, the following extensions can be
introduced.

6.1. Source Code to O2XML Parser

Having a parser to obtain O2XML documents from their
originating source codes would make our prototype
system more efficient. This extension would complete the
prototype as an end-to-end generator that is capable of
translating source codes from one language to many other
languages.

6.2. Thorough Constructs Support

The current O2XML schema does not provide support for
every possible OO language construct. The schema can be
extended further to support all OO language constructs,
including jagged arrays, unlimited multidimensional
arrays, event handlers, delegates, and inner classes.

6.3. Further Language Support

The above extension can be complemented by adding
more language support. For example, constructs of OO
languages such as Eiffel and C++ could be supported by
the O2XML schema, while the prototype system could be
updated to produce Eiffel and C++ source codes and
executables.

Currently, support to output COBOL .NET source
codes are being added to the prototype. However, this still
remains unstable for the generation of any substantial
application logic.

6.4. Cross Language Library Mappings

Cross language library mappings can be done by mapping
the APIs of one language to the other. To add this feature
to the current prototype, the Java APIs need to be mapped
to the .NET APIs. In having this feature, it would allow
for a seamless source code generation across all the
currently supported languages. However, we would not
expect perfect mappings to take place. Hence,
occasionally, some manual mapping might be required.

6.5. Longhorn Integration

The key component of the Microsoft Longhorn Operating
System technology is its new eXtensible Application
Markup Language (XAML). XAML is an XML based
markup language that can be used to define application
user interfaces independent of the programming language
used [1]. Thus, a single XAML user interface definition
can be reused by backend processors (i.e. which
implement event handling logic) written in different .NET
supported languages.

The current prototype system can be improved by
integrating XAML with O2XML. Such integration would
mean that all application development could now be done
in pure XML.

7. Conclusion

Having presented the related works and outlined the
significance of XML, we have found that the other
projects have hinted at numerous source code processing
possibilities.

In our work, we have successfully transformed
O2XML representations to other languages and managed
to construct functional applications and services.

We have found that both XSLT and CodeDOM are
suitable candidates as transformers. Since the CodeDOM
also functions as a backend code generator, our system

has essentially created an XML input API for the
generation of source codes and binaries. Thus, our project
theoretically has the ability to cookie stamp application
logic, provided the application source code is represented
using the semantically rich O2XML format.

References

[1] B. Rector (2003), “Chapter 1: The “Longhorn” Application
Model”, MSDN Library, October 2003 [Online], Available:
http://msdn.microsoft.com/longhorn/default.aspx?
pull=/library/en-us/dnintlong/html/longhornch01.asp

[2] E. Mamas and K. Kontogiannis (2000), “Towards Portable
Source Code Representation Using XML”, Proceedings of the
Seventh Working Conference on Reverse Engineering, IEEE
Computer Society Press, Brisbane Australia, 23 – 25 November,
pp. 172 – 182.

[3] G. McArthur, J. Mylopoulos, S.K.K. Ng (2002), “An
Extensible Tool for Source Code Representation Using XML”,
Proceedings of the Ninth Working Conference on Reverse
Engineering, IEEE Computer Society, Richmond, Virginia,
USA, 29 October – 1 November, pp. 199 – 208.

[4] G.J. Badros (2000), “A Markup Language for Java Source
Code”, Proceedings of the Ninth International World Wide Web
Conference, Amsterdam, The Netherlands, 13 – 15 May.

[5] “Generating and Compiling Source Code Dynamically in
Multiple Languages” (2004), MSDN Library [Online],
Available: http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/cpguide/html/cpconGeneratingCompilingSource
CodeDynamicallyInMultipleLanguages.asp

[6] J. Clark (ed.) (1999), “XSL Transformation (XSLT)
Version 1.0 (Recommendation)”, W3C, 16 November [Online],
Available: http://www.w3.org/TR/xslt

[7] J.I. Maletic, M.L. Collard, A. Marcus (2002), “Source
Code Files as Structured Documents”, Proceedings of the Tenth
International Workshop on Programming Comprehension, IEEE
Computer Society Press, Paris, France, 27 – 29 June, pp. 289 –
292.

[8] M.L. Collard, H.H. Kagdi, J.I. Maletic (2003), “An XML-
based Lightweight C++ Fact Extractor”, Eleventh IEEE
International Workshop on Program Comprehension, IEEE
Computer Society Press, 10 – 11 May, pp. 134 – 143.

[9] “System.CodeDom Namespace” (2004), MSDN Library
[Online], Available: http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/cpref/html/frlrfSystemCodeDom.asp

[10] “System.CodeDom.Compiler Namespace” (2004), MSDN
Library [Online], Available: http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cpref/html/frlrfSystemCodeDom
Compiler.asp

GOLD: A Generalized Parsing System

Devin Cook and Du Zhang

Department of Computer Science
California State University

Sacramento, CA 95819-6021
seke@DevinCook.com, zhangd@ecs.csus.edu

Abstract. In this paper, we describe a generalized
parsing system called GOLD that can support multiple
programming languages, and as a result create a
consistent language development platform. The goal of
the GOLD parsing system is accomplished by logically
separating the component that generates parse tables for a
source grammar from the component that does the actual
parsing. In addition, the system supports the full Unicode
character set, and has a set of language development tools
that include skeleton program creation, grammar testing,
and displays and exporting of parse tables. Components
of GOLD have been tested on a number of source
grammars. Results so far have indicated that GOLD is a
useful and practical tool for programming language
development. On average, approximately 3000 downloads
are made per month off the GOLD website:
www.devincook.com/goldparser.

Keywords: parser, parser generator, context-free
grammars, compiled grammar table file, LALR and DFA
tables.

1. Introduction
Currently, the most common approach to creating parsers
is through the use of a compiler-compiler or parser
generator. Though there are many such tools, each of
them is quite different in both design and usage. As a
result, developing a parser in different programming
languages presents a much different experience. The
grammars used by parser generators, and the features and
interfaces of the tools vary greatly in both the look and
the behaviour.

Since each parser generator is designed for a specific
programming language, a different parser generator must
be developed for each new language. Most of the
common programming languages are supported by one
suite or another, but newer languages and specialized
languages may not have such suites.

In this paper, we describe a generalized parsing system
called GOLD (Grammar Oriented Language Developer)

that can support multiple programming languages, and as
a result create a consistent development environment. The
goal of the GOLD parsing system is accomplished by
logically separating the component that generates parse
tables for a source grammar from the component that does
the actual parsing. In addition, the GOLD system supports
the full Unicode character set, and has a set of tools that
can aid language development process. These tools
include: skeleton program creations from program
templates, grammar testing, display of various types of
information in the parse tables, and exporting parse tables
to files of different formats. The results so far have shown
that GOLD is a useful and practical tool. On average,
approximately 3000 downloads are made per month off
the GOLD website: www.devincook.com/goldparser [6].

This paper is organized as follows. Section 2 offers some
general design considerations. Sections 3 and 4 describe
the Builder and the Engine component of GOLD,
respectively. Section 5 discusses some implementation
issues. A brief comparison is given in Section 6. Finally,
Section 7 concludes the paper with remarks on future
work.

2. Design Considerations
If a parser generator is to be able to support multiple
programming languages, the system must not produce any
information that is limited to a single language. As a
result, the compiler-compiler concept [1,5] cannot be
used. Instead, the parsing information created by the
GOLD system should be saved to an independent file first
and then later used by the actual parsing engine.

Hence, the GOLD system consists of two distinct
components - the Builder and the Engine. The Builder
will be the main application that analyzes a source
grammar, creates parse tables and provides all other
services that aid language development. The parse
information created by the Builder will be subsequently
saved to a file. The Engine will later load the file, read the
parse tables and perform the actual runtime work.

Figure 1. Builder and Engine components in GOLD.

GOLD sanctions the following parser development cycle:

1. The grammar is defined for a programming language
being developed. The description of the grammar is
written using any text editor - such as Notepad or the
editor that is built into the GOLD Builder.

2. Once the grammar is loaded into the system, it is
analyzed by the GOLD Builder. During this process,
LALR and DFA parse tables are constructed and any
ambiguities or problems with the grammar are
reported.

3. After the grammar is analyzed, the tables are saved to
a file (called compiled grammar table file) to be used
later by the actual parsing Engine.

4. The parsing Engine uses a Deterministic Finite
Automata (DFA) to identify different classes of
tokens and the LALR algorithm to analyze the
syntax. Different versions of the Engine can be
created for different programming languages and
IDEs (e.g., an ActiveX DLL, or a .NET Module).
Since the LALR and DFA algorithms are simple
automatas, minimal coding will be necessary to
implement different versions of the Engine in
different programming languages.

5. The Engine reads the parse tables and analyzes a
given source text. It then produces the parsing result
(e.g., a parse tree) for the given source text.

One of the most important aspects of a parser generator is
the format and functionality of its meta-language. The
notation used by each parser generator varies greatly, and
the meta-languages used by different generators are rarely
compatible. To allow the easy development of source
grammars, the following criteria are used in the design of
the notation of the GOLD meta-language.

1. The GOLD meta-language must not contain any
features which are programming language dependant.
In compiler-compilers, the semantic actions are
integrated directly into the meta-language. While this
does aid the development of the application, it does
not allow the meta-language to be used for defining
other programming languages, at least without major
revisions.

2. The notation of the meta-language should be very
close to the standards used in language theory. This
will allow both students and professionals familiar
with language theory to be able to write grammars

without a large learning curve. As a result, the
definitions for terminals will use regular expressions
and definitions for rules will use Backus-Naur Form
in the GOLD meta-language.

3. The meta-language should include all language
attributes. There are many aspects of programming
languages that cannot be specified using regular
expressions or Backus-Naur Form. These include the
actual name of the grammar, whether it is case
sensitive or not, the author, etc.

3. The Builder
3.1. Meta-Language

GOLD Builder meta-language defines character sets,
predefined character sets, comments, terminals,
whitespace terminals, comment terminals, rules and
parameters. Figures 2-6 are the grammar syntax charts for
the GOLD meta-language.

Set Name =
Set Literal

Set Name

+

-

Newline Newline

Newline

Figure 2. Set syntax.

Terminal Name = ExpressionNewline Newline

| Newline

Figure 3. Terminal syntax.

Expression

Character

Set Literal

()
Set Name

Expression

*

?

+

|

Figure 4. Regular expression syntax.

Rule Name ::=
Terminal Name

Rule Name
NewlineNewline

| Newline

Figure 5. Rule syntax.

3. XML does not allow different types of files to be
embedded.Parameter Name = SymbolNewline Newline

| Newline

The format for the compiled grammar table file is given in
Figure 7 below.

Figure 6. Parameter syntax.
Record 0

2 or more bytes

File Header Record n...
Figure 7. Compiled grammar table file format.3.2. Compiled Grammar Table File

The compiled grammar table (.cgt) file is a file format
that is designed to store the parse tables and other relevant
information constructed by the Builder. The file format is
defined based on the following principles:

The first data structure in the file is the file header that
contains a null-terminated Unicode string. This string
contains the name and version of the type of information
stored in the succeeding records. Following the header,
the file contains one or more records. A record in the
compiled grammar table file is depicted in Figure 8.1. The file will be written to only once when it is

created. Afterwards, information will only be read
sequentially from the start of the file.

2. The format should be easy to implement on
numerous platforms. In other words, to be very
simple structurally.

3. The file structure should be extensible, allowing data
structures to be added or expanded as needed in the
future. The file will store structures such as integers,
Unicode strings, bytes, but other types may be
necessary in future versions.

4. The file structure should allow additional types of
records to be added, if needed. In the future, the file
format should be able to store different types of
information besides the parse tables. These includes,
for instance: sound files, pictures, source code, etc. Figure 8. Compiled grammar table records.

Rather than defining a new file format, a number of
existing formats were researched beforehand. The most
notable of the formats is XML [19]. A natural question
arises here: why not using XML?

Each record starts with a byte containing the value 77, the
ASCII code for the letter "M", which stands for
Multitype. It is possible, in the future, to add more types
such as pictures, sounds, additional parse information, and
other files. Following the first byte, there is a two-byte
unsigned integer indicating the total number of entries in
the record. A compiled grammar is represented using
many types of entries. For instance, Figure 9 is an entry
containing size information for different tables.

While the Builder and the GOLD system should be
friendly to the XML format, given its popularity, XML
has the following drawbacks that make it not the ideal
format for this project.

1. The XML format is simple, but by its nature, not very
compact. The tables created by the Builder can be
extensive for complex grammars. The file can be
compressed by any number of algorithms. However,
this would place a high degree of burden on
developers, and, therefore, not acceptable.

Byte

84

'T'

Symbol
Table

Integer
Character
Set Table

Integer
Rule
Table

Integer
DFA
Table

Integer
LALR
Table

Integer

Figure 9. Table size entry.
2. XML is a simple text file format, and can be easily

edited by the developer. As a result, it would be
possible to hack the tables to produce results not
supported by the system. To insure backwards
compatibility with future versions of GOLD,
developers must work within the intended system
structure.

3.3. Program Templates

Since each rule or a symbol is uniquely identify by a table
index in parse tables, the Engine component must deal
with rules and symbols in parse tables in terms of their
table indexes. When developing a program, manually
typing each constant definition can be both tedious and

In essence, the Visual Basic version of the Engine is
designed around a central object aptly named
"GOLDParser". This object contains both the Rule Table
and the Symbol Table, and performs all the parsing logic
in the system including the LALR and DFA algorithms.
The remaining four objects (Symbol, Rule, Reduction,
and Token) are used either for storage or to support the
GOLDParser object itself.

problematic - given that a single incorrect constant could
be difficult to debug. For most programming languages
and scripting languages, the number of rules can easily
exceed a hundred.

Program templates are designed to help alleviate the
chores in the Engine development. A program template is
a text file containing simple pre-processor type statements
for a specific version (e.g., C++, Java, or Visual Basic) of
the Engine. The Builder can read a program template and
create the corresponding skeleton program for that
version of the Engine. Depending on the needs, the
skeleton program can include lists of constants, case
statements, variables, and so forth.

The actual parsing process is carried out through the
following actions of the GOLDParser object.

1. Call LoadCompiledGrammar() method to load a
compiled grammar table file.

2. Call the appropriate method to open the source string
to be parsed.Currently, there are program templates for a number of

different programming languages. Each program template
is stored in a subfolder of the GOLD Builder application. 3. Continue to call the Parse() method until the string is

either accepted or an error occurs.

4. The Engine 5. Implementation
A version of the GOLD Parser Engine was developed in
conjunction with the Builder for the Visual Basic 6
programming language. The code was subsequently
compiled into a Microsoft ActiveX DLL and made
available with the Builder. Although Visual Basic 6 has
well-known limitations affecting file access and object
inheritance, the language is fairly easy to read by
programmers of other languages. The object hierarchy
and the Visual Basic Engine interface were designed to
set a simple standard that could be used as a guide for
different versions of the Engine. Figure 10 indicates the
Engine data flow.

The main component of the GOLD system is the Builder,
which currently runs on the Windows 32-bit operating
systems (Windows 9x, Windows NT and Windows XP).
In addition to the main function of reading a source
grammar written in the GOLD meta-language, generating
the LALR and DFA parse tables, and saving the
information to a compiled grammar table file, the Builder
also has the following set of features that aids the
language development process:

1. It can create skeleton programs using the program
templates.

2. It supports the interactive testing of grammars
through its integrated version of Visual Basic Engine.

3. It contains a simple text editor for source grammar
editing purpose.

4. It allows many aspects of a source grammar to be
displayed through different windows (parameters,
symbol table, rule table, log information, DFA state
table, and LALR state table).

5. It can export a source grammar’s information and
computed tables to a web page, a formatted text, or
an XML file.

Figure 11 is an annotated screenshot of the GOLD GUI.Figure 10. Engine data flow.
The flow of the application is broken down into three
distinct steps that progress from a source grammar to the
completed parse tables. The developer advances by
clicking the "Next" button that is located on the bottom
left side of the main window.

The source code for the Engine component was made
available on the Internet and, consequently, has been
converted to a number of different programming
languages and development IDEs. Currently, the Engine
is available in: Visual Basic .NET, Visual Basic 6, C#,
C++, Visual C++, ANSI C, Delphi 5 and Java [2, 8, 10,
11, 14-18].

1. Enter the source grammar. During this step, the
Builder checks the syntax of the grammar itself and
prepares the system to compute the parse tables. If

the grammar contains an error, it is reported to the
user and the system resets.

Most errors that occur in grammars are found in the
LALR State Table. When the system analyzes a grammar
and computes the parser tables, often shift-reduce and
reduce-reduce conflicts are found.

Grammar
Editor

Next
Button

Status
Message

Tools
Online Help

The LALR State Table Window (Figure 13) allows the
developer to review the produced states – in particular the
state that contains the error.

Figure 11. GOLD Builder GUI layout.

2. Compute the parse tables. During this step, the
Builder attempts to construct the LALR and DFA
parse tables. Most conflicts occur during the
construction of the LALR parse tables, as a result,
these are constructed first.

Figure 13. LALR states.

3. Save to the compiled grammar table file. If no
problems are found, the developer now has the ability
to save the parse tables to a compiled grammar table
file. If the developer clicks on the button at this point,
the system will automatically display the "Save File"
dialog window. Since the parse tables are complete
and ready to use, the developer also has the ability to
interactively test the grammar, export the grammar to
different file formats, and create skeleton programs.

One of the most important tools in the GOLD Builder is
the Grammar Test Window. After the Builder has
successfully compiled a source grammar, the developer
can use this tool to test the grammar with regard to test
cases. There are three separate "tabs" in the Grammar
Test Window. The "Source" tab allows the developer to
enter or load a test case. After the test case is ready, the
developer can click the "Parse Actions" tab to start the
parsing process for the test case. If the test string is
successfully parsed, by clicking "Parse Tree" tab, a parse
tree is produced for the user to review. This tree can be
saved to a formatted text. Figure 14 shows a parse tree for
the test case: "a+b*c-d".

If a terminal is not functioning correctly, the developer
can review the actual DFA used by the Engine's
tokenizer. This window also allows students to view the
actual information produced by the GOLD Parser Builder
(Figure 12).

Figure 14. Grammar test window.Figure 12. DFA states.

In addition to some small source grammars, GOLD has
been tested on source grammars for BASIC, ANSI C,
COBOL, HTML, LISP, Smalltalk, SQL, Visual Basic
.NET, XML and GOLD meta-grammar.

6. Comparison
Currently, the field of computer programming languages
has witnessed a myriad of different parser generators with
different features, interfaces and meta-grammars [7]. Due
to space limitation, we compare GOLD with some of the
existing parsing tools.

Yacc is one of the oldest parser generators [9]. For
developers using C or C++ on the UNIX platform, Yacc
is an ideal tool. It has the advantage of close integration
between the source code and the special directives. Its
limitations are that the meta-grammar definition is not
portable between systems, and that there is lack of support
for component based design and object-oriented
programming.

ANTLR is an object-oriented parser generator that is
capable of generating parsers for several programming
languages which have the same basic syntax as C++
(Java, C#, and C++) [13]. It has its meta-language that
can be used to define the names and properties of
different classes to be generated. Each class inherits one
of the three built-in ANTLR classes: Parser, Lexer, and
TreeParser, and uses the LL(k) parsing algorithm.

Bison is a general-purpose parser generator that converts
a grammar description for an LALR context-free
grammar into a C program to parse that grammar [4].
Bison is upward compatible with Yacc: all properly-
written Yacc grammars ought to work with Bison with no
change.

Elkhound is a parser generator based on the generalized
LR (GLR) parsing algorithm [12]. Because of GLR,
Elkhound can parse with any context-free grammar,
including those that are ambiguous or require unbounded
lookahead. Due to an improvement to the GLR algorithm,
Elkhound parsers can achieve a performance that is as fast
as LALR(1) parsers on the deterministic portions of the
input.

GENOA is a framework for code analysis tools for
software engineering tasks [3]. Its front end involves
parsing, and a language-independent abstract syntax tree
(AST), to which the .cgt file in GOLD is akin.

Compared with the aforementioned tools, GOLD has the
following benefits: It supports multiple programming
languages and the full Unicode character set. It has a set
of development tools. Its meta-language is easy to
understand, and its Builder GUI is easy to use in
programming language development.

7. Conclusion and Future Work
Currently, the Builder is only available on the Windows
32-bit platforms. Although this makes it accessible to a
wide number of students and computer scientists,
different versions are needed for Linux, UNIX and a
command-line version for Windows.

The source code for the Builder is written in Visual Basic
6, and will have to be translated to C++ for this process.

Also, additional enhancements to the meta-language
syntax and semantics are needed to handle grammars that
are not fully context-free. Python, for instance, cannot be
parsed by a pure context-free parsing system.

References
[1] A. W. Appel, Modern Compiler Implementation in C.

Cambridge University Press, 40 West 20th Street, New
York City, New York 10011-4211, 1998.

[2] M. Astudillo, C++ GOLD Parser Engine. e-mail:
d00mas@efd.lth.se.

[3] P.T. Devanbu, “GENOA – A Customizable, Front-end
Retargetable Source Code Analysis framework”, ACM
Transactions on Software Engineering and Methodology,
Vol.8, Issue 2, April 1999, pp.177-212.

[4] C. Donnelly and R.M. Stallman, “Bison: the Yacc-
compatible Parser Generator (Bison version 1.35)”, Free
Software Foundation, 675 Mass Ave, Cambridge, MA
February, 2002.

[5] C.N. Fischer and R.J. LeBlanc, Crafting A Compiler,
Benjamin/Cummings Publishing Company, 1988.

[6] GOLDParser, http://www.devincook.com/goldparser.
[7] Google's directory of Lexer and Parser Generators,

http://directory.google.com/Top/Computers/Programming/
Compilers/Lexer_andParser_Generators/.

[8] M. Hawkins, Java GOLD Parser Engine.
http://www.hawkini.com.

[9] S. C. Johnson, Yacc: “Yet Another Compiler-Compiler”,
TR 32, AT&T Bell Labs, 1975.

[10] I. Khachab, Modified Delphi GOLD Parser Engine. e-mail:
ibrahim@euronia.it.

[11] M. Klimstra, C# GOLD Parser Engine. e-mail:
klimstra@home.nl.

[12] S. McPeak, “Elkhound: A Fast, Practical GLR Parser
Generator”, TR No. UCB/CSD-2-1214, December 2002.

[13] T. Parr, ANTLR Website, http://www.antlr.org.
[14] A. Rai, Delphi GOLD Parser Engine. e-mail:

riccio@gmx.at.
[15] E. Ugurel, C++ GOLD Parser Engine. e-mail:

eylemugurel@hotmail.com.
[16] M. van der Geer , Delphi GOLD Parser Engine.

email:Beany@cloud.demon.nl.
[17] R. van Loenhout, C# GOLD Parser Engine. e-mail:

rvl@software-engineer.net.
[18] R. Wilbanks, Visual Basic .NET GOLD Parser Engine. e-

mail: rwilbanks@starband.net.
[19] World Wide Web Consortium, Extensible Markup

Language (XML), http://www.w3.org/XML/.

Grammatically Interpreting Feature Compositions

Wei Zhao1, Barrett R. Bryant1, Fei Cao1, Rajeev R. Raje2, Mikhail Auguston3,
Carol C. Burt1, and Andrew M. Olson2

1 Computer and Information Sciences, University of Alabama at Birmingham,
Birmingham, AL 35294-1170, USA. {zhaow, bryant, caof, cburt}@cis.uab.edu

2 Computer and Information Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA. {rraje, aolson}@cs.iupui.edu

3 Computer Science, Naval Postgraduate School, Monterey, CA 93943, USA
auguston@cs.nps.navy.mil

Abstract. Feature modeling is a popular domain analysis
method for describing the commonality and variability
among the domain products. The current formalisms of
feature modelling do not have enough support for
automated domain product configuration and validation.
We have developed a theory of feature modeling: a feature
model is analogous to a definition of a language; a
particular feature composition instance (domain product)
is analogous to a program written in that language; and the
way the features can be assembled to form a product is
analogous to the way various tokens can be assembled to
form a program. To apply this theory, we have developed
a meta-language Two-Level Grammar++ to specify
feature models. The interpreter derived from the feature
model specification performs automated product
configuration and product quality validation.

1. Introduction

The systematic discovery and exploitation of
commonality across related software systems is a
fundamental technical requirement for achieving
successful software reuse [13]. Domain analysis is one
technique that can be applied to meet this requirement.
Feature modeling is a popular domain analysis method
originated in [11]. The current formalisms [6], [11] of
feature modeling do not have enough integrity for
supporting automated domain product configuration and
validation (some tools were implemented to support
limited automation up to the power of the original
formalism, e.g. [4]). We have developed a theory of
feature modeling so that the existing compiler
technologies can be leveraged for automated domain
product configuration.

A feature is a distinguishable characteristic of a
concept that is relevant to the stakeholder of that domain
[6]. We have defined that the anatomy of a feature is a
modular encapsulation of three-dimensional views: an

abstract view at the domain business level, a constructive
view at the architectural pattern level and a concrete view
at the implementation technology level. The artifacts in
this encapsulation consist of both code and non-code.
Examples of the artifacts are business domain models,
design models, make files, HTML documents, XML
descriptors, etc. We consider features to be concrete and
non-cross-cutting concepts of a domain, i.e., a feature can
be incarnated as a software component with specific
programming and component technologies.

We consider a feature model to be a general
specification of a domain: the rules about feature
configurability and how to manufacture the valid product
instances in that domain. So, a feature model is a
definition of feature compositions. By observing that any
language (machine, assembly, and high level languages) is
a composition of language elements (constructs and
tokens) at different abstraction levels, we are motivated to
develop a language-based theory of feature modeling: a
feature model is analogous to a definition of a language; a
particular feature composition is analogous to a program
written in that language; the way the features can be
assembled to form a product is analogous to the way
various tokens can be assembled to form a program; the
interdependency relationships among the feature models
are analogous to the object relationships that can be
defined in object-oriented programming languages. A
valid product for a domain can be created by composing a
set of features adhering to the composition rules in the
feature model. In a feature model, there are atomic
features and composite features. An atomic feature is a
feature that does not need to be further refined into sub
features when there are no variations among different
products. A composite feature is a composition of one or
more atomic or composite features. Both the atomic and
composite features are relative concepts. A composite
feature in one feature model can act as an atomic feature
in a foreign feature model. This hierarchy is called the

feature organization, and the structure of a product is
called the product organization.

To apply successfully the programming language
techniques to feature modeling, the first question to be
answered is whether there exist concepts in feature models
that are the counterparts of syntax and semantics in
programming languages. The syntax of the feature model
is the business domain feature organizational structure.
The static semantics indicates the configuration
constraints such as feature attributes, feature relationship
cardinalities, interdependencies, and domain-specific
business operational rules. The dynamic semantics models
the states of system property changes after the steps of
feature compositions. That includes pre- and post-
conditions for the configurations, temporal concerns, and
the Quality of Service (QoS) attributes [14], [17]. An
example of a QoS attribute is transaction speed in the
banking domain. We draw a clear delineation of semantics
of a composition model (feature model) from semantics of
a composed system. The semantics of a feature model is
the non-functional quality aspect of a composition; the
semantics of the composed system is the functional
quality aspect of a composition. Feature model syntax
defines the semantics of the composed system meaning
that as long as the features are composed in a proper
hierarchy, the composed system should function correctly
assuming correct feature implementations and correct
feature model. For example, if we build a money transfer
system by composing features withdraw and deposit, the
balance calculation is the semantics of the composed
system, whereas the transaction speed calculation is the
semantics of the composition model.

We have developed a meta-language called Two-Level
Grammar++ (TLG++), an object-oriented extension of
Two-Level Grammar (TLG) [18], to specify feature
models. TLG, a Turing complete grammar, has been used
for integrated definition of programming language syntax,
static semantics and dynamic semantics, which makes
TLG ideal for specifying the feature organization along
with static configuration constraints and various dynamic
semantic concerns. Because of object-oriented features,
TLG++ naturally fits in the conceptual modeling of inter-
connected object relationships among the feature
organizations. The interpreter derived from the feature
model specification performs automated product
configuration and predicted product functional and non-
functional quality validation.

According to the three-dimensional views of domain
features, there are three dimensions of feature
compositions: semantic-business composition, syntactic-
architecture composition, and lexical-technology
composition. For a particular product created by
composing a set of features, the semantic-composition

dimension defines the entangled business logic among the
features and semantics for individual features; the
syntactic-composition dimension defines a compositional
architecture for this product; the lexical-composition
dimension defines how each feature is technologically
formed thus contributing to the binary connection,
interoperation and deployment between any two feature-
implementations. In this paper we only demonstrate the
first dimension. However, a complete product quality
validation requires all three-dimensional composition
validations.

The following section introduces TLG and TLG++. A
case study is given in section 3. Section 4 compares our
work to related work. The paper concludes in section 5.

2. Two-Level Grammar++

Two-Level Grammar (van Wijngaarden grammar or
W-grammar) is an extension of Context-Free Grammar
(CFG) and was originally developed to define syntax and
semantics of programming languages. It has been shown
that TLG defines the family of recursively enumerable
sets [15], and suitable restrictions yield context-sensitive
languages [1]. It has been used to define the complete
syntax and static semantics of Algol 68 [18] and dynamic
semantics of programming languages [5]. Recently, it was
developed as an object-oriented requirements specification
language integrated with VDM1 tools for UML2 modeling
and Java/C++ code generation [3].

The term “two-level” comes from the fact that a TLG
is composed by two finite sets of CFG rules: a set of
formal parameters may be defined using a CFG, with the
possible generated strings used as arguments in predicate
functions defined using another CFG. Originally, the first
level CFG rules were called the meta-productions/rules,
while the second level parameterized CFG rules were
called hyper-productions/rules. After the meta-rules get
substituted into the hyper-rules, a third implicit and
possibly infinite set of CFG rules, called the production-
rules, are derived. It is the production-rules that finally
generate the target language that a TLG describes.

TLG++ is the object-oriented TLG for specifying
feature models. Moving from TLG to TLG++ poses a
paradigm shift. TLG is used to physically define
programming language syntax and semantics, while
TLG++ is used to abstractly define the concepts of a
domain. To specify the feature model, we do not have the
concept “terminal symbol in the target language” in
TLG++. In fact, the terminals in the feature models are
either the atomic features or domain-specific keywords.

1 VDM – Vienna Development Method – http://www.ifad.dk/vdmtools
2 UML – Unified Modeling Language – http://www.omg.org/uml

Examples of “domain-specific keyword” might be: a
particular domain logic control pattern, domain-specific
algorithm, and so on.

The atomic features in a feature model are represented
by Universal Resource Identifiers (URIs)3. In the process
of interpreter generation, the URIs are simply treated as
terminals. While interpreting a specific product, there are
two cases under consideration: 1) the atomic feature in
this feature model is a composite feature in another feature
model and there is no direct implementation for this
atomic feature, then preprocessing can be adopted to
ensure the instance atomic feature used in this particular
product is in fact a valid instance defined by the
corresponding URI, which might just involve another
interpretation process; 2) this atomic feature has a direct
implementation, in which case the Unified Meta-
component Model (UMM)4 needs to match the URI to
complete the interpretation. From a single feature model
perspective, the URI is treated programmatically rather
than syntactically or semantically. Reasons for the use of
URIs are:

First, the URI for an atomic feature or the URI
compositions for a composite feature are the types of the
component that implements this feature. Because of the
nature of composition, the atomic feature has a single
type, and the composite feature has type variations.

for example, A :: B C; D. B :: E; F. (5)
in (5), A and B are composite features, and C, D, E,
and F are atomic features. “;” means “or”. Suppose the
URI for each atomic feature is the http:// plus the letter
symbol. So, atomic feature C has type http://c, D has
type http://d, and so forth. The types of a composite
feature are the composition of types of atomic features.
The composition is a tree structure. The number of types
of a composite feature equals the number of strings it can
generate. In this case, A has 3 types shown in fig. 1. If the
component developer chooses to implement a composite
feature directly, he/she must identify a specific type of
choice. A component is considered plug-compatible for
another component that implements the same feature if
and only if their types match. One reason we developed
TLG++ to specify the feature model is because TLG++
naturally supports this hierarchical type structure since
each parameter is defined by a context-free grammar.

Second, the use of URI gives the potential to specify
very large and highly distributed domains, as some fairly
complex features can be defined separately and linked by
a URI. The mechanism of URI complements object-
orientation for distribution and encapsulation.

3Naming and Addressing, http://www.w3.org/Addressing/
4 UMM is the meta-model for feature implementation. Detailed
explanation of UMM can be found in [13].

http://d

http://c

http://e

h t t p : / / c

h t t p : / / f

Fig. 1. The feature A has three types.

Third, compositions can be easily reused, e.g., a
composite feature represented by a URI in a domain can
stand as an atomic feature in another domain.

Lastly, the separation of the feature id from the feature
representation allows features to have any physical form
that the designer wishes for designing the visualized
domain analysis tools, such as an icon, a name, or a
simple box.

Object-orientation is proper for modeling real-world
relationships. The feature models specified in TLG++
naturally model object relationship graphs in real-world
business domains, since both domains of different
categories and domains (sub-domains) in different levels
of the hierarchy of the same category can have a feature
model. Real-world domains are usually hierarchical: one
narrower-scoped domain inherits the concepts from many
other broader-scoped domains. With the encapsulation, a
feature model for a domain is expressed in a main class,
from which other classes might be linked. TLG++ has a
root class Notion that is comparable to the Object class
in the Java programming language. The class Notion
groups general notational extensions (e.g., list, sequence
and tree definition) [5], built-in data types, and primitive
grammatical computations. Those pre-established
grammatical concepts are inherited by any other TLG++
classes. Inheritance and encapsulation provide TLG++
much more power than CFG in terms of reusability and
modularity. By polymorphism, users do not need to cite
the Notion class in order to call its rules. A class can
override the rules in its parent classes, and any class can
override the rules in the Notion class.

3. A Case Study

In this section, we give an example on how a feature
model is formulated, how a feature model is represented
in TLG++, and how a product can be validated based on
the feature model.

Fig. 2 shows a fragment of the feature model for a
PersonalAccount domain. From the viewpoint of
stakeholders of this domain, the feature model should
capture the distinguished domain concepts (i.e., features:
objects and operations) and the business rules on how

those concepts are composed to form a product. For the
sake of this example, we assume the PersonalAccount
domain has an object (PersonalAccount), and the
operations (Withdraw, Deposit, and MoneyTransfer).
MoneyTransfer is a composite feature composed of
Withdraw and Deposit.

Fig. 2. Bank domain feature model in TLG++

In the TLG++ representation, the first thing to be
noticed is the separation of meta-rules and hyper-rules.
Rules 1 to 12 are meta-rules, and rule 13 is a hyper-rule
differentiated by using “::” and “:”. Parameters start with
a capitalized letter. The values (generated strings) of
parameters defined in the meta-rules are called the
Terminal Meta-Production (TMP) of parameters. Plugging
the TMPs into the hyper-rules, we get the production
rules. This parameterization, called the Uniform
Replacement Rule (URR), is the essential theory that
distinguishes the TLG from the pure CFG. The rule is that
each occurrence of a parameter in a single hyper-rule
needs to be replaced by the same TMP of that parameter.

A parameter followed by a number is a new distinct
parameter with the same definition as the root parameter.
In the rule 13 Acount1 and Account2 will not
necessarily be replaced by a same TMP of Account.

The convention we used is: the meta-rules are used to
define the hierarchical context-free type structure for
parameters; and the hyper rules define the syntax and
semantics for feature compositions. Integer and
String are built-in data types defined in the Notion
class. Rule 12 is an empty definition, which shows that
MoneyTransfer is a new composite feature to be defined
in hyper rules. We assume the domain specifications
should be created by domain experts working with
standards organizations such as OMG5.

Rule 13 specifies the syntax and semantics for the
MoneyTransfer composition. TLG++ rules are natural
language based, and are flexible in terms of writing styles.
The convention we have adopted is that some words
indicating the meaning are followed by the parameter,
e.g., turnaround TurnAround1. In rule 13, the atomic
feature is expanded with its specific parameters, e.g.,
turnaround TurnAround2 customer Customer
withdraw amount Amount1 from stands for atomic
feature Withdraw. Each rule begins with the syntax
definition followed by the definition of semantics in
where clauses. The static semantics here includes: the
customers must be identical (ensured by URR); the
accounts must be distinct; the amount withdrawn and
deposited must be the same; the account to be withdrawn
from must have a positive balance. Recall that the
dynamic semantics of the feature composition and the
dynamic semantics of the composed system are distinct.
The balance calculations, after the actions withdraw and
deposit, are the dynamic semantics of the composed
system, which we will not be able to specify in a feature
model. One QoS parameter, TurnAround time, is defined
as the composition dynamic semantics. This example
should convince the reader that features until being
implemented as components are static concept entities
rather than computation entities.

PersonalAccount is a sub-class of Banking where
some basic features and feature compositions can be
inherited. Polymorphism may exist as well. For example,
the syntax definition of MoneyTransfer could be moved
up to the Banking feature model. There might be another
class BusinessAccount sub-classing Banking. So, the
BusinessAccount feature model only needs to specify
its specific semantic rules such as the requirement of a
special security monitor for the MoneyTransfer
composition, and TurnAround <=10.

Suppose the product we are trying to build is a simple
MoneyTransfer system that can be created by

5 OMG - Object Management Group - http://www.omg.org.

class PersonalAccount extends Banking.
Account :: Integer. 1
Customer :: Name SocialNumber. 2
Bank :: Integer. 3
Balance :: Integer. 4
Amount :: Integer. 5
TurnAround :: Integer. 6
Name :: String. 7
SocialNumber :: Integer. 8
PersonalAccount::http://omg.org/bankdoma
in/personalAccount. 9

Withdraw ::
http://omg.org/bankdomain/withdraw. 10

Deposit ::
http://omg.org/bankdomain/deposit. 11

MoneyTransfer :: . 12
……
turnaround TurnAround1 moneyTransfer
MoneyTransfer : 13
turnaround TurnAround2 customer
Customer withdraw amount Amount1 from
Withdraw,
personal account customer Customer has
account Account1 in bank Bank1 with
balance Balance1 PersonalAccount,
turnaround TurnAround3 customer
Customer deposit amount Amount2 to
Deposit,
personal account customer Customer has
account Account2 in bank Bank2 with
balance Balance2 PersonalAccount,
where Balance1 != 0,
where Amount1 = Amount2,
where Account1 != Account2,
where TurnAround1 = TurnAround2 +
TurnAround3.

……
end class.

composing Withdraw and Deposit. For the validation
of this product, the following are important points:
1. The goal of the validation is to find out if the feature

compositions (the business logic or semantics of the
product) are correct, and whether the product will have
expected QoS using the supplied components.

2. The composition of components in this example occurs
dynamically, so the state is an important concept. The
state of a running component that implements a
particular feature is the business data currently
maintained. Please note that this paper presents the
composition in the semantic-business dimension, not on
the architecture or implementation dimension, so the
state is not the state of the machine that runs this
component. There are two cases regarding the state:
first, the component is already running; second, the
component has been produced, but is not yet running. In
the second case, the state is the initial state, i.e., the state
that is instantly after the component is invoked. In both

cases, the component is treated as a black box. Those
two cases give the views of dynamic product-line
assembly and static product-line assembly respectively.
The example in this section is of the first case.

3. Yet the validation for the composition is static. We are
not going to run the system in order to test if the system
is built by a correct composition. The UMMs of the
implementation components provide the feature URIs,
the QoS values, and the states information. This
information comprises a sentence that stands for the
product we are going to build; and this sentence should
be interpreted according to the feature model definition.
Currently, the UMM is represented in XML and is
generated automatically by the tool support from the
component developer [14]. We are investigating how to
convert the XML based representation to a string of text
so that the product can be interpreted, or to extend the
ability of the interpreter to interpret the XML strings
directly.

turnaround 3 moneyTransfer

turnaround 1 customer
jim 140510191
withdraw amount 100
from httpw

personal account customer
jim 140510191 has account
1234 in bank 21 with
balance 1000 httppa

turnaround 2 customer
jim 140510191 deposit
amount 100 to httpd

personal account customer
jim 140510191 has account
5678 in bank 25 with
balance 2500 httppa

1

UMM UMM

UMM

UMM

1

where 1000 != 0 where 100 =100 where 1234 != 5678 where 3=1+2

Empty Empty Empty Empty

Fig. 3. The parse tree for the product MoneyTransfer. httpw, httppa, httpd stand for the URIs of Withdraw,
PersonalAccount, and Deposit, respectively.

Fig. 3 provides a parse tree for a sample
MoneyTransfer product to show how TLG++ can
grammatically interpret this particular product to validate
both functional and non-functional composition. As this
composition is simple, the parse tree is not so deep. The
QoS attribute TurnAround time for this product is
expected to be 3 milliseconds. The state information and
the QoS value for the implementation components are
randomly selected for the illustration of this example. For
an easier understanding, the interpretation process
illustrated in fig. 3 is top-down and directly depends on
the implicit production-rules, i.e., all the parameters have
been non-deterministically substituted into the hyper-rules

before the interpretation process begins. In fig. 3, consider
when we interpret the product turnaround 3
moneyTransfer, we apply rule 13 because the parameter
TurnAround1 has been non-deterministically and
implicitly substituted by its value 3 before the
interpretation begins.

From this bank domain feature model specification,
the bank domain product interpreter can be generated
automatically using our tool—the TLG++ interpreter. The
TLG++ interpreter uses the CUP6 parser generator once

6 CUP – Construction of Useful Parsers -
http://www.cs.princeton.edu/~appel/modern/java/CUP

for the meta-rules and once for the hyper-rules to generate
two sets of parsers. So, from the implementation point of
view, the interpretation process of a product is bottom up
and driven by the hyper-rules looking up the generated
parser for each parameter whenever it encounters a
parameter in the hyper-rules. This look-up process
resembles looking-up the value of variables in the symbol
table during the interpretation of programming languages.
For example, while parsing the money transfer product, in
order to apply rule 13, the parser for the parameter
TurnAround is picked up and parses the string 3 to test if
it may be derived by TurnAround.

4. Related Work

Feature Diagrams. In the literature, a feature model
usually includes [6]: a feature diagram that portrays
feature organization; feature semantic definitions; feature
composition rules and configuration constraints; rationale
for features indicating the reason for choosing or not
choosing a given feature. Normally, the feature diagram is
represented graphically by a CASE tool, and other
semantic aspects of the feature model are annotated using
natural language [12], or are linked to other more formal
techniques such as object diagrams, interaction diagrams,
state-transition diagrams, and synchronization constraints
[6]. The separation of the feature diagram and its semantic
aspects drastically hinders the automated configuration
and validation of domain products. Furthermore, the
popular feature diagram computation model is rather
primitive in terms of computation power of the
mathematical computation models. When the layers of the
feature diagram are flattened, the terminal productions (a
set of terminal features generated from the feature
diagram) can be represented by a regular expression. The
tree-shaped feature diagram is even less powerful than the
regular expression because the star operation in regular
expressions does not have a counterpart in the feature
diagram. Compared to the feature diagram, TLG++ is
much more powerful in computation and presents better
integrity in representing both the syntactic and semantic
aspects of feature models.

Domain specific languages. Domain-Specific
Languages (DSLs) [7] always have the pre-constructed
notations and abstractions offering expressive power for a
particular domain. No matter whether a DSL is in a
graphic form, or in textual form, it has its own syntax and
semantics definition. But in this paper, we define the
domain directly as a language. Any compositions in the
domain are the relationships presented by the grammar
rules and are not physically represented by any non-
grammatical symbols (+, *, etc.), or built-in operator
notations in the meta-language. We call this an open

operator definition, which gives much flexibility to the
meta-language for the evolution of operators of a domain,
i.e., we only need add some new TLG++ rules for the new
operators.

Composition Language. Composition Language (CL)
[8] has defined composition semantics (QoS) such as
latency, safety, and availability on the component model
level. It did not address how to formalize QoS in the
dimension of business domain semantics.

GenVoca. GenVoca is a software system generator [2].
The composition validation in GenVoca is also based on
the claim that the domain defines a grammar whose
sentences are software systems. Attribute grammars are
used for the design rules validation including pre/post
condition and pre/post restrictions. Although the model of
validation sounds similar, there are some fundamental
differences. In GenVoca, the principle for component
composition is parameterization among components, and
hence the composition is directly coupled with the
component implementation language. In this paper, the
composition is defined by the domain feature
organizational structure and the associated semantic rules.
This give a higher level of view of composition and the
features can be potentially implemented in different
technologies.

5. Conclusions

We have offered a foundation for the feature
composition and an automated way to validate a
composed system. We have addressed how both the
functional and non-functional aspects of composition can
be formally modeled and validated.

The method chosen to specify the feature model is
Two-Level Grammar++. We could choose attribute
grammar to specify the feature model, and it also provides
Turing computability. However, just as the attribute
grammar is not proper for specifying programming
language dynamic semantics [9], it is not proper for
specifying the dynamic semantics of feature composition.
Compared to a regular programming language or other
formal notations such as Z [16] and feature logic [20], a
grammar has better constructs and computation
mechanism for specifying languages. Specifically, TLG++
as a meta-language chosen in this paper has the following
advantages:
1. The ability of TLG++ to integrate the feature model

syntax and semantics into one formal grammar notation
gives formal consistency and completeness of the
specification, and eliminates the task of building a
separate interpreter. Compared to the conventional way
that defines the syntax with a grammar and explains the

semantics in natural language, the integration of syntax
and semantics poses easier maintenance.

2. TLG has a context-free hierarchical type structure,
which supports the type system in feature modeling.

3. Because both the meta and hyper rules of TLG++ are
CFGs, the derivation of the product parser/interpreter
can be automated and facilitated by existing parser
generators, which also makes the implementation of the
TLG++ meta-language easier.

4. As can be seen from the examples, the natural language
style of TLG++ rules improves the language flexibility
and readability.

TLG++ is simple (the only rule is URR) and flexible
(natural language based). Flexibility presents a great
descriptive potential but also gives the disadvantage to
well control the language. The notation is not desirable to
be directly used by the domain engineers, so we are
investigating embedding the grammatical interpretation
engine into a domain specific modeling tool such as GME
[10], [19] to complement the graphic modeling notations
with the automated semantic interpretation. Furthermore,
formally specifying the feature models are magnitudes
harder than specifying programming languages because in
the programming language domain, common patterns of
language constructs are well known and the conventions
of writing a correct and complete specification are easy to
establish. We have experienced that not only the
formulation of a domain abstraction, but also the
establishment of TLG++ conventions for the purpose of
feature model specification are inventive and challenging
tasks.

6. Acknowledgement

This research is supported by the U. S. Office of Naval
Research under the award number N00014-01-1-0746.

References

[1] J. L. Baker, Some Formal Properties of the Syntax of
ALGOL 68, Doctoral Dissertation, University of
Washington, 1970.

[2] D. Batory, B. J. Geraci, “Composition Validation and
Subjectivity in GenVoca Generators”, IEEE Trans. Softw.
Eng., Vol. 23, No. 2, pp. 67-82, 1997.

[3] B. R. Bryant, B.-S. Lee, “Two–Level Grammar as an
Object-Oriented Requirements Specification Language,”
Proc. 35th Hawaii Int. Conf. System Sciences, Vol. 9, 2002.

[4] F. Cao, Z. Huang, B. Bryant, C. Burt, R. Raje, A. Olson, M.
Auguston, “Automating Feature-Oriented Domain
Analysis,” Proc. of the 2003 International Conference on
Software Engineering Research and Practice (SERP'03),
CSREA Press, pp. 944-949, 2003.

[5] J. C. Cleaveland, R. C. Uzgalis, Grammars for
Programming Languages, Elsevier North-Holland, Inc.,
1977.

[6] K. Czarnecki, U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[7] A. van Deursen, P. Klint, J. Visser, “Domain-Specific
Languages: An Annotated Bibliography”, CWI, 2000,
http://homepages.cwi.nl/~arie/papers/dslbib/

[8] J. Ivers, N. Sinha, K. Wallnau, “A Basis for Composition
Language CL”, Technical Note, CMU/SEI-2002-TN-026,
2002.

[9] G. E. Kaiser, “Incremental Dynamic Semantics for
Language-based Programming Environments”, ACM
Trans. Program. Lang. Syst. Vol. 11, pp. 169-193, 1989.

[10] GME User’s Manual. The Institute for Software Integrated
Systems, Vanderbilt University.
http://www.isis.vanderbilt.edu/projects/gme/

[11] K. C. Kang, S, G. Cohen, J. A. Hess, W. E. Novak, A. S.
Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report, CMU/SEI-90-TR-21,
1990.

[12] K. Lee, K. C. Kang, J. Lee, “Concepts and Guidelines of
Feature Modeling”, Proc. 7th Int. Conf. Software Reuse, pp.
62-77, 2002.

[13] R. Prieto-Diaz, “Domain Analysis: An Introduction”, ACM
SIGSOFT Softw. Eng. Notes Vol. 15, pp. 47-54, 1990.

[14] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C.
Burt, “A Quality of Service-Based Framework for Creating
Distributed Heterogeneous Software Components,”
Concurrency Comput.: Pract. Exp. Vol. 14, pp. 1009-1034,
2002.

[15] M. Sintzoff, “Existence of van Wijingaarden’s Syntax for
Every Recursively Enumerable Set,” Ann. Soc. Sci.
Bruxelles, Vol. 2, pp. 115-118, 1967.

[16] J. M. Spivey, The Z Notation: A Reference Manual.
Prentice Hall, New York, 1989.

[17] C. Sun, R. Raje, A. Olson, B. Bryant, M. Auguston, C. Burt,
Z. Huang, “Composition and Decomposition of Quality of
Service Parameters,” Proc. 5th Int. Conf. Algorithms and
Architectures for Parallel Processing, pp. 273-277, 2002.

[18] A. van Wijngaarden, “Revised Report on the Algorithmic
Language ALGOL 68.” Acta Informatica, Vol. 5, pp. 1-236,
1974.

[19] W. Zhao, B. Bryant, J. Gray, C. Burt, R. Raje, M.
Auguston, A. Olson. “A Generative and Model Driven
Framework for Automated Software Product Generation”.
Proc. of the 6th ICSE Workshop of Component Based
Software Engineering, pp. 103-108, 2003

[20] A. Zeller, G. Snelting, “Unified Versioning Through
Feature Logic”, ACM Transactions on Software
Engineering and Methodologies, Vol. 6, No. 4, pp. 398-441,
1997.

INFORMATION INTEGRATION ARCHITECTURE DEVELOPMENT:
A MULTI-AGENT APPROACH

Stéphane Faulkner, Manuel Kolp, Tai Nguyen, Adrien Coyette, Tung Do
Information Systems Research Unit, University of Louvain,

1 Place des Doyens, 1348 Louvain-la-Neuve, Belgium
Email: {faulkner, kolp, nguyen, coyette, do}@isys.ucl.ac.be

Abstract. Multi-Agent Systems (MAS) architectures are
gaining popularity for building open, distributed, and
evolving software required by systems such as
information integration applications. Unfortunately,
despite considerable work in software architecture during
the last decade, few research efforts have aimed at truly
defining patterns and languages for designing such multi-
agent architectures. We propose a modern approach based
on organizational structures and architectural description
languages to define and specify multi-agent architectures
notably in the case of information integration system
design as illustrated in this paper.

1 INTRODUCTION

Architectures for integrating information extracted from
multiple heterogeneous sources allow to effectively
exploit the numerous sources available on-line through
the World Wide Web. Such architectures permit users to
access and query numerous information sources to obtain
an integrated answer. The sources may be conventional
databases or other types of information, such as
collections of Web pages.

Designing information integration systems can
rapidly become complex. Indeed, such processes require
software architecture to operate within distributed
environments that must evolve over time to cope with the
dynamics and heterogeneity of information sources.

Not surprisingly, researchers have been looking for
new software designs that cope with such requirements.
One promising source of ideas that has been considered in
recent years for designing such information integration
software is the area of Multi-Agent System (MAS)
architectures. They appear to be more flexible, modular
and robust than traditional including object-oriented ones.
They tend to be open and dynamic in the sense they exist
in a changing organizational and operational environment
where new components can be added, modified or
removed at any time.

To cope with the ever-increasing complexity of the
design of software architecture, architectural design has
received through the last decade increasing attention as an
important field of software engineering.

Practitioners have come to realize that getting an
architecture right is a critical success factor for system
life-cycle and have recognized the value of making
explicit architectural descriptions and choices in the
development of new software.

To this end, a number of architectural description
languages (ADL) [2] and architectural styles [5] have
been proposed for representing and analyzing
architectural designs. An architectural description
language provides a concrete syntax for specifying
architectural abstractions in a descriptive notation while
an architectural style constitutes an intellectually
manageable abstraction of system structure that describes
how system components interact and work together.

Unfortunately, despite this considerable work, few
research efforts have aimed at truly defining styles and
description languages for agent architectural design. To
fill this gap, we have defined, in the SKwyRL1 project,
architectural styles for multi-agent systems based on an
organizational perspective [3] and have proposed in [4]
SKwyRL-ADL, an agent architectural description
language. This paper continues and integrates this
research: it focuses on a multi-agent perspective for
designing and specifying information integration
architecture based on organizational styles and SKwyRL-
ADL. The joint-venture organizational style will be
instantiated to design the architecture of the system and
the specifications will be expressed in a formal way with
SKwyRL-ADL.

The rest of the paper is organized as follows.
Section 2 introduces some perspectives of SKwyRL
insisting on the BDI model, our ADL and organizational
styles. Section 3 describes our multi-agent approach on
information integration system development, including

1 Socio-Intentional ArChitecture for Knowledge Systems and
Requirements Elicitation (http://www.isys.ucl.ac.be/skwyrl/)

the design of the global architecture with organizational
styles, its formal specification with SKwyRL-ADL and
the corresponding implementation on an agent-oriented
platform. Finally, Section 4 concludes the research.

2 ADL AND STYLES IN SKWYRL

We have detailed in the SKwyRL project an agent ADL
called SKwyRL-ADL [4] that proposes a set of
abstractions that are fundamental to the description and
specification of agent architectures based on the BDI
(Belief-Desire-Intention) agent model. To help the reader
to understand our ADL specification in the rest of the
paper, we briefly present the main elements of SKwyRL-
ADL including the BDI agent model. SKwyRL-ADL is
composed of two sub-models which operate at two
different levels of abstraction: internal and global. The
internal model captures the states of an agent and its
potential behavior. The global model describes the
interaction among agents that compose the multi-agent
architecture. We will also introduce organizational styles
through the description of one of them, the joint venture,
that will be used later on in the paper.

2.1 The BDI Agent Model

An agent defines a system entity, situated in some
environment that is capable of flexible autonomous action
in order to meet its design objective [9].

An agent can be useful as a stand-alone entity that
delegates particular tasks on behalf of a user. However, in
the overwhelming majority of cases, agents exist in an
environment that contains other agents. Such environment
is a agent system that can be defined as an organization
composed of autonomous and proactive agents that
interact with each other to achieve common or private
goals [7].

In order to reason about themselves and act in an
autonomous way, agents are usually built on rationale
models and reasoning strategies that have roots in various
disciplines including artificial intelligence, cognitive
science, psychology or philosophy. An exhaustive
evaluation of these models would be out of the scope of
this paper or even this research work. A simple yet
powerful and mature model coming from cognitive
science and philosophy that has received a great deal of
attention, notably in artificial intelligence, is the Belief-
Desire-Intention (BDI) model [1]. This approach has been
intensively used to study the design of rationale agents

and is proposed as a keystone model in numerous agent-
oriented development environments such as JACK [6].
The main concepts of the BDI agent model are in addition
to the notion of agent itself we have just explained:
- Beliefs that represent the informational state of a BDI
agent, that is, what it knows about itself and the world;
- Desires (or goals) that are its motivational state, that is,
what the agent is trying to achieve;
- Intentions that represent the deliberative state of the

agent, that is, which plans the agent has chosen for
possible execution.

2.2 Internal Model

Figure 1 illustrates the main entities and relationships of
the internal model of SKwyRL-ADL. The agent needs
knowledge about the environment in order to reach
decisions. Knowledge is contained in agents in the form
of one of many knowledge bases. A Knowledge base
consists of a set of beliefs that the agent has about the
environment and a set of goals that it pursues. A belief
represents a view of the current environment states of an
agent. However, beliefs about the current state of the
environment are not always enough to decide what to do.
In other words, as well as a current state description, the
agent needs some goal information, which describes an
environment state that is (not) desirable.

Agent

Kb Base Capability

Belief

Goal Action

Plan

Service
Add/Remove

Event

React_to

1...N

1...N

1...N

0...N

1...N

1...N

Add/Remove/Query

1...N

0...N

Own Has

1...N

0...N 0...N

Generate

1

1

1...N 1...N

Trigger

1...N

1...N

1...N

Generate

Figure 1: Conceptual Representation of the Internal Model

The intentional behavior of an agent is represented
by its capabilities to react to events. An event is generated
either by an action that modifies beliefs or adds new
goals, or by services provided from another agent. Note
that these services are represented in the global model
because they involve interaction among agents that
compose the agent system.

An event may invoke (trigger) one or more plans;
the agent commits to execute one of them, that is, it
becomes intention. A plan defines the sequence of action
to be chosen by the agent to accomplish a task or achieve
a goal. An action can query or change the beliefs,
generate new events or submit new goals.

2.3 Global Model

Figure 2 conceptualizes the global model which describes
the interaction among agents that compose the agent
system.

Configurations are the central concept of
architectural design, consisting of an interconnected set of
agents. The topology of a configuration is defined by a set
of bindings between provided and required services.

An agent interacts with its environment through an
interface composed of sensors and effectors. An effector
provides to the environment a set of services. Then, a
sensor requires a set of services from the environment. A
service is an action involving an interaction among
agents.

The whole agent system is specified with an
architecture which contains a set of configurations. An
architecture represents the whole system by one or more
detailed configuration descriptions.

1...N

1...N

Architecture

Interface

Effector
Connect−to

1...N 1...N
Sensor

Service

1...N

1...N 1...N

Agent
Has 10...N

1...N

1...N

Configuration

Provide Require

Contains

Figure 2: Conceptual Representation of the Global Model

2.4 Multi-Agent Architectural Styles

A key aspect to conduct architectural design in SKwyRL
is the specification and use of organizational styles (see
e.g., [4, 7]) These are socially-based design alternatives
inspired by models and concepts from organizational

theories that analyze the structure and design of real-
world human organizations. These are the structure-in-5,
the joint venture, the chain-of-values, the matrix, the
takeover, …

For instance, the multi-agent architecture we
propose in Figure 3 has been designed following and
adapting the joint-venture organizational style detailed in
[4]. In a few words, the joint-venture organizational style
is a meta-structure that defines an organizational system
that involves agreement between two or more partners to
obtain mutual advantages (greater scale, a partial
investment and to lower maintenance costs…). A
common actor, the joint manager, assumes two roles: a
private interface role to coordinate partners of the
alliance, and a public interface role to take strategic
decisions, define policy for the private interface, represent
the interests of the whole partnership with respect to
external stakeholders and ensure communication with the
external actors. Each partner can control itself on a local
dimension and interact directly with others to exchange
resources, data and knowledge.

3 MAS Architecture for Information Integration

GOSIS2 is a typical information integration application
we have developed using the architectural concepts
explained in Section 2. The application provides a Multi-
Agent System architecture to support the integration of
information coming from different heterogeneous sources.

This section explains how we have used SKwyRL-
ADL to formally specify each architectural aspect (belief,
goal, plan, action, interface, configuration, service …) of
the application.

3.1 GOSIS Architecture

Figure 3 models the architecture of GOSIS using the i*
model [8] following the joint-venture organizational style
we have introduced in Section 2. i* is a graph, where each
node represents an actor (or system component) and each
link between two actors indicates that one actor depends
on the other for some goal to be attained. A dependency
describes an “agreement” (called dependum) between two
actors: the depender and the dependee. The depender is
the depending actor, and the dependee, the actor who is
depended upon. The type of the dependency describes the
nature of the agreement. Goal dependencies represent
delegation of responsibility for fulfilling a goal; softgoal

2 aGent-Oriented Source Integration System

dependencies are similar to goal dependencies, but their
fulfilment cannot be defined precisely; task dependencies
are used in situations where the dependee is required.

As show in Figure 3, actors are represented as
circles; dependums – goals, softgoals, tasks and resources
– are respectively represented as ovals, clouds, hexagons
and rectangles; dependencies have the form depender
dependum dependee.

Figure3: The GOSIS Architecture in joint-venture

Figure 3 shows that the mediator plays the role of
the joint manager private interface, other joint venture
partners are the wrapper, the monitor, the matchmaker
and the multi-criteria analyzer. The public interface is
assumed by the broker.

When a user wishes to send a request, it contacts
the broker agent, which serves as an intermediary to select
one or more mediator(s) that can satisfy the user
information needs. Then, the selected mediator(s)
decomposes the user’s query into one or more sub-queries
regarding the appropriate information sources, eventually
compiles and synthesizes results from the source and
returns the final result to the broker.

When the mediator identifies repetitively the same
user information needs, this information of interest is
extracted from each source, merged with relevant
information from the other sources, and stored as
knowledge by the mediator. Each stored knowledge
constitutes a materialized view the mediator has to
maintain up-to-date.

A wrapper and a monitor agents are connected to
each information source. The wrapper ensures two roles.
It has to translate the sub-query issued by the mediator in
the native format of the source and translate the source
response in the data model used by the mediator.

The monitor is responsible for detecting changes
of interest (e.g., a change which affects a materialized
view) in the information source and for reporting them to
the mediator. Changes are then translated by the wrapper
and sent to the mediator.

It may also be necessary for the mediator to obtain
information concerning the localization of a source and its
connected wrapper able to provide current or future
relevant information. This kind of information is provided
by the matchmaker agent, which lets the mediator directly
interact with the correspondent wrapper. The matchmaker
plays the role of a “yellow-page” agent. Each wrapper
advertises its capabilities by subscribing to the yellow
page agent. The wrapper that no longer wishes to be
advertised can request to be unsubscribed.

Finally, the multi-criteria analyzer reformulates a
sub-query (sent by a mediator to a wrapper) through a set
of criteria in order to express the user preferences in a
more detailed way, and refines the possible domain of
results.

3.2 GOSIS Formal Specification

The architecture described in Figure 3 gives an
organizational representation of the system-to-be
including relevant actors and their respective goals, tasks
and resource inter-dependencies. This model can serve as
a basis to understand and discuss the assignment of
system functionalities but it is not adequate to provide a
precise specification of the system details. As introduced
in Section 2, SKwyRL-ADL provides a set of formal
agent-oriented constructors that allows to detail in a
formal and consistent way the software architecture as
well as its agent components and their behaviours.

Figure 4 shows a high-level formal description of
the Mediator agent. Three aspects of this agent
component are of concern here: the interface representing
the interactions in which the agent will participate, the
knowledge base defining the agent knowledge capacity
and the capabilities defining agent behaviors.

SkwyRL-ADL allows to work at different levels of
architectural abstractions (i.e., different views of the
system architecture) to encapsulate different components
of the system in independent hierarchical descriptions.
For instance, in Figure 4 the Mediator agent has a set of

knowledge bases (KB) and a set of capabilities (CP), but
the description level chosen here does not specify the
details of the beliefs composing the KB or the plans and
events composing each capability.

The rest of the section focuses on the Mediator
agent to give an example of a refinement specification
with our ADL for each of the three aspects of the agent:
interface, KB and capabilities.

Figure 4 : Agent Structure Description of the Mediator

Interface. The agent interface consists of a number of
effectors and sensors for the agent. Each of them
represents an action in which the agent will participate.
Each effector provides a service that is available to other
agents, and each sensor requires a service provided by
another agent. The correspondence between a required
and a provided service defines an interaction. For
example, the Mediator needs the query_translation
service that the Wrapper provides.

 Such interface definition points two aspects of an
agent. Firstly, it indicates the expectations the agent has
about the agents with which it interacts. Secondly, it
reveals that the interaction relationships are a central issue
of the architectural description. Such relationships are not
only part of the specification of the agent behavior but
reflect the potential patterns of communication that
characterize the ways the system reason about itself.

The required query translation service is described
in greater detail in figure 5. We can see that the mediator
(sender) initiates the service by asking the wrapper
(receiver) to translate a query. To this end, the mediator
provides to the wrapper a set of parameters allowing to
define the contents of this query. Such mediator query is
specified as belief with the predicate search and the
following terms:

search(RequestType,ProductType(+),FilteredKeyword(+))

Each term represents, respectively, the type of the query
(normal advanced in the case of multi-criteria
refinement), the type of product and one or many
keywords that must be included in or excluded from the
results.

Figure 5: A Service Specification

The service effect indicates that a new search belief is
added to the Translation_Management KB of the wrapper.

Knowledge Bases. A knowledge base (KB) is specified
with a name, a body and a type. The name identifies the
KB whenever an agent wants to query or modify them
(add or remove a belief). The body represents a set of
beliefs in the manner of a relational database schema. It
describes the beliefs the agent may have in terms of
fields. When the agent acquires a new belief, values for
each of its fields are specified and the belief is added to
the appropriate KB as a new tuple. The KB type describes
the kind of formal knowledge used by the agent. A Closed
world assumes that the agent is operating in a world
where every tuple it can express is included in a KB at all
times as being true or false. Inversely, in an open world
KB, any tuple not included as true or false is assumed to
be unknown. Figure 6 specifies the
Translation_Management_KB:

Figure 6: A Knowledge Base Specification

The ‘+’ symbol means that the attribute is multi-
valued.

Agent:{ Mediator
Interface:

Sensor[require(query_translation)]
Sensor[require(query reformulation)]
Sensor[require(change_advertizings)]

…
Effector[provide(founded_items)]

 KnowledgeBase:
Results_KB
MatchMaker_Info_KB
DataManagement_KB
…

Capabilities:
Handle_Request_CP
Materialized_Views_CP
Wrapper_Localizaion_CP
… }

KnowledgeBase: {Translation_Management_KB

KB_body:

search(RequestType,ProductType,FilteredKeyword(+))

 source_resource(InfoType(+))

source_modeling(SourceType,Relation(+),Attributes(+))

dictionary(MediatorTerm,SourceType,Correspondence)

KB_type: closed_world }

Service:{Ask(query_translation)
sender: Mediator

parameters: rt:RequestType pt:ProductType
 fk(+):FilteredKeyword

receiver: Wrapper
Effect:Add(Translation_Management_KB, search(rt,pt,fk(+))

Capabilities formalize the behavioral elements of an
agent. It is composed of plans and events that together
define the agent’s abilities. It can also be composed of
sub-capabilities that can be combined to provide complex
behavior.

Figure 7 shows the Handle_Request capability of
the Mediator agent. The body contains the plans the
capability can execute and the events it can post to be
handled by other plans or can send to other agents. For
example, the Handle_Request capability is composed of
tow plans: DecompNmlRq is used to decompose a normal
request, DecompMCRq to decompose a multi-criteria
request.

Figure 7: A Capability Specification

A plan defines the sequence of actions and/or services
(i.e., actions that involve interaction with other agents) the
agent selects to accomplish a task or achieve a goal. A
plan consists of:
- an invocation condition detailing the circumstances, in

terms of beliefs or goals, that cause the plan to be
triggered;

- an optional context that defines the preconditions of
the plan, i.e., what must be believed by the agent for a
plan to be selected for execution;

- the plan body, that specifies either the sequence of
formulae that the agent needs to perform, a formula
being either an action or a service to be executed;

- an end state that defines the post-conditions under
which the plan succeeds;

- and optionally a set of services or actions that specify
what happens when a plan fails or succeeds.
Figure 8 specifies the DecompNmlRq plan that

decomposes a normal request.
 The supplementary condition about the existence
of a materialized_view belief is specified by the context.
The context is used in the selection of the most
appropriate plan in a given situation. When the plan
specification does not define a context, the plan is
selected to be executed only based on the invocation
condition.
 As soon as the invocation condition and the
context are true, the sequence of actions or services
specified in the plan body can be executed. The

DecompNmlRq plan body is composed by an action
sequence and a service. The mediator selects from the
wrapper beliefs one or many wrappers (wp(+)) able to
translate the decomposed sub-queries. A translation
service (Ask(query_translation) is then selected from the
selected wrappers.

 The plan succeeds when the endstate statement
is or become true. Moreover, SkwyRL-ADL also
specifies what happens when a plan reaches its endstate or
fails, further courses of action or service can also be
specified to consider what happens next when the plan
succeeds of fails. For example, the succeed specification
for DecompNmlRq counts the number of executions of the
current sub-query to identify a potential new materialized
view.

Configuration To describe the complete topology of the
system architecture, the agents of an architectural
description are combined into a SKwyRL configuration.

Instances of each agent or service that appear in
the configuration must be identified with an explicit and
unique name.

The configuration also describes the collaborations
(i.e., which agent participates in which interaction)
through a one-to-many mapping between provided and
required service instances.

Part of the GOSIS configuration with instance
declarations and collaborations is given in Figure 9.
 “(min)...(max)”. indicates the smallest acceptable integer,
and the largest. An omitted cardinality (as is the case

Capability: { Handle_Request_CP
CP_body:

 Plan DecompNmlRq
Plan DecompMCRq
SendEvent FaillUserRq
SendEvent FailDecompMCRq
PostEvent ReadyToHandleRst }

Plan:{ DecompNmlRq
invoc:

A dd(Request_KB, user_keyword(pt(+),kw(+))
 with pt:ProductType From Mediator.Ask(user_info-

needs).reply_with//
context:

 materialized_view(ProductType = pt(+),Keyword = kw(+))
body:

 pt : ProducType user_keyword(pt(+),kw(+)) DO

action select_wrapper(wrapper(WrapperLocalization,
TranslationService(+))

as wp(+): Wrapper
service:{Ask(query_translation)

sender: Mediator
parameters: rt:RequestType pt:ProductType

 kw(+):Keyword
receiver: wp(+): Wrapper

effect: Add(Translation_Management_KB, search(rt,pt,kw(+))
End-DO
endstate:

 pt : ProducType user_keyword(pt(+),kw(+))
Add(Translation_Management_KB, search(rt,pt,fk(+))

suceed:
action: count(search(rt,pt,kw(+))
effect: Add(Request_Kb, old_user_keyword(pt,kw(+)) }

Figure 8: A Plan Specification

with (max) in the broker, mediator and wrapper agents),
means no limitation.

Figure 9: The GOSIS Parameterized Configuration

 Such a configuration allows for dynamic
reconfiguration and architecture resolvability at run-time.
Configurations separate the description of composite
structures from the description of the elements that form
those compositions. This permits reasoning about the
composition as a whole and to reconfigure it without
having to examine each component of the system

4 CONCLUSION

Nowadays, software engineering for new
enterprise application domains such as data integration is
forced to build up open systems able to cope with
distributed, heterogeneous, and dynamic information
issues. Most of these software systems exist in a changing
organizational and operational environment where new
components can be added, modified or removed at any
time. For these reasons and more, multi-agent systems
architectures are gaining popularity in that they do allow

dynamic and evolving structures which can change at run-
time.

Architectural design has received considerable
attention for the past decade which has resulted in a col-
lection of well-understood architectural styles and formal
architectural description languages. Unfortunately, these
works have focused object-oriented rather than agent-
oriented systems. This paper has described an approach
based on organizational styles and an agent architectural
description language we have defined to design multi-
agent systems architectures in the context of information
integration system engineering. The paper has proposed a
validation of the approach: it has been applied to develop
GOSIS, an information integration platform implemented
on the JACK agent development environment.

REFERENCES

[1] M . E. Bratman. Intention, Plans and Practical Reason.
Harvard University Press, 1987.

[2] P. C. Clements. A Survey of Architecture Description
Languages. In Proc. of the Eighth International Workshop
on Software Specification and Design, Paderborn,
Germany, March 1996.

[3] T. T. Do, S. Faulkner and M. Kolp. Organizational Multi-
Agent Architectures for Infor-mation Systems. in Proc. of
the 5th Int. Conf. on Enterprise Information Systems
(ICEIS 2003), Angers, France, April 2003.

[4] S. Faulkner and M. Kolp. Towards an Agent Architectural
Description Language for Information Systems. In Proc. of
the 5th Int. Conf. on Enterprise Information Systems
(ICEIS 03), Angers, France, April 2003.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in
Architectural Design Environments. In Proc. of
SIGSOFT’94: Foundations of Software Engineering, New
Orleans, Louisiana, USA, Dec. 1994.

[6] JACK Intelligent Agents. http://www.agent-software.com/.

[7] M. Kolp, P. Giorgini, and J. Mylopoulos. An Organiz-
ational Perspective on Multi-agent Architectures. In Proc.
of the 8th Int. Workshop on Agent Theories, architectures,
and languages, ATAL’01, Seattle, USA, Aug. 2001.

 [8] E. Yu. Modeling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada, 1995.

[9] M. Wooldridge and N.R Jennings, editors. Special Issue on
Intelligent Agents and Multi-Agent Systems. Applied
Artificial Intelligence Journal. Vol. 9(4), 1996.

Configuration GOSIS
Agent Broker[nb: 1…]
Agent Mediator[nm: 1…]
Agent Wrapper[nw: 1…nS] with nS = number of

information sources
Agent Monitor[nmo: 1…nS]
Agent Matchmaker
Agent Multi-Critria-analyzer
Service Tell(query_translation)
Service Ask(query_translation)
Service Achieve(result)
Service Do(result)
….
Instances
BRnb : Broker MEnm: Mediator
WRnw: Wrapper
MOnmo: Monitor
MA: Matchmaker
MCA: Multi-Criteria-Analyzer
Tellquerytrans: Tell(query_translation)
Askquerytrans: Ask(query_translation)
Achres: Achieve(result)
Dores: Do(result)
….
Collaborations

ME nm.Askquerytrans --- Tellquerytrans.WRnw;
ME nm.Achres --- Tellres.WRnw;
ME nm .Asksubs --- Tellsubs.MA;
….

End GOSIS

Level Construction of Decision Trees
in a Partition-based Framework for Classification

Y.Y. Yao, Y. Zhao and J.T. Yao
Department of Computer Science, University of Regina

Regina, Saskatchewan, Canada S4S 0A2
E-mail: {yyao, yanzhao, jtyao}@cs.uregina.ca

Abstract

A partition-based framework is presented for a formal
study of consistent classification problems. An informa-
tion table is used as knowledge representation. Solutions
to, and solution space of, classification problems are for-
mulated in terms of partitions. Algorithms for finding so-
lutions are modeled as searching in a space of partitions
under a refinement order relation. We focus on a particular
type of solutions called conjunctively definable partitions.
Two level construction methods for decision trees are inves-
tigated. Experimental results are reported to compare the
two level construction methods.

1. Introduction

Classification is one of the main tasks in machine learn-
ing, data mining and pattern recognition [1, 3, 4]. It deals
with classifying labeled objects. Knowledge for classifica-
tion can be expressed in different forms, such as classifica-
tion rules, discriminant functions, decision trees and deci-
sion graphs.

Classification by decision trees is a popular method. The
typical algorithms for decision tree learning are the ID3 al-
gorithm [6] and its descendent, the C4.5 algorithm [7]. Typ-
ically, ID3-like algorithms build a decision in a top-down,
depth-first mode. Furthermore, the node splitting criteria
are based on local optimization. When splitting a node,
an attribute is chosen based on only information about this
node, but not on any other nodes in the same level. Conse-
quently, different nodes in the same level may use different
attributes, and the same attribute may be used at different
levels. The use of local optimal criteria makes it difficult to
judge the overall quality of the partial decision tree during
its construction process.

The main objective of the paper is to study a top-
down, breadth-first, level-wise mode for constructing deci-

sion trees. Two types of algorithms are proposed and stud-
ied. One is based on local optimization node splitting cri-
teria, and the other is based on global optimization criteria.
The former is referred to as the level construction version
of ID3 and is denoted by LID3. The latter is in fact a level-
wise, reduct based methods and is denoted by kLR. The
kLR algorithm combines the methods for constructing deci-
sion trees and the methods for searching for reducts [4, 5, 9].

The rest of the paper is organized in two layers. A for-
mal framework for classification is presented in Section 2,
which sets the stage for the algorithmic studies. Level con-
struction algorithms are discussed in Section 3 and their ex-
perimental evaluations are reported in Section 4. The pro-
posed methods offer a complementary approach to depth-
first ID3. The decision trees obtained from the algorithms
enables us to see the different aspects of knowledge embed-
ded in data.

2. Consistent Classification Problems

2.1. Information tables

An information table provides a convenient way to de-
scribe a finite set of objects by a finite set of attributes. It
deals with the issues of knowledge representation for clas-
sification problems [5, 11]. An information table S is the
tuple:

S = (U,At,L, {Va | a ∈ At}, {Ia | a ∈ At}),
where U is a finite nonempty set of objects, At is a finite
nonempty set of attributes, L is a language defined by using
attributes in At, Va is a nonempty set of values for a where
a ∈ At, and Ia : U → Va is an information function.

Formulas of L are defined by the following two rules:
(i) An atomic formula φ of L is a descriptor a = v, where
a ∈ At and v ∈ Va; (ii) The well-formed formulas (wff)
of L is the smallest set containing the atomic formulas and
closed under ¬, ∧, ∨, → and ≡.

If φ is a formula, the set mS(φ) defined by

mS(φ) = {x ∈ U | x |= φ},

is called the meaning of the formula φ in S. If S is under-
stood, we simply write m(φ). The meaning of a formula φ
is the set of all objects having the properties expressed by
the formula φ. A connection between formulas of L and
subsets of U is thus established.

The notion of definability of subsets in an information
table is essential to data analysis. In fact, definable subsets
are the basic units that can be described and discussed, upon
which other notions can be developed. A subset X ⊆ U is
called a definable granule in an information table S if there
exists at least one formula φ such that m(φ) = X . For a
subset of attributes A ⊆ At, X is an A-definable granule
if there exists at least one formula φA using only attributes
from A such that m(φA) = X .

In many classification algorithms, one is only interested
in formulas of a certain form. Suppose we restrict the con-
nectives of language L to only the conjunction connective
∧. A subset X ⊆ U is a conjunctively definable granule in
an information table S if there exists a conjunctor φ such
that m(φ) = X .

2.2. Partitions in an information table

Classification involves the division of the set U of ob-
jects into many classes. The notion of partitions provides a
formal means to describe classification.

Definition 1 A partition π of a set U is a collection of
nonempty and pair-wise disjoint subsets of U whose union
is U . The subsets in a partition are called blocks.

Different partitions may be related to each other. A par-
tition π1 is a refinement of another partition π2, or equiv-
alently, π2 is a coarsening of π1, denoted by π1 � π2, if
every block of π1 is contained in some block of π2. The
refinement relation is a partial order, namely, it is reflexive,
antisymmetric, and transitive. It defines a partition lattice
Π(U).

A partition π is called a definable partition in an infor-
mation table S if every block of π is a definable granule.
A partition π is called a conjunctively definable partition
if every equivalence class of π is a conjunctively definable
granule. Consider two special families of conjunctively de-
finable partitions below.

The first family is the uniformly conjunctively defin-
able partitions, which has been studied extensively in
databases [2]. A partition π is called a uniformly conjunc-
tively definable partition in an information table S if, given
a subset A of attributes in a certain order, the blocks are fur-
ther refined in a process that the attributes are one-by-one

added to the conjunctor. π∅ = U is the coarsest partition,
and πAt is the finest partition, for any A ⊆ At, we have
πAt � πA � π∅.

The second family is the non-uniformly conjunctively
definable partitions, which has been used extensively in ma-
chine learning [6]. A partition π is called a non-uniformly
conjunctively definable partition in an information table S
if the partition blocks select their own optimal attributes to
further division, according to a consistent selection criteria.
This strategy results in that the partition blocks at the same
level may use different attributes for refinement partition.
Let Πtree be the set of non-uniformly conjunctively defin-
able partitions. The partial order � can be carried over to
Πtree. Suppose πt ∈ Πtree. It can be easily verified that
πAt � πt � π∅.

2.3 Solutions to consistent classification problems

In an information table for classification problems, we
have a set of attribute At = F ∪ {class}. The problem can
be formally stated in terms of partitions.

Definition 2 An information table is said to define a consis-
tent classification if objects with the same description have
the same class value, namely, for any two objects x, y ∈ U ,
IF (x) = IF (y) implies Iclass(x) = Iclass(y).

Suppose π is an A-definable partition, that is, each block
of π is an A-definable granule. We say that π is a solution
to the consistent classification problem, if π � πclass. A
solution π is called a most general solution if there does not
exist another solution π′ such that π ≺ π′ � πclass, where
π ≺ π′ stands for π
= π′ and π � π′.

Suppose π is a solution to the classification problem,
namely, π � πclass. For a pair of equivalence classes
X ∈ π and C ∈ πclass with X ⊆ C, we can derive a
classification rule Des(X) =⇒ Des(C), where Des(X)
and Des(C) are the formulas that describe sets X and C,
respectively.

Let Πsol be the set of all solutions called solution space.
The partition πF is the minimum element of Πsol. For two
partitions with π1 � π2, if π2 is a solution, then π1 is also
a solution. For two solutions π1 and π2, π1 ∧ π2 is also a
solution. The solution space Πsol contains the trivial solu-
tion πF , and is closed under meet ∧. The solution space is
a meet sub-lattice.

In most cases, we are interested in the most general so-
lutions, instead of the trivial solution πF . In many practical
situations, one is satisfied with an approximate solution of
the classification problem, instead of an exact solution.

Definition 3 Let ρ : π × π −→ �+, where �+ stands for
non-negative reals, be a function such that ρ(π1, π2) mea-
sures the degree to which π1 � π2 is true. For a threshold

α, a partition π is said to be an approximate solution if
ρ(π, πclass) ≥ α.

The measure ρ can be defined to capture various aspects
of classification. Two such measures are discussed below,
they are the ratio of sure classification (RSC) , and the ac-
curacy of classification.

Definition 4 For the partition π = {X1,X2, . . . , Xm}, the
ratio of sure classification (RSC) by π is given by:

ρ1(π, πclass)=
∑m

i=1 |{Xi∈π | ∃Cj ∈πclass,Xi ⊆ Cj}|
|U | ,

(1)

where | · | denotes that cardinality of a set. The ratio of
sure classification represents the percentage of objects that
can be classified by π without any uncertainty. The measure
ρ1(π, πclass) reaches the maximum value 1 if π � πclass,
and reaches the minimum value 0 if for all blocks Xi ∈ π
and Cj ∈ πclass, Xi ⊆ Cj does not hold. For two partitions
with π1 � π2, we have ρ1(π1, πclass) ≥ ρ1(π2, πclass).

Definition 5 For the partition π = {X1,X2, . . . , Xm}, the
accuracy of classification by a partition is defined by:

ρ2(π, πclass) =
∑m

i=1 |Xi ∩ Cj(Xi)|
|U | , (2)

where Cj(Xi) = arg max{|Cj ∩ Xi| | Cj ∈ πclass}. The
accuracy of π is in fact the weighted average accuracies
of individual rules. The measure ρ2(π, πclass) reaches the
maximum value 1 if π � πclass, and reaches the minimum
value |Ck0 |/|U |, where Ck0 is the class with the maximum
number of objects. For two partitions with π1 � π2, we
have ρ2(π1, πclass) ≥ ρ2(π2, πclass).

Additional measures can also be defined based on
the properties of partitions. For example, one may use
information-theoretic measures [12].

2.4. Classification as search

Conceptually, finding a solution to a classification prob-
lem can be modeled as a search in the space of A-definable
partitions under the order relation �. A difficulty with
this straightforward search is that the space is too large
to be practically applicable. One may avoid such a dif-
ficulty in several ways, for instance, only searching the
space of conjunctively definable partitions. In particular,
in searching the conjunctively definable partitions, two spe-
cial cases deserve consideration, namely, the space of uni-
formly conjunctively definable partitions, and the space of
non-uniformly conjunctively definable partitions.

Searching solutions in the space of uniformly conjunc-
tively definable partitions can be achieved by rough set
based classification methods [5, 9]. Suppose all the at-
tributes of F have same priorities. The goal of solution
searching is to find a subset of attributes A so that πA is
a most general solution to the classification problem. The
important notions of rough set based approaches are sum-
marized below.

Definition 6 An attribute a ∈ A is called a core attribute,
if πF−{a} is not a solution, i.e., ¬(πF−{a} � πclass).

Definition 7 A subset A ⊆ F is called a reduct, if πA is a
solution and for any subset B ⊆ A, πB is not a solution.
That is,

(i) πA � πclass;
(ii) for any proper subset B ⊂ A, ¬(πB � πclass).

Each reduct provides one solution to the classification
problems. There may exist more than one reduct. A core
attribute must be presented at each reduct, namely, a core
attribute is in every solution to the classification problem.
The set of core attributes is the intersection of all reducts.
The bias of searching solutions in the space of uniformly
conjunctively definable partitions is to find the reduct, a set
of individually necessary and jointly sufficient attributes.

The ID3-like algorithms search the space of non-
uniformly conjunctively definable partitions. Typically, a
classification is constructed in a depth-first manner until the
leaf nodes are subsets that consist of elements of the same
class with respect to class. By labeling the leaves by the
class symbol of class, we obtain a decision tree for clas-
sification. The bias of searching solutions in the space of
non-uniformly conjunctively definable partitions is to find
the shortest tree construction.

One can combine these two searches together, i.e., con-
struct a classification tree by using a reduct set of attributes
derived from a reduct-based algorithm.

3. Level Construction of Decision Trees

Two level construction methods are discussed in this sec-
tion. One is the ID3-like approach, and the other is the
reduct-based approach.

3.1. The LID3 algorithm

The ID3 algorithm [6] is perhaps one of the most stud-
ied depth-first method for constructing decision trees. It
starts with the entire set of objects and recursively di-
vides the set by selecting one attribute at a time, un-
til each node is a subset of objects belong to one class.

A level construction method based ID3 is given below.

LID3: A level construction version of ID3
1. Let k = 0.
2. The k-level, k > 0, of the classification tree is built

based on the (k − 1)th level described as follows:
if a node in (k − 1)th level does not consist of only
elements of the same class, then
2.1 Choose an attribute based on a certain criterion

β : At −→ �;
2.2 Divide the node based on the selected attribute

and produce the kth level nodes, which are the
subsets of that node;

2.3 Label the node by the attribute name, and label
the branches coming out from the node by
values of the attribute.

The selection criterion used by ID3 is an information-
theoretic measures called conditional entropy. Let S denote
the set of objects in a particular node at level (k − 1). The
conditional entropy of class given an attribute a is denoted
by:

HS(class|a) =
∑

v∈Va

PS(v)H(class|v)

= −
∑

v∈Va

PS(v)
∑

d∈Vclass

PS(d|v) log PS(d|v)

= −
∑

d∈Vclass

∑

v∈Va

PS(d, v) log PS(d|v), (3)

where the subscript S indicates that all quantities are de-
fined with respect to the set S. An attribute with the mini-
mum entropy value is chosen to split a node.

For the information Table 1, we obtain a decision tree
shown in Figure 1, and the analysis of RSC and accuracy is
summarized in Table 2.

A B C D class
1 a1 b1 c1 d2 -
2 a1 b1 c2 d2 -
3 a1 b2 c1 d1 +
4 a1 b2 c2 d1 +
5 a2 b1 c1 d2 -
6 a2 b1 c2 d1 -
7 a2 b2 c1 d2 -
8 a2 b2 c2 d1 +
9 a3 b1 c1 d2 +

10 a3 b1 c2 d1 -
11 a3 b2 c1 d1 +
12 a3 b2 c2 d1 +

Table 1. An information table

Rules RSC Accuracy
k = 1 b1 ⇒ 5/6 − 0.00 0.83
B b2 ⇒ 5/6 +
k = 2 b1 ∧ a1 ⇒ 2/2 − 0.83 0.92
ABD b1 ∧ a2 ⇒ 2/2 +

b1 ∧ a3 ⇒ 1/2 +
b2 ∧ d1 ⇒ 5/5 +
b2 ∧ d2 ⇒ 1/1 −

k = 3 b1 ∧ a3 ∧ c1 ⇒ 1/1 + 1.00 1.00
ABCD b1 ∧ a3 ∧ c2 ⇒ 1/1 −

Table 2. Rules generated by ID3

C

 c

1 2

D

d

c

B

A

1
 a d 2

−

32 1

1 2

 aa

+ −

b b

−− +

Figure 1. An ID3 decision tree

3.2. The kLR algorithm

Recall that a reduct is a set of individually necessary and
jointly sufficient attributes that correctly classify the ob-
jects. An algorithm for finding a reduct can be easily ex-
tended into a level construction method for decision trees
called kLR.

kLR: A reduct-based level construction method
1. Let k = 0.
2. The k-level, k > 0, of the classification tree is built

based on the (k − 1)th level described as follows:
if there is a node in (k − 1)th level that does not
consist of only elements of the same class then
2.1 Choose an attribute based on a certain criterion

γ : At −→ �;
2.2 Divide all the inconsistent nodes based on the

selected attribute and produce the kth level
nodes, which are subsets of the inconsistent
nodes;

2.3 Label the inconsistent nodes by the attribute
name, and label the branches coming out from
the inconsistent nodes by the values of the
attribute.

Note that when choosing an attribute, one needs to con-
sider all the inconsistent nodes. In contrast, LID3 only con-

Rules RSC Accuracy
k = 1 b1 ⇒ 5/6 − 0.00 0.83
B b2 ⇒ 5/6 +
k = 2 b1 ∧ d1 ⇒ 2/2 − 0.67 0.92
BD b1 ∧ d1 ⇒ 3/4 −

b2 ∧ d1 ⇒ 5/5 +
b2 ∧ d2 ⇒ 1/1 −

k = 3 b1 ∧ d2 ∧ a1 ⇒ 2/2 − 1.00 1.00
ABD b1 ∧ d2 ∧ a2 ⇒ 1/1 −

b1 ∧ d2 ∧ a3 ⇒ 1/1 +

Table 3. Rules generated by kLR

siders one inconsistent node at a time.
Conditional entropy can also be used as the selection cri-

terion γ. In this case, the subset of examples considered at
each level is the union of all inconsistent nodes. Let A(k−1)

be the set of attributes used from level 0 to level (k − 1).
The next attribute a for level k can be selected based on the
following conditional entropy:

H(class|A(k−1) ∪ {a}). (4)

The use of A(k−1) ensures that all inconsistent nodes at
level k − 1 are considered in the selection of level k at-
tribute [9].

The decision trees generated by the kLR algorithm are
level-constructed trees. The idea is similar to oblivious de-
cision trees, in which all nodes at the same level test the
same attributes according to a given order. While the order
is not given, we can use the function γ : At −→ � to decide
an order. The criterion γ can be one of the information mea-
sures, for example, conditional entropy (as shown above)
or mutual information, which indicate how much informa-
tion the attributes contribute to the decision attribute class;
or the statistical measures, for example, the χ2 test or bi-
nomial distribution, which indicates the dependency level
between the test attribute and the decision attribute class.
We can get such an order by testing all the attributes. How-
ever, we need to update the order level by level. There are
two reasons for level-wise updating. First, in respect that
some nodes of a classification tree are intended to halt the
partition when the solutions or the approximate solutions
are found. The search space is possibly changed for differ-
ent levels. Second, for each test that partitions the search
space into uneven-sized blocks, the value of function γ is
the sum of the function value of γ for each block multiplies
the probability distribution of the block.

Consider the earlier example, based on the conditional
entropy, the decision tree built by kLR algorithm is shown
in Figure 2. The analysis of RSC and accuracy is given by
Table 3.

 b
1

d
2

 a

D

A

b

a

d
1 2

2

1
d

 a
1 2 3

d

D

−− − +

B

−− +

Figure 2. A kLR decision tree

Comparing these two decision trees in Figures 1 and 2,
we notice that kLR decision tree can construct a tree pos-
sessing the same RSC and accuracy as the LID3 decision
tree with fewer attributes involved. In this example, the
set of attributes {A,B,D} is a reduct, since π{A,B,D} �
πclass, and for any proper subset X ⊂ {A,B,D}, ¬(πX �
πclass).

4. Experimental evaluations

In order to evaluate level construction methods, we
choose some well-known datasets from UCI machine learn-
ing repository [10]. SGI’s MLC++ utilities 2.0 [8] is used
to discretize the datasets into categorical attribute sets. Set
the accuracy threshold α = 100%.

Dataset 1: Credit - 690 training objects, 14 attributes and
2 classes. Using all the attributes, neither LID3 nor kLR can
100% consistently classify all the training instances. kLR
discovers that one attribute contributes little to the classi-
fication, namely, we can have the same RSC and accuracy
values with only 13 attributes. kLR generates more rules
than its counterpart. However comparing the trees where
the same number of attributes are used, kLR obtains higher
RSC and accuracy.

Dataset 2: Vote - 435 training objects, 16 attributes and
2 classes. It achieves 100% of RSC and accuracy for clas-
sification. In the case of LID3, the total tree length is 8
levels, but 15 attributes were required for 100% of RSC and
accuracy. In the case of kLR, we can reach the same level
of RSC and accuracy by a 9-level-tree with only 9 related
attributes.

Dataset 3: Cleve - 303 training objects, 13 attributes and
2 classes. It cannot be 100% consistently classified either
by all its 13 attributes. In this dataset, the kLR tree is short
than the LID3 tree. The kLR tree discovered consists of
11 attributes. This number is less than that is used for con-
structing a full LID3 tree. This observation is shown in all
the other experiments.

The experimental results of the above three datasets are

Dataset 1
Goal LID3 kLR
Accu. ≥ 85.00% k = 1 (1 attr) k = 1 (1 attr)
Accu. ≥ 90.00% k = 4 (14 attrs) k = 5 (5 attrs)
Accu. ≥ 95.00% k = 6 (14 attrs) k = 8 (8 attrs)
Accu. = 98.55% k = 11 (14 attrs) k = 13 (13 attrs)
RSC ≥ 85.00% k = 6 (14 attrs) k = 8 (8 attrs)
RSC ≥ 90.00% k = 7 (14 attrs) k = 9 (9 attrs)
RSC ≥ 95.00% k = 10 (14 attrs) k = 12 (12 attrs)
RSC = 95.80% k = 11 (14 attrs) k = 13 (13 attrs)

Dataset 2
Goal LID3 kLR
Accu. ≥ 95.00% k = 1 (1 attr) k = 1 (1 attr)
Accu. = 100.00% k = 8 (15 attrs) k = 9 (9 attrs)
RSC ≥ 95.00% k = 5 (11 attrs) k = 6 (6 attrs)
RSC = 100.00% k = 8 (15 attrs) k = 9 (9 attrs)

Dataset 3
Goal LID3 kLR
Accu. ≥ 85.00% k = 3 (6 attrs) k = 3 (3 attrs)
Accu. ≥ 90.00% k = 5 (11 attrs) k = 6 (6 attrs)
Accu. ≥ 95.00% k = 6 (12 attrs) k = 8 (8 attrs)
Accu. = 98.35% k = 13 (12 attrs) k = 11 (11 attrs)
RSC ≥ 80.00% k = 6 (12 attrs) k = 7 (7 attrs)
RSC ≥ 85.00% k = 7 (12 attrs) k = 8 (8 attrs)
RSC ≥ 90.00% k = 8 (12 attrs) k = 9 (9 attrs)
RSC = 94.72% k = 13 (12 attrs) k = 11 (11 attrs)

Table 4. Experimental results of the datasets
used in this paper

reported in Table 4.
From the results of experiments, we can have the follow-

ing observations. The difference of local and global selec-
tion causes different tree structures. Normally, LID3 may
obtain a shorter tree. On the other hand, if we restrict the
height of decision trees, LID3 may use more attributes than
kLR. With respect to the RSC measure, LID3 tree is nor-
mally better than kLR tree at the same level. With respect
to the accuracy measure, LID3 tree is not substantially bet-
ter than kLR tree at the same level. With respect to differ-
ent levels of two trees with the same number of attributes,
kLR obtains much better accuracy and RSC than LID3. The
main advantage of kLR method is that it uses fewer number
of attributes to achieve the same level of accuracy.

5. Conclusion

The contribution of this paper is twofold, the develop-
ment of a formal model and algorithms for level construc-
tion methods for building decision trees. The formal frame-
work is based on partitions in an information table. Within
the framework, we are able to define precisely and con-
cisely many fundamental notions. The concepts of solu-

tion and solution space are discussed. The structures of
several search spaces are studied. Two level construction
methods are suggested: a breath-first version of ID3 called
LID3 , which searches the space of non-uniformly conjunc-
tively definable partitions; and a reduct-based method called
kLR, which searches solutions in the space of uniformly
conjunctively definable partitions. Experimental results are
reported to compare these two methods. They show that
one needs to pay more attention to the less studied level
construction methods.

References

[1] Duda, R.O. and Hart, P.E. Pattern Classification and
Scene Analysis, Wiley, New York, 1973.

[2] Lee, T.T. An information-theoretic analysis of rela-
tional databases - part I: data dependencies and infor-
mation metric, IEEE Transactions on Software Engi-
neering, SE-13, 1049-1061, 1987.

[3] Michalski, J.S., Carbonell, J.G., and Mirchell, T.M.
(Eds.), Machine Learning: An Artificial Intelligence
Approach, Morgan Kaufmann, Palo Alto, CA, 463-
482, 1983.

[4] Mitchell, T.M., Machine Learning, McGraw-Hill,
1997.

[5] Pawlak, Z., Rough Sets: Theoretical Aspects of Rea-
soning about Data, Kluwer Academic Publishers,
Dordrecht, 1991.

[6] Quinlan, J.R., Induction of decision trees, Machine
Learning, 1, 81-106, 1986.

[7] Quinlan, J.R., C4.5: Programs for Machine Learning,
Morgan Kaufmann Publishers, Inc., 1993.

[8] SGI’s MLC++ utilities 2.0: the discretize utility.
http://www.sgi.com/tech/mlc

[9] Wang, G.Y., Yu, H. and Yang, D.C., Decision table
reduction based on conditional information entropy,
Chinese Journal of Computers, 25(7), 2002. 3.

[10] UCI Machine Learning Repository.
http://www1.ics.uci.edu/∼mlearn/MLRepository.html

[11] Yao, J.T. and Yao, Y.Y., Induction of classification
rules by granular computing, Proceedings of Interna-
tional Conference on Rough Sets and Current Trends
in Computing, 331-338, 2002.

[12] Yao, Y.Y., Information-theoretic measures for knowl-
edge discovery and data mining, Entropy Mea-
sures, Maximum Entropy and Emerging Applications,
Karmeshu (Ed.), Springer, Berlin, 115-136, 2003.

Mapping CM3: Upfront Maintenance on CGE&Y’s Process Model

Mira Kajko-Mattsson,
SML: Upfront Maintenance

Dept of Computer and Systems Sciences
Stockholm Univ. & Royal Inst. of

Technology, Sweden
mira@dsv.su.se

Karin Ericsson, Zsofia Szalkai
Dept of Computer and Systems Sciences

Stockholm Univ. & Royal Inst. of
Technology, Sweden

[zsofia-s; karin-er] @fc.dsv.su.se

ABSTRACT
We have created a process model for managing

corrective maintenance requests at the front-end support
level. Our model is called CM3: Upfront Maintenance. It
was developed at two ABB organisations. In this paper, we
check its applicability in the context of another
organisation – Cap Gemini Ernst & Young.

1. Introduction

Evolution and maintenance may be conducted by one or
several organisations, departments, teams and/or even
individuals. Usually, it is performed by several co-
operating organisations, building a so-called virtual IT
enterprise. As depicted in Figure 1, such an enterprise is
logically divided into three organisational levels, where
each level plays a clearly defined role within evolution and
maintenance. The levels are: (1) customer, (2) front-end
support, and (3) back-end support. The customer uses
software products and states new requirements for
evolving and maintaining them. The front-end support
assists the customer in a daily operation of the software
products. The back-end support evolves and maintains the
products according to the requirements as requested by the
customer. Many times, it is the organisations at the back-
end process level that have developed the system.

Front-end support organisations are the face of the
back-end development and maintenance organisations
towards their customers. They assist their customers in the
operation of the software or integrated software and
hardware products. They also assist the back-end evolution
and maintenance organisations in communicating
maintenance demands requested by the customers.

Front-end support processes are one of the most diverse
and complex to define. So far, they have not achieved
enough attention. Most research effort has been put into
the development and maintenance processes and the
improvement of these processes. Very little research
however has been done within their supporting front-end

Upfront Maintenance (UM)
Help Desk Process (HDP)

B
ac

k-
en

d
su

pp
or

t

Upfront Maintenance (UM)
Product SupportProcess (PSP)

Maintenance Execution Process
 (MEP)

Support
Line 1

Support
 Line 2

Support
Line 3

corrective changes to
the product

continuous development of
the product

Customer Process (CP)

C
us

to
m

er
Fr

on
t-e

nd
 s

up
po

rt

Figure 1. Support levels [7]

support processes – the processes that extensively mediate
or eliminate the need for changes in software systems.

Today, we have very little knowledge of and insight
into the front-end support processes, despite the fact that
they are the dominating cost within evolution and
maintenance [2]. To remedy this, we have created a
process model of front-end support, called CM3: Upfront
Maintenance. This model is part of a greater model called
Corrective Maintenance Maturity Model, abbreviated as
CM3. In this paper, we present one of its parts dealing with
its process phases and activities. This part was developed
at two ABB organisations [6]. We map its phases and
activities on another real-life industrial front-end support
process utilised by one department at Cap Gemini Ernst &
Young (CGE&Y). Our goal is to find out whether our
model is applicable in the context of other organisations.

The remainder of this paper is the following. In Section
2, we describe our contribution. Section 3 describes CM3:
Upfront Maintenance process phases and its activities. In
Section 4, we map them on CGE&Y’s process phases and
activities. Finally, in Sections 5 and 6, we make final
remarks and suggestions for future work.

 Problem
Reporting

Supervision
of Problem

Management

 Solution
Delivery

Problem
Analysis

Report Quality
Control

Problem
Investigation

Problem
Reporting

Problem
Resolution

Problem
Analysis

Report Quality
Control and

Maintenance Team
Assignment

Problem
Administration

and Problem Report
Engineer Assignment

Problem
Investigation

Problem
Cause

Identification

Root
Cause

Analysis

Fr
on

t-
E

nd
 S

up
po

rt

Se
rv

ic
e

L
ev

el
s 1

-2
B

ac
k-

E
nd

 S
up

po
rt

Se

rv
ic

e
L

ev
el

 3

Modification
Design

Modification
Decision

 Modification
 Implementation

Figure 2. CM3: process phases

2. Contribution

Right now, we are in the process of defining a process
model called Corrective Maintenance Maturity Model:
Upfront Maintenance, abbreviated as CM3:Upfront
Maintenance. This model is limited to problem
management within corrective maintenance at the front-
end support level. By upfront maintenance, we mean part
of the front-end support conducting maintenance-related
tasks. The model was developed by the lead author of this
paper, when studying the front-end and back-end processes
at two major organisations supporting real-time
applications: ABB Robotics, ABB Service in the years
2000-2001 [6].

In this paper we check the applicability of CM3:
Upfront Maintenance at CGE&Y. For this purpose, we
studied CGE&Y’s front-end problem management process
called Problem Handling and mapped its activities on
CM3: Upfront Maintenance activities. The CGE&Y
process was developed to manage customer requests for
only one particular customer and product (administrative
product). It is executed by only one department. Hence, it
is not representative of the standard process model that has
been globally defined for the whole CGE&Y.

3. CM3: Upfront Maintenance

The upper part of Figure 2 depicts CM3: Upfront
Maintenance process phases. The bottom part shows CM3:
Problem Management at the back-end support process
level [5]. Regarding the upfront maintenance process
model, it consists of four main phases. They are (1)
Problem Reporting phase, (2) Problem Analysis phase, (3)
Problem Management Supervision phase, and (4) Solution
Delivery phase. These phases and their activities are
described below. They are also listed in Table 1.

Problem Reporting Phase: During this phase,
problems get reported to the support organisation by the

problem submitter. Usually, the problem submitter is the
customer filling in the problem report with relevant data
describing the problem. It may however be a support
engineer who does it for some customer’s account. The
support engineer may also report an internally encountered
problem. The list of activities for this process phase is
defined in Table 1. If the problem is reported internally,
then the support engineer must conduct additional
activities required for future analysis and control of the
support process (see CM3 Activities A-1.20-21). Hence,
not all activities in this phase apply to external problem
submitters. At this phase, the problem report acquires the
status value “Reported ”.

Problem Analysis Phase: During this phase, the front-
end support engineers attempt to recreate the reported
problems in order to confirm that the reported problem is
really a problem. We divide this phase into the two sub-
phases: (1) Report Quality Control and Problem Owner
Assignment phase, and (2) Problem Investigation phase.

During the first sub-phase - Report Quality Control and
Problem Owner Assignment, one controls the quality of the
reported data. A problem report that is incorrect,
incomplete and inconsistent may lead to inappropriate
understanding of the software problem, thus obstructing
the problem resolution process and decreasing support
productivity [1, 3]. Therefore, after a problem has been
reported, the first task to be performed by the upfront
maintenance process is to check the correctness of the
reported data. If it is not satisfactory, the problem
submitter should be contacted for clarification and
supplementary additions [1, 5]. Finally, one assigns the
problem report to some support engineer. This assignment
is dependent on the expertise required for attending to the
problem report. The expertise may be found within the
same premises of the company, or it may be found within
another support company on the same support line level,
sometimes even situated within a different time zone. At
this sub-phase, the problem report acquires the status value
“Assigned to Problem Owner”.

During Problem Investigation sub-phase, the problem
report owner attempts to confirm the presence of a
software problem. The key focus is to reproduce the
problem mainly by executing software. The problem
owner must identify whether the reported problem is
unique or whether it is a duplicate. Hence, the exact steps
taken during this stage may vary depending on the nature
of the problem. If the problem is identified as a new
problem, then the support engineer is obliged to report it to
the next support level (the next front-end or back-end
support process level – see Figure 1). If the problem shows
to be an already know problem (a duplicate), then the
engineer may close its resolution, and link the duplicate
problem report to the master report (the report
communicating the unique problem). In some cases,
however, she may complement the original master report

Table 1. The CM3: Upfront Maintenance process phases and activities

A-2.1.1: Study the problem report.
A-2.1.2: Check the correctness, consistency and completeness of the

reported data.
A-2.1.3: Confirm the problem.

Comment: At this step, you just check whether the report
communicates a problem.

A-2.1.4: Check whether the problem is unique.
A-2.1.5: Revise the maintenance category.
A-2.1.6: Assign the maintainer’s judgement of problem severity and

priority.
A-2.1.7: Assign the problem report to the relevant maintenance team.

A-2.1.8: Record the additional activities/tasks performed during
the activity “Report Quality Control and
Problem Owner Assignment”.

A-2.1.9: Record the effort and resources of the activity “Report
Quality Control and Problem Owner Assignment”.

A-2.1.10: Assign the status “Assigned to Maintenance Team” to
the problem report.

A-2.1.11: Record the date and time when the problem report was
assigned the status “Assigned to Problem Owner”.

Report Quality Control and Problem Owner Assignment

Problem Investigation
A-2.2.1: Study the problem report
A-2.2.2: Check the correctness, consistency and completeness of the

reported data.
A-2.2.3: Confirm the problem.
A-2.2.3.1: If the problem report owner suspects that the problem is unique,

he conducts the steps relevant for confirming that the problem is
new to the support organisation.

A-2.2.3.1.1: Read the problem description.
A-2.2.3.1.2: Study the software system.
A-2.2.3.1.3: Designate/(Revise the designation of) an appropriate version(s)

of the product in which the problem will be investigated.
A-2.2.3.1.4: Create a pertinent execution environment for the version(s) of the

product in which the problem will be investigated.
A-2.2.3.1.5: Define a set of test cases required for problem investigation.
A-2.2.3.1.6: Execute the software system until the problem is recreated.
A-2.2.3.1.7: Revise and complement the description of the software problem,

if necessary.
A-2.2.3.1.8: Check and record whether the problem is unique or a duplicate.
A-2.2.3.1.8.1: Use a list of known problems in order to determine the

uniqueness of the software.
A-2.2.3.1.8.2: Identify and classify the symptoms of the reported problem.
A-2.2.3.2: If the report owner suspects out of the problem description that

the problem report is a duplicate, then he conducts the steps
relevant for managing duplicate problem reports

A-2.2.3.2.1: Read the problem description.
A-2.2.3.2.2: Identify the master report.
A-2.2.3.2.3: Check and record whether the problem is unique or duplicate. If

necessary, repeat the steps A-2.2.3.1.2 - A-2.2.3.1.6.
A-2.2.3.2.3.1: Use a list of known problems in order to determine the

uniqueness of the software.
A-2.2.3.2.3.2: Identify and classify the symptoms of the reported problem.
A-2.2.3.2.4: Revise and complement the description of the software

problem in the master- and the duplicate problem report,
if necessary.

A-2.2.3.2.5: Check the progress of the problem resolution.
A-2.2.3.2.6: Link the duplicate problem report to its unique

correspondence (master report).
A-2.2.3.2.7: Close the management of the duplicate software problem

report.
A-2.2.3.4: Report to the customer on the status of the problem

investigation.
A-2.2.3.5: Record the results of problem investigation.
A-2.2.3.6: Suggest solutions to the reported problem, if any.
A-2.2.3.7: Investigate whether there is a a work-around.
A-2.2.3.8: Identify the support category.
A-2.2.3.9: Revise the maintainer’s judgement of the problem

priority and severity.
A-2.2.3.10: Submit additional problems encountered during the

activity “Problem Investigation”.
A-2.2.3.11: Record the additional activities/tasks performed during

the activity ”Problem Investigation”.
A-2.2.3.12: Record the effort and resources of the activity ”Problem

Investigation”.
A-2.2.3.13: Assign the status ”Problem Investigated” to the problem

report that has been identified as a unique report, and
the status “Cancelled” to the duplicate problem report.

A-2.2.3.14: Record the date and time when the problem report
was assigned the status “ Problem Investigated ”.

A-2.2.3.15: Deliver the results to the back-end process level (
maintenance execution process level). This step is
relevant in cases when the problem is unique or when
a master report needs to be updated with additional
data from the duplicate problem report.

A-2.2.3.16: Report to the customer on the status of the problem
resolution.

A-3.1: Continuously supervise the management of the problem at the
back-end process level via the process supporting tool:
Comment: The engineer is either automatically notified
about the progress by the supporting tool or she does it actively
on her own.

A-3.2: Attend CCB meetings
A-3.2.1: Study the problem description.

Comment: The more the back-end support engineer works on
a problem, the more understanding she gains. At the back-end
process level, the problem descriptions are the closest possible
interpretations of the true nature and complexity of a software
problem. They may differ from the original problem
descriptions as reported to the front-end support. Hence, it is
important that the front-end support engineer reads the
problem description anew. All the CCB-members should do so
as well.

A-3.2.2: Understand the underlying cause (defect).
A-3.2.3: Study the modification design (problem solution).

Comment: Usually, during the CCB meetings, the support

engineers study the modification designs by listening to the
oral presentations of the back-end support engineers.

A-3.2.4: Analyse and comment on the modification design from
the customer’s perspective.

A-3.2.5: Analyse and comment the modification design from the
support perspective.

A-3.3: Conduct system testing
A-3.3.1: Conduct steps relevant for the system tests, defined in

CM3: Testing.
Comment: At this phase, the support engineer checks
whether the reported software problem has been resolved.

A-3.4: Record the additional activities/tasks performed during the
activity “Problem Management Supervision”.

A-3.5: Record the effort and resources of the activity ” Problem
Management Supervision”.

A-3.6: Assign the status ”Under Resolution” to the problem
report.

A-3.7: Record the date and time when the problem report was
assigned the status ”status name”.

Problem Supervision

Solution Delivery
A-4.1: Deliver the release containing the problem solution to the

customers affected by the problem.
A-4.2: Announce to other customers that the release containing

the problem solution is ready for delivery.

A-1.1: Describe the problem
A-1.1.1: Give a general textual description of the problem.
A-1.1.2: Describe the problem effect(s) and consequence(s).
A-1.1.3: Describe the symptoms of the problem.
A-1.1.4: Describe the problem conditions.
A-1.1.5: Indicate the reproducibility of the problem.
A-1.1.5.1: Classify the problem as reproducible or non-reproducible.
A-1.1.5.2: Indicate the repeatability of the problem.
A-1.1.5.3: Describe how to reproduce the problem.
A-1.1.5.4: Describe the alternative execution path(s) to the problem.
A-1.1.6: Attach the relevant file(s).
A-1.2: Write a short summary (title) of the problem

For mnemonic identification and browsing purposes.
A-1.3: Identify the support category.
A-1.4: Identify type of a problem.
A-1.5: Identify the product in which the problem was encountered.
A-1.6: Identify the product release ID in which the problem was

encountered.
A-1.7: Identify the product component/function in which the problem

was encountered.
A-1.8: Identify the environment of the product.
A-1.9: Identify the problem submitter.

A-1.10: Classify the problem report as internal or external.
A-1.11: Assign the submitter’s judgement of the problem

severity and priority.
A-1.12: Identify the activity during which the software problem

was encountered.
A-1.13: Record the date and time when the problem was

encountered, if relevant.
A-1.14: Identify problems related to the reported problem, if any.
A-1.15: Describe (a) work-around(s), if any.
A-1.16: Suggest solutions to the reported problem, if any.
A-1.17: Enter problem report data into the organisation-wide

problem report database.
A-1.18: Assign a unique identifier to the problem report.
A-1.19: Record the date and time when the problem entered the

problem report repository and tracking system.
A-1.20: Record the additional activities/tasks performed during

the activity.
A-1.21: Record the effort and resources of the activity ”Problem

Reporting”.
A-1.22: Assign the status “Reported” to the problem report.
A-1.23: Record the date and time when the problem report was

assigned the status ”status name”.

Problem Reporting

with the extra information provided in duplicate problem
report, if she believes that this extra information would aid
in better problem understanding and thereby in more
efficient problem investigation. At this sub-phase, the
problem report acquires the status value “Problem
Investigated”.
Problem Management Supervision Phase: During the
Problem Management Supervision phase, the problem
report is being managed by the back-end support
engineers. This fact however should not release the front-
end support engineers from abandoning the problem report
ownership. The ownership should continue till the problem
has been solved, that is, till the tested problem solution has
been delivered to the customer.

As depicted in Figure 2, during this phase, the front-end
support engineer should continuously supervise the
management of the problem at the back-end process level.
She is either automatically notified about its progress via
the tool or she does it on her own by regularly checking the
contents of the support database. She should also attend the
Change Control Board (CCB) meetings during which the
problems and problem solutions (modifications designs)
are being discussed. Finally, the front-end support engineer
should assist in system testing of the releases containing
solutions to the reported software problems. At this phase,
the problem report acquires the status value “Under
Resolution”.

Solution Delivery Phase: During the Solution Delivery
phase, the release containing one or several solutions is
being delivered to the customers affected by the resolved
problems. It is also announced as available to all the other
customers.

4. Mapping CM3: Upfront Maintenance on the
CGE&Y’s process

In this section, we compare the CM3: Upfront
Maintenance and CGE&Y process activities. For this
purpose, we have identified a number of mapping criteria.
They are specified and motivated in Sections 4.1-4.3
together with our mapping results. Finally, we would like
to point out that due to the space scarcity, we have chosen
to map only a subset of activities, the activities that we feel
are the most relevant and important for defining and
managing the front-end support operation.

4.1 Problem Reporting Phase

The mapping criteria and results for the “Problem
Reporting Phase” are the following:

Mapping Criteria 1: Support demands are recorded
and categorised (CM3: Process Activities: A-1.3, A-1.17
in Table 1): Support organisations can acquire information
about the maintenance demands and needed changes only
if they are properly recorded. Hence, all customer

demands, including software problems, should be recorded
and categorised. Achieving control over the number of
customer demands, and their distribution by types greatly
aids in monitoring the support process, assessing its
maintenance scope and in planning for future work.

CGE&Y records all the support demands reported to
them in a supporting database based tool called Artologik
(see CGE&Y Activity A-1.8 in Table 2)1. Hence, they have
control over each single customer demand, which in turn
provides a basis for defining the scope of support and a
basis for monitoring the support process.

CGE&Y does also distinguish between problem reports
and other types of support demands. They do it via the
priority value (see Activity 1.6 in Table 2). The demands
concerning the corrective changes are assigned priority
values 1-3, whereas the demands concerning enhancements
are assigned priority value 4.

Mapping Criteria 2: Problems are exhaustively
described (CM3: Process Activities: A-1.1 (A1.1.1-A1.1.6
and A-1.12 in Table 1): Problem reports are requirement
specifications within corrective maintenance. They
communicate requirements for change. A proper problem
description is the most important prerequisite for effective
problem resolution. A poor, sketchy, or misleading
description may lead to an enormous effort to recreate the
problem, and thereby substantially retard the problem
resolution process. For this reason, a problem report should
be a clear, complete and correct description of a software
problem. The problem has to be communicated in a
structured and disciplined way.

To aid in minimising the reporting time for problem
submitters and in maximising the quality of the reported
data, the maintenance organisation should give guidance to
their problem submitters on how to provide and structure
problem description data. This may be done by creating a
template of problem descriptions. Such a template should
clearly designate the fields relevant for providing general
descriptions of a problem, problem effects and
consequences, symptoms, problem conditions,
specifications of how to reproduce the problem, and
opportunities for attaching relevant files.

CGE&Y today collects all the information relevant for
describing software problems (see CGE&Y activity A-1.4
in Table 2). However, they have not elaborated any
detailed template for problem descriptions. All the relevant
information is to be provided in one and only one textual
field. This field is not structured in any particular way.

Mapping Criteria 3: Temporal Aspects of a Problem
are recorded (CM3: Process Activities: A-1.13 and A-
1.19 in Table 1): For some problems, it may be important
to identify the process or operation step during which the

1 This tool is owned and managed by their customer organisation.

It does not belong to the ordinary CGE&Y’s standard tool
portfolios utilised for managing customer demands.

Table 2. Front-end support process activities at the CGE&Y process studied

A-1.1: Identify the problem submitter.
A-1.2: Designate the back-end support level to which the problem

report is sent for attendance.
A-1.3: Write the title of the problem.
A-1.4: Describe the problem.
A-1.4.1: Give a general textual description of the problem.
A-1.4.2: Describe the problem effect(s) and consequence(s).
A-1.4.3: Describe the symptoms of the problem.
A-1.4.4: Describe the problem conditions.
A-1.4.5: Indicate the reproducibility of the problem.
A-1.4.5.1: Classify the problem as reproducible or non-reproducible.
A-1.4.5.2: Indicate the repeatability of the problem.
A-1.4.5.3: Describe how to reproduce the problem.
A-1.4.5.4: Describe the alternative execution path(s) to the problem.

A-1.4.6: Attach the relevant file(s).
A-1.5: Identify the product in which the problem was

encountered.
A-1.6: Assign the submitter’s judgement of the problem priority.
A-1.7: Identify the additional contact persons that may be

contacted during the problem handling process.
A-1.8: Enter the problem report data into the CGE&Y problem

report database.
A-1.9: Assign a unique identifier to the problem report.
A-1.10: Record the date and time when the problem entered the

problem problem report repository.
A-1.11: Assign the status ”New” to the problem report.

Problem Reporting

A-2.1: Study the problem report.
A-2.2: Check the correctness, consistency and completeness of the

reported data.
A-2.3: Contact the problem submitter in cases when the reported

data are not correct, consistent, or complete.
A-2.4: Confirm the problem. (At this step, the support engineer

only checks whether the problem report communicates a
problem)

A-2.5: Revise and complement the description of the software

Report Quality Control
problem, if necessary.

A-2.6: Check whether the problem is unique.
A-2.7: Assign the support engineer’s own judgement of problem

of priority.
A-2.8: Assign the problem report to the relevant support

engineer - Service Team Member.
A-2.9: Record the additional activities/tasks performed during

the phase “Report Quality Control”.
A-2.10: Assign the status “Opened” to the report.

A-3.1: Study the problem report.
A-3.2: Check the correctness, consistency and completeness of the

reported data.
A-3.3: Confirm the problem.
A-3.3.1: If one suspects that the reported problem is unique, do the

following:
A-3.3.1.1: Study the software system.
A-3.3.1.2: Define a set of test cases required for problem investigation.
A-3.3.1.3: Execute the software system until the problem is recreated.
A-3.3.1.4: Revise and complement the description of the software

problem, if necessary.
A-3.3.2: If one suspects that the reported problem is a duplicate, do

the following:
A- 3.3.2.1: Update the master problem report with additional

information on the problem found in the duplicate problem
report, if any.

A- 3.3.2.2: Record the Report ID of the unique problem report (in text).
A- 3.3.2.3: Close the management of the duplicate software problem

report.

Problem Investigation
A-3.3.3.4: Assign status “Withdrawn” to the problem report.
A-3.3.4: Record the results of problem investigation.
A-3.3.5: Suggest solutions to the problem, if any.
A-3.3.6: Investigate whether there is a any solution to temporarily

work-around the problem.
A-3.3.7: Revise the maintainer’s judgement of the problem

priority.
A-3.3.8: Submit additional problems encountered during the

activity “Problem Investigation”.
A-3.3.9: Record the additional activities/tasks performed

during”Problem Investigation”.
A-3.3.10: Record the effort and resources of the activity ”Problem

Investigation”.
A-3.3.11: Assign the status “Cancelled” to the duplicate problem

report.
A-3.3.12: Notify the back-end process about the problem report.
A-3.3.13: Notify the customer about the status of the problem

resolution, if necessary.

A-3.3: Conduct system testing
Problem Supervision Solution Delivery

A-4.1: Deliver the release containing the problem solution to
the customers affected by the problem.

A-4.2: Announce to other customers that the release containing
the problem solution is ready for delivery.

problem was detected. It is also important to store the date
when the problem was encountered/discovered. We do not
need to store this data for every software product. We need
this data for only safety-critical systems and the systems in
which time is a critical performance factor. Its value in
combination with the severity value, enables us to assess
and predict the reliability of the software system. It may
also greatly facilitate problem investigation, and help
reproduce or analyse problems that are keyed to the
particular time of day such as workloads.

The date of reporting the problem is just as important.
It helps in defining the problem age and in tracking
problem resolution over time. This, in turn, provides
insight into the effectiveness of the corrective maintenance
process.

Due to the nature of their products (administrative
products), CGE&Y does not regularly record the temporal
aspects of the problem occurrence. However, if this piece

of information is relevant and pivotal for problem
investigation, it is then stored together with the textual
Problem Description field during the CGE&Y Activity
A.1.4 in Table 2. Concerning the problem reporting date,
CGE&Y’s tool automatically records this date during the
CGE&Y Activity A-1.10 in Table 2.

Mapping Criteria 4: Product and its environment is
recorded (CM3: Process Activities:A-1.6-A-1.8 in Table
1): If a maintenance organisation maintains more than one
product that is being used by several customers, and if
these customers possess different releases of the products,
it is then imperative that the product and its release be
identified and reported [4]. Release identifier specifies the
version of a product containing the problem. This
information should then help the maintenance engineer
recreate the problem in the identified version.

Usually, a product is divided into a number of
functional areas. A functional area corresponds to some

part of a product executing a clearly identified function.
The identification of these areas allows for a rough
localisation of a problem.

The product-environment relation describes the
connection between the product and the elements of its
environment. It is essential for the maintenance personnel
to know the relation of the product to its environment. This
knowledge can be used to predict how changes in these
elements will affect the software product and vice versa.
This also helps better understand the problem.

CGE&Y automatically records product identification
data like product ID, release ID and environment. The
customer only needs to identify the name of the product
affected by the reported problem (see CGE&Y Activity 1.5
in Table 2). This is because the CGE&Y process studied is
dedicated to one and only one customer. CGE&Y has full
access to the system and its environment as utilised by
their customer. Hence, they have control of the product, its
version, and the product environment. Regarding the
identification of the software components affected by the
problem, CGE&Y does not have any fields reserved for
identifying the affected components. This information may
be stored together with the textual Problem Description
field during the CGE&Y Activity A-1.4, if relevant (see
Table 2).

Mapping Criteria 5: Problem Submitter is recorded
(CM3: Process Activities:A-1.9 in Table 1): The problem
submitter must be identified. If the submitter is not
identified, there is a great risk that this problem will not get
resolved, since further information from the submitter may
be needed for problem resolution. Or, if resolved, it will
not be easy to deliver the solution to the right customer.
This may then have a negative effect on customer
satisfaction. Non-identification of a customer may obstruct
the problem resolution process. Often, the engineers at the
support process level (see Table 1) have a need to contact
the customers when questions arise [1, 5]. Hence, they
should have an easy access to the submitter identification
data.

Concerning the CGE&Y process and its supporting tool,
it is entirely dedicated to only one customer. Hence, the
customer organisation is always identified. Even the
persons and additional contact persons from the customer
organisation are identified, in cases when need arises for
discussing the problem and its solutions (see CGE&Y
Activities: A-1.1 and A-1.7 in Table 2).

Mapping Criteria 6: Internal and External Problem
Reports are distinguished (CM3: Process Activities: A-
1.10 in Table 1): It is important to distinguish between
internal and external problem reports. This enables priority
assignment to software problems, and aids in evaluating
the quality of a software product from the perspective of a
customer, and aids in assessing the effectiveness of quality
assurance and quality control procedures.

CGE&Y distinguishes between internal and external
problem reports. This is automatically done by the tool
during the CGE&Y Activity A-1.1 in Table 2. Right now
this field however, is not used for any process and quality
analysis and control purposes.

4.2 Problem Analysis

Our mapping criterion for the “Problem Analysis”
phase is the following:

Mapping Criteria 7: A problem description is
studied, analysed, and confirmed (CM3 Activities: A-
2.1.1.1 – A-2.1.1.3, A-2.1.2.1 – A.2.1.2.3. together with all
of its sub-activities in Table 1). To be able to confirm the
existence of a problem, the support organisation must
study and analyse the reported problem. Not paying
enough attention to the problem description, the support
engineer may fail in recognising whether the reported
problem is really a problem and/or whether it is unique or
duplicate. The consequence is that the support engineer
escalates the reported problem to the next support level
(either the next front-end support level or the back-end
support level). This in turn implies disruption interfering in
actual maintenance work on the next support process level.

Duplicate problem reports are a serious concern to
maintenance organisations. They create a large amount of
extra work such as repeated data collection, repeated
reporting, and repeated diagnosing of the same problem,
distorted statistics of the maintenance effort and of the
quality of a product, and wasted service resources [8, 9,
10]. Only a careful investigation may reveal the presence
of a software problem.

At CGE&Y, all reported software problems first
undergo a careful study and analysis. Their contents is
checked for completeness, consistency, and correctness
(see CGE&Y Activities A-2.1.1 – A.2.1.2, A.2.2.1 –
A2.2.2 in Table 2). If the reports are incomplete,
inconsistent or incorrect, CGE&Y contacts the customer
for complementary additions (see CGE&Y Activity A-
2.1.3 in Table 2). Afterwards, all problems get confirmed.
The level of confirmation depends on the phase. During
the “Report Quality Control” phase, one only checks
whether the report really communicates a software
problem (see CGE&Y Activity A-2.1.4 in Table 2). During
the “Problem Investigation” phase, one executes software
till the problem shows itself (see CGE&Y Activity A-2.2.3
together with all its sub-activities in Table 2).

4.3 Problem Supervision

We have defined the following two mapping criteria for
the “Problem Supervision” phase:

Mapping Criteria 8: The front-end support
organisation continuously supervises the progress of
the management of the problem at the next front-end

or back-end support process level (CM3: Activity: A-
2.2.1 – A-2.2.2 in Table 1). To expiate a demand may take
time, especially when it concerns a software problem.
Meanwhile, customers may require information on the
progress of its resolution. To satisfy this, the front-end
support organisation should provide their customers with
status information of the problem resolution and/or
temporary work-arounds, if any. The reported status
concerns the progress made at both the next front-end and
back-end support levels.

CGE&Y does not supervise the management of
problem reports at the back-end support level. As soon as
the problem report gets escalated to the back-end process
level, the CGE&Y is relieved of the ownership
responsibilities for the problem. This means that the back-
end process level takes over the responsibilities for
managing the communication with the customer. However,
due to the fact that they have access to the back-end
process via their tool, the front-end support may follow the
problem management there, if need arises.

Mapping Criteria 9: The front-end support takes
part in evaluating the suggestion for modification
design from the customer and support perspective
(CM3: Activity: A-2.2.2 and its sub-activities in Table 1).
It is not always enough that suggestions for changes and
plans for their realization are approved by the engineers’ at
the back-end process level. There must be an enterprise-
wide authority for approving the appropriate suggestion for
change and for approving a plan for its realization. Such a
group is usually called a Change Control Board (CCB). Its
members should represent various roles within an
enterprise who have interest in deciding upon the change.
Some of these members should come from the front-end
support. Their role is to examine the appropriateness and
correctness of the change from the customer and front-end
support perspective.

In business situations with many users, it may be
difficult to determine and evaluate the effect of changes
made to the product. Being the most optimal from the
maintenance perspective, many suggestions for changes
may have a substantial impact on the customer and/or
support operation. Front-end support engineers have the
best knowledge of the customers, their business, usage
profiles, and technology literacy and friendliness.
Providing a daily support to their customers, they are also
able to recognise the changes which may negatively affect
the performance of the front-end support process.

At CGE&Y, the CCB meetings are not relevant. As
already mentioned in Section 2, the process was
specifically developed for one particular customer and
product. In addition, changes made to the product usually
impact a limited number of users. Due to the fact that the
CGE&Y department studied tightly co-operates with the
customer and its users, this impact is easy to
communicate, evaluate and assess.

Mapping Criteria 10: The front-end support
participates in system testing (CM3: Activity: A-2.2.3
and its sub-activities in Table 1). The front-end support
engineers know the system best. They are usually very few
ones within the whole IT enterprise who have the complete
“big picture” of the system, and knowledge of how it is
operated on by the users. Hence, they are a highly valuable
resource within system testing, during which, extensions,
adaptations, and corrections are being tested. When
investigating the newly reported software problems, they
must also conduct testing in order to confirm the existence
of a software problem.

At CGE&Y, the support engineers take part in some of
the system tests (see CGE&Y Activity A-3.1 in Table 2).
They do it in cases when they posses competency for doing
the type of the system tests required.

5. Final Remarks

CM3: Upfront Maintenance is a process model
developed at ABB in the years 2000-2001. It was
developed by studying two front-end real-life industrial
support processes at two ABB organisations. In this paper,
we evaluated it in the context of one small department
belonging to Cap Gemini Ernst & Young (CGE&Y). This
department performs a process especially tailored to one
and only one specific customer and product. Other
departments at CGE&Y perform a standard process
globally defined for the whole organisation.

Our results show that most of the CGE&Y front-end
activities could be easily mapped on CM3 activities. We
have however observed some discrepancies. These
discrepancies are mainly due to the fact that the CGE&Y
process was mainly dedicated to one specific product and
one customer and it was run by one small department.
Hence, the CGE&Y process does not have any need for
activities like identifying the product, its ID, and
environment. This data is already recorded in their process
supporting tool. Another discrepancy concerns the
activities during the “Problem Supervision” phase. Due to
the fact that the front-end support engineers at CGE&Y are
relieved of the ownership responsibility when escalating
the problem report to the back-end support level, they do
not supervise any problem management there. Finally, the
CCB-meetings are not relevant in the context of a process
tailored to manage only one customer and one product.

6. Epilogue

Today, researchers possess very little insight into many
industrial processes. One of the least visible processes is
the front-end support. In this paper, we have attempted to
provide the software community with some insight into the
upfront maintenance activities. We did this by presenting
the activities inherent in the CM3: Upfront Maintenance

process model and by mapping them on one of the
CGE&Y upfront maintenance processes. The mapping
process may be considered as one little validation step of
CM3: Upfront Maintenance. More mapping and validation
work however needs to be done in order to determine its
industrial credibility.

Acknowledgement

First of all, we would like to thank The Swedish
Research Council (in Swedish Vetenskapsrådet) for their
financial support of the project Software Maintenance
Laboratory: Upfront Maintenance. This study has been
made possible thanks to their recognition of the importance
of this area.

We would also like to thank the manager and support
manager at CGE&Y for helping us understand their
upfront maintenance process. They are Per Tidén, the
manager who initiated our co-operation with CGE&Y and
Åsa Gavelin, the support manager who helped us study the
Problem Handling process at CGE&Y.

References
[1] Arthur L J, Software Evolution: The Software Maintenance

Challenge, John Wiley & Sons, 1988.
[2] Bouman J, Trienekens J, van der Zwan M, Specification of

Service Level Agreements, clarifying concepts on the basis of
practical research, Proceedings of Software Technology and
Engineering Practice, STEP ‘99. Sept. 1999, pp. 169-178.

[3] Glass R L, Noiseux R A, Software Maintenance Guidebook,
Prentice-Hall, 1981.

[4] Hazeyama A, Hanawa M, A Problem Report Management
System for Software Maintenance, In Proceedings, IEEE
International Conference on Systems, Man and Cybernetics,
1999, Vol. 1, pp. 1019-1024.

[5] Kajko-Mattsson M, Corrective Maintenance Maturity Model:
Problem Management, PhD thesis, ISBN Nr 91-7265-311-6,
ISSN 1101-8526, ISRN SU-KTH/DSV/R--01/15, Department
of Computer and Systems Sciences (DSV), Stockholm
University and Royal Institute of Technology, 2001.

[6] Kajko-Mattsson, M., Tjerngren, L.-O., Andersson, A., CM3:
Upfront Maintenance, in Proceedings, Conference on
Software Engineering and Knowledge Engineering,
Knowledge Systems Institute, 2001.

[7] Kajko-Mattsson M, Infrastructures of Virtual IT Enterprises,
IEEE International Conference on Software Maintenance,
IEEE Computer Society Press: Los Alamitos, CA, 2003, pp.
199-208.

[8] Layzell P J, Macaulay L, An Investigation into Software
Maintenance-Perception and Practices, In Proceedings, IEEE
International Conference on Software Maintenance, 1990, pp.
130-140.

[9] Lee I, Pitt G, Iyer R K, Efficient Service of Rediscovered
Software Problems, In Proceedings, IEEE Annual
Symposium of Fault Tolerant Computing, 1996, pp. 348-352.

[10] Wedde K J, Stalhane T, Nordbo I, A Case Study of a
Maintenance Support System, In Proceedings, IEEE
International Conference on Software Maintenance, 1995, pp.
32-41.

Mapping UML Diagrams to a Petri Net Notation for System Simulation

Zhaoxia Hu and Sol M. Shatz
Concurrent Software Systems Laboratory

University of Illinois at Chicago
{zhu, shatz}@cs.uic.edu

Abstract. UML statecharts are widely used to specify the
dynamic behaviours of systems . To support systematic
simulation of such models, we propose an approach to
map systems specified using UML diagrams to colored
Petri net notations. Simulation results are provided in
form of self-defined trace files and Message Sequence
Charts. A prototype tool is described. One unique feature
of our research is the support for user-controlled view of
the system simulation.

1. Introduction

The Object Management Group (OMG) adopted a new
paradigm for software development called Model Driven
Architecture (MDA) [1] to recognize the fact that models
are important artifacts of software development and they
serve as a basis for systems as they evolve from
requirements through implementation.
 In this paper, we propose a UML-CPN transformation
framework to introduce dynamic model analysis into UML
modeling [2, 3] by mapping UML models to Petri net
models, in particular colored Petri nets (CPNs) [4]. This
work is aimed at investigating model-driven simulation. In
general, simulation can be used to create scenarios based
on design models. Evaluation of the scenarios generated
by simulation runs helps to reveal potential design errors
in an early stage of system development. To leverage on
existing techniques and tools, and to formalize UML
object models and their interrelationships, we let a net
model serve as the engine that drives the simulation. In our
framework, statechart diagrams and collaboration
diagrams are adopted as our primary notation for modeling
behavior. Statechart diagrams are first converted to
colored net models; the UML collaboration diagrams are
then used to guide the connection of these object models,
providing a single CPN for the system under study.
 To simulate UML statechart models, a number of
commercial statechart simulators are available, such as

 This material is based upon work supported by the U.S. Army
Research Office under grant number DAAD 19-01-1-0672, and
the U.S. National Science Foundation under grant number CCR-
9988168.

Rhapsody [5] and ObjectGEODE [6]. Our interest is to
investigate techniques that are useful, but not adopted or
only weakly adopted, by other tools. We present flexible
visualization of scenarios generated through simulation
runs to provide users customized views of simulation at
different levels of abstraction. In particular, for this paper
we investigate techniques for providing meaningful
Message Sequence Charts (MSC) [7] that provide views of
system simulation to users to help them understand the
system itself as well as its properties. We demonstrate
techniques for model-driven view control of simulation
traces, e.g., selecting some of the model components or a
subset of the events.
 A prototype tool has been developed to support the
automated generation of colored Petri net models from
UML notations and to provide users with an interface to
control visualizations of the simulation result.

2. Background

We first provide a very brief introduction to statecharts
and colored Petri nets.
 UML statecharts UML statecharts are an object-
based variant of classical (Harel) statecharts [8]. In this
paper, we deal with a subset of UML statecharts for the
purpose of focusing on the general approach of generating
net models from UML specifications and exploring
techniques for model simulation. The incremental feature
of our approach supports future inclusion of other
components of statecharts, such as composite states.
 Colored Petri nets Petri nets are a mathematically
precise model, and so both the structure and the behaviour
of Petri net models can be described using mathematical
concepts. We assume that the reader has some familiarity
with basic Petri net modeling [9]. Petri nets can be
“executed” to perform model analysis and verification.
Colored Petri nets (CPNs) [4] are one type of Petri net. In
colored Petri nets, tokens are differentiated by colors,
which are data types. Places are typed by colorsets, which
specify which type of tokens can be deposited into a
certain place. Arcs are associated with inscriptions, which
are expressions defined with data values, variables, and
functions. Arc inscriptions are used to specify the enabling
condition of the associated transition as well as the tokens
that are to be consumed or generated by the transition.

3. Overview of the UML-CPN architecture

The architecture of the UML-CPN approach is depicted in
Fig. 1. The UML-CPN approach integrates three types of
application software that are represented by three
rectangles in Fig. 1. The Rational Rose tool supports UML
modeling, and the Design/CPN tool [10] supports
modeling in colored Petri nets. In our framework, we use
the Design/CPN tool as the underlying simulation engine.
Thus, our approach leverages upon existing theory and
tools. The UML-CPN conversion tool is our prototype
tool. A typical run of the transformation approach is as
follows. The Rational Rose tool is used to design a UML
model specified with statecharts and collaboration
diagrams. The conversion tool converts the UML model
into a CPN model that can then be loaded into the
Design/CPN tool for simulation. We call the generated
colored Petri net notation supported by Design/CPN the
target model. The simulation results are presented to the
user in two formats: Message Sequence Charts (MSCs)
and simulation traces. The simulation traces have a text
format and contain complete information regarding the
system simulation, while the MSCs can be tailored by the
user according to his/her interests regarding the system
under study. As we will discuss later, the conversion tool
provides the user with an interface to control the views of
system behaviour so that only the information that the user
is most interested in is displayed in the MSCs.

Rose
Rational UML Diagram

Information
View Control

UML-CPN

CPN Model

Conversion Tool

MSC

Simulation Trace
Design/CPN

 Figure 1. The architecture of the approach

 The generation of the target model is based on an
abstract net model that was previously presented in [11].
The purpose of defining the abstract model is to be
consistent with the ideas of MDA and achieve separation
of concerns. Therefore, the transformation of UML
specification to colored Petri net notation is divided into
two steps. First, a UML model is converted to an abstract
net model. In the second step, the abstract model is
enriched with the syntax supported by Design/CPN to
generate the target model – platform specific model
(PSM), in the MDA terminology.
 Before we introduce the abstract net model, let us
have an overview of the basic mapping between the
constructs of UML statecharts and those of colored Petri
nets. A statechart consists of states and transitions labelled
with events and actions. A Petri net model consists of

places, transitions, arcs and tokens. Naturally, the
transformation from a statechart to a Petri net is
accomplished by the following mappings: a state is
mapped to a place; a transition is mapped to a Petri net
transition and a set of arcs; and events and actions are
mapped to tokens. The concept of “events” is a key factor
in defining the execution semantics. In fact the actions of
creating, routing, and dispatching of events primarily
determine the execution semantics of state machines.
Since an event is modeled by a token in the CPN model,
we will use event-tokens to refer to the tokens derived
from events of statecharts from now on.

3.1. Abstract CPN models

An abstract system-level model consists of Object Net
Models (ONMs) and an Internal Linking Place (ILP)
place. An ONM, derived from a UML statechart, describes
the behaviour of an individual object and defines the token
routing mechanism within an object. The ILP place defines
the communication between the objects.
 We start by introducing the structure of Object Net
Models (ONMs), as shown in Fig. 2, and described in
detail in [11]. An ONM consists of a lifetime behaviour
model (LM) and a token routing structure. LM represents
an abstract colored Petri net that is derived from the
statechart of an object and describes the object’s lifetime
behaviour, as defined by the state changes captured in the
object’s statechart diagram. As shown in Fig. 2, three
places – input place (IP), output place (OP), and event
router place (ER) - and two transitions - T1 and T2 -
defined the token routing structure for an object. The input
place of the object holds the event-tokens that will be used
by the object. The output place of the object holds the
event-tokens that will be routed to other objects. The event
router place holds the event-tokens that are generated by
the object. When the object generates an event-token, the
token can have a type of either external or internal. As
shown in Fig. 2, the input place, IP, is connected to LM,
indicating that IP holds the event-tokens that will be
consumed by the object. Thus, for each transition internal
to LM, if this transition is a triggered transition, there will
be an input arc originating from the place IP. Likewise, the
place ER is connected “from” LM because ER holds the
tokens that are generated by the object.

newly generated

LM
to be consumed
event-tokens

ER

external
event-tokens
T1 T2

event-tokens
external

event-tokens
internal

event-tokens
interanl

event-tokens

OP IP

Figure 2. The structure of an Object Net Model

 Recall that a state machine is described in terms of a
hypothetical machine that has three key components: an
event queue, an event processor, and an event dispatcher
mechanism [3]. In Fig. 2, the place IP holds the event
queue. LM represents the event processor. The behaviour
of the event dispatcher mechanism is handled by the non-
deterministic feature of transition firings inherent in Petri
net models.
 In order to construct a system-level model, the inter-
object communications must be integrated into the model.
To simplify our approach, we assume the existence of a
simple collaboration diagram that defines the event flows
between the objects. In the abstract model [11], we defined
a special place, an Internal Linking Place (ILP) that is
used to route event-tokens between the object models.

4. The target model

In order to explore model-driven simulation using an
existing simulation engine, we transform the abstract
model into a target model, suitable for direct use in the
tool called Design/CPN.

4.1. Target model structure

The basic structure for a system-level target model is
shown in Fig. 3. A target model consists of modules; in
this case, the modules are called pages. Four types of
pages are defined for target models: object page, INL
(Internal Net Linkage) page, main page, and Init page.
Recall that a system-level abstract model consists of
ONMs (one model per object) and an ILP place.
Accordingly, in the target model, each ONM is
represented by an object page that defines the object
behaviour described initially with a statechart in the UML
notation; and the ILP place is represented by an INL page
that holds the part of the Petri net that is responsible for
inter-object communication, which is captured by
collaboration diagrams in UML. The net structure of the
target model consists of a two-level tree structure and one
initialization page, called the Init page. The top level of the
tree structure is the main page, which contains the high
level constructs of the system. The bottom level of the tree
structure contains the object pages and the INL page that
defines the detailed constructs of the system. For
convenience, we call object pages and the INL page
subpages. The tree structure alone defines an executable
system-level model. Moreover, we define an Init page for
initializing the net model.

object page nobject page 1INL page

Init pagemain page

Figure 3. The structure of a target model

 We will explain the target model via a simple
example. Fig. 4 shows the UML model of a Master-
Servant (MS) system where two objects (Master and
Servant) interact with each other. The UML model
consists of two statecharts and one collaboration diagram.
Initially, the Master object is in the state Init. When the
transition labelled with /Start, which is a trigger-less
transition, fires, a new event Start is generated and the
Master object enters the state Waiting. The Servant object
is initially in the state Idle. When event Start occurs, the
transition labelled with Start fires, and the object enters the
state Active. Fig. 4 (c) shows the simple collaboration
diagram that depicts the event flow between the two
objects.

(c) Collaboration Diagram(b) Statechart for Servant(a) Statechart for Master

1: Start ServantMaster
Start/Start

Idle

ActiveWaiting

Init

Figure 4. The UML model for the MS system

4.2. Main page

The main page depicts a high-level view of the model
structure with the help of substitution transitions. A
substitution transition represents a subpage of the net
structure (The effect is the same as if the page that the
transition represents appeared physically at the site of the
transition). A subpage is connected to the main page via
special places, which are called sockets and ports. A socket
is a place defined on the main page while a port is a place
defined on a subpage. A socket and a port constitute a pair
and they are conceptually the same place. A socket can be
associated to multiple ports to connect multiple subpages
to the main page. When the model is executed, tokens are
allowed to be exchanged through the socket and its
associated ports. Fig. 5 shows the main page of the MS
example.

INL

Master_IP

LocalToken

Master_OP

LocalToken

Master

Servant_IP

LocalToken

Servant_OP

LocalToken

Servant

loc
(Internal, tok)

loc

loc

loc

loc(Internal, tok)

loc

loc

loc

Figure 5. The main page of the MS system

 The main page contains three substitution transitions
that represent, respectively, the Master object page, the

Servant object page, and the INL page. These subpages
represent the bottom level of the tree structure. In
Design/CPN, a place is drawn as an ellipse. The four
places in Fig. 5 serve as sockets in the model. The sockets
connect to the ports in the INL page and object pages to
“glue” the pages into a system-level net. The postfix “IP”
and “OP” of the place names stand for input and output
places, respectively. One thing worth noting is that a place
has a colorset that is a data type that determines the type of
tokens that the place is allowed to contain, as we
mentioned in Section 2. The four places in the main page
have colorset LocalToken. Instances of LocalToken are
event-tokens that we previously introduced in Section 3.

4.3. Implementing ONMs as object pages

An Object Net Model (ONM) describes the behaviour of
an object. We refine these models into the target model by
mapping each ONM to an object page. Naturally, the
structure of an object page captures both the behaviour
modeling and the token routing that characterize any
ONM.
 In order to understand the model behaviour, it is
necessary to have in mind the definitions for tokens. For
an object page, we define two types of tokens. One type of
token represents the activeness of a state-place. A state-
place is a place that is derived from a state of the
statechart. We call this type of token active token. An
active token is denoted as A. If a state-place holds an
active token, this place is active, denoting that the object is
in the state modeled by this place. The other type of token
is event-token that we introduced previously in Section 3.
An event-token can be either an external or internal token,
denoted as (External, event_name) or (Internal,
event_name), respectively. Fig. 6 shows the object page
for the Servant object of the MS example.

Servant_IP

LocalToken P

Servant_OP

LocalToken

P

ER

LocalToken

T2T1

Idle

Active

Active

Active

T3

(External, tok)(External, tok) (Internal, tok) (Internal, tok)

A A

(External, Start)

Figure 6. The object page for the Servant object

 In Fig. 6, the object behaviour is modeled by the state-
places Idle and Active, and transition T3. The other
components of the object page implement the token
routing structure. The input place Sevant_IP and the output
place Servant_OP place serve as two ports through which
the object page is connected to the main page. A port place
can be identified by a small rectangular, labelled with a

letter P. In Fig. 6, assume that the Idle place holds an
active token, denoting that the object is in the Idle state.
When an event-token, denoted as (External, Start), arrives
in place Servant_IP, transition T3 is enabled. When T3
fires, the event-token is consumed, modeling that the event
Start is dispatched by the event dispatcher of the state
machine, and an active token is deposited into the place
Active.
 When a UML transition fires, an action can be
performed. This type of case is modeled by generating an
event-token corresponding to the action. Accordingly, an
arc is then added from the corresponding transition to the
ER (event router) place. Whenever an event-token is
created, a type attribute is attached to the token. The
attribute can be Internal or External – specifying if the
event is to be responded to by the same object that creates
the event (i.e., the creator object) or if the event is to be
sent to other objects.
 Due to lack of space, details on the INL and Init pages
are not provided.

5. Simulation traces and visualization

Design/CPN provides a generic facility to save simulation
reports, but the automatically generated reports are not
straightforward in terms of providing an end-user with
domain-specific information. So, we extend the idea by
generating self-defined traces by using code segments as
supported by Design/CPN. A code segment is a sequential
piece of code that is defined for a Petri net transition and
executed each time the transition occurs. We define code
segments for recording the following information to a
simulation trace: the object, source states, target states, the
triggering event, and newly generated event. Fig. 8 (a)
shows a very simple example simulation trace of the MS
system. It records the history for firing two transitions.
 Another method of observing simulation results is by
using Message Sequence Charts [7], which have an
intuitive graphical appearance and capture the message
passing between the objects of a system. An MSC shows a
history of events in terms of a timeline for each object. We
define code segments that invoke an MSC library [12] to
create the visual MSC diagrams. The MSC library
provides two functions, call them c1 and c2, for generating
components of MSCs. Function c1, which has two
parameters – an object and a label – generates a solid
square on the timeline associated with the object. The
label-parameter is placed next to the square icon. We
invoke function c1 with an object-parameter obj and a
label-parameter event_name to visualize that a triggering
event, event_name, is consumed by object obj. Function
c2, which has three parameters – a sender object, a
receiver object, and a label – generates a labelled arrow
originating from the timeline of the sender object and
targeting the timeline of the receiver object. We invoke
function c2 with the parameters sender_obj, receiver_obj,
and event_name, to visualize that an event with name

event_name is sent from object sender_obj to object
receiver_obj.
 The target model contains two primary classes of net
transitions – those that directly correspond to UML
transitions and those that support the modeling of UML
transitions. It is the transitions in the first category that are
critical for generating Message Sequence Charts. We call
these transitions critical transitions. For example,
transition T3 in Fig. 6 is a critical transition. Transition T3
is directly derived from the transition of the statechart in
Fig. 4 (b). On the other hand, transitions T1 and T2 belong
to the second category of net transitions; they are support
transitions. In this case, T1 and T2 are defined for routing
event-tokens.
 The main components of Message Sequence Charts
are those that visualize the message passing between
objects. The following procedure outlines the basic steps
for defining the code segments to generate these
components with respect to some object model, obj.

Notations
- CT(obj): The set of critical transitions associated with the
target model for object obj.
- consume(t, e): A Boolean condition that evaluates to true
if transition t is specified to consume an event-token e.
- generate(t, receiver_obj, e): A Boolean condition that
evaluates to true if transition t is specified to generate an
event-token e that can be consumed by a critical transition
associated with object receiver_obj.

foreach t CT(obj) do
if consume(t, e1) and generate(t, receiver_obj, e2)
then generate a code segment that contains the
 following two function calls:
 c1(obj, e1);
 c2(obj, receiver_obj, e2);
else if consume(t, e1)
 then generate a code segment that contains the
 following function call:

 c1(obj, e1);
 else if generate(t, receiver_obj, e2)
 then generate a code segment that contains
 the following function call:
 c2(obj, receiver_obj, e2);
 endif
 endif
endif

enddo

 When a critical transition fires the associated code
segment is executed, which invokes the MSC library
functions. Thus, the following information is captured in
an MSC: consuming of the triggering event, and sending
of newly generated events (if there are any) to destination
objects. For instance, consider Fig. 8 (b). The arrow
represents that the Master object generates a new event
called Start and sends this new event to the Servant object.

The solid square represents that the Servant object has
received the event Start and this event triggers a transition.

Master Servant

Rec_Start

Start

 (a) (b)

Figure 8. A simulation trace and MSC for MS system

5.1. User-controlled views of system simulation

A complex distributed system may consist of many objects
that communicate with each other through message
passing. As a means to control the complexity of systems
analysis, designers view systems at different levels of
abstraction. To aid this process, we want a designer to be
able to reason about the behaviour of a subset of the
objects or the occurrences of some particular events.
Accordingly, an MSC can be defined to capture the
behaviour of a subset of the objects and/or the occurrences
of some selected events. In this section, we introduce the
idea of filters to tailor the views for the system behaviour.
We have defined two types of filters: object filters and
event filters. Object filtering allows the user to select
objects of interest – those objects whose behaviours are to
be captured in the MSCs; and event filtering allows the
user to constrain the information displayed in the MSCs by
selecting events of interest. These two types of filters can
be used together to control the views of system behaviour.
Our prototype tool provides interfaces to allow the user to
choose different views of the system behaviour using these
filters.
 The key idea for implementing the view control is that
the target model is parameterized based on the selected
objects and events so that the model can produce different
views during the simulation, according to the user’s
choices. The view control technique can help a user check
for the following types of properties (among others) in
simulation traces: A given event occurs; an event does not
occur; an event P is followed/preceded by another event Q
(we will illustrate this last one in our example).

6. An example

We illustrate our approach by a small example of a gas
station system. This example is adapted from [13]. The
system consists of a customer and a pump that processes
the customer’s request for filling gas. The customer must
prepay for the gas. After the customer pays, (s)he is
allowed to select the gas grade and then press the nozzle.
Then the pump starts to fill gas into the tank. The pump
stops filling when the prepaid money is spent or the tank is
full. If the customer’s prepaid amount is more than the
value of the gas filled into the customer’s gas tank, the

pump will prompt the customer to pick up the change. The
customer can change his/her decision and cancel the
request for filling the tank after (s)he pays or selects the
gas grade. After the customer cancels the request, the
pump will return the customer’s prepaid money. A simple
UML model for this example consists of two statecharts
and one collaboration diagram. Statecharts for the
Customer object and Pump object are shown in Figures 9-
101. As we will discuss shortly, these models contain some
error to be revealed by our simulation analysis.

PumpReady/SelectGrade

GetChange

NoChange

GetChange

NozzlePressed

 Idle

/Pay

PumpReady/Cancel PumpReceiveGrade/PressNozzle
PumpReceiveGrade/Cancel

Paid

RequestCancel

GradeSelected

PickUpChange

exit/ChangePickedUp

Figure 9. Statechart for Customer

Pay

PressNozzle

SelectGrade

Cancel

ReadytoFill

entry/PumpReady

Cancel

ChangePickedUp

Idle

NoChange

entry/NoChange
 FillingDone

 FillingStarted

GradeSelected

entry/PumpReceiveGrade

ChangeExists

entry/GetChange

Figure 10. Statechart for Pump

 For illustration, let us suppose that we want to check
the following property:

 Once the customer cancels the request for purchasing
gas, the customer’s prepaid amount should be returned.

 This property can be checked by inspecting the MSCs
generated from simulation runs. Fig. 11 (a) shows an MSC
generated by a simulation run using our tool. We can see
from the figure that many messages have been passed
between these two objects. Since we are particularly
interested in two events, Cancel and GetChange, we use
event filtering to help us remove unwanted information

1 In the statecharts, there exist transitions that originate from the same
source state and have the same triggering event (or, both transitions do
not have a triggering event). This is being done to model a pure
nondeterministic choice.

from MSCs. We use the interface provided by our
prototype tool to select the two events of interest. Now, the
MSC generated from a simulation run is shown in Fig. 11
(b). We can clearly identify that none of the first three
occurrences of Cancel is followed by an occurrence of
GetChange, indicating an error in terms of the desired
behaviour of the source model. Although this is a very
simple example, it illustrates the intended purpose of our
model-driven view control. Due to lack of space, we let
the reader determine how to modify the source statechart
models.

Customer

Rec_PumpReady

Rec_PumpReady

Pump

Rec_Pay

Rec_Cancel

Rec_Pay

Rec_Cancel

Rec_Pay

Pay

PumpReady

Cancel

Pay

PumpReady

Cancel

Pay

PumpReady

Customer

Rec_GetChange

Pump

Rec_Cancel

Rec_Cancel

Rec_Cancel

Rec_Cancel

Cancel

Cancel

Cancel

Cancel

GetChange

(a) (b)

Figure 11. Message Sequence Charts for Gas Station

7. Related work

There are other research efforts that concentrate on
supporting validation and analysis of UML statecharts by
mapping UML diagrams to other formal target notations
[14]. One such research effort aimed at validating UML
models was the work on a tool called vUML [15]. This
work used the information contained in the class diagrams,
statechart diagrams and collaboration diagrams of a model
to generate the Promela specification. The SPIN model
checker was used to perform the verification. In [16], the
authors present a branching time model-checking approach
to the automatic verification of correctness of UML
statecharts. In this work, statecharts are first translated into
hierarchical automata to provide a formal semantic basis
for verification. In our work, we adopt Petri nets as the
target language since Petri nets have strength in their
graphical notations and a mature theoretical base.
Furthermore, as highlighted in this paper, we have found
that net models can be flexibly adapted to drive simulation
experiments.
 Work with a similar motivation as ours includes [17].
Our work differs from this work in that we hide the
underlying simulation engine from the end user by
presenting the simulation results using the constructs from

the original UML model. In addition, our transformation
approach is automated. The work of Dong et. al. [18] is
closely related to our work. They presented an approach of
using Hierarchical Predicate Transition Nets (HPrTNs) to
define and integrate UML statechart diagrams and
collaboration diagrams. Thus, these efforts are quite
complementary to our basic approach. However, the
HPrTN model is defined in a more abstract manner than
our CPN model. Also, our research extends the basic
translation technique to create a model that can be
imported into an existing CPN support tool and to use this
tool for investigating model-driven simulation.
 Other research efforts that relate to statechart
simulation include those presented in [19, 20]. One idea
that separates our work from other statechart simulation
research is that we introduce view control into the
simulation process to help a user understand and reason
about the behaviour of a system.

8. Conclusions and future directions

In order to explore the validation and verification of UML
models through transformation, we follow a
transformation framework to structure UML models as
colored Petri net models. We enrich the abstract net model
and present a pragmatic CPN model so that the resulting
model can be imported into Design/CPN for simulation
and analysis. The transformation is based upon the
execution semantics of state machines. To help users to
facilitate the simulation features supported by
Design/CPN, we derive Message Sequence Charts to
visualize simulation results. A prototype tool has been
developed to support the automated generation of
executable CPN models from UML notations. One unique
feature of the tool, which is facilitated by the net
construction, is the support for interfaces that enable a user
to control the visualization of system simulations. We
provide object filters as well as event filters to control the
views for the system behaviour.
 One direction for future work can be to extend our
methodology so that it supports the transformation of more
complex features of UML statecharts, such as concurrent
composite states. Another direction is to investigate the
integration of other UML diagrams in our approach to
strengthen the behavioural modeling and analysis.

Acknowledgments

We thank C. Xiong for her help in development of the
prototype tool. We also thank the reviewers for their

helpful suggestions that improved the presentation of the
work.

References

[1] OMG. Model Driven Architecture, www.omg.org/mda.
[2] G. Booch, I. Jacobson and J. Rumbaugh, The Unified

Modeling Language User Guide, Addison-Wesley, 1999.
[3] OMG. UML semantics 1.5, 2003. www.cgi.omg.org/uml.
[4] L.M. Kristensen, S. Christensen, K. Jensen, “The

Practitioner's Guide to Coloured Petri Nets,” International
Journal on Software Tools for Technology Transfer, 1998,
Springer Verlag, pp. 98-132.

[5] E. Gery, D. Harel, and E. Palatshy. “Rhapsody: A Complete
Lifecycle Model-Based Development System.” In Proc.
Int’l Conf. on Integrated Formal Methods, 2002. pp. 1-10.

[6] ObjectGEODE. www.csverilog.com.
[7] ITU-T Recommendation Z.120: Message Sequence Chart.

International Telecommunication Union;
Telecommunication Standardization Sector (ITU-T), 1999.

[8] D. Harel. “Statecharts: A Visual Formalism for Complex
Systems,” Science of Computer Programming, vol. 8, 1987,
pp. 231-274.

[9] T. Murata, “Petri Nets: Properties Analysis and
Applications.” In Proc. the IEEE, 77(4), April 1989, pp.
541-580.

[10] Design/CPN, www.daimi.aau.dk/designCPN/.
[11] J. A. Saldhana, S. M. Shatz, and Z. Hu, “Formalization of

Object Behavior and Interactions From UML Models.” Int’l
Journal of Software Eng. and Knowledge Eng., 11(6), 2001,
pp. 643-673.

[12] MSC Library, www.daimi.au.dk/designCPN/libs/mscharts/
[13] Gas station example,

sunset.usc.edu/classes/cs599_2000/GasStation.pdf
[14] J. Whittle. “Formal Approaches to Systems Analysis Using

UML: An Overview.” Journal of Database Management,
11(4), 2000, pp. 4-13.

[15] J. Lilius and I. Paltor, “vUML: A Tool for Verifying UML
Models.” In Proc. the 14th Int’l Conf. on Automated
Software Engineering, IEEE. 1999, pp. 255-258.

[16] S. Gnesi, D. Latella, and M. Massink. “Model checking
UML statechart diagrams using JACK” In Proc. Int’l Symp.
on High Assurance Systems Eng. IEEE. 1999, pp. 46-55.

[17] R. G. Petti IV and H. Gomaa, “Improving the Reliability of
Concurrent Object-Oriented Software Designs.” In Proc. the
9th Int’l Workshop on Object-oriented Real-time and
Dependable Systems (WORDS), October, 2003.

[18] Z. Dong, Y. Fu, and X. He. “Deriving Hierarchical
Predicate/Transition Nets from Statechart Diagrams.” In
Proc. Software Eng. and Knowledge Eng.,2003, pp.150-157

[19] A. Egyed and D. Wile, “Statechart Simulator for Modeling
Architectural Dynamics.” In Proc. the 2nd IEEE/IFIP Conf.
on Software Architecture (WICSA), 2001, pp. 87-96.

[20] I. Ober, S. Graf, and I. Ober, “Validating Timed UML
Models by Simulation and Verification.” UML´2003
Workshop – Specification and Validation of UML
Models for Real Time and Embedded Systems, 2003.

Multi-Objective Optimization by CBR GA-Optimizer
for Module-Order Modeling

Taghi M. Khoshgoftaar, Yudong Xiao, and Kehan Gao
Florida Atlantic University, Boca Raton, Florida USA

Abstract

In the case when resources allocated for software
quality improvement are limited or unknown, an
estimation of the relative rank-order of modules
based on a quality factor such as number of faults
is of practical importance to the software qual-
ity assurance team. This is because improve-
ments can be targeted toward a set of most faulty
modules according to resource availability. A
module-order model (MOM) can be used to de-
termine the relative rank-order of modules. A
MOM usually ranks the modules according to the
predicted number of faults obtained from an un-
derlying quantitative prediction technique, such
as multiple linear regression and case-based rea-
soning. In this paper we propose a computational
intelligence-based method for targeting the per-
formance behavior of MOM(s). The method max-
imizes the number of faults accounted for by the
given percentage of modules enhanced. A new
modeling tool called CBR GA-optimizer is de-
veloped through a synergy of genetic algorithms
(GA) and case-based reasoning (CBR). The tool
automatically finds the best CBR fault prediction
models according to a project-specific objective
function.

1 Introduction

Software quality classification models that identify soft-
ware modules as fault-prone and not fault-prone [1, 6, 8, 11]
have been used to direct enhancement resources toward the
low-quality modules. The degree of software quality im-
provement efforts is dependent on the availability of relia-
bility enhancement resources. Software quality classifica-
tion models require that the individual quality-based groups
be defined prior to modeling, usually via a threshold on the

number of faults expected. However, in software engineer-
ing practice the software management team often cannot
choose an appropriate quality threshold at the time of mod-
eling. Therefore, a prediction of the rank-order of modules
from the most to the least faulty is more practical. Based on
such a predicted rank-order, the software quality manage-
ment team can target a set of the most faulty modules for
enhancement as per the available resources.

A module-order model (MOM) is a technique that esti-
mates the rank-order of modules according to a quantita-
tive quality factor, such as number of faults. A MOM is
constructed through an underlying quantitative prediction
model, such as multiple linear regression [7] and case-based
reasoning [8]. Previous works associated with MOM mainly
concentrate on how to improve the accuracy of the quanti-
tative prediction model by minimizing the average, relative,
or mean square errors [7]. However, it is the predicted rank-
ings of program modules that affect the behavior of MOM(s)
and not the predicted value of the quality factor. In this pa-
per, we propose a method that directly targets the perfor-
mance behavior of MOM(s). More specifically, for a given
number of modules enhanced, we are interested in maxi-
mizing the number of faults accounted for by the prediction
models. A genetic algorithm is ideally suited (in conjunc-
tion to an underlying prediction model) for such a direct op-
timization. Existing software quality prediction techniques,
such as multiple linear regression and case-based reasoning,
cannot achieve such a direct optimization, because the opti-
mization objective is often highly discontinuous with mul-
tiple minima or maxima.

By combining genetic algorithms (GA) [2, 10, 13] with
case-based reasoning (CBR), a CBR GA-optimizer tool is
developed. The underlying quantitative model used is the
one obtained by CBR, while the GA-optimizer automatically
finds the best CBR models according to a given objective
function. The developed tool can be used to solve the multi-
objective optimization problem [4, 14] related to CBR. In-
stead of minimizing the quantitative error such as AAE for
the underlying prediction model, we directly maximize the
MOM performances for a given set of cutoff percentiles, i.e.,
the percentages of modules enhanced for the given data set.

The proposed methodology is validated through a case
study of a full-scale industrial software system. Four perfor-
mance goals were chosen for optimization purposes: maxi-
mizing the MOM performances for the 5%, 10%, 20%, and
30% of the total number of modules enhanced. This selec-
tion is based on our discussion with, and the inputs provided
by, the software management team of the system under con-
sideration. The four performance goals are combined into
an objective function by empirically determining the appro-
priate weights. To demonstrate justification of using a so-
phisticated software quality modeling method such as the
one proposed, we compared the MOM performances based
on the GA-CBR technique with those based on ordering by
the lines of code (LOC) metric. It is shown that the proposed
GA CBR-based MOM generally had better performances as
compared to ordering by LOC. To our knowledge, this is the
first study to use GA to implement a performance optimiza-
tion for building MOM(s) based on CBR.

The remainder of this paper continues with the next sec-
tion, which presents the details of the module-order model-
ing technique. This is followed by a section that presents
the case-based reasoning and CBR GA-optimizer modeling
methods, and a section that discusses our case study of a
wireless configuration software system. Finally, the con-
clusion and suggestions for future work are presented in the
last section.

2 Module-Order Modeling

A module-order model (MOM) is used to predict the rela-
tive rank-order, and hence software quality, of each program
module based on a set of product and process metrics. The
primary advantage of using a MOM over a software quality
classification model is that it enables project managers to
enhance as many modules beginning with the most faulty
in the rank list as the available resources allow. Usually, a
MOM is calibrated according to the following three steps:
(1) Build an underlying quantitative software quality pre-
diction model, such as a software fault prediction model;
(2) Rank the program modules according to a quality mea-
sure predicted by the underlying model; (3) Evaluate the
accuracy of the predicted ranking.

Initially, a quantitative software quality prediction model
is calibrated to predict the dependent variable, which in our
studies is the number of faults associated with a program
module. The software fault prediction modeling technique
used in our study is CBR. For a given quantitative model, the
number of faults,

� �
, in module � is a function (

� � � � 	 � � �
)

of its software measurements, the vector
� �

. Let �� 	 � � �
be

the estimate of
� �

by a fitted model, �� 	 � � �
. In module-order

modeling, the predicted values of the dependent variable
obtained by �� 	 � � �

are only used to obtain the (predicted)
relative order of each program module.

Let � �
be the percentile rank of observation � in a per-

fect ranking of modules according to
� �

. Let �� 	 � � �
be the

percentile rank of observation � in the predicted ranking ac-
cording to �� 	 � � �

. The following steps illustrate the evalu-
ation procedure for a module-order model. Given a predic-
tion model and a data set having modules indexed by � :

1. Management will choose to enhance modules in a pri-
ority order, beginning with the most faulty. Determine
a range of percentiles that covers management’s op-
tions for the last module that will be enhanced, based
on the schedule and resources allocated for reliabil-
ity enhancement. Choose a set of representative cutoff
percentiles, � , from that range.

2. For each � , determine the number of faults accounted
for by modules above the percentile � . This is done
for both the perfect and predicted ranking of the mod-
ules: � 	 � �

is the number of faults accounted for by
the modules that are ranked (perfect ranking) above
the percentile � , and �� 	 � �

is the number of faults ac-
counted for by the modules that are predicted as falling
above the percentile � . Therefore, a higher value of �
corresponds to the more faulty modules.

� 	 � � � �� � � � � � �
(1)

�� 	 � � � �
� � �� " # � % �

� �
(2)

3. Calculate the performance of the MOM, & 	 � �
, which

indicates how closely the faults accounted for by the
model ranking match with those of the perfect module
ranking.

& 	 � � � �� 	 � �
� 	 � � (3)

where & 	 � �
is a number between 0 and 1. It is desired

that & 	 � �
be close to 100% (or 1) for the � of interest.

4. After evaluating the performance of a MOM, it is
ready for use on a currently underdevelopment similar
project or subsequent release. Determine the predicted
ranking, by ordering modules in the current data set
according to �� 	 � � �

, and subsequently, compute the re-
spective & 	 � �

values.

3 Case-Based Reasoning

A CBR system [9] attempts to find a solution to a new
problem based on previous experiences, represented by a
case-base or case library. A solution algorithm uses a simi-
larity function to measure the relationship between the new

problem and each case in the case-base, and finally retrieves
relevant case(s) and determines a solution to the new prob-
lem. A CBR system, therefore, consists of three major com-
ponents: a case-base, a similarity function, and a solution
algorithm. Information related to the past cases is stored in
a case-base, which is often the training data set. A case is
composed of a set of independent variables and a dependent
variable, which in our study is the number of faults. Using
the cases in the case-base, a model is trained and is then ap-
plied to a test data set, which contains information related
to program modules of a similar project. In order to retrieve
the relevant case(s) in the case-base that are most similar to
the new problem, a similarity function is used.

A similarity function measures the distance between the
new problem and all the cases in the case-base. Modules
with the smallest distances are considered similar and des-
ignated as the nearest neighbors (�) [3]. The commonly
used similarity functions include: City Block, Euclidean,
and Mahalanobis distances [8]. We use the latter, because
it explicitly accounts for correlation among the independent
variables. Let � � �

be the distance from the new case (or
module) under investigation,

� �
, to each of the cases in the

case-base, � �
.The Mahalanobis distance is given by:

� � � � � � � � � � � � 	 � � � � � � � �
(4)

where prime (
�
) represents a transpose,

	
is the variance-

covariance matrix of the independent variables over the en-
tire case-base, and

	 �
is its inverse.

By using a solution algorithm, we can estimate the num-
ber of faults of the new case under investigation. Let � �
be the number of the nearest neighbors that are to be used
to obtain the solution to the new problem. The prediction
of the dependent variable (number of faults) of the target
module, �	 � � � �

, can be calculated by a weighted average of
dependent variables accounted for by the � � nearest neigh-
bors. In this case study, an inverse-distance weight was used
in a weighted average. Since a smaller distance implies a
better match, we weight each case in the nearest neighbors
set, � , by a normalized inverse distance, � � � � � � � �

� � � � � � � � .

The prediction of the dependent variable of the target mod-
ule is then given by,

�	 � � � � � �
� � �

� � � 	 �
(5)

For the given similarity function and solution algorithm
used by our CBR-based fault prediction model, the num-
ber of the nearest neighbors is the only adjustable modeling
parameter.

4 CBR GA-Optimizer

The problem of finding the best model in a CBR sys-
tem can be considered an optimization problem. Generally

speaking, optimization refers to finding the best solution(s)
in some specific search space , according to a given ob-
jective function

	 ! # �
. Because the function

	 ! # � & (*
(where * is a set of real numbers) is usually discontinuous
and the search space may be very large, no traditional
mathematical methods can be used to solve such an opti-
mization problem. Genetic algorithm (GA) offers an inter-
esting and natural approach to solve such a problem [5].

GA starts from a set of initial solutions, and uses bio-
logically inspired evolution mechanisms to derive new and
possibly better solutions. It starts from an initial popula-
tion + - , and generates a sequence of populations + / 0 0 0 / + 2 ,
by using three types of operations within the population:
crossover, mutation, and reproduction. The elements of the
population are called chromosomes and the fitness of each
chromosome is measured by a fitness function. Each chro-
mosome consists of a set of genes. For each generation,
the algorithm selects some of chromosomes and uses the
crossover (for pairs), mutation (for singles), or reproduc-
tion operations on them, with some given probabilities, re-
spectively. Crossover mixes genes and mutation randomly
changes some genes. Each pair of chromosomes creates a
new pair. Each generation inherits some chromosomes from
the last generation and accepts some newly created chromo-
somes according to a given probability. The fitter chromo-
somes have a greater chance to be inherited into the next
generation. The algorithm stops when a certain criterion is
satisfied or a pre-defined number of generations is reached.

We developed a new tool, named “CBR GA-optimizer”,
by using a GA-engine that searches for the best models
yielded by the CBR-solver. The CBR GA-optimizer con-
sists of two major components: GA-engine and CBR-solver.
The GA-engine creates the population of the chromosomes
and implements the evolution process as described above. It
sends each chromosome to the CBR-solver and receives the
objective function value from the CBR-solver as a feedback
for the chromosome evaluation. The CBR-solver receives a
chromosome from the GA-engine, carries out the complete
CBR process and builds a CBR model. The CBR model cal-
culates the objective function value and sends it back to the
GA-engine.

For a given system, finding the best performance, i.e.,
� � � �

, of a MOM for a set of cutoff percentiles of interest is a
multi-objective optimization issue. In our case study, max-
imizing the � � � �

values at the 95%, 90%, 80% and 70%
percentiles was desired. These four performance goals are
combined to obtain the objective function that is to be opti-
mized by the CBR GA-optimizer. The objective function is
given by,

	 ! # � � 4 6 7 8 : � � 0 ; = � > 4 6 7 : � � 0 ; � > 4 6 @ : � � 0 A � > 4 6 B : � � 0 C � /
(6)

where
4 6 7 8

,
4 6 7

,
4 6 @

, and
4 6 B

represent the weights of the
performances at the respective cutoff percentiles of interest.

The weights can be determined according to the importance
of each individual objective in the context of the optimiza-
tion problem under consideration.

The general form of the optimization issue related to
MOM can be presented as follows: for a given fit data
set, test data set, similarity function, and objective func-
tion

� � � �
, find some solution(s), � , in the search space,

� � � � 	 � , that maximize�
 � � � � � � � �
. As mentioned ear-

lier, in the context of this paper the number of the near-
est neighbors is the only parameter that can affect the per-
formance of the underlying CBR-based quantitative predic-
tion model. Therefore, the search space includes only one
parameter, � 	 . By using the CBR GA-optimizer, the GA-
engine automatically searches for the best model created
by the CBR-solver, according to the optimization problem
shown in objective function (6).

5 Empirical Case Study

5.1 System Description

This case study (denoted as WLTS) involves data collec-
tion efforts from initial releases of two large Windows c

�
-

based embedded systems used primarily for customizing
the configuration of wireless telecommunications products.
The two C++ applications provide similar functionalities,
and contain common source code. Hence, both systems are
studied simultaneously. The main difference between them
is the type of wireless product that each supports. Both
systems consist of over 	 � source code files, and each
system contained more than � � million lines of code. Soft-
ware metrics were obtained by observing the configuration
management systems and the problem reporting systems of
the applications. The problem reporting system tracked and
recorded problem statuses. The fault data represents the
faults discovered during system tests. Upon preprocessing
and cleaning the collected data, i.e., removal of incomplete
data points, 	 � 	 	 modules remained. Over � � � of modules
(�) were observed to have no faults, and the remaining

� � modules had at least one or more faults. An impartial
data splitting was performed on the data set in order to ob-
tain the fit (807 modules) and test (404 modules) data sets.
To avoid biased results due to a lucky data split, the original
data set was randomly split 3 times to obtain 3 pairs of the
fit and test data sets. However, due to space considerations
we only present the results for one data split, i.e., Split 1.

The five software metrics used for reliability modeling
for this case study are:- B LOC: the umber of lines of
code for the source file version prior to the coding phase,
i.e, auto-generated code; S LOC: the number of lines of
code for the source file version delivered to system tests;
B COM: the number of lines of commented code for source
file version prior to coding phase, i.e, auto-generated code;

S COM: the number of lines of commented code for source
file; and INSP: the umber of times the source file was in-
spected prior to system tests. The collection and use of
these metrics for modeling purposes were dependent on
their availability and the available data collection tools. The
product metrics indicate the number of lines of source code
prior to the coding phase and just before system tests. The
inspection metric, INSP, was obtained from the problem re-
porting systems of the two embedded applications.

5.2 CBR GA-Optimizer Methodology

In the GA-engine, some parameters associated with GA

were set as follows: (1) Reproduction rate = 0.5; (2)
Crossover probability = 0.9; (3) Mutation probability =
0.08; (4) Number of generations = 3000; (5) Size of pop-
ulation = 200; (6) Number of runs = 50. The optimization
of GA parameters is beyond the scope of this study, how-
ever, is part of our future research. At the end of each run,
the two best models are selected. Hence, at the end of all the
50 runs there were 100 candidate models among which we
selected the best model, i.e., the one with the highest value
for objective function (6).

In the CBR-solver, an � -fold cross-validation (also com-
monly known as the leave-one-out technique) was imple-
mented on the fit data set to train the underlying quantita-
tive (fault) prediction model. It is an iterative process such
that during each iteration, one of the � observations in the
fit data set is used as the test data and the other � � 	 are
used to train or build the model. The Mahalanobis distance
was used as the similarity function and the inverse-distance
weighted average was used as the solution algorithm. The
GA-optimizer engine initially creates a genome, i.e., num-
ber of nearest neighbors, � 	 , and sends it to the CBR-solver
to build a corresponding module-order model. The CBR-
solver returns the value of the multi-objective function to
the GA-optimizer engine. Then, the evolution process starts
until the termination condition is met. The GA-optimizer
finally outputs some “best” MOM(s), which maximizes the
objective function (6), which consists of a weighted sum
of performances at the cutoff percentiles of interest, i.e.,

� � � � �
, � � � �

, � � � � �
, and � � � � �

.
In the context of the multi-objective optimization for

MOM(s), one of the key issues is to assign the suitable
weights to the objective function (6). From a practical soft-
ware engineering point of view, it is beneficial and cost-
effective to begin reliability enhancements with the most
faulty modules. Since a higher cutoff percentile value cor-
responds to the more faulty modules, we assigned the high-
est weight to the performance at � � � � . Subsequently,
we assigned decreasing weights to the performances at the

� = 90%, 80%, and 70% percentiles. We considered ten dif-
ferent sets of weights for the performances at the four � val-

ues. The weights for each set were such that
� � � � � � � � � �

� � � � � � � 	 � . Subsequent to analysis based on each weight
set, it was observed that performance of the models were not
impacted by the different weight sets. The results presented
in this paper are based on

� � � � �
� � ,

� � � � �
� ,

� � � � � �
,

and
� � 	 � �

� . As a future work, we shall consider using the
GA-optimizer for directly optimizing the weights for each
performance goal.

5.3 Results and Analysis

5.3.1 MOM Calibrated by CBR GA-Optimizer

The performance of the best model for Split 1 is shown 1 in
Table 1. The models were built using the five software met-
rics described earlier. The first column of the table lists the
cutoff percentiles from 95% through 65% with decrements
of 5%. We present the MOM performance beyond the lowest
cutoff percentile of interest to the management team. The
table shows the performances for both fit and test data sets.
For each cutoff percentile, the � � � �

, �� � � �
, and � � � �

values
are presented. For a given � , the number of faults is influ-
enced by the way the original data set is split into the fit and
test data sets. For example, the total numbers of faults in
the fit and test data sets for Split 1 are 1071 and 786 faults.
As shown in last row of the table, these values represent the
respective number of faults accounted for at � �

�
 � . This
implies that for Split 1, a � �

�
 � for a perfect ranking will
account for 100% of faults in the fit and test data sets. This
was also observed with the other two splits.

We observe that for the cutoff percentiles of interest, al-
though the performances at the higher percentiles in the
multi-objective function were assigned larger weights, the
final performances on the higher percentiles were not close
to the respective objectives. This may be reflective of: (1)
the underlying prediction model used for obtaining the pre-
dicted rankings of modules, and (2) the characteristics of
the software metrics data [12]. The latter, is especially re-
flected in the software quality modeling of high assurance
systems (such as WLTS), in which the percentage of faulty
modules is usually a very small fraction of the total num-
ber of modules. In the case of Split 1, the performance of
MOM on the test data set is generally better than that on the
fit data set with the exception at � � �
 � . This was also
observed for Split 3. However, for Split 2, the performance
of MOM on the test data set was similar to that on the fit
data set except for the cutoff percentiles from 90% to 80%.
This implies that the performance of MOM is impacted by
the way the original data set is randomly split into the fit
and test data sets.

1The models for the other two splits are not shown due to space con-
siderations, however; similar empirical results were obtained.

Table 1. Performances of Split 1
� Fit Test

� � � 	 �� � � 	
 � � 	 � � � 	 �� � � 	
 � � 	

0.95 558 487 87.28 % 508 406 79.92%
0.90 734 630 85.83 % 609 551 90.48%
0.85 859 734 85.45 % 680 625 91.91%
0.80 946 807 85.31 % 731 670 91.66%
0.75 998 877 87.88 % 760 711 93.55%
0.70 1038 932 89.79 % 780 730 93.59%
0.65 1071 973 90.85 % 786 743 94.53%

Table 2. Comparisons of Performances for
Split 1 Test

� � � � 	 S LOC GA-CBR Difference

0.95 508 82.68 % 79.92 % -2.76 %
0.90 609 81.28 % 90.48 % 9.20 %
0.85 680 86.18 % 91.91 % 5.74 %
0.80 731 85.77 % 91.66 % 5.88 %
0.75 760 84.34 % 93.55 % 9.21 %
0.70 780 82.31 % 93.59 % 11.28 %
0.65 786 81.93 % 94.53 % 12.60 %

5.3.2 Comparison with a Simple Method

The software quality assurance team of a given software
project is often interested in knowing how well a given soft-
ware quality model performs as compared to obtaining a
model based on a simple rule of thumb, such as software
size. This is often needed from a practical point of view
for justifying the use of a sophisticated method such as the
CBR GA-optimizer. In order to evaluate the MOM built by
the CBR GA-optimizer, we compare it with the performance
obtained when the modules are ordered according to their
LOC. The LOC is often used as a heuristic practice to detect
and enhance problematic software modules. This compari-
son is only done for the test data sets, because the general-
ization performance of a software quality model is of more
interest to a practitioner. In the case of the ranking based
on LOC, the modules in the test data are ranked according
to their LOC prior to the system release, i.e., S LOC. The
subsequent performance calculation is done using the pro-
cedure described earlier.

The comparison between the CBR GA-optimizer model
and performance obtained by LOC-based ranking (notations
LOC and S LOC are used interchangeably to imply an or-
dering based on lines-of-code) is shown in Table 2, which
shows the performances for Split 1. It is observed that when
the top 10% (� � � � �) modules of the test data set are cho-
sen for reliability enhancements, then the MOM calibrated
by the CBR GA-optimizer will have over 90% effectiveness,
in other words, this MOM can detect over 90% faults ac-

counted by the top 10% of the most faulty modules accord-
ing to the perfect rank-order, i.e., � � � � � � � � � �

�
� � �

faults. In contrast, the ordering of modules based on S LOC
shows an 81% effectiveness, which implies that the S LOC-
based model can only detect about � � � � � � � � � �

�
� � �

faults. The difference of the effectiveness (for � �
� � �)

between the two approaches is about 9.20% (56 faults) in
the favor of the CBR GA-optimizer.

The performance, � � � �
, of the MOM calibrated by the

CBR GA-optimizer generally increased as more (predicted)
faulty modules are considered for reliability enhancements,
i.e., as � decreases. However, this trend was not observed
for the LOC-based method, i.e., the performance fluctu-
ates (increases or decreases) as more numbers of predicted
faulty modules are subjected to reliability enhancements.
Overall, the MOM(s) calibrated by the CBR GA-optimizer
have better performance accuracy when � � � � � as com-
pared to those of the LOC-based rankings. In addition, the
performance generally gets better with a decrease in the �
value. In our experiments with the other two splits, the em-
pirical results and conclusions were similar to those pre-
sented for Split 1.

6 Conclusion

A module-order model is a very attractive software qual-
ity improvement technique that can predict the rank-order of
modules according to a quantitative quality factor, such as
number of faults. Previous works associated with MOM try
to improve the prediction accuracy of MOM through min-
imizing some quantitative error measure. However, min-
imizing such errors does not have a direct relationship to
improving the performance of a MOM. In contrast, we pre-
sented a different approach in that we directly optimize the
performance behavior of a MOM: We incorporate the de-
sired performance goals of a MOM into an objective func-
tion which is optimized.

The proposed method combines GA with CBR, forming
the CBR GA-optimizer. The underlying quantitative predic-
tion model is CBR, and the GA-engine is used to find the best
solutions to the predefined objective function. Four perfor-
mance goals were selected to form the objective function
based on discussions with the management team. An em-
pirical case study of a wireless configuration system was
used to validate our proposed methodology. It was shown
that the GA CBR-based MOM had at least 80% effectiveness
in detecting the faulty modules.

A comparison of the proposed method is done with the
simple method based on ordering by lines of code. The re-
sults show that our proposed MOM has a better performance
as compared with the LOC-based approach for � � � � � .
Further improvement of the GA CBR-based MOM perfor-
mance is largely restricted by the underlying fault predic-

tion model (CBR) itself. However, the proposed method-
ology itself provides a novel multi-objective optimization
approach. Future work will include further empirical vali-
dation via case studies of other software systems. Other pre-
diction methods such as neural networks may also be used
in conjunction with the GA-optimizer for the stated multi-
objective module-order modeling problem.

References

[1] L. C. Briand, W. L. Melo, and J. Wust. Assessing the ap-
plicability of fault-proneness models across object-oriented
software projects. IEEE Transactions on Software Engineer-
ing, 28(7):706–720, July 2002.

[2] C. J. Burgess and M. Lefley. Can genetic programming im-
prove software effort estimation? a comparative evaluation.
Information and Software Technology, 43(14):863–873, De-
cember 2001.

[3] B. Dasarathy. Nearest neighbor norms: NN pattern classifi-
cation techniques. IEEE Computer Society Press, 1991.

[4] C. M. Fonseca and P. J. Fleming. Genetic algorithms for
multiobjective optimization: Formulation discussion and
generalization. In S. Forrest, editor, Proceedings of the
5th International Conference on Genetic Algorithms, pages
416–423, Urbana-Champaign, IL, USA, June 1993. Morgan
Kaufmann.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.

[6] K. E. Imam, S. Benlarbi, N. Goel, and S. N. Rai. Compar-
ing case-based reasoning classifiers for predicting high-risk
software componenets. Journal of Systems and Software,
55(3):301–320, 2001.

[7] T. M. Khoshgoftaar and E. B. Allen. A comparative study of
ordering and classification of fault-prone software modules.
Empirical Software Engineering, 4(2):159–186, June 1999.

[8] T. M. Khoshgoftaar and N. Seliya. Analogy-based practical
classification rules for software quality estimation. Empiri-
cal Software Engineering, 8(4):325–350, December 2003.

[9] D. B. Leake, editor. Case-Based Reasoning: Experience,
Lessons, and Future Directions. MIT Press, Cambridge, MA
USA, 1996.

[10] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, Berlin, 3rd edition,
1996.

[11] N. Ohlsson and H. Alberg. Predicting fault-prone software
modules in telephone switches. IEEE Transactions on Soft-
ware Engineering, 22(12):886–894, 1996.

[12] M. Shepperd and G. Kadoda. Comparing software predic-
tion techniques using simulation. IEEE Transactions on
Software Engineering, 27(11):1014–1022, November 2001.

[13] A. H. Wright. Genetic algorithms for real parameter opti-
mization. In G. J. Rawlins, editor, Foundations of genetic
algorithms, pages 205–218. Morgan Kaufmann, San Mateo,
CA, 1991.

[14] E. Zitzler and L. Thiele. Multiobjective evolutionary algo-
rithms: A comparative case study and the strength pareto
approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, November 1999.

Noise Elimination with Ensemble-Classifier Filtering:
A Case-Study in Software Quality Engineering

Taghi M. Khoshgoftaar and Vedang H. Joshi
Department of Computer Science and Engineering

Florida Atlantic University
777 Glades Road, Boca Raton, FL 33431
taghi@cse.fau.edu and vjoshi@fau.edu

Abstract

This paper presents a noise handling technique
that attempts to improve the quality of datasets
for classification purposes by eliminating in-
stances that are likely to be noise. Our ap-
proach uses twenty five different classification
techniques to create an ensemble filter for elim-
inating likely noise in a real-world software mea-
surement dataset. Using a relatively large num-
ber of base-level classifiers in the ensemble filter
facilitates in achieving the desired level of noise
removal conservativeness with several possible
levels of filtering. It also provides a higher de-
gree of confidence in the noise elimination proce-
dure as the results are less likely to get influenced
by (possible) inappropriate learning bias of a few
algorithms with twenty five base-level classifiers
than with relatively smaller number of base-level
classifiers. An empirical case study of a high as-
surance software project demonstrates the effec-
tiveness of our noise elimination approach by the
significant improvement achieved in classification
accuracies at various levels of filtering.

1 Introduction

A software quality classification model aims to gener-
alize the concepts learnt from a given dataset of software
measurements and fault-proneness data with the aim of
accurately classifying unseen software modules. Such a
model can assist software quality improvement efforts by
identifying software program modules that are likely to be
fault-prone (fp) during operations. This facilitates cost-
effective utilization of resources allocated for software test-

ing, inspection, and quality enhancement. Software mea-
surements are key in developing a software quality estima-
tion model because of the software engineering assumption
that they hold the underlying information regarding soft-
ware product quality.

The predictive accuracy of a given classification tech-
nique is influenced by two major factors: (1) Quality of the
training data, and (2) Appropriateness of the chosen algo-
rithm for the given data. Poor-quality (noisy) data, when
used during training can have undesirable consequences,
and hence, using appropriate noise handling procedure as
a preamble to any data mining task is of paramount impor-
tance. Noisy instances in a poor-quality dataset may have
either erroneous attribute values (attribute noise) or cor-
rupted class labels (class noise). However, since machine
learning algorithms usually treat noisy examples as being
mislabeled [10], we feel that the noise identified by our ap-
proach could actually be either attribute noise or class noise.

The problem of effectively dealing with data noise can
be approached mainly in three different ways. To cope
with noise, one can either use robust (noise-tolerant) algo-
rithms [11], try to correct noisy instances [25], or filter out
noisy instances from the dataset [2].

The empirical study presented in this paper investigates
the use of a noise elimination procedure in the context
of software quality classification. Noise elimination with
ensemble-classifier was deemed appropriate for our study.
In our ensemble-classifier study, the basic assumption is
that if a large number of classifiers misclassify a given soft-
ware module, then it is likely that it is a noisy instance in the
dataset. More specifically, such a software module suggests
that its software measurements and quality data do not ad-
here to (or represent) the underlying characteristics of the
quality of the software product. The size of the dataset
was not compellingly small to choose polishing [25] over
noise elimination [2]. There are many similarities between
our approach to noise handling and the approach employed

in [2]. But there are some major differences too. In essence,
one can say that our study leverages the work done by [2]
in order to effectively handle the noise.

To our knowledge, this work is one of the few studies
that examines the effect of a noise handling technique on
a real-world dataset with potential inherent noise. Many
empirical investigations [2, 25, 27] have evaluated differ-
ent noise handling mechanisms on datasets in which noise
is artificially injected, either in the class label or in the at-
tribute values. In such cases, there is no way to ensure that
the noise handling procedure improves the true classifica-
tion accuracy. On the contrary, with our approach, noise
free evaluation dataset is available because of the way noise
filtering is performed. Also, in our noise elimination ap-
proach, the number of classifiers used is rather large. Differ-
ent learning algorithms from different categories have been
chosen as base-level classifiers to form noise filters. This
enables us to use different levels of filtering to eliminate in-
stances that are likely to be noise, and avoids results from
being influenced by (possible) inappropriate bias of a few
classifiers for the given dataset. In addition, it also raises
the confidence level in the process of eliminating the data
instances suspected of being noisy.

2 Noise Detection and Elimination

In the ensemble-classifier approach presented in [2, 3]
for noise elimination, the reported results were based on
ensemble-classifier models of only three and five different
base-level classifiers, respectively. It may not be wise to
form an opinion about an instance being noisy by consider-
ing only a small number of classifiers, because the appropri-
ateness (or bias) of the chosen learning algorithms applied
to a particular dataset also plays a significant role.

Experimenting with a rather large number of classifiers
can ensure that we are reducing the probability of throw-
ing away good data and raising the level of confidence in
the identification of actual noisy instances. In our study,
we used 25 different base-level classifiers from different
computational categories, such as bayesian, instance-based,
rule-based, decision-tree based, pattern-based, and statis-
tical techniques, etc., for our ensemble classifier noise re-
moval approach.

Unlike Brodley and Friedl’s approach [2] that only con-
siders majority filtering (the least conservative approach)
and consensus filtering (the most conservative approach),
our study examines the effects of different levels of noise
filtering on the predictive accuracy of classifiers. We exper-
imented with four different levels of filtering. In the context
of the software measurement data investigated, we decided
to eliminate the instances (considered as noise) misclassi-
fied by:

� �
or more classifiers (the most conservative ap-

proach, i.e., misclassification by over 90% classifiers);
� �

or more classifiers (misclassification by over 80% classi-
fiers); � � or more classifiers (misclassification by over 68%
classifiers); and � �

or more classifiers (the majority filtering
approach - the least conservative one). Thus, by using 25
base-level classifiers, we were able to achieve various lev-
els of filtering (levels of conservativeness), instead of just
majority and consensus filtering.

2.1 Handling Exceptions

Danyluk and Provost note that learning from noisy data
is difficult, because it is hard to distinguish between in-
stances that are noisy and instances that are exceptions to
the general rule, especially if the noise is systematic [6].
Brodley and Friedl also indicated in their paper [2] that one
has to be cautious not to unknowingly remove exceptions
from the dataset while trying to eliminate noisy instances.

We believe that our ensemble-classifier approach, espe-
cially the approach with the most conservative level of fil-
tering, does counteract the above problem to a certain ex-
tent. While it is true that not all the classifiers can capture
the atypical nature of the instances that are exceptions to
the general case, we believe that with our most conserva-
tive approach, it is likely that at least three of the twenty
five classifiers would have the appropriate biases that could
allow them to correctly classify exceptions. This implies
that our most conservative approach, where all the instances
misclassified by

� �
or more classifiers are eliminated, is the

least likely of all the four different levels of filtering to take
exceptions for potential noise and eliminate them inadver-
tently.

However, it should be noted that this study was not par-
ticularly aimed at handling exceptions, and we feel that fur-
ther research is necessary for better addressing this problem
in conjunction with ensemble-classifier filtering.

2.2 System Description

The software metrics and quality data used in our study
is that of a NASA software project, JM � , written in C++.
The data was made available through the Metrics Data Pro-
gram (MDP) at NASA, and included software measure-
ment data and associated error (fault) data collected at the
function/subroutine/method level. The dataset consisted of
10,883 software modules, of which 2,105 modules had er-
rors (ranging from � to

� �
) while the remaining 	 � � � 	 mod-

ules were error-free, i.e., had no software faults. In this case
study, a module with no faults was considered nfp, and fp
otherwise. We note that the terms errors, defects, and faults
are used interchangeably in this study.

Each module in the JM � project was charac-
terized by 21 software measurements: four Mc-
Cabe metrics (Cyclomatic Complexity, Essen-

tial Complexity, Design Complexity, and Loc Total);
eight derived Halstead metrics (Halstead Length, Hal-
stead Volume, Halstead Level, Halstead Difficulty,
Halstead Content, Halstead Effort, Halstead Error Est,
and Halstead Prog Time); four metrics of Line Count
(Loc Executable, Loc Comment, Loc Blank, and
Loc Code And Comment); four basic Halstead metrics
(Unique Operators, Unique Operands, Total Operators,
and Total Operands); and one metric for Branch Count.
The quality of the modules was described by their Error
Rate (i.e., number of defects in the module) and Defect
(i.e., whether or not the module has any defects). The latter
was used as the class label.

Upon removing inconsistent modules (those with iden-
tical software measurements but with different class labels)
and those with missing values, the dataset was reduced from

� � � � � �
to � � �
 �

modules. We denote this reduced dataset
as JM1-8850, which now had 1,687 modules with one or
more defects and 7,163 modules with no defects. We only
used the 13 primitive metrics in our analysis. The eight
derived Halstead metrics were not used during modeling.
Thus, the classifiers were built using the 13 software metrics
as independent variable and module-class as the dependent
variable, i.e., fault-prone or not fault-prone.

We feel it is important to note that the software measure-
ments used for the JM � system were primarily governed
by their availability, the internal workings of the project,
and the data collection tools used by the project. The type
and numbers of software metrics made available for public
use was determined by the NASA Metrics Data Program.
Other types of software metrics, including object-oriented
measurements were not available for analysis. The use of
the specific software metrics in each case study does not
advocate their effectiveness – a different software project
may collect and consider a different set of software mea-
surements for analysis.

3 Experiments

We performed noise elimination using the proposed
ensemble-classifier approach on the JM � software systems
data. The filtering was based on the performance of twenty
five different classification techniques on the JM1-8850
dataset. For most classification techniques, the predictions
on which the filtering was based were obtained using 10-
fold cross-validation, with a few exceptions 1. The twenty
five classification techniques used are: Case-Based Reason-
ing [15, 17]; Treedisc (TD) [13]; Lines-of-Code (LOC);
Artificial Neural Network (ANN) [19]; Genetic Program-
ming (GP) [20]; Rule-Based Modeling (RBM) [21]; Logis-
tic Regression (LR) [14]; Rough Sets (RSET) [18]; Log-

1Exceptions due to infeasibility or limitation of the tool used for RBM,
TD, LR, GP, ANN, and RSET.

Table 1. Dataset Details for JM � System
Dataset nfp fp total Avg. NECM

modules modules modules � � =20

8850 7163 1687 8850 1.5359

4425-Fit 3581 844 4425 1.5691
23C-Fit 3143 753 3896 1.1457
20C-Fit 2862 696 3558 0.8384
17C-Fit 2670 646 3316 0.5786
13C-Fit 2431 576 3007 0.2724

4425-Test 3582 843 4425 1.5431
23C-Test 3143 752 3895 1.1989
20C-Test 2861 696 3557 0.8771
17C-Test 2670 646 3316 0.5904
13C-Test 2430 576 3006 0.3061

itBoost [9]; Bagging [26]; MetaCost [7]; AdaBoost [26];
Decision Table [16]; ADTrees [8]; SMO [23]; IB1 (1-NN);
IBk (k-NN); PART [26]; OneR [26]; JRIP [4]; RIDOR [5];
J48 (C4.5) [24]; Naive Bayes [26]; HyperPipes [22]; and
LWLStump [1]. The last 13 techniques are implemented in
WEKA [26], which was used to build the respective models.

In a Lines-of-Code classifier, the modules were first
sorted in an ascending order of their LOC. The underlying
assumption is that a larger-size program module is likely
to have more software faults than a relatively smaller-size
module. Based on a specific threshold value of lines of
code, � � � � � � , the modules with LOC lower than � � � � � �
are predicted as not fault-prone, and the rest as fault-prone.
The threshold value is varied until the desired balance be-
tween the Type I and Type II error rates is obtained.

Experimenting with as many as twenty five classifiers
enabled us to explore several levels of noise filtering. We
decided to have four different levels of filtering denoted by
13C, 17C, 20C, and 23C, with 13C being the least conserva-
tive and 23C being the most conservative. Noise filtering at
the 13C level, a noise filtering level where all the instances
misclassified by 13 or more classification techniques have
been eliminated, is analogous to majority filtering since we
are using twenty five classification techniques in our ensem-
ble. We did not perform consensus filtering (25C in our
case), for it appeared to be too stringent a criterion for noise
elimination with twenty five classification techniques.

Having eliminated potentially noisy instances, each
dataset was proportionately split into two halves: fit and
test sets. The notations used for each dataset and the dis-
tribution of fault-prone and not fault-prone modules in each
dataset are summarized in Table 1. Most of the notations
are self explanatory. For example, 8850 stands for the orig-
inal dataset (with 8850 modules) used for noise elimina-
tion; 4425-Fit and 4425-Test are respectively the training
and the evaluation datasets generated before noise elimina-

tion; and 23C-Fit and Test stand for the fit and test dataset
splits respectively generated after noise elimination at the
23C level. At the 23C level, 1059 (11.97%) of the 8850
modules were identified as noisy, and hence, were elimi-
nated. Similarly, 1735 (19.60%), 2218 (25.06%), and 2837
(32.06%) of the 8850 modules in the original dataset were
eliminated at 20C, 17C, and 13C levels of filtering respec-
tively.

It was surprising to note that the distribution of the nfp
(about 80%) and fp (about 20%) modules in the datasets
had remained almost the same after the noise elimination
process at different levels of filtering.

3.1 Expected Cost of Misclassification

Comparing the performance of different classification
methods based on the two misclassification rates (False Pos-
itive - Type I and False Negative - Type II) can indeed be
a difficult task, especially when the performance is being
evaluated across a range of datasets (with different level of
noise in our case). In order to reduce the degree of diffi-
culty/complexity involved in the comparison task, it was de-
cided to use ECM (Expected Cost of Misclassification)[Eq.
1], as a unified singular performance measure. In addition,
unlike the overall misclassification rate performance mea-
sure, it accounts for the prior probabilities of classes and
the costs of misclassifications [12]. The lower the value of
ECM, the better the performance of a given classifier.

ECM � � � � �
 � � � � � � � � � � � � � � � � �
 � � � � � � � � � � (1)

where, � � and � � � are costs of Type I and Type II misclas-
sification errors respectively, � � � and � � � � are prior proba-
bilities of fp modules and nfp modules, � �
 � � � � � � � is the
probability that a nfp module would be misclassified as fp,
and � �
 � � � � � � � is the probability that a fp module would
be misclassified as nfp.

In practice, it is difficult to quantify the actual costs of
misclassifications at the time of modeling. Normalized Ex-
pected Cost of Misclassification (NECM = ECM% &) [Eq. 2]

avoids this problem by facilitating the use of cost ratio
% & &% & ,

which can be more readily estimated using software engi-
neering heuristics for the given application. In the context
of the JM ' software system, the range of cost ratio values of
10 to 50 was considered practical. We investigate with cost
ratio values of 10, 20, 30, and 50 for computing NECM.
However, due to space limitation, results for all the cost-
ratios can not be presented.

NECM � � �
 � � � � � � � � � � � � � � �
� � � �
 � � � � � � � � � � (2)

Table 1 shows the average value of NECM (across the 25
classifiers) at the cost-ratio of 20 (as an example). The rel-
atively higher values of Avg. NECM for the datasets with

no noise filtering (8850 and 4425) indicates that the dataset
has inherent noise, which is confirmed by the improvement
in the NECM value with increasing noise filtering level, i.e,
going from the most conservative level-23C to the least con-
servative level-13C.

3.2 Results & Analysis

As shown in the Table 2, for all the twenty five classi-
fiers, the value of NECM tends to decrease as we go from
most conservative level (23C) of filtering to the least con-
servative level (13C) of filtering, indicating improvement in
classification accuracy.

A Two Way Randomized Complete Block Design ap-
proach was employed to investigate whether the twenty five
classification techniques and the datasets with different lev-
els of noise filtering yield significantly different NECM val-
ues with respect to one another respectively. The NECM
computed for the fit and test data sets, was used as the re-
sponse variable for the ANOVA models. Due to the restric-
tions on the paper size, only the ANOVA table for the pre-
dictive performance of the classifiers is presented in Table 3.
The notations used in the table are as follows: DF - degrees
of freedom, SS - sums of squares, MS - mean squares, and
F - the F statistic.

Examining ANOVA results based on the predictive per-
formance (test data) of the classifiers (Table 3) reveals that
for all the cost ratios, the NECM values across the datasets
(with different noise filtering levels) are significantly differ-
ent – indicated by p-values less than

, - , ' 0 . Similar obser-
vation was made for the quality-of-fit results. All the classi-
fication techniques also have significantly different perfor-
mances on the test datasets for the JM ' system, indicated
by very low p-values (in some cases p 1 , - , , , '). Similar
trends were also observed for quality-of-fit performance.

The results statistically confirmed our intuitive assump-
tion that the classification performance would improve as
more and more software modules likely to be noise are elim-
inated. This is evidenced by the significant performance dif-
ference between the datasets with different levels of noise
filtering. This was also apparent as the NECM values de-
creased from the most conservative level to the least con-
servative level of noise filtering.

A Z-test was performed to compare two different pro-
portions – proportions of the modules identified as likely-
noise by two different noise filtering approaches. First,
we compared the proportion of the modules identified as
noisy (and hence eliminated) by our approach (ensemble-
classifier consensus filter with

2 3 base-level classifiers)
to the proportion of the instances identified as noisy by
ensemble-classifier consensus filter with only 3 base-level
classifiers [3]: J48, IBk, SMO, JRIP, and LWLStump. Our
consensus filter removed only

4 2 ' out of the 6 6 3 ,
instances,

as compared to � � � � out of � � � �
instances removed by the

filter with five base classifiers. When these two proportions
were compared using Z-test, the computed z-value was of a
very high magnitude (

� 	
 � �
), indicating that the two propor-

tions are statistically different at significance level � � � .
This shows that ensemble-classifier consensus filter is, sta-
tistically speaking, much more conservative with twenty
five base-level classifiers than with only five classifiers.

Similarly, we also found that the ensemble-classifier
consensus filter with five base classifiers is statistically more
conservative than that with only three classifiers. This goes
to show that as the number of base-classifiers increases, the
level of conservativeness for consensus filtering increases
significantly.

In the case of ensemble-classifier majority filtering for
identifying potentially noisy software modules, our twenty-
five classifier ensemble removed 2837 modules as com-
pared to 2842 modules removed by a five-classifier ensem-
ble and 2865 modules removed by a three-classifier ensem-
ble. While there is not a markable difference in the numbers
of modules removed (those that are misclassified) by the
different ensemble-classifier majority filters, we note that
they may not be eliminating the same modules. Among
the 2837 modules identified as noise by the twenty-five
ensemble-classifier, 2559 were the same modules that are
identified as noise by the five ensemble-classifier. Hence,
about 10% of the modules identified as noise by the twenty-
five ensemble-classifier were not identified as noise by the
five ensemble-classifier. Along the same lines, only 2519
modules were common between the twenty-five ensemble-
classifier and the three ensemble-classifier.

4 Conclusions

The empirical study presented indicates that the predic-
tive performance of classification techniques improves as
more and more (inherent) noise is removed. Use of rela-
tively larger number of classifiers, i.e., 25, provides certain
degree of freedom and flexibility to explore different levels
of filtering from most conservative to the least conservative
to achieve the desired level of conservativeness while re-
moving the instances suspect of being noisy. With twenty
five base-level classifiers, it is highly unlikely for the noise
elimination process to get influenced by predictions of a few
classifiers which may not have appropriate inductive bias
for the dataset at hand. Thus, experimenting with relatively
large number of classifiers to base the noise elimination pro-
cess gives a higher level of confidence in the process.

The case study presented here, a study in software mea-
surement and software quality classification, very closely
approximates a real-world scenario, where appropriate
noise-handling technique(s) need to be employed on a
dataset with inherent noise. The Normalized Expected Cost

Table 2. Predictive Performance for � � �� � =20 af-
ter Noise Elimination

Methods 13C Split 17C Split 20C Split 23C Split

CBR 0.4362 0.5202 0.8639 1.0760
TD 0.2861 0.6300 0.8791 1.2300
LR 0.3014 0.6420 0.8791 1.1974
LOC 0.3589 0.6722 0.8774 1.2483
GP 0.3234 0.6457 0.9547 1.2685
ANN 0.3194 0.6553 0.9157 1.2298
LBOOST 0.2801 0.6378 0.8679 1.1684
RBM 0.3330 0.6571 0.9536 1.2385
BAG 0.2325 0.4180 0.7186 0.9733
RSET 0.2927 0.6351 0.9185 1.2904
MCOST 0.2452 0.5920 0.7683 1.2008
ABOOST 0.2285 0.4677 0.7846 1.1019
DTABLE 0.3127 0.5250 0.7807 1.2937
ADT 0.1743 0.5359 0.9345 1.2062
SMO 0.3273 0.6601 0.9039 1.2573
IB1 0.3589 0.5449 0.9033 1.1733
IBK 0.2911 0.5259 0.8752 1.2316
PART 0.2648 0.4849 0.8544 1.2426
ONER 0.3330 0.6641 0.8327 1.1392
JRIP 0.2295 0.5084 0.9710 1.2144
RDR 0.2588 0.6408 0.8251 1.2616
J48 0.2518 0.5483 0.9103 1.0059
NBAYES 0.3619 0.6824 0.9494 1.2624
HPIPES 0.5788 0.7244 0.9843 1.2837
LWLS 0.2718 0.5413 0.8212 1.1782

Average 0.3061 0.5904 0.8771 1.1989
Std. Dev 0.0792 0.0794 0.0676 0.0837
Median 0.2927 0.6300 0.8791 1.2298
Min 0.1743 0.4180 0.7186 0.9733
Max 0.5788 0.7244 0.9843 1.2937

Table 3. Two-Way ANOVA Models for JM � Test
Datasets

� � �� � Source DF SS MS F p-value

Method 24 0.138 0.006 4.65 0.0000
Dataset 4 8.384 2.096 1698.48 0.0000
Error 96 0.119 0.00110

Total 124 8.6402
Method 24 0.483 0.020 3.00 0.0000
Dataset 4 23.799 5.950 886.33 0.0000
Error 96 0.644 0.00720

Total 124 24.9272
Method 24 1.053 0.044 2.60 0.0005
Dataset 4 47.086 11.772 698.28 0.0000
Error 96 1.618 0.01730

Total 124 49.7578
Method 24 2.865 0.119 2.33 0.0020
Dataset 4 117.274 29.319 573.23 0.0000
Error 96 4.910 0.05150

Total 124 125.0495

of Misclassification was used as a practical performance
evaluation measure, taking the disparity between the two
types of misclassification (very common in software quality
classification and many other domains) into account. Also,
the datasets on which performance of different classifiers
is evaluated are noise-free, as they are generated by impar-
tially splitting the given dataset after noise removal, giving
a better insight into the true predictive performance.

While it was not the focus of our study to address the is-
sue of exceptions, we feel that our most conservative level
of filtering provides for handling exceptions to a certain
degree, as it is likely that at least three out of the twenty
five base-level classifiers can correctly classify the instances
that are “hard-to-classify”, or are “exceptions”. We also
found that there is significant difference (� � � � � �) in
the proportion of the noise removed by consensus filtering
with 25 classifiers and consensus filtering with only 5 clas-
sifiers, suggesting that consensus filtering with relatively
large number of classifier is more conservative than with
a few classifiers.

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally
weighted learning. Artificial Intelligence Review, 11(1-
5):11–73, 1997.

[2] C. E. Brodley and M. A. Friedl. Identifying mislabeled train-
ing data. Journal of Artificial Intelligence Research, 11:131–
167, 1999.

[3] C. E. Brodley and P. E. Utgoff. Multivariate decision trees.
Machine Learning, 19:45–77, 1995.

[4] W. W. Cohen. Fast effective rule induction. In A. Prieditis
and S. Russell, editors, Proc. of the 12th International Con-
ference on Machine Learning, pages 115–123, Tahoe City,
CA, July 9-12 1995. Morgan Kaufmann.

[5] P. Compton and R. Jansen. Knowledge in context: a strat-
egy for expert system maintenance. In C. J. Barter and M. J.
Brooks, editors, AI‘88: 2nd Australian Joint Artificial In-
telligence Conference, pages 292–306, Adelaide, Australia,
November 1990. Springer.

[6] A. Danyluk and F. Provost. Small disjuncts in action: Learn-
ing to diagnose errors in the telephone network local loop. In
Machine Learning: Proceedings of the Tenth International
Conference, pages 81–88, Amherst, MA, 1993.

[7] P. Domingos. Metacost: A general method for making clas-
sifiers cost-sensitive. In Knowledge Discovery and Data
Mining, pages 155–164, 1999.

[8] Y. Freund and L. Mason. The alternating decision tree learn-
ing algorithm. In Proc. 16th International Conference on
Machine Learning, pages 124–133, Bled, Slovenia, 1999.
Morgan Kaufmann, San Francisco, CA.

[9] J. Friedman, J. Stochastic, T. Hastie, and R. Tibshirani.
Additive logistic regression: a statistical view of boosting,
1999.

[10] D. Gamberger, N. Lavrač, and C. Grošelj. Experiments with
noise filtering in a medical domain. In Proc. 16th Interna-
tional Conf. on Machine Learning, pages 143–151. Morgan
Kaufmann, San Francisco, CA, 1999.

[11] D. Gamberger and N. Lavrač. Conditions for occam’s razor
applicability and noise elimination. In European Conference
on Machine Learning, pages 108–123, 1997.

[12] R. A. Johnson and D. W. Wichern. Applied Multivariate
Statistical Analysis. Prentice Hall, Englewood Cliffs, NJ,
USA, 2nd edition, 1992.

[13] T. M. Khoshgoftaar and E. B. Allen. Controlling overfitting
in classification tree models of software quality. Empirical
Software Engineering, 6(1):59–79, 2001.

[14] T. M. Khoshgoftaar and E. B. Allen. Logistic regression
Modeling of Software Quality. International Journal of Re-
liability, Quality and Safety Engineering, 6(4):303–317, De-
cember 1999. World Scientific Publishing.

[15] T. M. Khoshgoftaar and N. Seliya. Analogy-based practical
classification rules for software quality estimation. Empir-
ical Software Engineering, 8(4):325–350, December 2003.
Kluwer Academic Publishers.

[16] R. Kohavi. The power of decision tables. In N. Lavrač and
S. Wrobel, editors, Proceedings of the European Confer-
ence on Machine Learning, Lecture Notes in Artificial In-
telligence, pages 174–189. Springer Verlag, 1995.

[17] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann
Publishers, Inc., San Mateo, California USA, 1993.

[18] J. Komorowski, L. Polkowski, and A. Skowron. Rough Set:
A Tutorial. Springer-Verlag, 1998.

[19] R. P. Lippmann. An introduction to computing with neural
networks. Accoustics, Speech and Signal Processing Maga-
zine, 4(2):4–22, 1987.

[20] Y. Liu and T. M. Khoshgoftaar. Genetic programming model
for software quality prediction. In 6th High Assurance Sys-
tems Engineering Symp., pages 127–136, Boca Raton, FL,
2001.

[21] M. Mao. Software quality classification using rule-based
modeling. Master’s thesis, Florida Atlantic University, Boca
Raton, Florida USA, May 2002. Advised by Taghi M.
Khoshgoftaar.

[22] J. Peng, F. Ertl, S. Bhagotra, A. Mosam, N. Vijayaratnam,
and I. Kanwal. Classification of U.S. census data. Data
Mining Project CS4TF3.

[23] J. C. Platt. Sequential minimal optimization: A fast algo-
rithm for training support vector machines. Technical Report
98-14, Microsoft Research, Redmond, Washington, April
1998.

[24] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

[25] C. M. Teng. Correcting noisy data. In Proceedings of the
Sixteenth International Conference on Machine Learning,
pages 239–248, 1999.

[26] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 2000.

[27] X. Zhu, X. Wu, and Q. Chen. Eliminating class noise in
large datasets. In Proceedings of the Twentieth International
Conference on Machine Learning, Washington, DC, 2003.

On Modelling an e-shop Application on the Knowledge Level:
e-ShopAgent Approach

Nenad Stojanovic
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

nst@aifb.uni-karlsruhe.de

Abstract. In this paper we present an approach that
models the behaviour of an on-line shop assistant on the
knowledge level, i.e. it takes into account not only which
actions (questions) a shop assistant will perform, but also
which goals he wants to achieve by taking an action. As a
generic reasoning pattern of such an e-shop agent we use
the cover-and-differentiate problem-solving method, a
method very successfully applied in various diagnosis and
classification tasks. In that way, we can (i) model the
question-answering process such that the minimal set of
useful questions will be provided to a user, (ii) easily
reinterpret and fine-tune shopping strategies that exist in
other e-shop portals and (iii) design and integrate new
methods into generic reasoning pattern. We present an
evaluation study which illustrates these benefits.

1. Introduction

A lot of effort has been spent in the last decade in
replicating real-world shopping experience in e-commerce
sites. Particularly, a number of models have been
proposed to describe a real-world customer-buying
process [1] and several recommendation strategies have
been developed to represent the background knowledge
and experience of a shop assistant [2]. Most of them
introduce some plausible heuristics about a user’s
behaviour (e.g. a user should select the most preferable
product among several alternatives) and in an intensive
software engineering process they implement such a
solution. However, the buying process can be considered
as a decision-making process in which a user “searches”,
regarding a problem (formulated as an inquiry/query), for
a solution (represented as a relevant product). Therefore,
one can abstract particular e-commerce scenarios and
consider the on-line shopping problem on the knowledge
level [3]. In such a view the goal of problem solving is not

just to select one of the possible actions, but rather to
construct a model of part of the world that allows the
problem-solver to conclude eventually that its goals have
been achieved.
In this paper we present an approach to model the
behaviour of an on-line shop assistant on the knowledge
level, using generic problem solving methods (PSM) [4].
Particularly, from the knowledge level point of view the
problem-solving used in the e-shopping domain might be
seen as a method that searches for a set of products
relevant for a set of features (properties) given by a user
and that refines that set (i.e. rules out some products) by
introducing new features that are relevant for the user. It
corresponds to the cover and differentiate PSM [5], very
successfully applied in various diagnosis and
classification tasks. In that way we model the goal an on-
line shop assistant would achieve by asking a user some
questions, which enables us to generate more useful
questions that should be posted to a user.
This research relies on our work on interactive query
refinement [6]. The corresponding system, called
eShopAgent has been implemented in the KAON
framework (kaon.semanticweb.org) and we set a case
study that compares navigating through the same product
database using a traditional and our approach.
The paper is organised as follows: in the second section
we describe our approach in details. Section 3 contains a
small evaluation study, whereas Section 4 contains related
work. In Section 5 we give concluding remarks.

2. Modelling e-shopping problem-solving on the
knowledge level

2.1 Knowledge level

The knowledge level [3] provides the means to
'rationalise' the behaviour of a system from the standpoint

of an external observer. This observer treats the system as
a 'black box' but maintains that it acts 'as if' it possesses
certain knowledge about the world and uses this
knowledge in a perfectly rational way toward reaching its
goals (principle of rationality - an agent will select an
action that according to its knowledge leads to the
achievement of one of his goals). There are three different
perspectives on the knowledge level: domain model and
task model, that talk in a precise and systematic way about
domain knowledge and goals of the system, respectively
and problem-solving method, that relates task and domain
models in order to accomplish goals. In the meantime a lot
of such generic inference patterns, called problem-solving
methods (PSM) [47], have been identified: cover and
differentiate for diagnosis [5], propose and revise [5] for
parametric design, skeletal-plan-refinement for
hierarchical planning etc.

2.2. E -shopping as a problem-solving

In most on-line shop systems the communication between
a user and the system is initiated either by an
anthropomorphic shopping agent for the given domain [8],
who transfers his knowledge into the set of questions, or
by an automatic analysis of product data, e.g. using some
data-mining algorithms like ID3 [9]. The drawbacks of the
first approach are well-known in the knowledge
acquisition community: highly expensive hard-coding of
the expert knowledge that disables its reusability in
similar situations. In the second case the expert
background knowledge is completely missing, such that
the flexibility of the solution is lost.
Fortunately, from the knowledge level point of view the
solution for an effective communication seems to be very
simple: if we understand the rationale why a knowledge is
needed, we can understand what knowledge should be
elicited. Indeed, by analysing existing e-shop portals and
their “conversations” with customers, we extracted the
common behaviour (rationale) of different shop assistants,
which we formulate in a simplified form like: in each
action an e-shop assistant performs, he tries to eliminate
as much as possible irrelevant products offered to a user.
Consequently, in the elicitation process (e.g. by
questioning) a shop assistant tries to acquire as much as
possible “eliminating” knowledge - the knowledge that
can be used for efficient elimination of products irrelevant
for the current user. Finally, we can abstract this
behaviour to a generic inference pattern, which (1) for a
set of symptoms proposes a set of explanations and than
(2) seek information to eliminate irrelevant explanations.
By analysing available libraries of PSMs [47], we found a
very suitable inference pattern - cover and differentiate

PSM (in the rest of the text abbreviated as c&d),
developed for supporting diagnosis task [5].

2.3 cover-and-differentiate PSM

c&d is a role limiting method that implements a form of
heuristic classification [10]. It resolves a problem by first
proposing candidates that will cover or explain the
symptoms or complaints specified by the user and then
seeking information that will differentiate the candidates.
The searching method is divided into a covering and a
differentiate task. These tasks are abstractly defined as
follows: the cover task takes a set of features (symptoms)
and produces a set of candidates (explanations) that seen
applicable; the differentiate task tries to rule out elements
of this set. In order to achieve these goals each task uses
corresponding knowledge (covering or differentiating).
In Figure 1 we present the structural decomposition of the
method. This c&d process is iterative, since some of the
symptoms used to differentiate the candidates often need
to be explained in a subsequent skip.

Figure 1. The structure of the c&d PSM

The domain knowledge used in the method should be
represented as a causal network, which is the main source
of the covering knowledge. More details about the c&d
methods can be found in [5].

2.4 Using c&d for e-shop problem-solving

If we consider a buying scenario as the process in which a
shop assistant tries to find suitable candidates (products)
which satisfy (explain) a set of features a user prefers, the
mapping to the c&d domain is straightforward: features
are symptoms and products are explanations.
Therefore, from the structural point of view we can use
c&d generic inference patterns as the problem-solving
method in a shopping portal. However, the main problem
is how to define covering and differentiating knowledge
(relevant for c&d) in the e-shopping problem solving.

2.4.1 Covering Knowledge
First of all, c&d requires a causal network as the covering
knowledge, which is not a preferred knowledge
representation paradigm in the shopping domain.
Therefore we post minimal requirements on the structure
of the domain knowledge in an e-shop scenario and try to
prepare it for the c&d –based processing.

The most commonly used (knowledge) structure in the e-
shopping domain can be interpreted as a light weight
ontology about product’s features, whereas the partial
orders (taxonomy) between features are explicitly
specified. The corresponding knowledge base contains a
set of instances for a concrete domain (a product set). On
the other hand, the nature of the causality in c&d can be
expressed as

If cover(S, E) then cover(S’, E’),
where cover(S, E) means that a set of symptoms (S) can
be explained with set of explanations (E), S and S’ are sets
of symptoms, E and E’ are sets of explanations and S’⊆S
and E⊆E’. In this case we consider that symptoms {S’\S}
are caused by symptoms S.
According to the c&d interpretation of the e-shopping
scenario, this condition can be rewritten as

If cover(F, P) then cover(F’, P’),
where F, F’ are sets of features and P, P’ are sets of
products and F’⊆F and P⊆P’ and cover(F, P) means that
all products from P have all features from F. In such a
causal case we consider that features {F’\F} are caused by
features F.
Therefore, we need a partial order between feature-
products pairs in order to “simulate” a causal network for
a whole product dataset. Comparing other e-shop
applications this is a very important difference – we
organize products in a causal network in the first place,
whereas the most of other approaches uses a decision tree
topology. In [11] we gave an overview of the advantages
of using causal network topology comparing to decision
trees. In the rest of this subsection we show how the
causality between products’ features can be derived from
a product dataset.

Definition 1. A product dataset can be transformed into
the structure (Φ, Π, cover), where
- Φ is a set of all feature that exist in the given dataset.
Features can be organized in the vocabulary V.
- Π is the set of all products available in the given dataset
- cover is a binary relation between a set of products and a
set of features, cover ⊆ Φ x Π. We write cover(f, p),
meaning that a product p has a feature f.

Definition2: A vocabulary on a set Φ of features is a
structure V:= (Φ, H), where H is the set of partial orders
on Φ. For the relations from the H holds:

)p,f(ercov)f,f(h),p,f(ercovHhf,fp 221121 →∧∈∀∧Φ∈∀Π∈∀

Definition 3: A product-feature node (in the rest of the
text: node)
A product-feature pair is a tuple, N = (Φx, Π y) where:
- Φx ⊆ Φ , Φx is called a set of node_features ;
- Πy ⊆ Π , Π y is called a set of node_products;.

)}p,f(ercov)f(p{ xy →Φ∈∀Π∈=Π .

In order to model causal knowledge we define two
relations, equivalence and subsumption, on the set of
nodes.
Definition 4: Structural equivalence (=):

212211 yyyxyx),(),(Π=Π↔ΠΦ=ΠΦ , which can be written as

2121 yyNN Π=Π↔= . (1)
Two nodes are structurally equivalent if their product sets
are the same. Note that this relation is reflexive,
symmetric and transitive.
Definition 5: Largest equivalent node (len) for the
node),(N yaxaa ΠΦ= is a node),(N ylxll ΠΦ= such that:

}NNi{ lixixl =∀Φ=Φ t and yayl Π=Π (2)

Definition 6: Structural subsumption (parent-child):
212211 yyyxyx),(),(Π⊂Π↔ΠΦ<ΠΦ . (3)

Two nodes are structurally subsumed if the product set of
a node is subsumed by the product set of another. Note
that this relation is symmetric and transitive.
For a node 1N we define the direct child relation as
follows: 2N dir< 1N iff 1212 NNN,NNN ii <<¬∃∧< (4)
In that case we call 2N a direct_child of 1N .

Finally, the partial order “<” on the set of all nodes
defines a lattice structure, which reflects the causality
between features of products. In other words, it defines
covering knowledge for c&d problem-solving in e-
shopping domain. This covering knowledge is used in the
cover-task of the problem-solving in order to find a set of
relevant explanations (covering). Theoretically, the entire
causal knowledge can be calculated using formal concept
analysis FCA [12], since a set of all equivalent product-
feature nodes corresponds to a formal concept. We omit
here the mapping process. Since that FCA calculation can
be very expensive and since we do not need the whole
covering knowledge at once due to the iterative nature of
the c&d, we can generate only a relevant portion of
covering knowledge for a reasoning step. Indeed, the
product-feature node Nx that contains the set of relevant
products Πx for a given set of features Φx (i.e. covering)
can be very efficiently calculated: it is enough to find the
most general largest equivalent node (len) whose
node_features contains Φx, i.e.

Nx = len((Φx, Πx)). (5)

2.4.2 Differentiating knowledge
The differentiate-task uses differentiating knowledge in
order to eliminate some covering explanations generated
in the cover-task. Obviously, the more explanations that
are eliminated by using a differentiating knowledge, the
more usability of that differentiating knowledge. In an

ideal case, after applying this knowledge only one
explanation should remain. In the c&d method such
knowledge is elicited from experts in a highly interactive
process of refining the knowledge base [5].

Figure 2. The decomposition of the differentiate task of c&d PSM

Analogy to the c&d method, the differentiate-task in the e-
shopping scenario consists of three subtasks represented in
Figure 2. The main problem is how to obtain the
knowledge employed in these subtasks, which we discuss
in next three subsections.
2.4.2.1 Differ knowledge
This subtask finds out which new symptoms (features)
should be tested (e.g. is the value of the symptom X equal
Y). In a problem-solving system this task can be seen as
the crucial one: a system seems to be more intelligent if it
makes as less as possible tests/questions in order to
conclude something.
From the knowledge level point of view, the realization of
this subtask should be driven by the “principle of
rationality” of the agent – in the case of a shop agent this
is to eliminate as much as possible irrelevant candidates.
In other words, the selection of the features for testing
should be done in such a way that the results of tests
would enable maximal restriction of the searching space.
It is clear that the selection of features for testing has to be
fair (complete) – each candidate (relevant product) has a
chance to “survive”. Moreover, it is clear that the number
of tests should be minimal, since we can theoretically ask
for the availability of each feature. In the e-shop domain
the principle of the minimality is important due to a need
to develop a buyer’s information need incrementally, in
the so called step-by-step manner [13]. Briefly, on-line
buyers often have a vague idea what to buy (due to the
unfamiliarity with the content of the product database) or
how to express their request (due to the unfamiliarity with
the used vocabulary). In that case a shop assistant should
ask only for features that do not imply another feature not
yet considered by a user. A solution for this problem is to
ask an expert which features should be tested in which
situation. However, it can be a very expensive process and
cannot guarantee a fair and minimal testing.
Another possibility is to reuse knowledge employed in the
differ-task in the c&d method in e-shopping problem-
solving. Basically, the c&d differ-knowledge compares
competing explanations for a symptom directly, i.e. it
compares each two explanations which cover the same set

of symptoms. Therefore, for a set of initial symptoms c&d
differ-knowledge calculates the set of competing
explanations which cover all symptoms and then tries to
eliminate some of them by asking for their availability
[14]. We use the same idea: for a set of product’s features
Φinit and the set of relevant products Πinit we calculate the
set of possible competing features Φcom, i.e. the set of
features which can be found in relevant products. Using
the notation introduced in the previous section, we can
formalize this calculation as init

NN
acom \)(

ldira

ΦΦ=Φ
<
� ,

 (6)
where Nl is the Largest equivalent node (len) for the node
(Φinit, Πinit). Therefore, the calculation is based on
considering the features found in direct_child nodes of the
Largest equivalent node of the node (Φinit, Πinit).
2.4.2.2 Test knowledge
The task of this knowledge is to perform tests on the
features selected in the differ-task. In the simplest case a
user is asked for the values of selected features. However,
there are several methods that can be used to decide which
products to eliminate. For example, several products can
be compared, or the features of a product should be
compared with each other. In all these tasks the test
knowledge is used in order to perform tests in the most
appropriate manner (from the user’s point of view).
Note that our approach is based on testing feature-value
pairs. It means that we do not ask a user to choose
between all values of a feature in the case that some of
these values depend on the values of some other features.
In that way we ensure minimal testing. Note that most of
the other methods for generating product catalogues do
not treat such a kind of dependencies between features.
2.4.2.3 Infer knowledge
This kind of knowledge enables the interpretation of test
results in order to eliminate irrelevant results. Since the
infer-task “understands” what is the goal of the whole
method, it can interpret the test results differently
depending on which strategy for elimination is selected.

3. Implementation & Evaluation

The research presented in this paper is a part of the
Librarian Agent [15], a management system we have
developed for the improvement of the search process in
ontology-based information portals. The Librarian
Agent is developed using the KAON ontology
engineering framework. The e-ShopAgent is an
extension of the Query Management module (dedicated
to the query refinement) of the Librarian Agent. The
visualisation metaphor is taken from the Librarian
Agent.

Since the goal of our research is to model an efficient e-
shopping support, our evaluation study concerns the
comparison in the effectiveness (regarding searching)
between a traditional e-shopping portal and a system
based on the eShopAgent. Indeed, we compared searching
for relevant products (cars) in two portals based on the
same data, whereas one implements a traditional
Interactive Query Refinement approach (IQE) [16] and
another is based on the described approach. We selected
10000 cars from the actual offer from a car shopping
portal (www.autocsout24.de) as instances in the
repository. Each car had in average 15 features. In order to
enable a fair comparison both approaches have been
implemented using the same graphical interface, i.e. as
KAON portals.
We compared four formal properties of a portal:
1.Completeness of results in a step – are all relevant products for
a user’s query found by the system?
2. Soundness of results in a step – are only relevant products for
a user’s query found by the system?
3.Completeness of questions (query refinements) in a step – are
all relevant questions provided to the user in a refinement step?
4. Minimality of questions – are the provided question non-
redundant?
We compared the navigation structure for 100 queries
posted against both portals. The queries were selected by
10 participants (10 queries per a candidate) who actually
have performed a search for a holiday trip. The
participants were graduate students and no additional
instructions were given to them. In order to ensure a fair
comparison a half of tasks (searching), for each
participant, was performed on each of portals.

Table 1 Results from the first evaluation study
Method Completenes

s of results
in a step

Soundness
of results
in a step

Completeness
of questions in
a step

Minimality
of questions

IQE 85% 100% 50% 60%
Our 100% 100% 100% 100%

We made a post festum analysis of the support for the
query refinement provided by a portal, by measuring
parameters 1. - 4. for each navigation step in each
navigation session. It means that we “traversed” off-line
all navigation paths given by users and calculated (per
hand) parameters 1. – 4. in each step. Table 1summarizes
the results. In order to simplify calculation (but without
effecting the generality/validity of the experiment) we
made a relative measurement, i.e. we put the parameters
of a portal in the context of another. For example, for the
parameter 3. we compared the set of questions provided
by both portals. 100% means that this portal for that
parameter includes all values produced by other portal.

Discussion: It is clear that in each refinement step a user
can expect only relevant results (column 2: Soundness of
results = 100%) even in a “traditional” portal. However, in
the “traditional” portal some of relevant results are
missing (column 1: about 15%), due to problems in
modelling hierarchically organized data in a standard
relational database. On the other side, in the semantic
portal the transitivity axiom (from the ontology) ensures
the completeness of the answers. Moreover 50% of
relevant refinements that should be provided to a user
(questions) are missing (column 3), what can be expected,
since the refinement structure in a traditional portal is
generated in an ad-hoc manner. Better results for
Completeness of results can be explained by the fact that
some products are placed in several refinements, so a user
can find a product using several refinements. Finally, ad-
hoc generation of refinements in traditional portals
disables fine-tuning of user needs in a step-by-step
manner in about 40% of cases (column 4), i.e. in 40% of
refinements a user is provided with sub optimal
recommendations for a refinement (e.g. a user is asked for
a value of a product’s feature which can be derived from
another features).

4. Related Work

Due to nature of the work, we tried to present the main
differences between our approach and related product
catalog approaches directly after introducing our ideas, so
that the analysis of the related work is somehow
distributed through the paper. We give here only a short
analysis of the work related to query refinement since our
approach can treated in that way as well.
In [17] the authors described an approach, named
REFINER, to combine Boolean information retrieval and
the content-based navigation with concept lattices. For a
Boolean query REFINER builds and displays a portion of
the concept lattice associated with the documents being
searched centred around the user’s query. The cluster
network displayed by the system shows the result of the
query along with a set of minimal query
refinements/enlargements. A similar approach is proposed
in [18], by adding the size of the query result as an
additional factor of the navigation. Moreover, the distance
between queries in the lattice is used for similarity
ranking. However, none of them put the concept lattice in
a broader application context. Regarding searching in
product catalogues the most similar approach is presented
in [19]. It is an extension of a mediator architecture that
supports the relaxation or tightening of query constraints
when no or too many results are retrieved from the
catalogue. The query language is a type of Boolean
queries suitable for the (web) form based querying against

product catalogues. The query tightening is enabled when
the cardinality of the resulted set has reached a predefined
threshold and it is realized by selecting the most
informative, not yet constrained product features. The
information content of a feature is defined by measuring
its entropy. However, this approach does not treat the
problem of query refinement on the conceptual level, as
our approach does. Finally, our approach can be seen as a
method for Interactive Query Refinement for the case of
logic-based information retrieval. In that sense our
recommendations can be treated as a combination of
subject thesauri and co-occurrence term lists [Sch96].
However, due to our scenario we extended existing
methods for implicit relevance feedback.

5. Conclusion

In this paper we presented a general framework for
modelling a buying process on the knowledge level, using
the cover and differentiate problem solving method. We
defined a reasoning pattern for an e-shop assistant, which
models knowledge how to eliminate as much as possible
irrelevant products using as less as possible questions in a
refinement step. The role of a generic reasoning pattern in
this scenario is not (only) to support reusability of a
concrete solution, but to define the model in which all
extensions of that reasoning pattern can be interpreted. In
a case study we illustrated one of very important
advantages of the proposed approach: the possibility to
compare product catalog applications on the conceptual
level.

Acknowledgement. Research for this paper was partially
financed by BMBF in the project “SemIPort” (08C5939).

6. References

[1] H. Shimazu “ExpertClerk: Navigating Shoppers Buying
Process with the Combination of Asking and Propossing, IJCAI
2001, Morgan Kaufmann, San Francisco, pp.1443-1448, 2001.
[2] M. Balabanovic, Y. Shoham: Content-Based, Collaborative
Recommendation. CACM 40 (3), pp. 66-72, 1997.
[3] A. Newell. The knowledge level. Artificial Intelligence, 18,
pp. 87-127, 1982.
[4] A.Th. Schreiber, B.J. Wielinga, R. de Hoog, H. Akkermans,
and W. van de Velde: CommonKADS: A Comprehensive
Methodology for KBS Development. In: IEEE Expert,
December 1994, pp. 28-37.
[5] S. Marcus, Automating Knowledge Acquisition for Expert
Systems. Kluwer Academic Publishers, 1988.
[6] N. Stojanovic, “Information-need Driven Query
Refinement”, The 2003 IEEE/WIC Conference on Web
Intelligence (WI 2003), Halifax, Canada, IEEE Press, 2003.

[7] B. J. Wielinga, A. Th. Schreiber, and J. A. Breuker. KADS:
A modelling approach to knowledge engineering. Knowledge
Acquisition, 4(1), Special issue `The KADS approach to
knowledge engineering'., 1992.
[8] B. Berendt, Using site semantics to analyze, visualize, and
support navigation. Data Mining and Knowledge Discovery, 6,
pp. 37-59, 2002.
[9] W.K. Sung, D. Yang, S.M. Yiu, D.W. Cheung, W.S. Ho,
T.W. Lam, S.D. Lee, Automatic Construction of Online Catalog
Topologies, IEEE Transactions on Systems, Man and
Cybernetics – Part C, V32, N4, pp. 382-391, Nov., 2002.
[10] W.J. Clancey, The Knowledge Level Reinterpreted:
Modeling How Systems Interact. In: MachineLearning 4, pp.
285-291, 1989.
[11] N. Stojanovic, On Using Query Neighbourhood for Better
Navigation Through a Product Catalog: SMART Approach,
IEEE International Conference on e-Technology, e-Commerce
and e-Service, Taiwan, IEEE Press, 2004
[12] B. Ganter, R. Wille, Formal Concept Analysis:
Mathematical Foundations, Springer Verlag, 1999.
[13] P. Bruza, T. van der Weide, Stratified Hypermedia
Structures for Information Disclosure. The Computer Journal
35(3): 208-220, 1992.
[14] F. Puppe: Systematic Introduction to Expert Systems:
Knowledge Representation and Problem-Solving Methods.
Springer Verlag, Berlin, 1993.
[15] N. Stojanovic, An Approach for Using Query Ambiguity for
Query Refinement: The Librarian Agent Approach, 22nd

International Conference on Conceptual Modeling (ER 2003),
Chicago, Illinois, USA, Springer, 2003.
[16] E.N. Efthimiadis, Interactive Query Expansion: a user-
based evaluation in a relevance feedback environment. Journal
of the American Society for Information Science, 51 (11), pp.
989-1003, 2000.
[17] C. Carpineto, G. Romano, Effective re formulation of
boolean queries with concept lattices. In Flexible Query
Answering Systems FQAS'98, pp. 277{291, Berlin Heidelberg,
Springer-Verlag, 1998.
[18] P. Becker, P. Eklund, Prospects for Document Retrieval
using Formal Concept Analysis, Proceedings of the Sixth
Australasian Document Computing Symposium, Coffs Harbour,
Australia, December 7, 2001.
[19] F . Ricci, A. Venturini, D. Cavada, N. Mirzadeh, D. Blaas
and M. Nones, Product Recommendation with Interactive Query
Management and Twofold Similairty. 5th International
Conference on Case-Based Reasoning (ICCBR 2003), 2003.
[20] B. R. Schatz, E.H. Johnson, P.A. Cochrane, H. Chen,
Interactive Term Suggestion for Users of Digital Libraries:
Using Subject Thesauri and Co-occurrence Lists for Information
Retrieval. Digital Libraries, pp. 126-133, 1996.

Predicting UML Statechart Diagrams
Understandability Using Fuzzy Logic-Based Techniques

José A. Cruz-Lemus1, Marcela Genero1, José A. Olivas2, Francisco P. Romero2 and Mario Piattini1
1ALARCOS Research Group, 2ORETO Research Group

Department of Computer Science,University of Castilla-La Mancha
Paseo de la Universidad, 4, 13071, Ciudad Real (Spain)

{JoseAntonio.Cruz, Marcela.Genero, JoseAngel.Olivas, Mario.Piattini}@uclm.es
fpromero@soluziona.com

Abstract. In this work, we present an application of the
Fuzzy Logic in the field of prediction in Software
Engineering. We specifically use the Fuzzy Prototypical
Knowledge Discovery for characterizing the UML
statechart diagrams according to their understandability,
starting from the structural complexity and size of the
diagrams, expressed by means of metrics, and the Fuzzy
Deformable Prototypes, to obtain a prediction model of
the understandability time of the UML statechart
diagrams. The obtained model, built from data obtained
through experimentation, is valid –in a certain way- since
the 75% of the estimated values are at least 70% accurate,
although it is necessary further validation with data
obtained from real projects.

1. Introduction

It is well-known in Software Engineering that the quality
characteristics of object-oriented (OO) systems, such as
maintainability, must be guaranteed from the initial stages
of their lifecycle, focusing on the models obtained in these
stages. In the recent years, this fact has been emphasized

given the great growth that the Model-Driven
Development [1] and the Model-Driven Architecture [19]
have experimented. In the OO development, some
diagrams are done to cover static (class diagrams) and
dynamic (use case diagrams, statechart diagrams...)
aspects. For evaluating the quality of these diagrams in an
objective way, it is necessary to rely on quantitative
measures that avoid bias in the evaluation process.

There are several works published about quality
measurement of UML class diagrams and use case
diagrams [15]. However, there are only a few
bibliographical references about metrics for behavioural
diagrams, such as statechart diagrams, sequence diagrams
or activity diagrams. Brito e Abreu et al. [9] and Poels and
Dedene [24] pointed out that the definition of metrics for
diagrams that capture dynamic aspects of OO systems is a
relevant are for further research, but it has been
disregarded in the software measurement field. This fact
motivated us to define metrics for UML behavioural
diagrams, starting with statechart diagrams [20] (see Table
1).

Table 1. Metrics for UML statechart diagrams
Metric Name Metric Definition

NEntryA The total number of entry actions, i.e., the actions performed each time a state is entered.
NExitA The total number of exit actions, i.e., the actions performed each time a state is left.
NA The total number of activities (do/activity) in the statechart diagram.
NSS The total number of states considering also the simple states within the composite states.
NCS The total number of composite states, i.e., the states with nested sub-states.
NE The total number of events.

Size

NG The total numbers of guard conditions.

Structural
Complexity

NT The total number of transitions, considering common transitions (the source and the target
states are different), the initial and final transitions, self-transitions (the source and the target
states are the same) and internal transitions (transitions inside a state that respond to an event
but without leaving the state).

Metric Name Metric Definition
CC (McCabe’s
[18] Cyclomatic

Complexity)1

Defined as |NSS-NT|+2

1Even tough the Cyclomatic Number of McCabe was defined to calculate single module complexity and entire system complexity, we
tailored it for measuring the structural complexity of UML statechart diagrams.

Our approach about how the structural complexity and
the size as internal attributes of statechart diagrams are
potentially related with their understandability emerged
from similar works [8][16] done in the field of Empirical
Software Engineering, in which these properties were
showed to be some of the greatest determinants of
external quality characteristics, such as understandability
and maintainability.

The metrics presented in Table 1 were theoretically
validated using the Briand et al.’s [6] property-based
framework, obtaining that the metrics NEntryA, NExitA,
NA, NSS, NCS, NE and NG are size metrics, while NT
and CC are complexity metrics.

As it is well-known in the software measurement field,
if we want metrics that measure internal attributes (size,
complexity...) to be useful, it is necessary that they can be
used to predict some external attribute of quality, such as
understandability or maintainability.

By means of a controlled experiment and its replication
[15] that will be detailed in section 2, we have found out
that the proposed metrics NA, NSS, NG and NT, seem to
be strongly correlated with the understandability time the
UML statechart diagrams. This led us to think about the
construction of a prediction model of the
understandability time of UML statechart diagrams, based
on the values of these metrics. For the construction of the
prediction model, we have used all the metrics, since we
considered too premature to discard some of them.

Considering the encouraging results previously
obtained by applying the Fuzzy-Prototypical Knowledge
Discovery (FPKD) process and the Fuzzy Deformable
Prototypes for the construction of prediction models
applied to different domains [22][13][14], we decided to
use them for our purpose. For the shake of brevity we will
not explain in-depth all the steps of the prediction process,
although further details about them can be found in [21].

In our case, the main goals of the prediction process
are: firstly, the automatic search and extraction of fuzzy
prototypes to characterize the UML statechart diagrams
across their understandability, expressed as the structural
complexity and size of the diagrams. This will be done
using the Fuzzy Prototypical Knowledge Discovery

(FPKD) process; and secondly, the obtainance of a
prediction model of the understandability time of the
UML statechart diagrams, by means of the deformation of
the previously discovered fuzzy prototypes.

The FPKD is an extension of the classic KDD [10]
process that presents as novelties the incorporation of
knowledge in different points by means of the user or the
expert decisions and a result prepared to generate some
conceptual prototypes called Fuzzy Deformable
Prototypes, based on the idea of Fuzzy Prototypical
Categories [21][27]. The use of fuzzy logic let us get
these results in a more understandable and useful way for
their later use in the prediction process. We can evaluate
new situations from such prototypes, establish predictions
for real situations and also make decisions from these
predictions. Some other techniques, such as fuzzy
clustering and aggregation functions [10], are also used,
making easier the generation of structured, significant and
easily updatable models.

This work is organized as follows: in section 2, the
controlled experiment and its replication are presented. In
section 3 we describe the different steps followed until
getting the prediction model, which consist of the FPKD
process, the proper prediction process and the validation
of the prediction model. Finally, in section 4 we present
the main conclusions and the future research lines
emerged from this work.

2. Description of the data sources

In this section we will briefly describe a controlled
experiment and its replication. They were carried out
taking into account some suggestions provided by experts
in Empirical Software Engineering [7][17][23][26].
Futher details of the exepriment and its repliaction can be
found in [20].

2.1. First experiment

Using the GQM [2] template for goal definition, the goal
of the experiment is detailed in Table 2.

Table 2. Goal of the experiment.

Analyze Structural complexity and size metrics for UML statechart diagrams

For the purpose of Evaluating

With respect to the capability of being used as indicators of the understandability of UML statechart diagrams
From the point of view of researchers

In the context of Undergraduate students of Computer Science and Software Engineering teachers of the Computer
Science Department at the University of Castilla-La Mancha

The experiment consisted of 20 UML statechart
diagrams related to different universes of discourse but
easy enough to be understood by each of the subjects (see
an example in Appendix A). Each diagram had a test
enclosed, which included a questionnaire in order to
evaluate whether the subjects had really understood the
content of the UML statechart diagrams. Each
questionnaire contained four questions, each of these
conceptually similar and written in the same order. Each
subject had to write down the time he/she started and
finished answering the questionnaire. The difference
between these two values, expressed in seconds, is what
we called ‘understandability time’ . The subjects were
given the material and they have to solve tests alone. We
allowed them one week to return the experiment solved.

2.2. Experiment replication

The main differences between the experiment and its
replication are:
• The subjects were twenty students enrolled in the

third-year of Computer Science. Therefore, the
subjects experience was lower than in the first
experiment.

• They had to complete the tests alone and in no more
than two hours. Any doubt could be solved by the
person that coordinated the experiment, what
contributed to control the plagiarism.

3. Building a prediction model for the
understandability time of UML statechart
diagrams

In order to build the prediction model, we carried out two
main processes. First, a FPKD process, which consists of
several steps: data transformation; obtainance of the
prototypes using clustering techniques; parametric
definition of the prototypes; fuzzy representation of the
prototypes (using the data obteined in the fisrt
experiment). Then, we carried out a Prediction process,
which consists of the ‘deformation’ of the fuzzy
prototypes for predicting the understandability time of
UML statechart diagrams and the Validation process
(using the data of the replication).

Next, we will describe how we carried out each of
these steps.

3.1. Data transformation

Firstly, it was necessary to transform the data so that they
were valid for the FPKD process. On one hand, we
obtained the table with the metric values for statechart.
On the other hand, we obtained the understandability time
for each diagram and subject. From these times, we
obtained the minimum (MinUT), average (AvgUT) and
maximum (MaxUT) understandability time of each
diagram (see Table 3).

Table 3. Time obtained (in seconds) in the transformation process.

Diagram AvgUT MinUT MaxUT Diagram AvgUT MinUT MaxUT
1 110.00 15 420 11 153.16 85 360
2 95.00 30 170 12 86.37 50 180
3 191.94 61 360 13 88.05 35 300
4 163.39 69 405 14 136.05 44 360
5 129.50 30 215 15 152.22 85 420
6 124.56 58 310 16 140.05 50 300
7 154.05 72 300 17 108.63 59 195
8 140.00 50 360 18 154.89 65 265
9 131.79 70 300 19 84.26 40 180

10 85.21 50 180 20 85.84 42 140

3.2. Obtainance of the prototypes using
clustering techniques

With the aim of detecting the relationshi ps between the
UML statechart diagrams to be able later to ascertain
whether they have a low, medium or high

understandability time, we will carry out a hierarchical
clustering process, in the way of Repertory Grids’s
technique [3].

The diagrams were grouped in three prototypes
according to the values of the metrics that reflect their
structural complexity and size (see Table 4).

3.3. Parametric definition of the prototypes
Considering the data prototypes found in the previous
section and their values of the understandability time

shown in Table 3, we obtained the parametric definition of
the prototypes, as Table 5 shows.

3.4. Fuzzy representation of the prototypes

The three prototypes were represented as ‘fuzzy numbers’,
which would allow us to obtain a degree of membership
(between 0 and 1) of a new statechart diagram with each
of the prototypes. To use triangular fuzzy numbers it is
only necessary to know their centre and the size of the
base of the triangle (named Centre, a and b in Table 6).

Table 4. Diagrams grouped in prototypes

Prototypes Diagrams
Low Understandability Time 10,13,19
Medium Understandability Time 1,2,4,5,8,9,12,14,16
High Understandability Time 3,6,7,11,15,17,18,20

Table 5. Parametric definition of the prototypes

H: High Underst. Time M: Medium Underst. Time L: Low Underst. Time
Avergae 2 min. 15 sec. Average 2 min. 5 sec. Average 1 min. 25 sec.
Maximum 7 min. Maximum 7 min. Maximum 6 min.
Minimum 42 sec. Minimum 15 sec. Minimum 35 sec.

Table 6. Fuzzy definition of the prototypes

Prototypes Diagrams a Centre B
Low Understandability Time 10,13,19 0 0.08 0.74

Medium Understandability Time 1,2,4,5,8,9,12,14,16 0 0.26 0.92
High Understandability Time 3,6,7,11,15,17,18,20 0 0.34 1

The formal definition of the prototypes as fuzzy
numbers is obtained by means of a normalization process,

carried out in the following way
minmax

min'

xx

xx
x n

n −
−

= , and

the aggregation by means of average of the data
corresponding to the metric values.

3.5. Deformation of the fuzzy prototypes to
predict the understandability time of UML
statechart diagrams

In this section we will show how to predict the
understandability time for a new statechart diagram. We
use as example the diagram 16 used in the experiment
(showed in Appendix A)

The process is as follows:
1. Normalization of the values measured by means of the

indexes of normalization associated with the obtained
prediction model. The same formula is used as in the
definition of the fuzzy numbers and with the same
coefficients of minimum and maximum. In this way we
obtained the values shown in Table 7.
2. Calculate the average of the previously normalized

values (this value is called X). X=0.53.

3. From X, we obtain the degrees of membership to the
prototypes represented by means of the fuzzy
numbers as follows:

pipi

pi
pipi acentre

aX
centreX

−
−

=⇒> µ

pipi

pi
pipi centrec

Xc
centreX

−
−

=⇒>= µ

The results for the diagram 16 are shown in Table 8.
4. To obtain the predicted value of the

understandability time for a new statechart diagram,
the fuzzy prototypes are ‘deformed’ to consider the
affinity degree with all the prototypes. Applying the
concept of Fuzzy Deformable Prototypes defined in
[21], the characterization of the proposed new
statechart diagram can be described by the following
linear combination:

|)...(|)...(11 ninreal vvpwwC ∑= µ
Where:
Creal Real case proposed.
(w1... wn) Parameters that describe the real case

proposed.

µpi Degree of membership with the non-zero Fuzzy
Deformable Prototypes.

(v1... vn) Parameters of these Fuzzy Deformable
Prototypes.

For the diagram 16 the predicted value is shown in
Table 9.

The result of applying the prototype deformation to
every diagram is shown in Table 10.

Table 7. Metric values for the diagram 16.
NEntryA NExitA NA NSS NCS NT NE NG CC

Values 0 0 5 9 0 21 22 1 16
Normalized 0 0 1 0.7 0 1 0.95 0.3 1

Table 8. Value of the affinities of the diagram 16 with the prototypes.

Prototypes Affinities

Low Understandability Time 0

Medium Understandability Time 0.591

High Understandability Time 0.712

Table 9. Predicted value for the diagram 162.

Average 2 min. 5 sec. 2 min. 15 sec. 2 min. 2 sec.

Maximum 7 min. 7 min. 7 min. 5 sec.
Minimum

0.591 / 2
15 sec.

+ 0.712
42 sec.

=
34 sec.

Table 10. Predicted values for each UML statechart diagrams.

DIAGRAM X Aff(B) Aff (M) Aff (A) Estimated value Real value MRE
1 0.15 0.894 0.577 0.441 116.38 110.00 0.058
2 0.14 0.909 0.538 0.412 114.925 95.00 0.210
3 0.18 0.848 0.692 0.529 120.52 191.94 0.372
4 0.16 0.879 0.615 0.471 117.765 163.39 0.279
5 0.24 0.758 0.923 0.706 162.75 129.50 0.257
6 0.41 0.5 0.773 0.894 156.41 124.56 0.256
7 0.23 0.773 0.885 0.676 158.9375 154.05 0.032
8 0.34 0.606 0.879 1 177.875 140.00 0.271
9 0.23 0.773 0.885 0.676 158.9375 131.79 0.206

10 0.11 0.955 0.423 0.324 110.785 85.21 0.300
11 0.34 0.606 0.879 1 177.875 153.16 0.161
12 0.12 0.939 0.462 0.353 112.155 86.37 0.299
13 0.06 0.75 0.231 0.176 79.92 88.05 0.092
14 0.1 0.97 0.385 0.294 109.4 136.05 0.196
15 0.39 0.53 0.803 0.924 162.485 152.22 0.067
16 0.53 0.318 0.591 0.712 122.205 140.05 0.127
17 0.18 0.848 0.692 0.529 120.52 108.63 0.109
18 0.51 0.348 0.621 0.742 125.555 154.89 0.189
19 0.05 0.625 0.192 0.147 66.565 84.26 0.210
20 0.16 0.879 0.615 0.471 117.765 85.84 0.372

2 In this case, following some recommendations given by the experts, as the sum of the membership degrees is greater than 1, we di-
vided the membership degree of the second most similar prototype by two.

3.6. Validation of the prediction model

We based on the most commonly used techniques [11] to
evaluate the accuracy of our prediction model, MMRE,
MdMRE and Pred(25%).

The values of MRE obtained for each diagram are
shown in Table 10. In this experiment, the value for

MMRE and MdMRE for is 0.20. The value obtained for
Pred(25%) is a 70%, what indicates that a 75% of the
obtained values are at least 70% accurate.

In Figure 1 are shown the predicted and real average
values for the understandability time of each statechart
diagram of the experiment.

0

50

100

150

200

250

1 4 7 10 13 16 19

Real

Prediction

Figure 1. Predicted values vs. real values

4. Conclusions

The main contribution of this work is a prediction
model for he Understandability Time of UML statecharts
diagrams. This model was built from some metrics for the
structural complexity and size of UML statechart
diagrams using two fuzzy logic-based techniques: the
Fuzzy Prototypical Knowledge Discovery (FKPD) process
and the Fuzzy Deformable Prototypes. The data used to
build the model was obtained through a controlled
experiment. Moreover, the model was validated usin data
obtained in a replication of the experiment. Through the
validation, we reached the conclusion that – in a certain
way- it is a good model, since a 75% of the
understandability time estimated values are at least 70%
accurate.

Although the results are encouraging, we are aware that
we must improve our study in two ways: with respect to
the data used for obtaining the prediction model and with
respect to the technique applied for building the prediction
model.

For that, on one hand we have to replicate the
experiment with professionals and examine the usefulness
of the metrics in real projects. Related to the prediction
model, there are also some aspects to improve. Using
algorithms such as Fuzzy C-Means [4], Fuzzy Kohonen
Networks [5] or soft clustering algorithms in general,
would allow us to raise the power of problems resolution.
These algorithms can make the clustering process and the
model construction to be done at once, deciding the
number of prototypes before being carried out. Moreover,
these algorithms allow a better manipulation of great
volume of data.

Acknowledgements

This research is part of the MESSENGER project (PCC-
03-003-1) financed by “Consejería de Ciencia y
Tecnología de la Junta de Comunidades de Castilla-La
Mancha (Spain)” and the CALIPO project supported by
“Dirección General de Investigación del Ministerio de
Ciencia y Tecnologia (Spain)” (TIC2003-07804-C05-03).

References

[1] Atkinson C. and Kühne T. (2003). “Model-Driven
Development: A Metamodeling Foundation”. IEEE Software
20(5), 36- 41.

[2] Basili, V. R., Caldiera, G. y Rombach, H. D. (1994). Goal
Question Metric Paradigm. Encyclopedia of Software
Engineering, vol. 1. John Wiley & Sons, 528-532.

[3] Bell R. (1990). “Analytic Issues in the Use of Repertory
Grid Technique”. Advances in Personal Construct
Psychology 1, pp. 25-48.

[4] Bezdek J., Hathaway R., Sabin M., Tucker W. (1987).
“Convergence Theory for Fuzzy c-Means Counterexamples
and Repairs”. IEEE Trans Syst., Man and Cybern. SMC-17
(5), pp. 873 - 877.

[5] Bezdek J., Tsao E., Pal N. (1992). “Fuzzy Kohonen
Clustering Net-works”. IEEE International Conference on
Fuzzy Systems. San Diego, pp. 1035-1043.

[6] Briand, L., Morasca, S., Basili, V. (1996) “Property-based
software engineering measurement”. IEEE Transactions on
Software Engineering, 22 (1) pp. 68-85

[7] Briand L., Arisholm S., Counsell F., Houdek F., Thévenod-
Fosse P. (1999b). “Empirical Studies of Object-Oriented
Artifacts, Methods, and Processes: State of the Art and Future
Directions”. Empirical Software Engineering, 4(4), pp. 387-
404.

[8] Briand L., Bunse C., Daly J. (2001). “A Controlled
Experiment for evaluating Quality Guidelines on the
Maintainability of Object-Oriented Designs”. IEEE
Transactions on Software Engineering, 27(6), pp. 513-530.

[9] Brito e Abreu F., Zuse H., Sahraoui H. , Melo W. (1999).
“Quantitative Approaches in Object-Oriented Software
Engineering”. ECOOP’99 Workshops, LNCS 1743, A.
Moreira and S. Demeyer (eds). Springer-Verlag. pp. 326-337.

[10] Castro J., Trillas E., Zurita J. (1998). “Non-monotonic
Fuzzy Reasoning”. Fuzzy Sets and Systems 94, North
Holland, pp. 217 - 225.

[11] Conte S., Dunsmore H., Shen V. (1986). Software
Engineering Metrics. Benjamin-Cummings Publishing Co.,
Inc., USA.

[12] Fayyad U., Piatetsky-Shapiro G., Smyth P. (1996). “The
KDD Process for Extracting Useful Knowledge from
Volumes of Data”. Communications of the ACM, 39(11), pp.
27 - 34.

[13] Genero M., Olivas J., Piattini M., Romero F. (2001). “Using
metrics to predict OO information systems maintainability”,
CAISE 2001, Lecture Notes in Computer Science, 2068,
Interlaken, Switzerland, 388-401.

[14] Genero M., Piattini M., Calero C. (2002). “An study to
validate metrics for class diagrams”. Jornadas
Iberoamericanas de Ingeniería de Requisitos y Ambientes de
Software (IDEAS´2002), La Habana (Cuba), pp. 226-235.

[15] Genero M., Piattini M. and Calero M. (Eds.) Metrics For
Software Conceptual Models. Imperial College Press, UK,
2004.

[16] Harrison R., Counsell S., Nithi R. (2000). “Experimental
Assessment of the Effect of Inheritance on the Maintainability
of Object-Oriented Systems ”, The Journal of Systems and
Software, 52, 173-179.

[17] Kitchenham B., Pflegger S., Pickard L., Jones P., Hoaglin
D., El-Emam K. y Rosenberg J. (2002). “Preliminary
Guidelines for Empirical Research in Software Engineering”.
IEEE Transactions of Software Engineering 28(8), pp. 721-
734.

[18] McCabe, T. (1976). “A Complexity Measure”. IEEE
Transactions on Software Engineering. Vol. 2. Nº4, pp. 308-
320.

[19] MDA- The OMG Model Driven Architecture (2002).
Available: http://www.omg.org./mda/, August 1st, 2002.

[20] Miranda D., Genero M., Piattini M. (2003). “Empirical
validation of metrics for UML statechart diagrams”. Fifth
International Conference on Enterprise Information Systems
(ICEIS 03), 1, pp. 87-95.

[21] Olivas J. (2000). Contribución al Estudio Experimenta l de
la Predicción basada en Categorías Deformables Borrosas,
Tesis Doctoral, Universidad de Castilla La Mancha, España.

[22] Olivas J., Romero F. (2000). “FPKD. Fuzzy Prototypical
Knowledge Discovery. Application to Forest Fire
Prediction”. Proceedings of the SEKE'2000 , Knowledge
Systems Institute, Chicago, Ill. USA, pp. 47 - 54.

[23] Perry D., Porter A., Votta L. (2000). “Empirical Studies of
Software Engineering: A Roadmap”. Future of Software
Engineering. Ed:Anthony Finkelstein, ACM, pp. 345-355.

[24] Poels, G. and Dedene, G. (2000). “Measures for Assessing
Dynamic Complexity Aspects of Object-Oriented Conceptual
Schemes”. Proceedings of 19th International Conference on
Conceptual Modelling (ER 2000), pp. 499-512.

[25] Schneidewind N. (2002). “Body of Knowledge for Software
Quality Measurement”. IEEE Computer 35(2), pp. 77-83.

[26] Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B.,
Wesslén A. (2000). Experimentation in Software
Engineering: An Introduction, Kluwer Academic Publishers.

[27] Zadeh, L. A. (1982). “A note on prototype set theory and
fuzzy sets”. Cognition 12, pp. 291- 297.

Appendix A
In this appendix we will show, as example, one of the test
used in the experiment, corresponding to the diagram 16.

DIAGRAM 16: MAKING A TELEPHONE CALL 2

IDDLE

GET TONE

do/ Dial tone

Hang up

OCCUPIED

do/ Start occupied tone

DIALING

Push digit (n)

CONNECTING

do/ Search connection

ERROR MESSAGE

do/ Emit message RINGING

do/ Emit ring

CONNECTED

on New incoming call / Emit ring

DISCONNECTED

Take down

Take down

Occupied speaker

On line

Take down

Exchange calls
[Two connections = TRUE]

Answer / Connect Line

Take down

Called phone takes down / Disconnect line

Take down / Disconnect line

Make new call

Time exhausted

Push digit (n)

Take down

Take down
[Time exhausted]

[Valid numb er]

[Invalid number]

End of message

Take down

TIME NOW: ________

Answer the following questions:
1. If you get from CONNECTED to IDDLE, which event has occurred previously? TAKE DOWN
2. If you are CONNECTED and the event Occupied speaker occurs, which state do you get to?

OCCUPIED
3. Which events and/or conditions will have occurred at least and in which order for getting form IDDLE to RINGING?

(1) Hang up (2) Push digit(n) (3) [Valid number] (4) On line

4. Starting from ERROR MESSAGE, which state will you get if the following sequence of events and conditions occurs? (1)
Take down (2) Hang up (3) Push digit(n) and (4) [Time exhausted]. OCCUPIED

TIME NOW: ________

Programming ubiquitous software applications: requirements for distributed
user interface

Anders Larsson and Erik Berglund
Department of Computer and Information Science

Linköping University
Linköping, Sweden

andla@ida.liu.se, eribe@ida.liu.se

Abstract

Mobile and ubiquitous computing require new ap-

proaches to user interface design. Incorporating I/O de-

vices in the environment is imperative because small devices

do not provide enough interaction richness. Distributed

user interfaces (DUIs) are needed to take advantage of such

I/O-landscapes.

A DUI constitutes a fundamental change of the pretext

of user interface development. New programming models

that support efficient creation and maintenance may be re-

quired. This paper presents a case study in DUI design and

report on the use of current GUI modeling techniques to

provide DUIs. We identified several issues where current

programming models need to be extended.

1. Introduction

Mobile, ubiquitous computing is an area of growing im-

portance, where computing power is transferred from static

locations to mobile or ubiquitous platforms [28, 8, 10, 20].

One important aspect of interaction in these circumstances

is context-aware computing where the situation has bear-

ing on the user interface (UI) of an application and where

situated action [23] thereby becomes integrated in UIs.

We are currently seeing an increased focus on mobile and

ubiquitous solutions to traditionally desktop applications

[14, 16, 27].

This focus mobile, ubiquitous applications place new re-

quirements on UI development. Limited interaction rich-

ness is provided by smaller computers, hand held or inte-

grated in everyday artifacts. As a consequence, a limited

set of functionality can be supported using traditional UI

development methods. New UI programming models are

required to express functionality. Work has, for instance,

been performed specifically on the design of graphical user

interfaces (GUIs) for small devices [26].

An alternative approach to traditional GUIs interface de-

sign is distributed user-interfaces (DUI) [4], where mobile

devices are augmented with external devices located in the

work environment or even where mobility is created solely

by such an I/O landscape (a geography of I/O devices that

may change over time). A complexity in mobile and ubiq-

uitous computing lies in the fact that the physical resources

users work through change over time. Abowd calls this the

interface scalability problem [1]. DUIs solves this problem

by describing how the UI and the functionality it represents

should change for variable situations.

In essence, DUIs constitute dynamically configured

peer-groups of UI components found in I/O landscapes

that multiple concurrent users access simultaneously. Us-

ing DUIs, application can take advantage of, but must also

adapt to, variable interaction functionality being present

during execution. Sometimes there is an abundance of in-

teraction richness and at other times only limited interaction

is available. This lead to new degrees of both freedom and

complexity in the design of application UIs.

Developers need new programming models to ade-

quately handle DUI construction. Without adequate pro-

gramming models and tools support for UI development,

software development for mobile and ubiquitous comput-

ing is both difficult and time consuming [18]. While DUI

construction is a feasible technical concept, it is not equally

clear how a DUI programming model and suite of support-

ing tools should be designed.

This paper discusses programming models for DUI con-

struction with mobile and ubiquitous computing in mind.

The work is based on the LINDA-2 case study, where a

healthcare groupware system is designed for a number of

different I/O configurations. Based on our experiences, we

provide a general discussion of the extension required to

current GUI programming models (found in programming

languages such as Java and Visual C++) needed to ade-

quately support DUI development.

The paper is organized in the following sections :

• Background (User Interface Programming Model, Dis-

tributed User-interfaces)

• Method (Developing DUIs: Case Study, Related

Work)

• Result (Requirements on DUIs Models, Conclusion)

2. User Interface Programming Models

Programming models and tools that implement these

models are required to create and maintain UIs. Large por-

tions of the software development cost and time are spent

constructing the user interface. Myers reported in 1994 that

almost all systems developed for Unix involved a graphi-

cal user-interface (GUI) and that the GUI part of the source

files consumed about half of the total code. The time spent

building the GUI consumed the same amount of time as all

the other code parts put together.

The construction of GUIs can be considered very diffi-

cult and is usually performed iteratively to get reliable re-

sults. Compared to command line UIs, GUIs force pro-

grammers to work with a more complex interaction struc-

ture where elaborate graphics, multiple interaction mecha-

nisms, and non-linear command structures. [18] We may

have to expect the same increase in complexity moving

from GUIs to DUIs.

The fact that UI construction is problematic and time

consuming has resulted in the development of program-

ming models to support this task, such as MFC (Microsoft-

Foundation-Classes), Java Swing and Motif [4]. These

models share a set of common instruments that contain:

• widgets (such as buttons, slide-bars, menus, and text-

areas)

• interactive actions on widgets (general events related

either to logical changes in program state or specif-

ically to different I/O devices). Mainly focused on

mouse and keyboard events as a consequence of the

desktop metaphor.

• messaging structures among widgets or other software

components (such as events).

Development of GUIs is also often performed using

some sort of graphical construction tool, usually integrated

in a development environment, such as Borland JBuilder,

IBM VisualAge or Microsoft Visual C++. In empirical stud-

ies, tools have been shown to reduce the time spend creating

GUIs by a factor of four, or reduced the number of lines of

code by 83 % [18].

Figure 1. DUIs handle multiple I/O configura-
tions.

3. Distributed User-interfaces

Distributed user-interfaces (DUIs) are application UIs

that handle variable sets of interaction devices. A simple

example of a DUI design is a movie player that automati-

cally presents subtitles when speakers are missing. Another

example is a video game that when a rumble-pack is miss-

ing from the hand-control shakes the screen image instead,

see Figure 1. A more general description of a DUI is a

UI where different I/O devices negotiate responsibility for

interaction and where systems are prepared for change in

interaction richness and the lack thereof.

DUIs are particularly relevant to mobile and ubiquitous

computing where interaction devices found in the work en-

vironment are dynamically grouped to provide users with

sufficient interaction richness and thereby enhance the abil-

ity of small devices. The following example scenario illus-

trates a more complex DUI mobile applications:

Lisa Eriksson is visiting a trade fair. She walks through

the exhibition floor passing different booths. Simultane-

ously, she is surfing an exhibition web site with her mo-

bile phone. As she approaches a booth in the exhibition

area, her mobile phone presents the available multimedia

and information services for that particular booth. The mo-

bile phone provides a digital video clip, which she activates,

and it starts playing on the mobile-phone display. However,

the presence of a 50 inch screen is also detected and gets

plugged into Lisas mobile web browser across the network.

The available interface components compare their capabil-

ities with regards to screen resolution and size and renegoti-

ates responsibilities. The decision is reached to redistribute

the digital video clip to the 50 inch screen while presenting

System Functionality

UIUI

Temporary I/O
configurations

Figure 2. DUIs are based on temporary I/O
configurations that provide interaction rich-
ness for UIs that in turn provide adequate rep-
resentation of functionality.

a more advanced remote control GUI on the mobile phone

display. As Lisa walks away, the video clip is removed from

the 50 inch screen and starts playing in her mobile phone

again. She stops the clip and leaves the booth.

For scenarios of this type, users are likely to actively lo-

cate adequate interaction devices when needed rather than

carry them around. This makes room for mobility in com-

puting even for interaction rich applications.

Essentially, DUI programming requires UIs that are

functions of variable I/O configurations found in the I/O

landscape. A first step is, however, to model concurrent UI

versions in the development of DUI applications. Program-

mers must be able to define how applications change their

interaction modalities and adapt their functionality with re-

gards to different settings. Figure 2 illustrates DUI pro-

gramming model basis.

Applications supporting DUI should be able to [4]:

• be split over a set of I/O-devices.

• adapt the functionally to fit the present devices.

• share devices with other applications.

A programming model for DUI is a sound way of con-

structing a UI that is a function of a variable set of I/O-

devices. A first approach toward such a function is a tool-

based means for handling a series of defined sets of I/O-

configuration. A DUI programming model allows develop-

ers to build such series efficiently with minimal code and

with a good graphical representation that ensures that the

UIs are correct in each configuration. The model should

allow developers to easily create and maintain concurrent

UI versions for variable sets of I/O-devices. This can be

achieved by developing design patterns and development

tools for user interfaces development.

4. Developing DUIs: Case Study

The conclusions of this paper are based on a DUI imple-

mentation case study using current GUI models. Mobility

is in our setting based on I/O devices found in the environ-

ment. Here we present the case study.

4.1. LINDA2-case

The LINDA-2 [6] system is a DUI extension to an ex-

isting research group-ware system for the for a Swedish

emergency medical work environment, the LINDA system

[7]. In the medical environment, demands on system trans-

parency are extremely high. Users need to work with min-

imal manual configuration from many different locations.

In many ways the medical work environment is a highly

relevant case environment for mobile, ubiquitous applica-

tions [4].

The current version of the LINDA-2 handles the follow-

ing I/O configurations:

• Normal Workstation (Keyboard, Mouse and Screen)

• Ericsson ChatPen with headset

• Ericsson ChatPen with walk-up display

• Ericsson ChatPen with headset and walk-up display

• Ericsson ChatPen alone

The Ericsson ChatPen is a pen build with Anoto hard-

ware that makes it possible to capture the pen-strokes in

a digital form and send them over a network to a com-

puter [2]. The problem of a paper-based interface to a com-

puter system is feedback and inconsistency between paper

and virtual document. In order to provide feedback to the

user we needed to provided the users with a alternative ways

if receiving system response. This was made possible by

adding different feedback channels to the paper-clients us-

ing audio cues and/or visual cues.

The different UI parts of the system were using a archi-

tectural version of the MVC-design pattern (Model-View-

Controller) [11], which allowed for an easy-way of sharing

code-models between the different clients. Sharing code be-

tween the different interfaces, pen and paper together with

a feedback channel, made it possible to build components

that could be used in a set of different DUI versions.

4.2. Current state and future Work for the LINDA-
systems

The LINDA systems, the original LINDA-system and

the ubiquitous extension LINDA-2, are currently used as

a test-bed for research in CSCW (Computer-Supported-

Collaborative-Work), DUI and ubiquitous computing. The

future and ongoing work on the systems include both work

on creating a more robust hybrid model between physical

and virtual objects as well as a better editor that can be used

for creating DUI interfaces. Parallel to this the research on a

programming model for distributed interface will continue.

5. Related work

The research in DUI’s is an area cross cutting several

different and broad areas such as software engineering to

ubiquitous computing. In ubiquitous computing a lot of

work has been done for task-oriented systems at the Aura

project at Carnegie Melon University. A task-oriented sys-

tem is a distributed and mobile system to help users solve

their current work-task. A user that is editing a document

at work, the user’s task is then editing, can bring his task

with him as he goes home and can continue his task on the

bus on his hand held device and as he gets home his home

workstation can take over. The user never has to be con-

cerned with moving files or staring up software, the system

knows what the user task is and uses the best suited soft-

ware available on the users current platform to aid the user

in solving the task.[12, 21] Another project, also at Carnegie

Melon University, is the Pebbles project [25], where hand-

helds and PC are used together. The projects aims to spread

computing functions with their related user interfaces over

different I/O-devices.[19]. Adaptive application, mobile ap-

plication, multiple-device user interface (MUIs) and collab-

orative work applications are other areas of important for

continued work of distributed user-interface. A lot of the

work done in the mobile-, mui- and adaptive application

area focus on making traditional desktop application avail-

able on small mobile devices such as cell phones or PDA’s.

Research is conducted in the area of programming API’s

for development of mobile applications , the construction

of display logic languages, such as html, css, wml, xml and

xslt, and as well as programming models and tools [17, 13].

As a part of the DUI is using the available devices located

in the environment users may need to share certain devices,

such as screens, research has shown several ways in which

devices can be made sharable among users. This work is

specially focused on several user trying to solve a common

task using a set of devises, such devices configuration can

be two mice with one screen or one large screen and several

laptops connected together. [3, 15, 22] Although these ar-

eas are not directly connected to one another they are all

important for the future development of distributed user-

interfaces.

6. Requirements on DUIs Models

From our work implementing DUIs we draw conclu-

sions with regards to the requirements on DUI program-

ming models. The baseline in this discussion is the GUI

structures of common programming language such as Java

and MFC [4]. These requirements are focused on a scenario

where tool-supported developers graphically build DUIs as

sets of concurrent GUIs. This is a first and perhaps also

most likely DUI development model considering how GUI

are developed today (i.e., through tool support). A future

formal approach to DUI construction could perhaps ab-

stracts away the manual labor of DUI construction.

In short we find the following issues worth discussing:

interaction openness, disappearing I/O, widgets, events, and

layout managers

6.1. Interaction Openness

For a UI where the setting for interactivity is relative,

openness in programming models becomes an imperative

aspect. Openness is the programming models ability to in-

corporate new components or new versions of existing com-

ponents. Designing for every possible configuration is unre-

alistic and the programming model therefore need to be pre-

pared for change.[24] The DUI programming model needs

to be designed for interaction openness, allowing the UI to

support different interaction styles, such as speech and ges-

ture recognition, for the same logical interaction. Saying

”ok” can then be handled as identical to clicking a ”ok” but-

ton. Such interaction openness can be accomplished by in-

troducing a device independent interaction structure which

different component then implement.

6.2. Disappearing I/O

The move from command-line to traditional GUIs re-

sulted in a more complex development task for program-

mers. The move from GUIs to DUIs will probably result

in the same type of complexity increase. Programmers will

not only have to consider a non-linear command structures

but will also have to consider the fact that devices and in-

terface might disappear as users walks around. Changing

I/O settings require that degradation become a central part

of programming.

Disappearing I/O is handled by exception handling in

current programming models, i.e., treated as something un-

usual that breaks execution. In a DUI programming model,

such degradation must be expected. DUIs should be de-

signed to reflect contextual changes and not only survive

system crashes or unprepared lack of resources. To a certain

degree it is relevant to speak of a requirement for functional

hibernation, that is functions must be removed safely when

adequate interaction devices are not present. In this sense,

method call structures may have to include parameters that

identify the available I/O capability. An I/O management

system could provide the status of the available resources.

6.3. Widgets

Most of the widgets found in GUI programming mod-

els of today provide sufficient graphical expressiveness

for DUIs. However, they are not flexible enough for the

new conditions. In today’s GUI-toolkits there are sets of

reusable components like buttons, text-areas, scrollbars.

Few of these components support disappearing multiple in-

put/output forms. Studies have, for example, show that aug-

menting button used on a PDA with sound when pressed

(instead of a graphical animation) increased the speed with

which users can work with the device [5]. Furthermore,

widgets cannot but may have to to be able to split them-

selves across several I/O devices in DUIs. In fact, applica-

tion may require that certain information only be show on

certain devices (e.g., for integrity reasons in a public space).

Widgets need to be extended with multiple forms for differ-

ent contexts and also provide the same type of openness as

DUIs in general.

6.4. Events

The messaging structure among components in GUIs are

events, issued by the system when interaction events oc-

cur (e.g., when a user clicks on a button). Currently, event

structures are being designed for distributed components,

components that reside on different computers. When the

graphical user-interface no longer exists on a single address

space, or even the same machine, the event structures found

in today’s models and languages need to be updated to sup-

port events that are distributed over a set of devices. Eug-

ster, Baehni and Damm showed one way of doing this by so

called obvents. Obvents are created as an extension to Java

, to be used in distributed environments [9].

However, for DUIs extension of the current event struc-

tures beyond distributed systems event structures will be

needed as well. DUIs event structures must not only as-

sociate actions with distributed components but also han-

dle the fact that a widget itself may be located on multiple

platforms. Events may also have to be context aware for

an environment where several users and applications work

concurrently.

6.5. Layout Managers

Layout managers are designed to handle the typesetting

of components in GUIs; automating typographical rule sets

to automatically provide a suitable organization of a GUI.

For DUIs many of the premises of layout managers change,

in particular when components are spread over multiple I/O

devices. New means of relative positioning appear and de-

velopers must be able to specify how components are dis-

tributed, for instance, to make sure that unwanted distribu-

tion is prohibited. For instance, a button may have to be

presented together with the choice box it is related to.

Layout managers can incorporate decision rules for the

distribution of components and potentially be a placement

for formal advances in DUI construction. Layout managers

may also be resources for graphical tools but not be used

directly by users. Judging from work on layout managers,

it is a complex issue that requires much work. Finding a

simple layout manager rule set for DUIs is a difficult task.

7. Conclusion

Distributed user-interfaces allow software developers to

prepare for changing I/O configurations in interaction land-

scapes. Developers of mobile applications can modify looks

and behavior according to the devices setting a user is cur-

rently using. This provides the necessary means for devel-

oping mobile applications that provide a high degree of in-

teraction richness using resources in the environment. In

order to build and maintain these applications in a sound

and effective it is imperative that our programming model

are designed to handle this; UI construction are among the

most resource-expensive programming activities.

In the process of developing a paper interface for a exist-

ing health care system we uncovered programming model

issues needed to create sound development processes and

tools for DUIs:

• Openness, allowing for the addition of new configura-

tions of devices.

• Disappearing I/O, providing messaging of the diss-

aperance of I/O devices.

• Widget must be flexible with regards to appearance and

directly support graceful degradation

• Events must handle widgets that them selves can be

spread over many devices.

• Layout managers, formalizing the distribution of com-

ponents across I/O components and allowing users to

describe requirements of such a distribution.

A effective way of construction and maintain user inter-

faces in the past have been good tools. This will also be

the case for distributed user-interfaces, perhaps even more

important since the complexity increases.

References

[1] G. Abowd. Software engineering and programming lan-

guage considerations for ubiquitous computing. ACM Com-

puting Surveys (CSUR), 28(4es):190, 1996.

[2] Anoto Group. Anoto. World Wide Web, http://www.
anoto.com, 2002.

[3] R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville.

An architecture for tailoring cooperative multi-user dis-

plays. In Proceedings of the ACM Conference on Computer

Supported Cooperative Work (CSCW’92), pages 187–194,

Toronto, Ontario, 1992. ACM Press.

[4] E. Berglund and M. Bång. Requirements for distributed

user-interface in ubiquitous computing networks. In

MUM2002, Mobile and Ubiquitous MultiMedia connfer-

ence, 2002.

[5] S. Brewster. Overcoming the lack of screen space on mobile

computers. Personal and Ubiquitous Computing, 6(3):188–

205, 2002.

[6] M. Bång, E. Berglund, and A. Larsson. A paper-based ubiq-

uitous computing heathcare environment. In Fourth Inter-

national Conference on Ubiquitous Computing (UbiComp

2002), 2002.

[7] M. Bång, A. Hagdahl, H. Eriksson, and T. Timpka. Group-

ware for case management and inter-organizational collabo-

ration: The virtual rehabilitation team. In World Congress

on Medical Informatics (Medinfo 2001), 2001.

[8] A. J. Demers. Research issues in ubiquitous computing. In

Proceedings of the thirteenth annual ACM symposium on

Principles of distributed computing, pages 2–8. ACM Press,

1994.

[9] P. T. Eugster, R. Guerraoui, and C. H. Damm. On objects

and events. In Proceedings of the OOPSLA ’01 conference

on Object Oriented Programming Systems Languages and

Applications, pages 254–269. ACM Press, 2001.

[10] G. Forman and J. Zahorjan. The challenges of mobile com-

puting. Computer, pages 38–47, April 1994.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional Computing Series. Addison-

Wesley, 1994.

[12] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.

Project aura: Towards distraction-free pervasive computing.

IEEE Pervasive Computing, special issue on ”Integrated

Pervasive Computing Environments”, pages 22–31, April-

June 2002.

[13] J. Grundy and B. Yang. An environment for developing

adaptive, multi-device user interfaces. In Proceedings of the

Fourth Australian user interface conference on User inter-

faces 2003, pages 47–56. Australian Computer Society, Inc.,

2003.

[14] H. Ishii and B. Ullmer. Tangible bits: Towards seamless

interfaces between people, bits and atoms. In Proceedings

of the SIGCHI conference on Human factors in computing

systems, pages 234–241, 1997.

[15] I. Marsic. An architecture for heterogeneous groupware ap-

plications. In Proceedings of the 23rd International Confer-

ence on Software Engineering, pages 475–484. IEEE Com-

puter Society Press, 2001.

[16] D. R. McGee and P. R. Cohen. Creating tangible interfaces

by augmenting physical objects with multimodal language.

In Proceedings of the 6th international conference on Intel-

ligent user interfaces, pages 113–119. ACM Press, 2001.

[17] M. McIlhagga, A. Light, and I. Wakeman. Towards a design

methodology for adaptive applications. In Mobile Comput-

ing and Networking, pages 133–144, 1998.

[18] B. A. Myers. User interface software tools. ACM Transac-

tions on Computer-Human Interaction, 2(1):64–103, 1995.

[19] B. A. Myers. Using handhelds and pcs together. Communi-

cations of the ACM, 44(11):34–41, 2001.

[20] M. Satyanarayanan. Pervasive computing: Vision and chal-

lenges. IEEE Personal Communications, pages 10–17, Aug.

2001.

[21] J. Sousa and D. Garlan. Aura: an architectural framework

for user mobility in ubiquitous computing environments. In

IEEE/IFIP Conference on Software Architecture, 2002.

[22] J. Stewart, B. B. Bederson, and A. Druin. Single display

groupware: A model for co-present collaboration. In Pro-

ceedings of the SIGCHI conference on Human factors in

computing systems, pages 286–293, 1999.

[23] L. A. Suchman. Plans and situated actions: the problem

of human-machine communication. Cambridge University

Press, 1987.

[24] P. Tandler. Software infrastructure for ubiquitous computing

environments: Supporting synchronous collaboration with

heterogeneous devices. In Proceedings of UbiComp 2001:

Ubiquitous Computing, number 2201 in LNCS, pages 96–

115. Springer Verlag, Heidelberg, 2001.

[25] The Pebbles Project. The pittsburg pda project. http://www-

2.cs.cmu.edu/ pebbles/.

[26] A. Uotila. A user interface toolkit for a small screen de-

vice. Master’s thesis, Unviversity of Tampere, Department

of Computer and Information Science, February 2000.

[27] R. Want, K. P. Fishkin, A. Gujar, and B. L. Harrison. Bridg-

ing physical and virtual worlds with electronic tags. In CHI,

pages 370–377, 1999.

[28] M. Weiser. The computer for the 21st centuary. Scientific

American, pages 94–104, September 1991.

Requirements Scenarios Based System-Testing

Ridha Khedri
Department of Computing and Software

McMaster University
1280 Main Street West, Hamilton, Ontario, Canada

khedri@mcmaster.ca

Imen Bourguiba
École Nationale des Sciences de l’Informatique

Université de la Manouba
Manouba, Tunisia

bourguiba@cas.mcmaster.ca

Abstract

System and acceptance testing, despite their importance,
are probably the least understood specification-based test-
ing phases. Testing from specifications offers testers and
users confidence in the intended functionality of the system.

In this paper, we give a systematic, methodical, and for-
mal approach to use scenarios in system and acceptance
testing. Based on the environment-system model, we trans-
form textual scenarios into requirements that are not only
represented in a testable format but also contain testing
steps (the relation of the environment) as well as the ex-
pected behaviour of the system (the relation of the system).
We also unveil, in formal terms, the relationship between
scenarios and testing. We use tabular expressions to rep-
resent the knowledge obtained from the formalisation of in-
formal scenarios.

Keywords: Requirements engineering, software test-
ing, requirements knowledge representation, specification-
based testing, relational methods, formal methods.

1 Introduction

Requirements specification is the first level of specifica-
tion reflecting users’ expectations and needs. If it is done
properly, it is also the closest specification to the users’ in-
tentions. Divergence from the users’ requirements may be
introduced into specifications in any phase along the devel-
opment process down to the detailed design specification.
Therefore, system and acceptance testing, which test the
software against its requirements specification, play a vital

role in testing.
One of the most important purposes of testing is to in-

crease the confidence of the user/client/stakeholder in a
software system and to show, by demonstrating the sys-
tem on chosen test cases, that the system behaves as it
is intended. Testing from specifications offers testers and
users confidence in the intended functionality of the sys-
tem. Specification-based testing is currently immature. The
scarcity of practical techniques and automated tools makes
it tempting to address.

System and acceptance testing, despite their importance,
are probably the least understood specification-based test-
ing phases. In [2](1981), Celentano et al. wrote that there
are no clear guidelines which precisely identify what these
phases are expected to accomplish, how they can be done
methodically, and how their effectiveness can be evaluated.
Today, more than two decades later, there is no significant
progress related to this issue. A clear-defined criteria that
can guide testers through system and acceptance testing is
greatly needed.

The term testing is often used in a much broader sense
in the literature [12], by which it includes verification of
specifications, static inspection and walk-through of code,
and symbolic execution. We use it in a rather narrow, but
most acknowledged sense. Software testing is the process
of executing a system on test cases in order to determine
whether the results it produces are correct as specified.

1.1 Scenarios and their role in testing

In system requirements and human computer interaction,
the use of examples, scenes, textual descriptions and proto-
types have attracted considerable attention [17]. All these

approaches can be called use cases or scenarios based ap-
proaches. Use cases or scenarios are, therefore, partial de-
scriptions of user-system interactions. Scenarios enforce
interdisciplinary learning, reduce complexity, and facilitate
partial agreement. They describe a system from a user’s
perspective and focus on user-system interaction. The re-
quirements analyst divides system requirements into several
small scenarios, and captures one scenario at a time.

Scenarios can be used to:

1. Describe external system behaviour directly from the
user’s point of view. This supports early and contin-
ued user’s involvement and interaction during require-
ments analysis [9].

2. Provide a decomposition of a system into functions
from a user’s perspective and that each such function
can be treated separately. This is an application of the
principle of separation of concerns.

3. Help validate the requirements specification: Decom-
posing the requirements into scenarios allows short
feedback cycles between users and software engineers
[7, 9].

4. Provide guidelines to build a cost-effective prototype
[9].

5. Help improve modifiability [7]. Using scenarios leads
to a decomposition of the system from a user’s per-
spective. This makes it easy to deal with requirements
evolution, thus improving modifiability.

Use cases or scenarios have become a powerful means
for capturing requirements for software applications. Sce-
narios have been used both in research and industry [1, 17,
22]. The large variety of scenario based approaches empha-
sise a more user-oriented perspective in developing com-
puter systems. Scenarios use also pervades industrial prac-
tise [22]. The CREWS research group has visited twelve
projects in Germany and Switzerland that used scenarios in
their software engineering process in one way or another
[1]. The survey revealed that scenarios are flexible and
broadly applicable approach. In [15, page 174], the au-
thors write “Today, it is difficult to find Fortune 1000 IT
departments where use cases are not used in some form or
fashion.”

In the literature, many authors advocate the use of sce-
narios for system and acceptance testing. The arguments
given are articulated around the fact that scenarios describe
how the users will be using the system. However, as far as
we know, no author provided a clear technique to make a
systematic and formal use of scenarios in testing. Indeed,
in [9], the authors indicate, without exhibiting a system-
atic approach, that scenarios provide acceptance criteria for
requirements-based testing. Ryser and Glinz [20] indicate

that the interaction sequences captured in a scenario are an
ideal base for generating system test cases. In this paper,
we give a systematic, methodical, and formal approach to
use scenarios in system and acceptance testing. We also
unveil, in formal terms, the relationship between scenarios
and testing: the relation of the environment of the formal
scenario is exactly the specification of the actions that the
tester should perform to test the system against the consid-
ered requirements scenario.

1.2 Problem statement

Today, system and acceptance testing are performed in-
formally without a systematic test-cases generation from
system’s requirements. The common practice today is to re-
quest the tester to read the requirements and ”think” about
some test cases. The testing activity is a very important ac-
tivity and should not depend on the tester’s background and
expertise only. A more systematic and methodical approach
to system and acceptance testing should be determined.

As indicated above, scenarios are partial description of
the user-system interactions elicited directly from the user.
By providing the scenarios, the user is indirectly providing
the way the interactions with the system are intended to be.
In this paper, we attempt to answer the following questions:

� How can the system be tested against the scenarios
without going back to the users? The users already
provided the requirements analyst with a description
of their use of the system. There is no need to re-
quest them to use again their knowledge of the system
in order to test it. For non-critical systems and when
resources are limited, a testing budget is worthwhile
being used to increase our confidence in the system’s
functionalities which the client is certainly going to use
rather than in finding rare errors that might never be
triggered when the system is actually used as specified
by the scenarios.

� What would be the best way to use scenarios for test-
ing?

� How to represent the knowledge obtained from a sce-
narios such that the system testing, based on that
knowledge, can be automated?

In the next section, we present a short review of the litera-
ture as well as our solution to the problem. In Section 3, we
give and discuss an example to illustrate our main points.
In Section 4, we discuss and summarise the features of our
approach, and we point to some future work.

2 Solutions

In the literature many pointed to the need for using sce-
narios for requirements-based testing [9, 20]. For instance,
Ryser et al. [19, 20], motivated by the need for testing meth-
ods that support existing development methods, they pro-
pose a method for the derivation of test-cases for system
testing purpose. The proposed method uses narrative sce-
narios formalised in statecharts [8].

Since tabular expressions are suitable for automated test-
cases generation, we advocate their use to represent the
knowledge obtained from the scenarios. We elaborate on
this point in Section 4.

When we examine a textual scenario, we find that it re-
ports on two kinds of actions: actions possibly performed
by the environment (or user) and actions expected from the
system as reaction to the environment (or vice versa). When
the scenario is formalised, these two kinds of actions will
be present in the formal specification of the scenario. In
the Environment-System model [3], the scenario’s specifi-
cation is split into two disjoint parts: the part that concerns
the system and the part that concerns its environment. It is
the specification of the system that will be eventually built.
Therefore, this part must be consistent with the other sys-
tem parts which are derived from other scenarios. For more
details on how a scenario is formalised and how to work out
the specification of the system from the whole scenario’s
specification, we give in Section 3 an example (without go-
ing deeply into the details) and we refer the reader to [3, 5]
where illustrative examples can be found as well as the
mathematical model and its basis.

When a formal relational method is used [3, 5], the sce-
narios are formalised into formal scenarios. In this paper,
a formal scenario, as introduced in [3], is a

�
-tuple:1 the

space � of the scenario, a relation � � � � 	 � describ-
ing the behaviour of the environment as described by the
informal scenario, and lastly a relation � � � � 	 � of the
system as described by the informal scenario. The relation

� on � such that � � � � � � � is said to be the relation of
the scenario. Also, � � and � � should satisfy � � � � � � � .
For more details about formal scenarios, we refer the reader
to [3, 5] where they are exhaustively introduced.

2.1 Tabular expressions as knowledge representa-
tion means

There are several ways to represent a single scenario. Ja-
cobson [10] uses a mostly informal text notation. Rubin
and Goldberg [18] introduce a tabular notation of scenario
scripts. Hsia et al. [9] show that a scenario can be ade-
quately represented by a regular language or, equivalently,

1 � � � � � � ! � and " denote respectively subset, Cartesian product,
union, intersection, and empty set.

%& (* + , . (*/ , . 1 . 3 4 5 7 1 8 3 9 5 7 ; 3 4 > 9 5
? @

A B D F G A B H F G B D J

? K
L & M L N 8 & L 8 P B 8

Q B N & B L 8 & B 8 R T U W
L D M L N 8 & B 8

Q B N & B L N 8 & L 8
Q B N & B X Y Z [W

L H M L N 8 & L 8
Q B N & B L] L N H MQ B N] B D M L N 8 & L 8 P B 8

Q B N & B
_

Figure 1. Predicate expression table with its
interpretation `

by a finite state automation. Glinz [6] advocates the use
of statecharts [8]. Desharnais et al. [3] used relations and
relational transition systems to represent formal scenarios.
Khedri [13] and then Desharnais et al. [5] used tabular ex-
pressions (also known as SCR –Software Cost Reduction–
tables) to represent and verify formal scenarios.

Each relation of the formal scenario is represented under
a tabular format. Parnas in [16] gives the definitions of ten
kinds of tables. The semantics of these kind of tables and
more are given in [4, 11]. In this paper, to illustrate the
use of tables, we use one class of table, called predicate
expression table (also known as normal relation table).

The table in Figure 1 is an example of a two-dimensional
predicate expression table. It has two headers, a c and a e ,
and a grid f . The entries of the headers are predicates that
do not contain primed variables. The entries of the grid may
contain both primed and unprimed variables. In the formu-
lae that we use to specify a software system’s requirements,
the variables can occur primed or unprimed. Primed vari-
ables, like g i in the relation ` on the next page, are used to
denote the values of the same components of the state after
the operation (the ending state).

All entries of the table in Figure 1 can be interpreted as
relations. For example, the third cell in the header a e can
be interpreted as:

a e k � l � m n n g o p r o n g i o p i r r v p x z { o

and the cell in the first row and the second column in the
grid can be interpreted as:

f k | o ~ l � m n n g o p r o n g i o p i r r v g e � p e { �

The entries of a e play a role of pre-restriction in the inter-
pretation ` . We put the interpretation ` on Figure 1 (to
save space, we omit “ n n g o p r o n g i o p i r r v in their definition
expansions).

� � � � � � 	 � �
 � � � � � � � � � � �
 � �
 � �
 �
� � � � 	 � �
 	 � � � � � �
 � �� � � � 	 �
 � � �
� � � � 	 � �
 � � � � � � � �
 � �
 � �
 �
� � � � 	 � �
 	 � � � � � � � � � �
 � �
 �
� � � 	 	 � �
 � � � � � � � � � � �
 � �
 �
� � � 	 	 � �
 	 � � � � � � � 	 	 �
 � �
 � 	 �
� � � 	 	 �
 � � � � � � � � � �
 � �
 � �
 � �

3 Illustrative example

In this section, we consider a simplified scenario “Open
a bank account” from a banking system. Its formal speci-
fication as a formal scenario is composed of the scenario’s
space, relation of the environment, and relation of the sys-
tem. Due to space constraint, we omit the scenario space.

Open a bank account: The system is in the
initial state of B Serv (Bank Representative Ser-
vice) menu, prompting open or close an account
options. The client comes in and asks to open an
account. The bank representative selects ”open
an account”. The system changes to Open
menu and a new account number is gener-
ated. The system then prompts for identifica-
tion of the client. The representative may choose
to go back, or enter the ID. If the representative
chooses to go back, the system returns to the
initial state of B Serv. If the representative
enters the ID, the system displays the new
account number, adds the new account num-
ber into the set of accounts managed by the
bank, registers which ID owns the account,
and who is the new account owner. The sys-
tem also adds the ID to the set of IDs it knows
if it is not already in it. The representative finally
chooses to go back. The system returns to the
initial to R Serv menu.

A scenario is a partial description of the environment
(user)/system interactions. It describes both the behaviour
of the system to be built, as well as the behaviour of its
environment. For instance, in the above scenario, the em-
phasised typeset text represents the environment behaviour.
The text typeset in sans serif family font gives the expected
behaviour of the system.

In general, and in all engineering fields, testing is placing
the considered artifact in a controlled environment and to
study its behaviour in that environment. For a software sys-
tem, we find out that, when we are given the requirements
under scenarios format, we have both a specification of the
system as well as a specification of its environment. The

list of the tasks that the tester should perform are specified
by the part of the scenario that concerns the environment.
In the system-environment model that we use, the relation
of the environment is the specification of the expected be-
haviour of the user. Therefore, it should be the specification
of the expected behaviour of the tester. The relation of the
system is the expected reaction of the system to the tester’s
actions. There is no need to let the client test the system.
The client already indicated how the system will be used.

Table of Figure 2 is obtained by formalising the part of

the scenario that describes the actions of the environment

of the banking system as described by the scenario “Open

a bank account”. It also gives the behaviour of the tester

in order to test the system against the considered scenario.

The cells � � � � ! � � � � ! and # � � ! �
of this table can be read

as follows:

Menu � B Serv
�

Output � Open,close?
�

InputBuffer’ � @Open

The above predicate specifies that when the system is in
menu B Serv and when the output prompts open or close
account options, then the tester should enter the command
@Open (a request to open an account). The predicates in
the headers of the table of Figure 2 indicate the precondi-
tion to the tester’s actions. The predicates in the main grid
indicate the actions the tester is requested to perform. For
instance, the predicate contained in � � � �

and � � � �
(i.e.,

Menu � B Serv
�

Output � Open,close?) gives the pre-
condition to the the action InputBuffer’ � @Open of the
tester.

Table of Figure 3 gives the reaction of the system to the

environment (tester) actions. For instance, to the action of

the tester described in # � � ! �
of the table of Figure 2, the

system reacts by the actions described by the predicate of

� � ! �
of the Table of Figure 3. If the system does not

perform what is specified in # � � ! �
of the Table of Figure 3,

then the tester concludes that the test-case failed. In other

terms, the system fails the test-case if the the tester gets a

reaction of the system that satisfies the following predicate

(which is equivalent to � # � � ! �
of the Table of Figure 3):2

Menu’ �� Open
�

Output’ �� Id?
�

NewAcc’ �� New()
�

InputBuffer’ �� �
� � OnlyChge � � ! � ! � � ! � �

where OnlyChge � � ! � ! � � ! � � is a predicate which indicates
that every variable � from the scenario’ space and other than

� ! � ! � � ! and � does not change (i.e., � � � �).

2 � ' ! ' and " are Boolean operators and denote respectively or, and,
and the negation. # denotes the empty string.

� �� � � � 	 � � �� 	 � � � � � � � � � � � � � � � � � � �

�
InputBuffer � ! #

Menu � B Serv Menu � Open
Menu $� B Serv# Menu $� Open

� &
Output� Open,close?

InputBuffer’� @Open
false false

Output� Id?

InputBuffer’ ') +,
InputBuffer’� @B Serv

InputBuffer’� @B Serv
false

Output� NewAcc
false

InputBuffer’� @B Serv
false

-

Figure 2. Scenario’s relation of the environ-
ment (Specification of the tester’s behaviour)

To test the system against the scenario “Open a bank ac-
count”, the tester needs to perform the actions given in the
table of Figure 2. Hence, we have a systematic way for test-
ing against formal scenarios.

By formalising the scenario, we obtain requirements that
are not only represented in a testable format but also contain
the test steps (the relation of the environment) as well as
the expected behaviour of the system (the relation of the
system).

4 Discussion and future work

The formalisation model (i.e., environment-system
model) used in the previous example demonstrated its suit-
ability for automated verification of scenarios for inconsis-
tency and for completeness [5, 14].

The relation of the environment, that the users of the
environment-system model used to throw away and not
make any use of it, is exactly a detailed testing specifica-
tion. The use of tabular representation of relations to repre-
sent the knowledge obtained from the informal scenario are
found to be very helpful for the automation of the require-
ments verification as well as for test cases generation.

It is not always convenient to test against individual sce-
narios. It is very often suitable to integrate the scenarios of
a viewpoint to constitute a more complete view of the sys-
tem and its environment. For that, we need to integrate all
the relations of the environment of the viewpoint’s scenar-
ios to obtain a relation of the environment from the view-
point’s perspective. The integration of the relations of the
environment can be performed automatically using the tool
SCENATOR [14].

According to the source of information used to derive
test cases, testing techniques may be classified into the fol-
lowing classes:

1. Black-box testing, also called functional or
specification-based testing. In black-box testing,

. 01 2 4 5 6 7 2 89 6 7 : 7 ; < = > : ? ; @ = > B ; < C @ =
D F

Menu 1 B Serv Menu 1 Open
Menu G1 B ServH Menu G1 Open

D I

Output1 Open,close?

< J K L
1 @Open

Menu’ 1 OpenH Output’ 1 Id?H
NewAcc’ 1 New()H
InputBuffer’ 1 MH
OnlyChge N O C P C J Q C < R

false false

< J K L
1 @B Serv

false false false

< J K L
S T U false false false

Output1 Id?

< J K L
1 @Open

false false false

< J K L
1 @B Serv

false

Menu’ 1 B ServH
Output’ 1 Open,close?H
InputBuffer’ 1 MH
OnlyChge N O C P C < R

false

< J K L
S T U false

Output’ 1 NewAccH
AccountId’ 1 AccountIdV W
NewAcc XY InputBuffer ZH Accounts’ 1 AccountsV W NewAcc ZH Ids’ 1 Ids V

W
InputBuffer ZH

InputBuffer’ 1 MH
OnlyChge [\] ^ _ _ ` a] ^ _ _] b a c] ` d

false

Output1 NewAcc

< J K L
1 @Open

false false false

< J K L
1 @B Serv

false

Menu’ 1 B ServH
Output’ 1 Open,close?H InputBuffer’ 1 MH
OnlyChge N O C P C < R

false

< J K L
S T U false false false

e

Figure 3. Scenario’s relation of the system
(Specification of the system’s expected be-
haviour)

test cases are derived from the specification of the
software, i.e., we do not consider implementation
details.

2. White-box testing, also called structural or program-
based testing. In this approach, we do consider the in-
ternal logical structure of the software in the derivation
of test cases.

The classification of test techniques according to the cri-
terion used to measure the adequacy of a test set leads to
three main categories: coverage-based (e.g., control-flow
coverage, data-flow coverage, coverage-based testing of re-
quirements specifications, path-coverage, node-coverage,
condition-coverage, etc.), fault-based, and error-based [21].
The technique proposed in this paper might be seen as a
Black-box system testing technique since we do not assume
any knowledge about the system’s implementation.

Regrouping formal scenarios to obtain a testing work as-
signment is a task that needs further investigation. Our fu-
ture work aims at establishing criteria for combining sce-
narios such that the obtained relation of the environment of
a more global scenario is a more complete test specification.
We need to investigate the conditions under which we can
infer from a successful testing of a system against individ-
ual or groups of scenarios that the system is appropriately
tested.

References

[1] M. Arnold, M. Erdmann, M. Ginz, P. Haumer, R. Knoll,
B. Paech, K. Pohl, J. Ryser, R. Studer, and K. Weiden-
haupt. Survey on the scenario use in twelve selected in-
dustrial projects. Technical report, G.I. Working Group on
Scenario-based Requirements Engineering, 1999.

[2] A. Celentano and C. G. F. Liguori. A systematic approach to
system and acceptance testing. In Computer Program Test-
ing, pages 279–285. North-Holland Publishing, 1981.

[3] J. Desharnais, M. Frappier, R. Khedri, and A. Mili. Integra-
tion of sequential scenarios. IEEE Transactions on Software
Engineering, 24(9):695–708, September 1998.

[4] J. Desharnais, R. Khedri, and A. Mili. Interpretation of Tab-
ular Expressions Using Arrays of Relations, chapter 1, pages
3–14. Studies in Fuzziness and Soft Computing. Springer-
Physica Verlag, 2001. Edited by Ewa Orłowska and Andrzej
Szałas.

[5] J. Desharnais, R. Khedri, and A. Mili. Representation, val-
idation and integration of scenarios using tabular expres-
sions. Formal Methods in System Design, 2003. Accepted
for publication (Final version submitted on July 02, 2002).

[6] M. Glinz. An integrated formal model of scenarios based on
statecharts. In Fifth European Software Engineering Con-
ference, volume 989 of Lecture Notes in Computer Science,
pages 254–271. Springer, 1995.

[7] M. Glinz. Improving the quality of requirements with sce-
narios. In Proceedings of the Second World Congress for
Software Quality (2WCSQ), September 2000.

[8] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. Comput. Programming, 8:231–274, 1987.

[9] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and
C. Chen. Formal approach to scenario analysis. IEEE Soft-
ware, 11(2):33–41, March 1994.

[10] I. Jacobson. The use case construct in object-oriented soft-
ware engineering. In J. M. Carroll, editor, Scenario-Based
Design: Envisioning Work and Technology in System Devel-
opment, pages 309–336. John Wiley and Sons, 1995.

[11] R. Janicki and R. Khedri. On a formal semantics of tabu-
lar expressions. Science of Computer Programming, 39(1-
2):189–213, March 2001.

[12] C. Kaner, J. Falk, and H. Q. Nguyen. Testing Computer
Software. Van Nostrand Reinhold, 1993.

[13] R. Khedri. Sequential scenarios verification and integration
using tabular expressions. CRL Report 374, Communica-
tions Research Laboratory, Faculty of Engineering, McMas-
ter University, Hamilton, Ontario, Canada, June 1999.

[14] R. Khedri, R. Wu, and B. Sanga. SCENATOR: a pro-
totype tool for requirements inconsistency detection. In
F. Wang and I. Lee, editors, Proceedings of the 1st Interna-
tional Workshop on Automated Technology for Verification
and Analysis, pages 75–86, Taiwan, Republic of China, De-
cember 10–13 2003. National Taiwan University.

[15] D. Kulak and E. Guiney. Use Cases: Requirements in Con-
text. Addison-Wesley, second edition, 2004.

[16] D. L. Parnas. Tabular representation of relations. CRL
Report 260, Communications Research Laboratory, Faculty
of Engineering, McMaster University, Hamilton, Ontario,
Canada, October 1992.

[17] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sut-
cliffe, N. A. M. Maiden, M. Jarke, P. Haumer, K. Pohl,
E. Dubois, and P. Heymans. A proposal for scenario classifi-
cation framework. Requirements Engineering Journal, 3(1),
1998. Also available as CREWS Report Series No. 96–01.

[18] K. S. Rubin and A. Goldberg. Object behavior analysis.
Comm. ACM, 35(9):48–62, September 1992.

[19] J. Ryser and M. Glinz. SCENT: A method employing sce-
narios to systematically derive test cases for system test.
Technical Report 2000/03, Institut für Informatik, Univer-
sität Zúrich, 2000.

[20] J. Ryser and M. Glinz. Using dependency charts to
improvescenario-based testing. In Proceedings of the 17th
International Conference on Testing Computer Software
(TCS2000). Washington D.C., June 2000.

[21] H. van Vliet. Software Engineering: Principles and Prac-
tice. Wiley, second edition, 2000.

[22] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Scenar-
ios in system development current practice. IEEE Software,
pages 34–45, March/April 1998.

Reuse of UML Class Diagrams Using Case-Based Composition

Paulo Gomes, Francisco C. Pereira, Paulo Carreiro, Paulo Paiva, Nuno Seco,
José L. Ferreira and Carlos Bento

CISUC - Centro de Informática e Sistemas da Universidade de Coimbra
Departamento de Engenharia Informática - Polo II

Universidade de Coimbra - Portugal
pgomes@dei.uc.pt

Abstract. In this paper, we present an approach to soft-
ware design reuse based on Case-Based Composition. We
show how this approach is integrated in an intelligent CASE
tool being developed at the AI Lab of Coimbra. Two com-
position strategies are presented, along with experimental
results.

1. Motivations

The complexity of software systems has increased along
the past decades. Nowadays user interfaces are more so-
phisticated, data structures and system functionalities are
more complex. Software development companies have to
build new systems in less time and with limited resources.
One possible solution to this situation is the reuse of soft-
ware [4, 9]. There are several types of knowledge involved
in the software development process that can be reused.
System specifications, software designs, and code, are only
a few. Code reuse has been the most common type of reuse,
but it is not the most efficient. Decisions made at the design
level have a much stronger influence in the system develop-
ment than decisions made at the implementation level. This
is one reason why we think that design reuse can be a so-
lution for developing software faster and better. Designers
need design reuse tools capable of helping them in this job.

Software design [3] is a cognitive task at an higher level
of abstraction than code reuse. It deals with abstract con-
cepts and it needs powerful reasoning capabilities. A CASE
tool capable of providing assistance to the software designer
should have several characteristics. It must be capable of
understanding the user language, which is almost at the
level of natural language. It must provide cognitive tools
capable of complex reasoning abilities. It must learn new
designs in order to reuse them later and to keep them up-
dated. These are only some of the issues that a software
design reuse system must address.

Software designers tend to reuse parts (or ideas) from
different previous designs, integrating them into a coher-
ent design. Most of the times the generated design is novel
and bears characteristics that do not appear in the designs
that originated it. From the cognitive point of view, design
composition can be regarded as a cognitive process that can
generate new designs. This process is a natural way of syn-
thesizing new designs, and the quality of the output greatly
depends on the designers experience. The more experience,
the easier is for the designer to reuse previous designs, and
to reuse them in a better way. We are interested in these two
aspects of reuse: design composition and experience. This
paper describes how we have modelled these aspects into a
CASE tool.

2. Our Approach

Case-based reasoning (CBR) [7, 8] is a form of reason-
ing that uses experience in the form of cases to solve new
problems. It enables the reuse of previously stored cases,
seen as experiences, in new situations, which is the same
cognitive process that designers often use in their profes-
sion. The main entity in CBR is a case, which represents a
specific situation. In the design domain it can represent an
artifact (a software design for example). Cases are stored
and indexed in a case library. Usually associated with this
case library there is an indexing structure, enabling a more
efficient retrieval of cases from memory.

CBR comprises four main phases [1]: retrieve, reuse, re-
vise and retain. The first phase is responsible for the search
and retrieval of cases from the case library. Commonly this
is done using an indexing structure that identifies the rele-
vant cases for the target problem. Then, by applying a sim-
ilarity metric, the retrieved cases are ranked. In the reuse
phase, the CBR system modifies one or more retrieved cases
adapting them to the target problem situation. Revising the
solutions generated by the previous phase is the next step.

UML EditorKnowledge Base Manager

Knowledge Base Administrator Software Designer

Knowledge Base

Case Library

Case Indexes

WordNet

Data Type
Taxonomy

CBR Engine

Retrieval

Design Composition

Analogy

Verification Evaluation

Learning

Figure 1. REBUILDER architecture.

Most of the times, this step is performed using domain spe-
cific heuristics or domain models. The last phase is the re-
taining (or learning) of the new generated solution in the
form of a new case, thus closing the CBR cycle. This last
phase allows the system to evolve in time, and to improve
its performance.

The approach that we propose for an intelligent CASE
tool is based on two key ideas: CBR as the reasoning frame-
work for intelligent support, and the use of a general ontol-
ogy as the conceptual basis for the knowledge used by CBR.
Having these two issues in mind, we developed a system
named REBUILDER that implements our approach.

REBUILDER is a Client-Server tool comprising two
types of users: system administrator - responsible for the
system’s maintenance, and software engineer - uses the plat-
form as a CASE tool. We selected the Unified Modelling
Language (UML) [10] as the design language of our sys-
tem. REBUILDER has four main parts (see figure 1): UML
Editor, Knowledge Base (KB) that centralizes and stores all
the system’s knowledge, KB Manager that provides the ad-
ministrator a way to maintain the KB, and CBR Engine that
performs all the reasoning functions available in the UML
Editor and the KB Manager. As for the general ontology we
use WordNet, which is integrated in the KB.

The CBR engine performs all the inference work in RE-
BUILDER. It comprises five sub modules:

Retrieval The retrieval module searches the case library
for designs or design objects similar to the query di-
agram.

Analogy The analogy module maps designs from the case
library, to the query design, resulting in a new diagram.

Design Composition The composition module can be used
to adapt a past design (or part of it) to the query design
using design composition.

School

+ name : String

+ address : String

+ phone : int

+ addDepartment(Dep: SchoolDepartment) : void

SchoolDepartment

+ name : String

+ addTeacher(prof: Teacher) : void

+ removeTeacher(name: String) : int

+ getTeacher(name: String) : Teacher

+ addStudent(name: String) : int

+ removeStudent(name: String) : int

+ getStudent(name: String) : Student

Student

+ name : String

+ studentID : int

Teacher

+ name : String

1..*

1..*

1..*

Figure 2. An example of a class diagram of an
educational case.

Verification Evaluation The verification module checks
the current design for inconsistencies, and evaluates
designs.

Learning The learning module acquires new knowledge
from the user interaction, or from the system reason-
ing.

This paper focus on the composition module.
The KB comprises a case library, the WordNet ontol-

ogy, the case indexes and the data type taxonomy. In RE-
BUILDER a case describes a software design in UML,
through the use of Class Diagrams (figure 2 presents an ex-
ample).

WordNet is used in REBUILDER as a common sense
ontology. It uses a differential theory where concept mean-
ings are represented by symbols that enable a theorist to
distinguish among them. Symbols are words, and concept
meanings are named synsets. A synset is a concept repre-
sented by one or more words. WordNet comprises a list
of word synsets, and different semantic relations between
synsets. The semantic relations between synsets, can be is-
a relations (rat is-a mouse), part-of relations (door part-of
house), and other relations. We use the word synset list
and four semantic relation: is-a, part-of, substance-of, and
member-of. Each diagram object has a synset associated,
which is used for reasoning purposes.

Case indexes provide a way to access the relevant case
parts for retrieval without having to read all the case files
from disk. Each object in a case is used as an index. RE-
BUILDER uses the associated synset of each object to in-
dex the case in WordNet. This way, REBUILDER can re-

Institution
Educational
Institution

SchoolUniversity

School
Department

Teacher
Student

Package
School
[Case1]

Class
School
[Case1]

Class
Student
[Case1]

Class
Teacher
[Case1]

Class School
Department

[Case1]

member-of
part-of

member-of

indexindexindexindexindex

is-a

is-ais-a

is-a

Figure 3. Part of the WordNet structure with
object indexing from the example in figure 2.

CollegeUniversity Department
1..* 1..*

Figure 4. The class diagram of problem P1.

trieve a complete case, using the case root package, or it can
retrieve only a subset of case objects, using the objects’ in-
dexes. As an example figure 3 shows the indexing of objects
in class diagram of figure 2. Notice that School synset in-
dexes two objects: the package of the class diagram, which
corresponds to a school system; and the class representing
the School object.

The data type taxonomy is a hierarchy of data types used
in REBUILDER. Data types are used in the definition of
attributes and methods. The data taxonomy is used to com-
pute the conceptual distance between two data types.

The next section presents our approach to the reuse of
UML diagrams using Case-Based Composition. Section 4
presents an example of design generation using this pro-
cess. Section 5 describes some experimental results ob-
tained from user interaction. Section 6 presents related
work and some final conclusions.

3. Composition Module

The query used in the composition module is an UML
class diagram, which is usually a small class diagram in its
early stage of development (see figure 4). The goal of the
composition module is to generate new diagrams that have
the query objects. Generation of a new UML design using
case-based composition involves two main steps: retrieving
cases from the case library and using the retrieved cases
(or parts of them) to build new UML diagrams. The two
following sub sections describe these phases.

3.1. Retrieval of Diagrams

The retrieval process comprises two phases. In the first
phase it uses the context synsets of the query diagram to get
N objects from the case library, where N is the number of
objects to be retrieved (N is user defined). This search is
performed using the WordNet semantic relations that work
like a conceptual graph, and case indexes that relate the case
objects with WordNet synsets. The second phase ranks the
set of retrieved objects using object similarity metrics.

The first phase uses the synset associated with the query
object as an entry point in the WordNet graph. Then it gets
the objects that are indexed by this synset using the case
indexes. Only objects of the same type as the query are
retrieved. For instance, if the query is a class, then only
classes are retrieved. If the objects found do not reach N,
then the search is expanded to the neighbour synsets nav-
igating in the is-a relations. Then, the algorithm gets the
new set of objects indexed by these synsets. If there are
still not enough objects, the system keeps expanding until
it reaches the desired number of objects, or till there are no
more objects to expand.

Suppose that the N best objects are to be retrieved, QObj
is the query object, and ObjectList is the universe of objects
that can be retrieved (usually ObjectList comprises all the
library cases). The algorithm is:

1. ObjsFound ← ∅

2. PSynset ← Get context synset of QObj

3. PSynsets ← {PSynset}
4. ObjsExplored ← ∅

5. WHILE (#ObsFound < N) AND (PSynsets �= ∅) DO

(a) Synset ← Remove first element of PSynsets

(b) ObjsExplored ← ObjsExplored+ Synset

(c) SubSynsets ← Get Synset hyponyms (subordinates)

(d) SuperSynsets ← Get Synset hypernyms (superordinates)

(e) SubSynsets ← SubSynsets − ObjsExplored −
PSynsets

(f) SuperSynsets ← SuperSynsets − ObjsExplored −
PSynsets

(g) PSynsets ← Add SubSynsets to the end of PSynsets

(h) PSynsets ← Add SuperSynsets to the end of
PSynsets

(i) Objects ← Get all objects indexed by Synset

(j) Objects ← Objects ∩ ObjectList

(k) ObjsFound ← ObjsFound ∪ Objects

6. ENDWHILE

7. ObjsFound ← Rank ObjsFound by similarity

8. RETURN Select the first N elements from ObjsFound

The result of the previous phase is a set of N objects.
The second phase ranks these objects by similarity with the
query. Ranking is based on object similarity, and there are
three types of object similarities: package similarity, class
similarity, and interface similarity (see [6] for details on
these metrics).

Retrieved
Cases

Problem

New Case

Best Case

Search the
retrieved cases for
cases to complete

the New Case

New Case Complete
=> End

New Case
Incomplete

Figure 5. Best case composition strategy.

Retrieved
Cases

New Case

Best Matching
Set

Generate new case by
splitting and merging the

complementary cases

Sets of
complementary

cases

Figure 6. Best complementary cases compo-
sition strategy.

3.2. Composition of Diagrams

After the retrieval of relevant cases, the composition
module uses one or more retrieved cases to build a new
case, using splitting and merging operations. Two adap-
tation strategies are used: best case composition, and best
complementary cases composition.

In the best case composition (see figure 5), the adaptation
module starts from the case most similar to the problem,
mapping the case objects to the problem objects. The case
mapped objects are copied to a new case. If this new case
maps successfully all the problem objects, then the adapta-
tion process ends. Otherwise it selects the retrieved case,
which best complements the new case (in relation to the
problem), and uses it to get the missing parts. This process
continues while there are unmapped objects in the problem
definition. Note that, if there are objects in an used case
that are not in the problem, they can be transferred to the
new case.

The best complementary cases composition (see figure
6) starts by matching each retrieved case to the problem,
yielding a mapping between the case objects and the prob-
lem objects. This is used to determine the degree of problem
coverage of each case, after which several sets of cases are
constructed. These sets are based on the combined cover-
age of the problem, with the goal of finding sets of cases
that globally map all the problem objects. The best match-

College

+ name : String

+ email : String

+ addStudent(std: Student) : void

+ removeStudent(name: String) : void

+ getEmployee(name: String) : UniversityEmploye

University

+ name : String

+ address : String

+ getCollege(name: String) : College

+ getName() : String

UniversityEmploye

+ name : String

+ email : String

+ position : String

+ salary : float

+ setSalary(value: float) : void

+ getEmail() : String

Student

+ name : String

+ number : int

+ getName() : String

Researcher

+ researchGroup : int

+ getGroup() : String

Teacher

+ subjects : List

+ addSubject(subject: String) : void

1..*

1..*

1..*

Figure 7. Class diagram of Case2 (a Univer-
sity).

ing set is then used to generate a new case. These strategies
are illustrated in the next section where an example is given.

4. Example

This example provides an illustration of the case compo-
sition mechanism of REBUILDER. Suppose that the class
diagram of figure 4 is used as query diagram (problem P1).
The algorithm starts by the package synset of P1, which is
the synset corresponding to University. Suppose that the al-
gorithm retrieves two cases: Case2, which corresponds to
the class diagram of figure 7, and Case1 corresponding to
the diagram of figure 2. These cases are then ranked by
similarity to the problem, which gives Case2 a score of 0.7
and Case1 0.25.

The next step is to build a new case using case compo-
sition. We selected the best case composition strategy to
generate the new case. The first thing that the algorithm
does is to create a new case, which is a copy of P1. Case2 is
selected due to its higher similarity with the problem. The
design composition algorithm maps University and College
from Case2 and P1, transferring the mapped case objects
to the new case corresponding objects. Then the case ob-
jects that did not map are transferred to the new case only
if mapped objects depend on them. After this, the problem
has an unmapped object, which is Department. Case1 has

SchoolDepartment

+ name : String

+ addTeacher(prof: Teacher) : void

+ removeTeacher(name: String) : int

+ getTeacher(name: String) : Teacher

+ addStudent(name: String) : int

+ removeStudent(name: String) : int

+ getStudent(name: String) : Student

College

+ name : String

+ email : String

+ addStudent(std: Student) : void

+ removeStudent(name: String) : void

+ getEmployee(name: String) : UniversityEmploye

University

+ name : String

+ address : String

+ getCollege(name: String) : College

+ getName() : String

UniversityEmploye

+ name : String

+ email : String

+ position : String

+ salary : float

+ setSalary(value: float) : void

+ getEmail() : String

Student

+ name : String

+ number : int

+ newAttr : int

+ getName() : String

Researcher

+ researchGroup : int

+ getGroup() : String

Teacher

+ subjects : List

+ name : String

+ addSubject(subject: String) : void

1..*1..*

1..*

1..*

1..*

1..*

Figure 8. The solution generated by the de-
sign composition mechanism.

an object (SchoolDepartment) that has the same classifica-
tion as Department, so it can be mapped completing the new
case, resulting in the diagram of figure 8.

Note also that all additional objects from Case2 have
been transferred to the new case because they depend on
the mapped objects. Other aspect, is that the mapping of
Case1 with the problem added two additional objects (Stu-
dent and Teacher from Case1), which already existed in the
new case (from Case2). These two additional objects were
merged with the corresponding objects yielding the diagram
of figure 8.

5. Experiments

In order to test the solutions generated by the design
composition mechanism, we have performed user evalua-
tion experience. In these experiences, we used a KB with
60 software designs, mainly about four different domains:
banking information systems, health information systems,
educational institution information systems, and store infor-
mation systems (grocery stores, video stores, and others).
Each design comprises a package, with 5 to 20 objects (to-
tal number of objects in the case base is 586). Each object
has up to 20 attributes, and up to 20 methods. These designs
are defined at a conceptual level, so the design is at an early
stage of development having only the fundamental objects.

Four problems were defined, each one having one pack-
age with three objects (classes or interfaces), which were re-

Table 1. Experimental results obtained from
test users.

BCC BCCC

Average number of objects by solution 11.25 8.13

Average number of relations by solution 11.00 7.63

Average number of incorrect objects by solution 1.98 1.04

Average number of incorrect relations by solution 2.73 1.69

Average of incorrect objects by total number of objects 17.6% 12.7%

Average of incorrect relations by total number of objects 24.9% 22.2%

Percentage of solution evaluated as incorrect 21.2% 17.3%

lated to each other by UML associations or generalizations.
We defined one problem by domain of the Knowledge Base.
For each problem REBUILDER generated four solutions,
two using the Best Case Composition strategy, and the other
two with the Best Complementary Cases Composition. The
problems and their respective solutions were then presented
to the test users (software designers and software engineers)
for evaluation.

Eleven test users were inquired about each solution, giv-
ing their evaluation about the number of objects and rela-
tions that they considered inadequate or incorrectly defined,
regarding the problem being modelled. Most of the design-
ers made this judgment based on what they would delete
from the suggested solution. The results obtained are pre-
sented in table 1 (BCC - Best Case Composition, BCCC
- Best Complementary Cases Composition). These results
show that solutions generated by the Best Complementary
Cases strategy were considered more accurate, since the test
subjects considered them with less incorrect objects and re-
lations. One characteristic of this strategy that may be deci-
sive for these results, is the number of objects and relations
that the generated solutions have. As can be seen from ta-
ble 1, the Best Complementary Cases strategy generates few
objects and relations, but the ones that are selected are taken
to be more relevant for the problem being solved.

To compare the computational performance of both
strategies, we have tested the computation time that each
strategy uses to produce solutions. We have used the same
four problems and performed several runs with each one.
We obtained the average of the computation time for the
generation of one solution, using each strategy. Overall val-
ues are depicted in figure 9, and these figures show that
the Best Complementary Cases strategy is best one, outper-
forming the Best Case strategy by 38%. These experiences
where performed in a PC with Windows XP, an AMD XP
1500+ processor and with 512 Mb of RAM.

Composition Time

16.21

10.12

0
2
4
6
8

10
12
14
16
18
20

Best Case Best Complementary
Cases

se
co

nd
s

Figure 9. Average time results obtained for
two generated solutions.

6. Conclusions and Future Work

Most of the research work on CBR for software reuse is
on code reuse systems, which by definition have different
characteristics from systems following our approach. Nev-
ertheless there are some systems that can be considered re-
lated to REBUILDER. Gonzlez et. al. [5] presented a CBR
approach for software reuse based on the reuse and design
of Object-Oriented code. Cases represent three types of en-
tities: classes, methods and programming recipes, thus al-
lowing the retrieval of these types of objects. Deja Vu [11]
is a CBR system for code generation and reuse using hier-
archical CBR. Deja Vu uses a hierarchical case representa-
tion, indexing cases using functional features. Althoff and
Tautz [2, 12] have a different approach to software reuse and
design. Instead of reusing code, they reuse system require-
ments and associated software development knowledge.

Our approach to class diagram reuse using case-based
composition enables REBUILDER to generate new dia-
grams using past designs. Most of the systems referred in
the previous paragraph do not have the adaptation capabil-
ity, which would enable the software designer to explore
design suggestions. One main advantage of composition
adaptation, is that the system has a broader scope of solution
generation capabilities. Most of the adaptation techniques
involving one case adaptation are limited to the transfor-
mation of the chosen case. From the test users evaluations
and from the computational performance, it can be inferred
that the Best Complementary Cases strategy performs bet-
ter than the Best Case strategy in most of the problems used.
Future work on this subject will focus on transference issues
like, what kind of dependencies are transferable. Another
important composition items are: merging objects and in-
coherence of objects. Both subjects can be addressed using
WordNet as an ontology, providing semantics for reasoning.

Acknowledgments

This work was partially supported by POSI - Pro-
grama Operacional Sociedade de Informação of Fundação
Portuguesa para a Ciência e Tecnologia and European
Union FEDER, under contract POSI/33399/SRI/2000,
by program PRAXIS XXI. REBUILDER homepage is
http://rebuilder.dei.uc.pt.

References

[1] A. Aamodt and E. Plaza. Case–based reasoning: Foun-
dational issues, methodological variations, and system ap-
proaches. AI Communications, 7(1):39–59, 1994.

[2] K.-D. Althoff, A. Birk, C. G. v. Wangenheim, and C. Tautz.
Case–based reasoning for experimental software engineer-
ing. Technical Report 063.97/E, Fraunhofer IESE, Decem-
ber 31, 1997 1997.

[3] B. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Press, 1988.

[4] B. Coulange. Software Reuse. Springer Verlag, London,
1997.

[5] C. Fernández-Chamizo, P. González-Calero, M. Gómez-
Albarrán, and L. Hernández-Yánez. Supporting object reuse
through case-based reasoning. In I. Smith and B. Faltings,
editors, Third European Workshop on Case-Based Reason-
ing (EWCBR’96), volume 1168, pages 150–163, Lausanne,
Suisse, 1996. Springer-Verlag.

[6] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L.
Ferreira, and C. Bento. Case retrieval of software designs
using wordnet. In F. v. Harmelen, editor, European Con-
ference on Artificial Intelligence (ECAI’02), Lyon, France,
2002. IOS Press, Amsterdam.

[7] J. Kolodner. Case-Based Reasoning. Morgan Kaufman,
1993.

[8] M. L. Maher, M. Balachandran, and D. Zhang. Case-Based
Reasoning in Design. Lawrence Erlbaum Associates, 1995.

[9] R. Prieto-Diaz. Status report: Software reusability. IEEE
Software, 3(May), 1993.

[10] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, Read-
ing, MA, 1998.

[11] B. Smyth and P. Cunningham. Deja vu: A hierarchical case-
based reasoning system for software design. In B. Neumann,
editor, 10th European Conference on Artificial Intelligence
(ECAI’92), Vienna, Austria, 1992. John Wiley and Sons.

[12] C. Tautz and K.-D. Althoff. Using case-based reasoning for
reusing software knowledge. In D. Leake and E. Plaza, ed-
itors, International Conference on Case-Based Reasoning
(ICCBR’97), pages 156–165, Providence, RI, USA, 1997.
Springer-Verlag.

Reusing Knowledge on Software Quality for Developing Measurement Programs

 Olga Jaufman Bernd Freimut Ioana Rus
 TU Kaiserslautern Fraunhofer IESE Fraunhofer-Center Maryland
 P.O. Box 3049 Sauerwiesen 6 4321 Hartwick Road
 D-67653 Kaiserslautern, Germany D-67661 Kaiserslautern, Germany College Park, MD, USA
 +49 (6301) 707-253 +1 (301) 403-8971
 freimut@iese.fhg.de irus@fc-md.umd.edu

Abstract. In order develop high quality software,
companies must understand what constitutes quality for
their products and stakeholders and then manage and
engineer quality accordingly. To support this, the
measurement of software quality is essential. Various
measurement approaches and quality models have been
proposed for this, such as the ISO9126 standard, the
models proposed by Boehm and McCall, or the GQM
approach. The problem however is, that the application of
these approaches implicitly assumes that the
measurement personnel has experience in defining and
measuring software quality, an assumption that is not true
for many software companies. Therefore we propose to
address this problem by supporting quality measurement
with reuse of previously acquired knowledge. We
gathered and organized quality measurement knowledge
in a knowledge repository and designed a quality
definition process that allows elicitation of quality
requirements from multiple stakeholders.

1. Introduction

Customer satisfaction progressively becomes a more
important goal for software development companies who
want to be successful and survive competition. Therefore
these companies must improve their ability to understand
what the customer means by “quality” and to develop
software according to these requirements.

The challenge in doing so is that quality might not
have the same meaning in the context of different
application domains, different systems, or even for
different stakeholders of the same system. Thus, there are
multiple perspectives on quality that must be integrated
for a system. For example, the customers or the users of a
system have an “external” perspective, oriented more on
the functionality of the system, and other execution
properties such as performance, usability, and reliability.
The developers on the other hand have an “internal”
perspective, focused more on defects in software
artefacts. Thus, there is a need for a common
understanding and agreement between stakeholders of a

specific system on quality definition.
For being achieved, quality must be more than just

measured in the final product; it must be properly defined,
managed and engineered throughout development. For
this purpose, quality indicators that can predict the final
product quality must be defined and measured during
development. This calls for the definition and selection of
appropriate quality measures that require both application
domain knowledge and software development knowledge.
This can be a challenging task especially for people with
less experience and knowledge in this area. The
consequences can be firstly an incomplete
characterization and measurement of the product quality
and secondly a large amount of effort required to set and
perform the measurement plan.

We propose to address this problem by supporting
quality measurement with reuse of previously acquired
knowledge. Some of the software quality knowledge is
applicable across multiple systems, and is therefore
transferable from one project to another.

We gathered and organized this knowledge in a
knowledge repository called software quality
characterization and measurement (SQCM) experience
base, following the concept of experience factory (EF)
[1]. The EF paradigm argues for reuse of experience
collected from individual projects by analyzing,
synthesizing and packaging this experience for future
projects. The SQCM Experience Base captures generic
knowledge and experience such as quality properties and
corresponding measures, as well as when and how these
measures should be taken and how to be used.

In this paper we describe the SQCM experience base,
and the process of using it in support of measurement
programs. The proposed concept was applied in a case
study, the findings of which will be reported as well.

The target audience of this paper is envisioned to be
project managers, software engineers, and process
engineers, who are in the need for practical approaches
for defining, documenting, and measuring software
quality. Researchers can also benefit, by getting ideas
about new and more efficient approaches for quality

modeling and measurement.
The remainder of the paper is organized as follows:

Section 2 presents related work, and discusses similarities
and differences between other approaches and ours.
Section 3 describes in more detail the objectives of our
research. Section 4 presents the experience base and the
method for using it. The case study is discussed in Section
5. Section 6 concludes the paper with a summary and
directions for future efforts.

2. Related Work

According to [4] there are principally two different
ways to define software quality for a given product. Using
a fixed-model approach it is assumed that all important
quality properties are a subset of those in a defined model.
To control and measure each quality property,
relationships between measures, internal and external
quality characteristics are used.

Examples of such an approach are the models
proposed by McCall [7], Boehm [2], and ISO9126 [5]. In
these models, key characteristics of quality are identified
from a user perspective. These key characteristics are
normally high-level external attributes (e.g., reliability,
and maintainability). These high-level attributes are
decomposed into lower-level attributes, which represent a
refined view or internal view on quality. Measures are
also proposed for these lower-level attributes.

The disadvantage of this approach is that the model’s
attributes are too general as they are supposed to be fitted
for all contexts.

Therefore a different approach emerged, namely a
define-your-own-model approach, as it was apparent that
different contexts have different notions of quality. In
these approaches, instead of using a pre-defined set of
quality characteristics, a consensus on relevant quality
characteristics is defined for a given product in co-
operation with relevant stakeholders. These characteristics
are then decomposed until measurable quality attributes
are obtained.

Examples of a define-our-own-model approach are
measurement approaches such as the GQM-approach [3]
and the SQUID-approach [6]. The GQM-approach
provides a framework for measurement programs, where
relevant measurement goals for significant stakeholders
are identified and then refined via questions into
measures, through interviews with stakeholders.

The SQUID quality modelling approach [6] has the
objective to define quality requirements for a particular
product in a quantifiable manner. One basic idea of this
approach is that a quality model has two components: (1)
a structure model that defines model elements and their
interactions, and (2) a content model that identifies a set
of entities (e.g. attributes) linked in accordance with that
structure. The structure model identifies, for example, that

quality properties are decomposed into sub-properties.
Regarding the content model, [6] suggests to adopt one
(or more) of the existing models and to adapt it to the
organization.

The advantage of these approaches is that they can
take into account the context in which quality is to be
defined and can incorporate the views of the stakeholders.
On the other hand, these models provide little guidance on
how to define and elicit quality requirements.

Therefore, we aim at supporting these tasks by re-
using experience about quality measurement.

3. Objectives

The purpose of our SQCM Experience Factory is to
store and re-use experience related to the definition and
measurement of quality, in order to support the
measurement team in the process of setting up the quality
definition for a product or project.

The challenge is, however, that the term “quality” is
dependent on the domain, product, or even the
stakeholders of a product (e.g., customer, or developer).
Consequently, our experience base has to follow a define-
your-own-model approach in order to be tailorable to the
context in which it is to be used. The approach should
allow abstract properties to be decomposed in more
concrete sub-properties, specifically for each product and
according to its stakeholders’ views.

Yet, the implicit assumption with existing define-
your-own approaches such as goal-oriented measurement
is that the approach will be performed by people with
measurement experience and knowledge. They should
know what properties constitute product quality, how the
relevant quality properties can be measured, when and by
whom these properties can be measured, and finally how
relevant it is to measure these properties. Unfortunately,
not all people who are setting measurement programs
have such measurement experience and knowledge.

We address this problem by providing an experience-
based support that provides information about the
properties that may be relevant to measure, how these
properties can be measured, and for whom and when it
may be relevant to measure them. In doing so, we are
tying to build on top of previous work as much as
possible.

The objective of the development of the SQCM
Experience Factory is then to provide the support for
initiating measurement programs more effectively and
more efficiently. “More effectively” means that a
measurement program covers all quality aspects that are
relevant for product quality from project stakeholders’
point of view. “More efficiently” means that less effort is
required to set up a measurement program. The approach
will also allow different stakeholders to communicate
about quality needs using a common vocabulary.

4. The SQC-Experience Factory

4.1. The Experience Base

From the available define-your-own approaches, the
SQUID-approach was appealing to us as its structure
model already provides a sound scheme for an experience
base. Therefore, we based the scheme of our experience-
base on the SQUID structure model. The content of the
experience base follows quality properties and their
measurement models as proposed in the pre-defined
quality models presented in the literature. In this section
we discuss both the structure and the content of our
experience base.

Structure
The structure of our EB scheme, adapted from [6], is

shown in Figure 1
Quality Property

Internal Quality
Sub-Property

External Quality
Sub-Property

Measurement Models

Decom-
pose_to

Decom-
pose_to

is

map_tomap_tomap_tomap_to

influences

influences

Internal Quality
Property

External Quality
Property

Quality Property

Internal Quality
Sub-Property

External Quality
Sub-Property

Measurement Models

Decom-
pose_to

Decom-
pose_to

is

map_tomap_tomap_tomap_to

influences

influences

Internal Quality
Property

External Quality
Property

Figure 1 EB Scheme

Since we want to support both the customer-view of
software as well as the developer view, we distinguish
between internal and external quality properties [4]. A
quality property can either be mapped directly to a
measurement model that contains a descriptive model [3]
according to which the quality property is to be
operationally measured, or it is decomposed into more
detailed sub-properties. This decomposition allows to
organize quality properties hierarchically (e.g., like
[7][2][5]) or flat such as within GQM.

In our pilot implementation we used a 4-level
hierarchy, as we organized a large number of quality
properties. However, in a different context where only a
small number of quality attributes needs to be stored, a
more flat implementation is also possible.

An important aspect of our objective is to measure
quality during development and make inferences about
final quality, since we want to evaluate the impact of new
technologies on final quality as early as possible. The
challenge is here to establish such relationships between
internal and external quality by means of empirical (case)
studies. Since these relationships tend to be dependent on
a particular domain or even system, it is an important
corporate asset to be captured in our experience base.
Consequently, we aim at maintaining an influence
relationship between internal and external quality.

In order to support and ease the selection of relevant
quality properties, for each property we store the set of
stakeholders and development phases, for which a

property might be relevant. Figure 2 shows an entry of
our experience base.

Name of 3rd
level property Definition Sub-

property of
Applicable
for object

Relevant for
stakeholder

Relevant in
phase

Reliability

The probability that
the software will not
cause a system
failure for a specified
time, under specified
conditions.

Product
Operability

Operational
Software

User, Customer,
Project Manager,
Analyst, Designer,
Programmer,
Tester, Maintainer

Analysis,
Design,
Code, Test,
Operation

Figure 2 Excerpt of EB

Each quality property is characterized by its name
and a comprehensive definition as it was observed [10]
that definitions within existing quality models are often
terse and too short.

Content
Having defined the structure of our experience base,

the next task is to populate it with an initial set of quality
attributes. This can be achieved in several ways. First, it is
possible for an organization to survey past measurement
programmes and compile the set of quality properties
under study as well as the measures used.

The second approach, which we followed, is to
perform a survey of quality models published in the
literature. Although these properties are typically not
explicitly tailored to a specific domain or company, they
can serve as a reasonable start.

Due to the abundance of quality models in the
literature we faced several problems: Often quality
properties are defined in too short and concise a manner,
so that their exact meaning is fuzzy and unclear [10].
Moreover, when comparing models from different
sources we observed inconsistent terminology about
quality properties in the literature: Properties with the
same meaning are denoted with different names,
properties having the same names can differ in their
meaning. Additionally, the published quality properties
are on different layers of abstraction, for example, ranging
from Reliability to Mean Time Between Failures.

Therefore, we carefully compared exiting definitions
for quality properties and synthesized them in a hierarchy
with 4-levels, where each quality property is explicitly
defined. Additionally, we classified for each property the
development phase and stakeholder, for which the
property might be relevant, and identified applicable
descriptive measurement models from the literature. To
establish a relationship between internal and external
quality properties, we adopted the indicators of Reliability
identified in [7].

4.2. Using the Experience Base

The contents of the experience base are quality
properties that have been or can be defined for products in
the considered environment. In order to keep the contents
up to date we defined processes that evaluate and update
the contents as necessary. The focus of this paper is,
however, the Quality Definition Process.

The objective of this process is to select and identify
appropriate quality definitions and measurements for a
given system by re-using such knowledge from the
experience base. One key aspect here is the ability to
consider and integrate different viewpoints on quality.

The basic idea of the process is to elicit which of the
quality properties captured in the experience base are
relevant for each stakeholder and to identify those quality
properties that are important to several stakeholders or
those that are only relevant for a small number of
stakeholders. Figure 3 shows an overview of the process.

Generate Stakeholder-Specific
Quality Models

SQCM-EBSQCM-EB

Interview Stakeholders Generate Product-Specific
Quality Model

A3

Quality

A C

A2 C1A1

A3

Quality

A

A2A1

A3

Quality

A C

C1A1

Stakeholder 1

Stakeholder n

Generate Stakeholder-Specific
Quality Models

SQCM-EBSQCM-EB

Interview Stakeholders Generate Product-Specific
Quality Model

A3

Quality

A C

A2 C1A1 A3

Quality

A C

A2 C1A1 A3

Quality

A C

A2 C1A1

A3

Quality

A

A2A1 A3

Quality

A

A2A1 A3

Quality

A

A2A1

A3

Quality

A C

C1A1 A3

Quality

A C

C1A1 A3

Quality

A C

C1A1

Stakeholder 1Stakeholder 1

Stakeholder nStakeholder n

Figure 3 Quality Definition Process

The Quality Definition Process has the following steps: 1)
Identify Stakeholders, 2) Interview Stakeholders, 3)
Define a stakeholder-specific model for each stakeholder,
and 4) Define a product-specific quality model by
aggregating the stakeholders’ views. In the following we
will describe these steps in more detail:

The first step of this process is to identify those
stakeholders that are to be considered in the quality
definition of the system. Potential stakeholders are users,
customers, project managers, contractors/developers, etc.

The second step is to interview individual
representatives from the selected stakeholder groups. The
objective of these interviews is to identify those quality
properties that are important from the viewpoint of the
stakeholder group. Therefore, structured interviews are
conducted, in which each stakeholder rates the relevance
of the quality properties in the experience base. To
support these interviews, the interviewer derives a
questionnaire from the experience base that includes those
properties that might potentially be relevant for the
stakeholder. For each quality property its name and
definition is given, as well a 4-point-relevance scale. An
excerpt from such a questionnaire is shown in Figure 4.

Portability

The property "Portability" describes how easily it is to
transport the software for use in another environments

Question
18
(Level 2)

This quality property is for me .. � highly relevant
 � relevant
 � somewhat relevant
 � not relevant

Figure 4 Excerpt from questionnaire

In order to minimize the time required for these
expert interviews, we exploited the tree structure of our
experience base: If a quality property was rated as not
relevant, quality properties in the hierarchy below that

property were considered as not relevant as well. Here,
the questionnaire contained skip patterns that prevented
these questions from being asked.

In order to detect whether the set derived from the
experience base is complete, the interviewees are asked
about missing properties that are to be considered.

In the third step a stakeholder-specific quality model
is generated. When multiple persons per stakeholder
group are to be interviewed, it is necessary to aggregate
the individual viewpoints. Here it is possible [9] to
perform a group interview and achieve consensus within
the group or to aggregate individual answers
mathematically.

The aggregated answers are visualized in a coloured
quality tree (cf. Figure 5): the colours indicate whether
quality properties have been rated as very relevant,
relevant, or somewhat relevant. Quality Properties that
were rated as not relevant are not included. Alternatively
it is also possible to include only very relevant and
relevant properties in the stakeholder-specific tree.

Product
Operation Product

Revision

Quality

Safety User
Friendlin.

Perfor-
mance ... Maintan-

ability
Test-
ability

Verifi-
ability ...

Somewhat relevant

Relevant

Highly RelevantProduct
Operation Product

Revision

Quality

Safety User
Friendlin.

Perfor-
mance ... Maintan-

ability
Test-
ability

Verifi-
ability ...

Somewhat relevant

Relevant

Highly Relevant

Somewhat relevantSomewhat relevant

RelevantRelevant

Highly RelevantHighly Relevant

Figure 5 Role-Specific Quality Model (Example)

In the fourth step, a product-specific quality model is
generated from the set of stakeholder-specific models.
Applying mathematical aggregation it is possible to
determine the relevance of a given quality property as the
maximum relevance rating of all stakeholders, which
implies equal importance of all stakeholders. In a more
sophisticated computation, the importance of a group of
stakeholders can be assigned a weight that will be
considered in the final calculation. An alternative would
be that ratings are assigned to the confidence in
stakeholder’s reply, according to his/her experience.
Similar to the previous step, the resulting tree is
visualized, as exemplified in Figure 6.

Product
Operation Product

Revision
Product

Transiton

Quality

Safety User
Friendlin.

Perfor-
mance ... Porta-

bility
Re-

usability
Interoper

ability ...Maintan-
ability

Test-
ability

Verifi-
ability ...

Somewhat relevantRelevantHighly Relevant

Product
Operation Product

Revision
Product

Transiton

Quality

Safety User
Friendlin.

Perfor-
mance ... Porta-

bility
Re-

usability
Interoper

ability ...Maintan-
ability

Test-
ability

Verifi-
ability ...

Somewhat relevantSomewhat relevantRelevantRelevantHighly RelevantHighly Relevant

Figure 6 Product-Specific Quality Model (Example)

The advantage of these visualized models is that they
clearly show which properties are important to many
stakeholders. These are the properties that will be
important to measure. In addition, an analysis of the role-
specific models allows to make explicit the differences in
quality perception from different stakeholders and to
prioritize based on stakeholder importance.

Based on this model it is now possible to perform

focused GQM interviews or to directly define metrics. For
both purposes, the experience base contains measurement
models that will support these activities.

5. Case Study and Experiences

In order to evaluate our SQCM approach we
performed a case study, in which we derived a product
quality model for a concrete software product named
eWorkshop (from “electronic workshop”).

The eWorkshop is a web-based product developed at
the Fraunhofer Center for Experimental Software
Engineering Maryland. The purpose of this software is to
support virtual, on-line workshops with worldwide
participants, and to capture the knowledge exchanged
during each session for future analysis and dissemination.
This software product has been used and has been under
evolution for a couple of years.

5.1. Application of the Quality Definition Process

Since our initial experience base contained only
quality properties from the literature we suspected that
several product-specific quality properties were not
included. Thus, we performed a first completeness check
based on our understanding of the eWorkshop. Thereby
we noticed several quality properties that one might
expect to be important for such a system but that were not
part of our experience base. Consequently we updated our
experience base accordingly. This illustrates that it is an
important aspect of the interviews to take the quality
properties in the experience base as a sound start, but to
be open for additional quality perceptions from each
stakeholder. Following the Quality Definition Process
described in Section 4.2, we then identified in the first
step the set of stakeholders to be considered. For this
product we identified the User and the Developer as
stakeholders.

In order to prepare the interviews of the second step,
we produced for each role a questionnaire containing
those quality properties corresponding to the stakeholder
(cf. Figure 4). Since we did not want to focus on a
particular development phase, we considered all phases.

The interviews were held with one representative of
the Developer role and two representatives of the User
role. In the interview, the interviewees evaluated the
relevance of the properties following the questionnaire.
The duration of the interviews ranged between 15 and 25
minutes. We consider this time as rather short.
Consequently, we regard such interviews as an
inexpensive way to define an (initial) quality model.

Next, we generated the stakeholder-specific model
for the Developer and the User based on the interview
results according to Step 3 of the process. These models
are shown in Figure 7 and 8. (Due to space constraints the

figures show only model excerpts.)
These models show that for the Developer quality

properties related to product revision (e.g.,
maintainability, testability) play, naturally, a larger role
than for the User. Also it can be observed that the
Developer would prefer different measurement models
than the User (Fault Density).

Quality

Product
Operation

Product
Revision

Product
Transition

Service
Proficien.

User
Friendlin.

Maintan
-ability

Test-
ability PortabilitySupport

-ability
Trans-

parency
Verifi-
ability

Avail-
ability

Operation
ability Reliability

Perfor-
mance

Fault
tolerance Accuracy

Robust-
ness

..

Failure
Rate

Fault-
Density MTBF

Somewhat relevantRelevantHighly Relevant

Functio
nality

Quality

Product
Operation

Product
Revision

Product
Transition

Service
Proficien.

User
Friendlin.

Maintan
-ability

Test-
ability PortabilitySupport

-ability
Trans-

parency
Verifi-
ability

Avail-
ability

Operation
ability Reliability

Perfor-
mance

Fault
tolerance Accuracy

Robust-
ness

..

Failure
Rate

Fault-
Density MTBF

Somewhat relevantSomewhat relevantRelevantRelevantHighly RelevantHighly Relevant

Functio
nality

Figure 7 Developer View eWorkshop
Quality

Product
Operation

Product
Revision

Product
Transition

Service
Proficien.

User
Friendlin.

Porta
bility

Support
-ability

Avail-
ability

Operation
ability Reliability

Perfor-
mance

Fault
tolerance Accuracy

Robust-
ness

..

Interoper-
ability

Failure
rate MTBF

Somewhat relevantRelevantHighly Relevant

Functio
nality

Quality

Product
Operation

Product
Revision

Product
Transition

Service
Proficien.

User
Friendlin.

Porta
bility

Support
-ability

Avail-
ability

Operation
ability Reliability

Perfor-
mance

Fault
tolerance Accuracy

Robust-
ness

..

Interoper-
ability

Failure
rate MTBF

Somewhat relevantRelevantHighly Relevant Somewhat relevantSomewhat relevantRelevantRelevantHighly RelevantHighly Relevant

Functio
nality

Figure 8 User View eWorkshop
Finally, these two models were aggregated using the

maximum-relevance rating from each stakeholder-specific
model as shown in Figure 9.

Quality

Product
Operation

Product
Revision

Product
Transition

Service
Proficien.

User
Friendlin.

Maintan
-ability

Test-
ability

Porta
bility

Support
-ability

Trans-
parency

Verifi-
ability

Avail-
ability

Operation
ability Reliability

Perfor-
mance

Fault
tolerance Accuracy

Robust-
ness

..

Interoper-
ability

Somewhat relevant

Relevant

Highly Relevant

Functio
nality

Failure
Rate

Fault-
Density MTBF

Quality

Product
Operation

Product
Revision

Product
Transition

Service
Proficien.

User
Friendlin.

Maintan
-ability

Test-
ability

Porta
bility

Support
-ability

Trans-
parency

Verifi-
ability

Avail-
ability

Operation
ability Reliability

Perfor-
mance

Fault
tolerance Accuracy

Robust-
ness

..

Interoper-
ability

Somewhat relevantSomewhat relevant

RelevantRelevant

Highly RelevantHighly Relevant

Functio
nality

Failure
Rate

Fault-
Density MTBF

Figure 9: Unified eWorkshop Product Quality Model

These visualizations help to make different views
explicit and allow a focused discussion on what to finally
measure. The proposal for initial measurement models
also helps the measurement team to prepare later steps.

5.2. Experiences on the Approach’s Usefulness

In order to evaluate the usefulness of our approach,
we performed structured de-briefing interviews with each
of the interviewees, to assess the approach’s pro’s and
con’s. A questionnaire was prepared for these interviews
and contained questions that tackled issues like the benefit
of the approach, the perception of the time required to
participate, the feasibility of the approach, and its

improvement opportunities.
Overall, the interviewees considered the approach as

useful. Particularly, for the Developer it was interesting to
see explicitly, which quality properties were highly
relevant for the project manager. Thus, our approach
clearly supported the communication about quality
between different stakeholders. As overall strengths of the
approach were regarded the usefulness for those Software
Engineers who have little experience and knowledge in
setting up software quality measurement programs and
the usefulness for the characterization of a system for
which it is not known what quality aspects may be
relevant for the system’s stakeholders. Moreover, the
interviews can trigger the stakeholders to think about
quality and to decide which quality attributes matter most
to them.

As drawback was the length of the questionnaire
considered. Here it would be useful to reduce the
questionnaire using a more refined screening about
potentially relevant quality properties, for example
according to project environment characteristics.
Additionally we think that a computer-based support of
the questionnaire and experience base might ease the
application as well.

Also a User representative said that the approach only
gives “a pointer” to important quality attributes, which
will have to be more refined and expressed in terms
familiar to the project members.

Overall, we conclude from these results that our
approach is useful and addresses the problem we wanted
to tackle, namely the support of typically inexperienced
personnel with an experience base as a preparation for
more refined (GQM)-interviews.

Generally, the concept of our experience base can be
easily transferred to contexts were quality elements can be
structured as shown in Figure 1 or a subset thereof. The
key idea of the Quality Definition Process, the relevance
rating of proposed properties in interviews, is also easily
transferable. However, the concrete structure of the
questionnaire and the resulting stakeholder-specific and
product-specific models might depend on the number of
properties stored and depth of the hierarchy, which were
both very high in our case.

6. Summary and Future Work

In this paper we proposed a practical approach to
support quality measurement with reuse of previously
acquired knowledge about the measurement of software
quality. For this purpose we developed the SQCM
experience base that contains knowledge in the form of
quality properties and appropriate measurement models.
We defined a quality definition process that allows to
select and identify relevant quality properties for multiple
stakeholders and thus facilitate communication about

different quality needs.
We reported our experience with this approach in a

case study. Yet, the work we presented in this paper can
be easily transferred into other organizations and enable
them to re-use their own knowledge on measuring
software quality.

The next steps with this approach are first to develop
a tool that supports the tasks of deriving a stakeholder-
specific questionnaire and that also supports the
stakeholders in easily entering the information and
automatically generating the model visualizations.

Also, although our approach helps to make explicit
different views on quality, there is still the need to support
the resolution of conflicts that result from those different
views and to select those properties and measurements
that should finally be measured.

7. Acknowledgements

This work was supported by the Otto A. Wipprecht
Foundation, and in part by the NASA High Dependability
Computing Program under cooperative agreement NCC-
2-1298. The authors thank their colleagues at the
Fraunhofer Center Maryland, USA for their help in
performing the case study.

References

[1] V. Basili, G. Caldiera, and D: Rombach, "The Experience
Factory," Encyclopedia of Software Engineering - 2
Volume Set, pp. 469-476, 1994

[2] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. MacLeod,
and M. Merritt, Characteristics of Software Quality. North
Holland Publishing Company, 1978.

[3] L. C. Briand, C Differding, and D. Rombach, Practical
Guidelines for Measurement-Based Process Improvement,
Software Process Improvement and Practice Journal, vol. 2,
no. 3, 1997.

[4] N. Fenton and S. Pfleeger, Software Metrics - A Practical
and Rigorous Approach. Int. Thomson Computer Press,
1996.

[5] ISO/IEC 9126 International Standard, Software engineering
– Product quality, Part 1: Quality model, 2001.

[6] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni,
The SQUID-Approach to Defining a Quality Model,
Software Quality Journal, vol. 6, no. 3, pp. 211-233, 1997.

[7] M. Li, C. Smidts, Ranking Software Engineering Measures
Related to Reliability Using Expert Opinion, Proceedings
of ISSRE, p. 246 – 258, 2000.

[8] J.A.McCall, P.K.Richards, G.F.Walters, "Factors in
Software Quality", US Rome Air Development Center
Reports RADC TR-77-369, 1977.

[9] M. Meyer and J. Booker, Eliciting and Analyzing Expert
Judgement: A Practical Guide., Academic Press, 1991.

[10] D. Miller, Choice and Application of a Software Quality
Model, in Proceedings of the 10th International Conference
on Software Quality, 2000.

Reverse Engineering Software Architecture using
Rough Clusters1

1 This work is partially supported by NSERC CRD Grant 239000-00 and klocwork Solutions Inc.

J. H. Jahnke, Y. Bychkov
Department of Computer Science

University of Victoria
Victoria, BC, Canada

[jens|ybychkov]@netlab.uvic.ca

Abstract - Software reverse engineering and
program understanding deal with methods and
techniques in support of maintenance and evolution of
complex legacy software. A key challenge is to find
effective mechanisms to (re-)create architectural
abstractions of the software system, which aid human
software engineers in understanding them. Much
research has been devoted on developing algorithms for
automated clustering of legacy software code into
subsystem architectures. Still, few of these solutions are
being used in industrial practice. We believe that this is
mainly due to two main limitations, firstly, the lack of
algorithms to represent approximate clusters, and
secondly, the inability of clustering algorithms to use
human expertise and domain knowledge about the
legacy application. In this paper, we describe an
approach that applies rough set theory for the purpose
of legacy software clustering, in order to overcome
these limitations.

I. INTRODUCTION

Today’s software systems are large and complex.
Much of the software that we use today has evolved over
the course of many years and even decades. Often, such
legacy systems are poorly documented. Their original
architecture may have been eroded due to the many
changes performed during their maintenance history. Up-
to-date knowledge about their architectural design exists
only in the minds of their developers. This knowledge is
typically lost at the time when the developers leave the
organization. The loss of this knowledge causes huge
problems for the ongoing maintenance and evolution of
many mission-critical legacy software systems. The sheer
size of many legacy systems impedes the attempts of
software engineers to gain understanding of the internal
structure. As a result, making modifications to legacy
systems is typically error-prone and costly.

Software reverse engineering has emerged as a
discipline to address the problem of understanding and re-
documenting legacy systems in order to provide a basis for
their subsequent modification and evolution. In this
context, many researchers and practitioners have
investigated algorithms and methods to generate
architectural abstractions for legacy software systems.
Often these architectural abstractions are in the form of
software subsystems, which represent clusters of tightly
interdependent software artifacts. Such a partitioning
facilitates human understanding of legacy code and makes
it easier for a software engineer to determine the impact of
modifications.

While great diversity of algorithms on how to
compute software clusters has been developed over time
[1], they are not well adopted in industrial practice so far.
We believe that this is mainly due to two main limitations,
firstly, the lack of algorithms to represent approximate
clusters, and secondly, the inability of clustering
algorithms to use human expertise and domain knowledge
about the legacy application.

In collaboration with a Canadian tool vendor in the
area of software reverse engineering, and funded by the
National Science and Engineering Research Council
(NSERC), we have developed an algorithm and tool
prototype that applies rough set theory [2] for the purpose
of legacy software clustering. In contrast to many other
clustering algorithms [8], our approach is semi-interactive
because it enables the user to inject his/her valuable
domain knowledge. Moreover, our approach is iterative
and incremental: rough software architectures can be
refined semi-automatically based on user input.

II. SOFTWARE CLUSTERING

The first above-mentioned limitation of current
clustering approaches (“the lack of algorithms to represent
approximate clusters”) originates from practical
experiences, which show that most (meaningful and useful)
partitions of legacy software code artifacts into subsystems

involve quantitative, uncertain clustering decisions. While
for some software elements (e.g., classes, functions,
variables etc.) the membership to a subsystem cluster can
be decided unambiguously, other software elements might
represent possible members of more than one subsystem.
Many automatic clustering algorithms in software reverse
engineering do not present such ambiguities to human
software engineers, but they automatically choose the most
“suitable” cluster, based on some internally computed
quantitative measure. As a result, it has been argued that
such algorithms often have stability problems, i.e., they
violate the “rule of minimal change” (small changes in their
parameterization or the subject legacy code should only
result in small changes to the subsystem architecture
produced [3]). A notable exception is Mitchell and
Mancoridis’ approach to evaluating the confidence in
software clustering results [4]. They treat the clustering
problem as a random-based optimization problem and
propose to determine a confidence value for the goodness
of clusters based in an analysis of multiple applications of
this random-based algorithm.

Still, Mitchell and Mancordis approach is purely
bottom up, i.e., it is only based on the legacy software code
but does not consider input about the problem domain.
However, experiences with real-world legacy applications
show that the meaningfulness of clusters produced with
these fully automatic mechanisms is limited. This is
because intuitive meaning is typically associated with
concepts in the problem domain, but not necessarily with
concepts in the solution domain. Hence, we have to find
ways of clustering artifacts in the solution domain guided
by knowledge about concepts in the problem domain to
better support human understanding of legacy software.
These concepts would address the second limitation
pointed out in the introduction, namely the inability of
clustering algorithms to use human expertise and domain
knowledge about the legacy application.

Baniassad and Murphy have addressed this second
limitation with an approach that enables humans to specify
conceptual modules, which are then subsequently used to
cluster legacy code [5]. A similar approach using an
architecture query language (AQL) has been developed by
Sartipi and Kontogiannis [6]. A more visual approach
based on polymetric views (lightweight software
visualizations enriched with multiple software metrics) was
proposed by Lanza and Ducasse [9]. While these and
related approaches represent a significant step forward with
respect to providing a more usable clustering of legacy
code, they fall short on addressing the first problem, i.e.,
they do not represent approximate clusters. Approximation
is unavoidable if clusters are generated based on a
conceptual architecture defined by humans, because the
implementation of an existing legacy system (most likely)
will not completely reflect this architecture.

Therefore, the objective driving behind our research
has been to develop a framework for clustering algorithms
that supports approximation as well as the input of human
domain expertise.

III. REPRESENTING APPROXIMATE SOFTWARE
ARCHITECTURES

It is important to incorporate a concept of ambiguity
and approximation in the clustering process. This enables
the software engineer to judge the quality of any reverse
engineered subsystem partitioning. However, the question
is on how to represent “approximate” software
architectures.

Mitchell and Mancordis, for example, have chosen a
model that associates confidence values (percentages) with
links between software artifacts in the same cluster [4].
While this approach addresses some of our concerns in
principle, we believe that it is not very user friendly in
practice: how should a user intuitively interpret an
association between two artifacts in a cluster with
confidence 56%? The authors try to address this problem
by introducing the concept of a user-defined confidence
threshold, which prevents software artifacts from being
associated with a cluster by means of links with a
confidence lower than this threshold. In this case, software
artefacts that cannot be included into existing clusters with
sufficient confidence are included in a newly created
cluster of their own. Consequently, by decreasing or
increasing the confidence threshold, software engineers can
explore the software architecture using different levels of
approximation. In practice, there are two practical
problems with this approach:

The reverse engineered architectural decomposition
may change with each modification of the confidence
threshold; a feature that is undesired if the
decomposition is done according to a human-defined
domain concept model.
There is no way to represent ambiguity, e.g., the
information that a software artifact might belong to
cluster A or to cluster B.
One solution to the first problem is to pin-point

clusters based on the selection of so-called seed artifacts
(seeds for short). Seeds are software artifacts that,
according to a human expert, clearly belong to a particular
cluster as defined in the domain architecture. The
relationships of seeds to other software artifacts are then
evaluated to build the basis for automatic clustering. We
are using this strategy in our approach described in the
second part of this paper.

Addressing the second problem on how to represent
ambiguity would require us to give up the constraint that
each software artifact can be belong to one single cluster
only. However, this would obviously cause problems if we
wanted to represent non-ambiguous cases, e.g., situation

where a software engineer is certain about the membership
of an artifact in a given cluster.

We propose to adopt rough set theory [2] to address
this problem of representing ambiguity. Intuitively, a rough
set S uses two (traditional) sets S:=(S , S) to approximate
another set S. S is called lower approximation and
contains only those elements that are known to belong to S,
while S S is called upper approximation and contains
all elements that may belong to S. This model provides us
with a simple, yet powerful way to address the ambiguity
problem in software clustering: if we know with certainty
that a software artifact belongs to a given cluster, we add it
to the lower approximation of this cluster. Otherwise, if we
are uncertain about the membership of an artifact in a
cluster, we can add it to its upper approximation.

IV. ROUGH SET THEORY APPLIED TO SOFTWARE
CLUSTERING

Software clustering algorithms commonly use an
abstract model about the interdependencies among software
artifacts, which has been extracted from the system to be
reverse engineered. We use an Artifact Dependency Graph
(ADG) for this purpose, which can be formalised as a tuple
ADG:=(A,R,K,t), where

A is a finite set of software artifacts,
R finite multiset of dependencies among artifacts;
elements in R are sets of form {a,b}, with a,b A,
K is an alphabet of type labels,
t:A R K is a labeling function, providing types for
artifacts and dependencies (e.g., “class”, “variable”,
“function”, “function call”, “uses” etc.).
It is the objective of clustering to find a (meaningful)

partition of A. In traditional (crisp) clustering theory, a
partition of A is a family P={P1,P2,…,Pn} of nonempty
subsets of A such that each element in A is contained in
exactly one element of P. The ideal result of a software
clustering process would be a partition that fulfills the
above constraint and is a meaningful abstraction for a
human engineer. However, as argued earlier, these two
requirements are often in mutual conflict, due to
implementation idiosyncrasies, architectural erosion or
other factors. Hence, there is the need to relax either of
these requirements in practice. Most currently existing
approaches have chosen to hold on to the traditional
mathematical concept of crisp partitions, but have made
compromises with respect to the soft requirement for
meaningfulness.

We suggest approaching the problem from a different
angle, i.e., to adopt a more relaxed mathematical notion of
partitions in favour of attaining a more meaningful
architectural abstractions. Using rough set theory, we can
define a rough partition of A as a family P={P1,P2,…,Pn}

of strictly non-empty rough sets approximating the ideal
partition P.2

We can now relax the traditional (crisp) partitioning
constraint (each element in A has to be contained in exactly
one element in P) to the following (rough) partitioning
constraint: each element in A either has to be contained
exclusively in exactly one element in P as a member of the
element’s lower approximation, or the element has to
appear in the upper approximation of at least one element
in P (without appearing in the lower approximation of any
element in P). This rough partitioning constraint can be
formalized as:

(a A) (Pi P) ((a Pi (Pk P)(Pk Pi a Pk))
 (a Pi (Pk P)(a Pk))

The reader should note that this is not the only
possible way to define the concept of a rough software
partition. We could relax the above definition even further
by changing our requirement for strictly non-empty
partitions to non-empty partitions. The reason why we have
not done this is based on our objective to generate
meaningful clusters based on seed artifacts (cf. Section 3).
We believe that clusters only have meaning if we can
identify at least one seed artifact in the legacy system that
belongs to it. Obviously, this seed artifact would appear in
the lower approximation of the cluster, and, hence, the
cluster would be considered strictly non-empty.

Fig. 1 illustrates a rough partition of an ADG that
consists of three sample clusters. The lower approximation
of each cluster is represented as an oval with solid
background surrounded by a striped area representing their
upper approximation. Artifacts are represented as circles,
rendered with bold borders in case they represent seeds.
The lines between artifacts illustrate their inter-
dependencies. (We will show the role of these
dependencies in the clustering process later.) The figure
shows that rough clusters are allowed to overlap in their
boundary regions. The boundary region (S) of a rough
cluster S:(S , S) is defined as (S)= S -S .

2 A rough set S:(S ,S) is called strictly non-empty if and only if

S , while S is called non-empty if and only if S .

Cluster 1

Cluster 2

Cluster 3

Fig 1. Rough Partition of an ADG

V. ASSESSING THE QUALITY OF ROUGH PARTITIONS

Obviously, it is desirable in reverse engineering to
attain clusters with boundary regions as small as possible,
in order to generate more concrete architectures. Based on
the above theory, we can define a metric for the
concreteness of a rough cluster S to help a human to
reverse engineer while assessing the quality of a rough
cluster:

| |
() :

| |

S
S

S

We can further extend this metric for measuring the
concreteness of a rough partition of an entire legacy
software system as

*

()

() :
| |

i

i
P P

P

P
P

Intuitively, a situation in which software artifacts
appear in several boundary regions expresses ambiguity
with respect to the assignment of artifacts to the clusters
defined in a partition. On the other hand, a situation in
which artifacts appear in the boundary region of only one
single cluster expresses a state of uncertainty about the
completeness of a partition: Maybe clusters should be
defined differently, e.g., by choosing other (or additional)
seeds?
We define a metric for the degree of ambiguity () and the
degree of incompleteness () of a partition P as

2

| { , , | , } |
() :

2 | | * | |
i k i k i k i kP P a P P P P P a P a P

P
A P

| { | (,)(() ()} |
() :

| |
i k i k i ka P P P P P a P a P

P
A

All three metrics range from 0 to 1 (or 0-100%). A
concreteness degree of *(P) of 100% is equivalent with an
ideal (crisp) partition. In this case, the degrees of ambiguity

(P) and incompleteness (P) equate to zero.
The concreteness of the partitioning in the example

situation shown Fig. 1 is *(P)=51%, based on the average
of the concreteness measures of the individual clusters
(P1)=42%, (P2)=50%, and (P3)=60%. The degree of

ambiguity and incompleteness computes to (P)=7% and
(P)=21%, respectively.

VI. INCREMENTAL CLUSTERING PROCESS

In this section we propose an algorithm to put the
above theory into use for software clustering and reverse
engineering. We believe that user involvement is essential
for reverse engineering meaningful software architectures
from legacy code. Therefore, the clustering process
suggested here has a semi-automatic and incremental
nature. It consists of two main phases, namely Concept
Assignment and Partition Refinement (cf. Fig. 2).

Phase 2: Partition Refinement

Start

ADG Extraction

Seed Matching

Impedance-based
Clustering

Specify
Annotated
Conceptual
Architecture

Display
Partition &

Metrics

Conceptual
Match

Satisfactory?

End

Investigate/
Modify
Seeds

Investigate/
Modify

Conceptual
Architecture

Partition
Satisfactory?

Investigate/
Resolve

Ambiguities &
Incompleteness

Compute Metrics

Investigate/
Modify
Seeds

Phase 1: Concept Assignment

Customise
Dependency
Weights &
thresholds

Manual Step

Automatic Step

Display Step

Decision Step

Fig 2. Incremental clustering process

The first phase is a top-down analysis of the software
system, while the second phase is primarily a bottom-up
analysis. The objective of Phase 1 (Concept Assignment) to
come up with a first-cut rough partition of the subject
software system based on user-defined conceptual model.
The user defines a business-concept model (BCM) [7]

describing the problem domain implemented in the legacy
software system. Furthermore, the user annotates each
concept in the BCM with a number of keywords to further
circumscribe it.

The next step (seed matching) is to find artifacts in
the AGM that can be associated with the concepts in the
BCM. This step is done automatically based on simple
string pattern matching. Essentially, the keywords used to
describe concepts in the BCM are matched against idioms
used in the legacy system (represented by an AGM). Each
concept defined in the BCM is taken as a rough cluster
candidate, and each match for one of its keywords is taken
as a seed candidate for this cluster. Now, our formal
definition of a rough partition requires clusters to be strictly
non-empty and seed artifacts to be exclusively owned by a
single cluster (cf. Section 5). Therefore, at the end of the
seed matching step, only those artifacts that have been
matched as seed candidates exclusively for a single cluster
are considered seeds for this cluster. Then, all cluster
candidates without any seeds are deleted from the partition.

The following step (impedance-based clustering)
evaluates the dependencies between seed artifacts and other
artifacts in the AGM, in order to populate the rough
clusters. For this purpose, we assign different weights to
different types of dependencies in the AGM by defining a
weight function w:K]0, [. Dependencies with smaller
weights (e.g., the use of a program variable) mean tighter
coupling between software artifacts, whereas larger
weights are associated to more loose dependencies (e.g., a
function call). Our clustering algorithm evaluates the
coupling of artifacts with seed artifacts by interpreting
dependency weights as impedances analogously to
impedances of resistors in electronics. Based on this idea,
we define the impedance between two artifacts (a,b A)
in the ADG:(A,R,K,t) as:

:{ , }

 0
(,) { , }

1
1

(())r b a R

if a b
a b if a b R

otherwise

w t r

The above definition of the impedance (a,b) equates
to infinity if a and b are not directly connected in the ADG
or identical. We can define the transitive impedance * to
account for transitive dependencies:

*

*
{ , },{ , }

(,) { , }
1

(,) 1
(,) (,)c b a c R

a b if a b R

elsea b

a c c b

Now we can define the cluster impedance between
an artifact a and a given cluster Pi as:

()

0 ()
1

(,) 1
*(,)

i

i

i

s P

a P

P a

s a

The smaller the cluster impedance (Pi,a), the more
artifact a belongs to cluster Pi.

The user can parameterize the impedance-based
clustering algorithm with two threshold values, namely the
lower threshold (LT) and the higher threshold (HT). For
each artifact a and for each cluster Pi, the clustering
algorithm compares (Pi,a) with HT and LT. The cluster
assignment is done as follows: if the cluster impedance

(Pi,a) between a cluster Pi and an artifact a is smaller
than LT and there is no other cluster for which this is true
with respect to a, then a belongs to the lower
approximation of P. Otherwise, if the cluster impedance
between Pi and a is higher than UT, a is not a member of
cluster Pi. If none of the two conditions hold, a becomes a
member of the boundary region of Pi. Formally:

(,) ()((,))

 (,)
i i k i i k

i i

i

a P if P a LT P P P a LT P P

a P if P a UT

a P else

When the impedance-based clustering step is
finished, the quality metrics defined in Section 5 are
computed and the result is displayed to the user. After
investigating the rough partition, the user can decide
whether the match between the BCM and the legacy
system, as represented in the ADG, is satisfactory. It might
take several iterations in Phase 1 (Conceptual Assignment)
until the user is satisfied with the conceptual partitions
matched to the BCM. During these iterations, the user can
modify seed assignments and change the BCM to attain a
better match.

The second phase of the interactive clustering process
(Partition Refinement) starts when the user is satisfied with
the result of the conceptual match achieved in Phase 1. In
this second phase, the user can investigate and resolve
ambiguities by moving artifacts from the boundary regions
to the lower approximation of clusters. Furthermore, the
user can resolve situations of incompleteness by creating
new clusters and assign new seeds. The user can also
customize the values for HT and LT, and the weights
associated with the different dependency types. Like the
first phase, the refinement phase is iterative and the user
can re-evaluate the rough partition after each cycle of
modifications. The process ends when the user is satisfied
with the partition attained. (This does not necessarily have
to be a crisp partition.)

VII. IMPLEMENTATION

We have implemented a prototype rough clustering
tool based on the Insight reverse engineering tool produced
by our industrial collaborator klocwork Solutions Inc.
Among the various tools and functions provided by the rich
Insight tool suite, our current prototype mainly uses
Insight’s robust, multi-lingual fact extractor, which can
parse (legacy) software systems and generate the ADG.
The ADG is maintained by Insight’s software repository,
which provides a powerful query interface. We made
several small extensions to the repository schema in order
to be able to represent rough clusters. We have not yet
integrated our clustering mechanism with the advanced
user interface of Insight. Rather, we have used GraphViz
from AT&T labs as the prototype interface. Fig. 3 shows a
screen shot of this tool, depicting two clusters. The status
of artifacts (seeds, lower approximation, and boundary
region) is visualized with different border colors (not
visible in B&W print.) The user has the possibility to
assign seeds, move artifacts between regions and change
thresholds.

The BCM is currently defined in textual
representation. Later, we will integrate the clustering tool
with a graphical BCM modeling tool.

VIII. CONCLUSION

Software reverse engineering and program
understanding are difficult problems. There seems to be an
inherent tension between the desire to develop clustering
algorithms that produce crisp and precise subsystem
structures and the desire to produce meaningful structures.
We have proposed an approach to relax the requirement for
mathematically crisp partitions in order to attain more
meaningful partitions. We believe that approximate
partitions provide satisfactory answers for many questions

appearing during software reengineering activities.
Moreover, rough partitions provide a mechanism to assess
the quality of a legacy system architecture and plan
software refactoring steps. We will now focus on
evaluating our approach with practical case studies.

ACKNOWLEDGEMENT

The author would like to acknowledge Qilin Wang
for his support and contribution to this research project.

REFERENCES

[1] Koschke, R., Atomic Architectural Component Recovery for
Program Understanding and Evolution, in Institute for Computer
Science. 2000, University of Stuttgart: Stuttgart, Germany.

[2] Pawlak, Z., Rough Sets. THEORY AND DECISION LIBRARY D:
System Theory, Knowledge Engineering and Problem Solving. Vol.
9. 1992: Kluwer Academic Publishers.

[3] Tzerpos, V. and R.C. Holt. On the Stability of Software Clustering
Algorithms. in 8th International Workshop on Program
Comprehension (IWPC'00). 2000. Limerick, Ireland: IEEE-CS.

[4] Mitchell, B.S. and S. Mancoridis. CRAFT: A Framework for
Evaluating Software Clustering Results in the Absence of
Benchmark Decompositions. in Working Conference on Reverse
Engineering (WCRE 01). 2001. Stuttgart, Germany: IEEE-CS.

[5] Baniassad, E.L.A. and G.C. Murphy. Conceptual Module Querying
for Software Reengineering. in Intl. Conference on Software
Engineering. 1998. Kyoto, Japan: IEEE-CS.

[6] Sartipi, K. and K. Kontogiannis. Component clustering based on
maximal association. in Working Conference on Reverse
Engineering (WCRE'01). 2001. Stuttgart, Germany: IEEE-CS.

[7] Cheeseman and Daniels, UML Components: A Simple Process for
Specifying Component-Based Software. 2002: Addisson-Wesley.

[8] Anquetil, N.and Lethbridge, T.C. Comparative study of clustering
algorithms and abstract representations for software
remodularisation. in IEE Proceedings on Software Engineering,
Vol.150, Iss.3, 24 June 2003

[9] Lanza, M.and Ducasse, S., Polymetric views - a lightweight visual
approach to reverse engineering. in IEEE Transactions on Software
Engineering, Vol.29, Iss.9, Sept. 2003

Fig 3. Rough Clustering Prototype

Software Architecture Modelling and Performance Analysis with Argo/MTE

Yuhong Cai1, John Grundy1, 2, John Hosking1 and Xiaoling Dai1

Department of Computer Science1 and Department of Electrical and Computer Engineering2,
University of Auckland, Private Bag 92019, Auckland, New Zealand

{rainbow,john-g,john}@cs.auckland.ac.nz

Abstract. We describe Argo/MTE, an extension of the
open-source Argo/UML CASE tool that incorporates
software architecture modelling facilities and
performance test-bed code generation. We illustrate its
application by example and explain the tool architecture
and our experience using and evaluating it to date.

1. Introduction

Software architecture design and evaluation have
become crucial in large scale systems development
[4],[6],[8]. Validation of non-functional requirements is
particularly critical and one of the most challenging of
these to validate is system performance [6], [16], [17].
Existing architecture modelling and performance
analysis tools are limited. Many modelling approaches
have been taken, from informal visual design
environments to formal architecture style specification
and verification [5],[8],[13]. Performance analysis
approaches range from simulation and rapid prototyping
to reference benchmarks [4],[6],[14],[16],[20],[21].
Most have limitations when used on large-scale projects,
such as scalability, integration with other development
tools, result accuracy, and flexibility.

We describe an architecture design environment
with performance analysis facilities which extends the
Argo/UML open source CASE tool [18] to provide an
integrated modelling environment. Several architecture
modelling support features are added plus extensions of
the XMI UML representation to capture architecture
attributes. Performance analysis is based on test bed
code generation where test code is synthesised, and
performance tests run on real hardware and network
infrastructure.

In the following, we provide a motivating example
along with a survey of related research. We then
overview and illustrate usage of the Argo/MTE
architecture modelling and performance analysis
environment. We briefly describe the tool’s architecture
and implementation, and our experience with the tool.
We conclude with a summary and future research.

2. Motivation

Consider a complex architecture for internet micro-
payment allowing many customers to buy information
on the WWW on a pay-as-you-go basis, with many

small value transactions [2]. Fig. 1(a) shows an example
of such a micro-payment system (NetPay) built using a
component-based architecture [3].

When developing such software, architects must be
able to model architecture, including many abstractions
and their properties: clients, servers, machines,
networks, protocols, caching, databases, messages, user
interfaces etc in various levels of detail, from overview,
refining into successively more detailed designs. Our
interest is in how to support architects to gauge likely
design performance, even from early, high-level designs
[8]. Our approach focuses on generating executable
code from architecture specifications and deploying this
code on real hardware, to capture realistic timing
information supporting incremental design refinement.

Many approaches have been used for performance
estimation. Benchmarking [4],[6] uses reference
architectures and load-testing simple implementations.
Relative performances of different technologies used in
reference implementations are compared. Benchmarks
provide accurate measures for the benchmark
application used, but are only a rough performance
guide for related applications [6]. Rapid prototyping
[11] develops partial software applications
implementing performance-critical parts of the code e.g.
network-centric and database-intensive. Much effort is
often expended for even simple prototypes. If the
architecture evolves prototypes must be modified and
tests repeated, which is time-consuming and error-
prone. Simulation approaches use models of distributed
applications to estimate performance. Performance over-
head estimates are based on architecture [1],[16] or
middleware [12],[17] choices. As these approaches
simulate performance, their accuracy varies widely and
it is very difficult to obtain performance models for 3rd

party applications such as databases.

3. Our Approach

In earlier work we developed a custom architecture
modelling tool, retrofitting support for performance test-
bed generation and analysis [7],[8]. Our new approach
provides improved modelling and performance test-bed
based analysis support within a standard CASE tool.
This provides better integrated modelling and analysis
support, uses existing model representation formats, and
allows simpler refinement of architecture designs to OO

Customer PCs

Browser+EWallet

HTTP

SQL DB Server

Vendor1

SQL DB Server

Vendor2

HTTP

HTTPS
 HTTP Server Staff PCs

SQL DB Server

Broker

Application
Server

SQL

SQL

SQL

 J2EE Server

EJB container
(EJBs)

 Web Container
(JSPs)

SQL
CORBA

CORBA

CORBA

 HTTP Server

Application

Server - C++

socket

Authorisation

Bank

CORBA

EDI; CORBA; Custom

Customer

Perl CGIs

 (a)

2. Model architecture
designs (from
requirements)

1. Create Domain-
specific meta-

model(s)

3.Generate XML
(Extended XMI Format)

4.Transform XML
to test bed code,
.BAT files etc

5.Run performance
analysis tests

6.Visualise test
results/modify

architecture designs

System
Requirements

Results DB

Reusable
Meta-models

Extended
XMI

.java, .cpp, .bat,

.war, …

 (b)

Fig. 1 (a)The NetPay micro-payment system architecture (b) Using the Argo/MTE Environment

designs and vice-versa. We chose to extend the Argo/
UML CASE tool [18], [19] to develop Argo/MTE, but
the approach is applicable to other modelling tools e.g.
Rational Rose™, MS Visio™.

Fig. 1(b) shows how our environment is used by
architects. (1) Multiple Argo/MTE domain-specific
meta-models can be defined, each providing different
modelling abstractions and code generators e.g. for web-
based or real-time systems, etc. (2) Architecture models
are developed using one or more meta-models and
multiple design views. System requirements and
specifications guide and constrain architecture design
choices. (3) An extended XMI model format is used. (4)
The model is transformed into files and scripts for code,
compilation, database initialisation and deployment. (5)
The generated test-bed code is compiled and deployed
to multiple host machines and performance tests run. (6)
Results are queried and visualised using various graphs
which architects use to refine architecture designs and
re-generate and run further performance tests.

4. An Overview of Argo/MTE Usage

We illustrate use of Argo/MTE using the NetPay
architecture as an example. This is a complex
architecture and here we consider only part of its design
and one aspect of its performance. Fig. 3(a) shows
Argo/MTE modelling an architecture meta-model i.e. a
set of modelling abstractions for a particular domain.
This example is a web-based enterprise system meta-
model, including client, database and, application
servers, remote object abstractions, and others.
Argo/MTE uses Argo/UML view layout: menu and tool
bars (1,2), tree view of model elements (3), diagram
editing pane (4), and tabbed property sheet pane (5).

The architecture meta-model comprises element
types (rectangular icons with names, stereotypes and
properties), element type associations (solid lines),

hosting associations (dashed lines), and refinements
(solid/dashed black line with one end point). Modelling
elements define abstractions that can be composed in a
model and their properties. An example of such types
and properties is shown in Fig. 2. Associations specify
how elements can be related, hosting associations
specify how one element type relies on the existence of
its host element, and refinements specify how one
element type can be refined to a more detailed one to
provide more information.

Element Type Main Attributes Property Description

Client ClientType (AP, TP)

Threads(TP)

Type of a client e.g. browser,
CORBA client.
Number of con-current
clients run for tests.

RemoteRequest RemoteServer (AP, TP)
RemoteObject(AP, TP)
RemoteMethod(AP, TP)
RecordTime(TP)
TimesToCall(TP)
PauseBetweenCalls(TP)

Name of remote server to call
The name of remote object
The name of remote service
Record time for this?
Repetitions
Pause duration between calls

AppServer …
RemoteService …
DBRequest …
DBTable …

Fig. 2. Meta-model type and attribute examples.

Architects choose one or more meta-models to use to
create views of their architecture design. An Argo/MTE
model view comprises elements (rectangles), element
requests and services (labels), associations (solid black
lines), message interactions (blue lines and highlights),
hosting associations (dashed lines), and refinements
(solid or dashed black line with one end point).
Stereotypes indicate meta-model type correspondences.
Each element has a property set derived from its meta-
model abstraction. A high-level view for NetPay is
shown in Fig. 3(a). NetPay comprises a customer PC-
hosted browser and payment client (“E-wallet”) (1), a
broker (2), and several vendor sites (3). The vendor here
is a multi-tier architecture: the client browser accesses

Fig. 3. (a) A domain-specific meta-model in Argo/MTE; (b) example architecture model in Argo/MTE.

web pages (4), which access application server
components via CORBA (5), and a database (6). Each

abstraction links to other abstractions via relationships.
Properties/parameters for <<Client>>Reader component

are at the bottom. Architectural parameters (AP in Fig.
2) support architecture modelling e.g. types and
relationships. Testing parameters (TP in Fig. 2) support
performance code generation, including number of
client threads, timing information to record, number of
request iterations, and pause between requests. We use a
UML class icon-like architecture abstraction notation
rather than UML deployment diagram shapes as we
found the latter cumbersome and inflexible.

Multiple model views are supported for complex
specifications. Fig. 4 shows three views of NetPay.
Collaboration relationships between client requests and
server services (1) visualise/specify message-passing
relationships between elements. (2) shows just the
message passing relationships between elements.
Refinement of higher-level abstractions is shown in (3),
where CustomerRegistrationPage service “register
Customer()” is refined to constituent operations (each
realised by business logic and database operations).

(1)

(2)

(3)

Fig. 4. Message associations in Argo/MTE designs
and a simple refinement example.

Once an architect wants to assess performance of the
modelled architecture, Argo/MTE generates test-beds
and runs the tests. A basic assumption in our approach is
that code in a component has minimal overhead, and
hence performance is dominated by message passing etc
through middleware and database access allowing a stub
generation approach to still provide good performance
data. Fig. 5 shows this process. An extended XMI
format represents the design (1). XSLT scripts are run to
generate Java, JSP, EJB, ASP and C# code files, and
database initialisation, compilation and deployment
script files (2). A deployment tool copies, installs, and
runs these files on multiple client and server host

machines (3). Either thick-client testing applications are
generated or Microsoft™ Application Centre Test
scripts, used to run thin-client (web) tests. Performance
information is captured in a database (4), which can be
queried and graphed in various ways to compare results
for different models and implementation parameters.

< Arc hO per Hos t>
< Arc hi tec tural Par ameters >

<N am e ty pe=" String" >Ec oin Interfac e< /N ame>
<Ty pe ty pe=" Str ing ">J avaB ean</T y pe>
<H os t typ e= "T omc at"> Brok er </H os t>

< /Arc hi tec tur alPar ameters >
< Tes tingPar ameters >
< /Tes ti ngP ar amet er s >
< Arc hO per ati ons >

<Ar chO p er ation>
 <Ar c hi t ect uralPar ameter s>
 < Name ty pe= " String" >doG ener ateEc oin< /N ame>
 </Ar c hi t ec turalP aram et ers >
 <Tes tingP ara me ter s >
 < Name ty pe= " bo ole an"> Rec or di ngTime</N ame>
 < Repeti tion t y pe= "int"> 20</R e pe ti tio n>
 </Tes tingP ara meters >
 <Ac t ual Par ameters >
 </Ac t ual Par ameters >
 <Su bO per >
 < Arc hi tec tural Par ameters >
 < Us ingR emS erv er t y pe= "S tring"> Re moteE coi nM anager Ser ver </U s ing R emS erv er>
 < Us ingR emO bjec t ty pe= "S tring"> Re moteEc oinM anager</U s ingR em Obj ec t>
 < Us ingM iddle war e t y pe="M id dle w ar e">c or ba</U s ingM id dle ware>
 < Us ingR emMeth od ty pe=" Stri ng ">g enerate Ec oi n</U si ngR emMetho d>
 < /Arc hi tec tur alPar ameters >
 < Tes ti ngPar ameters >
 < /Testi ngP ar amet er s >
 < Ac tualPar ameter s>
 < /Ac tualP aram eters >
 </Su bO per>
 <Su bO per >
 < Arc hi tec tural Par ameters >
 < Us ingR emS erv er t y pe= "S tring"> Re moteE coi nM anager Ser ver </U s ing R emS erv er>
 < Us ingR emO bjec t ty pe= "S tring"> Re moteEc oinM anager</U s ingR em Obj ec t>
 < Us ingM iddle war e t y pe="M id dle w ar e">c or ba</U s ingM id dle ware>
 < Us ingR emMeth od ty pe=" Stri ng ">g enerateT andI</U s ingR emMet hod>
 < /Arc hi tec tur alPar ameters >
 < Tes ti ngPar ameters >
 < /Testi ngP ar amet er s >
 < Ac tualPar ameter s>
 < /Ac tualP arameters >
 </Su bO per>

</Arc h Op er ation>
<Ar chO p er ation>

 <Ar c hi t ect uralPar ameter s>
 < Name> doR egis ter </N a me>
 </Ar c hi t ec turalP aram et ers >
 <Tes tingP ara me ter s >
 < Rec or ding Time t ype=" boolea n" >tru e< /R ec ordingT ime>
 < Repeti tion t y pe= "int"> 20</R e pe ti tio n>
 </Tes tingP ara meters >
 <Ac t ual Par ameters >
 </Ac t ual Par ameters >
 <Su bO per >
 < Arc hi tec tural Par ameters >
 < Us ingR emS erv er t y pe= "S tring"> Re moteC us tomerM anager Ser v er </U s ing R emS erv er>
 < Us ingR emO bjec t ty pe= "S tring"> Re moteC us tomerM anag er< /Us ingR e mO bjec t>
 < Us ingM iddle war e t y pe="M id dle w ar e">c or ba</U s ingM id dle ware>
 < Us ingR emMeth od ty pe=" Stri ng ">ins ertC us to mer</U s ingR emMe th od>
 < /Arc hi tec tur alPar ameters >
 < Tes ti ngPar ameters >
 < /Testi ngP ar amet er s >
 < Ac tualPar ameter s>
 < /Ac tualP arameters >
 </Su bO per>
 <Su bO per >

X SLT Code
G eneration

Scripts

X SLT engine

1. Extended X M I
Save Form at

p a ck a ge Br o ke r ;

im p o rt ja v a .util.* ;
im p o rt ja v a .io.* ;

im p o rt o rg .o m g .Co sN a m in g.* ;
im p o rt o rg .o m g .Co sN a m in g.N a m in g Co n te x tPa c ka g e .* ;

im p o rt Re m o te Ec o inM a na g e rSe rv e r.* ;
im p o rt Re m o te Cu s to m e rMa n a ge r Se r v er .*;
p u blic c la ss Ec o i nI n te r fa c e e x te n d s Bro ke r._ Ec o in In te rfa c e Im plB as e
{

 p riv a te R em ote E co in Ma n a ge r _R e m o te E co in Ma n a g er =n u ll;
 p riv a te R em ote C us to m e rM an a g e r _ Re m o te Cu sto m e rM an a g e r=n u ll;
 p riv a te o r g.o m g .CO R BA .O RB o r b ;
 p riv a te o r g.o m g .CO R BA .O bj e ct o b jR ef ;
 p r iv a te Na m in g Co n te x t n c Re f ;

 p r iv a te v oi d in itOr b ()
 {
 tr y
 {
 o r b = o r g .o m g .C OR BA .O RB .in it();
 o b jR ef = o rb .re s olv e _ initia l_ r ef e re n c es ("N a m e Se r vic e ") ;
 n c Re f = Na m in g Co n te xtH e lp e r.n ar ro w (o b jRe f);
 } ca tc h (Ex c e p tion e) {
 e .pr in tSta c kTr a ce ();
 }
 }

p riv a te v o id ge t Re m o te Ec o in Ma n a g e r()
{
 if(_R e m o te E co in Ma n a g er !=n u ll)
 re tu rn ;
 try
 {
 if(or b ==n u ll)
 in itO rb () ;

 N am e Co m p on e n t n c = ne w N am e Co m p o n e n t("Re m ote Ec o in Ma n ag e r" , " ");
 N am e Co m p on e n t p ath [] = { n c };
 _ Re m o te Ec o in M an a g e r = Re m o te Ec o in Ma n ag e rSe r ve r .R e m o teE co in Ma n a g er H elp e r.n a rr ow (nc R ef .res o lv e (pa th)) ;
 } c atc h (E xc e p tio n e) {
 e .pr in tSta c kTr a ce ();
 }
}

D eploym ent
Tool

C lient
H osts Java

A pps A C T
Tool

Server
H osts

W eb/J2EE/D atabase
Servers

JSPs EJBs D Bs

R esults D atabase

A nalysis/
G raphs

2. G enerated Code &
Scripts

3. D eployed Com ponents Initialised
and Tests R un

4. Test R esults Q ueried
and G raphed

Fig. 5. Running, analysing and presenting results.

Fig. 6. Example performance analysis results.

Fig. 6 shows performance result presentation.
Elements have a small circle at left top as a “result
available” indicator. Fig. 6(1) shows several such
elements, including “Reader” which has evaluation
results displayed as a table (2) and bar chart (3). The
table shows that each instance of “Reader” issues 10

requests each of tasks doRegister and doGenerateEcoin,
taking 510ms (1990ms) to finish the requests, so on
average it takes 51ms (199ms) to finish an individual
task. The same results as a bar chart are in (3)

5. Design and Implementation

Fig. 7 shows key components of our extension of
Argo/UML. A meta-modelling tool allows architects to
define abstractions for different domains. The meta-
model extends the existing Argo/UML XMI-based data
representation. We chose to extend XMI as this was the
approach used within Argo to represent models, but also
to allow our saved architecture models to be partially
read by other XMI-capable tools. Modelling tools were
developed by specialising the Argo/UML class and
collaboration diagramming tools.

The Xalan XSLT engine generates code and scripts.
We modified a previously developed deployment tool to
upload generated files to remote hosts and provide test
co-ordination. Generated code captures timing data and
stores this in a Microsoft™ Access database. MS Access
forms and reports support test database browsing and
visualisation. These facilities can readily be extended
without modifying Argo/MTE itself. For some tests we
generate thick-client applications to act as server
invocation and data capture components. For thin-client
systems, we generate configuration scipts for
Microsoft™ Application Centre Test (ACT), which is
instructed to carry out the tests and provide basic result
visualisation, useful for load testing web applications.

6. Discussion and Conclusions

We have used Argo/MTE to model and test several
software architectures and have compared generated
performance results against that of actual implemented
applications for accuracy. Applications modelled
include several variants of thick and thin-client versions
of an on-line video application [8], a Java Pet Shop
application [15], substantial parts of NetPay [3], and
several architectural approaches to an enterprise
application integration (EAI) support system [9].

Argo/MTE successfully modelled these diverse
architectures. The meta-modelling tool permitted us to
define allowable modelling abstractions tailoring meta-
models for thin-client and thick-client application
modelling. We predominantly used the structural
architecture modelling facilities to define clients and
their requests, multi-tier servers, server objects, web
components and relationships, and databases and tables.
More complex architectures like the EAI and NetPay
systems used multiple views with collaboration and sub-
structural abstractions to manage the modelling
complexity. Modelling abstractions of Argo/MTE were

mostly sufficient. Exceptions included complex, multi-
element arguments to remote functions e.g. CORBA
sequences and complex transactional logic e.g. multi-
checkpoint transactions. Collaboration diagrams were
useful for specifying dynamic behaviour but UML-style
sequence diagrams would be useful to better capture
operation sequencing.

Argo/UML CASE Tool

XMI Model Class, Collaboration
Diagram Views

Extended XMI
Architecture
Meta-Model

Architecture
Modeller

XMI File

XSLT Code
Generation Scripts

XSLT
Engine

Code,
Scripts

Deployment
Tool Client

Results
Display

Remote Hosts

Remote
Servers

Results DB

Fig. 7. The architecture of Argo/MTE.

We generated J2EE and .NET code for each system
and performance tested applications using one or more
SQL Server 2000 database servers. Some applications
had pre-existing implementations in both J2EE and
.NET (video system and Pet Shop), others had
implementations in Java, J2EE, Java Messaging Service
and CORBA (NetPay and the EAI application). We ran
the same generated performance tests on the original,
hand-implemented applications as were run on the
generated test-beds. Some hand modification of these
generated tests was needed to add correct argument
values to properly drive hand-implemented servers. In
general, performance results obtained from the
generated test-bed code are accurate, with detailed
Argo/MTE models producing performance results
within 20-40% of the hand-implemented applications.
Larger variances occurred with systems with complex
business logic (conditional execution of substantial
remote object and database services) and complex
transaction processing logic as these violate our
assumption of low overhead of such code. For some
implementation technologies, including Java Messaging
Service and .NET web services, we had only
rudimentary code generators, resulting in inaccurate
generated code. We also discovered implementation

deficiencies in the hand-implemented video and micro-
payment systems which needed correction to sensibly
compare their performance to the test-beds (a useful
result in its own right). Our performance test database
proved useful to capture all test results in one place and
allow complex analysis and result visualisation.

Implementing and modifying XSLT code generators
proved relatively time-consuming and improved support
for this is needed. We envisage a small IDE within the
tool to specify XSLT constructs and corresponding
Argo/MTE extended XMI data, with ability to run parts
of the code generator over test cases. The performance
visualisation support is basic and needs improving. The
XMI extensions are arbitrary, although they are a
significant improvement on the proprietary architecture
model format our previous work used. The format used
may require revision as standardisation occurs in the
representation of architecture information in UML and
XMI. One final area for improvement is to permit users
to specify ranges of values for testing parameters e.g.
number of concurrent users and server threads. Ranges
of averaged performance values could then be collected
rather than a single average performance measure.

We have described extensions to a CASE tool for
software architecture modelling and performance test
bed generation. Argo/MTE provides graphical views for
specifying performance test bed meta-models and
architecture design diagrams stored as an extended XMI
representation. This is used to generate a performance
test bed, which, when run, produces relatively accurate
performance results. We have demonstrated utility of
the environment by modelling several architectures and
favourably compared generated test-bed performance to
that of hand-implemented versions of these systems.

References

[1] Balsamo, S., Simeoni, M., Bernado, M. Combining
Stochastic Process Algebras and Queuing Networks for
Software Architecture analysis, Proc 3rd Intl Wkshp
Software & Performance, 2002, ACM Press.

[2] Dai, X. and Grundy, J.C. Customer perceptions of a thin-
client micro-payment system: issues and experiences, J.
End User Computing, 15, No. 4.

[3] Dai, X. and Grundy, J.C. Architecture for a Component-
based, Plug-in Micro-payment System, Proc 5th Asia-
Pacific Web Conference, Sept 27-29 2003, Xi’an, China,
LNCS 2642, pp. 251-262.

[4] ECPerf Performance Benchmarks, August 2002,
ecperf.theserverside.com/ecperf.

[5] Gomaa, H., Menascé, D., and Kerschberg, L. A Software
Architectural Design Method for Large-Scale Distributed
Information Systems, Distributed Systems Engineering J.,
Sept. 1996, IEE/BCS.

[6] Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proc Software - Methods and Tools,
Wollongong, Australia, Nov 6-9 2000, IEEE.

[7] Grundy, J.C. and Hosking, J.G. SoftArch: Tool support
for integrated software architecture development,
IJSEKE, Vol. 13(2), 2003,. 125-152.

[8] Grundy, J.C., Cai, Y. and Liu, A. Generation of
Distributed System Test-beds from High-level Software
Architecture Descriptions, Proc 2001 IEEE Intl Conf on
Automated Software Engineering, San Diego, CA, Nov
26-29 2001.

[9] Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and
Amor, R. An Architecture for Efficient, Flexible
Enterprise System Integration, Ptoc 2003 Intl Conf on
Internet Computing, Las Vegas, June 23-26 2003,
CSREA Press, pp. 350-356.

[10] Grundy, J.C., Wei, Z., Nicolescu, R. and Cai, Y. An
Environment for Automated Performance Evaluation of
J2EE and ASP.NET Thin-client Architectures, Proc 2004
Australian Conference on Software Engineering,
Melbourne, April 14-16 2004, IEEE CS Press.

[11] Hu, L., Gorton, I. A performance prototyping approach to
designing concurrent software architectures, In Proc of
the 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems, IEEE, pp. 270 –
276.

[12] Juiz, C., Puigjaner, R. Performance modelling of pools in
soft real-time design architectures, Simulation Practice &
Theory, 9, 2002, 215-40.

[13] Kazman, R. Tool support for architecture analysis and
design, In Proc 2nd International Workshop on Software
Architectures, ACM Press, 94-97.

[14] McCann, J.A., Manning, K.J. Tool to evaluate
performance in distributed heterogeneous processing.
Proc 6th Euromicro Wkshop Parallel & Distributed
Processing, IEEE, 1998, 180-185.

[15] MSDN, Using .NET to implement Sun Microsystem’s
Java Pet Store J2EE BluePrint application, October 2002,
http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnbda/html/psimp.asp.

[16] Nimmagadda, S., Liyanaarachchi, C., Gopinath, A.,
Niehaus, D. and Kaushal, A. Performance patterns:
automated scenario based ORB performance evaluation,
Proc 5th USENIX Conf on OO Technologies & Systems,
USENIX, 1999, 15-28.

[17] Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I.
Using analytic models for predicting middleware
performance. In Proc 2nd Intl Wkshop on Software and
Performance, ACM 2000, pp.189-94.

[18] Robbins, J.E. and Redmiles, D.F. Cognitive Support,
UML Adherence, and XMI Interchange in Argo/UML,
Proc CoSET’99, Los Angeles, May 1999, University of
South Australia, pp. 61-70.

[19] Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending
design environments to software architecture design,
Automated Software Engineering, vol. 5, No. 3, July
1998, 261-390.

[20] Subraya, B.M., Subrahmanya, S.V. Object driven
performance testing of Web applications, Proc 1st Asia-
Pacific Conf Quality Software, IEEE, 17-26

[21] Web Application Testing, WAPT Version 2.0,
http://www.loadtestingtool.com/.

Software Project Risk Evaluation based on Specific and Systemic Risks

Hélio R.Costa1,2, Márcio de O. Barros2,3, Guilherme H. Travassos2

heliorcosta@infolink.com.br, marcio@cos.ufrj.br, ght@cos.ufrj.br

1 CCA-RJ – Brazilian Air Force
Ponta do Galeão s/nº - Ilha do Governador – CEP: 21941-510 – Rio de Janeiro – Brasil

2 COPPE / UFRJ – System Engineering and Computer Science Department
Caixa Postal: 68511 – CEP: 21945-970 – Rio de Janeiro – Brasil

3 UNIRIOTEC – Applied Computer Science Department
Av. Pasteur 458, Urca – CEP: 22290-240 – Rio de Janeiro – Brasil

Abstract
Recently, risk management has become a major

concern for software project managers. Many studies have
been conducted to identify risks that can influence the
success of software projects. These studies were successful
in defining a generic risk management process for software
projects and developing techniques for risk identification,
evaluation, planning, and control. However, we still lack
techniques to compare projects risk levels and to evaluate
risk diversification among several projects.

This paper presents an approach to evaluate a project
overall risk level. It is based on the specific project
characteristics and relative risks’ importance, which can
affect software projects. An extensive questionnaire is used
to identify project-specific characteristics. An empirical
study was planned and executed to quantify the relative
importance of project risks for a specific system category.
Observed results from the study are presented and
discussed.

Keywords: software project management, software risk
management, empirical studies.

1. Introduction
Software project risks can be classified in two groups:

systemic risks and specific risks. Systemic risks are those
factors that affect all software projects of a given category
(such as information systems, military systems, off-the-
shelf components, and so on). Any project in a category is
subjected, to a specific level, to systemic risks that affect
this category. Specific risks, on the other hand, are those
factors associated to particular characteristics of a project.

The separation of risks in systemic and specific has its
root in Economy. For instance, in the stock market every
dealt stock has risks associated to the market and risks
linked to peculiar aspects of an enterprise. Market risks
(systemic) are due to the economic conditions of the
country in which the enterprise resides, governmental
influence upon markets, international economical scenario,

and global factors that influence all enterprises subjected to
the same market. Enterprise risks (specific) are related to
any particular organization, local market conditions,
administration, reputation, and so on, i.e. while systemic
risks evaluate the general scenario in which the enterprise is
located, specific risks look within the enterprise for internal
factors that can affect its performance.

In this paper we present an approach to evaluate a
software project risk level based on its systemic and
specific risks. This approach is based on a questionnaire
built by aggregating taxonomies for risk identification
presented in the software engineering literature. Each of its
questions addresses a particular characteristic of a software
project (specific risks). The questions are grouped in risk
factors for capturing the project systemic aspects. By
weighting the responses given by managers according to
the relative importance of each risk factor, we calculate a
project risk level.

The risk level and the weighted responses are useful
for decision making in software projects. First, the risk
level states how risky is a project in a single number,
helping a manager to compare two or more projects based
on their risk-and-return1 ratios. Also, the weighted averages
allow risk diversification among several projects. For
instance, consider that the current projects developed by an
organization may have a high analysis risk. The manager
can decide to develop a new project, since its risk analysis
is not so high, thus balancing the overall risk level among
the risks that the organization is willing to accept.

The proposed risk level evaluation technique requires
knowledge about the relative importance between risks in
software projects. In order to determine this information, an

1 The risk-and-return ratio is often used instead of ROI (return on
investment) to evaluate an organization’s willingness to develop
a project. Unlike ROI, which only considers how much the
organization will earn from the project, the risk-and-return ratio
measures how much risk the organization will incur while
attempting to earn the benefits from the project.

empirical study was planned and executed. The results from
this study allowed us to determine, by collecting specialists’
opinion, the weight of every risk for three distinct project
sizes in a specific system category.

We organized this paper in five sections. Section 1
comprises this introduction. In Section 2, we present the
technique that determines a project overall risk level. In
Section 3, we describe an empirical study that was
developed to quantify the relevance of software project
risks for a specific system category, as required by the
technique presented in Section 3. In Section 4, we compare
the proposed approach to related works. Finally, in section
5 we present the main contributions of this paper and future
perspectives of this research project.

2. Evaluating a Project Risk Level
To determine a software project risk level, the first step

consists in answering a risk identification questionnaire.
The questionnaire is based in the risk identification
taxonomy presented in [1], which was complemented by
other risk questionnaires and taxonomies presented in the
literature [2; 3; 4; 5; 6; 7].

The questionnaire conveys 211 questions, which are
classified in ten groups, named factors. Each question
pertains to a single factor, as presented in Table 1. They
aim to closely describe the abstract concept represented by
the factor, relating it to more practical elements that can be
evaluated by the manager from project characteristics. The
questionnaire is extensive and will not be covered in this
paper. Further details about its questions can be found at the
URL http://www.cos.ufrj.br/~heliorc/riskquest.html.

Table 1- Distribution of questions among factors

Factor # Questions
Analysis 28
Design 17
Coding 11

Test 25
Planning 36
Control 17
Team 32

Policies and Structure 08
Contracts 21

Clients 16

The answer to each question is represented by a number
from 0 to 5, where zero indicates that the issue covered by
the question does not represent a risk for the project at hand
(lower risk level) and 5 indicates that the question addresses
an issue of major concern (higher risk level). The manager
has also an option to assign the answer as not relevant (NR)
for the project. Given these answers, the risk level
evaluation technique proceeds in three additional steps.

In the next step, the manager calculates the average
values of the answers for each risk factor. Questions

marked as not relevant are treated as missing values and are
not considered in the average calculation. By using average,
we implicitly assume that every question has the same
relevance within a risk factor. This assumption is due to
simplification, given the practical difficulties in evaluating
the differences among so many (211) questions.

In the following step, the manager divides the average
value calculated for each risk factor by 5 and multiplies the
resulting number by the factor’s adjustment value. Since the
maximum value that can be attributed to the average value
is 5, the division aims to normalize it, turning it into a
number between 0 and 100%. In the last step, the manager
sums the adjusted average values to determine the overall
project risk level.

Table 2 presents an example of a project risk level
calculation. In this example, two risk factors are considered.
The first factor has 3 questions and a 70% adjustment
value. The second factor conveys only 2 questions and a
30% adjustment value.

The risk factor adjustment value captures the systemic
relevance of a risk factor and a process to determine this
value is described in Section 3. However, some properties
of this number should be stated:

The sum of all risk factor adjustment values must be
100%;
The higher the relevance of a risk factor, the higher
should be its adjustment value.

The first property normalizes the project risk level,
allowing it to assume any value between 0 and 100%. This
is granted since each average answer can vary from zero to
5 and is divided, during the second step, by the maximum
value that it can assume (5). The second property adjusts
the specific risk evaluation (question answers) to the
systemic risks presented by risk factors.

Table 2 – Calculating a project risk level

Factor 1 Factor 2
Q1 Q2 Q3 Q1 Q2 Answer the

questionnaire 2 4 3 2 4

Calculate average
question answers

3
3

)342(3
2

)24(

Adjust average
values

%42%70*
5
3 %18%30*

5
3

Sum the adjusted
average values

Risk Level = 60%

The risk factor adjustment value is a delicate point in
the proposed method. For instance, it should be stated that
these values vary from project to project. We acknowledge
this observation, but within a system category, this

difference can be attributed to specific risks. The later are
captured in the answers to the questions of the taxonomy
and reflected on the average values submitted for each risk
factor. According to this logic, a high adjustment value for
a factor that is not relevant in a project will have its final
value reduced by the absence of risks or the attribution of
low weights for its questions.

3. An Empirical Study for Risk Evaluation
Due to the many different types of software projects that

can be undertaken for an increasing number of domains, it
is supposed that the risk factors adjustment values required
by the risk level evaluation technique presented in Section 2
can vary dramatically across different system categories. In
order to determine these values for a particular category, we
have planned and executed an empirical study.

With the purpose of reducing this research’s scope and
improve its precision, the first execution of the study was
limited to evaluating the risk adjustment factors for
Information Systems projects. However, in this section we
present the study summary and suggest its application for
other domains and system categories. The study was
planned according to the methodology proposed by Wohlin
et al. [8].

Objective: To determine the adjustment values which
measure each risk factor’s contribution to software project
success. The adjustment factors reflect how critical a risk
factor is for a specific system category. In this study,
criticality is defined as the degree to which a factor
contributes to the failure of a project.

Subjects: The study was performed with the assistance of
professors, graduate students, and professionals with
experience in software project development in the industry.
The methods adopted to choose the subjects were Quota
Sampling and Convenience Sampling. Thus, subjects were
selected from distinct groups of the target population
(software developers), but not randomly.

The subjects have given their opinion about the values
of the risk factors in relation to the system category. Fifty
(50) subjects were interviewed. All of them agreed to
participate and signed in a consent form regarding the
study. Seven (7) subjects hold a PhD degree in Computer
Science, fifteen (15) have MSc degree, nineteen (19) have
taken an MBA or equivalent course, and nine (9) are
undergraduated professionals.

Among the subjects, eleven (11) are academic
researchers and professors, while thirty-nine (39) currently
work in software development organizations in Rio de
Janeiro, Brazil. Twenty-six (26) different organizations
were visited for the interviews.

Concerning their participation on software development
projects, thirty-four (34) subjects have acted as project
managers, fifteen (15) have worked as senior analysts, and
one (1) subject have worked as senior programmer. Their

average experience in software development is about
twelve (12) years, along which they have participated in
about fourteen (14) projects, in average.

Project Size: while analyzing the risk factors, subjects
were asked to keep in mind a specific project size. Subjects
were also asked to choose the project size that closely
represents their experience. The project size chosen by each
subject was characterized by the effort required for its
development (measured in man-months) and registered in a
subject characterization form. Project sizes were used in
data analysis for grouping subject opinions, so that distinct
risk factors adjustment values could be determined for
different project sizes.

Grouping: It was expected that subject experience and
project size could influence the results of this research. So,
we decided to block subjects and projects before data
analysis. Subjects were classified, according to their
experience, in three groups: low experience, medium
experience, and large experience.

The grouping process was based on a characterization
form that was filled by each subject before evaluating the
risk factors. The form captured academic and industrial
experience data about each subject. Examples of such
information included: the number of years working with
software development, the number of developed projects,
academic formation, and degree of experience in risk
management. This information allowed us to summarize
subject’s expertise in a single number (which varied from 0
to 15, the later representing the highest experience) and
group subjects using the approach proposed by [9].
According to this classification, Table 3 presents the
number of subjects and average weight in each group.

Table 3 – Subject count per group

 Low Exp Medium Exp High Exp
Subjects 13 28 9
Avg. Weight 4.09 6.62 10.78

By grouping subjects, we were able to determine a
common weight for the opinions given by subjects of the
same group. We have assigned a weight of 1.0 for low
experienced subjects. The weights of the following groups
were determined by dividing their weight average value by
the original weight average calculated for the low
experienced subjects group. This process resulted in the
weights presented in Table 4.

Table 4 – Subject groups’ weights

 Low Exp Medium Exp Large Exp
Weight 1 1.61 2.63

Projects were classified as small, medium or large,
according to the effort required for their development
(measured in man-months). Projects developed with less

than 80 man-months were considered small; those
developed with more than 80 and less the 250 man-months
were considered medium; and those which required more
than 250 man-months where considered large projects.
According to this classification, Table 5 presents the
number of projects and average size in each group.

No weights were assigned for projects. Instead, during
data analysis they were adjusted by subject experience. The
limits for the subject and project groups were established by
minimizing the standard deviation among the participants
of each group. This process was selected to enhance the
similarity among elements of the same group.

Table 5 – Project count per group

 Small Medium Large
Projects 17 18 15
Average Size 45.71 151.78 507.27

Instrumentation: As we needed to capture the individual
experience of each subject, a subjective evaluation method
was adopted. Among the available methods, the one chosen
for this study was the Paired Comparison. In this method,
the objects of interest are placed in a matrix so that each
cell represents a comparison between a pair of objects.
Only the elements above the matrix diagonal are
considered. The subject analyses each pair of objects and
determines which object shall receive the preference. In our
study, the subjects were asked to subjectively determine the
degree to which the preferred object was more important
than the other one. After all comparisons, it is possible to
determine which factor has the greatest relevance and
successively until the least relevant factor.

The main advantage of comparing the objects in pairs
is to reduce the evaluation complexity and improve the
precision its result. Another point to be highlighted is that
the human mind can more easily establish differences than
estimate absolute values. Finally, through the comparison
of an object with the others, the subject is forced to make a
decision about the relation between two entities [10]. The
disadvantage of this method is the great number of
comparisons required in case of many objects: this value is
in the order of the square of the number of objects.

The instrument chosen to support the comparisons was
the MACBETH tool in its demonstration version2 [11]. This
tool allowed the subjects to formalize their preferences in a
semantic way. By using linear programming, the votes were
transformed by the tool in an interval scale which have their
values expressed in terms of percentile. The MACBETH
tool also checks for inconsistencies in the votes and helps in
conflict resolution among comparisons, enforcing judgment
coherence without influencing or restricting the freedom of
the subjects in expressing their opinion.

2 Even being a demonstration version, the tool has shown enough
facilities to support the study.

Outlier Elimination: After collecting the judgment of all
subjects, we have analyzed the data generated by the tool.
The process started by eliminating outliers, where we
applied elimination by standard deviation. In this process,
we calculated the average and standard deviation for the
votes given to each risk factor. Next, all the values that
were separated from the average by two or more standard
deviations were eliminated as outliers. From the 500 rough
values obtained from subjects, only 14 were rejected. One
value was eliminated for the Coding, Control, and Contract
risk factors; two values were eliminated for the Analysis,
Design, Team, and Client risk factors; and three values
were eliminated for the Planning factor.

Data Analysis: The valid data were submitted to a T-test
with a significance level of 0,05 (5%) and many
comparisons were done in a statistical package in order to
evaluate the differences and similarities between the
averages of the collected values. The analysis was
accomplished to the three project sizes (small, medium, and
large). It was not observed any significant difference
between these project sizes for the Analysis, Design,
Coding, Test, Planning, and Contract factors. The
remaining factors – Team, Control, Policies/Structure, and
Clients – have presented a small, though significant,
difference between small and large projects, but no
difference between small/medium or medium/large
projects. Therefore, it was decided to keep the values for all
the factors and maintain the division of the projects in three
sizes, despite the great resemblance observed in some
factors.

The adjustment values obtained in the study after all
the statistical analysis and normalization processes are
presented in Table 6. They represent the degree of
importance in a software development project.

Table 6 – Adjusted values of the factors

 Small (%) Medium (%) Large (%)
Analysis 12,36 12,57 10,78
Design 8,59 7,52 6,23
Coding 4,84 4,13 4,00

Test 7,36 6,17 5,82
Planning 15,26 13,04 13,85
Control 10,39 11,64 12,19
Team 11,28 11,53 12,63

Contracts 3,40 5,37 4,60
Policies/Structure 11,41 12,47 14,11

Clients 15,11 15,57 15,79

Internal Validity: Subjects were selected by Quota
Sampling and Convenience Sampling based on their
experience in software projects development. They were
invited to take part of the study and were blocked in three
groups. The number of subjects that voted for a certain
project size was random and no mortality was observed,
due to the nature of the study. The performance of

MACBETH tool was considered positive according to a
qualitative questionnaire filled by the subjects after using
the tool in the experiment.

External Validity: Due to number of subjects and the way
they were selected, it can be said they are representative of
the developers’ population. The quantification of the factors
was based uniquely in the experience of the subjects that
had the opportunity to operate the tool in the time and the
place they judged adequate. The interviewer helped the
subjects to use the tool, but was not allowed to influence
their evaluation.

Construct Validity: As much as the factors as the
questions used in the study were based on taxonomies
presented in the literature and, therefore, are considered
valid for the study. A pilot experiment was conducted prior
to the execution of the study to test the plan, the usefulness
of the MACBETH tool, and to improve the study. The
subjects were explained about the difference of the factors
and characteristics of the questions pertaining to each
factor. The possibility of guessing the result was eliminated
by the use of paired comparison and the MACBETH tool,
where the votes were checked for consistency. The
percentile values for the risk factors were computed
automatically, without the interference of the subject or the
researcheres. The software supported conflict resolution, by
pointing the inconsistent votes to the subject, requiring their
correction and thus leading to a better result.

Conclusion Validity: The T-test performed with a
significant level of 0,05 (5%) leads to reliable conclusion
about the adjustment values of risk factors obtained in the
study. The same instruments were presented to the subjects
and therefore, the implementation of the study can be
considered reliable. The outlier elimination reduced the
possibility of data misinterpretation and blocking the
subjects and the projects in different groups minimized the
heterogeneity of the elements. The adjustment values for
risk factors are valid only for Information Systems projects
and for the project sizes defined in this study, what turns it
more restrictive, but more reliable.

Lessons Learned: The quantitative data obtained provide
some positive indications of how the study was executed
and about the trends of the adjustment values of each risk
factor in software projects:

It was observed the validity in the use of the
MACBETH tool to accomplish the quantification of
the factors. A qualitative questionnaire was presented
to subjects to evaluate the methodology used during the
study. The subjects informed that the MACBETH tool
helped them in their decision process and could really
express their personal opinion about the factors;
Despite subjects’ experience, it seems that the general
concept that people have about the adjustment values

for risk factors is almost the same, regardless the
project’s size;
According to the statistical analysis, some risk factors
(Analysis, Design, Coding, Testing, Planning, and
Contracts) can be considered having the same
adjustment values regardless the size of the project;
The remaining factors evaluated in the study (Control,
Team, Policies/Structure, and Clients) must be
represented by different adjustment values according to
project size, but further investigation is still needed.

The values obtained from this study can be used as a
guide for project managers during risk evaluation activities,
providing quantitative data and showing a scenario of how
the resources should be applied to contain certain risk
types, what are the most important contingency plans, and
where the risk management process requires more attention.
Risk factors’ adjustment values are used in the third step of
the software project risk level evaluation technique
presented in Section 2. For instance, regarding Table 2, to
calculate the adjusted average values presented in the fourth
row, we should use values from Table 6.

4. Related Works
The proposed approach of how to quantify the risk

factors in software projects has some innovations when
compared to previous works. Karolak [12] suggests a three
level tree where the manager, at the first level, gives his
opinion of how important are the 83 risks presented in a list
that are divided in 10 different groups named factors. In a
second level the averages of the values given previously are
calculated and this number is attributed to the factor.
Finally, at the third level, the probability of success of a
project is calculated according to a weighted average of the
tree categories that comprise the 10 factors. The managers,
according to their own evaluation about the project, must
determine the weights for these categories.

Other works can be found in the literature talking about
the relevance of risk factors [13]. Nevertheless, they only
show the opinion of specialists of what are the most
important risks in a software project or what are their
relations but do not quantify them nor determine their
importance in the success of a project.

A valuable correlation that can be observed between
this study and the ones presented in [13] is that the risk
factors with the biggers adjustment values are the same
indicated as the more import in that study.

5. Final Considerations
This paper presented an approach to calculate a project

risk level based on its specific and systemic risks. An
empirical study was planned and executed to determine the
relevance of each risk factor to the success of a software
project. Statistical treatment was given to the results to
obtain the adjustment values needed by the methodology

and a questionnaire was created to help managers to
evaluate the spcecific risks of a project.

The main contributions of this paper are to present a
methodology to calculate the risk level as much of a factor
as the whole project and also to quantify the adjustment
value of each factor to help managers in their decision
process.

Future perspectives of this work include the
development of a tool to help managers in calculating a
project risk level according to the methodology presented in
this paper. The factor relevance weights can also be used to
compare different projects and calculate a software
organization’s overall risk level based on the correlations
observed among the factors.

The risk level obtained by applying the proposed
approach can also be used to estimate the prices charged by
a project based on its risk level. It can also be calculated for
different project milestones to create a baseline during
project planning and compare the risk levels throughout
project execution, thus supporting the decision makers.

Finally, we intend to replicate the empirical study to
enlarge the number of participants and verify if the results
obtained in the first ran can be generalized to other
populations and other system categories.

Acknowledgements

The authors would like to thank all the subjects who
took part in the empirical study for their valuable
contribution, the organizations that allowed them to
participate as well as the Brazilian Air Force, CAPES and
CNPq for the financial support to this work.

References

[1] Carr, M. J., Konda, S.L, Monarch, I., Ulrich, F.C.,
Walker, C.F., (1993), “Taxonomy-Based Risk
Identification”, Technical Report CMU/SEI–93-TR-6,
Software Engineering Institute, Carnegie Mellon
University, EUA, July

[2] Jones, C. (1994) “Assessment and Control of
Software Risks”, Yourdon Press Computing
Series.New Jersey

[3] Karolak, D.W., (1996), “Software Engineering Risk
Management”, Los Alamitos, CA: IEEE, Computer
Society Press

[4] Barki H.; Rivard S.; Talbot, J., (1995), “Toward an
Assessment of Software Development Risk”. Journal
of Management Information Systems, v. 10, n. 2, p.
203-225

[5] Boehm, B.W. (1991), “Software Risk Management:
Principles and Practices”, IEEE Software, vol. 8, n. 1,
January, pp. 32-41

[6] Moynihan, T. (1997), “How Experienced Project
Managers Assess Risk”. IEEE Software, v. 14, n. 3, p.
35-41, May/June

[7] Wallace, L., (1999), “The development of an
instrument to measure software project risk”. PhD
Thesis - College of Business Administration, Georgia
State University, Georgia.

[8] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.,
Regnell, B., Wesslén, A., (2000), “Experimentation in
Software Engineering – An Introduction”, Kluwer
Academic Publishers

[9] Farias, L.L, Travassos, G.H., Rocha, A.R.C, (2003),
“Managing Organizational Risk Knowledge”, Journal
of Universal Computer Science, Vol. 9, No. 7, pp.
670-681

[10] Miranda, E., (1999), “Establishing Software Size
Using the Paired Comparisons Method”. Ericsson
Research, Canada

[11] Bana e Costa, C.A. & Vansnick, J.C., (1995), “A
theoretical framework for Measuring Attractiveness
by a Categorical Based Evaluation Technique
(MACBETH)”. In: Clímaco, J. Multicriteria Analysis.
Berlin: Springer Verlag

[12] Karolak, D.W., (1996), “Software Engineering Risk
Management”, Los Alamitos, CA: IEEE, Computer
Society Press

[13] Kleil, M., Cule, P.E., Lytnein, K., Schmidt, R.C.,
(1998), “A Framework for Identifying Software
Project Risks”. ACM, v. 41, n. 11, November

Software Traceability via Versioned Hypermedia
�

Tien N. Nguyen, Ethan V. Munson, and Cheng Thao
Department of Computer Science

University of Wisconsin-Milwaukee

Abstract

Several researchers have explored the use of hypermedia
technology to improve software traceability in software en-
gineering tools. However, existing hypermedia-based tools
have only limited supports for managing the evolutionary
process of software traceability links among software docu-
ments. The Software Concordance (SC) improves software
traceability maintenance and evolution by its versioned hy-
permedia traceability model. The paper presents the model
and its implementations, which explicitly represent trace-
ability links, allowing them to be browsed, visualized, and
systematically analyzed. SC maintains and versions trace-
ability link networks separately from documents, allowing
developers to define multiple networks on the same set of
documents, without modifying documents’ contents. SC
not only supports complex traceability linking structures
(e.g., multi links), but also supports versioning of individ-
ual traceability links. Software documents and traceability
link networks are all versioned at a fine granularity.

1 Introduction

Extensive effort in the software engineering community
has been brought forth to improve the explicit connection
of documentation and source code. The need for tools
and techniques to maintain software traceability links in
legacy systems is particularly important for a variety of soft-
ware engineering tasks. These include general maintenance
tasks, impact analysis, program comprehension, and more
encompassing tasks such as reverse engineering for rede-
velopment and systematic reuse. However, the main lim-
itation of existing software traceability tools is that trace-
ability links are rarely explicit and their evolution over time
are hardly recorded in a cohesive way as software projects
evolve. During a software’s life cycle, the traceability re-
lationships actually connect revisions of software artifacts
together. Let us take Figure 1a) as an example. Initially,

�
This research was supported by the University of Wisconsin-

Milwaukee Dissertation Fellowship.

� � � � 	 � 	 �
e

responds to

complains about

responds to

complains about

edit changes

� � � � � � � � � � � � � � " $ � � � & � � � "
ol

N
� � " $ � � � � �

g
� � � ' � $

Bug
� �

port

� � � � 	 � 	 �
e

 version k

Bug
� �

port

� � � � 	 � 	 �
e

 version k-1

a)

b)

Figure 1. Traceability Links between Versions

an error is found in a source file and a bug report is cre-
ated. To trace the error in the source file, a traceability link
(“complains about”) is created, which points from the bug
report back to the source file. Now, a developer fixes the
error. For accountability, the developer adds another trace-
ability link between two artifacts: the “responds to” link
from the source file to the bug report. At this point, for
his record, the developer does not remove the “complains
about” link, therefore creating inconsistency. That is, the
bug report would “complains about” the source file that has
been fixed.

The problem is that the evolution of the networks of soft-
ware artifacts and traceability links is not often recorded.
When versions are added to the picture (see Figure 1b)), the
bug report actually “complains about” the source file at ver-
sion k-1, while the newer version of the source code is cre-
ated in response to the bug report. That is, the traceability
network between two documents at version k-1 contains the
bug report, the link “complains about”, and the version k-1
of the source file. On the other hand, the version k of that
traceability network consists of the version k of the source
file, the “responds to” traceability links, and the bug report.
Therefore, the whole process of software maintenance can
be better recorded with the presence of version control.

Our solution to this problem is to provide a versioned
hypermedia (also called hypertext versioning) traceability
model and its infrastructures to manage versions of software
artifacts and of traceability links. The traceability links are
represented via a formal versioned hypermedia model that
is easily supported by using underlying XML representa-
tions. The model addresses fine-grained version control of
both documents and traceability links simultaneously. This
is necessary because otherwise, linking would be limited to
entire documents. The next section discusses related work
on software traceability, followed by a description of our
versioned hypermedia traceability model in Section 3. Sec-
tion 4 describes its implementations in the Software Con-
cordance (SC) environment. Last section is for conclusions.

2 Related work

Numerous techniques have been used for software
traceability including cross referencing schemes [10],
keyphrase dependencies [16], traceability matrices [8], hy-
pertext [25], integration documents [17], formal models and
languages [14], and constraint networks [4]. The ability
to present interrelated information in non-linear form of
the hypertexts has attracted many research in applying it
to software traceability [28]. This section focuses only on
hypertext-based software traceability approaches.

The visualization tools and systems using HTML-based
hyperlinks, such as CHIME [9] and Javadoc [31], insert
HTML tags into source code and make them browsable.
Many tools produce Javadoc-based outputs for software
documents based on program analyses [27], while Web-
based tools take advantages of the WWW environment for
supporting software engineering tasks [12]. SODOS [15]
was based on a uniform document graph model and used a
relational database to store a pre-defined set of relationship
types. DIF [13] represented a hypertext network by storing
relationships in a relational database. It supported traceabil-
ity through keyword-based search and navigation mecha-
nisms. Hypermedia-based integrated development environ-
ments (IDEs) that model a software system as a hypertext
include DynamicDesign [3], ChyPro [1], SmallTalk liter-
ate programming [25], HyperDisco [35], component-based
open hypermedia system [23]. Some traceability tools were
focused on requirements and designs [30] and others on
user cases and test cases [24]. The Chimera open hy-
permedia system [2] provides hypermedia services across
multiple documents maintained by different applications.
However, the versioning proposal for Chimera was not im-
plemented [32]. TraceM [29] provides a framework for
transforming implicit relationships to explicit ones. Many
hypertext-based tools have been developed to improve con-
sistency among software documents [5, 24].

Versioned hypermedia systems [33] offer an appealing

approach to representing the evolution of software docu-
ments and their traceability relationships. However, IDEs
based on versioned hypermedia have only provided simple
versioning of objects and never with versioning of links.
Both RCS-based HyperWeb [11] and HyperCASE [7] did
not support versioning for links. HyperPro [26] provided
versioning for links via versioning for a composite, but no
interactive program analysis was supported. DHT (Dis-
tributed Hypertext Systems) [22] was based on client-server
architecture to provide integration of heterogeneous pre-
existing software repositories and version control for soft-
ware documents. Web-based software development can
take advantage of WebDAV [34], an extension of HTTP to
provide versioning for Web documents. Most of existing
versioned hypermedia systems focused on hypermedia au-
thoring and were not designed for software development.

3 Versioned hypermedia traceability model

3.1 Requirements

To address the evolutionary process of software trace-
ability links, hypermedia in software engineering tools need
to accommodate certain requirements. Firstly, the repre-
sentation of hyperlinks must be explicit and facilitate sys-
tematic analyses of traceability networks. Implicit relation-
ships hinders developers from having a full understanding
of the system and from discovering important information.
Secondly, hyperlinks must be able to connect many doc-
uments (i.e. multi links) and need to support both coarse-
grained (at document level) and fine-grained linking (at doc-
uments’ fragment level). Hypertext versioning should sep-
arate hypertext structures from documents’ contents, giv-
ing developers more flexibility to have different traceability
link networks to complete different tasks without modify-
ing documents. In addition, the ability to track changes for
a particular traceability relationship is very useful. The fact
that existing hypermedia systems for software development
do not version links is a significant factor preventing their
wider use in the software engineering domain [33]. The
history of traceability networks also needs to be recorded
since it would help engineers to understand better the de-
velopment of software documents and logical relationships
among them over time. These requirements are addressed
in our versioned hypermedia traceability model.

3.2 Documents and traceability links

Software documents and their traceability relationships
can be modeled as a network of nodes and links where each
node represents a fragment of a document and each link rep-
resents a relationship between fragments. To model soft-
ware documents, SC follows a structure-oriented approach

where each document is considered to be logically struc-
tured into fine units, called structural units. Each software
document is represented by a document tree in which each
node encodes a logical unit of the document. This approach
is often taken in structured document research, e.g. SGML
and XML. Since XML has become the standard structured
document format and very successful in representing many
different data types, it is very natural to use XML for repre-
senting non-program artifacts. For a program, abstract syn-
tax tree (AST) perfectly represents its logical structure. Via
this approach, we have uniform structure-based representa-
tions for many types of software artifacts [20].

Because traceability is involved in the domain of linked
documents, it is natural to use the hypertext model [6] as
a basis for representing these relationships. Though differ-
ent hypertext systems have variations of the notion, the hy-
pertext model can be defined as a set of intellectual works
and their inter- and intra-work relationships, represented by
links. A work is an artifact that can be drawn from any
medium, such as text, image, or video. A wide variety of
terms have been used to describe a work in hypertext sys-
tems including document, card, node, object, and compo-
nent. In the hypertext model, a link (or hyperlink) is a first-
class entity and defined as an association among a set of
works or anchors. Anchors denote regions of interest within
a work and form the endpoints for links. The arity of a link
specifies the number of its endpoints. While HTML sup-
ports only binary (two endpoint) links, more sophisticated
representations permit n-ary links, which can have a vari-
able numbers of endpoints.

We use this formal hypertext model as the basis for rep-
resenting traceability relationships, and then extend it into
a versioned hypermedia model via a fine-grained version
control scheme. Each software document will be a work in
the sense used by the hypertext model. It is possible to de-
fine an anchor corresponding to any well-defined structural
unit. The SC’s versioned hypermedia model is based on the
following concepts: linkbase, hypertext network, link, and
anchor. A linkbase is a container for hypertext networks
and/or other linkbases. The relation between a linkbase and
a hypertext network is the same as the relation between a
directory and a file in a file system. A hypertext network,
which represents for a traceability link network, can be-
long to only one linkbase. A hypertext network contains
links and anchors. A link, representing for a traceability
link, is n-ary and is an association among a set of anchors.
An anchor can belong to multiple links. A link or an an-
chor can also belong to multiple hypertext networks. An
anchor, denoting the region of interest within a document,
refers to a structural unit. This separation between anchors
and structural units allows for the separation between hy-
pertext networks and documents’ contents. This approach
is called hyperbase [33] where the hypertext structures are

1

2

3

4

5 7

6

9

10

8

l
1

l
4

l
2

l
3

l
5

sec 1, doc 1

(requirement)

sec 2, doc 1

(requirement)

sec 1, doc 6

(design)

sec 1, doc 5

(design)

sec 1, doc 2

(design)

 doc 4

(design)

sec 1, doc 3

(design graph)

Class A

Class B

function f

Class C

(motivate)

(agree)

(use)

(generate)

(require)

Figure 2. A traceability network

stored separately from documents. Links and anchors can
be associated with any attribute-value pairs.

Links may have named types (such as “requires,” “must
agree,” or “next item”), but the set of types is not fixed,
so that different software processes can be supported. In
SC, traceability links are divided into causal and non-causal
classes. Causal links represent the relationships that carry
with them an implied logical ordering of the documents in-
volved. For example, testing and bug reports cannot be pro-
duced until an implementation is available, and while it is
not necessarily the case that requirements will be written
before designs, there is certainly a logical relationship be-
tween them that makes design depend on requirements. A
causal relationship can be considered as a relation between
entities: something happens and causes something else to
happen. Causal links are always directional, connecting a
set of source anchors and a set of target anchors. Non-
causal links exist when documents or parts of them must
agree with each other, but the causality cannot be clearly
identified. Figure 2 shows an example of a traceability net-
work. The links

� �
,

� �
,

� �
,

� �
are causal links, which have in-

coming and outgoing edges that are directed, while
� �

(non-
causal) and its anchors are connected by non-directed edges.
The anchors (1-10) refer to document nodes.

3.3 Fine-grained versioning scheme

To provide version control for software documents and
traceability link networks, it is obvious that a versioning
framework for trees and directed graphs is required. This
section describes our fine-grained versioning scheme for the
trees and directed graphs. The versioning scheme is based
on nodes and attributes in an attribute table. A tree is de-
fined with two main attributes: 1) the “children” attribute
maps each node to a sequence holding its children, and 2)
the “parent” attribute maps each node to its parent. Figure 3
illustrates this via an example. In the example, a “content”
attribute is also defined to hold a string value for some of the

1

2 3

4 5

1

2 3

5 *

1

2

64 5

v1
v2

v3

� � � wing versions

v1 v2 v3

"con
tent"

n1n1

n2

"child� � � " "pa � � � t"

""

n3

n4

n5

""

""

""

"old"

seq1

seq2

null

null

null

null

n1

n1

n2

n2

(modified)

n2 n3

seq1

n4 n5

seq2

"con
tent"

n1n1

n2

"child� � � " "pa � � � t"

""

n3

n4

n5

""

""

"new"

seq1

seq3

null

null

null

n1

n1

n2

 n5
seq3

undefined

"con
tent"

n1n1

n2

"child� � � " "pa � � � t"

""

n3

n4

n5

""

""

"old"

seq4

seq5

null

null

null

n1

n2

n2

n6

undefined

"" null n2
seq4

 n2 n4 n5

seq5

n6

note: sequence objects share common slots.

Figure 3. Versioning for document trees

nodes. Assume that there are three versions: v1, v2, and v3.
Versions v2 and v3 branch off from version v1. The shape
of the tree at each of the three versions is shown. Version v2
has two differences from the version v1: node 4 was deleted
and the content of node 5 was changed. Version v3 has an
inserted node (node 6) and node 3 was deleted. The values
of cells in the attribute table changed to reflect modifications
to the tree in these versions. For example, at the version v2,
the “content” cell of node 5 contains a new value (the string
“new”), and the “children” cell of node 2 contains a ref-
erence to a new sequence object (seq3). Seq3 contains a
reference to node 5 since node 4 has been deleted. If there
is a request for the values of cells associated with node 4 at
v2, a run-time error will be reported.

Versioning for a directed graph is similar except that the
attribute table does not have the “parent” attribute for nodes.
Figure 4 shows an example of a traceability network. Fig-
ure 4a) and Figure 4d) display the network at two versions
v1 and v2. The directed graphs representing for the net-
work’s structures at two versions are in Figure 4b) and Fig-
ure 4e). Links’ nodes (e.g. nodes 2 and 6) have edges
coming into them and do not refer to anything. Figure 4c)
shows part of the attribute table for the network at version
v1. The “ref” cell for an anchor node (e.g. node 1) con-
tains a reference to the corresponding document node (e.g.
n(section1)). Figure 4f) shows the attribute table at version
v2. Node 5 is deleted. Node 3 now has only one child. Node
9 (representing link3) and node 10 (representing class3) are
created. The “ref” cell for node 10 points to class3.

3.4 Configuration management

Versioning for documents and for traceability networks
is accomplished via the fine-grained versioning scheme.
The issue of how a version of a traceability network can

� 	
 � � � �d
 � � � � �
1

doc2� � � �
2

� 	
 � � � 2

doc3
class1

prog1

class2

link1

link2

1 2 3

4

5
6

7

8

n(� � � � � � �)1
2
3
4

5

6
7
8

"ref"

n(x): the node
repr � � � � � � � g for
structural unit x
(not shown in
the attribute
table)

null
n(" # $ # 1)
n(" # $ # 2)

n(� � � � � � � 2)

null
n(class1)

n(class2)

"children"

seq1
null
seq2

seq1

seq3

null
seq3

seq3

 2
seq1

...

 2
seq2

 6

 6
seq3

... ...

& ()
sion v1

a.

b.

c.

� 	
 � � � �d
 � � � � �
1

doc2� � � �
2

class1
prog1

class2

link1

link2

& ()
sion v2

d.

class3
prog2

1 2 3

4 10

6
7

8

e.

f. 9

n(� � � � � � �)1
2
3
4

5
6
7
8

"ref"

null
n(" # $ # 1)
n(" # $ # 2)

null
n(class1)

n(class2)

"children"

seq1
null
seq3

seq4

null
seq3

seq5
9

10
null

n(class3)

undefined

 2
seq4

 9

 6
seq5

 9

null
seq6

 9
seq6

...

...

undefined

link3

Figure 4. Versioning for traceability networks

have its anchor nodes pointing to the proper versions of doc-
ument nodes is addressed by our product versioning con-
figuration management, Molhado [21]. Molhado is built as
part of our research. Instead of focusing on individual docu-
ments, Molhado versions a software project as a whole. All
objects including documents and traceability networks are
versioned in a uniform, global version space. In Molhado,
a version is global across the whole project and is a point in
a tree-structured discrete time abstraction, rather than be-
ing a particular state of an object as in classical versioning
systems (e.g. CVS [19]). The state of the whole software
system is captured at certain discrete time points and only
these captured versions can be retrieved in later sessions.

The current version is the version designating the cur-
rent state of the project and it is global across the project.
Note that the attribute tables can be seen as having the third
dimension: the version. Depending on current version, the
cells’ values might be different. When the current version is
set to one of captured versions, the state of the whole project
and attribute tables are set back to that version. Therefore,
document trees and traceability networks will get the proper
shapes and anchor nodes in the traceability graph will also
correctly refer to document nodes at the current version. Ini-
tially, users explicitly specify the current (working) version.
Then, the graphical user interfaces automatically detect the
current version based on the current editing window. Any
changes made to the project at the current version create a
temporary version, branching off from the current version.
That temporary version would not be recorded if users did
not require. Users primarily operate at the project level. To
record the history of an individual document, they capture
the whole project at a version. Capturing the whole project
is quite efficient because the versioning system only records
changes and works at a very small granularity. Details on
Molhado can be found in another document [21].

Figure 5. Java structured editor

4 Implementations

The versioned hypermedia traceability model has been
implemented and integrated into the Software Concordance
(SC) IDE [20]. Versioned hypermedia functionality in
SC helps developers to manage versions of software doc-
uments including Java programs, multimedia documenta-
tion in XML (multimedia file are stored separately and not
versioned), HTML, ASCII text, Scalable Vector Graphics
(SVG) documents, and UML diagrams. The system is able
to import and export its internal binary documents from and
to external formats such as XML, HTML, SVG, and ASCII
text at any version. When a user choose to edit a document,
appropriate built-in editors will be invoked. The editors are
all hypertext-savvy and version-savvy. Figure 5 shows the
Java structured editor. When the user right-clicks on a doc-
ument node, a popup menu is displayed to allow the user to
view the version history of the document node, to create an
anchor at the node and add it to a traceability network, etc.
From a document node, the user is able to navigate among
documents via the traceability networks. SC also supports
embedded HTML links within Java programs and they do
not interfere with program analyses [20].

Traceability link services allow for the manipulation
and versioning of linkbases and traceability link networks.
The user can create or delete a linkbase or a network, re-
structure linkbases, open an existing network, import and
export a network from and to XLink [36] format at any ver-
sion. The user can also view the history of a network or of
an individual traceability link. Figure 6 shows the history
of a network containing the link “agrees”. Note that the
link was not created until the version v9.1.1.1. Therefore,
the earlier versions on the top window are “disabled”. The
class “SCDocument” was displayed in the bottom window
since the user clicked on the corresponding anchor.

From the popup menu in a document editor, the user is

Figure 6. Versioning for a link

Figure 7. A hypertext network editing window

able to open any traceability network related to the current
document node (see Figure 7). A circle represents for a
link, a rectangle for an anchor. Services for links include
link creation, deletion, renaming, attribute’s value viewing,
and link history viewing. Anchor services include deleting
an anchor, adding an anchor into the active link, removing
an anchor off some link, renaming an anchor, and opening
the structural unit that the anchor refers to. When the user is
ready to record the state of the project after modifying net-
works or documents, a capture command can be issued and
a new version is created. The user does not need to check in
or check out documents or hypertext entities individually.

5 Conclusions

The SC’s versioned hypermedia traceability model al-
lows for the management of the evolution of software arti-

facts and traceability links simultaneously in a fine-grained
manner. SC not only manages the versions of traceability
link networks but also supports for versioning of individual
links. Traceability links are explicitly represented, visual-
ized, and facilitate systematic software traceability analy-
ses. The SC’s versioned hypermedia infrastructures provide
the foundation for our current research on how to automat-
ically infer traceability links using Latent Semantic Index-
ing technique [18]. The preliminary results from our ex-
perimental studies show that the performance and time effi-
ciency of the SC system is satisfactory.

References

[1] M. Amsellem. ChyPro: A hypermedia programming envi-
ronment for SmallTalk-80. In Proceedings of ECOOP, 1995.

[2] K. M. Anderson, R. N. Taylor, and E. J. Whitehead, Jr.
Chimera: hypermedia for heterogeneous software develop-
ment enviroments. ACM Transactions on Information Sys-
tems (TOIS), 18(3):211–245, 2000.

[3] J. Bigelow and V. Riley. Manipulating source code in Dy-
namicDesign. In Proceedings of Hypertext Conf., 1987.

[4] J. Bowen, P. O’Grady, and L. Smith. A constraint program-
ming language got life-cycle engineering. AI in Engineer-
ing, 5(4):206–220, 1990.

[5] S. Choi and W. Scacchi. Formalization and tools supporting
structural correctness of software life cycle descriptions. In
Proceedings of IASTED Conf. on Soft. Engineering, 1998.

[6] J. Conklin. Hypertext: An introduction and survey. IEEE
Computer, 20(9):17–41, 1987.

[7] Cybulski and Reed. A Hypertext Based Software Engineer-
ing Environment. IEEE Software, 9(2):62–68, March 1992.

[8] A. M. Davis. Software Requirements: Analysis and Specifi-
cation. Prentice Hall, 1990.

[9] P. Devanbu, Y.-F. Chen, E. Gansner, H. Müller, and J. Mar-
tin. CHIME: customizable hyperlink insertion and main-
tenance engine for software engineering environments. In
Proceedings of the 1999 International Conference on Soft-
ware Engineering, pages 473–482, 1999.

[10] M. Evans. The Software Factory. John Wiley, 1989.
[11] J. C. Ferrans, D. W. Hurst, M. A. Sennett, B. M. Covnot,

W. Ji, P. Kajka, and W. Ouyang. HyperWeb: a framework
for hypermedia-based environments. In Proceedings of the
Symposium on Software Development Environments, pages
1–10. ACM Press, 1992.

[12] R. Fielding, J. Whitehead, K. Anderson, P. Oreizy, G. Bol-
cer, and R. Taylor. Web-based development of complex in-
formation products. Communications of the ACM, 41(8):84–
92, August 1998.

[13] P. K. Garg and W. Scacchi. A hypertext system to manage
software documents. IEEE Software, 7(3):90–98, May 1990.

[14] V. Hamilton and M. Beeby. Issues of traceability in integrat-
ing tools. In Proceedings of the IEEE Colloquium, Comput-
ing and Control Division. IEE, 1991.

[15] E. Horowitz and R. Williamson. SODOS: a software docu-
mentation support environment—its use. IEEE Transactions
on Software Engineering, SE-12(11):1076–1087, Nov 1986.

[16] J. Jackson. A keyphrase based traceability scheme. In Pro-
ceedings of the IEEE Colloquium, Computing and Control
Division. IEE, 1991.

[17] M. Lefering. An incremental Integration Tool Between Re-
quirements Engineering and Programming in the Large. In
Proceedings of the IEEE Symposium on Requirement Engi-
neering. IEEE, 1993.

[18] J. I. Maletic, E. V. Munson, A. Marcus, and T. N. Nguyen.
Using a hypertext model for traceability link conformance
analysis. In Proceedings of the Automated Software Engi-
neering (ASE), Traceability Workshop, 2003.

[19] T. Morse. CVS. Linux Journal, 1996(21es):3, 1996.
[20] T. N. Nguyen and E. V. Munson. The Software Concor-

dance: A New Software Document Management Environ-
ment. In Proceedings of the 21th International Conference
on Computer Documentation. ACM Press, 2003.

[21] T. N. Nguyen, E. V. Munson, and C. Thao. Structured soft-
ware configuration management for web projects. In Inter-
national World Wide Web Conference. ACM Press, 2004.

[22] J. Noll and W. Scacchi. Supporting software development
in virtual enterprises. Journal of Digital Information, 1(4),
February 1999.

[23] P. Nurnberg. Extensibility in component-based open hyper-
media systems. Journal of Network and Computer Applica-
tions, 4(1), 2001.

[24] T. Olsson and J. Grundy. Supporting traceability and incon-
sistency management between software artifacts. In Pro-
ceedings of the 6th IASTED International Conference Soft-
ware Engineering and Applications (SEA 2002), 2002.

[25] K. Østerbye. Literate SmallTalk using hypertext. IEEE
Trans. on Soft. Engineering, 21(2):138–145, Feb 1995.

[26] K. Østerbye and K. Nørmark. An interaction engine for rich
hypertext. In Proceedings of the 1994 ACM European con-
ference on Hypermedia technology, pages 167–176, 1994.

[27] J. Sametinger and M. Riebisch. Evolution support by ho-
mogeneously documenting patterns, aspects, and traces. In
Proceedings of the CSMR Conference, 2002.

[28] W. Scacchi. Hypertext for software engineering. Encyclo-
pedia of Software Engineering, 2001.

[29] S. Sherba, K. Anderson, and M. Faisal. A framework for
mapping traceability relationships. In Proceedings of the
ASE 2003 Traceability Workshop, 2003.

[30] G. Spanoudakis. Plausible and adaptive requirement trace-
ability structures. In Proceedings of the Conference on Soft-
ware Engineering and Knowledge Engineering, 2002.

[31] Javadoc tool home page. http://java.sun.com/j2se/javadoc/.
[32] E. J. Whitehead, Jr. A proposal for versioning support for

the Chimera system. In Proceeedings of the Workshop on
Versioning in Hypertext Systems. ACM Press, 1994.

[33] E. J. Whitehead, Jr. An Analysis of the Hypertext Versioning
Domain. PhD thesis, University of California – Irvine, 2000.

[34] E. J. Whitehead, Jr. WebDAV and DeltaV: collaborative au-
thoring, versioning, and configuration management for the
Web. In Proceedings of the Hypertext Conf., 2001.

[35] U. K. Wiil and J. J. Leggett. The HyperDisco approach to
open hypermedia systems. In Proceedings of the ACM con-
ference on Hypertext, pages 140–148. ACM Press, 1996.

[36] W3C XML Linking. http://www.w3c.org/XML/Linking.

Specification and Validation of Transactional Business Software: An Approach
Based on the Exploration of Concrete Scenarios

Alexandre Correa, Cláudia Werner
COPPE/UFRJ – Federal University of Rio de Janeiro - Brazil

{alexcorr, werner}@cos.ufrj.br

Abstract. This paper presents an approach to the
specification and validation of transactional business
software. The focus of this work is on the production of
detailed use case specifications and on the precise
definition of all transactions and business rules using a
subset of UML class diagrams and statecharts combined
with textual specifications written in OCL (Object
Constraint Language). We show how to produce and
validate such artifacts using a scenario driven approach
combined with animation and prototyping techniques in a
highly iterative process. The paper also presents PSW
(Precise Specification Workbench), a tool that supports
the proposed approach.

1. Introduction

One of the goals of the requirements activities in
software engineering is to produce a clear, consistent,
precise and unambiguous specification of the system that
is to be developed. Among the scenario-based techniques
that have been proposed by the requirements engineering
community to understand, model and validate software
requirements [15], use case based specification [2] is one
of the most widely used, particularly in object oriented
development environments. Use cases are very popular
because of their informal, easy to use style, which caters
to technical as well as non-technical stakeholders of the
software under development. However, the large variance
of word meanings in natural language has always posed
problems for those who attempt to construct an
unambiguous and consistent specification, as extensively
described in the technical literature [4] [11].

Our research is focused on the elaboration and
validation of precise specifications for transactional
business software, particularly in the financial domain.
The requirements specification of transactional business
software usually concentrates on its functional and
structural (data) essentials, whereas life-cycle aspects are
often restricted to a few model elements. Moreover, such
systems must deal with many complex business rules that
are often not fully and correctly uncovered when an

informal approach to software specification is applied.
This is of particular importance to the financial domain,
where a requirement error or misunderstanding can result
in a significant loss of money and credibility.

There are a number of approaches such as the Rational
Unified Process [10] that tries to specify the functional
aspects of a software system combining natural-language
use case descriptions with object-oriented models and,
nowadays, the Unified Modeling Language (UML) [13] is
regarded as the de-facto standard for the elaboration of
such models. By reviewing the specifications produced by
graduate students and software developers from the
industry using such approaches in more than 30
transactional business software projects, we have noticed
some recurrent problems and two of them are particularly
relevant to this work. First, system analysts often focus
too prematurely on use case interaction details, leaving
the precise definition of transaction results and business
rules to a later stage or, even worse, only loosely defining
them. This generates omissions, inconsistencies and
significant later rework on the specification.

A second recurrent problem observed is the absence of
automated support for the exploration, organization and
reuse of concrete scenarios. Concrete scenarios force us to
address the “devil in the detail” during requirements
specification and validation, and reasoning with concrete
examples as well as abstract models helps on
comprehension by building a memory schema that link
the specific (scenario) to the general (model) [15].
However, currently available object oriented CASE tools
focus on the production of abstract models and
specifications, and, as a result, concrete scenario
exploration has to be manually done or it is not done at
all.

This paper presents an approach and tool support to
the specification and validation of transactional business
software that combines formal and informal techniques,
aiming at alleviating the problems just described. In the
proposed approach, before producing a detailed use case
specification, the underlying transactions and business
rules are defined by means of UML class diagrams and
statecharts combined with textual specifications in OCL

(Object Constraint Language) [12]. We use a scenario
driven approach combined with animation and
prototyping techniques in a highly iterative process,
which allows us to reach a precise definition in small and
validated steps. After precisely understanding the
transactions involved in a use case, we address the
interaction issues and the associated non-functional
requirements, elaborating a use case textual specification
consistent with the UML structural and behavioural
model.

This paper is structured as follows: Section 2 details
our approach to the production of precise specifications.
Section 3 presents an overview of PSW (Precise
Specification Workbench), a tool that supports the
proposed activities. In Section 4, related works are
discussed and the conclusions are drawn in Section 5.

2. Proposed Approach

The techniques and tool support described in this paper
are focused on the production of a detailed use case
specification, which is the result of late-phase
requirements activities. We assume that the software
development team has already a reasonably good
understanding of the organizational environment and
stakeholders needs, and that an initial use case model has
been produced as a result of early-phase requirements
activities. This initial use case model should contain a
preliminary description of the main use cases along with a
summary section that describes the use case goal and a
brief outline of the sequence of underlying transactions.

The proposed approach consists of four main stages.
The first stage corresponds to the definition of the main
results expected from each use case transaction. The
second stage uncovers all computation and inference rules
behind the production of those results. The third stage
explores all rules that could deny or restrict the
transaction execution. Finally, the fourth stage focus on
the use case textual specification detailing all interactions
between the actors and the system that will trigger the use
case transactions. At this final stage, we also consider
non-functional aspects and their influence on the use case
interactions.

2.1. Specification of the Main Expected Results

At the first stage, our goal is to define the main results
expected from each transaction contained in a use case.
To reach this goal, we explore all relevant scenarios
associated to each transaction, one at a time. For each
scenario, we begin by informally stating the expected
results in natural language. Figure 1 shows an example for
the Rent Copies use case of a video rental system. Having
reached an initial agreement on the informally defined
results, we evolve an UML conceptual model that should

contain all information necessary to the formalization of
the transaction results. Figure 2 shows an excerpt from the
conceptual model of the video rental example.

Use Case: Rent Copies
Transaction: Rent Copies
Abstract Scenario: Client asks for the rental of copies that he
has picked up from the shelf.
Input:
• Client and Copies to be rented
Expected Results:
Record of the rental and a Receipt containing:
• Client who have rented the copies (code, name and

address)
• Copies rented (code, film title, expected date of return, rental

fee)
• Rental Total Fee, Discount, Rental Net Fee, Rental Date

Figure 1- Abstract scenario

Client

name
code
address

Rental

rentedOn
totalFee
discount
netFee

*

1

*

1
RentalItem

returnExpectedOn
fee*

1

*

1

Film
title

Copy
code

11

1

*

1

*

Figure 2- Video Rental Conceptual Model

Next, we restate the expected results of the transaction
by exploring concrete scenarios, i.e., instantiations of an
abstract scenario. In the video rental example, a concrete
scenario could be “Client John Miller asks for the rental
of a copy of the Gladiator film that he has picked up from
the shelf”. For each concrete scenario, we define the
system state just before and after the transaction execution
by instantiating elements defined in the conceptual model.
At this stage, this definition focuses only on the instances
and links that are created, modified or deleted as a result
of executing the transaction. That is what we call the main
results of a transaction. We leave to a later stage details
about the exact state of each instance created or modified.
The scenario exploration described above is fully
supported by PSW (Precise Specification Workbench), a
tool developed in the Software Engineering Laboratory at
Federal University of Rio de Janeiro to provide automated
support to the proposed approach (section 3 presents more
details about PSW). During the exploration of these
concrete scenarios some modifications in the conceptual
model may be needed as a result of a deeper
understanding of the concepts involved in these scenarios.

Having reached a consensus on the expected results of
the transaction, we formally state those results in OCL.
Each transaction is captured as an operation of a type
named System that embodies all the types defined in the
conceptual model. Thus, System represents a black box

view of the software, and its operations represent the
transactions that will be triggered inside the use cases.
The expected results are expressed as OCL post
conditions. Figure 3 illustrates a first version of the
postconditions for the Rent Copies transaction.

context System::rentCopies
(aClient : Client, copiesRented : Set(Copy))
post:
-- newRentals is the set of Rentals associated to aClient that
-- were created as a result of the execution of System::rentCopies
let newRentals : Set(Rental) = aClient.rental->select(aRental |
 aRental.oclIsNew()),
-- newRental is the first element of newRentals.
 newRental : Rental = newRentals->asSequence()->first()
in
-- only one new Rental was created
 newRentals->size() = 1 and
-- for each rented copy, one new instance of RentalItem was
-- created and associated to the rented copy and to newRental.
 copiesRented->forAll(copy | newRental.rentalItem->
 one (item | item.oclIsNew() and item.copy = copy))
post:
 -- all rented copies are in the state Rented (as defined by the
 -- statechart associated to the Copy class)
 copiesRented->forAll(copy | copy. oclInState(Rented))

Figure 3 – RentCopies post conditions in OCL

At the last step of this stage, we check if the OCL
specification correctly captures the transaction semantics
using the animation features of PSW. The concrete
scenarios explored up to this point are used to validate the
OCL transaction specification. More details on the
animation features of PSW are described in section 3.

2.2. Computation and Inference Rules

At the second stage, our goal is to refine the
specification of the transaction results by identifying and
specifying all the rules involved in the production of the
results. Computation, inferred knowledge and action
enabler rules should be discovered and precisely
specified.

First, we identify all decisions and knowledge that are
necessary to produce the expected results. Then we
identify all rules necessary to make a decision or to
generate a specific result. Each rule is first defined in
natural language and then formalized in the conceptual
model. Figure 4 shows some additions (Category type and
rentalFee operation) made to the conceptual model in
order to express the rules related to the computation of the
rental fee of a film copy.

Each rule definition is validated through the animation
of concrete scenarios using the PSW’s UML/OCL
animator module. These scenarios are defined by using
conventional testing techniques. First, an object space is
defined by instantiating the relevant types defined in the
conceptual model. Figure 5 shows an example of an
object space that would be used in the animation of the

rentalFee rule. Then, one or more OCL expressions and
their expected results are defined and submitted to the
animator. The animator evaluates the expressions using
the given object space and displays the results. Figure 6
shows some concrete scenarios that could be used in the
validation of the rentalFee rule.

Copy

code

Category

name
weekdaysFee
weekendFee

Film

t itle
*

1

*

1 1

*

1

*

context Copy
-- rental fee is defined as an operation of Copy that returns the
-- value defined by the associated film category depending on the
-- day of the week that the copy will be rented.
def: rentalFee(dow : DayOfWeek) : Real =
 if dow.isBetween (DayOfWeek::Monday, DayOfWeek::Thursday)
 then film.category.weekdaysFee
 else film.category.weekendFee endif

Figure 4 – Rule formalization

Copy
Alias Code State Film
Copy1 112233 On the shelf Film1
Film
Alias Title Category
Film1 Gladiator Category1
Category
Alias Name WeekdaysFee WeekendFee
Category1 Special 4.00 6.00
Category2 Normal 3.00 5.00

Figure 5 – Object space for rentalFee rule animation

Expression Expected Actual
Copy1.rentalFee (DayOfWeek::Monday) 4.00
Copy1.rentalFee (DayOfWeek::Friday) 6.00

Figure 6 – Scenarios for rentalFee rule evaluation

2.3. Constraints and Preconditions

After capturing the rules necessary to produce the
results of a transaction, we refine the transaction
specification by identifying and specifying constraints and
preconditions. We should investigate circumstances
within a transaction that either are not acceptable or
would deny its execution.

Decision: When the client is forbidden to rent copies?

Rule 1: IF a client has one or more overdue copies THEN he is
forbidden to rent copies.
Rule 2: IF a client has a balance less or equal than the debit limit
THEN he is forbidden to rent copies.
Rule 3: IF a copy is not returned on the expected day of return
THEN it is overdue.

Figure 7 – Constraints: rentCopies transaction

The rules are first expressed in natural language.
Figure 7 shows an example for the rentCopies transaction.

Next, they are formalized in the conceptual model. As
illustrated in Figure 8 and Figure 9, rules 1, 2 and 3 are
expressed as preconditions of the rentCopies transaction
and as new properties defined in the Client type, as well.

context Client
-- overdueCopies is an operation of Client that returns the number
-- of rentalItems (from all rentals associated to a client) that have
-- not been returned yet.
def: overdueCopies() : Integer =
 self.rental.rentalItem->select(i | i.oclInState(NotReturned)->size())

Figure 8 – Rule formalized as a property of Client type

context System::rentCopies
(aClient : Client, copiesRented : Set(Copy),
reservations : Set(Reservation))
-- preconditions for the rentCopies transacation:
pre noOverdueCopies : aClient.overdueCopies() = 0
pre balanceAboveLimit: aClient.balance() > aClient.debitLimit()

Figure 9 – RentCopies pre conditions in OCL

The final step of this stage is the validation of the
refined version of the transaction specification and all
rules involved. Again, we use the animation features of
PSW to walk through concrete scenarios as described in
the previous sections.

2.4. Detailed Use Case Specification

Having fully specified the transactions involved in a
use case, we produce a refined version of the use case
specification in natural language. Now we shift focus to
all the interactions that are necessary to trigger the
execution of the underlying transactions considering
usability and other non-functional aspects.

In the Rent Copies use case, for example, we must
define how the user will interact with the system in order
to trigger the rentCopies transaction, which has as input a
client, the copies to be rented and a set of reservations
eventually made by the client. We need to make some
decisions as, for example, how the user will input the
client or what will be the interactions and in which order
they will be carried out in order to trigger the transaction.
There are many alternatives to this: each client has a card
and the clerk scans this card, the clerk may enter the client
code, the clerk may do a search based on the client name,
or we can assume that the client is already known
(precondition), probably as the result of the execution of
another use case. At this stage we should use available
guidelines to the organization of a written use case
specification, such as the ones described in [2]. The
resulting use case specification may be validated by user
interface prototypes that can be integrated to the PSW’s
animation features through an API, as described in the
next section.

3. Tool Support

This section briefly describes PSW (Precise
Specification Workbench), a tool designed to support the
approach presented in this paper. PSW functionalities
allow clients and developers to explore concrete scenarios
of transactions and rules of the software to be developed

 PSW was designed as an add-on to existent UML
CASE tools. Therefore, all diagrams of the conceptual
model may be elaborated in any external UML CASE tool
featuring a XMI export capability, while the OCL
specifications are produced in textual files and analyzed
by PSW OCL compiler, which is fully compliant with
OCL 2 specification. The most important modules of
PSW are described in the following paragraphs.

The object space manager module allows the creation,
retrieval and storage of different object space
configurations. An object space configuration is a set of
instances and links between instances of types defined in
the conceptual model that can be created through the
invocation of some basic operations: create an instance;
delete an instance; create a link between two or more
instances; remove a link; modify the value of one or more
attributes of an instance. Each object space has a name
and can be used as the initial or final system state of one
or many scenarios. As the user creates or modifies an
object space configuration, this module indicates all
invariants that may have been violated. The user can also
selectively turn on and off the invariant check feature for
some or all invariants of the model, allowing him to
concentrate only on the elements required to explore a
specific scenario.

The ad-hoc OCL expression evaluator module
evaluates any OCL query expression against an object
space configuration. The analyst can use this feature as
an aid to build the specification of a complex rule or
transaction by interactively evaluating its parts. This
module can also be used to inspect the state of any
element of the system during the exploration of a
scenario.

The scenario manager module allows the creation and
management of all scenarios necessary to produce and
validate the OCL specification. A scenario may be
associated to a rule, to a transaction or to a use case. Each
scenario has an informal description in natural language,
an initial object space configuration, that may be one of
the configurations already stored in PSW or a new one,
the sequence of rules or transactions that will be executed
and, optionally, the expected results.

The UML/OCL animator module supports the
validation steps of the approach through animation of the
specification. The animation of a computation or inferred
knowledge rule is done through the simple evaluation of
its associated scenarios. A scenario for this kind of rule is
defined by an object space configuration, an OCL

expression corresponding to the invocation of a query
operation specifying the rule to be evaluated and the
expected result. Figure 6 shows two scenarios associated
to the rentalFee rule. The animator evaluates all the
expressions of the scenarios associated to the rules that
the user has selected for animation and displays the
results using a green/red background, visually indicating
the scenarios where the evaluation matched or not the
expected results.

The animation of rules and transactions that are not
expressed as query operations is a bit more complex since
it cannot be done by simply evaluating one or more OCL
expressions. PSW offers two forms of animation of such
operations. The first one is a simple post condition
evaluation and it may be performed in interactive or batch
modes. In the interactive mode, the user defines an initial
object space configuration and indicates to PSW the
operation that will be animated. PSW checks the object
space against all preconditions specified for the operation.
The user invokes any of the commands available in the
object space manager to modify the initial object space
configuration, thus animating the effects produced by the
execution of the operation. After all desired effects have
been submitted to the animator, the user signals the end of
execution. Then, PSW checks all invariants and post
conditions specified for the operation reporting any
violation that eventually exists in the resulting object
space. In the batch mode, the user selects one or more
scenarios to be animated. Each scenario consists of an
initial object space configuration, an operation call and
the resulting object space configuration. Then, PSW
checks if the initial and final object space configurations
violate any of the invariants, pre and postconditions
defined for the operation, reporting the scenarios where
violations have occurred.

The second form of animation is the filmstrip
commands generation. Instead of only checking the post
conditions in an object space manually configured by the
user, PSW can generate the commands given an operation
specification and an initial object space configuration.
This form of animation may also be done in interactive or
batch modes. In the interactive mode, the user defines an
initial object space configuration and indicates to PSW
the operation that will be animated. PSW checks the
object space against all preconditions specified for the
operation and searches for the minimal set of commands
that generates an object space configuration satisfying the
invariants and post conditions of the operation. The
complexity of the search process is controlled by a set of
heuristics that avoids a search space explosion problem.
For deterministic specifications, PSW generates the
resulting object space configuration, and the user may use
PSW’s OCL query capabilities to see the results or ask
PSW to list all generated commands. For non-
deterministic specifications, the user may ask PSW to

generate only one result configuration and interactively
ask for other configurations until all configurations have
been generated. In the batch mode, the user selects one or
more scenarios to be animated. Each scenario consists of
an initial object space configuration, an operation call and
a resulting object space configuration. For each scenario,
PSW generates the commands as detailed before and tries
to match the resulting object space against the expected
object space as specified by the scenario. This is done
until a match is found or until no other configurations can
be produced. This feature is very useful to detect under
or over constrained post conditions specifications.

The batch mode of animation may also be used to
perform a “regression animation” of the scenarios.
Selected scenarios are animated and PSW reports all
deviations from the expected results. This feature is very
useful in an iterative development approach.

In order to further involve the client in the validation
process, it is possible to integrate the animation facilities
of PSW with user interface prototypes. This integration is
done through PSW-API that makes all functionality
provided by the object space management, OCL
expression evaluator and the UML/OCL animator
modules available to a programmatic use. Since all
functions available in the API are accessible through web
services, a wide range of languages may be used in the
user interface implementation. The user interface
prototype enables the stakeholders to “execute” the
specification by entering data, triggering the execution of
transactions and observing the resulting behaviour.

4. Related Work

Most of the recent component based development
methods ([1], [3]) emphasize the importance of a precise
specification and adopt OCL as the specification
language. However, those methods do not clearly connect
the elaboration of UML/OCL models with the production
of use case specifications, nor emphasize the exploration
of concrete scenarios. One contribution of our work is to
provide a practical but systematic approach to the
elaboration of use cases for transactional business
software that is based on a step-by-step exploration of
scenarios through the animation of a precise conceptual
model and all the underlying business rules.

PSW’s UML/OCL animator module is closely related
to the animation of classical formal languages. There are
several animation tools that automatically execute or
interpret formal specifications produced with languages
such as Z [8] and VDM-SL [5]. Some of them can be
integrated with UML class diagrams, but the user must
also know the underlying formal language to interpret the
results.

Another contribution of our work is the tool support to
the elaboration and validation of UML/OCL

specifications using a scenario-driven approach.
Nowadays, tool support for OCL development is very
scarce, and this is an important factor that limits the
widespread adoption of OCL by industry. The USE
(UML-based Specification Environment) [14] is a tool
that supports indirect animation of UML/OCL design
models by means of a script language. This tool is
oriented to validating detailed design models, while PSW
is oriented to the validation of more abstract models. USE
animation feature is very much similar to the simple post
condition evaluation form of animation described in
section 3. The second form of animation offered by PSW
is not supported by USE. Moreover, USE does not offer a
direct integration with other CASE tools (the conceptual
model is defined in a proprietary language) and does not
have the object space manager, scenario management and
the web services API modules featured by PSW.

5. Conclusion

We have presented an approach and tool support to
the specification and validation of transactional business
software. The main point of our approach is the precise
definition of all transactions involved in a use case,
supported by scenario-based validation through the use of
animation and prototyping techniques, as a means to
produce a more solid use case detailed specification.

Though specification animation and prototyping are
not new, we provide significant contributions to the
UML/OCL community by supporting the use of
techniques and tools present in formal environments and
making them available to a wider public. We are aware
that animation, like other testing oriented techniques, can
never prove that a model is consistent, correct or complete
[9]. However, our experience, like others described in the
technical literature ([6] [7]), has shown that by bringing a
specification to life, animation enables clients and
developers to provide valuable feedback and to detect
problems earlier in the development life cycle. When
combined with other techniques such as inspections, for
example, it provides a solid framework for the validation
of specifications.

We have used the proposed approach in one industrial
project in the financial domain. In the beginning, a
conventional RUP approach was being followed and we
noticed that the analysts were bouncing between actor-
system interaction, domain, transaction and business rules
issues without adequate guidance for producing the
specification. As the team started to use the approach
presented in this paper, most of the already specified use
cases demanded modifications due to errors,
inconsistencies and misunderstandings. Moreover, the
exploration of concrete scenarios supported by PSW has
established a very powerful means of communication
between developers and customers. Although initial

results have shown a reduction on requirements defects,
increased precision on communication and less rework on
use case specifications, the cost-effectiveness of our
approach is a particular aspect that needs to be addressed
to make it attractive to a wider range of industrial
projects. Therefore, as future work, we plan to conduct
formal experiments to further investigate this issue.

References

[1] J. Cheesman, J. Daniels, UML Components: A Simple Process
for Specifying Component-Based Software, Addison Wesley,
2001.

[2] A. Cockburn, Writing Effective Use Cases, Addison-Wesley,
2000.

[3] D. D'Souza, A.C. Wills, Objects, Components and
Frameworks with UML. The Catalysis Approach, Addison-
Wesley, 1998.

[4] S.M. Easterbrook, J. Callahan, “Formal Methods for V&V of
Partial Specifications: An Experience Report”, Proceedings of
the Third IEEE International Symposium on Requirements
Engineering, Maryland, USA, 1997.

[5] R. Elmstrom, P.G. Larsen, P.B. Lassen, “The IFAD VDM-SL
Toolbox: A practical approach to formal specifications” ACM
SIGPLAN Notices 29(9), 1994.

[6] P.Fenkan, H.Gall, M.Jazayeri, “Visual Requirements
Validation: Case Study in a Corba-supported environment”,
Proceedings of the IEEE Joint International Conference on
Requirements Engineering (RE’02), 2002.

[7] J. Hörl, B.K. Aichernig, “Validating Voice Communication
Requirements Using Lightweight Formal Methods”, IEEE
Software, May/June 2000, pp. 21-27.

[8] X. Jia, “An Approach to Animating Z Specifications”,
Proceedings of 19th Annual International Computer Software
and Applications Conference, Dallas, Texas, USA, 1995.

[9] E. Kazmierczak, E., P. Dart, L. Stirling, "Verifying
Requirements Through Mathematical Modeling and
Animation", International Journal of Software Engineering
and Knowledge Engineering 10(2), 2000, pp. 251-273.

[10] P. Krutchen, The Rational Unified Process: An Introduction –
2nd edition, Reading, Mass, Addison-Wesley, 2000.

[11] P. G. Neumann, “Only His Only Grammarian Can Only Say
What Only He Means”, ACM SIGSOFT Software Engineering
Notes 9(1), 1986, pp. 6.

[12] OMG, Object Constraint Language 2 Specification, October,
2003, available on line: “http://www.omg.org”.

[13] OMG, Unified Modeling Language Specification, available on
line: “http://www.omg.org”.

[14] M. Richters, M. Gogolla, "Validating UML Models and OCL
Constraints", Proceedings of UML'2000 - The Unified
Modeling Language: Advancing the Standard, Third
International Conference, York, England, 2000.

[15] A. Sutcliffe, “Scenario-based Requirements Engineering”,
Proceedings of the IEEE Joint International Conference on
Requirements Engineering (RE’03), Los Alamitos CS: IEEE
Computer Society Press, 2003.

Specification and Verification of Agent Interaction Protocols

Bo Chen and Samira Sadaoui
Department of Computer Science, University of Regina

Regina, Canada, SK S4S 0A2
{chen112b, sadaouis}@cs.uregina.ca

Abstract

Agent interaction design is one of the principal issues in
multi-agent systems. Indeed, the construction of agent in-
teraction protocols (AIP) should integrate theories, method-
ologies and tools. We propose here a unifying framework
that provides a generic agent architecture to be reused as
well as a methodology to build and refine AIP specifica-
tions in an incremental way. This framework is based on
the highly expressive formal language Lotos and its related
technologies. It also facilitates validation and verification
of AIP specifications using rigorous tools. In addition, we
show how to generate an online auction protocol from the
framework, and how to verify and simulate this protocol.

1. Introduction

Multi-agent systems (MAS) provide a good means for ro-
bust software architectures to develop large-scale commer-
cial and industrial software systems [1]. However, with-
out adequate techniques to support the design process, MAS
will not be sufficiently reliable, maintainable, extensible,
comprehensible and reusable [16]. Agent interaction pro-
tocols (AIP) are used to manage and control agent interac-
tion which is the most important characteristic of MAS. Due
to the indeterministic, autonomous and active behaviors of
agents, AIP are complex to design and validate. Therefore,
formal specification and verification of AIP are necessary to
design correct and unambiguous AIP for agent communica-
tion in open environments [15].

MAS is essentially concurrent and reactive. It is suitable
to apply well-established methods, such as process algebra,
temporal logics and finite state machines, to specify, ana-
lyze and verify AIP. In this paper, we investigate how to de-
velop correct AIP specifications within a framework. This
later is based on the formal specification language Lotos
[3] which is an ideal choice for the description, validation
and verification of AIP [17, 5, 4]. Lotos combines a process
calculus with a data type language. It is executable, modu-

Generic Architecture

Specialize

AIP Specification

Correct AIP Specification

Verify & Validate

Correctness Properties

Generic Framework

New Requirements

Development Methodology

Figure 1. Generic Framework for Building AIP

lar and capable of synchronization between processes. Be-
sides, many tools have been developed for the simulation
and verification of Lotos specifications.

As shown in figure 1, the proposed framework not only
provides a systematic development methodology for build-
ing AIP specifications in an incremental and modular way,
but also supports model-checking verification by provid-
ing the essential correctness properties (safety, liveness and
fairness) that all AIP should satisfy. AIP specifications gen-
erated from the framework can also be executed to demon-
strate the dynamic behavior of agent communication, and
translated into a labeled transition system (LTS) that can be
used to manage agent’s behaviors in real time.

The paper is organized as follows: Section 2 presents in
detail the generic framework for specifying agent protocols.
Section 3 introduces a stepwise AIP development methodol-
ogy. Section 4 explains how to validate and verify an online
auction protocol generated from our framework. Section 5
concludes our work with some perspectives.

2. AIP Specification

In table 1, we present the most important AIP entities which
can be considered as building blocks for developing any
AIP application. These entities are defined through the En-
glish auction protocol [4] which describes the interaction

between a seller, an administrator, an auctioneer and sev-
eral buyers.

Table 1. AIP Entities
Entity Explanation Online Auction
Protocol A set of rules for agent in-

teraction to achieve a goal
English-auction pro-
tocol

Purpose The goal to be achieved
through the interaction of
agents following the proto-
col

To sell or buy an item
through biding

Agent An autonomous and com-
municative computing en-
tity

An administrator, an
auctioneer, a seller
and several buyers in
a specific auction

Role A category of agents similar
in some aspects

Four roles: Admin-
istrator, auctioneer,
seller and buyer

Rule A guideline of behaviors
that agents are allowed to
act

Online auction rules
that each participant
has to follow

Communicative
Act

To perform actions us-
ing speeches (sending
messages)

A communicative act
is expressed as a mes-
sage

Message A structured information
that delivers facts and
intention of agents

E.g., a seller request-
order message con-
tains item description,
starting price, bid in-
crement and reserved
price

Performative The intention of sending a
message

E.g., call-for-
proposal, propose,
accept-proposal or
refuse-proposal

Message
content

A content associated with a
performative gives a mean-
ing to a message

E.g., current winner,
current price or pro-
posed bid

As shown in figure 2, we model an AIP as a set of com-
municating Lotos processes that execute concurrently and
synchronize on Send and Recv gates. The constraints on
these two gates represent the constraints on sending and re-
ceiving messages. They express the protocol mechanism,
i.e. the content and order of messages exchanged between
agents for negotiation. This model, based on the social
approach [13, 21], emphasizes the agent collaborative as-
pects, namely its interactive behaviors. The advantage of
this model is that agent interaction can be described even
when the internal and mental structure of agents are un-
clear. Our AIP Lotos specification has around 1000 of lines
of code, including 20 data types and 3 processes.

2.1. Message Transportation Service (MTS)

MTS is the core functionality that any protocol needs. It can
be reused in all interaction protocol specifications without
any modification. It simulates the transferring of a message
from a sender to several receivers concurrently. We spec-
ify messages as data types which can abstractly represent

. . .

R
E

C
V

SE
N

D

Agent Process

Buffer
Message

R
E

C
V

SE
N

D

Agent Process

Buffer
Message

R
E

C
V

SE
N

D

Agent Process

MTS Process

Message
Buffer

Figure 2. AIP Specification Architecture

message content, being independent of any agent commu-
nication language and physical implementation.

Message

Sender
(Agent)

Receivers
(AgentSet)

Message Type
(TypeOfAct)

Message Content
(AttributeMap)

Attribute

Key Value

Attribute

Figure 3. Structure of a Message

As shown in figure 3, we define a message with four
data types: a sender (Agent), a set of receivers (AgentSet),
a message type (TypeOfAct) and a message content (At-
tributeMap). Some elements are not specified for simplicity
such as conversation ID, and protocol being used. These
kinds of information can be set in message content part if
necessary. Message content is a map of key and value. This
structure is flexible to contain any number and kinds of in-
formation.

MTS is modeled by a Lotos process which allows both
one-to-one and one-to-many messages transferring. In one-
to-many way, a message can be sent to multiple agents at
once. Messages can be sent in either synchronous or asyn-
chronous way. When using synchronous communication,
the sender waits (blocked) until it makes sure that the mes-
sage has been taken. When using asynchronous way, the
sender does not wait, instead it continues processing imme-
diately after outputting a message.

MTS

Send

Agent Agent
Recv

Message

Message

Message

Message Buffer

Figure 4. Asyn-Message Transportation

Agents usually use asynchronous point-to-point message
communication [8]. We use the two gates Send and Recv as

well as a set of message buffers to describe asynchronous
message exchanging, as shown in figure 4. Each message
buffer is associated with an agent. All message buffers
are combined as a map structure managed by MTS. Asyn-
chronous message exchanging is realized through two syn-
chronization steps given as follows:

– First, complete the synchronization between a sender
and MTS. MTS manages all the buffers associated with
different agents. A message will be inserted into dif-
ferent buffers of each of its receivers.

– Second, complete the synchronization between the re-
ceiver and MTS. In this step, an agent extracts a mes-
sage and removes it from the buffer.

2.2. Agent Processes

Every agent process has a SessionData to control its mes-
sage outputs. As shown in figure 5, SessionData has three
items: an identifier (Agent), a state (AgentState) and at-
tributes (AttributeMap). AgentState describes the current
agent state. A state consists of one or more tokens. A mes-
sage type can be used as a token by applying operations S
and R: S means “after sending a message”; R means “af-
ter receiving a message”. In each state, an agent can only
send out some specified types of messages. From the begin-
ning to the ending of an interaction, every agent should at
least has an initial and a terminal state. Entering into a new
state is triggered by what messages an agent has received
and sent, and sometimes the inner events, such as time-out.
AttributeMap here is the same as message content. This is
a natural representation considering that a message just de-
liveries the knowledge of an agent. AttributeMap can rep-
resent any number of attributes used by an agent to manage
its conversation. For example, AttributeMap of an auction-
eer agent has the following attributes: administrator, a set
of buyers, auction item, seller, starting price, bid increment,
reserved price, current bid and current winner.

SessionData

Agent ID
(Agent)

Agent State
(AgentState)

Attributes
(AttributeMap)

Token
(S(TypeOfAct))

Same as message content

Token
(R(TypeOfAct))

After sending a
type of message

After receiving a
type of message

Figure 5. Structure of SessionData

3. Incremental Development of AIP

The design of concurrent systems is a complex task. Hence
it is better to construct AIP in an incremental approach also

Extend Types of Act

Extend Role & Agent Names

Identify Active Messages Refine Interactive Rules

Stage Two

Stage One

Identify Incoming Messages

Design Reactive Messages

Add Guard Expressions

Design Attribute Values

Extend Attribute Keys

Adjust Specification

Validate & Verify

Figure 6. AIP Development Methodology

called step-wise refinement. We divide AIP development
into two major stages, each one consists of several steps.
All the steps in the first and second stages are illustrated in
figure 6 and discussed below.

The first stage decides only the types of communicative
acts and transitions among them without message content.
One incoming message will correspond to one outgoing
message. Message content is not meaningful at this stage
which only defines the basic mechanisms of AIP.

1. Extend Role and Agent Names. New role and agent
names are added. This extension is easy because these
data types are defined with constructor operations.

2. Extend Types of Act (Performative). New message
types are added by extending the data type TypeOfAct.

3. Identify Active Messages. Identify what types of
messages a role can send out actively based on its in-
ternal states and events. These actions are not triggered
immediately by the received messages.

4. Identify Incoming Messages. Identify what types of
messages a role can receive.

5. Design Reactive Messages. Identify what types of
messages a role has to reply when receiving a message.

6. Add Guard Expressions. In order to remove some
indeterministic choices, Lotos guard expressions are
defined using the attributes of SessionData.

In the second stage, more controls will be considered
when message content is added into the specification. This
stage will produce the complete specification of a protocol.

1. Extend Attribute Keys. The keys of attributes are ex-
tended to add new attributes into agent SessionData
and Message. For instance, an auction message may
have the keys: start price, bid amount, bid increment,
etc.

2. Design Attribute Values. A value can be of any sort:
Agent, AgentSet, Money, etc. These keys and values
together define meaningful SessionData and Message.

3. Refine Interactive Rules. Given the message con-
tent, Lotos guard expressions are refined to repre-
sent more subtle conditions and constraints for sending
messages.

selling-item, starting_price, reserved_price,
bid_increment, current_bid, winner, proposed_bid,
payment

State One: Message Types

Stage Two: Message Content

request_order, reject_order, accept_order,
request_auction, reject_auction, accept_auction,
subscribe, reject_subscription, accept_subscription,
cancel_subscription, accept_cancel_subscription,
reject_cancel_subscription, inform_start_of_auction,
call_for_proposal, propose, reject_proposal,
accept_proposal, inform_auction_success,
inform_auction_failure, request_payment, pay_bid

Figure 7. English Auction Message

Our development approach builds a protocol step by
step. In each step, more details are added into the specifica-
tion. Refinement will continue until all the mechanisms of a
protocol are completely specified. Thus, a complex protocol
can be generated using our framework. Our framework has
been successfully experimented through the English auction
protocol. The message types and message content in stage
one and two are illustrated in figure 7. The resulting Lotos
specification has around 1600 of lines of code, including 23
data types and 5 processes. We also note that any auction
type (Dutch, Vickrey, Yankee, First-Price ...) can also be
generated from the framework.

4. Validation and Verification

Many tools have been developed for the validation and ver-
ification of Lotos specifications. One of the powerful tools
is CADP [10] illustrated in figure 8. CADP is an engineering
tool that assists the user through the design process: com-
pilation, interactive and goal-oriented simulation, test gen-
eration for protocol implementation, rapid prototyping by
generating the C code which can be embedded in real ap-
plications, and most important, CADP can efficiently per-
form verification by equivalence and temporal logic model-
checking.

With the interactive simulation, we can trace and monitor
all the possible execution sequences. CADP can also gener-
ate all the scenarios that satisfy a user-defined goal. For
instance, the scenarios of an auction-failure goal are: the
auction ends and best bid is lower than the reserved price;
the order request is refused by the administrator agent; the

Compile

Labeled Transition
 System

Lotos Specification

Test Generation (Generate the
test cases for system
implementation)

Simulation (Examine the
behavior of a system

Model-Checking Verification
(Automatically prove the
correctness of a system)

Figure 8. CADP ToolBox

auction ends and no buyer has subscribed. These scenarios
are illustrated below:

– SEND !MSG (SELLER, @(ADMINISTRATOR, <>), RE-
QUEST ORDER, @(&(K BIDINCREMENT, 1), @(&(
K RESERVEPRICE, 2), @(&(K STARTPRICE, 1),<>))))
(* Seller requests administrator to sell an item and starting price is 1, bid
increment is 1, and reserved price is 2. *)

– RECV !ADMINISTRATOR !MSG (SELLER, @(ADMINISTRATOR,
<>), REQUEST ORDER, @(&(K BIDINCREMENT, 1), @(&(
K RESERVEPRICE, 2), @(&(K STARTPRICE, 1), <>))))
(* Administrator receives the order request. *)

– SEND !MSG (ADMINISTRATOR, @(SELLER, <>), ACCEPT ORDER,
<>) (*Administrator sends to seller an acknowledge to accept the order*)

– SEND !MSG (ADMINISTRATOR, @(AUCTIONEER, <>),
REQUEST AUCTION, @(&(K BIDINCREMENT, 1), @(&(
K RESERVEPRICE, 2), @(&(K STARTPRICE, 1), <>))))
(* Administrator submits the order to auctioneer for processing *)

– RECV !AUCTIONEER !ADMINISTRATOR !MSG (ADMINISTRA-
TOR, @(AUCTIONEER, <>), REQUEST AUCTION, @(&(
K BIDINCREMENT, 1), @(&(K RESERVEPRICE, 2), @(&(
K STARTPRICE, 1), <>))))
(* Auctioneer receives the auction request *)

– SEND !MSG (AUCTIONEER, @(ADMINISTRATOR, <>), AC-
CEPT AUCTION, <>)
(* Auctioneer sends an acknowledge to administrator *)

– i (* Auction starts, internal action *)

– i (* Auction ends and no buyer has joined this auction, internal action *)

– SEND !MSG (AUCTIONEER, @(ADMINISTRATOR, @(SELLER, <>
)), INFORM AUCTION FAILURE, <>)
(* Auctioneer informs administrator and seller about the auction failure *)

System Correctness Properties

Temporal Logic Formulas
(CTL, Mu-Calculus)

Lotos Specification

Labeled Transition System

Model Checker
Yes (Properties
being satisfied)

No (Conflicting
 examples)

Figure 9. Model-Checking Verification

Model-checking is more powerful than simulation. It can
be used to prove the correctness of a protocol. To do the
model-checking, we first have to decide all the required cor-
rectness properties, then we encode them as temporal logic
formulas using CTL and Mu-calculus [19], as illustrated in

figure 9. Usually there are three kinds of correctness prop-
erties: safety, liveness and fairness, described below.

– Safety properties express that something bad never
happens in a system. For example, there is no deadlock
(progress is no more possible) or livelock (the system
enters a process and cannot leave) in the specification,
or some actions should always occur before other ac-
tions. To facilitate the verification, we can define some
temporal logic macro expressions. For example, the
order of two actions A and B can be expressed using
a user-defined macro: before(A, B) = not([(not (B))*
. (A)] false). In AIP, an agent usually can not per-
form some actions or enter into some states without
being triggered by incoming messages. These impor-
tant properties of AIP can be verified using the before
macro.

– Liveness properties express that something good even-
tually happens. A liveness property requires that at
least one sequence of messages in the protocol satis-
fies the temporal formula. An example is the absence
of starvation (eventually each process is granted a re-
source). Another one is accessibility requiring that a
conversation should lead to a desired state from the ini-
tial state [15].

– Fairness properties are needed when several processes
compete for a resource. They require that each action
has the infinite opportunity to be performed when it
is enabled infinitely. For instance, the property that
an action A will be fairly reached initially can be ex-
pressed as: [(not “A”)*] < true ∗ .“A” > true.

AIP properties can also be directly modelled in Lotos.
The observational equivalence between property specifica-
tion and protocol specification is verified automatically. The
observational equivalence is also useful to check the com-
pliance between refined AIP specifications and generic ones.

We have proved that the generated English auction spec-
ification is deadlock and livelock free. In addition, we have
proved some correctness properties specific to the auction
protocol, including:

– A proposal cannot be accepted by auctioneer unless the
buyer’s subscription has been accepted (safety prop-
erty).

– An unsubscribed buyer cannot receive a call-for-
proposal (safety property).

– There exists an execution sequence that leads to an
auction-success (liveness property).

– After a subscription, a buyer can receive a call-for-
proposal (liveness property).

– A buyer has the chance to win if no other buyers want
to pay more than (maybe as much as) its bid (fairness
property).

We also note that when the auction specification in-

cludes for instance two buyers, the model checker generates
3228732 states and 10733000 transitions using a Sun Ultra
Sparc Station (1Ghz of CPU and 8GB of RAM memory).

5. Conclusion and Perspectives

As discussed in this paper, our framework provides a flexi-
ble generic architecture to correctly and completely specify
AIP in appropriate abstraction levels. This architecture ex-
presses almost all aspects of agent interaction, and supports
cases that involve groups of agents such as protocols of bid-
ing, election and voting. The message structure is flexi-
ble, meaningful and domain-independent. Synchronous and
asynchronous communication can be naturally expressed.
AIP Lotos specifications can also be simulated to observe
the dynamic behavior allowed by AIP, thus improving peo-
ple’s understanding of complex AIP. Most important, we
can use model-checking tools to automatically verify the
properties of AIP specifications and prove their correctness.

Our future work is to build a tool that assists the con-
struction of AIP applications based on the generic frame-
work. Also, the implementation of the specification proto-
cols are necessary to complete the whole lifecyle software
development. Since protocols are considered as reusable
components [8], we also want to investigate how to design
advanced AIP applications by reusing and composing ex-
isting ones. Lotos is a highly expressive language. How-
ever, it has some limitations, such as that it cannot specify
quantitative time and exception handling. We want to im-
prove this generic framework by using ELotos [14]. ELotos
removes some limitations and provides better structuring
mechanisms, such as modularity, interface and other user-
friendly features. We would like to apply ELotos in such
area but there is no supporting tools. This is why we are
currently developing a Java simulator for ELotos.

References

[1] T. Arai and F. Stolzenburg. Multiagent systems spec-
fication by UML statecharts aiming at intelligent man-
ufacturing. In Proceedings of The First International
Joint Conference On Autonomous Agents And Multi-
agent Systems, pages 11-18. ACM Press, 2000.

[2] F. Bergenti and A. Ricci. Three Approaches to the
Coordination of Multiagent Systems. In Y. Demazeau,
editor, 2002 ACM Symposium on Applied Computing
(SAC’02), pages 367–372, Madrid, Spain, 2002.

[3] T. Bolognesi and E. Brinksma. Introduction to the ISO
specification language LOTOS. Computer Networks,
14(1):25–59, January 1988.

[4] B. Chen and S. Sadaoui. Simulation and validation
of a dynamic online auction. In 7th IASTED Interna-
tional Conference on Software Engineering and Ap-
plications, 2003.

[5] M. A. Cornejo, H. Garavel, R. Mateescu, and N. D.
Palma. Specification and verification of a dynamic re-
configuration protocol for agent-based applications. In
DAIS, pages 229–244, 2001.

[6] R. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng.
Modeling agent conversations with colored petri nets.
In Working Notes of the Workshop on Specifying and
Implementing Conversation Policies, pages 59–66,
Seattle, Washington, May 1999.

[7] R. Maria d. C. Andrade. Capture, Reuse, and Valida-
tion of Requirements and Analysis Patterns for Mobile
Systems. PhD thesis, University of Ottawa, 2001.

[8] M. d’Inverno, D. Kinny, and M. Luck. Interaction pro-
tocols in agentis. In Third International Conference
on Multi-Agent Systems (ICMAS98), pages 261–268,
1998.

[9] M. Wooldridge, N. R. Jennings, and D. Kinny. A
methodology for agent-oriented analysis and design.
In Oren Etzioni, Jörg P. Müller, and Jeffrey M. Brad-
shaw, editors, Proceedings of the Third International
Conference on Autonomous Agents (Agents’99), pages
69–76, Seattle, WA, USA, 1999. ACM Press.

[10] J.-C. Fernandez, H. Garavel, A. Kerbrat, and
L. Mounier. CADP: a protocol validation and veri-
fication toolbox. 1996.

[11] L. F. Pires, and W. L. de Souza. Stepwise refine-
ment design example using LOTOS. In Juan Que-
mada, Jose A. Mañas, and Enrique Vázquez, edi-
tors, Proc. Formal Description Techniques III. North-
Holland, Amsterdam, Netherlands, November 1990.

[12] FIPA ACL Message,
http://www.fipa.org/specs/fipa00061, 2001.

[13] N. Fornara and M. Colombetti. Defining interaction
protocols using a commitment-based agent commu-
nication language. In Proceedings of the second in-
ternational joint conference on Autonomous agents
and multiagent systems, pages 520–527. ACM Press,
2003.

[14] H. Garavel and M. Sighireanu. Towards a second gen-
eration of Formal Description Techniques – Rationale
for the design of E-LOTOS. In Jan-Friso Groote, Bas
Luttik, and Jos van Wamel, editors, Proc. 3rd. Inter-
national Workshop on Formal Methods for Industrial

Critical Systems, pages 187–230, Amsterdam, Nether-
lands, May 1998. University of Nantes.

[15] H. Mazouzi, A. E F. Seghrouchni, and S. Haddad.
Open protocol design for complex interactions in
multi-agent systems. In Proceedings of the first in-
ternational joint conference on Autonomous agents
and multiagent systems, pages 517–526. ACM Press,
2002.

[16] D. Kinny and Mi. Georgeff. Modelling and Design
of Multi-Agent Systems. In Intelligent Agents III:
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages (ATAL-
96), Budapest, Hungary, 1996.

[17] J-L. Koning. Algorithms for translating interaction
protocols into a formal description. In IEEE Interna-
tional Conference on Systems, Man and Cybernetics,
Tokyo, Japan, October 1999.

[18] J-L. Koning. Designing and testing negotiation proto-
cols for electronic commerce applications. In Frank
Dignum and Carles Sierra, editors, Agent Mediated
Electronic Commerce, The European AgentLink Per-
spective, volume 1991 of Lecture Notes in Computer
Science, pages 34–60. Springer, 2001.

[19] R. Mateescu and M. Sighireanu. Efficient on-the-
fly model-checking for regular alternation-free mu-
calculus. In Proceedings of the 5th International
Workshop on Formal Methods for Industrial Critical
Systems FMICS’2000, Berlin, Germany, April 2000.

[20] J. Odell, H. Parunak, and B. Bauer. Extending UM for
agents. In Agent-Oriented Information Systems Work-
shop at the 17th National conference on Artificial In-
telligence, 2000.

[21] M. Viroli and A. Omicini. Specifying agent ob-
servable behaviour. In Proceedings of the first in-
ternational joint conference on Autonomous agents
and multiagent systems, pages 712–720. ACM Press,
2002.

[22] C. A. Vissers, G. Scollo, M. v. Sinderen, and
Ed Brinksma. Specification styles in distributed sys-
tems design and verification. In Selected papers of
the 6th International conference on Logic program-
ming, pages 179–206. Elsevier Science Publishers B.
V., 1991.

[23] M. Wooldridge. Verifiable Semantics for Agent Com-
munication Languages. In Y. Demazeau, editor, Pro-
ceedings of the Third International Conference on
Multi-Agent Systems, pages 349–356, Paris, France,
1998. IEEE Press.

Supporting the Requirements Prioritization Process.
A Machine Learning approach.

Paolo Avesani1, Cinzia Bazzanella1,2, Anna Perini1, Angelo Susi1
1ITC-IRST, Via Sommarive 18, I-38050, Povo-Trento, Italy

{avesani,perini,susi}@irst.itc.it
2University of Trento, Via Sommarive 14, I-38050, Povo-Trento, Italy

{bazzanella}@irst.itc.it

Abstract
Requirements prioritization plays a key role in the re-

quirements engineering process, in particular with respect
to critical tasks such as requirements negotiation and soft-
ware release planning.

This paper presents a novel framework which is based
on a requirements prioritization process that interleaves hu-
man and machine activities, enabling for an accurate prior-
itization of requirements. Similarly to the Analytic Hierar-
chy Process (AHP) method, our framework adopts an elic-
itation process based on the acquisition of pairwise pref-
erences. Differently from AHP, where scalability is a big
issue, the framework enables a prioritization process even
over a large set of requirements, thanks to the exploitation
of machine learning techniques that induce requirements
ranking approximations at run time, and to the use of a
boolean metrics. Moreover the new approach allows to re-
duce the bias of a dominance hierarchy, a strategy intro-
duced by AHP to deal with the scalability issue.

The paper describes also a methodology for the exper-
imental evaluation of the framework and discusses the re-
sults of a first set of experiments designed on a real case-
study which shows that an high accuracy in the final rank-
ing can be obtained within a limited elicitation effort.

1. Introduction

Requirements prioritization has been pointed out as a rel-
evant research area in requirements engineering, calling for
the definition of effective methods and techniques that en-
able to rank a whole set of requirements, according to rel-
evant criteria, such as business goals (e.g. customer value)
or technical features (e.g. development cost) [15].

Prioritizing requirements can be seen as the process of
deriving an order relation on a given set of requirements,
with the ultimate goal of obtaining a shared rationale for
partitioning them into subsequent product releases.

Several approaches have been recently proposed [8, 7,
9, 10, 14], which adopts a common model for the require-
ments prioritization process, based on the following three

steps: (i) selection of one or more prioritization criteria (or
prioritization features) among business goals and technical
features; (ii) acquisition of a requirements ordering accord-
ing to a specific criterion from one or more stakeholders
(e.g. customers, users, project manager); (iii) composition
of the acquired orderings into a final one based upon an ap-
propriate composition schema. These approaches tend to
focus on how to choose the most relevant criteria and on
how to combine them, while giving minor emphasis to the
acquisition of the ranks according to a given criterion.

In our approach, we address the problem of supporting
the acquisition of requirements ordering according to prior-
itization features, (i.e. step (ii)), taking into account critical
issues related to this step, such as how to manage stake-
holder bias and how to maintain the costs of the prioritiza-
tion process lower than the resulting benefits.

In order to reduce the risk of ambiguity of the stake-
holder judgment, we devise the preference acquisition task
as a pairwise comparison on the set of requirements, adopt-
ing an approach similar to the one proposed by Saaty [13]
within the Analytic Hierarchy Process (AHP) method. Al-
though a pairwise prioritization approach is successful in
reducing the acquisition error, the total amount of informa-
tion that has to be acquired from the stakeholder increases
quadratically with the number of requirements, making
scalability a critical issue. This problem has been faced by
introducing a dominance hierarchy [13], but this may intro-
duce a bias on the resulting ranking.

In our approach we exploit machine learning techniques
to reduce the elicitation effort by approximating part of the
pairwise preferences. The approximation step computes an
estimate of unknown preferences looking at the other ranks
acquired according to predefined prioritization criteria.

Moreover, we adopt a boolean metrics to lower the hu-
man effort associated to the requirements evaluation and we
prove that it can be effective as much as multi values met-
rics, as far as a large set of requirements has to be priori-
tized [4].

The resulting framework supports the ranking process by
providing a mixed-initiative strategy that combines human

effort and computer support to accomplish the task. In this
paper we describe our framework and propose a method-
ology for the experimental evaluation of its effectiveness.
This methodology exploits a web application to elicit re-
quirements prioritization. We are conducting a set of ex-
periments with a group of students of the computer science
faculty, using a case study extracted from a real applica-
tion. The experimental results of a first set of experiments
are really promising because they show that we can obtain
an accurate requirements ranking with a limited elicitation
effort.

The paper is structured as follows. In Section 2 we
present the framework and the machine learning techniques
that it is based on. In Section 3 we describe the evalua-
tion methodology and discuss experimental results. Related
work are briefly discussed in Section 4. Finally, conclusions
and future work are presented in Section 5.

2. Our approach

We propose a framework that adopts the AHP tech-
nique of pairwise prioritization and exploits machine learn-
ing techniques to overcome AHP limits.

AHP [13] is a multiple criteria decision making tech-
nique that allows decision makers to take into account trade-
offs between attributes.

In applying AHP to requirements prioritization, the first
step is the selection of a given set of requirements, called
also alternatives. The second step is the definition of a dom-
inance hierarchy for the criteria that have to be taken into
account in the evaluation process: at the top of the domi-
nance hierarchy are the objectives from a managerial point
of view, at the lowest level, a list of alternatives. In the
third step, given a criterion, a pairwise comparison matrix
is built. The rows and columns of this matrix represent the
set of requirements under investigation. Half of the matrix
elements are assigned with an integer belonging to the in-
terval [0 . . . 9] which represents a qualitative measure of the
preference relation (e.g. the requirement A is “equally im-
portant” than requirement B respect to the given criteria,
corresponds to the value 1, the requirement A is “essen-
tially more important” than requirement B corresponds to
the value 5). At the end of the voting process a total or-
der is synthesized through the computation of a vector of
weights that specifies the rank of each requirement. This
step is repeated for all the criteria. The vectors of weights
and the related ranks represent the different points of view
according to the predefined criteria. The last step is the syn-
thesis of a global rank that composes the different orderings.
An analogous preference elicitation process is performed by
filling a matrix where rows and columns represent the dif-
ferent criteria taken into account. In such a way a rank on
the criteria is obtained and is used to compute a weighted
composition of the different order relations defined over the
set of alternatives.

Among the main limits of AHP, the dramatic growth of

Requirements

Preference

Requirements
pair

Final
ranking

Ranking
criteria

Preference
elicitation

Pair
sampling

Ranking
learning

Figure 1. The basic iteration of the require-
ments prioritization process.

the number of comparisons needed as long as the number of
candidate requirements increases. While the adoption of a
dominance hierarchy has been proposed to handle this phe-
nomenon, this can introduce a bias in the priority elicitation.

Another critical aspect of the AHP technique concerns
the ten value rating scale, which may cause problems of
cognitive overload (in specifying one value preference out
of ten rates), as well as of semantic ambiguity (e.g. different
stakeholders perceive in a different way the difference be-
tween “more important” and “essentially more important”).

In our approach we adopt the AHP pairwise compari-
son technique, using a binary rating, and we exploit ma-
chine learning techniques to approximate part of the pair-
wise preferences in order to reduce the elicitation effort
avoiding the use of a dominance hierarchy.

Our framework supports an iterative process for require-
ments priority elicitation that can handle single and multiple
evaluators (stakeholders) and different criteria (both busi-
ness goals and technical parameters). In the following, we
illustrate it considering the case of a stakeholder who col-
laborates to the prioritization of a set (of cardinality n) of
system requirements, given a ranking criteria. We suppose
also that the requirements have been already ranked respect
to technical characteristics (e.g. the cost or the effort to re-
alize a requirement, or the penalty cost in case the require-
ment will be not included in the system release).

Figure 1, depicts the basic process that the evaluator un-
dertakes. The types of data involved in the process are
depicted as rectangles, namely: Requirements represent
data in input to the process, that is the finite collection of re-
quirements that have to be ranked; Requirements pair is
a pair of candidate requirements whose relative preference
is to be specified; Preference is the order relation between
two alternative requirements elicited from the stakeholder.
The preference is formulated as a boolean choice on a pair;
Ranking criteria are a collection of order relations that
represents ordering induced by other criteria (e.g. the cost
for the realization of the requirements, the estimated util-
ity) defined on the initial set of requirements; Final rank-
ing represents the resulting preference structure on the set
of requirements. This final ranking which results from the

output of the process represents an approximation of the ex-
act ranking. Notice that this ranking may become the input
to a further iteration of the process.

The steps of the basic process iteration are depicted as
ovals in Figure 1, they are:

1. Pair sampling
An automated procedure selects from the requirements
repository a pair of requirements and submits it to the
stakeholder who can judge their relative priority. No-
tice that in this step, the selection of a pair takes into
account information on the current available rankings
(this information is stored in the data Preference, see
the arrows between Preference and Pair sampling
in Figure 1);

2. Preference elicitation
This represents a mixed initiative step in the process:
given a pair of requirements the stakeholder chooses
which one is to be preferred with respect to the current
criterion;

3. Ranking learning
Given a partial elicitation of the user preferences, a
learning algorithm produces an approximation of the
unknown preferences and a ranking of the whole set of
requirements is derived.

If the result of the learning step is considered accurate
enough or the end user has been overloaded, the iteration
halts and the latest approximated rank is given as output;
otherwise another cycle of the loop is carried on. It is to be
noticed that the first and the third steps are automated while
the second step is in charge to the stakeholder. The model
is characterized by the fact that the preference elicitation is
monotonic (i.e. the user does not see the same pair twice).
It could be helpful to remind that such a method aims at
obtaining a lower human effort/elicitation, while increasing
accuracy of the approximation.

2.1. The learning algorithm

The Ranking learning step produces an approxima-
tion of a preference structure, exploiting machine learn-
ing techniques and in particular the boosting approach de-
scribed in [6]. In the following we give a brief description
of the problem that we handle with the boosting approach
and of the algorithm.

We have a finite set of requirements Req =
{req0, . . . , reqn}. The ranking criteria F = (f1, . . . , fm)
defined as a finite set of m functions that describe the sin-
gle requirement inducing an ordering on the set Req, where
fj : Req → R (R = R ∪ {⊥}) and the interpretation of the
inequality fj(req0) > fj(req1) means that req0 is ranked
above req1 by fj and fj(req) = ⊥ if req is unranked by the
functions in F . As already mentioned, they can represent
business goals, such as user satisfaction or more technical
aspects, such a measure of the estimated cost for the imple-
mentation of the requirements or the penalty cost for a not
complete implementation of a given requirement.

The target ranking represents the ideal requirements or-
dering expressed by a stakeholder and is defined as the func-
tion Φ : Req×Req → {−1, 0, 1}where Φ(req0, req1) = 1
means that req1 be ranked above req0, Φ(req0, req1) = −1
means that req0 be ranked above req1, and Φ(req0, req1) =
0 indicates that there is no preference between req0 and
req1 (we assume Φ(req, req) = 0 and Φ(req0, req1) =
−Φ(req1, req0) for all req, req0, req1 ∈ Req). Related to
the Φ we also define a density function D : Req×Req → R

such that D(req0, req1) = γ ·max({0, Φ(req0, req1)}) set-
ting to 0 all negative entries of Φ; γ is a positive constant
chosen such that D is a distribution, satisfying the normal-
ization property1 ∑

req0,req1
D(req0, req1) = 1 .

The goal of the learning step is to produce a ranking of
all requirements in Req. This ranking is represented in the
form of a function H : Req → R where req1 is ranked
higher than req0 by H if H(req1) > H(req0). The func-
tion H represents the approximate ordering of Req induced
by the feedback function Φ using the information from the
set of features F .

In our framework, the function H is computed by a
learning procedure based on boosting method. Boosting it-
eratively combines many learners, usually weak learners,
into a final learner. For example a ranking prediction func-
tion H can be obtained as a linear combination of many
simple functions that define a simple ranking rule as a par-
tition over the given set of requirements.

That is we compute the function H in the form of a linear
combination of partial order functions ht : Req → R (weak
rules) with a set of coefficients α = {α1, . . . , αt, . . . }. The
algorithm that computes H performs T iterations; it takes
as input the initial distribution D and the set of functions F .

The basic iteration performs the three steps described be-
low.
• Compute a partial order ht of the elements in Req tak-

ing into account both the user feedback function Φ and
the orderings induced by the functions in F .

• Compute a value for the parameter αt. This value is a
measure of the accuracy of the partial order ht respect
to the final order H .

• Compute a new distribution D over the set of pairs al-
ready evaluated by the evaluator, which is passed, on
the next iteration, to the procedure that computes the
partial order h. The basic intuition is that the distribu-
tion D represents the portion of relations where the al-
gorithm fails to produce an accurate prediction. There-
fore the information provided by the distribution D is
given in input even to the pair sampling policy. Pairs
where the priority is supposed to be less accurate will
be presented to the users for the next step of preference
elicitation.

The number of iterations can be fixed a-priori or the algo-
rithm stops when a stable ordering configuration has been
found. More details on the algorithm can be found in [3].

1Notice that Φ(req0, req1) = 0 means that the pair hasn’t been pro-
posed to stakeholder, so this three valued function allows to represent the
boolean choice of the stakeholder.

3. Empirical Evaluation

The development of a methodology for evaluating re-
quirement prioritization techniques poses interesting prob-
lems, such as how to define measurable factors against
which to conduct the evaluation, how to organize the ex-
periments; how to choose, train and monitor the evaluators.

We considered two evaluation approaches, that we re-
fer as off-line and on-line evaluations. The former doesn’t
involve the real users but relies on simulations of the re-
quirement prioritization process. The latter is based on a
test on the field taking into account a real setting of require-
ment engineering process and involving the stakeholders in
the assessment of the methodology. The off-line approach
is usually easier because the simulation of the prioritization
process allows to define in advance what is the correct so-
lution, i.e. the target priority index. Given this premise,
it is possible to introduce a measure of disagreement be-
tween the target priority relation and the ranking relation
obtained by the proposed methodology. Disagreement is
defined as the ratio between the disalignment between the
two relations with respect to the total number of pairwise
precedence relationships. In [4] we discussed the results of
off-line evaluations, showing that, even though it may ap-
pear counterintuitive, a boolean prioritization metrics can
be more effective than a multi-value metrics, as far as the
number of requirements become larger and larger, and that
our framework allows to maintain the costs of the prioriti-
zation process lower than its benefits.

The on-line approach is usually harder because it is not
known at all the value of correct priority index for a spe-
cific requirement prioritization problem. What happens for
real is the following: once a prioritization methodology is
applied we obtain as solution a priority index but we lack
the opportunity to compare it with the target priority index.
There is a paradox: if we were able to acquire the correct
solution we would already have the method to compute the
priority index. Below we propose an approach to empirical
evaluation suitable to overcome these drawbacks.

We set up an on-line evaluation methodology extract-
ing a case study from the development of a real applica-
tion called CoCoA, Compilation Compiler Advisor [1]. Co-
CoA2 is a web application to deliver a personalization ser-
vice for audio compilation. Up to now more than 50.000
users has edited and downloaded more than 50.000 compi-
lations with a repository of more than 11.000 mp3 tracks.

From the documentation of the project we extracted a
subset of 40 requirements defined at the early stage to de-
scribe the CoCoA system. Figure 2 gives an excerpt of re-
quirement definition which consists basically of a unique
identifier that allows to manage a non ambiguous reference;
the informal and verbose description; a set of ranking fea-
tures, for example the requirement effort, which can be used
to induce an order relation with respect to this criterion.

2You may have a trial at the following address: http://cocoa.itc.it

<requirement>
<id>R-#33</id>
<title>Audio Track Download</title>
<type>functional</type>
<effort metric="mm">0.25</relevance>
<relevance metric=[0,9]>??</effort>
<description>

Once the compilation is completed it has to be supported the operation
of download for each single track. No constraints should be applied
to the track download order.

</description>
</requirement>
...
<requirement>

<id>R-#41</id>
<title>Track Recommendation</title>
<type>functional</type>
<effort metric="mm">0.50</effort>
<relevance metric=[0,9]>??</relevance>
<description>

Anytime, the user should have the opportunity of receiving a recom-
mendation on suitable tracks to complete her/his compilation under
development. No additional personal information has to be provided to
the system to take advantage of recommendation service.

</description>
</requirement>

Figure 2. Requirement Excerpt. A couple of ex-
amples of requirements that have been used
in the experimentation.

Figure 3. Snapshot GUI. A snapshot of the
graphical user interface related to the agenda
of pairwise comparison.

In order to apply the methodology we developed a web
application which support a distributed use of the frame-
work. The goal was to support the pairwise priority elici-
tation by distributed stakeholders (the users of the system).
The Figure 3 shows a snapshot of the graphical user inter-
face.

The empirical evaluation was restricted to the elicita-
tion of a specific ranking criteria concerned with user rel-
evance. Five persons has been selected as representative of
end users. The goal of our experiment was to assess whether
our methodology is effective in supporting the acquisition
of one of the ranking criterias that take part in the definition
of a general priority index.

The typical session has been designed as follows. A col-
lection of pairwise alternatives was presented to the end

uses. They were invited to select a pair, to assess the rel-
ative priority between the two respective requirements, to
elicit the priority relation among them. No additional ef-
fort was required, just a boolean preference. The interactive
session was very simple indeed, no specific training or tu-
torial was required. Anyway, it is important to remark that
no free riding over the requirements or the related priority
index was allowed.

As mentioned before our stakeholders, in the specific
context, were the end users representative. Each of the five
persons involved in the experimentation, autonomously at-
tended the simple process of requirement prioritization. The
distributed design of the experiment allows us to avoid any
supervision activity during the process, so no additional bias
has been introduced.

The requirement prioritization process has been config-
ured with 40 requirements. Each user has been invited to
analyze 60 comparisons and to elicit pairwise priority rela-
tions accordingly. A first agenda with 20 bipartite pairs has
been proposed to the user that since the beginning had an
overview of the requirement set. The total amount of elici-
tation was only the 8% of the all pairwise relationships that
should have to be elicited.

After the elicitation process supported by our method we
obtained five priority indexes, one for each user. Each pri-
ority index was partially based on elicited preferences and
partially (mostly) on approximated values.

At this stage we meet the problem of quality assessment
due to the lack of knowledge of the target priority index.
We proceeded as follows. The intuition is to refer to the
variance among the different users to select a subsample of
pairwise priority relations to be tested with real users.

Let us remember that all the potential pairwise prior-
ity relations are O(n2/2) and the known relations are only
3/2n, where n = 40 is the cardinality of requirement
set. Therefore the unknown pairwise priority relations to
be tested are too many for an exhaustive assessment. For
this reason we need an heuristic to select a subset of them.

We first computed the cumulative agreement among the
different users. For each rank position, from 1 to 40, refered
as the k − th position, we computed the relative percentage
of requirements that the users assigned the same order. We
obtained three partitions of maximal agreement among the
evaluators. Within each partition we computed the variance
of each user with respect to such category. Given, for ex-
ample, the first category, that was identified in the range
[1 . . . 12] (i.e. k = 12), we know that only part of the re-
quirements ordered in the first twelve positions by user 1,
have been placed in the same category by all other users.
We focussed our attention on the subset of requirements that
a given users placed in the first 12 position differently from
other users. Therefore for each of such requirements we
synthesized a pair with the requirement at 12-th position.
We did the same for the subsequent categories obtaining two
subsets of pairs: the former to test a forward prioritization
error, the latter to test the backward prioritization error.

Prioritization Error
FW (%) BW (%) tot (%)

user 1 5 0 5
user 2 0 0 0
user 3 2 0 2
user 4 5 5 10
user 5 5 2 7
average 3 1 4

Table 1. Experimental Results.

Forward prioritization error refers to requirements that are
erroneously ranked with higher priority.Backward prioriti-
zation error, on the contrary, refers to underestimate prior-
ity. The rationality of such a heuristic is to focus the testing
over the variance with the goal of assessing whether it was
an approximation error or only a specificity of the user.

The ultimate stage was designed for testing purpose. It
consisted in a a supplementary session of pairwise priority
elicitation performed by the end users and it has been con-
ducted as a completely blind process.

Finally we were able to directly compare on a subset of
the priority relations the real priority values provided by the
users and the priority values approximated by the machine.
Table 1 summarizes the results of the on-line experimental
evaluation.

On average we obtained that with only a 8% of elicita-
tion effort we can achieve a prioritization results approxi-
matively 96% accurate. A threshold of 4% of error can be
considered quite reasonable and not meaningful compared
with the noise related o such a kind of process.

Less positive is the variance of the error among different
users. For user 2 we succeeded in reducing to 0% the error
while for the user 4 we missed 10%. This drawback can
be reduced promoting a collaborative setup of the method-
ology that aims to share on the fly the elicitation effort of
different users.

The difference between the forward and backward errors
is a side effect of the evaluation approach since the learning
techniques don’t introduce any bias to favour upper position
rather than lower ones. The amount of pairs selected to as-
sess forward and backward errors differs, while the relative
error over these amounts is the same.

4. Related work

Recent approaches to requirements prioritization ex-
ploits different multi-criteria decision making techniques,
such as Analytic Hierarchy Process (AHP) [13], Multi Cri-
teria Decision Aid (MCDA) [11], SMART [5] and Quality
Function Deployment (QFD) [2]. Among them the cost-
value approach [8], the Multi-criteria Preference Analysis
Requirements Negotiation (MPARN) [7], and Quantitative
WinWin [12].

Main limits of these techniques are attributed to the
strong assumptions they adopt, such as, the completeness

and certainty of the set of requirements to be evaluated
and the plausibility of a rating scale based on discrete cat-
egories. Moreover, they seem to be inadequate in handling
the following relevant issues: cost of the elicitation pro-
cess; subjectivity of the stakeholders opinions; dependen-
cies among requirements; requirements volatility.

In this paper, we addressed in particular the first two
problems. Other frameworks attempt to manage them in-
tegrating different decision making techniques as well as
methods for the identification of relevant criteria for re-
quirements prioritization derived from other disciplines,
(e.g. portfolio-based reasoning) [9, 8, 7, 10, 14].

Relevant to the work described in this paper are AHP-
based methods, such as the Soft Requirements Negotiator
(SRN) [10]. The SRN method aims at addressing the in-
completeness and uncertainty of the initial set of require-
ments to be prioritized and for this reason integrates AHP,
MCDA and simulation techniques for the estimation of
quantitative ranking features. MCDA techniques are ex-
ploited with the attempt to deal with incomplete informa-
tion, and in particular to support the selection of balancing
“for” and “against” arguments for a given requirement.

The method rests on a two phase process: (i) the qual-
itative analysis phase consisting in the acquisition of the
stakeholder preferences, that aims at partitioning the re-
quirements into three categories; (ii) the quantitative analy-
sis phase where quantitative data referred to cost and value
are used to compute the set of most promising requirement
rankings. In particular, during phase (i), the evaluator (a
stakeholder) is asked to give a rank to the requirement on the
basis of a three values scale ({−, 0, +}), with the following
meaning: “+” if the stakeholder considers a requirement
important with respect to the selected criterion; “−” if it is
not important; “0” in case of a neutral judgment. This ap-
proach gives as a result a partial ordering of the elements.
We think that our techniques could be fruitfully applied in
phase (i) of the Ruhe framework.

5. Conclusion and future work

In this paper we presented a novel framework for re-
quirements prioritization, which adopts an elicitation pro-
cess based on the acquisition of pairwise preferences. Dif-
ferently from AHP, where scalability is a big issue, our ap-
proach enables a prioritization process even over a large
set of requirements, thanks to the exploitation of machine
learning techniques that induce requirements ranking ap-
proximations from the acquired data, and to the use of a
boolean metrics. Moreover the new approach allows to re-
duce the bias of a dominance hierarchy, a strategy intro-
duced by AHP to deal with the scalability issue.

A methodology for the experimental evaluation of the
framework has been described. This methodology is cur-
rently used with a group of students to perform a set of
tests designed on a real case-study. The results of a first
set of experiments showed that a high accuracy of the fi-

nal requirements ranking (96%) can be obtained with a low
elicitation effort (less then 8% of the possible requirements
pairs). On-going experiments are aimed at comparing dif-
ferent requirements prioritization methods.

We believe that the current results are promising and we
are going to further investigate the framework addressing
other critical issue of requirements prioritization such as the
negotiation among many viewpoints of different stakehold-
ers; handling of requirements dependencies; “anytime” pri-
oritization when new unexpected requirements are added.

References

[1] S. Aguzzoli, P. Avesani, and P. Massa. Collaborative Case-
Based Recommeder Systems. In Proceedings of Euro-
pean Conference on Case-Based Reasoning (ECCBR 2002),
LNAI, Aberdeen, Scotland, 2002. Springer-Verlag.

[2] Y. Akao. Quality Function Deployment: Integrating Cus-
tomer Requirements into Product Design. Productivity
Press, 1988.

[3] P. Avesani, S. Ferrari, and A. Susi. Case-Based Rank-
ing for Decision Support Systems. In Proceedings of IC-
CBR 2003, number 2689 in LNAI, pages 35 – 49. Springer-
Verlag, 2003.

[4] P. Avesani, A. Perini, and A. Susi. Prioritizing requirements
via case-based ranking, 2004. IRST Technical Report 1301-
04.

[5] W. Edwards and F. Baron. Smarts and smarter: Improved
simple methods for multiattribute utility measurement, pages
306 – 325. Number 60. 1994.

[6] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An Efficient
Boosting Algorithm for Combining Preferences. In Pro-
ceedings 15th International Conference on Machine Learn-
ing, 1998.

[7] H. In, D. Olson, and T. Rodgers. Multi-Criteria Preference
Analysis for Systematic Requirements Negotiation. In 26th
Annual International Computer Software and Applications
Conference, Oxford, England, August 2002.

[8] J. Karlsson. Software requirements prioritizing. In ICRE’96,
1996.

[9] F. Moisiadis. The fundamentals of prioritising requirements.
In System Engineering, Test and Evaluation Conference,
Sydney, Australia, 2002.

[10] A. Ngo-The and G. Ruhe. Requirements Negotiation under
Incompleteness and Uncertainty. In Software Engineering
Knowledge Engineering 2003 (SEKE 2003), San Francisco,
CA, USA, July 2003.

[11] B. Roy and D. Bouyssou. Aide Multicritère à la Decision:
Methods et Cas. Economica, Paris, 1993.

[12] G. Ruhe, A. Eberlein, and D. Pfahl. Quantitative winwin
- a quantitative method for decisione support in require-
ments negotiation. In Proceedings 14th International Con-
ference on Software Engineering and Knowledge Engineer-
ing (SEKE’02), pages 159 – 166, Ischia, Italy, July 2002.

[13] T. L. Saaty. Fundamentals of the analytic network process.
In Proceedings of International Symposium on Analytical
Hierarchy Process, 1999.

[14] A. Sivzattian and B. Nuseibeh. Linking the selection of re-
quirements to market value: A portfolio-based approach. In
REFS 2001, 2001.

[15] P. Zave. Classification of research efforts in requirements en-
gineering. ACM Computing Surveys, 29(4):315–321, 1997.

Team Tacit Knowledge as a Predictor of Performance
 in Software Development Teams

Sharon Ryan1 and Rory V O’Connor2

1Business School, Dublin City University, Ireland,
sharon.ryan@dcu.ie

2School of Computing, Dublin City University, Ireland
roconnor@computing.dcu.ie

Abstract. Tacit knowledge has been hailed as an
important factor in team performance. In this paper we
examine tacit knowledge as a significant predictor of team
performance. This paper presents the results of a study of
48 software development teams where the influence of
team tacit knowledge on team performance was
examined. We also propose that team tacit knowledge is
acquired through informal social interaction. In addition,
reliability and validity for the team tacit knowledge
measure in software development teams are established
with respect to gut instinct, explicit job knowledge and
experience.

1. Introduction

Tacit knowledge has been linked to team performance, in
that teams with more tacit knowledge, are thought to be
efficient and effective relative to other teams that
members have known. In addition, tacit knowledge has
been hypothetically connected to informal social
interaction [20]. However there is little research on the
measurement of tacit knowledge, with most research
focussing on the measurement of individual tacit
knowledge, while quantified field measurements of the
quality social interaction are rare. The aim of this research
is to examine the relationships between the quality of
social interaction, tacit knowledge and team performance
in software development teams. In addition, a measure of
team tacit knowledge is developed and validated for
software development teams.

1.1. The Research Context

Software development teams work with intangible
cognitive processes rather than physical tangibles
therefore the rules for developing tangible goods do not
apply [4]. Members of software development teams are
considered to be knowledge workers who are
characterised as individuals who have high levels of

education and specialist skills combined with the ability
to apply these skills to identify and solve problems. They
also own the organisation's means of production (i.e.
knowledge) [9]. The failure of many large software
projects has highlighted the challenges in managing team-
based knowledge work [10]. The majority of software
projects do not meet budget and schedule, function
unsatisfactorily and around 25% are never completed
[12]. According to Brooks [4] ‘there is no single
development, in either technology or in management
technique, that by itself promises even one order-of-
magnitude improvement in productivity, in reliability, in
simplicity’. However, research has shown that factors
affecting team performance may be the key [14, 25].

Team performance on software development projects
is dependent on many different and interacting factors e.g.
effective plans, good communication, clear goals. In
addition, internal group processes, particularly those
focussing on the team’s relationships, are more likely than
technical factors to be associated with team performance
on successful projects [14, 25]. In this research we focus
on the importance of social interaction in acquiring
knowledge, specifically tacit knowledge and impact of
such knowledge on subsequent team performance.

1.2. Characteristics of Tacit Knowledge

Tacit knowledge, is not data or information, and cannot
be codified. According to Polanyi [23] who coined the
phrase; tacit knowledge is inarticulable and conceived
through action. Tacit knowledge is most often
conceptualised as distinct from explicit knowledge, but
this distinction can be too simplistic, ‘these two are not
sharply divided. While tacit knowledge can be possessed
by itself, explicit knowledge must rely on being tacitly
understood and applied. Hence all knowledge is either
tacit or rooted in tacit knowledge’ [24].

There are two types of tacit knowledge: individual
tacit knowledge and team tacit knowledge. Individual
tacit knowledge is closely related to skills [24], team tacit

knowledge refers to knowledge associated with group
activities, gained through the experience of working
together by constructing shared cognitions or a ‘collective
mind’ [3, 31].

Research on expertise indicates that much knowledge
associated with successful performance is tacit [13] and
this distinguishes more practically successful individuals
from less practically successful [27]. The term tacit
knowledge has in common parlance been associated with
‘intuition’ and ‘gut instinct’ [15]. Polanyi’s conception of
tacit knowledge has implications for it’s measurement,
when we measure tacit knowledge we are really
measuring ‘implicit’ knowledge which is articulable but
previously unarticulated tacit knowledge [5]. Therefore,
the term articulable tacit knowledge (aTK) [5] which
refers to implicit managerial knowledge about software
development projects, will be used as the definition for
tacit knowledge.

1.3. Tacit Knowledge and Team Performance

Tacit knowledge has become popular in the management
literature and is seen as a source of competitive advantage
[3, 26] with some advocating the ‘capture’ of such
knowledge [7, 20]. There are, however, only a few
empirical studies of tacit knowledge and performance [14,
25] and in relation to tacit knowledge and team
performance only one relevant empirical study exists [3].
In that study the effects of tacit knowledge on team
performance were retrospectively investigated by
examining two seasons of 23 professional basketball
teams. The study concluded that team success increased
as the team’s tacit knowledge increased and concluded
that tacit knowledge is gained through experience rather
than formal study methods and can be acquired at an
individual or group level.

1.4. How do we acquire tacit knowledge?

If we acknowledge, in the workplace at least, that ‘the
tacit dimensions of individual knowledge are not publicly
available except as embodied in people to be hired’ [21],
then we must also recognise that capturing tacit
knowledge inside the heads of people is impossible.
Social interactions between people may be the route
through which we acquire tacit knowledge, in that new
knowledge is thought to be created through iterative
social interaction [22], but not as first advocated, by
making tacit knowledge explicit. Instead, a better
explanation may be that ‘new knowledge comes about not
when the tacit becomes explicit, but when our skilled
performance, our praxis-is punctuated in new ways
through social interaction’ [29].

Tacit knowledge originates with individuals and
becomes group and organisational knowledge as a result

of social interaction [3]. Social interaction in groups is
related to shared mental models, where team members
tend to rely on one another in a cognitively
interdependent manner.

Informal interpersonal communications are considered
to be the principal way in which information flows into
and through R&D organisations [1], with face-to-face
interaction considered the richest medium for transferring
knowledge because it allows for immediate feedback and
the embodiment of tacit knowledge cues [19]. The goal of
much face-to-face interaction is to disseminate
information and pool diverse knowledge to make
informed decisions [26]. The current definition of social
interaction is face-to-face conversation, work related,
personal or social that is informal. The interaction should
not refer to formal interactions like a scheduled project
meeting performance appraisal etc.

1.5. Measurement

Many theorists discuss tacit knowledge and it’s
association with social interaction, but few measure it [7,
22]. Sternberg and others [16, 27] developed a practical
approach to measuring tacit knowledge using a type of
situational judgement test, where individuals are
presented with a problem relevant to their domain
followed by a set of options for solving a problem.
Another included a social network analysis to examine
formal and informal interactions in an IT department and
concluded overwhelmingly that tacit knowledge is
diffused in human to human interaction [5].

Each tacit knowledge measure must be created for it’s
domain and context. Individual measures have been
designed specifically for managers, military leaders [16,
27] and members of an IT department [5]. Team level
tacit knowledge has been measured by proxy involving a
retrospective analysis of the existing performance
statistics to ascertain a measure of shared team experience
[3].

In this study, tacit knowledge is measured at the team
level. The rationale for the team level approach to tacit
knowledge draws on the assumption that tacit knowledge
is increased through social interaction and because people
are different they will acquire different types and amounts
of tacit knowledge which can be co-ordinated at a team
level.

2. Tacit Knowledge and Performance Study

The aim of this study was to investigate the influence of
team tacit knowledge on team performance in software
development teams. In addition, reliability and validity
for the team tacit knowledge measure were established,
with particular reference to the importance social
interaction in developing team tacit knowledge.

Forty eight teams from 46 small to medium sized
organisations based in Ireland and the UK participated in
an online interactive questionnaire. Team size varied from
2 to 12+, with the mean team size being 4.86 and an
average within team response rate of 81.86%.

The first section of the questionnaire detailed the
study and ensured anonymity. Completion of the
questionnaire took approximately 15 minutes and
included a measure of Team Tacit Knowledge (TTKM)
designed specifically for software development teams,
and index of the quality of social interaction within the
team (QSI), two items measuring explicit knowledge and
one item assessing ‘gut instinct’. In addition experience in
the software industry was gauged by tenure. These
measures are detailed in the following sections.

2.1. Team Tacit Knowledge Measure (TTKM)

The rationale behind our measure of articulable tacit
knowledge is based on the notion that experts differ from
novices in the amount of tacit knowledge they possess.
Items for the TTKM were elicited from 13 proficient or
expert project managers using the repertory grid
technique [25]. These items formed a 25 item bipolar
questionnaire assessing articulable tacit knowledge about
factors affecting team performance on successful software
development projects.

This questionnaire was distributed to 18 experts and
124 novices. The 14 bipolar items that differentiated the
two groups formed the present measure of articulable tacit
knowledge. The 14 items are answered on a 5 point
semantic differential type scale. An example of one of the
bipolar constructs is “Innovative project <---->
Mundane/Everyday type project.” Respondents rated the
constructs by selecting closest to the statement pole they
felt described the factors that influence team performance
on successful projects.

The tacit knowledge measure was scored by
comparing the individual score on each of the 14 items
with an expert profile. The average inter-rater reliability
of the experts was 97.5% agreement. From their responses
we constructed expert profiles using the expert mean. We
scored the responses by calculating a squared Euclidean
distance of the individual from that of the expert mean.
These individual scores were then aggregated to form a
team score. The average within team agreement was 95%.

2.2. Quality of Social Interaction

The Quality of Social Interaction (QSI) was assessed by a
self-report questionnaire regarding two perceived
outcomes of social interactions across team members,
resulting in and index of social interaction. This measure
was adapted from Chiu et al. [6] in which participants
were asked to recall the most recent instance where they

spent more than 15 minutes alone interacting face-to-face
with each member of the team. The two perceived
outcomes referred to whether the interactions fostered (a)
attainment of personal goals and (b) promoted positive
feelings among participants. For each of the social
situations participants were asked (a) to indicate on a 3
point, likert-type scale whether they had attained their
goal in the interaction, and (b) indicate the degree of
change in their relationship with the other person after the
interaction, also on a 3 point scale1.

In line with Chiu et al.’s analysis [6] for each
interaction, the responses to the these two questions were
multiplied to form an interaction quality index for that
social interaction. All of the interaction quality indexes
were averaged to form an overall index of perceived
interaction quality for each individual. These scores were
then aggregated to form a team score of social interaction.

2.3. Team Performance

Two dimensions of performance for knowledge teams
consisting of effectiveness and efficiency were measured
[10]. Objective measures of performance present
difficulties in the IS field [17], since ‘using objective
measures assumes comparability across software projects
or unique situations constraints, and this raises a new set
of methodological measurement issues’ [12].

The Effectiveness measure constituted 5 items and
asked how well teams performed, in relation to other
software development teams they have known, on
dimensions of work quality, team operations, ability to
meet project goals, extent of meeting design objectives
and reputation of work excellence. The Efficiency
measure had two items and dealt with adherence to
schedule and budget. Responses for both effectiveness
and efficiency were rated on a 1 to 5 likert-type scale
from ‘not very good’ to ‘excellent’.

2.4. Explicit Knowledge and Gut Instinct

Two self report items measured perceived explicit
knowledge which was operationalised as official job
knowledge. Explicit knowledge was assessed by asking
respondents their levels of familiarity with official written
procedures and their degree of reliance on official written
procedures involved in carrying out their work. In
addition team, members were asked the extent to which
they rely on their gut instinct in doing their job. Gut
instinct was defined as implicit subjective procedures and

1 Likert scales are very commonly used with interval procedures
in the social sciences. In a review of the literature Jaccard and
Wan [18] found that "for many statistical tests, rather severe
departures (from intervalness) do not seem to affect Type I and
Type II errors dramatically."

standards that are difficult to articulate but can be seen in
practice. All items were scored on scale from 1 to 5.

2.5. Overall Scoring, Reliability and Validity of
Tacit Knowledge Measure

First individual scores were calculated for all variables.
Then these were averaged for team level analysis. A
preliminary validation of the tacit knowledge measure
was undertaken to evaluate the discriminant validity of
the Team Tacit Knowledge Measure (TTKM) relative to
explicit knowledge; convergent validity in relation to
years of experience, gut instinct, social interaction and
predictive validity in relation to team performance. We
expect that scores on the TTKM would be unrelated to
explicit job knowledge and that teams with more years of
experience and more reliance on gut instinct and higher
social interaction would possess more tacit knowledge. It
is also expected that scores on the TTKM would predict
team performance over and above all other factors.

3. Results and Analysis

First we examined the reliability of the TTKM at the
individual and team level. Tacit knowledge inventories
and other situational judgement tests differ from
conventional knowledge tests in that items may be poorly
defined and are multidimensional in nature drawing on
skills, knowledge and abilities [16]. Across an inventory
there are diverse areas of knowledge some acquired by
the individual some not, therefore the complexities of the
tacit knowledge measures reduces the likelihood of
obtaining the same levels of internal consistency as for
other traditional knowledge and ability tests. According to
Legree expect to obtain alpha coefficients between .5 and
.8 [20].

Internal consistency for the TTKM as measured by
Cronbach’s coefficient alpha was a=.493 at the individual
level and a=.710 at the team level. Indicating a significant
increase in the internal reliability of the measure at the
team level, thus providing support for the premise that
TTKM measures tacit knowledge at the team rather than
individual level. Given that the obtained team level
reliability falls within the range for other situational
judgement tests and for those reliabilities obtained on
previous measures of tacit knowledge [16] then we
consider the internal consistency of the team level score
to be acceptable.

3.1. Relationships among predictors

Initially we first computed a correlational analyses to
assess the extent of discriminant and convergent validity

between the tacit knowledge measure and other
predictors. This data is provide in table 2 of appendix A.

We first explore the validity of the TTKM. As
predicted, tacit knowledge was not related explicitly to
knowledge as measured by ‘reliance on written
procedures’ and ‘familiarity with written procedures’,
thus providing divergent validity for the TTKM. The
TTKM was not significantly related to gut instinct
perhaps because gut instinct may be seen as comprising
two aspects: gut decisions and gut reactions.

Gut decisions are ‘based on instinct and experience
tempered by information and a broad sampling of
opinions. Gut reactions conversely are ‘based on instinct
that’s overwhelmed by a compelling piece of information
or by the heat of the moment’ [2]. Gut decisions are based
therefore on information and experience, and this is borne
out in the significant association between the experience
and gut instinct (r=.459, p<.01). Gut instinct appears to be
an individual level variable since it is also unrelated to
quality of social interaction and therefore is not related to
team tacit knowledge. In addition, a single item measure,
such as this, would lack the scope to encompass all the
aspects of gut instinct.

The TTKM did not correlate as expected with
experience as measured by years in the software
development industry, this may be because time is
considered important to the development of knowledge
and skill, it is not necessarily an indicator of the amount
of development that has occurred [16]. In software
development, deliberative reflection rather than tenure
may be the key as to why people differ in the amount of
knowledge gained, since experts tend to engage in
deliberate and reflective practice [30].

Convergent validity was provided by a significant
correlation between scores on the TTKM and quality of
social interaction (r=.450, p<.01) providing empirical
support for the theoretical argument, that tacit knowledge
is diffused and acquired through social interaction. In
terms of predictive validity TTK was significantly related
to the effectiveness component of team performance (r =
.345, p<.05) but not the efficiency aspect, with
effectiveness and efficiency correlating well together (r
=.547, p<.01). This finding is consistent with the nature of
efficiency and effectiveness in teams.

Efficiency relates to budgeting and scheduling and has
been found to be associated with formal administrative
co-ordination and reporting procedures which themselves
have not been found to be related significantly to
effectiveness [10]. Effectiveness on the other hand is
characterised by how well the team meets project goals,
the quality aspect rather than speed and budget.

3.2. Other Correlations

The two items measuring explicit knowledge were
significantly related to one another (r=.473, p<.01).
Reliance on gut instinct and ‘familiarity with written
procedures’ were both significantly related to
effectiveness (r=.302, p<.05; r=.296, p<.05, respectively).
These findings suggest that teams who were more familiar
with written procedures, are more effective but not so if
they rely on these procedures, however reliance gut
instinct is increases effectiveness. The only significant
relationship to efficiency was ‘familiarity with written
procedures’ (r = p<.05), suggesting that this aspect of
explicit knowledge is an indicator of overall team
performance.

3.3. Tacit knowledge as a Predictor of Team
Performance

Scores on TTK were correlated significantly with the
team performance measure of effectiveness but not
efficiency. We conducted a hierarchical regression in
order to ascertain the extent to which tacit knowledge in
software development teams accounts for unique variance
in effectiveness ratings. In the hierarchical regression we
entered QSI, Experience, Gut Instinct, Familiarity with
written procedures and reliance on written procedures as
control variables in step 1. Scores on the TTKM were
entered in step 2.

The results illustrated in table 1 indicate that around
27.8 % of the variance in effectiveness is accounted for
by the all of the variables combined. The control variables
explain 18.2% of the variance in effectiveness and team
tacit knowledge describes 9.6% of variance in
effectiveness over and above all other factors in this study
(p<.05). Therefore, team tacit knowledge is a significant
predictor of effectiveness.

Table 1. Hierarchical regression for team effectiveness

Independent variables Standardised beta weights
 Step 1 Step 2
Step 1: Controls
 QSI -.028 -.188
 Experience .065 .079
 Gut .271 .292
 Familiarity .247 .219
 Written .067 .038
Step 2: Team tacit knowledge
 TTKM .352*
 R2 .182 .278

∆R2 .096*
∆F 5.454*

*P<.05

4. Conclusions

The results suggest that tacit knowledge plays a
significant role in explaining team effectiveness but not
efficiency and that scores on the TTKM are a significant
predictor of team effectiveness over and above all other
factors in this study, signifying it’s importance in
software development teams.

A limitation of this study is that there is no way of
knowing if the teams collaborated or interacted with one
another while completing the questionnaire. However, the
existence of standard deviations across responses, on all
measures in all teams provides some support that the
teams did not collaborate.

The type of tacit knowledge related to social
interaction is team based, and involves interactions
between team members who share and acquire this
knowledge, with different team members possessing
different aspects of the team tacit knowledge. The
implications for software teams is that since tacit
knowledge leads to more effective teams, and team tacit
knowledge is acquired through social interaction, then it
is important to encourage informal social interaction to
increase team level tacit knowledge.

We cannot draw firm conclusions as to how managers
go about increasing social interaction as it was not
addressed in this study. However, suggestions forwarded
by DeMarco and Lister [8] regarding the arrangement of
office space in order to balance privacy and informal
interactions in the workplace would be useful. Also,
research in the realm of ecological psychology illustrates
how the design of our workplace affects our social
interaction [11].

4.1. Continuing Research

This study is part of a larger study which explores the
quality and quantity of social interaction in software
development teams and their effect on the acquisition and
transfer of articulable tacit knowledge. Mediating
variables such as transactive memory (social cognition),
climate and knowledge sharing practices are also
investigated. Team performance and product performance
form the dependent variables of the larger study.

References

1. T. Allen, “Managing the Flow of Technology”, MIT Press,
Cambridge, Mass., 1977.

2. Anon., “Protect Yourself from too Much Intuition”, New
Zealand Management, Vol. 45, No. 7, 1998, p. 24.

3. S. Berman, J. Down and C. Hill, "Tacit Knowledge as a
Source of Competitive Advantage in the National
Basketball Association," Academy of Management Journal,
2002, Vol. 45, No. 1, 13-31.

4. F. Brooks, “No Silver Bullet: Essence and Accidents of
Software Engineering”, Computer, Vol. 20, No.4, 1987

5. P. Busch, D. Richards and C.N.G. Dampney, “The
Graphical Interpretation of Plausible Tacit Knowledge
Flows”, “The Graphical Interpretation of Plausible Tacit
Knowledge Flows”, Vol. 24, 2003.

6. C. Chiu, Y. Hong, W. Mischel,. Y. Shoda, “Discriminative
Facility in Social Competence: Conditional Versus
Dispositional Encoding and Monitoring-blunting of
Information”, Social Cognition, Vol. 13, No. 1, 1998.

7. S. Droege and J. Hoobler, “Employee Turnover and Tacit
Knowledge Diffusion: A Network Perspective”, Journal of
Managerial Issues, Vol. 15, No.1, 2003, pp.50-64.

8 T. DeMarco and T. Lister, “Peopleware: Productive
Projects and Teams” 2nd Edn. Dorset House, NY 1999.

9. P. Drucker, “Post-Capitalist Society”, Harper Business,
New York, 1993.

10. S. Faraj and L. Sproull, “Coordinating Expertise in
Software Development Teams”, Management Science, Vol.
9, No. 2, 2000, pp. 1554-1568.

11. W.Gaver, “Affordances for Interaction” Ecological
Psychology, Vol.8, No. 2, 1996, pp. 111-129.

12. W. Gibbs, “Software’s Chronic Crisis”, Scientific
American, September, 1994, pp. 86-95.

13. R. Glaser, M.T.H.Chi, and M.J. Farr, “The Nature of
Expertise” Erlbaum, Hillsdale, New Jersey, 1988.

14. P. Guinan, J. Cooprider, and S. Faraj, “Enabling Software
Development Team Performance During Requirements
Definition: A Behavioural Versus Technical Approach”,
Information Systems Research, Vol. 9, No. 2, 1998.

15. A. Hayashi, “When to Trust your Gut”, Harvard Business
Review, Vol. 29, No. 2, 2000, pp. 59-66.

16. J. Hedlund, G. Forsythe, J. Horvath, W. Williams, S. Snook
and R. Sternberg, “Identifying and Assessing Tacit
Knowledge: Understanding the Practical Intelligence of
Military Leaders”, The Leadership Quarterly, Vol. 14,
2003, 117-140.

17. J. Henderson, and S. Lee, “Managing I/S Design Teams: A
Control Theories Perspective”, Management Science, Vol.
38, No. 6, 1992, 757-777.

18. J. Jaccard, and C.K. Wan (1996). LISREL approaches to
interaction effects in multiple regression. Thousand Oaks,
CA: Sage Publications.

19. K. Koskinen, P. Pihlanto, H. Vanharanta, “Tacit
Knowledge Acquisition and Sharing in a Project Work
Context”, International Journal of Project Management,
Vol. 21, 2003, 281-290.

20. P. Legree, “Evidence for an Oblique Social Intelligence
Factor Established with Likert-based Testing Procedure”,
Intelligence, Vol. 21, 1995, 247-266.

21. D. Leonard and S. Sensiper, “The Role of Tacit Knowledge
in Group Innovation”, California Management Review,
Vol. 40, No. 3, 1998, pp.112-132.

22. I. Nonaka, and H. Takeuchi, “The Knowledge Creating
Company”, Oxford University Press, Oxford, 1995.

23. M. Polanyi, “The Tacit Dimension”, Peter Smith, 1966.
24. M. Polanyi, “Knowing and Being”, Routledge, 1969.
25. S. Ryan and R. O’Connor, “The Elicitation of Expert

Knowledge regarding the Factors that affect Team
Performance on Software Development Projects”, in 16th
International Conference on Software & Systems
Engineering and their Applications, Paris, 2003

26. G. Stasser, “Pooling of Unshared Information During
Group Discussion”, in S. Worchel, W. Wood, & J.A.
Simpson (eds.), Group Process and Productivity, Sage,
Newbury Park, CA, 1992, pp.48-67.

27. R.J. Sternberg, G.B. Forsythe, J. Hedlund, J. Horvath, R.K.
Wagner, W.M. Williams, S.A. Snook, and E.L.
Grigorenko, “Practical Intelligence in Everyday Life”,
Cambridge University Press: Cambridge, 2000.

28. D.J. Teece, and G. Pisano, “The Dynamic Capabilities of
Firms”, In G. Dosi et al. (Eds.), Technology, Organization
and Competitiveness, pp. 193-212. Oxford University
Press, Oxford, 1998.

29. H. Tsoukas, “Do We Really Understand Tacit
Knowledge?”, in M. Easterby-Smith and M. A. Lyles
(eds.), Handbook of Organizational Learning and
Knowledge, Blackwell, Oxford, forthcoming.

30. I. Vessey, “Expertise in Debugging Computer Programs: A
Process Analysis”, International Journal of Man-Machine
Studies, Vol. 23, No. 5, 1985, pp. 459--494.

31. K.E. Weick, and K.H. Roberts, “Collective Mind in
Organizations: Heedful Interrelating on Flight Decks”,
Administrative Science Quarterly, Vol. 38, 1993.

Appendix A

Table 2. Means, standard deviations and intercorrelations for teams

n = 48 M SD 1 2 3 4 5 6 7
1. TTKM 10.84 2.48 -
2. QSI 12.83 1.90 .450** -
3. Experience 11.99 6.04 .202 .510** -
4. Written 3.00 0.95 .204 .204 .238 -
5. Familiarity 4.07 0.76 .183 .177 .259 .473** -
6. Gut 1.99 0.62 .042 .259 .492** .017 .079 -
7. Effectiveness 18.43 2.76 .345* .134 .261 .201 .296* .302* -
8. Efficiency 6.48 1.48 .089 -.035 .014 .158 .329* .098 .547**
*p<.05, **p<.01

Towards Effectively Appraising Online Stores

Dr Ernest Cachia, Mark Micallef
Department of Computer Science and Artificial Intelligence

University of Malta
ernest.cachia@um.edu.mt, mmic048@um.edu.mt

Abstract. This paper introduces research being carried
out into the measurement of the quality of e-commerce
systems. Considerable work has been done on software
metrics in the last few decades but e-commerce specific
metrics seem only applicable to already deployed systems.
It is proposed that a set of metrics is needed, which can be
applied from the earlier stages of e-Commerce system
development to improve risk management. This paper
attempts to appraise e-commerce systems by proposing a
set of essential attributes for an e-commerce site to
succeed. This paper also serves as groundwork for future
e-commerce metrication work based on these same
attributes.

Keywords: E-Commerce, Survey, Software Quality
Assurance, Software Measurement, Security.

1.Introduction

Electronic Commerce (e-commerce) is most often referred
to as the buying and selling of products and services
using the Internet. The British government broadly and
completely defines e-commerce as “the exchange of
information across electronic networks, at any stage in
the supply chain, whether within an organisation,
between businesses, between businesses and consumers,
or between the public and private sectors, whether paid
or unpaid” [1]. Throughout this paper, references to e-
commerce systems should be taken to imply a Business-
to-Consumer (B2C) type model.

Whatever definition one gives it, e-Commerce is fast
becoming a popular means of purchasing almost anything
you need from books to diamonds. So much so that it has
become an almost discounted fact for a modern-day
business to provide its goods/services online. Research
reveals that in 2003 online retail sales in the US again
jumped by 29.1% from $13.8 billion in 2002 to $17.8
billion in 2003. To put things in perspective, in 1999
(only) $5.4 billion were spent online in the US [2].
Similar trends have been observed in Europe.

With this in mind, focus is naturally drawn to the quality
of IT systems used to facilitate commercial transactions,
and more specifically the quality of e-commerce systems.
The issue of classifying e-commerce systems as being of
definable quality can be approached from two aspects: the
technical and the business aspects. The technical aspect
deals with how such systems actually work. The business
aspect is more related to products/service handling.
Bearing in mind that an e-commerce initiative (venture) is
made up of a sound business model and technical
innovation, both technical and business aspects of e-
commerce must go hand-in-hand in order for an e-
commerce venture to succeed. Although both the technical
and business aspects are important for the success of an e-
commerce venture, this paper will focus on technical
issues.

In order to substantiate this argument, results of various
research exercises have been utilised, including a survey
which was carried out by the authors of this paper
amongst 350 regular e-commerce users.

2.How is E-Commerce System Measurement
Different?

Apart from the six generic software quality attributes as
set out by ISO-9126 [6], e-Commerce systems contain
certain attributes which would seem to feature more
strongly in them than in more generic software systems
[10].

Since the first software metrics appeared in the 1970’s,
new ones have been developed as new technologies
surfaced (e.g. Childamber and Kemerer’s metrics suite for
object oriented design [9]). It is the opinion of this paper's
authors, that e-commerce systems have sufficient unique
characteristics to merit their own e-commerce metrics and
measurements suite. This is not to say that “conventional”
attributes need not be present in e-commerce systems. On
the contrary, they maintain their fundamental importance.
Related work has been carried out in this area by Stefani
[20] and Barnes [21].

The authors of this paper are of the opinion that e-
commerce applications are a subset of web applications
which in turn are a subset of generic software
applications. Furthermore, many core aspects and
functionality of e-Commerce systems can be viewed as a
specialised class of web applications. It is therefore
predictable that fundamental web application
characteristics are also found within e-Commerce systems.
This is supported by the distinguishing features of e-
Commerce systems as highlighted in bold text below…

First of all, e-commerce systems are largely content-
driven. Customers log on looking for information about
products/services, be it a simple price and description, a
very detailed technical specification, or the terms of
purchase. Enabling customers to effectively browse
through a myriad of products and providing them with
exactly all the information they need can be a challenging
task, especially when considering that different customers
may have different needs. Issues arise as to how to
organize content in a system, how to prioritize it, how to
allow users to navigate through content and so on.
Clearly, navigability would be an important attribute to
consider when appraising an e-commerce site.

More than any other type of software applications, e-
commerce systems are exposed to the world. Given the
open nature and main intent of the Internet many aspects
of the Internet can work against the security interests of an
e-commerce website [10]. This highlights two other
important attributes: security and privacy. In most cases,
a customer will trust an online vendor with personal
information with the proviso that his/her personal data is
protected and will not be misused in anyway. A betrayal
of this trust, whether intentional or not, could have serious
negative repercussions on the vendor.

Another distinguishable feature of e-commerce systems is
that they are mostly browser-based. The HTTP protocol
is not so user-friendly when compared to the event-driven
programming that most of us are used to when developing
user-interfaces. Functionality that we have grown
accustomed to in other paradigms present a much tougher
challenge. Scripting languages such as JavaScriptTM and
more recently the emergence of the Microsoft .NetTM

framework attempt to tackle this problem but then again,
support for these technologies is not the same on all
browsers [11]. This presents problems relating to usability
and portability of web systems.

A site becoming popular will generally translate to an
increase in profits to a vendor but there is another side to
having an enormous user base. It should be ensured, that

the site performs as well with a million hits a day as it
would with 1000 hits a day. As Deters [11] puts it,
“having fast and dependable access to the most relevant
information available is of the utmost importance in a
competitive information-oriented society”. Therefore,
performance and scalability become key issues. The
research presented later in this paper indicates that only
18% of users are likely to remain unconditionally loyal to
an e-commerce site after its performance degrades due to
increased popularity. Another problem associated with
having a large number of hits is the problem of portability.
The higher the number of hits experienced by an e-
commerce site, the higher the chances are that the given
site is being accessed from different devices, operating
systems, and browsers. This can cause problems
especially if a site is using technologies that are not
universally implemented or uniformly rendered in
different environments. Also, having a large customer-
base poses a problem with defining a mechanism for
customer feedback.

Lastly, e-commerce systems are likely to change quite
often. Whether it be changing site content, site aesthetics
or even site functionality. Just like in any software system,
changes to a site will introduce additional risks of failure
thus affecting its reliability. Clearly, a change in site
functionality carries more risk than a change in content.
However, even a simple change in website content can
bring with it layout problems (text too long, image of an
incorrect size or missing, etc.) potentially causing a
deterrent to new customers. Developers should make sure
that a site ages well, indeed matures, as changes are
implemented. This is reflected in the generic software
attribute of maintainability.

3.Survey Design

A survey “can be a powerful tool to figure out what your
market needs and how you can market to them” [18]. The
main raison d'être for online stores is to be “sold” so-to-
speak to everyday online shoppers. Therefore it was
deemed imperative at this stage to elicit and highlight
online shopper opinion.

On the basis of the e-commerce characteristics identified
in section 2, a set of related quality attributes was derived
and a survey was designed to help obtain a user
perspective on the issues involved in e-commerce systems
appraisal. The survey was divided into two sections. The
first section focused on collecting information about the
participants that would later help filter results and identify
sub-trends according to certain criteria (e.g. age,
education level, etc). The second section was designed to

“tap” into the participants’ views on the quality of e-
commerce systems.

Based on the discussion in section 2 of this paper, the
following attributes were felt to be relevant regarding e-
commerce systems:

Security and Privacy
Portability
Performance and Scalability
Navigability, Usability and Aesthetic Features
Multi-lingual Features
Low-Bandwidth version of sites
Reliability

The questionnaire was therefore designed to elicit
information relevant to the above attributes. It should be
noted, that due to paper length requirements, it was
decided not to include the explanation and justification
regarding the structure and choice of questions in the
survey. However the actual questionnaire together with
supporting explanatory documentation can be accessed at
http://www.cs.um.edu.mt/~mmica/survey

4.Results

This section will discuss results from the survey and
propose a set of attributes which should be deemed
essential in an e-commerce system in order for it to be
considered a quality system.

Please note, that some figures collectively amount to
more than 100% because users where offered the
possibility to make multiple choices.

4.1.General Observations

One of the first steps taken when analyzing the data was to
analyze the user sample. Just over 95% of participants
claim to use Internet ExplorerTM whilst 7% use
NetscapeTM. Other browsers compare poorly. Also, the
Microsoft WindowsTM OS family seems to be the most
popular amongst our sample with over 98% of users
using WindowsTM. Linux/Unix come in second with
8.92%. With regards to device usage, the desktop PC
claims the top spot with 92.9% of users using desktop PCs
for e-commerce transactions. 24% use laptops whilst
mobiles and PDAs trail with 5.23% and 1.85%
respectively. These figures compare well with other usage

surveys that have been carried out [12] [13].

Regarding demographics, 94% of participants were under
50 years old and the most popular items bought online are
books with 80% of users having bought books online.
Consequently, other popular purchases ranked as follows:
Software (32%), hardware (29.6%) and music (29.3%).
71.9% of users claim they would be negatively affected
had e-commerce not been available to them.

Disturbingly, 77% of users claim to have abandoned
transactions mid-way through. The top reasons for this
were stated as:

User decided (s)he did not want the product
(43%)

Website Error (36%)

Purchasing Process too long (35%)

Site too slow (33%)

Delivery, Payment, or pricing problems (14%)

Browser Compatibility Problems (4%)

4.2.Security and Privacy Issues

Security turned out to be the attribute that was perceived
by most participants to be of great importance. 35% of
respondents claimed that if they were to choose a reason
not to use e-commerce, it would be for fear of
compromised security. It is interesting to note that another
30% would not choose e-commerce because they prefer to
physically touch goods before buying them. This might be
interpreted as users not trusting online vendors outright
when it comes to delivering good quality products. Also,
when asked how sure they would have to be of a site’s
capability to offer them security and privacy before they
purchased from it, 43.5% of the users said they would
have to be as certain as they possibly can be (water-tight
privacy policy, secure connection, etc.). A further 42%
said they would also buy if they had minor doubts (such as
there being a risk of the site giving their e-mail to third
parties). Security was placed first when participants were
asked to rank quality attributes in order of importance. It
obtained an average score of 6.235 (out of a maximum of
7). Surprisingly, 33 participants 13.87% claimed that
security was not an essential attribute they would look for
in an online store. However, on closer examination, these

participants might have been inconsistent because when
looking at their answers in isolation, they still placed
security as the most important attribute with a score of
6.182. It can be safely concluded that security is an
indispensable attribute in e-commerce systems.

4.3.Portability

Portability in e-commerce systems refers to the extent to
which a system is accessible from different operating
systems, browsers and devices without loss in
functionality. The case for portability is not a strong one if
one relies on the results of this survey. Consider the
following results:

1. Participants ranked portability as the 5th most
important attribute (out of 7)

2. 98% of participants use WindowsTM-based OSs

3. Almost 93% of participants use Desktop PCs

4. Over 95% of participants use Internet ExplorerTM

5. Less than 4% of users who abandoned
transactions midway through did so because of
compatibility problems. Less than half of these
users where using Internet ExplorerTM

The results seem to suggest that if an e-commerce system
where to be tailored for WindowsTM-based PCs or laptops
using Internet ExplorerTM, any portability problems with
other systems would cause minimal negative
repercussions in the vendor’s business.

Nevertheless, one should always remain vigilant with
regards to portability issues. Firstly, when asked whether
or not they would be willing to install another browser if
an e-commerce site was not compatible with the one they
were currently using, 88.65% of users said they would
not. Therefore one must keep a close eye on the market
share commanded by browsers and operating systems and
invest in the portability of e-commerce sites as necessary.
Another concern is the much talked about rise of mobile
commerce (m-commerce). Even though early high hopes
for M-Commerce failed to materialise in the first years of
this century [15], falling costs and faster mobile networks
have raised hopes on the feasibility of M-Commerce [16].

Portability is being recommended as a necessary attribute
by the authors of this paper although in the current

environment, compatibility with dominant technologies
would seem to ensure a far greater reach and influence of
online shoppers.

4.4.Performance and Scalability

Speed is important to users. Over 33% of users who
abandoned transactions mid-way through did so because
the site was too slow. Also, when asked how they would
react if their favorite e-commerce site experienced
performance degradation due to popularity, only 18.4% of
users claimed they would remain loyal. However, 57%
claimed they would try to use the site at off-peak times in
order get better performance. It is also worth noting, that
22% of participants consider the speed of a site the most
important “first impression” factor. This would mean that
when they first visit a site, the primary deciding factor on
whether they decide to stay or not is performance. This is
backed up by the popular 7-second rule, which states that
a web page should take no more than 7 seconds to
download and display to the site visitor on the slowest
probable connection [10]. Participants rated performance
as the 4th most important attribute in an e-commerce
system with an average score of 4.128 (out of a possible
7). The authors are therefore recommending performance
as a required attribute in all e-commerce systems.

4.5.Navigability, Usability and Aesthetic Features

Of the 77% of users who have abandoned transactions
mid-way through, 35.6% did so because the process was
seen as being too long. Also, these same users where more
likely to look for an alternate site after abandoning a
transaction rather than try again or contact the vendor by
other means. This suggests that poor usability will have a
tremendous impact on the success of an e-commerce site.

72% of users know beforehand what they are looking for
when visiting an e-commerce site. This indicates that good
search and navigation features are important in e-
commerce systems. 30% of participants also chose good
navigation as the primary first impression factor.

With regards to aesthetics, only 6.7% of users rate
aesthetics as the primary first impression factor.

Navigability was ranked as the third (out of seven) most
important attribute in e-commerce systems with an
average score of 5.492 (out of a possible 7).

Usability with an emphasis on navigability would
therefore be recommended as an essential attribute of e-
commerce systems.

4.6.Multilingual Features

The importance of multilingual features depends very
much on the context in which an online store is operating.
For example, in some regions of northern Italy, both
Italian and German are spoken to varying degrees.
Therefore, an online store servicing such regions would
do well to provide both Italian and German versions of its
site. Respondents ranked multilinguality as the sixth (out
of seven) most important attribute with an average score
of 2.043 (out of a maximum of 7). Also, almost 51% of
participants claim that an e-commerce system could still
be classified as a quality e-commerce system if it did not
have multilingual features. The reason for this might be
that one tends to automatically use e-commerce sites in
one's own language. Therefore users might not really be
aware of the multilinguality problem.

Providing multilingual versions of an e-commerce site
does not simply involve translating content into different
languages. Besides there being a vast research area into
the technical issues involved in offering such a service,
there are also accompanying business and legal structures
that would also need to be set up. For example, what
happens if Japanese speaker places an order and needs
customer support? The vendor would also need to have
multilingual customer relationship management (CRM)
processes in place. A recent study claimed that 46% of
companies interviewed turn away international orders
because they do not have the processes in place to handle
them [19]. Implementing such processes would clearly
require a certain amount of resources which most
businesses, especially those in their early stages might not
be able to afford. Therefore it might make more sense for
businesses that are not large multi-national corporations to
concentrate on markets where only one language is
spoken and expand multilingual features as business
grows.

Although a desirable attribute, multilinguality is not being

recommended as an essential attribute by the authors of
this paper.

4.7.Low-Bandwidth Version of Site

Some e-commerce sites have a text-only or low-bandwidth
version available for users with slow connections. When
asked about the importance of this feature, participants in
the survey ranked it as being the least important attribute
of all (average score of 1.587). Also, 52.5% of
participants deem the feature to be unnecessary in an e-
commerce site. Considering the increased Internet
bandwidth available to users and the increasing popularity
of broadband communications [17] as well as the giant
strides in technology as a whole, the authors are not
recommending low-bandwidth versions as an essential
attribute of an e-commerce system.

4.8.Reliability

Reliability is considered to be an extremely important
attribute in e-commerce systems because of the following
indicators:

1. 36.6% of users have abandoned transactions
midway through due to website errors

2. Reliability was ranked as the second most
important attribute by participants with an
average score of 5.55 out of a possible 7.

3. Almost 37% of users consider a site’s reputation
as the primary first impression factor when they
first visit it and a site with frequent errors and
crashes is unlikely to gain a good reputation.

Considering the above results from the survey, the authors
recommend reliability as an essential attribute of e-
commerce systems.

5.Conclusions and Future Work

Based on results of the survey and other research cited in
this paper, a number of quality attributes are being
recommended as being essential to e-commerce systems.
That is to say, that no e-commerce system can be
reasonably expected to succeed if it does not exhibit a
considerable degree of each recommended attribute. The

attributes are also being given an importance ranking as
follows (most important first):

1. Security
2. Reliability
3. Navigability
4. Performance
5. Portability

Further work needs to be done before online store quality
can be effectively measured. One still needs to define the
minimum level of each characteristic that an e-commerce
system needs to exhibit. In order to do that, each attribute
should be measurable in some way. Therefore, the next
step in the ongoing research will be to define a
metrication and measurement framework for these
attributes. When that is achieved, some form of
progressive benchmarking system could be defined
whereby e-commerce systems can be classified as being of
a given quality depending on the level of each attribute
exhibited by the system.

References

[1] Prime Minister’s Strategy, “E-Commerce@its.best.uk”,
www.number-10.gov.uk/su/ecomm/ec_body.pdf, 1999

[2] Emarketer.com “Online Retail Update: Latest Q4 Quote”,
www.emarketer.com/news/article.php?1002631,
Emarketer.com, 2004

[3] Crosby P.B., “Quality is Free: The Art of Making Quality
Certain”, McGraw-Hill, 1979

[4] Chaffey D., “E-Business and E-Commerce Management”
Financial Times / Prentice Hall, 2002

[5] Lee J., Podlaseck M., “Using a Starfield Visualization for
Analyzing Product Performance of Online Stores”,
Proceedings of the 2nd ACM conference on Electronic
commerce, 2000

[6] “ISO/IEC 9126:2001 – Software Engineering Product
Quality”, International Standards Organization for
Standardization, 2001

[7] Kafura D. “A Survey of Software Metrics”, Proceedings of
the ACM annual general conference on the range of
computing, 1985

[8] McCabe T.H., “A Complexity Measure”, IEEE
Transactions on Software Engineering, 1976

[9] Chidamber S.R., Kemerer C.F., “Towards a Metrics Suite
for Object Oriented Design”, ACM Conference
proceedings on Object-oriented programming systems,
languages, and applications, 1991

[10] Dustin E. et al, “Quality Web Systems”, Addison Wesley,
2001

[11] Chandra K., Chandra S.S. “A Comparison VBScript,
JavaScript and JScript”, Journal of Computing in Small
Colleges (2003)

[12] Deters R., (2001) “Scalability and Information Agents”,
ACM SIGAPP Applied Computing Review

[13] www.w3schools.com, “January 2004 browser usage
statistics”,
http://www.w3schools.com/browsers/browsers_statistics.as
p, 2004

[14] www.arkom.co.uk - “Web Browser Usage Survey 2003”,
http://www.arkom.co.uk/news-article.asp?NewsID=42,
2003

[15] Mahoney M, “Whatever happened to mobile commerce?”,
E-CommerceTimes.com,
http://www.ecommercetimes.com/perl/story/15042.html,
2001

[16] Halper M, “Back From the Dead”, Time Europe Magazine
Vol. 163 No.7, 2004

[17] Gill L, “Study: Broadband Adoption on the Rise”, E-
CommerceTimes.com,
http://www.ecommercetimes.com/perl/story/18355.html,
2002

[18] TWM, “How to Design a Survey”,
www.thewritemarket.com/marketing/survey-design.htm,
2003

[19] European Business Management School, “SME
Management of Multilingual Web sites”,
http://www.global-presence.org.uk

[20] Stefani A., Michalis X., “A Model for Assessing the
Quality of E-Commerce Systems”, Proceedings of the PC-
HCI 2001 Conference on Human Computer Interaction,
Patras, 2001

[21] Barnes S.J., Vidgen R.T., “An Integrative Approach to the
Assessment of E-Commerce Quality”, University of Bath

UCDA: Use Case Driven Development Assistant Tool for
Class Model Generation

Kalaivani Subramaniam, Dong Liu, Behrouz H. Far and Armin Eberlein
Department of Electrical and Computer Engineering, University of Calgary

2500, University Drive, N.W., Calgary, Alberta, Canada, T2N 1N4
{subrama, liud, far, eberlein}@enel.ucalgary.ca

Abstract. The development of class models using the
Rational Unified Process (RUP) requires complete,
correct and unambiguous use case specification
documents. The Use Case Driven Development Assistant
(UCDA) tool provides automated assistance in
developing use case diagrams, writing use case
specification documents and developing the analysis class
models. UCDA uses a freely available natural language
parser and Rational Rose’s extensibility interface to
support the automation of the Object Model Creation
Process (OMCP). The parser is a shift-reduce parser and
is implemented in Python. This paper introduces the
UCDA tool and its application in OMCP. The process of
automation is illustrated in a case study of an Automated
Teller Machine (ATM) System. The UCDA tool increases
design productivity, reduces time-to-market and is of
great help to novice software developers.

1. Introduction

Object Oriented Analysis and Design (OOAD) is a
software development paradigm widely used in software
development. Identifying objects and classes from
requirements [8] that are represented in natural language
is an essential task in OOAD.

UCDA employs common requirements elicitation
techniques to gather requirements and to document them
in the requirements document. The software designer then
analyzes the requirements and identifies the objects with
the Object Model Creation Process (OMCP) [4].
Attributes, associations and behaviour of objects are also
established as part of this model. Later, the object model
is refined using generalization, and objects and classes are
identified based on domain knowledge, real world
experiences and user interviews. Tools that implement
this process are already available [4].

NIBA (Natural Language Requirements Analysis) is an
approach that starts with linguistic analysis and
transforms a textual requirements specification into a
conceptual predesign schema, which is then validated and
mapped onto conceptual schema [1]. This tool parses the

requirements in German. The tool LInguistic Assistant for
Domain Analysis (LIDA) processes text to develop object
models. It analyzes the text to identify the model
elements; then the model elements are refined through a
validation process [2].

Our methodology follows the IBM Rational Unified
Process (RUP) approach to automate the class model
generation. “RUP is a configurable software development
process platform that delivers proven best practices and a
configurable architecture” [3]. RUP implements several
best practices in software engineering. It specifies the
functional behaviour of a system using use cases. Use
case model development is a kind of knowledge
elicitation.

The structure of this paper is as follows. Section 2
provides a methodology for developing the class model.
Section 3 describes UCDA, a tool that is designed to
generate the use case model, robustness diagrams,
collaboration diagrams and class diagrams. Section 4
presents a case study of the proposed system. Finally,
Section 5 provides conclusions.

2. Methodology

Our methodology requires a careful analysis of the
stakeholders’ requests, which are stated in textual form.
Use cases and classes are then identified based on
predefined rules. The method follows the Rational
Unified Process (RUP) approach to develop the use case
model and the class model. The models are developed
using Rational Rose according to the Unified Modeling
Language (UML) standards.

The process starts with stakeholders’ requests of the
proposed system. Typically these requests are parsed by
the natural language parser and then analyzed by the
system to identify actors and use cases. The relationships
among actors and use cases are identified and the use case
diagram is developed using these artifacts. Detailed
information about each use case is collected from the
stakeholders. This information is formalized according to
a use case template, validated and collected in a use case

specification document. The document along with the use
case diagram serves as the source of information for
developing the class diagram. The objects are identified
from the use case specification document and categorized
into boundary objects, entity objects or control objects.
The robustness diagrams are developed to show the
different types of objects and their relationships to one
another. Then the collaboration diagrams are generated to
show the messages passed between the objects. A
glossary is used during this process to prevent ambiguity
and increase consistency. Finally objects are refined to
generate the class diagram.

The activity diagram showing the workflow of the
UCDA tool is shown in Fig.1. An example of using this
methodology is given in Section 4.

Identify Ac tors and Use Cases from
Stakeholders ' reques ts

Develop Use Case diagram and
Use Case Spec ification

Identify objec ts and de velop
Robus tness diagram

Identify Assoc iations am ong objec ts and
develop Collaboration diagram

Refine objec ts and develop
c lass diagram

Fig. 1 The workflow of UCDA tool

3. UCDA: Use Case driven Development
Assistant

3.1. Overview

UCDA (Use Case driven Development Assistant) is a tool
that helps developers to develop use case models,
robustness diagrams, collaboration diagrams and class
diagrams; and to visualize these models using the
Rational Rose tool. UCDA supports the UML standards.
A freely available natural language parser is integrated
with UCDA tool to parse stakeholder requests. The
various guidelines to extract the actors, use cases, objects
and classes are applied to the parser output.

UCDA has the following features. It:
Uses a natural language parser to parse stakeholder
requests. Basically the parser analyzes the sentence
and tags each word with its part-of-speech.

Recognises certain complex sentences and simplifies
them.
Identifies actors and use cases and develops use case
diagrams.
Generates XML files containing the details of the
models.
Generates the models in Rational Rose.
Assists the user with filling in the use case
specification template.
Validates the use case specification document.
Reads the use case specification to identify objects
and their associations; and develops robustness
diagrams.
Identifies messages passed between objects and
develops collaboration diagrams.
Generates and validates the class model.

3.2. Architecture

The architecture of UCDA is shown in Fig. 2.

NATURAL
LANGUAGE

PARSER

USE CASE
MODEL

DEVELOPER

STAKEHOLDERS'
REQUESTS

GLOSSARY

BUSINESS RULES USE CASE
SPECIFICATION

CLASS
MODEL

DEVELOPER
GLOSSARY

BUSINESS RULES

CLASS DIAGRAM

Fig. 2 Architecture of UCDA

UCDA consists of two main components: The Use
Case model developer and the Class model developer.

The use case model developer helps the stakeholder to
specify the requirements of the proposed system and to
identify actors and use cases. These actors and use cases
can be exported to the modeling tool. The modeling tool
used in the UCDA tool is Rational Rose. The changes
made to the model in Rational Rose affects the elements
in UCDA tool.

Use cases can be realized by the Class model
developer. Objects and messages between them are
identified from the use case specifications. The tool can
generate robustness diagrams and collaboration diagrams
in Rational Rose. The behaviour described in use case
specifications can be distributed to the analysis classes.
The analysis class model is the final output of the tool.

3.3. Use Case Model Developer

The various features of use case model developer
component are:

Read text entered by stakeholder and assign part-of-
speech to words in the text.
Study the structure of the sentence and check if it is a
complex sentence (e.g., sentences with more than one
verbs or sentences with conjunctions)
If the sentence is complex, reduce the complexity by
splitting it into simpler sentences.
Retrieve the subject and predicate from the simple
sentences.
Identify the modifiers (e.g., adjectives, auxiliary
verbs) associated with the subject and predicate.
Filter the modifiers and check if subject exists in the
glossary. If subject exists then subject is the actor and
predicate is the use case.

Kurt Bittner and Ian Spence provide a questionnaire to
identify actors and use cases [5]. In UCDA, the structure
of the sentence is considered for automating actor and use
case identification.

The following rules are applied for automating actor
and use case identification.
1. If the Subject of a sentence is a noun or noun phrase

consisting only of nouns, and this noun/noun phrase
is found in the glossary then the noun/noun phrase is
an actor.

2. If system is the Subject of the sentence, then it is not
a valid actor.

3. If the Subject of a sentence is an actor, then the
following predicate (P) forms are valid use cases.
P: V; P: V/NP; P: V/PP

4. If the Subject of a sentence is an actor and the
predicate is of the form: P: VP/NP1/“from”/NP2 then
VP/NP1 is the use case and NP2 is an actor and an
association exists from the actor to the use case.

5. If the Subject of a sentence is an actor and the
predicate is of the form: P: VP/NP1/”to”/NP2 then
VP/NP1 is the use case and NP2 is an actor and an
association exists from an actor to the use case.

V: Verb; NP: Noun Phrase; PP: Prepositional Phrase
The next task of the use case model developer

component is to generate the use case specification
document. Each use case is associated with a use case
specification document. UCDA provides the interface for
the user to enter use case specification details according
to the use case specification template (shown in Table 1).

Table 1. Use Case Specification template
1. Use Case Name

1.1 Brief description
2. Flow of Events

2.1 Basic Flow
2.2 Alternative Flow

3. Special Requirements
4. Preconditions
5. Post conditions
6. Extension Points

This document is parsed by the class model developer
component to identify objects. So the statement structures
should be simple (shown in Fig. 3).

choice

sequence

VP: Verb Phrase
NP: Noun Phrase
Vgp: Verb Group
AP: Adjective Phrase
PP: Prepositional Phrase

Fig. 3 Possible statement structures

UCDA verifies that the statements entered by the user
conform to the above statement structures. Conditional
statements start with an IF statement, iterative statements
with a WHILE statement and concurrency statements
with a CON statement. Pronouns are replaced by concrete
nouns and Passive voice is reconstructed to be active. The
tool verifies the document based on completeness,
complexity and structure.

3.4. Class Model Developer

To develop the class model from the use case
specifications, we summarized the relationships between
syntactic structures of natural language and semantic
associations of objects in the models. Fig. 4 shows a
model of the actions in actor-system interaction [6]. Four
types of behaviour are included in the model. The
relationships between the behaviour types and the
associations of stereotype objects are listed in Table 2.

Actor

Validation

Change

Request

Response
System

Behavior Types:

Request
Validation
Change
Response

Fig. 4 An actor-system interaction model

Table 2. Relationships between behaviour types and
associations between stereotype objects

Behaviour Type Association
Request
Validation and
Change
Response

: actor, : boundary object, : control object, : entity
object

We identified the relationships between all statement
structures and behaviour types, and represented them in
17 rules for object and message identification [7].
Because of the length of this paper, we only demonstrate
one rule for transitive structure shown in Fig. 5, where NP
represents a noun phrase; VPss represents a verb phrase
with the statement structure; PP represents a prepositional
phrase; Vgp represents a verb group; and Prep represents
a preposition.

Statement

Subject Predicate

NP

Vgp

PPVPss

NP Prep NP

Fig. 5 The structure of a transitive statement

The rule for object identification is:
Rule: If the structure of a statement is transitive (as shown
in Fig. 3), and Subject/NP//Noun(head) is an actor, then
this statement corresponds to the Request behaviour type.
Predicate/PP/NP//Noun(head) is a boundary object if it
exists in the glossary, and Predicate/VPss/NP/
Noun(head) is an entity object if it exists in the glossary.
If there are two objects or an actor and an object in one
statement, an association between them is identified. To
generate the collaboration diagram, the messages
contained in one scenario are identified. The
corresponding rule for message identification is:
Rule: If Subject/NP//Noun(head) is an actor, and
Predicate/PP/NP//Noun(head) is a boundary object, then
the action is Predication/VPss/Vgp/Verb(head) +
Predication/VPss/Vgp/NP//Noun(head), the sender is
Subject/NP//Noun(head) and the receiver is Predicate/PP
/NP//Noun(head).

The responsibilities of the classes can be identified
from the messages in the collaboration diagrams. Each
message consists of a sender, a receiver, and an action.
The receiver has the responsibility for the execution of the
action. The messages in collaboration diagrams are
transformed to the classes’ responsibilities in this way.

Composition, generalization and aggregation
relationships are to be identified in the class model of the
system under development.
Rule: If one use case includes another use case, then a
composition relationship is likely to exist between the
core control classes identified from the use cases.
Rule: If one use case has a generalization relationship
with another use case, then a generalization relationship is
likely to also exist between the core control classes
identified from the use cases.

We propose a method to validate the analysis model,
especially the robustness diagrams. There are some
constraints for objects and associations in a robustness
diagram according to its semantics. The rules listed in
Table 3 are derived from the constraints and used for
robustness diagram validation.

Table 3. Rules for robustness diagram validation

Case Validation Suggestion

Not allowed.

Allowed

Not allowed.

Not allowed.

Not allowed.

Allowed.

Not allowed.

Allowed.

Allowed.

Not allowed.

: actor, : boundary object, : control object, : entity
object

4. UCDA: Case Study

This section uses the ATM system specification to show
the working of the proposed system. The functional
description of an ATM system is:
“The customer inserts the cash card in the machine.
Customer can withdraw cash from an account. The bank
approves the transaction. In addition, customer can
deposit the amount. Customer can transfer amount
between accounts. Customers can check the balance in

the account. The customer can cancel the transaction at
any time.”

The natural language parser parses the specification.
Based on the rules given in Section 3.3, the system
identifies the actors and use cases, and generates an XML
file containing actors and use cases. The tool reads the
XML file and generates the corresponding diagrams in the
Rational Rose tool. The use case diagram generated by
the UCDA tool is shown in Fig. 6. The association
between actors and use cases are shown in use case
diagram.

Fig. 6 Use Case diagram generated by UCDA

We compared the use case diagram generated by the tool
with that of software engineering graduate students
having considerable knowledge in this area. The tool is
evaluated based on the time taken to develop the use case
diagram and the number of correct actors and use cases
identified. The tool generates the use case diagram much
faster compared to students and the number of correct
actors and use cases generated by the tool are also higher.

We also compared the use case diagram generated by
the tool with the use case diagram provided by experts.
We found that the tool has identified 100% of the actors
and 70% of the use cases.

To complete the use case model, each use case is
associated with a use case specification document. Fig. 7
shows the user interface for writing use case specification
details. The tool provides the template to document
conditional, iterative and concurrent statements. The tool
verifies the sentences entered by the user according to the
format specified in Fig. 3. The tool generates the
document in word format and XML format. The use case
specification document for the “withdraw cash” use case
is specified in Fig. 8. The CREWS project suggests
several guidelines for writing the use case specification
document [9]. Our tool implements these guidelines and
templates.

Fig. 7 Use Case Specification Interface Screen

Fig. 8 Use Case Specification of ‘withdraw cash’

The specification is processed using the methodology
discussed in Section 3.4. Fig. 9 shows the environment
for use case realization including Rational Rose.

.
Fig. 9 The environment for use case realization

Fig. 10 shows the robustness diagram that is generated
from the use case specification. The validation of the
robustness diagram shows that there should be a boundary
object between the bank and the Withdrawal transaction
class. The use case specification is reviewed and steps 7
and 8 in the basic flow are revised as follows:
7. the system send the withdrawal transaction

information to the network connection;

Actors: customer, bank
Flow of Events:
Basic Flow:
1. the system start withdrawal transaction;
2. the customer select the account on the customer console;
3. the system get the account from the customer console;
4. the customer select the amount on the customer console;
5. the system get the amount from the customer console;
6. the system generate the withdrawal transaction information;
7. the system send the withdrawal transaction information to the bank;
8. the bank send the withdrawal transaction approval to the system;
9. the system dispense the cash in the cash dispenser;
10. the customer get the cash from the cash dispenser;
11. the system record the withdrawal transaction information into the log;
12. the withdrawal transaction end;
Alternative Flow:
If the bank do not approve the withdrawal transaction,
then
1. the system display an error message on the customer console;
2. the system record the withdrawal transaction information into the log;
3. the withdrawal transaction end;

8. the bank get the withdrawal transaction information
from the network connection;

9. the bank send the withdrawal transaction approval to
the network connection;

10. the system get the withdrawal transaction approval
from the network connection;

A new robustness diagram is generated according to the
revised use case specification and shown in Fig. 11.

Customer

(from Use Case View)

Customer console
(from Logical View)

Cash dispenser
(from Logical View)

Log
(from Logical View)

Bank

(from Use Case View)
Withdrawal transaction

(from Logical View)

Fig. 10 Robustness diagram

Bank

(from Use Case View)

Customer

(from Use Case View)

Customer console
(from Logical View)

Network connection
(from Logical View)

Cash dispenser
(from Logical View)

Withdrawal transaction
(from Logical View)

Log
(from Logical View)

Fig. 11 New Robustness diagram

The collaboration diagram is shown in Fig. 12, and the
class diagram containing the identified classes from the
use case is shown in Fig. 13. All the diagrams are
automatically generated by UCDA.

: Customer

: Bank

: Withdrawal transaction: Customer console

: Network connection: Cash dispenser

: Log

1: start
6: generate withdrawal transaction information

14: end
17: end

2: select account
4: select amount

7: send withdrawal transaction information

10: get withdrawal transaction approval11: dispense cash

13: record withdrawal transaction information
16: record withdrawal transaction information

3: get account
5: get amount

15: display error message

8: get withdrawal transaction information

9: send withdrawal transaction approval

12: get cash

Fig. 12 Collaboration diagram

5. Conclusion

Identifying objects and classes is a challenging task in
software engineering. In this paper, we presented a
methodology to develop a class model from natural
language requirements and its implementation in the
UCDA tool. The methodology focuses on generating
intermediate artifacts such as use case diagrams,
robustness diagrams and collaboration diagrams.

Customer console

select account()
select amount()
display error message()

<<Boundary>>

Network connection

send withdrawal transaction information()
send withdrawal transaction approval()

<<Boundary>>

Cash dispenser

dispense cash()

<<Boundary>>

Withdrawal transaction

start()
get account()
get amount()
generate withdrawal transaction information()
get withdrawal transaction approval()
end()

<<Control>>

Log

record withdrawal transaction information()

<<Entity>>

Fig. 13 Class diagram

We compared the performance of the tool with the
software engineering student’s performance provided the
student already knows about OOAD. We found that the
tool generates the better class model in less time
compared to the students. By automating these tasks,
software design effort and cost can be reduced.
Furthermore, this tool provides valuable guidance to
novice software designers.

References

[1] L.C. Niba, “The NIBA Workflow: From textual
requirements specification to UML-schemata”, Proceedings
of International Conference on Software & Systems
Engineering and their Applications, ICSSEA 2002, Paris,
December 2002.

[2] Scott P. Overmyer, Benoit Lavoie, Owen Rambow,
“Conceptual Modeling through Linguistic Analysis Using
LIDA”, Proceedings of the 23rd International Conference
on Software Engineering, ICSE 2001, 401-410, May 2001,
Toronto, Ontario, Canada.

[3] Rational Unified Process
http://www-306.ibm.com/software/awdtools/rup/

[4] Romi S. Wahono, Behrouz H. Far, Jingde Cheng, “A
Framework of Object Identification and Refinement
Process in Object-Oriented Analysis and Design”,
Proceedings of the 1st IEEE International Conference on
Cognitive Informatics, ICCI 2002, Calgary, Canada, 2002.

[5] Kurt Bittner, Ian Spence, “Use Case Modeling”, Addison
Wesley, 2002.

[6] Alistair Cockburn, “Writing Effective Use Cases”,
Addison-Wesley, 2000.

[7] D. Liu, “Automating Transition from Use Cases to Class
Model”, Master Thesis, University of Calgary, Calgary,
2003.

[8] Grady Booch, “Object-Oriented Analysis and Design with
Applications”, Addison-Wesley, 1994.

[9] Karl Cox, Keith Phalp: “Use Case Authoring: Replicating
the CREWS Guidelines Experiment”, Int. Journal of
Empirical Software Engineering, Issue 5, 245-267, 2000.

Using A Scenario Specification Language to Add Context to Design Patterns

Reginald L. Hobbs
Army Research Laboratory

hobbs@arl.army.mil

Abstract. Software designers have used design patterns
and frameworks to describe reusable architectures for
development. The approach is to capture the best
practices in software architecture to create a toolkit of
solutions for the practitioner. Incorporating additional
semantics within the problem/solution space can further
enhance these pattern descriptions. This context can be
inserted using narrative. This paper describes a research
study that defined a scenario specification language based
on a narrative conceptual model. This language can be
merged with representations of design patterns, which
describe the static, dynamic, and collaborative attributes
of software solutions. This will enable pattern
descriptions to be narrative exemplars that could be used
directly in design tasks.

1. Introduction

A design pattern is a description of communicating
objects and classes that are customized to solve a general
design problem in a particular context.[5] A pattern has
four essential elements: 1) a name, 2) the description of
the problem, 3) a solution and 4) the costs and benefits of
applying the pattern.

Software engineers are interested in using design patterns
to create a repository of solutions for software
development. The concept is similar to the sourcebooks
used by other engineering disciplines, such as civil or
electrical engineering. When faced with a particular
design problem, civil engineers can consult from a
catalogue of possible techniques. These solutions are
based on known successful methods from the industry.
The problem with this approach for the software
engineering discipline is that software engineering
involves analyzing abstractions that are not based on
physical systems. Software design patterns could be
normative at best, describing suggested solutions given
enough similarities in the problem space. However, there
are several motivating factors that make it worthwhile to
identify these patterns: 1) Success is more important than
novelty, 2) Clarity of communication should be
emphasized, 3) Qualitatively validating of concrete

solutions, 4) Good patterns arise from practical
experience, and 5) the incorporation of human factors into
software development. [11]

The benefits of design patterns are constrained by the
difficulty in applying them in real-world situations. Many
design patterns are unnecessarily difficult for the average
designer to learn. There is also the problem of making the
pattern classifications useful to the practitioner. Some of
the categorizations do not appear to map to the mental
models used by the average developer. [3] Using a
scenario-based technique, particular one based on
narrative, would enable the patterns to better fit into the
terminology and knowledge base of the developer.

The next section is a brief discussion on design patterns.
Section 3 is a description of the narrative ontology used to
develop a scenario specific language. Section 4 describes
approaches to merging scenarios with design patterns.
Finally, there is as example of creating a story pattern
using a XML pattern language with the scenario
grammar.

2. Overview of Design Patterns

An architect, Christopher Alexander, initially developed
the concept of a pattern language. Alexander wished to
capture the recurring aesthetic features of a living space
as well as detail standard design solutions. These
architectural patterns were created as an aid to the
participatory design process, involving user requirements
as well as technical guidelines. [4]

Software design patterns and frameworks were described
to support reusable architecture and detailed design,
respectively. A framework is a set of components that
provide a reusable infrastructure for a family of related
applications. Pattern descriptions are often independent
of implementation details, whereas, frameworks are semi-
complete applications that provide domain-specific
functionality. Patterns are abstract representations of the
problem space that could utilize a particular instance of a
framework for portions of the solution. By the same

token, a framework may contain several different patterns
within its implementation. For the purpose of this
discussion, we will focus on incorporating scenario
information within patterns. This will allow the
flexibility inherent in scenario analysis to take advantage
of the abstract nature of software patterns. However,
scenarios could be associated with frameworks to
describe alternate configurations of components within a
domain.

There are 3 major categories of patterns: creational,
structural, and behavioural. Creational patterns are those
that deal with initializing and configuring classes and
objects. Structural patterns seek to separate interface
from implementation issues in design. Finally,
behavioural patterns deal with interactions and
collaborations among collections of classes and objects.
Within each category, there are numerous identified
patterns derived from recurring design tasks. For
example, the behavioural patterns are:

[1] Chain of Responsibility - object requests are routed
to the responsible service provider

[2] Command - requests are treated as objects
[3] Interpreter – language interpreter for a grammar
[4] Iterator – An object accesses aggregate elements

sequentially
[5] Mediator – Object coordinates interactions between

associate objects
[6] Memento – System snapshot captures and restores

object states
[7] Observer – Dependent objects update when a subject

changes state
[8] State – Object behaviour depends upon its current

state
[9] Strategy – Abstraction for allowing the selection

from different algorithms
[10] Template Method – Algorithm with steps supplied

by a derived class
[11] Visitor – Operations are applied to a heterogeneous

object

3. A Narrative Approach to Scenario
Specification

Many practical disciplines make use of scenarios to help
practitioners make effective decisions. System designers
and policy makers use scenarios to assist them in making
design and policy decisions. Scenarios are used
throughout software development to examine alternate
design decisions and requirements.[2] Requirements
engineering, the process of determining requirements for
a proposed system has used reasoning techniques about
scenarios to help generate and evaluate specifications.[1]

Scenario-based methods seek to reduce the complexity of
design by focusing on the structure and the dynamics of
the problem domain.[1] These "what-if" studies allow
software developers to refine the design and requirements
of a system before (and sometimes during)
implementation. By catching potential system errors and
design problems early in system evolution, costly
redesigns are minimized.

Not only are scenarios of practical importance, they
appear to play a fundamental role in comprehension.
Cognitive scientists note that narrative is central to
processes of explanation, inference, and
interpretation.[10] Scenarios codify and externalize
algorithmic mental models and thought experiments.[6]
Decision-makers may test hypotheses by constructing
“what-if” scenarios on top of a baseline description of the
situation under consideration. Whether these scenarios are
described, enacted through role-playing, or simulated
computationally, whether they faithfully represent a real
phenomenon or merely provide the outline sketch of a
possible course of action, the intention is the same: to
clarify the relationships among actions and features of a
situation and to understand better the consequences of
actions.

3.1. Narrative Ontology for Scenarios

The difficulty in developing a meta-model for scenarios
rests in the numerous styles, categories, and
implementations of scenarios. This difficulty can be
handled by describing an abstraction of scenarios separate
from any specific context. This abstraction came about
by describing all scenarios as stories (narrative). They are
stories about what was done, what is being done, or what
can be done. These different forms of narrative can be
used for problem solving, training, entertainment, and any
other activity that involves decision-making. Studying
different forms of narrative, from film editing,
screenwriting, use cases, literature, and cognitive science,
would isolate the essential elements of scenarios with
respect to problem solving. This narrative morphology
can then be used to establish a conceptual model, rules,
and transformations for scenarios. [7]

Figure 1 shows the narrative model represented as a UML
(Unified Modeling Language) class diagram. The diagram
establishes a hierarchy of story elements and the
associations among them. Each element is a first-order
object that can be manipulated within scenarios.

The fundamental building block of scenario is the action.
An action is anything that happens in the context of the
story. It could consist of characters communicating, the
physical movement of an object, or a change of state.
Although actions are performed by actors and cause
changes to occur in objects, it is the actions themselves
that make a scenario a narrative rather than a mere
description of a situation.

Meaningful sequences of actions make up events, and
predetermined lists of events are combined into episodes.
Episodes are goal-based objects, with the individual
events occurring to support sub-goals. Each scenario can
be described as a succession of episodes (goals) that were
either achieved or thwarted. It is this goal-based,
hierarchical nature of the scenario structure that affords
manipulation of the story.

3.2. Scenario Mark-up Language (SCML)

The goal is to represent the narrative model in a form that
is general enough to describe the structure of any
scenario, yet expressive enough to support different
external views of the data. The choice of a mark-up
language supports both these objectives. Mark-up
languages describe a document’s structure, leaving
presentation details to the capabilities of the structure-
aware applications.

To make it convenient to create different representations
of the same scenario content, the concept of a hypermedia
scenario document, or hyperscenario, is introduced. [8]
Hyperscenario documents are scenarios created using a

mark-up language approach. The semantic information
within narrative and the relationship/hierarchy between
story elements is represented structurally with tags and
attributes in a scenario specification grammar. The XML
implementation of the grammar is called SCML (Scenario
Mark-up Language). [7] The dynamic movement through
narrative that is necessary for comprehension and
decision-making is defined using embedded hyperlinks,
representing alternate story paths. Hyperlinks among
text, graphics, and other multimedia elements support
multiple perspectives and methods for discussing
scenarios. The structural narrative model can be created
in SCML, while the rendering and navigational aspects
can be handled by the appropriate scenario application.

Specific mark-up languages are defined from XML by
creating a DTD (Document Type Definition).[12] The
DTD defines allowable components and structures for
documents of its type. Designing SCML therefore
involved mapping the narrative ontology to an XML
schema. Major story components, such as episodes, goals,
and actions are all reflected as elements in the SCML
DTD. Another important aspect of SCML is the support
for the link strategy. Within an XML-based language, the
developer can define link types using XLL (XML Linking
Language). SCML links are bi-directional. Extended
links can target a selection of possible document artifacts,
as opposed to a single file. External programs can be
executed by activating a link using this method.

Figure 1 Scenario Conceptual Model

4. Defining Story Patterns

Figure 2 depicts two approaches for incorporating
narrative information with design patterns. In the Design-
Patterns-with-Scenarios approach, each of the smaller
items, Si, represent scenario variants. A scenario variant
is an alternate form of the same scenario. For example,
let’s assume we are describing a scenario calling “Getting
To The Airport”. One instance of this scenario could
involve driving through the city, taking the appropriate
exit for the airport. A variant on this scenario would be
hiring a taxi or shuttle as transportation directly to the
airport. With respect to software, each variant within a
pattern could represent scenario descriptions of alternate
implementations of the pattern. These variants could be
due to programming language, networking, or even
platform differences. The second approach is the
Scenario-with-Design-Patterns method. In this method,
the Pj represent several possible solutions for a particular
design problem. For example, a scenario could be
constructed to represent the requirements of a software
system’s user interface, based on a particular activity to
be accomplished.

5. Incorporating Scenario Context within Pattern
languages

Since the beginnings of discussion on the utility of design
patterns, there have been efforts to create languages for
representing pattern artefacts. They were designed to
allow for the direct manipulation of the pattern
descriptions in design tools, particularly during
requirements analysis. There has also been research into
the design of usability pattern languages that could assist
the user-centered design process. [9] Most recently, there
are attempts at defining XML-based pattern languages
that would be useful across the entire software life cycle.
These languages could also leverage the growing number
of XML technologies and environments.

One example pattern language is DPML (Design Pattern
Mark-up Language).[13] This language was developed as
part of a research effort to automatically detect design
patterns from source code. The researchers viewed design
patterns as higher-level abstractions of the object-oriented
design within the code. Recognizing these patterns would
serve as an aid to program comprehension, code
documentation, and validation. DPML was used to create
a pattern library, consisting of most of the standard

software design patterns as outlined in the descriptions by
Gamma et.al.[5] C++ source code was analyzed to create
a class diagram, call graph, and object creation graph.
These were then matched against DMPL patterns
formatted as an XML DOM (Document Object Model)
tree structure. The algorithm was used on four open-
source C++ projects. Of 26 patterns searched for in over
3 million lines-of-code, 15 patterns were detected, with
978 different instances occurring.

Figure 2 Merging Design Patterns with Scenarios

Figure 3 is an example of how the narrative structure
available in SCML could be used with DPML. In this
particular situation, we are taking the Scenario-with-
Patterns approach. The scenario may contain several
patterns that represent alternate solutions within the story.
The scenario is a description of the process of
determining networking requirements for a proposed
system. The purpose of the scenario is to examine the
risks/benefits of different network implementations.
Here, each design pattern is considered to be a character
within the scenario. An XML Namespace is used to
incorporate DPML elements within the hyperscenario
structure. Namespaces are a technique to import
information from external languages without conflicting
with the grammar of the current language.[12] The
‘DPML:’ prefix identifies those elements that are not part
of the SCML grammar. The classes contained in the
pattern are described in the element definition. The

example code for the Proxy pattern is a modified version
from the DPML study. [13] There would be a character
entry for each potential pattern that could be used as a
network solution.

Each episode of the scenario analysis associates
networking alternatives against a stated goal of the
network infrastructure. In this example, the episode
would examine how service requests would be handle on
the local network by each of the characters (patterns).
Within each episode, there are a series of events that
occur and should be interpreted and handled. For
example, the event of establishing an initial network
connection. There are domain-specific actions associated
with the patterns in the scenario, some of which could be
derived from the operations defined within the pattern.
The completed scenario captures design decisions and

establish a way of associating non-functional
requirements with the system.<?xml version="1.0" standalone="no"?>

<!DOCTYPE hyperscenario SYSTEM "scml.dtd">
<hyperscenario xmlns:DPML="dpml.dtd"
 title="Network Requirement Analysis"
 purpose="Examine Alternatives for Implementing System Network"
 logline="Risk Assessment of Network Strategies">
<cast>
 <character><actor><DPML:DesignPattern='Proxy'>
 <DPML:Class id='id10' name='Subject' isAbstract='true'>
 <DPML:Operation id='id11' name='Request'
 isVirtual='true'><DPML:hasTypeRep ref='id50'/>
 </DPML:Operation></ DPML:Class>

 <DPML:Class id='id20' name='Proxy'><DPML:Base ref='id10'/>
 <DPML:Aggregration ref='id30'/> <DPML:Operation id='id21'
 name='Request' isVirtual='true'>
 <DPML:defines ref='id11'/> <DPML:calls ref='id31'/>
 <DPML:hasTypeRep ref='id50'/></DPML:Operation>
 <DPML:Attribute id='id22' name='realSubject'>
 <DPML:hasTypeRep ref='id52'/>
 </DPML:Attribute</DPML:Class>

 <DPML:Class id='id30' name='RealSubject'>
 <DPML:Base ref='id10'/>
 <DPML:Operation id='id31' name='Request' isVirtual='true'>
 <DPML:defines ref='id11'/><DPML:hasTypeRep ref='id50'/>
 </DPML:Operation></DPML:Class>
 </DPML:DesignPattern></actor></character>
 .
 .
</cast>
<episode id="000.01" name="Network Service Request">
<goal>Handle External Network Requests</goal>
<scene><setting>Local Area Network</setting>
<event name="Establish Network Connection">
 .

.
 .

Figure 3 Design Pattern Mark-up Language (DPML)
and SCML

6. Conclusion

Scenario-based design and software design patterns are
approaches to handle the complexity and uncertainty
inherent in software development. Scenario-based
methods are used to capture and track design decisions
made during requirements analysis. Design patterns
attempt to leverage the best practices in software
engineering by recognizing recurring problems and their
solutions. This paper discussed a method that could be
utilized to merge both techniques, creating reusable story
patterns that assign further context to proposed design
solutions.

References

[1] J. S. Anderson and B. Durney, ”Using Scenarios in
Deficiency-driven Requirements Engineering”. In
Proceedings of the IEEE International Symposium on
Requirements Engineering, San Diego, CA, 4-6 January
1993.

[2] J. Carroll. “Making Use: Scenario-based Design of
Human-Computer Interactions”, MIT Press. Cambridge,
MA. 2000.

[3] M. Cline, “The Pros and Cons of Adopting and Applying
Design Patterns in the Real World”, Communications of
the ACM, Vol. 39, No. 10, 1996, pp. 37-39.

[4] A. Dearden, J. Finlay, E. Allgar, and B. McManus, “Using
Pattern Languages in Participatory Design”, in
Proceedings of the Participatory Design Conference 2002,
Malmo, Sweden, 23-25 June 2002.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
"Design Patterns: Elements of Reusable Object-Oriented
Software", Addison-Wesley, Indianapolis, IN. 1995.

[6] D. Gooding, “The Procedural Turn; or, Why Do Thought
Experiments Work”, Cognitive Models of Science.
University of Minnesota, Minneapolis, 1992. Pages 45-76.

[7] R. Hobbs, “Sharing Stories: Using Narrative for
Simulations Interoperability”, in Proceedings of the 2003
Spring Simulations Interoperability Workshop, Orlando,
FL., 30 March - 4 April 2003.

[8] R. Hobbs, “Hyperscenarios: A Framework for Active
Narrative” in Proceedings of the 38th Annual ACM
Southeast Conference, Clemson, SC., 7-8 April 2000.

[9] M. J. Mahemoff and L. J.Johnston, “Pattern Languages for
Usability: An Investigation into Alternative Approaches”,
in Proceedings of the Asia-Pacific Conference on HCI
1998 (APCHI), Los Alamitos, CA, 15-17 July 1998.

[10] N. Nersessian, “How Do Scientists Think?”, in Cognitive
Models of Science. Univ. of Minnesota, Minneapolis,
1992. pages 3-44.

[11] D. Schmidt, R. Johnson, and M. Fayad, “Software
Patterns”, Communications of the ACM, Vol. 39, No. 10,
1996, pp. 37-39.

[12] World Wide Web (W3C) Consortium. “Extensible
Markup Language (XML) 1.0.” W3C Recommendation.
See http://www.w3.org/TR/1998/REC-xml-19980210.

[13] B. Zsolt and R. Ferenc, “Mining Design Patterns from
C++ Source Code”, In Proceedings of the International
Conference on Software Maintenance (ICSM ’03),
Amsterdam, The Netherlands, 22-26 September 2003.

Visualizing the evolution of software using softChange

Daniel M. German, Abram Hindle and Norman Jordan
Software Engineering Group

Department of Computer Science
University of Victoria�

dmgerman,abez,njordan � @uvic.ca

Abstract

A typical software development team leaves behind a
large amount of information. This information takes dif-
ferent forms, such as mail messages, software releases, ver-
sion control logs, defect reports, etc. softChange is a tool
that retrieves this information, analysis and enhances it by
finding new relationships amongst it, and allows users to to
navigate and visualize this information. The main objective
of softChange it to help programmers, their management
and software evolution researchers in understanding how a
software product has evolved since its conception.

Keywords Software evolution, software trails, CVS, vi-
sualization, softChange.

1. Introduction

Many software projects use a version control repository
to record the the evolution of their source code. These
repositories keep track of every change to any source file
of the project, including metadata about the change, such as
author and date when it happened. Over time, the amount
of revisions to a project become enormous. For example,
the Mozilla project is composed of 35,000 files which have
been modified 450,000 times in 5.5 years of development
(from March 1998 to Aug. 2003) by 500 different develop-
ers.

CVS, the Concurrent Versioning System, is arguably the
most widely used version control management system avail-
able in the market and has become a de-facto standard in the
development of open source projects.

While CVS is a very powerful tool, it provides many bar-
riers to the extraction and visualization of valuable informa-
tion. CVS commands are cryptic and their output formats
are not easy to understand. CVS queries often produce an
excess of information which is hard for the frustrated de-

veloper to sift through. General summaries are rarely pro-
vided. Furthermore, CVS does not provide an alternative to
browsing through its information.

CVS is built around a group of command-line programs.
Several GUI applications have been built around (winCVS,
tkCVS, cvsWeb, LinCVS, Pharmacy, gCVS, etc) and some
integrated development environments (such as Eclipse) pro-
vide a GUI to CVS. In all these cases, the tools are created
around the CVS commands and options, providing nothing
more than a fancy GUI to the actual commands.

One of the main disadvantages of CVS is that it is not
transaction oriented. In other words, when a developer pro-
ceeds to “commit” a group of changes to a number of files,
CVS does not keep track of all the files modified by this
commit operation. It treats each change to a file indepen-
dently of the other files included in the commit. After the
commit has taken place, CVS does not know which files
were modified together. This information, however, is im-
portant because it highlights coupling amongst files: if two
files are modified at the same time, it is because they share
something in common. We refer in this paper to an commit
operation as a modification request (MR). A MR is there-
fore a collection of revisions to files that are modified at the
same time.

The information stored in the CVS repository is quite
valuable as it can help answering many questions. For in-
stance, it can assist developers in knowing who has modi-
fied which files and when; it can also help the administra-
tion in trying to understand the modification patterns of the
project and the way the different team members interact.
Finally, it can help in the recovery of the evolution of the
project (as we reported in [6]). For example, developers can
ask the following questions [11]:

� What happened since I last worked on this project?

� Who made this happen?

� When did the change take place?

� Where did the change happen?

� Why were these changes made?

� How has the file changed?

� What methods or functions were changed?

� What is the frequency of change?

� What files changed?

� Who is working on each modules?

Administrators, on the other hand, are interested in
higher level questions and metrics such as:

� How often does a programmer complete a MR?

� How much does the programmer change per MR

� What kind of commits does one programmer do?

� How much changed between each release?

� How many bugs are fixed and found after a stable re-
lease?

� What kind of modifications are done at a certain time?

� When was a module stabilized?

� What is the daily LOC count for each programmer?

� When is a module actively being developed and main-
tained?

We define software trails as information left behind by
the contributors to the development process, such as mail-
ing lists, Web sites, version control logs, software releases,
documentation, and the source code [6]. In this paper we
describe softChange, a tool that mines software trails from
CVS repositories, then enhances this data with some heuris-
tics in order to recover higher level information, such as
rebuilding MRs. Each MR is analyzed in order to know
what type of changes took place; such as adding new func-
tions, reorganizing source code, adding comments to the
code only, etc. After extraction and analysis, softChange
provides a graphical and hypertext representation of this in-
formation. This paper is divided as follows: previous work
is described in section 2; section 3 describes the architec-
ture of softChange; section 4 describes the visualization
features of softChange; we end describing our experiences
using softChange, our conclusions, and future work.

2. Previous Work

The two most commonly used hypertext front ends to
CVS are Bonsai [8] and lrx [7]. They provide a Web in-
terface to the CVS repository and isolate the user from the
complexities of the CVS commands (the man page of CVS
is 9000 words long, approximately 3 times the length of
this paper). Both tools allow the user to inspect the history
of any given file in the project and neither of them attempts
to enhance the software trails available in the repository.

Xia is a plugin for Eclipse for the visualization of CVS
repositories[11]. Xia recovers relations available in the logs
of a CVS repository and allows the user to navigate them. It
uses squares to represent files, their revisions and develop-
ers, and lines to represent the relationships between them.
Xia has two main limitations. The first is that Xia relies on
the Eclipse API to access the CVS repository. Every time
Xia wants to create a view, it queries the CVS repository in
order to retrieve the necessary data. This becomes a very ex-
pensive operation making Xia extremely slow in large CVS
repositories. The second limitation is that Xia operates at
the revision level, not at the MR level.

Hipikat aggregates many sources of information such as
bugzilla, the CVS repository, mailing lists, emails etc and
provides a searchable query interface[1]. The purpose of
Hipikat is to ”recommend software artifacts” rather than
summarize and visualize them. Thus Hipikat is much like
Google for a software project. One interesting feature of
Hipikat is that it correlates software trails from different
sources, inferring relationships between them.

Liu and Stroulia have developed JReflex, a plug-in
for Eclipse for instructors of software engineering courses.
JReflex helps the instructor to monitor how different teams
of students developed a term project by using their CVS
historical information [9]. It is designed to compare the dif-
ferences in development styles in different teams, who does
what, who works on what part of the project, etc. JReflex
is intended to be a management oriented tool for browsing
the CVS historical data. JReflex does not enhance the in-
formation available in CVS.

Fisher and Gall have described a CVS fact extractor in
[2]. In it they describe the main challenges of creating a
database of CVS historical data and then use it to visualize
the interrelationships between files in a project [3].

3. softChange Architecture

softChange is composed of four main components, de-
picted in figure 1.

� Software trails repository: At the core of softChange
lies a relational database that is used to store all the
historical information.

Web Client
with SVG support

Visualizer

PostScript

softChange
 Architecture

 mail
archives

 bugzilla
repository

 cvs
repository

.h.pl.pl.pl .cpp.cpp

.c.c.c.c
.c.c.c.c

.cpp.cpp.cpp.cpp

Fact Extractor

Fact EnhancersoftChange
 repository

Figure 1. Architecture of AUSS

� Software trails extractor: In a typical software devel-
opment project, software trails originate from many
different sources: CVS historical data, email mes-
sages, bug reports, ChangeLogs, etc. The purpose of
softChange trails extractor is to retrieve as many soft-
ware trails as possible. Currently, softChange is able
to retrieve trails from CVS, from ChangeLogs, from
the releases of the software (the tar files distributed by
the software team) and from Bugzilla.

� Software trails analyzer: Once softChange has ex-
tracted the software trails, it proceeds to use this in-
formation to generate new facts. For example, using
a set of heuristics, softChange regroups file revisions
into MRs [5]. softChange analyzes the changes in the
source code and thus extracts a list of function, meth-
ods and classes that have been added, modified or re-
moved from one file revision to the next. softChange
also correlates the available software trails; for exam-
ple, softChange links a given MR to its Bugzilla bug
report.

� Visualizer: softChange provides a visualizer to the
repository that allows the user to explore the software
trails. This front end is described in detail in the next
section.

4. Visualizing software trails

One of the main purposes of softChange is to summa-
rize and browse MRs. It will help developers, administra-
tors and researchers explore and understand the develop-
ment of the project. Instead of tedious typing, a developer
or maintainer could quickly navigate through the MRs us-
ing the Web visualization front-end of softChange. The
visualizer is divided in two main parts: a hypertext browser
and a graphical viewer. The hypertext browser is used to
navigate through the MRs. Users can choose to navigate
MRs by date, by author, or by filename. For each MR,
softChange provides the details of what revisions to which
files it contains, and any metadata about the modification.
The information is cross-referenced so it is possible to nav-
igate amongst any related information by following hyper-
links.

softChange tries to leverage any external sources of in-
formation too. One benefit of the hypertext application is
the ease of information association. Integration to other ex-
isting hypertext tools is quite easy by hyperlinking between
tools. If the project provides a bugzilla repository (such as
it is the case with many open source projects), a given MR
is linked to its corresponding Bugzilla entry. softChange
also links to the Bonsai repository of the project if one ex-
ists. Figure 4 shows a snapshot of softChange displaying
the details of an MR for the Mozilla project.

The graphical viewer of softChange is composed of two
main parts. One uses PostScript to generate static plots
of the software trails. The other one uses SVG to display
the same information more interactively. The SVG version
takes advantage of its hypertext capabilities to link points in
the plots with their details (by pointing to their details in the
hypertext browser of softChange). softChange is able to
generate the following plots:

� Growth of LOCS vs time, at the project level and at
the module level (a module in softChange is defined
as the collection of files under a given subdirectory).

� Number of MRs vs time: How many MRs are commit-
ted in a given period?

� Number of files vs time: How many files are part of
the project at a given point in time?

� Number of files in a given MR: How many files com-
pose a given MR?

� Proportion of MRs per contributor: What is the distri-
bution of the number of MRs per contributor?

� Proportion of revisions per source code file: How fre-
quently is a given file modified?

Figure 2. Hypertext browser: details of an MR using softChange

� Number of modules that are modified in a given MR:
How frequently an MR includes modifications of 2 or
more modules?

� Project time-tree: When are given files created and
modified, displayed in a timeline fashion?

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128

P
ro

po
rt

io
n

of
 to

ta
l M

R
s

(lo
g

sc
al

e)

Developers (log scale)

Developer activity

Figure 3. PostScript visualizer: proportion of
MRs per contributor.

With the PostScript viewer, the user determines the nec-
essary parameters for the plot, and softChange generates
in return an encapsulated PostScript file. Figure 3 depicts
the proportion of MRs per developer for Evolution (a GUI

mail client for Unix equivalent to Microsoft Outlook). Fig-
ure 4 depicts the number of MRs against time in the same
project [6].

The SVG viewer takes advantage of the hypertext and in-
teractivity features of SVG. This interaction is highlighted
in the project time-tree diagram. The time tree graph is a
view of a file directory tree. It depicts the how files popu-
late a given directory (and its child subdirectories) and the
proportion of MRs that include them at any point in time;
the horizontal axis corresponds to time. Every time a file
or directory is created, a new branch is started from the di-
rectory line. The user can expand and contract any given
subdirectory, in order to avoid information overload. The
user is also allowed to zoom-in, and zoom-out in any given
region of the plot. Figure 5 depicts this diagram for the
project Evolution.

5. Evaluation and Future Work

softChange has been successfully used to recover the
history of the software project Evolution. The results are
reported in [6]. softChange was used to extract Evolu-
tion’s software trails, enhance them, and then query and
visualize them. The Evolution project was born in 1999.
By May 2003, its CVS repository kept track of almost 5000
files, for a total of 77,000 revisions. These revisions were
reconstructed into 18,500 different MRs. A total of 201
developers committed at least one revision to the project.

 0

 200

 400

 600

 800

 1000

 1200

98/01 98/07 99/01 99/07 00/01 00/07 01/01 01/07 02/01 02/07 03/01
 0

 20000

 40000

 60000

 80000

 100000

 120000

M
R

s

Date

Ximian starts operations

Rel 0.0 Rel 1.0 Rel 1.2

Rel 1.1.1 Rel 1.3.1

MRs
code MRs

Major releases

Figure 4. PostScript front-end: MRs over time.

Figure 5. Time-tree in softChange

The size of the historical database created from the software
trails of Evolution accounted for approximately 0.5 Gbytes.
softChange helps us understand how the project evolved,
and how its developers collaborated.

Another research project in which softChange was used
is described in [4]. In this case, we were interested in
understanding the way that the software developers of the
GNOME project (a large, open source project) collaborate.
The analysis of these software trails allowed the discov-
ery of interesting facts about the history of the project: its
growth, the interaction between its contributors, the fre-
quency and size of the contributions, and the important
milestones in its development.

Given that many of the plots and reports of softChange
were designed around the questions described in the intro-
duction, we are confident that softChange is useful to soft-
ware developers and their management. We expect to main-
tain the historical data of several projects using softChange
and make it available to developers, and then evaluate how
they use it.

One of the main advantages of keeping all software trails
in a relational database is that we can analyze them and en-
hance them by extracting new knowledge from them. Our
current research is into the characterization of MRs. We
want to know what types of MRs are typically committed
by developers: are they source code modifications, docu-
mentation, or internationalization? If there are changes to
the source code, are they bug fixes, new features, reorgani-
zation of the code or clean up? With this enhanced infor-
mation, users can discriminate and select the changes they
are interested in, without being overwhelmed by the amount
of available data. The more facts that are known about the
evolution of the project, the better the visualization tools
that can be created.

Data mining of software trails is a promising area. Old,
stable software projects have a large amount of software
trails available. These trails can be mined for new facts;
these facts can be used for better visualizations.

The architecture of softChange permits the use of dif-
ferent visualization tools. We are currently working with
JReflex to adapt their Eclipse plug-in to softChange. We
are also pursuing using Shrimp [10] to visualize the rela-
tionships available in the repository. softChange is an open
source project, with an open architecture. We hope that
other research projects will help create more trail extraction
tools, more fact enhancing algorithms and more visualiza-
tion tools.

Acknowledgments

This research was supported by the National Sciences
and Engineering Research Council of Canada, and the Ad-
vanced Systems Institute of British Columbia.

References

[1] D. Cubranic and G. C. Murphy. Hipikat: Recom-
mending pertinent software development artifacts. In
Proceedings of the 2003 International Conference on
Software Engineering, pages 408–418, Portland, May
2003. Association for Computing Machinery.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a Re-
lease History Database from Version Control and Bug
Tracking Systems. In Proceedings of the International
Conference on Software Maintenance, pages 23–32.
IEEE Computer Society Press, September 2003.

[3] M. Fisher and H. Gall. MDS-Views: Visualizing prob-
lem report data of large scale software using multidi-
mensional scaling. In Proceedings of the International
Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA), September 2003.

[4] D. M. German. Decentralized open source global soft-
ware development, the gnome experience. Journal
of Software Process: Improvement and Practice, Ac-
cepted for publication, 2004.

[5] D. M. German. Mining CVS repositories, the
softChange experience. In First International Work-
shop in Mining Software Repositories, 2004. To ap-
pear.

[6] D. M. German. Using software trails to rebuild the
evolution of software. Journal of Software Mainte-
nance and Evolution: Research and Practice, To ap-
pear, 2004.

[7] A. G. Gleditsch and P. K. Gjermshus. lrx Cross-
Referencing Linux. http://lxr.sourceforge.net/, Visited
Feb. 2004.

[8] T. Hernandez. The Bonsai Project.
http://www.mozilla.org/projects/bonsai/, Visited
Feb. 2004.

[9] Y. Liu and E. Stroulia. Reverse Engineering the Pro-
cess of Small Novice Software Teams. In Proc. 10th
Working Conference on Reverse Engineering, pages
102–112. IEEE Press, November 2003.

[10] M.-A. D. Storey, C. Best, and J. Michaud. SHriMP
Views: An Interactive and Customizable Environment
for Software Exploration. In Proc. of International
Workshop on Program Comprehension, May 2001.

[11] X. Wu. Visualization of version control information.
Master’s thesis, University of Victoria, 2003.

A Framework for Comprehensive Experience-based Decision Support for
Software Engineering Technology Selection

Andreas Jedlitschka, Dietmar Pfahl, Frank Bomarius
Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6, D-67661 Kaiserslautern, Germany
[Andreas.Jedlitschka, Dietmar.Pfahl, Frank.Bomarius]@iese.fraunhofer.de

Abstract. In today’s software development organizations,
methods and tools are employed that frequently lack
sufficient evidence regarding their suitability, limits,
qualities, costs, and associated risks. Supporting
managers in selecting software engineering technologies
that, on the one hand, have shown such evidence, and, on
the other hand, match their business goal-oriented
requirements, is the ambitious aim of software
engineering decision support. This paper presents
ongoing research towards a decision support system for
software engineering technology selection in support for
software process improvement management. After
investigating the state-of-the-art, a framework for a
decision support system is sketched and steps towards a
decision support method are introduced.

1. Introduction

It is widely accepted today that software development,
similarly to software process improvement (SPI) has to be
performed in a systematic and managed way.
Unfortunately, at least for SPI, this is often not done. For
example, it is reported that due to various shortcomings,
SPI initiatives often fail. Debou et al. [1] describe three
major causes for SPI failure: (1) lack of management
commitment, reflected through too few or inappropriate
resources, (2) delayed impact upon projects, both for daily
practice and performance, and (3) lack of software
management skills. Birk [2] reports that SPI initiatives
often do not yield the expected results (level of
improvement or benefit), since they are (1) performed in
an isolated, non-coordinated way, (2) viewed outside their
initial context, or (3) not supported by management or
individuals.

Within SPI, decisions must be taken regarding
software engineering techniques, methods, and tools that
have a potential to yield significant improvements. To
date, there have been few attempts reported that support
SPI-managers in their task of decomposing strategic
business objectives into activities on a SPI related

operational level. The question of which Software
Engineering (SE) technique, method, or tool will fit best
into the actual organizational context, is addressed either
with support from external consultants, and/or based on
the expertise and belief of the manager him-/herself. To
find adequate answers, it is, beside other things, necessary
to keep track of the state-of-the-art in SE, which is one of
the basic “features” of a SE Decision Support System
(DSS). SE DSS In general should implement the
generation, evaluation, prioritization, and selection of
solution alternatives [3].

In this paper, we describe a decision support
framework that aims at enhancing SE technology
selection in the context of improvement management.
This framework has three major characteristics. Firstly, it
offers decision support which is based on both internal
and external experience. Typically, internal experience
stems from project databases, measurement programs, and
other company-specific organizational repositories.
Typical sources for external experience are public web-
based repositories, like the ESERNET repository [4][5].
Secondly, due to the extensive involvement of research
organizations in the build-up and maintenance of public
web-based repositories, framework users can expect to
have access to state-of-the-art experience. Thirdly, the
proposed framework will offer techniques and methods
that help to aggregate and synthesize experience across
the borders of different SE techniques along the software
development lifecycle. More specifically, the framework
will provide comprehensive decision support with regards
to the application conditions of combinations of SE
technologies, which is constructed upon pieces of
information that stem from isolated empirical studies each
focusing on a single SE technology.

A decision maker will benefit from easy access to the
state-of-the-art for complementing his knowledge.
Additionally, the DSS will provide directions for the most
promising interplay of different techniques like
inspections and testing, even if there are no concrete
studies available that explicitly investigate the
relationship between these two technologies.

The remainder of the paper is structured as follows.
First, we present some related work in the different fields
affected by this research (section 2). Next, we present the
framework in a nutshell and outline the big picture
(section 3). In section 4, we present steps towards a
decision support method. In the final section, we
summarize our contribution and outline plans for future
work including a plan for validating the approach.

2. Related Work

We have identified three main areas affecting our work:
(1) strategic management, which is most influential for all
business-oriented activities but which is not in the focus
of this paper, (2) decision support and decision support
systems in general, for SE, and more specifically for
improvement management, and (3) SPI and improvement
management as application areas of the planed DSS.

2.1. Decision Support

Decisions have to be made every day by everyone. They
are based on the experience, attitude, and intuition of the
decision maker. They heavily depend on the information,
the context, such as the budget and time, and other
environmental restrictions or requirements. The
complexity of decision-making grows with the impact a
decision might have on the decision maker ant the
environment.

For a number of years, different research disciplines
have looked at decision making in general (e.g.,
psychologists, system theorists). With the advent (and
availability) of computers, more than thirty years ago, the
interest in supporting decision making with information
technology also arose. Power [7] proposes a matrix with
five broad categories of DSS that differ in terms of
technology component: communication-driven, data-
driven, document-driven, knowledge-driven, and model-
driven DSS. Additionally, he draws a distinction between
user groups, purpose, and enabling technology.

For SE many different areas for decision-making are
located along the life cycle of software. Ruhe [3] gives an
overview on recent research related to SE Decision
Support (SEDS). He describes five areas in which SEDS
research is progressing. These are requirements,
architecture and design, adaptive and corrective
maintenance, project planning and control, and
verification and validation.

For the area of systematic improvement, Birk [2]
describes how to use technology experience packages
(TEP) in support of technology selection. Based on a two-
step context evaluation with respect to the given situation,
appropriate TEPs are ranked and selected by the decision
maker. The content of the TEPs can initially be acquired

from literature and iteratively be adapted to the specifics
of an organization.

An integrated approach to simulation-based learning
in support of strategic and project management is
proposed by Pfahl [8]. Following a systems dynamics
approach, he shows, that “based on simulations, managers
can explore and analyze potential improvements before
implementation and empirical evaluation of the related
process changes in a pilot project”.

Raffo [9] suggests an approach to decision support
using discrete-event simulation.

In the area of inspections, Biffl et al. [10] propose a
knowledge management framework to support software
inspection planning on three different managerial levels,
quality management, inspection manager, and inspector.

2.2. Software Process Improvement

In contrast to the mass production of goods, software
development projects are more or less unique.
Consequently, improvement approaches valid in the
production area are not appropriate without adaptation to
the needs of software developing organizations. Generic
frameworks include the Capability Maturity Model
(CMM), ISO9000:2000, and the Software Process
Improvement and Capability Determination (SPICE).
These frameworks are standards for assessing software
process maturity. They can be used for benchmarking
against idealistic requirements. But they do not propose
concrete techniques to be used in a specific context. The
underlying improvement approaches are of a cyclic nature
aiming at continuous improvement. The most prominent
approaches here are the Quality Improvement Paradigm
(QIP) [11], and SEI’s IDEAL Model [12].

3. The Framework in a Nutshell

Improvements, and especially the selection of appropriate
SE techniques, have to be based on internal and external
experience. No organization can afford to ignore existing
experience or, in the worst case, make the same mistakes
others made before. The framework we are focusing on is
based on QIP and aims at motivating the extensive use of
and need for empirical studies to support the selection of
appropriate SE techniques within goal-oriented software
process improvement management.

The suggested framework does not intend to replace
existing reference models aimed at guiding organizations
in improving their software processes, such as CMM,
ISO9001, SPICE, or more recently CMMI, but provides a
more generic view on the related topics

Figure 1 shows how organization-specific
improvement management, including access to internal
experience, is connected with external experience. In [13]
we have described the motivation and requirements for

combining data sources from industry and research.
Additionally, simulation could complement empirical
work. The arrow from web-based DSS to industry
indicates the usage of external data to enrich the
organization-specific improvement management
approach, especially for supporting decisions about
technology selection. The arrows from and to research
describe the contributions of, and benefits for, empirical
research.

Project DB

Exp.-Base

IndustryResearch

Exp.-Base

Empirical
Environment

Exp.-Base

web-based DSS

Simulation
Environment

Improvement
Environment

Basis: Controlled Experiments, Case studies, Surveys, Pilot Projects, Projects,

Figure 1. The big picture of SE-DSS

The arrow from industry to the web-based DSS is to a
large extent still largely unresolved. Experience from SPI-
focused network projects showed that industry is not
sufficiently motivated to provide data in a reusable format
[13], [14]. With few exceptions, only very abstract or
even no information is reported.

4. Towards a Decision Support Method

To support decision-making, a model of the world has
to be developed, e.g., [15]. At the moment, empirical
software engineering research has a growing interest in
analyzing results of different empirical studies with
regard to the same technique, e.g., [16, 17, 18, 19]. Most
of them also report challenges and threats occurring when
studies are aggregated, e.g., because of limited
information about the context.

Arranging the SE techniques alongside a virtual x-axis
(the whole software lifecycle), we define the selection of
studies investigating one technique (e.g., inspections) as
local, and the selection of studies from different
techniques as comprehensive. Deciding between different
techniques requires at least some information about (1)
the conditions that have to be fulfilled before the
technique can be applied (precondition) and (2) the status
that is available after having applied the technique
(postcondition).

Figure 2 shows a sketch of an interplay graph for
technologies via the pre-/post-condition interfaces. In this
example, technology cluster X consists of inspection
techniques and cluster X+1 consist of testing techniques.
A virtual company (X-Soft) is using an object-oriented
software development process, which results in UML
diagrams at the end of the design phase. Following on

from the results of some empirical studies, an inspection
technique specifically developed for object-oriented
design documents is proposed (OORT - object-oriented
reading technique). It is expected that with the
introduction of OORT it might be realistic that 75% of the
defects of type A+B and 50% of the defects of Type C
will be found. Dynamic defects are not found at all.

Technology Cluster X+1Technology Cluster X

TiPrecondition Postcondition

Ti+2Precondition Postcondition

Ti+1Precondition Postcondition

Figure 2. Interplay between technologies via pre-/post
conditions

The most interesting point is not the effect of a
specific inspection technique as such but its impact on the
whole development process (comprehensive view). So
questions like: “Which inspection technique fits best with
which testing technique?” are of growing interest. If it is
possible to find empirical studies about testing techniques,
using a similar or the same classification of defects, an
answer to the question, under various restrictions, seems
to be possible. This will not be of the same quality as if
delivered by a statistical meta-analysis, but it will at least
give a direction in areas where formal empirical evidence
is still missing. Continuing the example, testing technique
Ti+1 is expected to detect 75% of type A+B defects and
60% of type C defects. Ti+2 detects 50% of defect type
A+B but 95% of defect type C. Both testing techniques
detect 87% of the remaining dynamic defects.
Considering only the testing technique as such, one might
choose Ti+1, but in combination with the inspection
technique Ti, it might be more promising to investigate in
a combination of Ti and Ti+2, since from the empirical
standpoint, they seem to be more complementary than Ti
and Ti+1, and together they detect more defects than a
single technique.

For inspection techniques, it is quite important to
know when to apply which technique [10, 18], depending
on the answer to questions such as: Is it more effective to
inspect the requirement documents or design documents?
Therefore, the arrangement of techniques in the
development process plays an important role for which
the DSS we aim at can provide directions.

5. Status of Work

After having clarified the vision for the DSS, we first
conducted a literature survey to find the requirements for

a DSS as described above. Second, we did a survey
among the software managers at Fraunhofer IESE to elicit
further requirements. Together with additional
requirements from the specification of the DSS we
mapped our findings to a standard architecture and a
generic requirements classification framework [20].

We have evaluated a set of controlled experiments in
the area of defect reduction [6], especially towards their
“usability” as “data” for a DSS. To get an idea of whether
it is feasible to use the information available, and how to
use it, we categorized the information needed for decision
support and extracted such information from a small set
of studies [21]. Based on this structure, we will determine
the requirements for future reporting of studies, i.e.,
reporting schema, minimum attributes, and common
measures to allow a comprehensive generation of
information.

6. Summary and Future Work

In this paper, we have presented a vision for a decision
support framework that supports the selection of
appropriate SE techniques, by not only looking at a single
technique in isolation, but also trying to aggregate
information about the impact of the technique on other,
related techniques in the software process at hand. A first
step for a decision-support method was sketched, and a
schema for the underlying repository has been presented.

There is further research necessary to evolve the
vision into a running DSS. The architecture for the DSS
and software design has to be fixed. It has to be evaluated
whether the generic architecture given in [3] can be
adapted. Assuming a simple three-tier-architecture with
presentation, business logic, and persistence layer, the
methods for the business logic, in particular, have to be
further developed and evaluated.

Also, the evaluation of the whole approach has to be
planned. At this time a two-step evaluation is foreseen.
First, a controlled experiment with students as subjects
will be used to get an idea of the efficiency and
effectiveness of the approach. A survey among defect
reduction experts and consultants should clarify whether,
for example, the “base” is representative and whether the
approach is able to complement state-of-the-practice with
dynamic state-of-the-art information. We plan to report
findings from these investigations in the near future.

Reference

 [1] Debou, C.; Kuntzmann-Combelles, A.:” Linking Software Process
Improvement to Business Strategies: Experiences from Industry”,
in Software Process: Improvement and Practice Vol 5, Number 1,
March 2000, pp 55-64

[2] Birk, A.: A Knowledge Management Infrastructure for Systematic
Improvement in Software Engineering; Ph. D. diss., Dept. of
Computer Science, University of Kaiserslautern, Germany;
Stuttgart: Fraunhofer IRB Verlag; 2000.

[3] Ruhe, G.: “Software Engineering Decision Support – A new
paradigm for Learning Software Organizations”. Proc. Wkshp.
Learning Software Organizations, Springer, 2003.

[4] Conradi, R.; Wang, A.I.: Empirical Methods and Studies in Software
Engineering – Experiences from ESERNET; Springer LNCS 2765,
2003.

[5] Jedlitschka, A.; Nick, M.: “Software Engineering Knowledge
Repositories”; in [8] pp.55-80

[6] Jedlitschka, A.; Ciolkowski, M.: “Towards Evidence in Software
Engineering”; In Proc. of ACM/IEEE ISESE 2004, Redondo
Beach, California, August 2004, IEEE CS, 2004

[7] Power, D.J.: “A Brief History of Decision Support Systems”.
DSSResources.COM, http://DSSResources.COM/history/
dsshistory.html, version 2.8, May 31, 2003 visited 10.02.2003

[8] Pfahl, D.: An Integrated Approach to Simulation-Based Learning in
Support of Strategic and Project Management in Software
Organisations, Ph.D. diss., Dept. of Computer Science, University
of Kaiserslautern, Germany; Fraunhofer IRB Verlag; 2001.

[9] Raffo, D. M.: Modeling Software Processes Quantitatively and
Assessing the Impact of Potential Process Changes on Process
Performance, Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh, PA, UMI Dissertation
Services #963438, 1996.

[10] Biffl, S.; Halling, M.: “A Knowledge Management Framework to
Support Software Inspection Planning”, in [23]

[11] Basili, V.R., Caldiera, G., and Rombach, H.D.: “Goal Question
Metric Paradigm”; in: Marciniak JJ (ed.), Encyclopedia of
Software Engineering, Vol. 1, pp. 528–532, John Wiley & Sons,
2001.

[12] Gremba, J.; Myers, C.: “The IDEALSM Model: A Practical Guide
for Improvement” in Software Engineering Institute (SEI)
publication, Bridge, issue three, 1997.
(http://www.sei.cmu.edu/ideal/ideal.bridge.html)

[13] Jedlitschka, A.; Pfahl, D.: “Experience-Based Model-Driven
Improvement Management with Combined Data Sources from
Industry and Academia”. In: Proc. of ACM/IEEE ISESE 2003,
Roman Castles, Italy, October 2003, IEEE CS, 2003. pp. 154-161

[14] Conradi, R.; Dybå, T.; Sjøberg, D.; Ulsund, T.: “Lessons Learned
and Recommendations from two Large Norwegian SPI
Programmes”. In Oquendo (ed.): 9th Europ. Wkshp. on Software
Process Technology (EWSPT 2003), Helsinki, Finland, 1-2 Sept.
2003, pp. 32-45. LNCS 2786, Springer-Verlag.

[15] Ruhe, G.: “Software Engineering Decision Support: Methodology
and Application”s. In: Innovations in Decision Support Systems
(Ed. by Tonfoni and Jain), International Series on Advanced
Intelligence Volume 3, 2003, pp 143-174.

[16] Pickard, L.M.; Kitchenham, B.A.; Jones, P.W.: “Combining
empirical results in software engineering”, Information and
Software Technology, 40(14):811-821,1998.

[17] Runeson, P.; Thelin, T.: “Prospects and Limitations for Cross-Study
Analyses – A Study on an Experiment Series”. In [22] pp. 136-145

[18] Wohlin, C.; Petersson, H.; Aurum, A.: “Combining Data from
reading Experiments in Software Inspections”. In: Lecture Notes
on Empirical Software Engineering, World Scientific Publishing
Co. Pte. Ltd, Singapore, 2000.

[19] Kitchenham, B.A.; Dybå, T.; Jørgensen, M.: “Evidence-based
Software Engineering”, accepted for ICSE 2004

[20] Jedlitschka, A.; Pfahl, D.: “Requirements of a Tool supporting
decision making for SE Technology Selection”; In Proc. of
SEDECS 2004Workshop at SEKE 2004, Banff, Canada, 2004

[21] Jedlitschka, A.; “Towards a comprehensive summarization of
empirical studies in defect reduction”; IESE Report 043.04/E,
submitted as “Fast Abstract” to ISESE 2004

[22] Jedlitschka, A.; Ciolkowski, M. (eds): The Future of Empirical
Studies in Software Engineering, Proc. of 2nd Int. Wkshp. on
Empirical Software Engineering, WSESE 2003, Roman Castles,
Italy, Sept. 2003, Fraunhofer IRB Verlag, 2004, to appear.

[23] Aurum, A.; Jeffery, R.; Wohlin, C.; Handzic, M. (Eds): Managing
Software Engineering Knowledge; Springer-Verlag; Berlin 2003

Active Connectors for Component-Object based Software Architecture

Tahar Khammaci, Adel Smeda, and Mourad Oussalah
LINA, Université de Nantes

2, Rue de la Houssinière, BP 92208
44322 Nantes Cedex 03, France

Tel: +332 51125963, Fax: +332 51125812
Email: {khammaci, smeda, oussalah}@lina.univ-nantes.fr

Abstract. Component-Object based Software
Architecture (COSA) describes systems as a collection of
components that interact with each other via connectors, it
separates the notion of computation from the notion of
communication. However connectors in COSA are
passive, in the sense that they only provide interaction
services in response to explicit requests; hence they do
not have the ability to react to situations that arise during
the process, in consequence they cannot react to changes
in components and configurations. In this article we
present special purpose connectors based on Event-
Condition-Action rule called active connectors.

1. Introduction
There are a number of circumstances that can arise in
component-based systems. This includes changes of a
system configuration, up normal termination of
interaction process due to some reasons, changes in
components, etc. For a system to survive, it must react to
these situations (events). Traditionally, connectors are
responsible only for interacting components with each
other. Hence they are passive, in the sense that they do
not react to events that could take place in a system.
Active connectors are intended to respond automatically
to situations that arise inside a system. The active
behavior of a connector is described using rules, which
most commonly have three statements, an event, a
condition, and an action. A rule with such statements is
known as an even-condition-action rule or ECA rule [1].
Such a rules lies dormant until the occurrence of the event
that it is monitoring. When the event takes place, the
condition is evaluated to examine the context in which the
event took place, and if true the action is executed to
enact some suitable response to the event.
The concept of ECA is clearly not new, it is supported
within a rang of proposals for rule systems (e.g. OODBS
[2], [3], [4], [5]). However, we are not aware of any other
attempt to apply the ECA concepts in component-based
software architecture.

2. Connectors in COSA
COSA is an approach of describing software architecture
based on components, connectors, and configurations.
Where components, connectors, and configurations are
defined as types that can be instantiated to build different
architectures [6]. On the contrary to most of architecture
description approaches [7] [8] COSA considers
connectors as first-class entities that must be defined
explicitly by separating their interfaces from their
behavior [9]. A connector in COSA is mainly represented
by an interface and a glue specification. In principle, the
interface shows the necessary information about a
connector, including number of roles, service type that the
connector provides (communication, conversion,
coordination, facilitations), connection mode
(synchronous, asynchronous), transfer mode (parallel,
serial), whether it includes ECA rule or not and if yes the
type of events that supports, etc. The interaction points of
an interface is called role. A role is the interface of a
connector intended to be tied to a component interface (a
component’s port). In the context of the frame, a role is
either a provide role or a require role. A provide role
serves as an entry point to a component interaction
represented by a connector type instance and it is intended
to be connected to the require interface of a component
(or to the require role of another connector). Similarly, a
require role serves as the outlet point of a component
interaction represented by a connector type instance and it
is intended to be connected to the provide interface of a
component (or to the provide role of another connector).
The interface is the visible part of a connector, hence it
must contain enough information regarding the service
and the type of this connector. By doing this, one can
decide whether or not a given connector suits its
qualifications by examining its interface only.
The glue specification describes the functionality that is
expected from a connector. It represents the hidden part of
a connector. A glue could be just a simple protocol links
the roles or it could be a complex protocol that does

various operations including linking, conversion of data
format, transferring, adapting, etc. The service provided
by a connector is defined by its glue, the services of a
connector could be either communication service,
conversion service, coordination service, or facilitations
service. In case of a composite connector the
subconnectors and subcomponents of the composite
connector must be defined by the glue, as well as the
binding among the subconnectors and
subcomponents.

3. Active connectors
The association between situations and actions is
specified by means of rules. A rule in the sense of active
connectors is a situation-action pair; a situation is
generally specified by means of an event and a condition,
where an event indicates an occurrence in the architecture
and a condition relates to the current state and can be
formatted as a predicate over it. A condition has to be
evaluated when the corresponding event is signaled; if it
holds, the associated action has to be executed. The
overall structure of rule definitions for active connectors
is expressed as follows, the keyword “Active” is
presented to activate or deactivate the rule:

 DefineRule rule-name {
 Active ∈ {Yes, No}
 ON { define-event (or events);
 Type ⊂ {primitive, composite}; }
 IF {define-condition;
 Mode ⊂ {immediate, deferred, separate } ;
 Role ∈ {mandatory, optional}; }
 DO {define-action;

 Mode ⊂ {immediate, deferred, separate }; }
 }
In active connectors events to trigger the rules are
indispensable, therefore the rule CA is not applicable
here. Meanwhile conditions can be omitted, hence the rule
EA is applicable for active connectors.

Figure 1 elucidates the definition of active connectors
using a UML meta-model. In the figure the connector
includes the rule, which is triggered by the event. In
component-based systems there are two types of events:
component events and interaction events. The rule
includes a condition, which could be omitted, and an
action to be taken if the condition is satisfied.

3.1. Basic events for active connectors
Each event specification system must start with a list of
basic events that the system supports. While this set of
basic events could vary from system to another, there are
some basic events that we consider important in the
context of component-based systems and component-
based software architecture. We classified the events for
active connectors in two groups, events concerning with
components and events concerning with interaction
process.

1- Component events
Since the target of the model we are seeking is a dynamic
system configuration, the model should provide us with
the ability to describe arbitrary changes in configurations
of components and component assemblies. In particular
the model should allow for the dynamic creation of new
components and new component assemblies, as well as

Figure 1. A UML meta-model of active connectors in component-based system

Connector

Event

type = {primitive, composite}
role = {mandatory, optional, none}

Trigger

ComponentEvents InteractionEvents

Condition

mode = {immediate, deffered, separate}
role = {mandatory, optional}

Action

mode = {immediate, deffered, separate}

Rule

name : string
active : boolean

0..10..1

1

1..*

1

1..* 0..10..1

the movement of components or component assemblies
from one component assembly to another. In other terms,
containment and resource dependencies among
components should be allowed to change and evolve over
time, whether spontaneously or in reaction to interactions
among components.
Thus an obvious connector’s task is dynamic component
linking that allows for a variety of dynamic changes to the
system architecture and deployment (e.g., component
creation, deletion, migration, replacement). In this case
active connectors are needed to support changes and to
repair existing systems (configuration changes).
Components’ events occur when such situations take
place in a configuration.
Conventional connectors can not react to configuration
changes, therefore new design must be considered. In the
other hand, active connectors facilitate changes in a
system by reconfiguring the system without a direct
interfere from the components. Component events take
place when configuration changes occur, for instance,
immediately after a component is created, immediately
before a component is deleted, or immediately after a new
version of a component is driven (e.g. in a composite
relation). Therefore, with component events a rule must
be checked every time component changes take place, i.e.
creation, deletion, migration, replacement.

Example: In a composite component, driving a new
version of a component which depends on an other
component needs that the independent component also
must be driven. In this case the connector will drive a new
version of the dependent component and update the
configuration (figure 2). In the figure, after component
Comp2’ is driven the connector will drive a new version
of component Main 1 and updates the relations.

DefineRule change-propagation {
 Active = Yes

 ON { drive-version of component ;
 Type = primitive; }
 IF {dependence = ON;
 Mode = immediate;
 Role = mandatory}
 DO {new component = component.drive;
 new component.delete component ;
 new component.add component;
 Mode =immediate; }
 }

Figure 2. Using an active connector to drive versions in a
composite relation.

2- Interaction events
Events that arise to control an interaction process are
called interaction events. They are events that used to
supervisor interactions and communications among
components. They are intended to prevent communication
problems and to facilitate interactions in a system. There
are many events that can be seen as interaction events
including, communication events, facilitation events, and
coordination events.

1- Time events are examples of coordination events; they
occur periodically to predict and prevent communication
errors. Time events are specified as: at time-specification,
every time-period, after time-period.
Example: The following rule says that after certain time a
connector will stop the connection if the receiver does not
respond to the request.

DefineRule connection-postpone {
 Active = Yes;
 ON { time-period (MIN=15);
 Type = primitive;}
 IF { receiver = !ready;
 Mode = immediate;
 Role = mandatory; }
 DO { stop connection;
 Mode = immediate; }
 }

2- Communication events are used to support and to
guarantee data transfer among components, consequently
they are triggered when a transfer takes place.
Communication events could occur:

a. Immediately after a transfer begins (tbegin).
b. Immediately after a transfer finishes (tfinish).
c. Immediately before a transfer aborts (tabort).
d. Immediately after a transfer aborts (tabort).

Example. A connector sends an acknowledgment to a
sender and a receiver engaged in communication says that

 Main 1

Comp 1 Comp 2 driving new version Comp 2’

Comp 1

 Main 1’

the active connector
 will drive new version
of Main 1 update the
configuration

Comp 2’

the transfer of the data is terminated successfully, this is
can be realized by the following rule:

DefineRule transaction-terminate {
 Active = Yes;
 ON { after tabort;
 Type = primitive; }
 IF {transaction = success;
 Mode = immediate;
 Role = mandatory; }
 DO {send ACK;
 Mode = immediate; }
 }

3- Facilitation events. To enable heterogeneous
components facilitation services such as load balancing
and format conversion are required. Number of events can
be considered as facilitation events, this includes format
mismatching, synchronies mismatching, receiver
overflow, traffic congestion. For instance a rule could
define a load balancing mechanism when a congestion
occurs by switching the interaction to other connecters, if
possible, after studying the root (from the source to the
destination).

Example: The following rule defines what must be done
when a receiver overflow occurs. The rule is an event-
action type since there is no condition.

DefineRule receiver-overflow {
 Active = Yes;
 ON { overflow = 1;
 Type = primitive; }
 DO { stop transaction;
 while receiver = !ready
 wait ;
 Mode = immediate; }
 }
With interaction events a rule must be checked every time
a communication service is needed, e.g. data access, data
and messaging exchange, broadcasting etc.

4. Conclusion
In this article we investigate the application of active rules
for the connectors of component-object based software
architecture (COSA). We can conclude that the inclusion
of powerful active mechanisms into component-based
software architecture provides powerful services, such as
reacting to situations and external notifications, reacting
at specific points in time, management of (consistency)
constraints, access control, or automatic propagation of
updates (architecture changes). Furthermore, using active
connectors increases the flexibility of systems in that e.g.
composite relation updates, inherited models updates.

Most of these features are not supported by conventional
component-based systems now.

References
[1] U. Dayal, A. Buchmman, and D. McCarthy, “Rules

are Objects too: a Knowledge Model fro an Active
Object-Oriented Database Systems”, Lecture Notes in
Computer Science 334, Springer, 1988, pp. 129-143.

[2] S. Gatziu, A. Geppert, and K. Dittirch, “Integrating
Active Concepts into an Object-Oriented Database
Systems”, In Proceeding of DBPL-3 Workshop,
Nafplion, Greece, 1991.

[3] N. Paton, O. Diaz, M. Williams, J. Campin, A. Dinn,
and A. Jaime, “ Dimensions of Active Behaviour” ,
In Proceedings of the 1st International workshop on
Rules in Database Systems, Edinburgh, Scotland,
1994, pp. 40-57.

[4] D. McCarthy and U. Dayal, “The Architecture of An
Active Data Base Management System”, In
proceedings of the ACM SIGMOD symp. on the
Management of Data, Portland, Oregon, 1989, pp.
215-224.

[5] N. Gehani, H. Jagadish, and O. Shmueli, “Event
Specification in an Active Object-Oriented
Database”, In Proceedings of the ACM SIGMOD
International Conference, Dan Diego, CA, 1992, pp.
81-90.

[6] A. Smeda,, M. Oussalah, and T. Khammaci, “A
Multi-Paradigm Approach to Describe Software
Systems”, In Proceedings of 3rd WSEAS Int. Conf. On
Software Engineering, Parallel and Distributed
Systems, Salzburg, Austria, 2004.

[7] L. Bass, P. Clements, and R. Kazman, R.
“Software Architecture in Practice”, Addison-
Wesley, Indianapolis, IN, 1998.

[8] N. Medvidovic, R. N. Taylor, “A Classification
and Comparison Framework for Software
Architecture Description Languages”, IEEE
Transactions on Software Engineering, Vol. 26,
2000, pp. 39-70.

[9] M. Oussalah, A. Smeda,, and T. Khammaci, “An
Explicit Definition of Connectors for Component-
Based Software Architecture”, In Proceedings of the
11th IEEE Conference on Engineering of Computer
Based Systems (ECBS 2004), Brno, Czech Republic,
May 24-27, 2004.

Analyzing Invariant Condition of Running Java Program

Theodorus Eric Setiadi1, Ken Nakayama, Yoshitake Kobayashi, and Mamoru Maekawa
Department of Information Systems

The Graduate School of Information Systems
The University of Electro-Communications, Tokyo Japan

{eric| ken | yoshi| maekawa} @maekawa.is.uec.ac.jp

Abstract. Abstraction is used to simplify understanding
of a complex system. Abstract thinking is easy for human,
but unfortunately making an abstract model for a real
system is not easy. This paper describes an interactive
environment called Java Program Analyzer (Javapan) that
helps abstraction process. Javapan helps identifying the
partial specification that can be used as the input for the
verification system. Using some clues from source code
and statistical analysis of the execution trace, Javapan
reports candidates of invariant conditions that consistently
hold during the execution. The user can supervise the
analysis by giving some particular conditions to be
observed. The user also can inspect the execution by
viewing the property for specific part of program. A
preliminary example is included to illustrate how to
obtain the invariant conditions from a running Java
program using Javapan.1

1. Introduction

Abstraction makes an actual complex system becomes
simpler. For human, given an abstract model, it is easy to
think abstractly. Abstraction is also useful in verifying,
testing, debugging, and maintaining a system.
Verification tools (for example SPIN [1], SMV[2] model
checker) are powerful [3], but there is a need to have an
abstract model so it could be practically feasible for the
actual problem. Testing and debugging a complex
program is difficult task for programmer. Sometimes it
requires a lot of effort, such as finding a good test data,
analyzing a lot of result, and reading lots of codes.
Testing, modifying, and understanding program accounts
for a half of the development time [4]. Abstraction can be
helpful in software engineering, by some abstraction
model or property of the program in hand, testing and
debugging a program becomes easier. For example, in the
Print Service [5] problem, it would be helpful for the user
if he knows that each request for a printer will eventually
get processed. By knowing this, the user will be able to

1 The author is supported by the JINNAI scholarship.

concentrate on that property during the testing and
debugging.
Program visualization also expresses the need for
abstraction. These tools give abstraction of the actual
system in visual representation by providing a way to
view the execution, e.g., viewing the value of variable or
displaying the statistic from the trace [6], [7].
Unfortunately, it is difficult to analyze the target problem
and make an abstract model. This makes additional work
for the user. Moreover, typical usage or typical data of the
system needs to be known. Good documentation is also
necessary. Historically, programmers have been reluctant
for writing formal specifications [4]. Looking at this
situation, there is a need to have a system that could help
the abstraction process, for example gives some assertions
about the program execution.
This paper describes a Java Program Analyzer (Javapan)
that helps abstraction. More specifically, Javapan
analyzes the behavioural property of a running Java
program and reports invariant conditions that consistently
hold during the program execution. Those are the
conditions that are always true or never exist during the
execution. The users of Javapan are programmers who
need help to understand a program. This system interacts
with the user to find some candidate assertions, by
allowing the user to supervise the analysis, for example,
the user can inform the system to analyze a particular
expression or view the property for some part of the
program. The output from Javapan can be used to help in
writing partial specification for the program that possibly
can be used as the input for the verification system.

2. Approach Overview

Javapan is implemented as an Eclipse plug-in [8]. Javapan
reads Java source code and receives the execution trace
from the Java Development Tool (JDT) plug-in. It
analyzes the program behaviour from the execution trace
using some clues from the source code to find useful
property that reflects the intention of the programmer.

Figure 1. System architecture of Javapan

3. Proposed Methodology

3.1. Source Code Analysis

In source code analysis, Javapan parses the Java source
code to find some expressions. In Java source code, an
expression is a statement that can convey a value [11].
The most common expressions are mathematical
expressions (such as x=3). They can be found in the
assignment, if statement, while statement, etc. From the
observation of some program examples (such as Print
Service [5], Readers Writers [9], Expandable Array [9],
Bounded Buffer [10] problem, etc) usually the
expressions stated in the source code are useful to find the
property of the program. To illustrate how the Javapan
analyzes the source code, let’s take a look at an example
of a Print Service problem [5] (Figure 1). In this system a
set of Print Service objects organized in a ring topology,
passing around rights to access a Printer. In case one node
does not poses the printer, it asks its neighbour for it.
1: class PrintService {
2: protected PrintService neighbor = null;
3: protected Printer printer = null;
4: public synchronized void print(byte[] doc) {
5: getPrinter().printDocument(doc);
6: return; }
7: protected Printer getPrinter() {
8: if (printer == null)
9: printer = neighbor.takePrinter();
10: return printer; }
11: synchronized Printer takePrinter() {
12: if (printer != null) {

13: Printer p = printer;
14: printer = null;
15: return p; }
16: else
17: return neighbor.takePrinter(); }
18: synchronized void setNeighbor(PrintService n) {
19: neighbor = n; }
20: synchronized void givePrinter(Printer p) {
21: printer = p; }
22:
Figure 2. Part of source code of the Print Service problem

In Javapan, the expressions that are obtained from the
source code are called “main expressions.”

Table 1. Some of the main expressions for the source
code in Figure 2

Main expressions Type and location
neighbor=null
printer=null
printer==null

Assignment (line 2)
Assignment (line 3)
If statement (line 8)

Javapan also analyzes some “related expressions” of the
main expressions. For example neighbour!=null is
related to the neighbour==null. Javapan then
replaces the assignment operator (=) with comparison
operator for equality (==) so the expressions only
contains comparison operator (==, !=, <, >, <=, >=).
Figure 3 is the summary of the main expressions and
related expressions that only using comparison operator
for the source code in the Figure 2.

Figure 3. Expression for the analysis

User can add some expressions that have not been listed
by choosing the add button in Figure 3.

Figure 4. Javapan view and report

3.2. Tracing

Javapan monitors the program behaviour from the
execution trace. Execution trace contains information
about class name, method name, value of variable, etc
(see the Tracer in Figure 4). Javapan obtains the
execution trace from the Java Development Tool’s
debugger of Eclipse. It puts some breakpoints in the
source code at the some points where exists statements
such as entry of a function, assignment, return etc.
For the analysis, Javapan creates behaviour table that
records the valuation of the expressions from the source
code analysis and their related expressions. It records how
many times the expression occurred as true and also the
number of times the line of code have been executed.
Javapan – View in Figure 4 shows the behaviour table for
the Print Service problem.

3.3. Statistical Analysis

Javapan uses specification pattern [12] to express the
property of the program. It is a collection of patterns
about property specification that occur commonly in the
specification of concurrent and reactive systems. The
invariant conditions in Javapan can be grouped into these
3 patterns [13]:

Always: the condition that is always holds as true.
For example Expandable Array [9], the actual number
of elements never gets greater than the array capacity.
Always(element <= array.capacity)
Absence: the condition that never exists. For example

Readers Writers problem [9], the Readers Writers

exclusive access property states that simultaneous
reading and writing is not admitted. Never
(activeReaders>0 && activeWriters>0)
Response: cause-effect relationship between a pair or

events/conditions. An occurrence of the first must be
follow by an occurrence of the second.
Always(cause-> Eventually(effect))

In the behaviour table, the expression with the occurrence
0 of n indicates the absence pattern and the one with
occurrence n of n (n is not 0) indicates always pattern.
Looking at the Javapan – View in the Figure 4, there are
some invariant conditions within the program execution.
When the getPrinter() method was called (line 5)
sometimes the value of the variable printer was null
(printer==null) and sometimes was not null
(printer!=null), but at the return of the method (line
6), the value of the printer variable was always not null
(printer!=null) with the occurrence 10 of 10. Since
the return will follow the function call, therefore Javapan
reports that

Always(call(getPrinter)->
Eventually(printer!=null))

It means that every print service will eventually get the
printer upon request (see the Javapan - Report in the
Figure 4). Javapan reports the property is in temporal
logic notation.
Another invariant condition that is found in the Print
Service example is Always(neighbour!=null)
because after the startUpServices(), the
PrintService will have a neighbour. It can be seen
from the Javapan – View in Figure 4 that the occurrence
is always n of n.

4. Discussion

Since this system analyzes the behaviour from execution
trace, the output is dependent from the input. Figure 4
shows an example of behaviour of 5 Print Services with
10 requests. If the requested PrintService doesn't have the
printer, it will ask its neighbour so that line 9: printer
= neighbor.takePrinter(); will be executed. It
can bee seen from the behaviour table that the occurrence
of the condition printer != null is 76 of 76. If the
input data only requests to 1 Print Service which already
has the printer, then the line of code 9 will never be
executed. Therefore, the occurrence of
printer!=null in line 9 would be 0 of 0 and this
system report that at this point, that condition is never
occurred. This fact shows that the input data is an
important factor in this system.

5. Related Work

Ernst et al. [15] also has proposed a dynamic discovery of
invariants from variable traces. It uses a set of possible
invariants to be tested. Our work differs in that Javapan
uses some useful clues from the source code to guide the
analysis.
Glenn et al. [4] has proposed a system to mine
specifications using the execution trace. The output is
specification in the form of an automaton, which is
generated from the traces. It requires further analysis form
the user to understand what the resulting automaton
implies, whereas Javapan gives the property of the
program stated in temporal logic. This enables our system
to get the important property explicitly.

6. Conclusion and Future Work

In this paper, we discussed a tool that helps abstraction
called Javapan. Using the clue from source code and
statistical analysis of the execution trace, Javapan reports
invariant conditions that consistently hold during the
program execution. The output from Javapan can be used
to help writing the partial specification of a program and
possibly can be used as the input for the verification
system. We also showed a preliminary example to
illustrate how Javapan can help in finding invariant
conditions in the program execution.
In the future, we plan to extend this system so that not
only invariant conditions are reported, but also this
system can detect anomaly of program behaviour. The
work from Michael and Gosh [14], uses learning finite
automata to identify specific program behaviour. Given a

normal behaviour, this learning finite automaton can also
be used to detect the anomaly, but it requires the user to
give some learning data of the normal behaviour. By
statistically analysing the execution trace, we hope it will
be able to distinguish the anomaly from the normal
behaviour.

References

[1] Gerard J. Holzmann. "The Spin Model Checker: Primer and
Reference Manual." Addison-Wesley. ISBN 0-321-22862-
6. September 2003.

[2] Kenneth L. and McMillan. “Symbolic Model Checking.”
Kluwer Academic Publishers, 1993.

[3] Edmund M. Clarke and Jeannette M. Wing. “Formal
Methods: State of the Art and Future Directions.” ACM
Computing Surveys. 1996.

[4] Glenn Ammons, Rastislav Bodik, James R. Larus. “Mining
Specifications.” Symposium on Principles of Programming
Languages. 2002.

[5] Doug Lea. “Concurrent Programming in Java. Addison-
Wesley 2000.” pp 113 - 114

[6] Johan Moe and David A. Carr,"Understanding Distributed
Systems via Execution Trace Data". 2001
http://citeseer.nj.nec.com/moe01understanding.html

[7] Javix Program Analyzer. JAVIX CORPORATION All
rights reserved. 2000. http://www.javix.com/

[8] IBM Corp. “Platform Plug-in Developer Guide.” 2001.
http://www.eclipse.org/

[9] Radu Iosif and Riccardo Sisto. “YAV: A Formal
Verification Software for Java: Case-Studies.”
http://www.dai-arc.polito.it/dai-arc/manual/tools/yav/case-
studies/

[10] Klaus Havelund. Java PathFinder User Guide. NASA
Ames Research Center, Recom Technologies, Moffett Field,
CA, USA. August 1999.

[11] Laura Lemay and Rogers Cadenhead. “Sams Teach
Yourself Java 2 in 21 Days (Teach Yourself in 21 Days
Series).” SAMS Publisher. April 1999.vv

[12] Matthew B. Dwyer, George S. Avrunin and James C.
Corbett. “Property Specification Patterns for Finite-state
Verification.” The 2nd Workshop on Formal Methods in
Software Practice, March, 1998.
http://www.cis.ksu.edu/~dwyer/papers/spatterns.ps

[13] Matthew B. Dwyer, George S. Avrunin and James C.
Corbett.”Patterns in Property Specifications for Finite-state
Verification.” Proceedings of the 21st International
Conference on Software Engineering, May, 1999.

[14] Christoph Michael and Anup Ghosh. “Using Finite
Automata to Mine Execution Data for Intrusion Detection:
a Preliminary Report.” Lecture Notes in Computer Science.
Vol 1907 p66. 2000.

[15] Michael D. Ernst, Jake Cockrell, William G. Griswold,
David Notkin, "Dynamically Discovering Likely Program
Invariants to Support Program Evolution." International
Conference on Software Engineering. p213-224. 1999.

Application Semiotics Engineering Process

Gang Zhao
STARLab, Department of Computer Science, Vrije Univeristeit Brussel, Belgium

gang.zhao@vub.ac.be

Abstract. As application semantics becomes more
complex and dynamic in IT systems, it is necessary to
engineer the application semantics in its own lifecycle of
development parallel to system engineering. The
application semiotics engineering process is under study
as a methodology for engineering complex and dynamic
business logic in intelligent applications. It stresses the
informal specification, the traceability of engineering
decisions and need of late-binding to a particular formal
language representation and computational paradigm for
distributed multidisciplinary collaborative modelling
environment. The article describes how the application
semiotics is developed in a lifecycle of iterative
development.

1. Introduction

As IT system requirements modelling goes beyond data
and operational paradigms to the underlying business
rationale, there arises the need to explicitly capture the
business semantics and deploy it in a system,
encapsulated in response to its dynamic changes in
business model, process and rationale. The explicit model
of business semantics is the corporal knowledge and
important parts of software assets.

This paper presents an on-going exploration of an
engineering process to model such semantics and how its
activity is best organized on the insight from database
modeling, knowledge system development, object-
oriented and component-based software engineering,
domain engineering and ontology research. It first
introduces what the application semiotics engineering
process (ASEP) is and describes an ontology-based
approach to application semiotics. It illustrates the
lifecycle and activities of the process and key instruments
and approaches of the methodology.

2. Application semiotics engineering process

Semiotics is a science of signs and their interpretation [2,
3, 4, 22]. Here it is used to refer to a system of signs. A
semiotic system is a model of human intelligence or
knowledge or logic for communication or cognition. As a

semiotic, it has three aspects: semantic, syntactic and
pragmatic [21, 28]. It presents the conceptualization of
‘subject world’ [13] in well-formed symbolics and
specifies how it is interpreted and processed with respect
to specific application contexts.

Semiotics engineering is a process of creating a
symbolic system. It is similar to the development of
computational models of data, process, object, knowledge
or ontology. It includes such tasks as scoping, modeling,
integration, deployment and maintenance. It takes two
fundamental viewpoints of semiotics: the capture and use
of application semiotics. The capture seeks for semantic
presentation for communication and consensus. It
operates on the semantic and syntactic dimensions of
semiotics. It is often concerned with model scalability and
reusability. The use emphasises the formal representation
for processing and reasoning. It is concerned with
pragmatics of semiotic models: from which perspective
and in what context of application the semiotic model is
applied with computational consistency and effectiveness.

Intelligent information systems can be plotted along
the capture and use dimensions in terms of specificity and
diversity:

Figure 1. Specificity of capture and diversity of use

The development of intelligent information systems
aspires to move from domain specific semiotics and their
dedicated use towards domain generic model in versatile
applications.The ASEP is intended for modeling complex
business rules, application logic and domain knowledge
which need either encapsulated for change or separated
from conventional software modelling of functional
dimensions of IT systems for different development or
asset management. It targets systems with rich application
semantics, such as knowledge systems, system integration

with divergent and rapidly changing business logic,
semantic interface specification of software components
or web services, protocols for semantic interoperation of
collaborative processes or systems. The ASEP is aimed at
the development of corporate or organizational intelligent
systems and open services such as knowledge
management systems, semantic web services [17].

3. Application semiotics

Application semiotics stresses the need for semiotics
originating from and deployed in applications. Its diverse
use comes from its design for a family of products [3]. It
is not intended as generic semiotics for some intelligent
application to adopt or plug into, but flexible semiotics
that allows for topological and epistemological variability
and partial reusability. The rationale is well stated in the
distinction between ‘generic architecture’ and ‘highly
flexible architecture’ in Organization Domain Modelling
[26].

The application semiotics exhibits important affinity
with the structure of natural language. The semiotic
potential of the natural language is agreed on and shared
for communication. Yet it allows for room of individual
creativity. It has stable core but is capable of meeting the
need of changes and diversity. The symbolic under-
specification is the mechanism that enables the natural
language to serve effectively as communication system
with limited means for unlimited scenarios and
communication acts. Its bounded set of semiotic resources
is under-specified semantically, with only generic
reference, to achieve unbounded potential of specific
reference in a given context. By the same token it
provides reusability to enable the versatility of multi-
variant conceptualization.

3.1. Ontology-based approach

Ontology is an approximate shared semiotic
representation of a subject matter. To fulfill the above
mentioned requirements, the DOGMA1 approach [14, 19,
20] to ontology engineering [5] is adopted with intention
to create flexible, reusable bounded semiotics for diverse
computational purposes for unbounded pragmatic
possibilities. It distinguishes two layers of modelling to
create lexons and commitments respectively. The under-
specification of lexons underpins their reusability across
computational tasks, applications and perspectives. The
lexon commitment guarantees the specification needed for
semantic consistency and well-formedness in a particular
application.

1 DOGMA stands for Developing Ontology-Guided Mediation
for Agents.

3.2. Lexon and Lexon Base

Lexons represent binary relationship between two entities.
They are the vocabulary (not terminology) of the
application semiotics. Similar to the vocabulary of the
natural language, they have ideational purport without
reference to specific application or task contexts. They are
the potential and means of the semiotic system yet to be
contextualized, deployed and fully specified
meaningfully. Thus underspecified, they serve as basis for
consensus, agreement, reusability and versatility.

A lexon is a quintuple < , t1, r1, t2, r2>, where
is a context identifier, t1 T and t2 T are terms
referring to the entities in a semantic relationship. r1 R
and r2 R are roles in the semantic relationship. , T
and R are strings over an alphabet, +.
<OrderProcessing, OrderManager, select, OrderSupplier, selected>
<OrderProcessing, AccountsManager, determine, PaymentMethod, determined>
<OrderProcessing, AccountsManager, check, CustomerStatus, checked>
<OrderProcessing, AccountsManager, send, DeliveryNote, sent>
<OrderProcessing, Customer, receive, DelieveryNote, received>

The context identifier, OrderProcessing, indicates an
ideational context in which terms and roles become
meaningful. The ideational context is externalized by a
set of resources, such as documents, graphs, databases.
Through this resource, the semantic extension of a lexon
is established, communicated, documented and agreed
upon among ontology developers. With specified
ideational contexts, the lexons are not unspecified: they
are not merely syntactic by nature. They are under-
specified, representing the type rather than the token in
the application domain. They do not include axioms or
constraints that guarantee the semantic soundness for
computation or reference to particular instances of
OrderManager or AccountsManager in an application.
They can be reified to represent particular viewpoints: in
the above cases, action, data and organizational views of
business processes.

Table 1. Reification of lexons

Action View
« , r1»

Data View
« , t2, r1»

Organizational View
« , t1, r1»

Select Select_OrderSupplier OrderManager_Select
Determine Determine_PaymentMethod AccountsManager_Determine
Send Send_DeliveryNote AccountsManager_Send
Receive Receive_DeliveryNote Customer_Receive
Check Check_CustomerStatus AccountsManager_Check

The use of lexons follows the principle of minimal
encoding bias and minimal ontological commitment [7]
with no assumptions of formal language representations
or how the semiotics is to be structured in data structure.

Lexon base is a bag of lexons, unordered and
unstructured. It is a potential in terms of which the
application semantics is to be architected and feature-
constrained. In analogy to natural language system, its
semantic coverage is inconsistent, ambiguous,
overlapping, contradictory and redundant. It embodies

multiple subject worlds as well as the multi-dimensional
and multi-perspective presentation of the one and same.

3.3. Commitment Statement and Discourse

Lexons become fully specified in the pragmatic context
on the commitment layer. The meaning of commitment
here is application-specific interpretation of lexons. The
processing agent in a given application context commits
to a selected set of lexons with constraints and organized
in particular networks. It depicts the application-specific
tokens or instances of generic types and classes modeled
in the lexon base. Here the lexons become fully specified,
consistent and unambiguous, specific to particular task or
application or service. The ideational context is semantic
whereas the application context is pragmatic with specific
references, in a given task sequence, for a particular
functionality and in a given system context.

A commitment statement is a lexon augmented with
application-specific feature constraints. It is of a tripartite
structure: theme, transition and rheme. The theme and
rheme are filled with the terms in the lexon and transition
is one of the two roles. It has a narrower denotation than
the subject-predicate-object statement in RDF [23]. The
fillers of themes and rhemes are only resource not value
as in RDF terms. The names are borrowed from
functional schools of linguistics [6, 11] to emphasise the
functional, pragmatic and network perspectives of lexons
in particular application contexts. A lexon < ABCDE-1-3.2,

SaleOffer, CharacterisedBy, Validity, Characterize> can be turned
into a commitment statement as follows.
STATEMENT

<ABCDE-1-3.2, SaleOffer, CharacterisedBy, Validity, Characterize>
THEME Validity WITH value:true, min:1, max:m
TRANSITION Characterize

WITH aspect:progressive, duriationValue:2, durationUnit:month
RHEME SaleOffer WITH min:1, max:1

END

A set of application-specific commitment statements is a
projection or view of the lexon base. Each take a
particular perspective in the role selected in the transition
of the statement. The key word, with, introduces a list of
attribute value pairs as constraints of cardinality,
reference scheme, etc.

Commitment statements are connected to each other
into commitment discourse, using operators such as those
of set and logic relationship, sequence and operational
procedures.
DISCOURSE accept_purchase_request (IN customer)
VAR request
EVENT

STATEMENT <ABCDE_1-2, Customer, Send, PurchaseRequest, BeSent>
THEME PurchaseRequest WITH ref:request
TRANSITION BeSent
RHEME Customer WITH ref:customer
END

ACTION
DISCOURSE check_customer (customer, request)
BEFORE DISCOURSE check_payment_method (customer, request)
AND DISCOURSE check_items (request)
DISCOURSE notify_client_on_ purchase_request (customer, request)

END

The example captures the business logic: at the event of
the customer sending a purchase request, the customer
status must be checked before the payment method is
selected. The required product items must also be checked
in parallel possibly. Finally notification is sent to
customer on the purchase request.

The structural backbone of commitment discourse is
based on four main dimensions of network connection:

Data flow connection between discourses in the
form of input and output parameters and
variables
Connections by logical/structural operators
among statements and discourses
Discourse embedding
Inter-statement feature constraints

4. Life cycle

In recognition of important commonalities with software
development methodology, we adopt the RUP life cycle
model [12, 15, 16] to phase the seven ASEP activities into
inception, elaboration, construction and transition. While
the documentation and validation are the activities going
through all the phases, there are different degrees of focus
on the problem determination, scoping, analysis,
development and deployment in each phase. The darker
shading indicates our observation of the intensity of work
of a given phase in Figure 2.

Figure 2. Lifecycle of ASEP

The inception phase studies the problem space and
determines solution strategies. It seeks to scope and cut up
the problem space for modeling and activity management.
The elaboration phase consolidates the scope of each
modelling attempt and produces the structured and
detailed analysis of business logic or knowledge in the
problem space. The construction phase models ontology
and its application from analyses. The transition phase
deploys the ontology in an application-specific form or
platform. These activities are iterated with phases.

5. Activities and deliverables

The activities and deliverables of the scoping, analysis
and development are designed to facilitate collaborative
engineering to build consensus among stakeholders and

developers. It stresses the traceability of engineering
decisions for effective communication in multi-displinary
development teams.

5.1. Scoping with stories

Scoping the problem space for modeling application
semiotics is a significant stage for effective and focused
development, especially in ill-structured multi-
disciplinary domains. The instrument to manage the scope
of application semantics for modeling is stories.

The story is a semantically rich use case that describes
a unit of knowledge or business logic, identified in
knowledge elicitation. Its purpose is to communicate and
document the focus of attention in the semantic domain. It
is the starting point of a new or iteration of knowledge
modelling task. It serves similar purpose as motivating
scenarios [8] and central role asUML use cases. It
consists of

meta-data about the story authoring,
purpose to summarize the intention of the story
settings to specify business context and
assumptions
characters: actors and objects in the story
episodes to specify declaratively or procedurally
parts of business logic or domain knowledge
annotation for notes

Figure 3. A story of business processes

5.2. Analysis

The analysis can be likened to drawing a map of the
problem space brought to focus by the story. The aim is
to create a conceptual model of the part of domain

conceptualization under consideration. The strategy is to
divide and conquer. The steps are decomposition and
elaboration. The model decomposes the conceptualization
into hierarchical structures to manage modelling
complexity. A familiar example in software engineering is
activity decomposition diagram [24]. Below is an
example of business process breakdown.
1. Sales
1.1 Query products
1.2 Answer queries about products
1.3 Accept purchase request
1.3.1 Verify purchase request
1.3.2 Respond to purchase request
2. Accounting
2.1 Verify customer status
2.1.1 Check customer credit
2.1.2 Determine payment method
2.2 Receive order
2.3 Send invoice of the order
2.4 Receive payment
2.5 Update customer credit
2.6 Calculate sales commission
3 Order fulfillment
…

Each constituent of the conceptual model is elaborated in
natural language. Unit 1.3.1 can be elaborated as
BEGIN Accept purchase request
IF each item is listed in catalogues
 AND IF each item is NOT suspended from catalogues,
 AND IF each item has complete and accurate specification
THEN customer purchase request is verified
ELSE customer purchase request is NOT verified
END

The analysis is conducted of documentation, manuals,
legislature, protocols of elicitation, by business analysts,
knowledge analysts and domain experts. The resultant
conceptual model is ‘informal scheme’ [1], elaborated in
plain and straightforward natural language, in a
terminology of particular subject matter.

5.3. Development

The development of application semiotics takes the result
of scoping and analysis as input to produce disciplined
schemes [1]: a set of lexons and their commitments.
Developing lexons
Its main tasks are extraction, abstraction and
organization. The extraction of lexons is text-based,
taking the result from analysis as input. It spots key words
and phrases in a given text in a natural language. The
exercise is largely linguistic and similar to skip n’ span of
the fast reading. The highlighted words in the following
two examples are spotted as key words to be considered at
the step of abstraction.
IF offerers who make a public offering did not give advance notice thereof to stock exchange

regulator, attaching the prospectus to be published
THEN The offerers are conducting unauthorized solicitation of investors

The highlighted text, as a working document, provides
two important services here. One is that it provides a
tangible scope of work at a particular time of
development. The other is that it becomes a record of
decision-making, traceable and visible across time,
location and teams.

The abstraction is a process of postulating abstract
conceptions of terms, roles and lexons. The extracted

words and phrases are linguistic embodiment of concepts
to be modelled. The surrounding text conveys the context
for understanding and communication of concepts. Since
it is based on the highlighted text, there is a clear
borderline imposed on conceptual modelling with an
explicit focus of attention.

Table 2. Examples of lexons

Context Term Role Role Term
D.58.94.1 Offerer Make MadeBy PublicOffering
D.58.94.1 PublicOffering SubtypeOf SupertypeOf Offering
D.58.94.1 Offerer Send SentBy AdvanceNotice
D.58.94.1 AdvanceNotice Concern PublicOffering
D.58.94.1 Regulator Receive ReceivedBy Notice
D.58.94.1 AdvanceNotice Include IncludedBy Prospectus
D.58.94.1 Regulator Publish PublishedBy Prospectus

While the abstraction is confined to the text and a bottom
up approach to modelling, the organization is a step that
goes beyond the current working document, covering
multiple ideational contexts. It is devoted to two main
purposes. One is to structure the lexons extracted and
abstracted bottom up in the previous steps, such as
merging or introducing subtyping relationship. The other
is to integrate the lexons into existing semiotic systems,
such as upper or foundational ontologies.
Developing commitments
The development of lexons uncovers abstract conceptual
types from the story and analysis model. Having
established conceptual types, the development of
commitments is to come back to the ground, modelling
their tokens. While lexons underpins the flexibility and
reusability of the application semiotics with under-
specification, the commitment is essentially dedicated to
the semantically well-formed, fully specified, consistent
actualizations of the underlying patterns with respect to a
particular task or application. The fully specified
semantics in the commitments depends on their
pragmatics: tasks and application context. The activity
takes a different point of view of the results of scoping
and analysis. It seeks to capture specific business or
knowledge entities, processes or patterns in terms of
lexons, so that specifics can be interpreted, marshalled,
organized or interoperated in term of generics.

The development of commitments involves four steps:
select, focus, constrain and connect. It first delineates the
semantic space by selecting a set of lexons from the lexon
base. Each lexon is tokenized into commitment statement
with a focus. A lexon, < , t1, r1, t2, r2>, can be focused in
the form of [t1, r1, t2] or [t2, r2, t1], depending on the choice
of the role. The terms and roles are then constrained to
refine or confine the semantic references and properties as
required in an application context. The commitment
statements are finally connected into a network with set,
logical and operational operators. Below is an example of
the commitments representing data objects in business
processes.
DISCOURSE purchase_request

STATEMENT <ex2, PurchaseRequest, CharacterisedBy, CustomerName, Characterize>
THEME CustomerName WITH min:0, max:m

TRANSITION Characterize
RHEME PurchaseRequest WITH min:1, max:1

END
AND

STATEMENT <ex2, PurchaseRequest, CharacterisedBy, CustomerAddress, Characterize>
THEME CustomerAdress WITH min:0, max:m
TRANSITION Characterize
RHEME PurchaseRequest WITH min:1, max:1
END

AND
STATEMENT <ex2, PurchaseRequest, CharacterisedBy, PaymentMethod, Characterize>

THEME PaymentMethod WITH min:1, max:m
TRANSITION Characterize
RHEME PurchaseRequest WITH min:1, max:1
END

AND
STATEMENT <ex2, PurchaseRequest, CharacterisedBy, PurchaseItme, Characterize>

THEME PurchaseItem WITH min:0, max:m
TRANSITION Characterize
RHEME PurchaseRequest WITH min:1, max:m
END

AND
 STATEMENT <ex2, PurchaseRequest, CharacterisedBy, ReceptionDate,Characterise>

THEME ReceptionDate WITH min:1, max:m
TRANSITION Characterize
RHEME PurchaseRequest WITH min:1, max:1

END
END

The layered model of application semiotics is important
for encapsulating changes and dynamics of models. For
example, the continued business process improvement or
integration can be catered to by optimisation (different
commitment constraints), restructuring (changes in
commitment networks), or innovation (new business
concepts with additions of lexons).

5.4. Deployment

The development of commitments models in the
perspectives of application purposes and tasks. It does not
take into account another pragmatic aspect: system
context or computational platforms. The deployment
stage considers where the application semiotics is to be
used and the format needed to deploy the lexons and
commitments. The commitments are treated as the
specification of application semantics to be handed over
to the application system engineer to load in the
application systems.
For example, the application semiotics of business
processes can be transformed into BPEL4WS, BPML.
The commitments of web service description can be
translated into OWL or DAML-S.

6. Conclusion

ASEP recognises the need a different track of
development for engineering application semantics. The
complexity of application semantics requires it to be
handled in its own iterative development cycle and
management, rather as part of conventional software
development based on the paradigm of ‘close ontology’
[1] before the main loop or scattered in the main iteration
of software development [16]. It is envisaged as parallel
track to system engineering track as in DE [27].

Compared with classical knowledge engineering
approaches [9, 18, 25], ASEP emphasises domain

ontology modelling, instead of going straight to code
knowledge rules from the result of analysis. This extra
effort is justifiable with aims of reusability and
maintainability of business logic in dynamic multi-
dimensional application domains. It is necessary for a
development involving distributed multi-discipline teams
intending to cover product-lines of systems. It is desirable
for applications requiring complex application semiotics
such as large scale knowledge systems, where the
effective management and visualization of the existing
rules is crucial for controlling modelling complexity. In
order to put the knowledge/ontology engineering on the
basis of disciplined team work, the traceability of
modelling decision is stressed from stories through
analysis models to lexons and commitments and their
deployment. One may dispute its necessity and overhead
on the performance of a given developer at particular
moments of development, but the over-all benefits for the
whole team of collaborative participants and evolution of
development in the full life cycle of the project are
significant and far reaching. On the other hand, ASEP is
not intended as a methodology of ‘high ceremony’ [16] in
order to make sure of agility development necessary in
distributed multidisciplinary environment of
development.

 ASEP is intended to bind the development as late as
possible to a formal language of knowledge
representation and computational paradigms of particular
computation semantics such as inferential, denotational or
operative semantics. It considers these issues in
conjunction with the pragmatics of application tasks and
deployments.
Acknowledgement
This study is partially funded by the EU 5th framework
program, IST 2001-38248.

References

[1] E. Compatangelo and G. Rumolo, “An engineering
framework for domain knowledge modelling”, Information
Modelling and Knowledge Bases IX, IOS Press, 1989, pp.
51 -56.

[2] J. Culler, The Pursuit of Signs: Semiortics, Literature,
Deconstruction, New York, Cornell University Press, 1981

[3] K. Czarnecki, Domain Engineering, in K. Czarnecki and U.
Eisenecker, ed., Generative Programming: Methods,
Techniques and Applications, Addison-Wesley, 1999.

[4] F. De Saussure, Course in General Linguistics, New York,
McGraw-Hill, 1966.

[5] A. Farquhar, R. Fikes, W. Pratt and J. Rice, Collaborative
Ontology Construction for Information Integration, KSL,
Standford University, 1995.

[6] J. Firbas, On some basic issues of the theory of functional
sentence perspective, Brno Studies in English 15, 1983 pp.
9 – 36.

[7] T. Gruber, A translation approach to portable ontology
specifications, Knowledge Acquisition, vol 5, no 2, 1993,
pp. 199 – 220.

[8] M. Grüingger, M. S. Fox, Methodology for the design and
evaluation of ontologies, IJCAI-95 Workshop on basic
ontological issues in knowledge sharing, Montreal, 1995.

[9] G. Guida and C. Tasso, Eds., Topics in Expert System
Design - Methodologies and Tools, North-Holland,
Amsterdam, NL, 1989

[10] R. Gudwin and F. Gomide, “Computational Semiotics : An
Approach for the Study of Intelligent Systems - Part I:
Fundations”, Technical Report, RT-DCA 09, 1997.

[11] M. A. K. Halliday, An introduction to functional grammar
London, Arnold, 1994.

[12] I. Jacobson, G. Booch and J. Rumbaugh, The Unified
Software Development Process, Boston, Addison-Wesley,
1999.

[13] M. J. Jarke et al , DAIDA: an environment for evolving
information systems, ACM Transactions on information
systems Vol 10, No. 1, 1992, pp. 1-50

[14] M. Jarrar, J. Demey, R. Meersman, “On using conceptual
data, modeling for ontology engineering”, Journal of data
semantics, Vol 1, No. 1, 2003.

[15] P. Kroll and P. Kruchten, The Rational Unified Process
Made Easy: a Practitioner’s Guide to the RUP, Boston,
Addison-Wesley, 2003.

[16] P. Kruchten, The Rational Unified Process: an introduction,
Boston, Addison Wesley, 2000.

[17] S. A. McIlraith and D. L. Martin, Bringing Semantics to
Web Services, IEEE Intelligent Systems, January/February,
2003, pp. 90-93.

[18] M. McTear and T. Anderson, Understanding Knowledge
Engineering, Chichester, Ellis Horwood, 1990.

[19] R. Meersman, Semantic Ontology Tools in IS Design,
ISMIS’99, Warsaw, 1990.

[20] R. Meersman, Reusing certain database design principles,
methods and techniques for ontology theory, construction
and methodology, STARLab VUB Technical Report 01,
2000.

[21] C. Morris, Foundations of the Theory of Signs, Chicago,
University of Chicago Press, 1938.

[22] C. S. Peirce, “Logic as Semiotic: The Theory of Signs”,
J.Bucher, ed., Philosophical Writings of Peirce. New
York:,Dover, 1955.

[23] RDF Resource Description Framework.
http://www.w3c.org/RDF/ .

[24] Rock-Evans, Data modelling & process modeling, Oxford
Butterworth-Heinemann, 1992.

[25] G. Schreiber, et al, Knowledge engineering and
management: the CommonKADS Methodology, London,
MIT, 2000.

[26] M. Simos, D. Creps, C. Klinger, L. Levine and Allemang,
Organization Domain Modeling Guidebook, Version 2.0
STARS-VC-A025/001/00, 1996.

[27] Software Engineering Institute, Model-based Software
Engineering, http://www.sei.cmu.edu/technology/mbse,
1997.

[28] P. Spyns, R. Meersma, From knowledge to interaction:
from the Semantic to the Pragmatic Web. STARLab, VUB
Technical Report.

Applying Aspect-Orientation in Designing Security Systems: A Case Study

Shu Gao, Yi Deng, Huiqun Yu, Xudong He, Konstantin Beznosovi, Kendra Cooperii

School of Computer Science, Florida International University
iDepartment of Electrical and Computer Engineering, Univeristy of British Columbia

iiDepartment of Computer Science, University of Texas at Dallas
 {sgao01, deng, yhq, hex}@cs.fiu.edu; ibeznosov@ece.ubc.ca; iikcooper@utdallas.edu

Abstract. As a security policy model evolves, the design
of security systems using that model could become
increasingly complicated. It is necessary to come up with
an approach to guide the development, reuse and
evolution of the design. In this paper, we propose an
aspect-oriented design approach to designing flexible and
extensible security systems. A case study demonstrates
that such an approach has multifold benefits and is worth
further exploration.

1. Introduction

A security policy model always evolves; accordingly, the
design of a security system using that policy model
should reflect the changes. Using role-based access
control (RBAC) as an example, currently it supports role
hierarchy, static separation of duty relations, and dynamic
separation of duty relations. As research on RBAC
progresses, more concerns have been and will be covered.
So the model hierarchy of RBAC is quickly becoming
more and more complicated, which requires that the
security system supporting RBAC be flexible and
extensible. To address this issue at the design level, we
propose an aspect-oriented approach to designing flexible
and extensible security systems. This paper illustrates the
approach through a case study, which is part of a design
for CORBA access control (AC) supporting RBAC
models.

Although some papers in the literature have dealt with
separating security concerns in application system design,
little research has been done to explore the use of aspect-
orientation in designing security systems. Our work is a
first step toward a systematic aspect-oriented approach to
advance the design of security systems.

2. A Case Study

The CORBA AC [13] is a reference model for enforcing
access control in the middleware layer of distributed
applications. It is aimed to provide a standard way to

separate access control and application logic. CORBA AC
specification is policy neutral in that only essential and
general access control interfaces are specified. To
implement a functional CORBA AC mechanism, certain
access control policy models have to be supported. In this
case study, we choose RBAC models, which have been
widely recognized as a well-defined general approach for
access control in large-scale authorization management.

2.1. Problem Analysis

In [14], the RBAC96 family contains four models:
RBAC0, RBAC1, RBAC2, and RBAC3. RBAC0 is the base
model that contains (1) entities – users (U), roles (R),
permissions (P); (2) static relationships – user assignment
(UA – between users and roles), permission assignment
(PA – a between roles and permissions); and (3) dynamic
relationship – sessions (S) (a one to many relationship
between a single user and his/her multiple roles). RBAC1

extends RBAC0 with a hierarchical structure representing
the partial order relation on roles. RBAC2 extends RBAC0

with constraints on entities such as conflicting roles as
well as relationships such as a user can only assume a
limited number of roles. RBAC3 is the combination of
both extensions of hierarchy and constraints such that
constraints can be defined on roles at the different levels
of the hierarchy.

Since RBAC1 to RBAC3 are derived from RBAC0, one
design issue is how to effectively reuse the design for
RBAC0 to realize RBAC1 to RBAC3. The RBAC family is
still evolving. The number of RBAC models is increasing
to cover a variety of emerging concerns and specific
application needs. For example, in the proposed RBAC
standard by NIST [4], the time concern is incorporated
into the concept of dynamic separation of duty relations
(DSD), while the old constraint model was called static
separation of duty relations (SSD). Very likely, context
concern will also be introduced in the near future. If we
follow the conventions used in [14], we can illustrate the
evolution of RBAC family with Figure 1.

In Figure 1.b, RBAC3 is a new model with temporal
constraints (DSD) 1 ; RBAC4 is yet another new model
covering context (spatial) concern. It is remarkable how
fast the complexity can grow with the introduction of new
concerns. Hence another very important design issue is
how to achieve flexibility and extensibility in designing
security systems using such models.

2.2. Design Approach

Given the above issues, it is necessary to have a design
approach that facilitates design reuse and evolution.
Separation of concerns [5] has been one of the
fundamental principles in software development in the
past three decades. At design phase, separation of
concerns allows designers to focus on one concern
without being distracted by other complexities. In our
case study, following this principle can help us manage
complexity, comprehensibility, composition and
evolution of the design.

Recently, a new software implementation paradigm called
aspect-oriented programming (AOP) based on the
principle of separation of concerns was proposed [7],
which has generated extensive research interest. As
Kiczales et al. point out in [7], existing programming
languages including procedural, functional, and object-
oriented languages decompose a system into functional
components. However the implementations of some
properties (e.g. synchronization, real-time constraints,
error handling, audit, security enforcement) cannot be
encapsulated into a single component. Frequently
classified as “crosscutting properties”, these properties are
usually present in more than one functional component.
Implementations of such properties in mainstream
languages necessarily result in tangled code. Code
tangling denotes the use of a single method to implement
multiple properties. The purpose of AOP is to provide
mechanisms that explicitly capture crosscutting structures,
so crosscutting concerns can be encapsulated.

1 The RBAC3 in RBAC96 family is now RBAC5 in the extended
RBAC family.

The studies in AOP have already been extended to aspect-
oriented design (AOD), due to the significance of
software architecture in system development. In order to
obtain a good aspect-oriented design, three key issues
must be addressed:

(1) The identification of aspects;
(2) The notations used to specify aspects;
(3) The rules to compose aspects together.

Yet another important issue is the analysis method of the
design product. But this is beyond the scope of this paper.

For this case study, we regard each concern in RBAC
models as an aspect and thus we have four aspects: role
hierarchy (RH), static constraints (SSD), temporal
constraints (DSD), and spatial constraints (SC). These
four aspects are orthogonal and are faithful reflections of
the separation of concerns principle. With this aspect-
oriented view, the development of RBAC models will be
incremental and compositional. For example, RBAC13

(Figure 1.b) will be built by integrating the base model
RBAC0 with aspects RH, DSD, and SC. Therefore this
approach will greatly enhance the reusability of the base
model and aspects, as well as provide great flexibility for
RBAC evolution to meet new system needs. Thus we
have a nice and elegant solution to issue (1).

A common practice in AOD is to extend UML notations
[6] as AOD notations. The benefit of using UML is the
ease of learning and use. Issue (3) is usually closely
related to the implementation models. Our proposed
aspect-oriented approach is flexible in that it does not
depend on any particular implementation model. For the
CORBA AC design, we use the widely studied AspectJ
[1] as the implementation model. Consequently, the
composition rules of AspectJ are adopted. In the
following subsection, we briefly introduce AspectJ and
the extended UML notations to be used in our design.

2.3. AspectJ and UML Extension

AspectJ is an aspect-oriented extension of Java. AspectJ
defines two types of crosscutting: dynamic crosscutting
and static crosscutting. Dynamic crosscutting supports
defining and advising points during the dynamic
execution of a program. Static crosscutting allows adding
new attributes, operations, and many other declarations
that may affect the static type hierarchy to a class or
aspect. By explicitly capturing dynamic and static
crosscutting, AspectJ provides a totally new way to
encapsulate crosscutting concerns. Novel as it is, the
aspect-oriented method behind AspectJ is relatively easy
to understand. Some key concepts are defined (from [8],
modified) as below:

Join point: A predictable point in the execution of an
application.

a. The RBAC96
Model Hierarchy

b. The RBAC Model Hierarchy with Time and
Context Concerns

Figure 1. Evalution of RBAC family

Pointcut: A structure designed to identify and select join
points within a program.
Advice: Code to be executed when a join point is reached
in the application code.
Inter-type declaration: A powerful mechanism to add
attributes and methods to previously established classes.
Aspect: A structure analogous to an object-oriented class
that encapsulates join points, pointcuts, advices, and inter-
type declarations.

Join point, pointcut, and advice are used to realize
dynamic crosscutting. The join point is a well-defined
point in a program where another concern will crosscut
this program. It can be method calls, constructor calls,
method call execution, constructor call execution, field
get, field set, exception handler execution and other points
in the execution of a program. AspectJ uses a designator
that takes a join point as a parameter to tell the aspect-
oriented program when it should match the join point. The
pointcut is a structure to group such designators.
Whenever a join point is matched by a designator, the
pointcut containing it is triggered. Some advice defined
for the triggered pointcut will be executed. Depending on
the type of the advice (before, after or around), the code
in the advice is executed before, after, or in place of the
join point. Inter-type declaration is for static crosscutting.
New attributes and methods can be added to existing
classes without having to explicitly modify the classes.
AOP introduces a new component type – aspect. The
aspect is used to encapsulate crosscutting concerns. It
contains the join points, pointcuts, and advices.

Figure 2. Extension of UML class diagram

We informally extend UML notations to model aspect-
oriented design (Figure 2)2. An aspect is a regular class
with the newly created stereotype <<aspect>>. An inter-
type declaration has a new stereotype <<introduction>>.
It is like an attribute or a method in a regular class, except
that its name should start with the name of the target
class/aspect to which the new attribute/method is
introduced. Advices have the stereotypes of <<before>>,

2 Some ideas are borrowed from [15].

<<after>> and <<around>>. An advice has no name. The
name after <<before>>, <<after>> or <<around>> is the
name of the pointcut for which an advice is defined. A
pointcut is represented by one or more navigated
association(s) from an aspect to a class/aspect which the
aspect crosscuts. The pointcut’s name is labelled at the
crosscutting aspect side. The join point’s name is labelled
at the side of the class/aspect being crosscut.

2.4. The Aspect-Oriented Design

Based on the above discussion, this subsection introduces
an aspect-oriented design for CORBA AC that operates
with RBAC0-3 in the RBAC96 family. It is not our
purpose to present a complete and detailed design here;
instead, we would focus on demonstrating how AOD
realizes the separation of concerns principle, and how it
helps to manage the complexity shown in Figure 1.

Base Design – Main Concern

As we have analyzed in subsection 2.1 and 2.2, the main
concern of this case study is to realize a CORBA AC
mechanism that supports RBAC0. The design of the main
concern will be reused and crosscut by the design of new
concerns, therefore it is called the base design. When
working on a design, it is better to have some knowledge
of other concerns that may arise. However, it is always
the case that the designers hardly know what will happen
in the future. The good news is that, with AOD, we do not
have to worry about other concerns.

Aspect One – Role Hierarchy

Let us see what new attributes and methods need to be
introduced and which existing methods need to be
modified to support role hierarchy. First, as a direct result
of role hierarchy, functions used to manage the partial
order relation are need: add_inheritance(),
delete_inheritance(). They should be added to the Role
class in the base design. Consequently, the Role class
needs to maintain a list of immediate ascendants and a list
of immediate descendants. Second, in the base design,
there is a method get_assigned_roles(user) in the UAList
class, which returns all roles assigned to the given user
and is used to determine a user’s access permission to
resources. When role hierarchy exists,
get_assigned_roles(user) cannot return all roles that a user
actually has, since some roles not assigned can be
inherited. For example, in a bank, the role manager
inherits the role employee. If John is assigned to be the
manager, then he is also a bank employee though he is not
explicitly assigned to that role. The access control system
needs to find all roles a user actually has in order to
determine the user’s permissions correctly. Therefore, we
add get_authorized_roles(user) to the UAList class for
returning all roles including the inherited ones of a user.

Similarly, we need authorized_users(role) (in the UAList)
and authorized_roles(user) (in the UA class) to take the
place of corresponding “assigned_” ones in the base
design. Accordingly, in the base design, two methods that
used to call get_assigned_roles(user): authenticate() from
the PrincipalAuthenticator class and set_roles() from the
Credentials class, now have to been modified to call
get_authorized_roles(user).

The concern to support role hierarchy crosscuts the main
concern in that it cannot be implemented in a localized
way with vanilla object-oriented approach (Figure 3).
Several classes in the base design need to be modified or
extended. On one hand, the crosscutting problem makes
it expensive to modify; on the other hand, the resulting
design is hard to understand and maintain.

Figure 3. Tangled implementation of RH concern

With AOD, we can address this problem by explicitly
representing crosscutting, and encapsulate the
crosscutting concerns into aspects. The AOD class
diagram for implementing RBAC1 is shown in Figure 4.
In the figure, two dashed frames are used to indicate the
design for the main concern and the design for the role
hierarchy concern respectively. Since the base design is
too large, only those classes directly affected by adding
the new concern are listed here and relationships other
than crosscutting are omitted. As it shows, the

implementations of two concerns are well modularized
without any tangling. An aspect called RH contains all the
implementation of the RH concern. Inside the RH aspect,
several inter-type declarations are defined to insert new
attributes and methods into existing classes. Only one
pointcut handle_rh and one join point
!UAList.get_assigned_roles(user) (“!” means it is a
method call type join point) are defined. At runtime, any
method call to UAList.get_assigned_roles(user) generated
by PrincipalAuthenticator or Credentials instance will
trigger the handle_rh pointcut. The <<around>> type
advice code defined for handle_rh will then be executed
in place of the UAList.get_assigned_roles(user) method.
In this design, the advice code will call
UAList.get_authorized_roles(user) which is defined in the
same aspect.

Aspect Two – Static Constraints

RBAC2 allows security administrator to set static
separation of duty constraints on the assignment of users
to roles. In [4], an SSD constraint is defined in the form of
(rs, n) where rs is a role set, and n is called “cardinality”
which is a natural number ≥ 2. (rs, n) means that no user
is assigned to n or more roles from the set rs.

Figure 5. AOD for implementing RBAC2

To implement RBAC2, first we need several functions to
manage SSD constraints. They are: create_ssd_set(),
add_ssd_role_member(), del_ssd_role_member(),
del_ssd_set(), set_ssd_cardinality(), list_ssd_sets(),
ssd_set_roles(), and ssd_set_cardinality(). Besides these,
every time the SSD relation or the user-role assignment
relation is modified, the system must check whether the
SSD constraints have been broken. So there should be a
function to enforce these constraints.

It is worth noticing that the management functions for
SSD constraints do not crosscut the base design. They
are newly defined functions and do not need to be
inserted into any classes in the base design. Should they
be encapsulated into an aspect structure? We prefer not,

Figure 4. AOD for implementing RBAC1

since we can define two new classes: SSD and SSDList,
which can encapsulate these functions quite well.

The implementation of RBAC2 crosscuts the main
concern only at the point where assign_user() of the UA
class is executed. A method call to the function that
enforces SSD constraints need to be added after the
execution of assign_user().

The function enforcing SSD constraints crosscuts SSD
and SSDList class, because these two classes contain
methods that may change the SSD relation.

Thus, we design an aspect CheckConstraints. In this
aspect, there is a pointcut enforce_constraints. An
<<after>> type advice is defined for this pointcut. Inside
the advice is the code enforcing SSD constraints. There
are several join points defined. All of them are of method
call execution type (which will be represented by “?” in
the diagram). Specifically, the execution of
SSDList.create_ssd_set(), UA.assign_user(), and any
methods in SSD class that modifies the role_set or
SSD_Cardinality attribute will trigger the
enforce_constraints pointcut.

The aspect-oriented design for static constraints concern
is shown in Figure 5. Although the static constrains
concern is not implemented by one aspect, but by two
classes and an aspect, the implementation of this concern
is still well modularized.

Composition Design – RBAC3

RBAC3 combines role hierarchy and static constraints.
Now the advantage of AOD is obvious. By composing the
base design, Aspect One and Aspect Two together, with

minor modification and without destroying current
modularity, we get the design for RBAC3 (Figure 6).
According to the composition rule of AspectJ, the aspect
RH dynamically crosscuts the aspect CheckConstraints.
This is because the advice code enforcing SSD constraints
used to call get_assigned_roles(user) to find a user’s
roles. With the existence of role hierarchy, now
get_assigned_roles(user) should be replaced by
get_authorized_roles(user). We also need to define a new
join point, which is the execution of
Role.add_inheritance(). It will trigger the
enforce_constraints pointcut. In the figure, two
<<pointcut>> associations from RH to CheckConstraints
and from CheckConstraints to Role reflect these
modifications.

3. Related Work

Aspect-oriented programming is an emerging technology.
Recently the research on how to extend this paradigm to
design level has attracted more and more attention [3, 16,
17]. The application of AOD to security domain is
promising. However, research results are rare. Both [2]
and [9] point out that the separation of concerns principle
can be used to separate security concerns from application
concerns. This is an important and relatively obvious
application of AOD to security. Unlike them, we explore
the use of aspect-orientation to advance the design of
security systems. Due to the novelty of AOD, virtually no
research has been done in this direction.

A number of UML extensions have been proposed to
support AOD. Examples of such extensions are [11, 12,

Figure 6. AOD for implementing RBAC3

15]. So far, no extension has been widely accepted. This
to some extent hampers the application of AOD. Based on
the belief that UML notation should be easy to read and
understand, we introduced some stereotypes with [15] as
an aid for describing the CORBA AC design.

There is little work reported on implementing RBAC in
CORBA systems. The design in this paper is based on our
previous research, described in [10], which shows that
CORBA Security architecture is capable of supporting
RBAC0 – RBAC3 and determines strategies for
implementation. However, it does not propose a specific
design of CORBA Security. Using one of the strategies
from [10], this paper suggests a specific way for
implementing RBAC96 model on CORBA systems.

4. Conclusion

The principle behind AOD is separation of concerns. By
applying AOD approach in CORBA AC design, a number
of benefits of separation of concerns are acquired. Since
RBAC extensions covering different concerns can be
encapsulated using aspects, we get better modularity with
the CORBA AC design. Better modularity leads to better
comprehensibility, reusability, flexibility and
maintainability. Because there are well defined
mechanisms explicitly supporting both dynamic and static
crosscutting, the design can be incrementally extended to
cover temporal, spatial or other future concerns in RBAC
models.

Through this case study, we propose an aspect-oriented
design approach to designing security systems. Our work
is a first step toward a systematic aspect-oriented
approach to advance the design of security systems. Our
approach is easy to learn and apply. Although we have
used the composition rules of AspectJ and an extended
UML design notation for the design presented, our
approach does not depend on a specific implementation
model.

Our next step is to apply formal methods in AOD. Formal
analysis is very useful for detecting possible errors early
in the design phase, which is especially important to the
design of security systems.

5. Acknowledgements

This work is supported in part by NSF under grant No.
CCR-0226763 and No. HRD-0317692.

References

[1] AspectJ homepage. http://eclipse.org/aspectj/

[2] B.D. Win, F. Piessens, W. Joosen and T. Verhanneman. On
the Importance of the Separation-of-Concerns Principle in
Secure Software Engineering. In Workshop on the
Application of Engineering Principles to System Security
Design, December 22, 2002.

[3] B. Tekinerdogan and M. Aksit. Deriving Design Aspects
from Canonical Models. In Object-Oriented Technology, S.
Demeyer and J. Bosch (Eds.), LNCS 1543, ECOOP'98
Workshop Reader, Springer Verlag, pp. 410-413, July
1998.

[4] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn and R.
Chandramouli. Proposed NIST Standard for Role-Based
Access Control. ACM Transactions on Information and
System Security, vol. 4, pp. 224-274, 2001.

[5] E.W. Dijkstra. A Discipline of Programming. Englewood
Cliffs, NJ: Prentice Hall, 1976.

[6] G. Booch, J. Rumbaugh and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley
Longman, Inc, 1999.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V.
Lopes, J.-M. Loingtier and J. Irwin. Aspect-Oriented
Programming. In Proceedings of ECOOP'97 - Object-
Oriented Programming, 11th European Conference,
Jyvaskyla, Finland, 1997.

[8] J.D. Gradecki and N. Lesiecki. Mastering AspectJ: Aspect-
Orineted Programming in Java. Wiley Publishing, Inc,
2003.

[9] J. Viega, J.T. Bloch and P. Chandra. Applying Aspect-
Oriented Programming to Security. Cutter IT Journal, vol.
14, no. 2, pp. 31-39, 2001.

[10] K. Beznosov and Y. Deng. A Framework for Implementing
Role-Based Access Control Using CORBA Security
Service. In the Fourth ACM Workshop on Role-Based
Access Control, Fairfax, Virginia, USA, Octorber, 1999.

[11] M. Basch and A. Sanchez. Incorporating Aspects into the
UML. In Proceedings of Third International Workshop on
Aspect-Oriented Modeling, March 2003.

[12] O. Aldawud, T. Elrad and A. Bader. UML Profile for
Aspect-Oriented Software Development. In Proceedings of
Third International Workshop on Aspect-Oriented
Modeling, March 2003.

[13] OMG. CORBA Security Service Specification, Version
1.8, March 2002.

[14] R. Sandhu, E. Coyne, H. Feinstein and C. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2):38-
47, February 1996.

[15] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L.
Seinturier and L. Martelli. A UML Notation for Aspect-
Oriented Software Design. In Aspect-Oriented Modeling
with UML Workshop at AOSD 2002, Enschede, the
Netherlands, 2002.

[16] S. Clarke and R. J. Walker. Composition Patterns: An
Approach to Designing Reusable Aspects. In Proceedings
of the 23rd International Conference on Software
Engineering (ICSE), Toronto, Canada, May 2001.

[17] S. M. Sutton Jr. and P. Tarr. Aspect-Oriented Design Needs
Concern Modeling. In Aspect Oriented Design 2002
Workshop, April 23, Enschede, The Netherlands.

Applying Ontologies in the KDD Pre-Processing Phase

Guillermo Nudelman Hess, Cirano Iochpe
Universidade Federal do Rio Grande do Sul – Instituto de Informática

{hess, ciochpe}@inf.ufrgs.br

Abstract. This article proposes a methodology for using
the power of ontologies in the Knowledge Discovery in
Databases (KDD) pre-processing phase. The goal is to
prepare geographic database’s (GDB) conceptual schemas
to be mined, in order to obtain analysis patterns
candidates. The ontology is applied in the schema’s
semantic unification, which is very important in this
process, since the data mining tools are not capable to
handle semantic conflicts. A methodology to refer and
update the knowledge basis was developed, based on
some similarity matching measurement between concepts.

1. Introduction

Because of the increasing use of Geographic Information
Systems (GIS) in the last past years, the conceptual
modeling of the Geographic Database (GDB) has become
a very important task. Basically, a GDB differs from a
traditional database by its capability to store not only
conventional (descriptive) data, but also spatial, geo-
referenced data.

However, each one of the GIS software has its own
data model, focused basically in the logical phase of the
database project [22]. Thus, the development of the GBD
gets burdened to the software architecture of the GIS is
going to be used.

The use of conceptual modeling allows not only the
independence from the software implementation, but also
the reuse of the model, or at least of part of it, several
times. This reuse is specially interesting in GDB since its
modeling is quite complex and part of the geographic
concepts of the real world being designed is repeated for
distinct applications. In this way, the use of analysis
patterns [8] is useful. Analysis patterns are the essence of
the conceptual modeling for the solution of a recurrent
problem in a specific context.

To support the acknowledgment of analysis patterns
automatically, the Knowledge Discovery in Databases
(KDD) [7] may be applied. This process has several steps,
as shown in Figure 1.

The main phase is the data mining (DM). However, to
achieve it successfully, a preparation of the input data
must be performed before. To make possible the mining

of several conceptual schemas of GDB, from different
organizations and with distinct objectives, they must be
integrated to solve conflicts and incompatibilities among
them.

Figure 1- The KDD process [7]

To reach a correct data preparation for mining, this
schemas integration must handle semantic heterogeneities
which comprises the problem of unification between the
concepts used to describe the real world phenomena, and
the relationships among them. In this sense, it is necessary
to build a Knowledge Organization System (KOS) [11],
such as an ontology [18] to store the concepts concerning
of the geographic applications domain. Furthermore
algorithms of similarity matching have to be used to
achieve correct interpretation for the variations of known
terms, and classification of new ones.

It is important to clarify that in this paper we are not
proposing a geographic ontology. We are adapting this
concept to another to be used exclusively in the GDB
environment project.

The remaining of this paper is organized as follows.
Section 2 presents the context of the semantic integration
problem of GDB conceptual schemas. Section 3 details
how the ontology can be used in the architecture. The
methodology of the semantic integration is shown in
section 4. At last, the conclusions and future work are
shown in section 5.

2. GDB Schema’s Semantic Integration

The semantic level of heterogeneity include subjects
related to the comprehension and use of data related to
different applications and users, involving distinct data
models and distinct interpretations of these different data
models. The explanation to this fact is quite simple. The
same real world entity, modeled by two or more people,

probably will not have the same modeling, even though it
is representing the same phenomenon of the application’s
domain. In these cases occur what is called a conflict. A
conflict is nothing else than a difference in the
representation of the same concept.

2.1. Levels of Heterogeneity

According to Partridge [17], the semantic heterogeneity
can be classified in disagreement between communities
and disagreement in form.

Disagreement between communities occurs when two
or more communities do not agree about the meaning of
data, or of part of it, in a database. As result the
communities use different words to express the same
concepts of the real world. These different terms have the
same meaning, and generate what is called synonym.

Disagreement in form happens when the same dataset
in different databases has semantic differences. The same
portion of data has distinct meaning in two or more
databases. This generates what is known as homonym.

Bergamaschi et. al [3] go further in this definition,
classifying the heterogeneities in two types, naming and
structural. The first case comprises both aspects presented
in [17], and the structural heterogeneity cover the existing
differences in the conceptual model used to describe the
concepts, in terms of attributes and relationships.

According to Park [16], the semantic heterogeneity
can be classified, broadly, in two different levels: the
schema level and the data level. In the schema level the
heterogeneity is a consequence of the differences on the
logical structures and/or inconsistencies in the metadata
from the same domain, used in distinct databases. This is
caused by the different structures (tables as attributes)
used to represent the same information, and by the use of
different specifications to the same structure. The
heterogeneity in the schema level can be divided in six
types of conflicts: naming conflicts (homonyms and
synonyms), entity identification, schema isomorphism,
generalization, aggregation and schematic dissimilarities.

The data heterogeneity result on the data domain
differences, caused by the multiple representations and
interpretations about the semantic of a data. This
heterogeneity can also be divided in six categories: value,
representation, unit, precision (including the granularity
and spatial resolution), trust on the known data values and
spatial domains conflicts.

Visser et al. [23] focus the heterogeneity problem
classifying it in four distinct categories. The paradigm
heterogeneity happens when two systems express their
knowledge using different modeling paradigms, as, for
example, one object oriented and the other based on the
entity relationship model. The language heterogeneity
exists if two systems express their knowledge in different
languages. The ontological heterogeneity occurs when

two systems disagree over the meaning and structure of
the existing elements in their application’s domain. At
last, the content heterogeneity happens if two systems
represent totally distinct contents. The last two categories
together compose the semantic heterogeneity.

Specifically in the geographic database modeling, this
problems get more evident, because of the natural
complexity of the geographic data [16]. GDB’s target is
the modeling of the reality phenomena, that is, the real
world existing concepts. Hence, the set of elements to be
modeled is quite restrict (small) and very concrete. The
attributes and associations between the geographical
elements are always the same. What changes is the
approach used, which depends on the application’s aim
and on the designer’s knowledge, and also the names used
to represent the same things.

2.2. Requisites for the Integration of GDB
conceptual schemas

To make the integration of geographic conceptual
schemas possible, three requisites must be satisfied [3]:

The conceptual schemas from each one of the sources
has to be available;
There should be semantic information in the
schemas;
A canonical data model has to exists. This standard
model has to have enough expressiveness power to
describe all the models to be integrated;

Once the target of the integration proposed in this
paper is of conceptual schemas, the first requisite is
automatically satisfied. The other requisites are satisfied
by the use of the work developed in [1][10] and by the use
of a standard format for geographic data, the GML [15].

3. The Role of the Ontology

The role of the ontology in this work is similar to the role
of the global conceptual schemas proposed in the works
of Batini et al.[2] and Hayne et al. [9]. However, it is
important to clarify that the ontology is in a higher
abstraction level than global conceptual schemas. Each
one of the conceptual schemas to be integrated is faced
against the ontology, and for each conflict found the
system calculates a similarity value.

The heterogeneities classification adopted in this work
is the one defined by Visser et al. [23], which comprises
the ones described by Bergamaschi [3] and Park [16]. In
the scope of semantic heterogeneity, the ontological
mismatching category is especially important, and is
detailed below.

There are two basic types of ontological
heterogeneity: conceptualization and explication [23].
Mismatch in terms of conceptualization happens between

two or more conceptualizations about a domain. They
differ in terms of concepts (or entity, classes) covered or
in how this concepts are related one to another. An
explication mismatch is related on how the
conceptualization is specified, that is, when two schemas
have distinct definitions, but their terms, meanings or
descriptions are the same.

As mentioned above, the conceptualization
heterogeneity can be in respect of classes or relationships.
In the first case, what happen is a conflict related to the
classes distinguished in the conceptualization. This may
be at the categorization level, which happens when the
hierarchy of the same class is different in two schemas,
because its subclasses are not the same. Also at the class
level there are the disagreements in terms of aggregation,
that is, the same concept can be designed in different
levels of abstraction. A relation conflict exists in terms of
the relationships between the concepts of different
schemas. They can be structural, attributes names or
attributes types. The structural conflict covers the
associations between two or more concepts. The attributes
conflicts can be of two types. One in respect of the
attributes used to describe a concept (for example, a
schema can have the attributes name and profession to the
concept person, while another can have the attributes
name, age and sex for the same concept person). The
other type is in terms of the domain of the attributes.

4. The Methodology of the Ontology

The algorithm described next and shown in Figure 2
details in a high abstraction level the steps sequence to
search and update the ontology.

The algorithm is semi-automate, because of the
already discussed issues that make the process complete
automate impossible. To minimize the need of the expert
intervention two parameters have to be set at the
beginning of the algorithm execution: The minimum and
maximum accepted probabilities. The minimum
probability is useful to filter some candidates. Only the
concepts having the similarity probability higher than the
minimum specified are shown to the expert. The ones
with similarity probability lower than the minimum
threshold are ignored. If none candidates reach the
threshold, the input concept is considered as not existing
in the ontology and added in it as a new concept. The
maximum probability is used to make the selection of
synonyms more automate. If one ore more of the ontology
candidates have similarity probability higher than the
maximum specified by the user, the one with the higher
value is considered as equivalent of the input concept.

Identif yConceptName
Ontology

CalculateName
Similarity

AddConceptOntology

SumSimilarities

ShowWeighted
Candidates

UpdateExisting
Concept

Identif yConceptStructure
Ontology

LastConcept?

CheckMostSimilar
Limit

CalculateAttributes
Similarity

SearchEquivalent
Concept

<<exper...

CalculateRelationship
Similarity

LoadConceptualSchema
Concept

For each ontology conceptConceptNameFound

SameStruct ure

NotFound

Found

DistinctStructure

ConceptNameNotFound

LessThanMinimum

InsideLimits

MoreThanMaximum

No

yes

Figure 2 - The search and update algorithm

To guarantee the well working of the algorithm, it is
necessary that every input conceptual schema has a
metadata, specifying in which language the modeling is
based.

Step 0 – Schema translation to the ontology’s
language: If the ontology’s language is not the same of
the one indicated by the conceptual schema’s metadata,
this has to be translated, aided by a dictionary.

Step 1 – Search concept’s name in the ontology: If the
concept’s name or one of its synonyms or acronyms
(abbreviations) is found in the ontology, go to step 2.
Else, if the term which nominates the concept is not
found, go to steps 4, 5 and 6, in parallel.

Step 2 – Search concept’s structure in the ontology:
Once the term which nominates the concept is found in
the ontology, its structure is compared against the
ontology, attribute by attribute. The algorithm verifies if
every one of the input concept’s attributes exists in its
correspondent concept of the ontology. In case of all the
structure is equal in the ontology and in the input concept,
go to step 3. If there are differences in at least one of the
concept’s attribute, go to step 5.

Step 3 – Tests if it is the last concept: Search if the
concept being processed is the last one of the input
conceptual schema. If it is the last one, go to step the end.
If there are more concepts go back to step 1 to processes
of the next concept.

Step 4 – Calculate the similarity of the term that
nominates the concept: The similarity between the input
concept’s name and all the concepts names in the
ontology is calculated. Go to step 7.

Step 5 – Calculate concept’s structural similarity: The
input concept’s structural similarity is calculated, in terms

of its attributes. This comparison is performed against
each one of the ontology’s concept. Go to step 7.

Step 6 – Calculate relationship similarity: The input
concept’s relationship similarity is calculated, in terms of
aggregation and composition associations, and also in
terms of taxonomic (IS-A) relations. This comparison is
performed against each one of the ontology’s concept. Go
to step 7.

Step 7 – Sum of the similarities: Based on some
method of balance, the structural similarity, the name
similarity and the relationship similarity of the input
concept are summed, resulting in the similarity
probability. This calculus is made for each ontology’s
concept. Go to step 8.

Step 8 – Verify threshold: Get the ontology’s concept
most similar to the input concept, and check its
probability similarity values. If it is lower than the
minimum limit chosen by the user, the input concept does
not exist in the ontology, and then go to step 12. If its
similarity probability is higher than the maximum
threshold value specified by the user, the concept is
chosen as a synonym of the ontology’s correspondent
concept, and go to step 11. If the similarity probability is
between the maximum and minimum values then go to
step 9.

Step 9 – Show candidates: Present each found
candidates, with its balanced similarity probability. They
are displayed ordered, with the ones with higher similarity
first. Only the ones with similarity probability higher than
the minimum threshold are shown. Go to step 10.

Step 10 – Term selection: At this point the domain
expert intervention is necessary. He (or she) selects the
concept he (or she) judges as the most adequate to
represent the input schema’s concept. If an ontology’s
existing concept is selected to represent the input
schema’s concept, go to step 11. If the expert decides that
the input concept has not an equivalent in the ontology,
and thus has to be added to it, go to step 12.

Step 11 – Update of an existing concept: Depending
on from where this step was called, a distinct action is
performed, to update the ontology. This action can be the
addition of a new synonym or acronym to an existing
term, the addition of a new attribute to an existing
concept’s structure, or the creation of a new relationship
between two existing concepts. Go back to step 3.

Step 12 – Addition of a new concept to the ontology:
A new concept is added in the on the ontology, with all its
attributes. Go back to step 3.

4.1. Complementary Techniques

The use of ontology by itself does not provide a complete
solution to the semantic integration problem. It is
impossible to the ontology to contemplate all the ways to
express a real world phenomenon. This happens because

of the inherent restrictions to the ontology and because of
the differences derived by the individual process of
interpretation of the reality [21]. Depending on the
designer’s geographical location the names for the same
concepts may vary (for example, color and colour). Also
the case of the acronyms has to be handled, that is, the
way a term is written is not always the same, especially in
the conceptual model, where the use of abbreviations is
very common.

The human intervention in the resolution of the
conflict is practically mandatory in the identification of
correspondences process between different schemas. At
most, what can be reached is that the ontology suggests
the best solutions based on similarity and probability
calculus [6]. To minimize the need of interaction with the
domain expert, two things can be done. The first one is
the investigation and implementation of similarity
matching techniques [4]. This matching has to be made
both in the concept naming level and in the structural
level, addressing hierarchies, relationships and attributes
of the ontology’s existing concepts [3] [12].

The second part of the solution is about the update of
the ontology in an “online” mode. Each time a concept is
searched in the ontology and is not found, the expert has
to select, among the shown candidates which one is the
synonym of the input concept, or if it is a new concept
that has to be added to the ontology.

This process not only semi-automate the process of
conceptual schemas integration, but also offers the
possibility to make the knowledge base richer, by adding
new concepts.

4.2. The Similarity Calculus

To calculate the similarity between two concepts, one
from the input conceptual schema and the other from the
ontology, we adopt a hybrid approach, combining
syntactic matching between strings and semantic
matching.

In the syntactic matching, a distance function is
applied over a pair of strings, to determine the
dissimilarity between them. The smaller is this
dissimilarity (measured by a integer value), the more
similar are the strings [5].

In this work we adopted the Levenshtein distance,
which is given by the number of changes we have to do in
one string (insertions, deletion and substitutions) to make
it equal to the other compared string. It is applied to the
calculus of similarity between concept names
(SimName(Cc,Co)) and attributes names.

The techniques to calculate the distance between two
strings use only the syntactic features of the compared
strings. They can be applied to acronyms and typing error
cases [14], but none semantic is considered in these
functions. Thus, for a correct semantic unification of

concepts, they have to be accomplished by some
techniques capable to detect synonyms and to consider the
context where the concept is in.

Our approach consider two semantic techniques to
compare two concepts. The first one is the nearest
neighbor [12], which is used to calculate the similarity in
terms of attributes each concept has, and is given by the
formula:

where Cc and Co are, respectively, the conceptual
schema’s concept and the ontology’s concept, n is the
number of attributes considered, i is the index of the
attribute being processed, f(Cci,Coi) is the distance
function between the attributes of the compared concepts
(Levenshtein as proposed) and Wati is the weight of the
attribute in the ontology.

The weight of an attribute is given by an adapted TF-
IDF [4] formula:

where Ca is the number of concepts that have the
attribute, and C is the total number of concepts. As can be
deduced, the more concepts have the same attribute, the
less significant this attribute is.

For the similarity between concept’s relationships,
three types are considered. The first one is the taxonomic
(IS-A) associations, and the others two are the
aggregation and composition ones. The similarity in terms
of hierarchy is done by the formula:

where Hier(Cc,Pc) is each one of the taxonomic
relationships existing in both the conceptual schema and
in the ontology. Wt(c,p) is the weight of the hierarchical
relationship arc and Nhier(Cc,Pc) is the number of IS-A
associations in both the ontology and the conceptual
schema.

The weight Wt(c,p) of an taxonomic arc is given by
the following formula [20][13]:

where E is the d(p) is the depth of the parent node (p)
of the node corresponding to the concept being compared.
E is the density of the whole ontology’s hierarchy, that is,
the number of nodes it has. E(p) is the density of the
taxonomy considering the node p as the root concept, that
is, the number of direct and indirect children it has.
Finally, IC is the information content of the node. IC
represents the amount of information the node has [19],
and its value is given by:

where sup(c) is the number of super classes (direct or
indirect) the class c has, and N is the total number of
concepts of the ontology. As it can be deduced, the more
specialized a concept is, the more information it has.

IC(c) = -log(((1/sup(c))).1/N)

At last, the aggregation and compositions links are
considered to calculate the similarity of two concepts, by
the simple formula:

SimAt(Cc,Co) = n
i=1f(Cci,Coi)xWati

where Rel(Cc,Co) is each composition/aggregation
link existing both in the ontology and in the conceptual
schema and Rel(Cc) is the ones present only in the
conceptual schema.

SimRel(Cc,Co) = ((Rel(Cc,Co))/Rel(Cc))

The final value of similarity is given by a balanced
sum of the similarities:

where WN, WA, WH and WR are the weights of
names, attributes, hierarchies and relationships
similarities.

Sim(Cc,Co)=WN.SimName(Cc,Co)+WA.SimAt(Cc,Co)
+WH.SimHier(Cc,Co)+WR.SimRel(Cc,Co)Wat = 1 – (Ca/C)

5. conclusions

Ontology can contribute in a significant way in the
conceptual modeling of GDB. Because of the absence of a
standard data model, the interchange of GDB schemas is a
difficult task. Thus, the ontology can be used, associated
to a canonical data model, to help not only the
interchange of the schemas, but also the understanding of
it and avoiding conflicts, such as heterogeneities and
redundancy.

SimHier(Cc,Co) = ((Hier(Cc,Pc).Wt(c,p))
NHier(Cc,Pc))

Although our proposal is focused in geographic
databases conceptual schemas, this methodology may be
applied for the unification of any kind of database
conceptual schemas.

To continue the research developed in this paper,
some future works have to be done. One is the
development of formal methods to model the
correspondences and transformation from the ontology to
some specific conceptual models, and from these
conceptual models to a canonical data model.

Wt(c,p) = (E).(d(p)+1).(IC(c) – IC(p))
 E(p) d(p)

Other important future work is the implementation of
the algorithm proposed in this paper, applying the
similarity matching algorithms to balance the similarity
probabilities between concept’s terms and attributes from
the input conceptual schema and the ontology’s concepts.

References

[1] G. Bassalo, C. Iochpe, N. Bigolin. “Representing schemas in
the attribute-value format for the inference of analysis
patterns” In proc. Of the IV Brazilian Symposium on
GeoInformatics (GeoInfo), 2002 (in portuguese).

[2] C. Batini, M. Lenzerini, S. Navathe. “A Comparative
Analysis Of Methodologies For Database Schema
Integration”. In ACM Computing Surveys, v.18, n.4, p.323-
364, 1986.

[3] S. Bergamaschi, S. Castano, S. De Capitani di Vimercati, S.
Montanari, S. Vincini. “An Intelligent Approach to
Information Integration.” In Internation Conference on
Formal Ontology in Information Systems (FOIS’98), 1998.

[4] W. Cohen. “Integration of Heterogeneous Databases Without
Common Domains Using Queries Based on Text
Similarity”, In Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, 1998.

[5] W. Cohen, P. Ravikumar, S. Fienberg. “A comparison of
String Metrics for Matching Names and Records”. In Proc
of IJCAI 2003 – Workshop on Information Integration on
the Web. Acapulco, Mexico, 2003.

[6] Z. Cui, D. Jones, P. O’Brien. “Semantic B2B Integration:
Issues in Ontology-based Approaches”, In Sigmod record
web edition, v.31, 2002.

[7] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth. “From Data
Mining to Knowledge Discovery in Databases.” In AI
Magazine, v.17, n.3,p.37-54, 1996.

[8] H. Gamma, R. Johnson, J. Vlissides. “Design Patterns:
Elements of Reusable Object-Oriented Software.” Addison-
Wesley, 1995.

[9] S. Hayne, S. Ram. “Multi-User View Integration
System(MUVIS): An Expert System for View Integration.”
In proc. Of the 6th International Conference on Data
Engineering, p. 402-409, 1990.

[10] G. Hess, C. Iochpe. “Using the GML for the Identification
of GDB Analysis Patterns Candidates.” In proc. Of the V
BrazilianSymposium on GeoInformatics (GeoInfo), 2003
(in portuguese).

[11] G. Hodge. “Knowledge Organization Systems: An
Overview.” In System of knowledge Organization for
Digital Libraries: Beyond Traditional authority files, 2000.

[12] A. Holt. “Understanding environment and geographical
complexities trough similarity matching”. In Complexity
International, number 7, 2000.

[13] J. Jiang, D. Conrath. “Semantic Similarity Based in Corpus
Statistics and Lexical Taxonomy”. In Proc of International
Conference Reasearch in Computational Linguistics
(ROCLING X). Taiwan, 1997.

[14] A. Monge, C. Elkan. “The field matching problem:
Algorithms and Applications”. In Proc of the Second
International Conference and Data Mining. 1996.

[15] OpenGIS Consortium. “Geography Markup Language
(GML) 3.0”. Open GIS Implementation Specification,
2003. Available in http://www.opengis.net. Last access in
december 2003.

[16] J. Park. “Schema Integration Methodology and Toolkit for
Heterogeneous and Distributed Geographic Databases”.
working paper, 2001.

[17] C. Partridge. “The Role of Ontology in Integrating
Semantically Heterogeneous Databases”. Technical Report,
2002.

[18] J. Qin, S. Paling. “Converting a controlled vocabulary into
an ontology: the case of GEM.” In Information Research 6,
2001.

[19] P. Resnik. “Semantic Similarity in a Taxonomy: An
Information-Based Measure and its Application to
Problems of Ambiguity in Natural Language”. Journal of
Artificial Intelligence Research, number 11, p. 95-130,
1998.

[20] R. Richardson, A. Smeaton, J. Murphy. “Using WordNet as
a Knowledge Base for Measuring Semantic Similarity
between Words”. In Proc. of the AICS Conference. Dublin,
Ireland, 1994.

[21] A. Sheth. “Changing focus on interoperability in
information systems: From systems, syntax, structure to
semantics.” In Interoperating Geographic Information
Systems, 2000.

[22] C. Silva, C. Iochpe, P. Engel. “Using Knowledge Discovery
in Database to Identify Analysis Patterns.” In Proc. Of the
5th International Conference on Enterprise Information
System (ICEIS), 2003.

[23] P. Visser, D. Jones, T. Bench-Capon, M. Shave. “An
Analysis of Ontology Mismatches Heterogeneity versus
Interoperability”. In proc. Of the AAAI 1997 Spring
Symposium on Ontological Engineering, 1997

Abstract. Managing risk in software projects remains a
significant challenge. To meet this challenge, software
development organizations collect a broad range of
development data and metrics such as change requests,
defect information, status of test cases, and others. In this
paper, we examine some of the published industry best
practices for in-process software project assessment and
extract a few common types of analysis. We describe a
prototype decision support tool which implements some of
these practices using rules and statistical analysis. A key
aspect of the tool is the use of time series based analysis,
which measures the evolution of software through the
development process. We assess the applicability of this
approach in practice by comparing the output of the tool
against manual assessment of actual project defect data.
This work shows the feasibility of establishing an
automated risk management framework based on a realistic
set of metrics and analyses from a practical software
engineering perspective.
Keywords: software risk assessment, in-process metrics,
rule based, statistics, automation.

1. Introduction

The success of a software project depends on the
ability of a development organization to deliver software
that meets the needs of its customers, on time and with
acceptable quality. An integral aspect of the software
development process [1] is the use of software metrics [2]
to do risk management. Pfleeger et al.[3] pointed out the
existing large gap between the output of the research
community in software metrics and the actual use of the
metrics by the practitioners for real product management.
Given the schedule and resource pressures in a typical
software development organization, there needs to be a
more automated way to integrate metrics based risk
assessment into the normal development process.

Software risk management can target long or short
term issues. The longer term issues address improvements
to the software for a better stability and maintainability of a
product over many releases. This may involve actions such
as reducing complexity by refactoring code, identifying and
rewriting error prone modules, etc.[4,5] or targeting
development process maturity improvements such as the

Capability Maturity Model [1]. On the other hand, short
term risk management is focused solely on assessing and
managing risk as the software progresses through the
various check points of the current development cycle. In
this paper we consider the problem of risk management
from only this short term perspective.

Section 2 briefly reviews some of the published
best practices in the industry. Section 3 describes how these
best practices can be mapped to a few types of analysis
techniques. Section 4 describes our rule language and the
architecture of an automated decision support tool. Section
5 illustrates the application of this tool against available
defect data to evaluate the readiness of a project to exit
function test phase, and compares the results against a
manual assessment. Section 6 provides conclusions. The
scope of the paper is to show the feasibility of establishing
an automated risk management framework based on a
realistic set of metrics and analyses. The results of
experiences of using this framework in actual projects will
be addressed in a future paper.

2. Best Practices for In-Process Risk Management

Over the years, there have been a number of papers
addressing the use of software metrics for in-process project
management. Generally this body of work focuses on a
specific set of metrics to monitor various aspects of risk
during the execution of a project. The data could then be
used to assess the status of the software at the appropriate
checkpoints during development or to decide on the
suitability of the software for release to the customers. In
this section we briefly review a representative subset [6-12]
of this literature.

Daskalantonakis [6] described the use of
Goal/Question/ Metrics approach with explicit application
to longer term process improvements vs. in-process project
control. Stark et al. [7] discussed an innovative use of
metrics to decide on various key issues for topics such as
project replans, maintenance or redesign of software,
integration of subsystems, assessment of testing schedule.
Foody [8] gave specific recommendations how to decide
when software is ready for release based on a set of
criteria involving coverage of functionality, defect severity

Automated Risk Assessment for Managing Software Projects

B. Ray, T. Klinger, R. Delmonico and P. Santhanam
{bonnier, tklinger, rmd, pasanth} @us.ibm.com

Center for Software Engineering, IBM Thomas J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

considerations, defect discovery rate, and so on. Ebert [9]
discussed the concept of “technical controlling” to address
software process analysis and improvement. Kan et al. [10]
describe their use of in-process test metrics such as test
progress S-curve, defect discovery rates, defect backlog
over time, product size over time, etc. Bassin et al.[11,12]
described the use of metrics based on test case execution
results in combination with test case information or defect
data captured using Orthogonal Defect Classification
(ODC) [13,14]. Table 1 catalogs some of the prevalent
metrics in the published literature [6-12] along the key
focus areas of analysis, such as the progress of the project
against the schedule, the stability of the product and the
effectiveness of the defect removal activities. Metrics in the
second column are meant to be representative and not
exhaustive.

3. Core Analysis Types

Although the metrics represented in Table 1 span
different kinds of data (e.g. Defects, Test cases, etc.) and
focus areas, they can be assessed using four basic analysis
types:

1. Comparison of distributions: Does the distribution of
one variable across a set of categories match that of
another variable?

2. Comparison to a constant: Is the value of a variable
above/below a specified threshold value?

3. Comparison to a variable: Is the value of one variable
above/below that of another variable?

4. Trend analysis: How is a variable evolving over time?
Table 2 shows a mapping of each of the metrics of Table 1,
with the corresponding analysis type that could be used to
evaluate the metric. More complex analyses can be obtained
by applying a combination of these types to address a
particular concern. We note that each type of analysis can
also be implemented in several ways.

3.1 Comparison of distributions
Two distributions can be compared by simply

computing the difference in the percentage of variable
values falling into each category for the two different
variables, with a difference declared if one or more of these
differences is more (less) than zero or another specified
threshold. Alternatively, the data used for analysis can be
considered as a random sample from an underlying
population, and statistical techniques used to compare the
distributions. Different formulations of a Chi-squared
goodness-of-fit (GOF) test can be used to compare an
observed distribution to a target distribution or to compare
one observed distribution to another observed distribution.
See, for example, Section 13.3 of [15]. The statistically

12. Number of defects/kLOC or currently open number of defects/kLOC vs. Number of active test
hours per kLOC. [7]
13. Defect arrival rate is less than 40 defects per 1000 test hours.[8]
14. Full regression suite covering 100% functionality, 80% branch coverage and 100% of the
procedures. [8]
15. ODC Triggers over time [12]

Test Effectiveness

4. Cumulative number of requirements compared to cumulative number of requirements implemented
in design over time [6]
5. Predicted number of defects (derived from models or prior releases) and compared to the actual
found in the project over time in weeks. [6,10]
6. Severity of Open problems over time [6]
7. All Severity 1 and 2 problems be closed and only limited numbers of Sev.3 and Sev 4 problems
open. [6,8,12]
8. Defect backlog over time [10]
9. Release size over time [10]
10. ODC Defect Type over time [12]
11. ODC Defect Type vs. ODC Qualifier [12]

Product Stability

1. Planned test case progress, Attempted test case progress, Successful test case progress over time
in weeks.[9,10,12]
2. Intended test effort vs. Actual test cases by ODC Triggers [11]
3. Intended ODC Trigger distribition by Activity vs. Actual ODC Trigger distribution by Activity
[12]

Schedule Integrity

Metrics Used (with References)Focus Area

Table 1: A sample list of metrics and criteria for managing in-process development from references [6-12]

based comparison allows for observed variations between
distributions that depend on the underlying sample size.

3.2 Comparison to a Constant
Comparison to a Constant and Comparison to a

Variable can be accomplished by simply summarizing
relevant data and checking whether the summarized
variable takes values less than (greater than) a specified
constant or another expression. Comparison to a Constant
can also be framed in a probabilistic context, with statistical
techniques used to determine whether the observed data are
consistent with a hypothesized threshold value. For
instance, a binomial test of proportion ([16, Section 6.5]) is
an appropriate way to assess the chance of obtaining the
observed percentage of items, assuming that the underlying
population contains a specified percentage of these items.
A t-test ([16, Section 6.3]) could be used to assess whether
the observed sample average of a variable is consistent with
a specified average value for the variable in the population.
Other statistical methods could also be used, depending on
the assumptions imposed on the data.

3.3 Comparison to a Variable
The Comparison to a Variable type allows rules

that target changes in volumes or percentages between

specified time frames. For instance, rules that focus on the
size of the difference in percentage of defects of a certain
type between adjacent periods (e.g. every week) can be
formulated in this framework. Thus this type of analysis is
useful not only for exit evaluations, but also for on-going
monitoring of progress.

3.4 Trend Analysis
This is one of the most important type of analysis

deployed in managing a software project. The particular
challenge of the analysis is the selection of appropriate
subset of the data for assessing trends such as the last two
months of a six month project. Several alternatives exist for
trend analysis, depending on whether it is desired to test for
existence of a positive (negative) trend or fit a (linear)
trend to observed data, and again depending on data
assumptions. Table 3 shows the specific types of analysis
chosen for our implementation.

Note that other authors, for example [17], have
discussed the use of probablistic methods as an aid for
decision making in the software development process. The
aim of the current paper is somewhat different, however, in
that we show how a small set of analysis types can cover a
broad range of industry best practices, and indicate how
these types can be embodied in a rule-based engine
described in the next section to provide consistent
assessments useful for decision support.

4. Rule Language and Implementation

We have developed a declarative language to
express rules for the classification of risk using the analyses
described in Section 3. Figure 1 shows a sample rule in this
language which uses both a trend analysis and a
variable-to-constant comparison to classify Severity 2
defects. This rule is taken from a ruleset for assessing risk
according to defect severity (see Section 5 for a detailed
sample analysis using this rule).

In English, the rule says:
IF the trend in the percentage of Severity 2 defects over the
last ¾ of the time periods supplied is not decreasing

Rule name: Trend and percent of Severity 2 defects

Precondition:
trend(sev2pct, LAST_THREE_QTRS) != DECREASING
OR
pct(sum(sev2, LAST_QTR), sum(tvol, LAST_QTR)) >=20

Classification: Risk = Medium

Figure 1: A typical rule

Table 2: Mapping of the analysis types to the metrics
from Table 1.

1,6,8,9,10,15Trend Analysis

4,5,12Comparison of variable to
variable

5,7,11,13,14Comparison of variable to
constant

2,3Comparison of
distributions

Metrics from Table 1Analysis Type

Table 3: Implementation details for the analysis types.

1. Cox and Stuart test for trend ,
see ref. [18] Section 3.5
2. Linear regression

Trend Assessment

1. DeterministicComparison to
Variable

1. Deterministic
2. Binomial test of specified
proportion

Comparison to
Constant

1.Chi-squared GOF for comparing
a single population to a target
2. Chi-squared GOF for
comparing two populations

Comparison of
Distributions

ImplementationAnalysis Type

OR the percentage of the total number of Severity 2 defects
is >= 20.
THEN the risk is Medium.

Here sev2pct is a timeseries variable representing the
percentage of Severity 2 defects at each period in the
timeframe, and sev2 and tvol represent to the timeseries
containing the number of Severity 2 defects and the total
number of defects at each period, respectively.

In general, each rule has three parts: the name, the
precondition and the classification. When the precondition
of a rule is true then the rule asserts its classification for a
given set of defect data (otherwise it makes no assertion
about the data). Individual rules like the one shown can be
combined into RuleSets. A RuleSet is evaluated by
evaluating its constituent rules and summarizing their
results into a single classification of the data. The order of
evaluation is not important since the rules are all
independent. The summarization step is necessary since the
rules may not yield mutually consistent risk assessments.
For example, looking only at the number of Severity 2
defects using the rule in the figure, we may believe that the
risk is Medium. However, another rule focusing on the
total number of defects may assert that the risk is high.
These results must somehow be reconciled. Currently we
offer two summarization algorithms to address this
problem: worst case (the worst or most risky classification
from any rule is the classification of the data) and mode (the
most frequent classification is chosen). Others may easily
be added to perform more complex summarizations. So far,
we have only used worst case summarization in our
analyses.

The precondition of a rule can be any boolean
expression using logical operators AND, OR, NOT and the

relational operators. Terms are either literals (Boolean,
String, Real, Integer, Enumerated, TimeFrame), variables of
type TimeSeries, functions on simple types, or functions on
TimeSeries variables. The TimeFrame literals are a set of
predetermined relative time frames including for example
LAST_PERIOD, FIRST_HALF, etc. Functions currently
supported are:

trend(TimeSeries ts, TimeFrame tf) : TrendDirection
Returns whether the TimeSeries ts is INCREASING,
DECREASING, or UNCHANGED (the three values in
the enumerated type TrendDirection) over tf.
sum(TimeSeries ts, TimeFrame tf) : Integer
Returns the sum of the values in ts over tf.
pct(Real r1, Real r2) : Real
Returns 100 * r1 / r2.
probProportionTest(TimeSeries tsObs, TimeSeries
tsTot, TimeFrame tf, Integer threshold, boolean
aboveOrBelow) : Boolean
Returns true iff the proportion of the sum of the
observed timeseries values tsObs to the sum of the totals
tsTot is above/below threshold with statistical
significance.
linearTrendTest(TimeSeries ts, TimeFrame tf, Integer
threshold, Integer periodOffset, Boolean
aboveOrBelow) : Boolean
Returns true iff the linear extrapolation of TimeSeries ts
for periodOffset periods past TimeFrame tf is
above/below threshold.

Of the analysis types discussed in section 3, these functions
support: comparison to a constant/variable (both
deterministic and probabilistic) and trend analysis.
Distibution comparison is currently implemented, but not
integrated with the rules engine.

The analyses and rule language are fully implemented in
Java and are being deployed as part of an internal IBM
decision support tool for software risk management. Figure
2 shows a high-level view of the system architecture.

Reading from the left of this diagram, there are two choices
for entering rules into the system. A text parser allows rules
to be entered in a language similar to that used in Figure 1.
However, a Graphic User Interface front-end is the typical
means of entry for the user. Both make use of a Rule
Builder component to assemble an Abstract Syntax Tree
(AST) representation, which can be persisted to a file or
database. The defect data is collected into a time series
representation which, together with the rule set, can be
evaluated to yield the risk classification report.

5. A Comparison of Manual and Automated
Analyses

In this section we present an analyis typically
performed by a person for assessing function test exit
readiness and describe the corresponding ruleset for

Figure 2: System architecture

Rule Parser

Rule
Builder

GUI

Evaluator

Defect
Time
Series

Classification
Report

Rule
DB

Defect
DB

Collector

automated assessment. Our goal here is simply to illustrate
how the manual assessment can be adequately captured in
our rule language, and not to argue for the validity of that
assessment.

Our analyst typically begins with a visual
assessment of the data. For example, Figure 3 shows a
chart of number of defects over time broken down by defect
severity. By “eyeballing” the shape of the defect curves
over time in each severity group, the analyst classifies the
trends as increasing, decreasing or unchanged. The analyst
then consults a flowchart such as that shown in Figure 4 to
determine the overall assessment of the project. Although
not explicitly shown in Figure 4, the analyst also takes into
consideration other factors such as volume of defects and
the specific customer impact [13,14] of the defect in
assessing potential risk from high severity defects. For
instance, if the volume of Severity 1 defects is decreasing
over time, but is still above one or two, the product stability
is considered to be at risk. It is important to note that other
aspects of manual analysis may include some implicit
smoothing/filtering in the visual trend analysis, e.g.,
omitting data for the first few weeks of the test period.

These details are not captured formally so that there is a
possibility for subjectivity and inconsistency in the
conclusions from time to time. The analyst’s risk
assessment of the data shown in Figure 3 is summarized in
Table 4.

To capture the analyst’s assessment, we formalized
the flowchart of Figure 4 into an initial rule set, translating
imprecise statements like “trend is growing” into more
precise statements in our rule language. We refined the
ruleset by analyzing it on historical data and adjusting it
when it differed in its classification from the analyst. The
end product was the ruleset shown in Table 5. We present
the rules in English for readability but they are represented
internally in the form described in Section 4. The automated
assessment of the sample dataset of Figure 3 indicated
potential for medium risk. This was based on the
satisfaction of the preconditions of rules 2, 3, 5 and 7 in
Table 5 under the worst case summarization policy. This
corroborates the observations by the analyst in Table 4.

An automated assessment provides a number of benefits
over manual analysis. It allows consistent and repeatable
evaluation of project data. This supports enforcement of
organizational policies and normalization of the analysis
both within a project at different times and between
different projects. In addition it provides the ability to
quickly summarize, compare, and trend data across multiple
attributes, filtered by different time frames and other
criteria. For example, our current implementation to
perform a function test exit evaluation consists of 47
separate rules involving 6 timeseries variables and 9
different time frames. With the tool these rules were
evaluated in seconds against real project data; without the
tool a similar evaluation would be so onerous as to make it
essentially impossible in practice. Statistical computations
performed in the checking contribute to the sophistication
of the evaluation.

Severity vs. Time

Is the # or
fraction of

Sev. 1 defects
flat or

increasing?

High Risk

Is the # of Sev.1
defects

dropping, but
the # of Sev2 is

growing?

No

Medium Risk

 Is the number
of Sev 1 & 2

dropping, but
the # of Sev 3

increasing?

Yes

No

Little, if any, Risk
associated with this

part of the
assessment

Yes

No
(All Severity's
are dropping)

Yes

Low Risk

Figure 4: Flow diagram capturing the analysis of
Severity over Time.

Figure 3: Distribution of defects by Severity over Time

1. The volume of Sev 1 defects in most recent time
periods indicates that the product does not yet appear to
be stable, although the potential impacts of these defects
on the customer is low.
2. Consistent surfacing of Sev 1 defects indicates
potential product instability.
3. The volume, % or trend of Sev 2 defects in most recent
time periods indicates there are still too many high
severity defects, although the potential impact of these
defects on the customer is low.
4. An increase in Sev 4 defects relative to Sev 3 defects
over time is desirable.

Table 4: Manual risk assessment based on Fig. 3

6. Conclusions

In this paper we have presented an automated risk
assessment framework and described its implementation.
We have shown how a representative sample of the industry
best practices in software metrics can be accommodated in
this framework by categorizing the underlying methods into
a few types of analysis implemented in our system. To
illustrate the applicability of our approach to a typical
assessment problem, we compared manual and automated
analysis on actual function test exit evaluation data.
Although the examples considered focused on defect-based
monitoring, the system is applicable to any set of project
metrics used for monitoring progress, such as test case
completions, backlog, and so on. We plan to discuss the
results of deploying this system in software projects across
IBM in a future publication.

We thank Kathryn Bassin and Theresa Kratschmer
for serving as experts in defect analysis.

7. References

[1] Watts S. Humphrey, “Managing the Software Process”,
Addison Wesley, Reading, MA, USA, 1990.

[2] R. B. Grady and D. L. Caswell, “Software Metrics:
Establishing a Company-wide Program”, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1987.

[3] S. L. Pfleeger, R. Jeffrey, B. Curtis and B. Ketchenbaum,
“Status Report on Software Measurement”, IEEE Software,
Vol.14, No.2, 1997 pp.33-43.

[4] W. M. Evanco and R. Lacovara, “A Model Based Framework
for the Integration of Software Metrics”, J. Systems and
Software , Vol.26, 1994, pp 77-86.

[5] J. P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen,
and J. Mayrand, “Emerald: Software Metrics and Models on
the Desktop”, IEEE Software, Vol. 13, No. 5, 1996,
pp.56-60.

[6] M. K. Daskalantonakis, “A Practical View of Software
Measurement and Implementation Experiences Within
Motorola”, IEEE Trans. Software Engineering, Vol. 18, No.
11, 1992, pp.998-1010.

[7] G. Stark, R.C. Durst, and C.W. Vowell, “Using Metrics in
Management Decision Making”, Computer Vol. 27, No.9,
1994, pp.42-48.

[8] M. A. Foody, “When is Software Ready for Release?”, Unix
Review, March 1995, pp.35-41.

[9] C. Ebert, “Technical Controlling and Software Process
Improvement”, J. Systems and Software , Vol.46, 1999, pp.
25-39.

[10] S. H. Kan, J. Parrish and D. Manlove, “In process Metrics for
Software Testing”, IBM Systems Journal, Vol.40, No.1,
2001, pp. 220-241.

[11] K. Bassin, S. Biyani, and P. Santhanam, “Evaluating the
Software Test Strategy for the 2000 Sydney Olympics”,
Proceedings of the IEEE 12th International Symposium on
Software Reliability Engineering, 2001, pp.264-273.

[12] K. Bassin, S. Biyani, and P. Santhanam, “Metrics to Evaluate
Vendor-developed Software Based on Test Execution
Results”, IBM Systems Journal, Vol. 41, No.1, 2002,
pp.13-30.

[13] R. Chillarege, I.S. Bhandari, J. K. Chaar, D. S. Moebus, B.
K. Ray, and M.-Y. Wong, “Orthogonal Defect Classification:
A Concept for In-Process Measurements”, IEEE Trans.
Software Engineering, Vol.18, Bo.11, 1992

[14] K. Bassin, T. Kratschmer, and P. Santhanam, “Evaluating
Software Development Objectively”, IEEE Software, Vol.
15, No.6, 1998, pp.66-74.

[15] J. Rice, “Mathematical Statistics and Data Analysis”,
Duxbury Press, Belmont, CA, USA, 1995.

[16] S. B. Vardeman, “Statistics for Engineering Problem
Solving”, PWS Publishing Company, Boston, MA, USA,
1994.

[17] I. Rus, S. Biffi, and M. Halling, “Systematically Combining
Process Simulation and Empirical Data in Support of
Decision Analysis in Software Development”, Proceedings of
the SEKE 2002, pp. 827-833.

[18] W. J. Conover, “Practical Nonparamatric Statistics, 2ed”,
John Wiley & Sons, Inc., New York, NY, USA, 1980.

Table 5: Ruleset for automated assessment

1. If the total volume of Severity 1 defects is greater
than 2 in the last ¼ of the specified time frame and more
than 50% of these defects are high impact defects, then
risk is High.

2. If the total volume of Severity 1 defects is greater
than 2 in the last ¼ of the specified time frame but less
than 50% of these defects are high impact defects, then
risk is Medium.

3. If one or more Severity 1 defects occur in each ¼ of
the specified time frame (i.e., consistent surfacing of
Severity 1 defects), then risk is Medium.

4. If the trend in Severity 2 defects is not decreasing in
the last ¾ of the time frame or there are more than 20%
Severity 2 defects in the last ¼ of time frame, and more
than 50% of Sev 2 defects found in last ¼ of time frame
are high impact, then risk is Medium.

5. If the trend in Severity 2 defects is not decreasing in
the last ¾ of the time frame or there are more than 20%
Severity 2 defects in the last ¼ of the time frame, but
less than 50% are high impact, then risk is Low.

6. If the trend in Severity 3 defects is not decreasing in
the last ½ of the time frame or there are more than 40%
Severity 3 defects in the last ¼ of the time frame, then
no risk specification is given, but user is informed of
status.

7. If the percentage of Severity 3 defects is more than
the percentage of Severity 4 defects in the last ¼ of time
time frame, then no risk specification is given, but user
is informed of status.

Clarifying the Relationship between Software Architecture and Usability

Natalia Juristo, Ana M. Moreno
School of Computing - Universidad

Politécnica de Madrid, Spain
natalia@fi.upm.es, ammoreno@fi.upm.es

Maria Isabel Sánchez
School of Computing - Universidad Carlos III

de Madrid, Spain
misanche@inf.uc3m.es

Abstract

This paper examines in a problem posed recently
concerning the relationship between software system
usability and architecture. Here, we try to empirically
clarify this relationship, focusing on the concept of
architecture-sensitive usability mechanism. This concept
represents specific usability issues that can improve
software usability and that have demonstrated
architectural implications. Accordingly, this paper
outlines how usability needs to be decomposed to be dealt
with from an architectural point of view and how the
architecture-sensitive usability mechanism emerges. A list
of architecture-sensitive usability mechanisms is
presented and the procedure for outputting their
respective architectural implications is discussed.

1. Introduction

Usability is an important component of software
quality. Although there is no established set of critical
software quality attributes, several classifications agree
on the importance of considering usability as a quality
attribute [1][2][3]. Additionally, usability is increasingly
recognized as a quality attribute that has a big impact on
software development [4].

To understand the depth and scope of the usability of
a system, it is useful to make a distinction between the
visible part of the user interface (buttons, pull-down
menus, check-boxes, background color, etc.) and the
interaction part of the system. By interaction we mean the
coordination of information exchange between the user
and the system. A system’s usability deals not only with
the user interface, but mainly with the user-system
interaction. This interaction must be carefully designed
and should be considered when designing not just the
visible part of the user interface, but also the rest of the
system. For example, the provision of continuous
feedback for users is a primary usability feature, and its
implementation needs to be considered when designing
the system. System operations have to be designed so as
to allow information to be frequently sent to the user
interface to keep users informed about the current status

of the operation. So, although this information could be
displayed by different means (percentage-completed bar,
a clock, etc.) and these means are interface or
presentation issues, the feedback feature is not just an
interface aspect. It is a functionality that affects system
usability and should be considered during design, as the
design is affected by the decision on whether or not to
include this usability feature.

However, seminal interactive system architectures,
such as Model-View-Controller (MVC) and Presentation
Abstraction Control (PAC) [5] seem to assume that
usability only affects the presentation and dialogue
components of an interactive application. Based on this
assumption, these architectures decouple the application
features from the user interface, such that each can be
designed and modified more or less independently of the
other. This assumption does not consider the fact that
functionalities buried in the application logic can
sometimes affect the usability of the whole system.

Recently, some groups have been working on
identifying specific usability aspects with connections in
the software architecture to try to clarify this relationship
[6] [7]. These papers show how even if the presentation
of a system is well designed, system usability can be
greatly compromised if the underlying architecture and
designs do not make the proper provisions for user
concerns.

In this paper, our aim is to contribute to this
clarification by empirically studying the relationship
between software usability and software architecture 1.
Note that it is important to clarify this relationship,
because, as mentioned above, if any such relationship
exists, developers should bear usability issues in mind
when defining the overall system and not just when
working on the user interface.

To deal with this relationship, we have decomposed
usability into lower level concepts more related to the
software solution. As we will see in section 2, these
concepts are usability attributes and usability properties.

1 The content of this paper is part of the research done in the
STATUS project: European Union funded project IST–2001–
32298.

Then the concept of architecture-sensitive usability
mechanism is introduced in section 3, identifying specific
usability features that will address a particular usability
property and whose inclusion in a software system will
have a specific effect on its architecture. Section 4 shows
an example of the architectural implications for one such
architecture-sensitive usability mechanism (Undo). It also
describes the empirical process followed to identify these
implications, and refers to the site where the implications
of the other architecture-sensitive usability patterns
identified can be found. From our research, we conclude
that there is a relationship between usability and software
architecture and that it is, therefore, dangerous to assume
that usability will only affect the presentation component
of our software systems. Usability also needs to be dealt
with when designing the logic of applications.

2. Decomposing Usability from the Architectural
Viewpoint

One of the problems of working with usability from a
design perspective is that it is a broad and abstract
concept that is hard to grasp. Therefore, the best way of
addressing the concept of usability is to decompose it.
The first level of the usability decomposition is what is
called usability attributes in the (Human Computer
Interaction) HCI field. Usability attributes are precise and
measurable components of the abstract concept that is
usability. Usability has been decomposed into attributes
in the HCI field mainly for evaluation purposes. Although
different authors have proposed different usability
attribute classifications, the view that appears to be shared
by most of the prominent authors in the field is that the
main usability attributes are [11] [12] [14]:

Learnability, which is composed of two
complementary aspects: how quickly users can learn
to use the system for the first time and how easy it is
to remember how to operate the system after not
having used it for some time.
Efficiency of use, which refers to how efficiently the
user performs a task using the system, that is, this
attribute measures the efficiency of the software
system used by the user. Note that this attribute is not
the same as the classical quality attribute of
efficiency, understood as system efficiency.
Reliability of use. Again, this parameter is not to be
confused with system reliability. It refers to the
reliability of the user performing a task using the
system. Therefore, this attribute refers to the errors
made by the user when using the system, not the
system errors.

Satisfaction is the most subjective attribute and
refers precisely to the user’s subjective view of the
system.

However, these usability attributes are very far removed
from software design, that is, the effect that these
attributes have on software architecture cannot be
determined directly. Therefore, the approach that we have
followed has been to decompose these attributes into
intermediate levels of concepts that are increasingly
closer to the software solution. The first one of these
concepts is usability property.

We have identified usability properties from the HCI
field. HCI researchers have defined some concrete aspects
to help developers to build usable systems. Each author
has named these tips differently: design heuristics [8],
rules of usability [9], principles of usability [10][11],
ergonomic principles [12], etc. We have compiled these
design heuristics and principles that different authors
suggest for developing more usable systems
[8][9][10][11][12][13][14] and have arrived at the
following usability properties for a software system:

Keeping the user informed. The system should
inform users at all times so that they know what is
going on.
Error management. The system should provide a
way to manage errors. This can be done by error
correction or error prevention.
Consistency. The system should be consistent in all
aspects of interaction, that is, in the interface and in
the way we provide functionality.
Guidance. We should provide informative, easy-to-
use and relevant guidance and support both in the
application and in the user manual to help the user
understand and use the system.
Minimize cognitive load. Systems should minimize
the cognitive load, e.g., humans have cognitive
limitations, and systems should bear these limitations
in mind.
Explicit user control. Users should feel that they are
in control of the interaction.
Natural mapping. The system should provide a
clear relationship between what the user wants to do
and the mechanism for doing it.
Ease of navigation. Systems should be easy to
navigate.
Accessibility. Systems should be accessible in every
way that is required. This property includes
internationalization, multi-channeling and
accessibility for disabled people.

Although this classification could contribute to
somehow structuring the field of design heuristics, an
important problem still remains to be addressed.

Usability properties may be useful as possible sources of
requirements to be satisfied by a usable software system.
However, developers have no systematic way of
incorporating them into their developments. In other
words, they need to know what particular elements a
software system has to include to satisfy a usability
property. Therefore, usability properties need to be
further elaborated if we want developers use them to
incorporate specific functionalities to improve the
usability of the software systems.

3. Architecture-Sensitive Usability
Mechanisms
Very recently, the HCI community has developed the

concept of usability pattern. There are several a few lists
of usability patterns, the most commonly referenced being
the Amsterdam Collection [15] and Common Ground
[16]. HCI usability patterns provide usability solutions
(allow the user to undo at least the last couple of actions,
provide feedback to the user every two seconds of
command processing, in forms to be filled by users
arrange the blanks in an order that makes sense
semantically, use different colors to identify the major
sections of the screen, etc.) to common problems.

Note that, on the one hand, the inclusion of some of
these usability solutions in a software system will help to
address specific usability properties. On the other, the
inclusion of some of these solutions in a software system
could have an effect on its software architecture and not
only on its user interface.

So, we have developed the concept of architecture-
sensitive usability mechanism, to refer to specific
usability features that have an impact on the software
architecture (as we will see in the next section) and
address particular usability properties. In other words, we
have descended another level in our approximation of
usability to architectural design, defining the concept of
architecture-sensitive usability mechanisms. An
architecture-sensitive usability mechanism addresses a
need identified by a usability property at the requirements
stage and that has a specific effect on the design of the
software system.

Note that we avoid to use the concept of usability
pattern, as from a software engineering perspective,
patterns should provide validated design solutions to
repetitive problems [17], while, architecture-sensitive
usability mechanisms represent usability features that
affect software architecture. As noted at the end of this
paper, we intend to pursue this work in the future by
approximating these mechanisms to architectural sensitive
usability patterns, adding to the usability solutions
proposed by the HCI community particular design
solutions.

Table 1 shows the relationship between usability
properties (rows) and architecture-sensitive usability
mechanisms (columns) that we have considered. A
detailed description of this relationship is given in [18].

Table 1. Relationship between Usability Properties and Architecture-sensitive Usability Mechanisms
Architecture-sensitive Usability Mechanisms

Usability
Properties

Different
languages

Feedback Undo Form/Field
validation

Wizard User
Profile

Cancel History
Logging

Command
Aggregation

Action
for
multiple
objects

Workflow
Model

Provision
of Views

Keeping the
user informed

X

Error
management

Error
prevention

X X X X X X

Error
correction

X X X

Consistency
Guidance X X
Minimize
cognitive load

X X

Explicit user
control

X X X X

Natural
mapping
Ease of
navigation

X

Accessibility X
Adaptability X X X

It should be noted that the properties of Natural
Mapping and Consistency cannot be arranged around
specific architectural usability mechanisms. The reason is
that these properties require the performance of different
tasks and activities throughout the entire development
process rather than the application of particular solutions
at the architectural level. For example, the provision of
natural mapping between the user tasks and the tasks to
be implemented in the system calls for software
requirements to be elicited during the analysis process
bearing in mind this objective, and the whole system must
be designed according to these requirements. The same
goes for consistency, which involves different activities
throughout the lengthy development process of the
original or new versions of the system and among
different functionalities of the same version.

4. Studying the Implications of Usability
Mechanisms into Software Architecture

To analyze the architectural implications of the
architecture-sensitive usability mechanisms presented in
Table 1, we worked with different practitioners asking
them to incorporate these mechanisms into their
developments, once they had made the design for the
system considering none of such mechanisms.
Specifically, we worked on two small real applications
developed by final-year Computing students, one real
application developed by one of our Master students, and
another real application developed by one of the
industrial partners of the STATUS project. If the
practitioners modified their designs to incorporate a
specific mechanism, then the respective mechanism can
be considered to be architecture sensitive.

The exact process followed to study the relationship
between the usability mechanisms and the software
architecture was:

- We worked with a list of usability mechanisms
longer than the one that appears in Table 1, and
compiled from HCI literature about specific
software elements that improve system usability.

- We asked designers to build the design models
for the systems without including usability
mechanisms.

- We asked designers to modify their original
developments to include the functionality for each
of the mechanisms under consideration.

- If the modifications made affected the design
models, for example, involved the inclusion of
new components or different interactions between
existing components, we considered that the
mechanism was architecture sensitive and

generalized the design solutions provided by the
different practitioners for these mechanisms.

- If the modification did not affect the design
models (typically they affected in this case to
lower level functions or pseudocode) then the
mechanisms was considered non architectural
sensitive.

An example of the architectural implications of one
of the architecture-sensitive usability mechanisms (Undo)
is shown in Figure 1. The complete demonstration of the
architectural impact of the mechanisms shown in Table 1
appears in [19], including a detailed description of the
design solutions provided for the practitioners for each
mechanism, how they were derived, and an example of
the inclusion of these mechanisms in a specific
application. Note that the generalized architectural
solutions for each mechanism (like the one shown in
Figure 1) represents just one possible way of
incorporating such usability mechanisms into a software
design. Its goal is just show the architectural implication
of a mechanisms but not at all the only solution to design
such mechanisms.

5. Conclusions

Usability is a key issue in software development. This
paper has shown an approach for dealing with usability
from an architectural point of view. In particular, we have
shown how usability has a real impact on software
architecture, not only affecting the user interface as
usually thought. Therefore, it is important to bear in mind
the concept of usability when designing the overall
system functionality and not just when designing the user
interface.

The approach followed to illustrate the relationship
between usability and software architecture focused on
decomposing the concept of usability into lower levels
that are progressively closer to the solution domain:
usability attributes, properties and mechanisms. While
usability attributes come from traditional HCI attributes,
usability properties are taken from existing tips and
heuristics that can be found in HCI literature. Finally,
architecture-sensitive usability mechanisms represent
specific usability issues to be incorporated into a software
system and that have a demonstrated impact on software
architecture.

By the time being, developers can use this work to
consider usability mechanisms to incorporate into their
systems during software architecture design. However,
we are expanding this work to better serve developers.
Specifically, we are developing what we have referred to
as architecture-sensitive usability patterns which package
both usability solutions and design solutions to
mechanisms. In these patterns we customize architectural
implications of each mechanism for specific architectural

restrictions, for example, the use of MVC or PAC
architectures; also we make explicit the user interface
implications of these mechanisms to inform developers of
what effect these mechanisms have on both the software
architecture and the user interface.

So, although a lot of work still remains to be done to
elucidate the exact details of the relationship between

software usability and software architecture, we have
presented a first step that empirically demonstrate that
there is such a relationship, and we have explicitly
identified which usability issues involves such
relationship.

o Usability Mechanism: The ability to undo an action and return to the previous state.
o Example of design solution:

Diagram:
A

Interface A

System A Logger
Undoer

System B
B

Interface B

1

2

3

4

5

6
10

9

7
8

11

System B

12
13

14
15

Participants: This mechanisms design has two clearly separate parts. These parts have been labeled in the
illustration as A and B, respectively. Part A collects the actions performed in the system (the number of
actions to be stored will have to be specified when the system is developed) so that they can be later undone.
Part B manages the respective undo.

Interface A: receives the request to execute an operation in the system, which may contain both the
operation and data (1) (2). As we will see later, this execution request can also come from the actual
system (3) (4).
System A: this module sends the functions and data executed in the system to the logger (3) (4) and
also, optionally, if the logger does not store the actions internally, will send the information to the
part of the system that manages these actions (5) (6).
Logger: this module receives the actions and the data requested by the user or from another part of
the system (1) (2) (3) (4) and stores the logged action and data either internally or in another part of
the system, in which case it will have to send this action and data to the system (5) (6) to be
processed by the respective part of the system. Logger receives the undo request from Undoer (9)
and, if the logged actions are stored in the logger, it then sends them one by one to Undoer (8). If
they are not stored in the logger, it will receive both the data and the operation to be undone from
another part of the system, which we have named System B, through (11) and (10), respectively.
Interface B: receives the undo request and sends it to Undoer through (7).
Undoer: sends the undo request to logger (9) and also sends each of the actions to be undone that it
receives from logger to System B (13), as well as receiving the opposite operation to the one
performed from System B (12). When it knows which opposite operation is to be performed, it sends
the operation to System B along with the data associated with the operation in question through (14)
and (15).
System B: it will search the system for both the action performed and the data associated with this
operation (10) (11) if the data are not stored internally in the logger. It receives the actions to be
undone (13) and provides the opposite operation (12) (for which purpose it will have to store what
the opposite is for each action, see implementation section for example). The opposite action and the
respective data will be sent to the respective part of the system ((15) and (14)).

o Related mechanisms: History logging is equivalent to part A of this mechanism. Therefore, if undo is provided, history
logging could be provided at no extra cost.

o Mechanisms implementation in OO: This mechanism will generate an “undoer” class responsible for triggering the
entire undo process. Additionally, there are the “listener” and “action-done” classes, which are used to store the actions
that are performed as the system operates. A “system-action” class also has to be included to establish what the opposite
is for each action that can be undone through the “is-the-opposite” relationship.

o Example: See [19] for a full example, not included here for reasons of space.

Figure 1. Architectural implications of the "Undo" mechanism

References
[1] IEEE. IEEE Std 1061: Standard for a Software
Quality Metrics Methodology. IEEE, 1998.
[2] ISO. ISO 9126-1 Software Engineering – product
quality – part 1: Quality Model. ISO, 2000
[3] B. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J.
Macleod, M.J. Merritt. Characteristics of Software
Quality. North Holland, 1978.
[4] X. Ferré, N. Juristo, H. Windl, L. Constantine.
“Usability Basics for Software Developers”. IEEE
Software, vol 18 (11), p. 22-30.
[5] L. Bass, P. Clements, R. Kazman. Software
Architectures in Practice. Addison Wesley, Reading,
MA, 1998.
[6] L Bass, B. John, J Kates. Achieving Usability Through
Software Architecture. Technical Report. CMU/SEI-
2001-TR-005, March 2001.
[7] J. Bosch and N. Juristo. “Designing Software
Architectures for Usability”. ICSE Tutorial. Portland,
OR, May 2003.
[8] J. Nielsen. Usability Engineering. AP Professional,
1993.
[9] B. Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley, 1998.
[10] J. Preece, Y. Rogers, H. Sharp, D. Benyon, S.
Holland, T. Carey. Human-Computer Interaction.
Addison Wesley, 1994.
[11] L. L. Constantine, L. A. D. Lockwood. Software for
Use: A Practical Guide to the Models and Methods of
Usage-Centered Design. Addison-Wesley, 1999.

[12] D.L.Scapin, J.M.C. Bastien, Ergonomic criteria for
evaluation the ergonomic quality of interactive systems,
Behaviour & Information Technology, vol 16, no 4/5, pp.
220-231
[13] B. Shackel. "Usability – context, framework, design
and evaluation". In Human Factors for Informatics
Usability. pp 21-38. Ed. by B. Shackel and S. Richardson.
Cambridge University Press, 1991.
[14] D. Hix, H.R. Hartson. Developing User Interfaces:
Ensuring Usability Through Product and Process. John
Wiley and Sons, 1993.
[15] M. Welie. The Amsterdam Collection
http://www.welie.com, visited September 2003.
[16] Tidwell. The Case for HCI Design Patterns.
http://www.mit.edu/jdidwell/common_ground_onefile.htm,
visited September 2003.
[17] E Gamma, R Helm, R Johnson, J Glissades. Design
Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley, 1998.
[18] A. Andrés, J. Bosch, A. Charalampos, R. Chatley, X.
Ferre, E. Folmer, N. Juristo, J. Magee, S. Menegos, A.
Moreno. “Usability attributes affected by software
architecture”. Deliverable. 2. STATUS project, June 2002.
Http://www.ls.fi.upm.es/status
 [19] N. Juristo, A. Moreno, M Sánchez. “Techniques and
Patterns for Architecture-Level Usability Improvements”.
Deliverable 3.4. STATUS project.
Http://www.ls.fi.upm.es/status May 2003.

Commonality and Requirements Analysis for Mesh Generating Software

Spencer Smith and Chien-Hsien Chen

Computing and Software Department, McMaster University
E-mail: smiths@mcmaster.ca

Abstract

This paper presents a proposal to improve the software
quality of mesh generators, and by extension other scien-
tific computation systems, by applying software engineer-
ing methodologies, in particular commonality and require-
ments analysis. The case study presented shows that mesh
generating systems are well suited to development as a pro-
gram family and that scientific computing problems need a
requirements template tailored to this type of system.

1. Introduction

Software engineering methodologies have been gaining
acceptance for many different types of software, such as
business applications, real-time systems and safety critical
systems. Unfortunately, scientific computing software has
not yet received all of the benefits from the latests advances
in software engineering. This paper will show that the de-
velopment of scientific software, in particular mesh gen-
erating software, can greatly benefit from the use of such
software engineering methodologies as commonality anal-
ysis and requirements analysis. Moreover, research in the
field of software engineering will also benefit by tackling
some of the unique challenges that arise during an analysis
of scientific software. The case study presented in this pa-
per illustrates some of these challenges and it provides an
example of how to handle them.

Section 2 provides an overview of mesh generating sys-
tems, which provides the background for later discussion
of the system. Section 3 addresses the question of why
the software engineering methodologies of commonality
and requirements analysis benefit mesh generating systems.
Section 4 turns the discussion in the opposite direction and
explains why mesh generators are different from other types
of software and thus provide new and interesting challenges
for software engineering researchers. The details of the
commonality and requirements analyzes for mesh genera-
tors, originally described in [6], are presented in Sections 5,
6 and 7. The final section consists of concluding remarks.

2. Mesh Generating Software

A mesh is a discretization of a geometric domain into
small simple shapes, such as line segments in 1D, triangles
or quadrilaterals in 2D, and tetrahedral or hexahedra in 3D.
The principal application of interest for the current study is
the finite element method, where meshes are essential in the
numerical solution of partial differential equation arising in
physical simulation [4]. The files created by a mesh genera-
tor must describe the following: how the domain is decom-
posed into cells; the material properties; and, the boundary
conditions on the domain, with respect to applied tractions,
prescribed displacements and fixity. The quality of the mesh
that is generated is critical for the success of any finite el-
ement analysis; therefore, careful thought should occur be-
fore one proceeds to the implementation of the system.

3. Why is Predesign Analysis Necessary?

The predesign analysis that is advocated here consists
of a commonality analysis and a requirements analysis. A
commonality analysis is conducted to answer the question
of whether the software should be designed as a program
family. A program family is defined in [8] as a “set of
programs whose common properties are so extensive that
it is advantageous to study the common properties of the
programs before analyzing individual members.” The con-
tributing factors may be the variation in application de-
mands, the continuing improvement of technologies, the va-
rieties of different algorithms, and so on. Instead of building
those similar programs in the ignorance of their existence of
one another, one should take the advantage of developing
them as a family.

The analysis of why mesh generating software is well
suited to development as a program family is postponed un-
til Section 5. However, the idea has intuitive appeal when
one considers the proliferation of mesh generating software.
These software systems have much in common as they all
produce mesh data, but they differ in the shape of the orig-
inal domain, in the types of elements used, in the field of
application of the resulting mesh, etc. Rather than have

many independent programmers working on very similar
problems, it makes sense to investigate where the common-
alities lie, extract that information, and then do the job once,
do it well, and let future developers benefit from the exper-
tise of their predecessors.

A commonality analysis can benefit both large and small
mesh generating systems. In the case of large general pur-
pose systems, they often have a long life, but they usually
grow in an ad hoc. manner. Since the software grows with-
out a plan, the data structures and algorithms that were well
suited to what was initially a 2D code, may not be well
suited to the eventual 3D code. Small mesh generators also
benefit from a commonality analysis. In scientific comput-
ing it is common practise to develop a small specialized
tool that is useful for only a restricted class of problems.
A design based on the commonality analysis would allow
the practitioner to pick out the parts that are specialized for
their specific problem. Clear documentation of common-
alties should lead to designs and implementations that are
easier to reuse.

Software engineers generally advocate gathering and an-
alyzing requirements in advance of building any software
system because it is much easier and cheaper to correct
mistakes and misconceptions at the beginning of the pro-
cess than it is to try and fix problems during implementation
and maintenance. During the process of requirement gath-
ering, the requirements need to be documented in a soft-
ware requirement specification (SRS), which includes the
external behaviour of the system, the constraints placed on
the implementation, the forethought about the life cycle of
the system, and the acceptable response of the undesired
events [7]. In terms of quality, a SRS should be correct,
unambiguous, complete, consistent, modifiable, verifiable,
and traceable [3]. In the case of mesh generating systems
there is apparently no examples of SRS documentation. The
absence of such documentation has the following conse-
quences:

• Practitioners argue over the relative merits of differ-
ent designs based on their own implicit requirements.
A developer may criticize a design because it is not
efficient, but this criticism would not be justified if
the designer clearly started out with requirements that
clearly stated that precision, maintainability and porta-
bility are more important than efficiency.

• Verification and validation (V & V) are difficult be-
cause it is unclear what standards the system is be-
ing verified and validated against? Clear requirements
are necessary to know what the system should be in-
spected and tested for. Moreover, current V & V ef-
forts focus on functional requirements, but it is the
nonfunctional requirements, like accuracy, efficiency,
portability etc., that often distinguish designs.

• Communication between domain experts and others is
difficult. Proper documentation will free domain ex-
perts from doing the implementation and allow them
to pass this task onto computer science professionals.
Moreover, it will ease communication between domain
experts because they will be able to capture in the SRS
the details and special cases that are not typically dis-
cussed in a journal paper.

4. Challenges for Predesign Analysis

The previous section explained how mesh generating
systems can benefit from software engineering methodolo-
gies. This benefit actually goes in both directions, as re-
search in software engineering can benefit by tackling the
challenges presented by mesh generating systems. Some
examples of these challenges include the following:

• Mesh generating systems are unlike the business ap-
plications that software engineers often focus on. For
instance, mesh generators are not commercial prod-
ucts; they are often developed by researchers as open-
source projects. Since mesh generators are different
than business applications, the requirements template
that is used should also be different.

• Software engineers often advocate the use of formal
methods, which consist of using mathematical tech-
niques and notations to specify qualities and attributes
of the software. Mesh generators are based on the field
of computational geometry, which also advocates the
use of mathematics. The challenge is to bridge the
gap of communication between these fields, but the ex-
citing point is that both disciplines already speak in a
common language, the language of mathematics.

• A goal that many software engineers hope to reach
is the ability to proceed directly from specification to
code in an automatic manner. In general this is an ex-
ceedingly difficult problem to solve, but if the domain
of application is restricted, the problem may become
feasible. The field of scientific computation is a good
test bed for these kind of theories, because it consists
of well-defined problems.

• Most software engineering methodologies rely on the
use of discrete mathematics; therefore, scientific com-
puting, including mesh generating, presents a chal-
lenge because the emphasis is on continuous mathe-
matics.

5. Program Family Hypotheses

As indicated in [10], there are three basic assumptions
underlying the production strategies of program families as

described below.

The Redevelopement Hypothesis

This hypothesis requires that most software development
involved in producing the family should be redevelopement,
which means that there should be a significant portion of
the requirements, design, and codes in common among the
family members. For mesh generators there are examples
of large general purpose codes that are constantly redevel-
oped over their lifetime and most small codes are based on
modification of existing code. Although different in the spe-
cific details, all mesh generators can be abstracted as: input
information, calculate a mesh discretization and output the
results.

The Oracle Hypothesis

This hypothesis requires that the types of changes that are
likely to occur during the system’s lifetime are predictable.
This is certainly the case for a mesh generator as there is
considerable literature on the topic and many example sys-
tems currently exist.

The Organizational Hypothesis

According to the organizational hypothesis, the program to
be developed using the program family approach should be
one that allows designers and developers to organize the
software, as well as the development effort, in a way that
the predicted changes can be made independently. If this as-
sumption holds, then a predicted change will require chang-
ing only a few modules in the system. This hypothesis,
however, is challenging for mesh generating systems.

For some of the likely changes, such as the changes in the
user interface, visualization, and output format, the changes
can be dealt with in an elegant way. However, for other
types of the changes, like the use of different mesh gener-
ating algorithms and the use of different optimization and
smoothing algorithms, the goal of restricting the change
within one module is difficult to meet because a mesh data
structure is inevitably assumed by these algorithms. Re-
search on organizing the system so that predicted changes
can be made independently has begun [5, 6].

6. The Commonality Analysis Document

The organization of the commonality analysis document
basically follows the template proposed in [11], including
the documentation of lists of commonalities, variabilities
and parameters of variation. Each one of these lists as-
signs a unique item identification number to each entry, so
that cross-referencing is possible. Also, the commonalities,

the variabilities, and the parameters of the variations are all
stated in terms of external behaviour instead of the internal
design and implementation, as stressed in [10].

The commonality section lists the assumptions that are
true for all the members in the family. To make the list
accessible, every commonality is organized into one of the
following categories: problem domain, system capability,
user input, system output, mesh information, timing and
accuracy. The variability section contains all the changes
expected in the capability of the family. The parameter of
variation section further specifies variabilities by quantify-
ing them.

An example commonality for mesh generators is, “A
mesh should have only one element type throughout its en-
tire domain.” The related variability would be, “Different
mesh generators may generate meshes of different element
types.” This variability could have the parameters of varia-
tion of “Triangles and Quadrilaterals.”

7. Requirements Analysis

When designing the SRS, there are system-specific char-
acteristics that should be taken into account so that the re-
sulting SRS is better suited for the system it describes. The
characteristics that are most important for an SRS for mesh
generators are as follows: provision of the background con-
cept/information is important, there are many rules and con-
ventions, and the system features can be used to categorize
the system’s functionalities. These characteristics suggest
the SRS structure that is discussed below.

7.1. Introduction

What should the introduction of the SRS discuss? In [1]
and [9], the approach was taken to introduce the system
right from the beginning, without mentioning the purpose
of the documents. Whereas in [2] and [3], both the doc-
ument and the system are introduced together in the first
section. To keep the principle of separation of concerns, it
was decided that the introduction on the system should be
delayed to the section on the general system information,
and the first section should only introduce the document.

7.2. General System Description

This section provides background knowledge about the
system to help readers understand the specific system re-
quirements. The information contained in this section is
meant to be stated at high enough a level that other similar
systems can borrow this section with only minor changes.
In [9], the general information about the system is scattered
in various different sections, which offers a less compact or-
ganization and violates the separation of concerns principle.

In [2] and [3], their overall system description sections have
confusing and/or redundant subsections so that it is hard to
distinguish between subsections in terms of their contents.
Also, in many templates [1, 2, 3], major system constraints
are discussed in this section. Constraints are one type of
requirement, and can be addressed later in the system re-
quirements section. As a result of the above discussion, the
SRS for the mesh generator takes the skeleton of the gen-
eral system description section from [1] and removes the
subsection where constraints are discussed.

7.3. Specific System Requirements

After the general system information section comes the
specific system requirements section. This is the major sec-
tion of the SRS, and all system requirements should be here
under their relevant subsection. There are three types of
requirements: system constraints, functional requirement,
and non-functional requirements. The SRS of the mesh gen-
erator takes some of its ideas from [2] and [3]. The func-
tional requirements section has its template from [3].

7.4. Other System Issues

The idea of including supporting information relevant to
the system development in a SRS is proposed in [9]. Ex-
amples of the materials included in this section are open is-
sues, off-the-shelf solutions, project risks, project cost etc.
The SRS of the mesh generator adopts this practise, but only
chooses the subsections that are closely related to the pro-
cess of developing the system. To be consistent with the
program family methodology, there is a subsection named
“Our Program Family”, which provides a blueprint of how
the system will be extended.

8. Concluding Remarks

This paper presented a case study where software en-
gineering methodologies are applied to a mesh generating
system. The results of the commonality and requirements
analyzes highlight how valuable these exercises are to mesh
generating software, and to scientific computing systems in
general. By identifying commonalities, much of the redun-
dant effort that occurs today could by eliminated. Moreover,
the introduction of a requirements template will help future
research efforts in documenting scientific software. The
usefulness of software engineering methodologies does not
end at the predesign stages. A mesh generator can also ben-
efit from methodologies for decomposing the system into
modules and for documenting the interfaces of these mod-
ules [6]. This documentation allowed for a sample system to
be implemented by individuals not involved in writing the
original requirements document. The questions that they

raised acted as an effective review of the documentation and
helped to improve its overall quality.

Acknowledgements

The financial support of the Natural Sciences and En-
gineering Research Council (NSERC) and of Material and
Manufacturing Ontario (MMO) are gratefully acknowl-
edged.

References

[1] IEEE Std. 1233, IEEE guide for developing system re-
quirements specifications, 1996.

[2] ESA PSS-05-0 Issue 2, ESA software engineering
standards issue 2, 1991.

[3] IEEE Std. 830, IEEE recommended practice for soft-
ware requirements specifications, 1998.

[4] Marshall Bern and Paul Plassmann, Mesh generation,
Handbook of Computational Geometry, Elsevier Sci-
ence, 2000.

[5] Guntram Berti and George Bader, Design principles
of reusable software components for the numerical
solution of pde problems, presented at the the 14th
GAMM-Seminar Kiel on Concepts of Numerical Soft-
ware (January 23rd to 25th, 1998).

[6] Chien-Hsien Chen, A software engineering approach
to developing mesh generators, Masters thesis, Mc-
Master University, Hamilton, Ontario, Canada, 2003.

[7] Kathryn L. Heninger, Specifying software requirement
for complex system: New techniques and their appli-
cation, IEEE Transactions on Software Engineering,
vol. 6, no. 1, pp. 2-13 (January 1980).

[8] David Parnas, On the design and development of pro-
gram families, IEEE Transaction on Software Engi-
neering, vol. 5, no. 2, pp. 1-9 (March 1976).

[9] James & Suzanne Robertson, Volere requirements
specification template edition 6.1, Atlantic Systems
Guild, 2000.

[10] David M. Weiss and M. Ardis, Defining families: The
commonality analysis, Proceedings of the Nineteenth
International Conference on Software Engineering,
pp. 649-650 (1997).

[11] David M. Weiss, Commonality analysis: A systematic
process for defining families, ESPRIT ARES Work-
shop ’98, pp. 214-222 (February 1998).

Contextual Comparison of Discovered Knowledge Patterns
A.G. Büchner*, M. Baumgarten*, J.G. Hughes*, W.D. Patterson*

* Northern Ireland Knowledge Engineering Laboratory
Faculty of Engineering, University of Ulster

{ag.buchner, m.baumgarten, jg.hughes, wd.patterson}@ulster.ac.uk

Abstract: Contextual comparison of discovered patterns
deals with the interpretation of outputs from data mining
algorithms. The vehicle provided to perform such
operations is that of contextual interestingness, which
allows the allocation of importance and direction to each
attribute in a result set. Applying these mechanisms it is
not only possible to detect trends in results across time, but
also to compare individual result elements.
Keywords: data mining, knowledge comparison,
interestingness, context

1 Introduction
Recently, dissemination, application and deployment of
results, which have been generated by knowledge
discovery, have been of interest to the research
community. The main objective is that once useful and
novel information has been discovered it can be utilized in
a given domain. A problem which occurs frequently in
commercial and research scenarios, is that results from
knowledge discovery exercises carried out in separate
contexts have to be compared. The objective of this paper
is to address this issue.

For example, a classification is carried out on the
customer base of a retail outlet to discover distinguishing
behavior between customers with and without loyalty
cards. After the introduction of special offers targeted at
loyal customers, another analysis is carried out. The
question one would ask subsequently is “How much better
are the results based on the introduced campaign?”
However, no mechanism exists at present to carry out such
a comparison operation. Similarly, when evaluating
different algorithms for the discovery of the same type of
patterns, the results cannot be compared without
mundanely stepping through the details of each result set.

Section 2 defines the problem and outlines the scope of
the paper. In Section 3, a generic interestingness
framework is presented and notational issues are
addressed. Section 4 applies the proposed framework
before an application in the web mining arena is presented
in Section 5. Section 6 concludes the paper.

2 Problem Definition
Results from knowledge discovery stem from different
contexts. The types of context which are relevant are
algorithm contexts (same data is applied to algorithms, e.g.
ID3 and C5), data contexts (different data / same algorithm
and threshold settings, e.g. from different time spans or
samples), parameter contexts (parameters such as

thresholds are modified using the same algorithm and
data), or any permutation thereof. Additionally, analysts
interpret results from different viewpoints (user context).

In order to allow the interpretation of results generated
in such disparate situations, it is necessary to have access
to a flexible, yet powerful, mechanism which allows the
comparison of knowledge. Issues which arise are
• What types of knowledge can be compared with each

other?
• How can contextual information be incorporated?
• What is the most appropriate equivalence mechanism to

be applied in order to perform comparisons?
This work will resolve these issues and provide a novel

contextual interestingness measure which can be used for
comparison of results from knowledge discovery.

The high-level calculation of the contextual
interestingness calculation θ of any knowledge component
of type in a certain context is formulated as follows.

]1..0[→Context
Typeθ (1)

The greater the result the more interesting it is. The
objective is to specify this calculation with the greatest
degree of flexibility and support of contextuality.

Silberschatz & Tuzhilin [1] have tackled the central
problem of ‘good’ measures to identify the interestingness
of a pattern by introducing two different kinds of
interestingness. Objective measurements relate to the
structure of a pattern object and the underlying data used
to discover them, while subjective measurements depend
on the user’s needs, the domain the data is analyzed in, and
the scenario to which they are applied. While their
approach allows the comparison of interestingness values,
it neither provides a vehicle to allow a user to define the
concept of comparative or contextual interestingness.
Further work related to the proposed approach covered by
the three areas of knowledge fusion which deals with the
combination of knowledge, knowledge sharing which
refers to the process of locating and extracting knowledge
from multiple sources and transforming it so that the union
can be applied in problem-solving and sequence alignment
methods which calculate the distance between sequences,
which is reflected by the numbers necessary to convert a
source sequence into its target counterpart.

3 Interestingness Framework
This section introduces a framework which provides
structures and operations for the comparison of multiple

results from knowledge discovery. The principle idea is
not to compare knowledge per se, but to compare the
results which are derived from discovered knowledge.
3.1 Result Comparison Structure
The outcome of a knowledge discovery exercise is a
predictive model. Each model is of a certain type, for
instance a neural network or a set of sequences. Models of
some type contain also the information about the data it
has been derived from (associations, sequences, episodes),
while most types only provide information about the
model itself (rules, clusters, neural nets, regression, etc).

While it is in principle possible to compare results of
different type e.g., a neural net with a decision tree, the
scope of this work is restricted to the comparison of
compatible results, i.e. results of the same type. All results
of the same type t are organized in a result space ℜ.
Definition 1. Result Space ℜ

ℜ = {R1, R2, R3, …}, such that () 1
1

=
ℜ

=
U
i

iRt .
♦

Each R ∈ ℜ contains a set of result elements which
describe the result with quantitative and / or qualitative
values. Quantitative measures represent information about
the result element per se e.g. support and confidence.
Qualitative measures provide information about the
content of a result element e.g. quantification of values.
Definition 2. Result R and Result Elements r
R = <{r1, r2, r3, …}, a}; each result element r = <I, a>,
where I is an optional set of items and a a set of attribute
tuples such that a = {<λ1, υ1>, <λ2, υ2>, …}, where λ
represents a label and υ its normalized value (0 ≤ υ ≤ 1). ♦

Quantitative and qualitative values are treated
holistically and are referred to as attributes. A set of
attributes can be attached to each element in ℜ and R. The
range of available attributes depends on the type of
knowledge that has been generated. A topology containing
results and allotted attributes is depicted in Figure 1.

ℜResult Space

R1 R2
Results

r11
Result Elements

Attributes

r21
r22

r23

11

11

22

11
υλ
υλ

r13
r12

12

21

22

11
υλ
υλ

31

31

22

11
υλ
υλ

12

12

22

11
υλ
υλ

22

22

22

11
υλ
υλ

32

32

22

11
υλ
υλ

113 υλ 123 υλ

Figure 1. Result Space Topology
In order to illustrate the outlined concepts an example

is provided dealing with the results of a decision tree. The
objective of the exercise is to apply a model on two data
sets (1998 and 2003) of the same patients, which predicts
the likelihood of developing Alzheimer’s disease. The

input data contains information on patients’ gender, age,
height, weight, smoking habits, alcohol consumption, etc.

A rule induction example has been applied with three
classification labels (low, medium and high) for the
predictability of the disease, which are represented as
items. The output sets contain two attributes, namely
support and confidence.

R1 I1998 asupport aconfidence R2 I2003 asupport aconfidence

r11 Medium 0.04 0.4 r21 High 0.05 0.5
r12 High 0.05 0.2 r22 High 0.02 0.8
r13 Low 0.07 0.8 r23 Medium 0.07 0.6
r14 Medium 0.01 0.4 r24 High 0.02 0.2

Table 1. Rule Induction Results
The sample result elements are shown in the table

above. Questions that are feasible to ask are: “Has the
health of patients improved or deteriorated?” and “Which
patient’s condition has improved / deteriorated over the
last 5 years?”
3.2 Contextual Interestingness
In order to compare attributes and results, the notion of
contextual interestingness is introduced on attribute,
element and result level. In order to allow the user to
specify contextuality for a given problem, the concept of
contexts is introduced. A context describes a given
phenomenon, scenario or problem, using knowledge
discovery specific attributes. Contexts are organized in a
context space Γ.
Definition 3. Contexts
Γ ={γ1, γ2, γ3, …}, where each γ = {α1, α2, α3, …}. Each
attribute α = (λ, δ, ι), where δ ∈ {0, 1} and 0 ≤ ι ≤ 1. ♦

The label λ is the name of a phenomenon in a given
problem space, aka context identifier. Examples in data
mining are thresholds (support, confidence) or quantitative
information (weight, size, and length). The label is the
logical link between result attributes and context attributes.
The direction δ is a binary value that states whether an
increase of the value is positive (0) or negative (1) in the
context the data mining exercise is carried out. The
importance factor ι states the relevance of the direction δ.

For example, when discovering sequences in a web
mining application, long sequences are attractive when the
host’s remuneration is based on the number of page
impressions. Contrarily, short sequences are appealing if
the objective is that customers solve their problem with as
few clicks as possible. Both importance and direction are
adjustable within the given limits.

The interestingness of an attribute comprises the degree
of interest associated with it in a given context. That is
when putting a certain result in a certain context, its
interestingness can be calculated.
Definition 4. Attribute interestingness θa

θa (υ, δ, ι) = |(υ – δ) * ι| → [0…1] ♦
Interestingness embraces both objective and subjective

measurements. Former relates to the structure of a pattern
and the underlying data used to discover it, while latter

depends on the user’s needs, the domain the data analyzed
is in, and the scenario to which it is applied. Thus, the
interestingness of a pattern is by no means an objective
value that remains constant across comparisons;
interestingness is a subjective representation of the user’s
priorities in conjunction with the raw pattern values.

In order to compute the interestingness θo of the
attributes of either a result element r or a result R all
attributes are taken into account.
Definition 5. Object interestingness θo

() () []1..0/,,
1

→

= ∑

=

aa
a

i
iiiao ιδυθθ ♦

|a| represents the amount of attributes in a. This
operation calculates the arithmetic mean of all attribute
values in a given context. This measure is used as basis for
the calculation of the result element interestingness θe and
the result interestingness θr.
Definition 6. Element interestingness θe

() ()() []1..0→= rare θθ ♦

Definition 7. Result interestingness θr

() ()() []1..0→= RaRr θθ ♦

Using the earlier introduced Alzheimer’s prediction
example, the classification labels have been quantified to
low=0.3, medium=0.6 and high=1. The following can be
calculated, given that for λrisk δ=0 (in this context lower is
more interesting), ι=100% (highest importance), for λsupport
δ=1, ι=50% and for λconfidence δ=1, ι=80%.

()
() 142.0

3
|8.0*5.0||5.0*05.0|0

247.0
3

8.0*4.05.0*04.0|0.1*)16.0(|

12

11

=
++

=

=
++−

=

r

r

e

e

θ

θ
(2)

Due to the fact that interestingness of the result in 1998
is greater than the one of 2003, this means that patient r1’s
condition has worsened. Calculating the four result
element interestingness measures for 1998 and 2003, and
building the arithmetic mean results to 0.252 and 0.18,
respectively. Those two values are accepted as new
attributes λrisk for R1 and R2 (δ=0 and ι=100%). Given that
Alzheimer’s disease is an age related illness the data set of
2003 is ‘punished’ via an age attribute (δ=1, ι=20%).

R () 4/
4

1

∑
=i

ie rθ δ1 ι1 age δ2 ι2

1998 0.252 0 100% 0.5 1 20%
2003 0.18 0 100% 0.8 1 20%

Table 2. Result Attributes
Calculating θr(R1)=0.176 and θr(R1)=0.0.38 it can be

shown that the overall population has also deteriorated; in
fact the situation has worsened substantially.
3.3 Attribute Generation
As outlined previously, the set of attributes a associated

with each r and R of the result space form the basis of
calculating contextual interestingnesses. Attributes on each
level can be provided through the result sets themselves,
they can be specifically set by the user or they can be
derived from other attributes, e.g. average or coverage
values. Average values represent the arithmetic mean of
sub values, that is the average interestingness of all r ∈ R
calculated as follows.

||/))((
||

1
RRr

R

i
ie

∑
=

θ (3)

Coverage values are derived using the scope of the
overall result space. For instance, given all distinct result
elements of r, a coverage attribute for each R is calculated
indicating the exposure of r in each R.

4 Specific Knowledge Types
The proposed framework has been applied to results from
a rule induction exercise. In order to show that the
introduced mechanisms can be adapted to every common
type of knowledge discovered by a predictive modeling
exercise, the specific knowledge type of sequences is
presented in detail, before other types are briefly covered.

In addition to the generic structural and operational
artifacts presented in Section 3, a collection of standard
segment-specific attributes is introduced. A pictorial
summary of the constructs is depicted in Figure 2 below.
Typical standard attributes on result element level are
segment density, size and weight. More domain (or
context) specific attributes can be added to this set, for
instance average price per segment. Attributes on result
level include the number of segments in all r’s or average
segment size, density and weight. The inclusion of the
mean element interestingness of all r’s has proven useful
(see example above).

R1

r11
r13

r12

•Density
•Size
•Weight

•# of Segments
•Average Size
•Average Density
•Average Weight
•Mean θe(r)

Figure 2. Segment-specific Structure
It is possible to introduce attributes at result space

level, for example, total number of segments, total number
of unique segments or average segment size, density and
weight. These attributes have proven useful when
calculating the interestingness of ℜ, for instance, to
determine the quality of the entire result space. However,
due to the fact that they cannot be used for comparison
purposes (only one knowledge space exists for each type),
they were not included in this work.

Due to space restrictions it is not possible to cover a
wide range of knowledge types in detail. The table below
lists a range of attributes for a list of important knowledge
types.

Type Element Result
Associations # of items

Support
Confidence

associations
Avg. / unique # items
Support/ confidence

Sequences # transactions / sets
Max. time
Max. support

sets
Occurrence
Support / Confidence

Decision
Trees

nodes
scores
Avg. predicate number

Score
Record count
predicates

Neural
Networks

neurons
Avg. bias

Avg. bias / threshold
Avg. connection weight

Regression Avg. # predictors
Max. intercept
Avg. coefficient

predictors
Intercept
Avg. coefficient

Naïve Bayes Threshold
Bayed input
Avg. value / counts

pair counts
Avg. value / count
Max. value

Table 3. Knowledge Type Attributes
It must be stressed that the set of covered attributes and

methods is by no means complete and can be extended at
any time. For instance, in the application described in
Section 5, an additional ‘coverage’ measure has been
introduced, which conveys the number of items in a rule
related to the number of items in the respective result.

5 Application
The presented domain-agnostic interestingness framework
has been integrated in a knowledge comparison
architecture, where a web mining application has been
conducted. The goal was to show the changes of visitor
clusters in two time frames (contexts). After the analysis of
the first period, changes were carried out to the site and the
objective was to demonstrate the impact of those changes.
A representative investor relations segment from each time
frame is used to show the application of the framework.

During the first period the cluster contained eight
pages, which are listed in Table 4a in conjunction with the
rounded average number of seconds spent on each page.

Page Seconds spent
Home 5
Staff/CEO 22
Staff/CIO 20
Staff/CFO 20
Investment 45
Board 16
Awards 8
Endorsements 8

Page Seconds
spent

Home 5
Seniorstaff 33
Investment 48
Endorsements 11
Board 9

Table 4. Cluster from (a)Context1 and (b)Context2

The three staff pages were amalgamated to a senior
staff page and the content of the awards page was included
in an endorsement page (Table 4b). The following table
shows the attributes and its values for both contexts and
their respective importance factors and directions.

Attribute r1 r2 ι δ
λ#Pages 8 (1.0) 5 (0.625) 100% ↓
λTimeSpent 101 (0.73) 139 (1.00) 100% ↑
λDensity 0.42 0.37 75% ↓
λSize 84 (0.74) 113 (1.00) 10% ↑
λWeight 0.17 0.22 75% ↑

Table 5. Attributes for r1 and r2

Following the element interestingness θe calculation in
Definition 6, the comparison of the two segments
representing investor relations, was calculated as follows.

()

() 5065.0
5

585.01.0473.01375.0

372.0
5

623.0074.0435.073.00

2

1

=
++++

=

=
++++

=

r

r

e

e

θ

θ
(5)

The cluster from the second time frame (r2) is
significantly greater (that is, better within the scope of the
analysis) than the first (θe(r1)< θe(r2)). Thus, it was
possible to measure the impact to the investor segment of
the changes which were made to the web site structure.

A further comparison was carried out which compared
the two clusters in their entirety (all results of both
contexts). The result interestingness θr was performed
according to Definition 7, based on the derived avg.
element interestingness of all r’s, the number of clusters,
the avg. time spent, the avg segment size and weight.

Attribute R1 R2 ι δ
λ Avgθe 0.44 0.58 100% ↑
λ#Cluster 6 (0.75) 8 (1.00) 0% ↑
λAvgTimeSpent 34 (0.89) 38 (1.00) 100% ↑
λAvgSize 417 (1.00) 364 (0.87) 50% ↑
λAvgWeight 0.25 0.22 75% ↑

Table 6. Attributes for R1 and R2

Calculating the result interestingness for R1 and R2
results in θe(R1)=0.404 and θe(R2)=0.436, which shows that
the new site is more interesting. However, the change is
not as significant as the one for the investor relationship
segment, which was the intention of the restructuring.

If the target of the analysis would be the improvement
of the click-to-close ratio, the direction of λAvgTimeSpent
would be reversed. Keeping all other values static results
in θe(R1)=0.248 and θe(R2)=0.236. This hypothetically
example demonstrates the simplicity and flexibility of the
framework and shows how the same results of knowledge
discovery can be analyzed in multiple contexts.

6 Conclusions
A generic framework has been presented that allows the
comparison of results, which are discovered by knowledge
discovery. The framework is algorithm agnostic, that is it
covers all common types of knowledge (generality). Due
to its flexible structure, full extensibility and re-usability
are guaranteed. The vanilla approach of the model and its
calculations assure simplicity and integratability. All
contextual values can be adjusted interactively (flexibility)
providing a solid domain-agnostic basis (applicability).

References
[1] A. Silberschatz, A. Tuzhilin, What Makes Patterns

Interesting in Knowledge Discovery Systems, in IEEE
TKDE, 8:970–974, 1996.

Datawarehouses design: effectivity of the star schema

Coral Calero, Manuel Serrano, Mario Piattini
ALARCOS Research Group

Department of Computer Science-University of Castilla-La Mancha
Paseo de la Universidad, 4 13071 Ciudad Real (Spain)

{Coral.Calero, Manuel.Serrano, Mario.Piattini}@uclm.es

Abstract. Datawarehouses have become the most
important trend in business, and it is essential that the
design be made to assure efficiency and simplicity of use.
Although it is generally accepted that the star design is the
best way to implement datawarehouses in relational
database management systems there are no studies that
confirm this assumption. With the aim of determining if
the star design really gives more comprehensible
datawarehouses, we are carrying out a series of
experiments. In this article we present the studies done up
to now showing that there is no difference in difficulty
when using the “traditional” relational method (using E/R
modeling and then transforming it into the relational
model) than when using the star design.

1. Introduction

Datawarehouses arose due to the need of organizations to
have mechanisms that helped in decision making.
Datawarehouses have become the most important trend in
organizations since they provide information for
improving strategic decisions. Datawarehouses and
related business intelligence technnologies have increased
enormously in recent years, and are expected to reach 150
billion dollars in 2005 (Jarke et al., 2000; Chenoweth et
al., 2003).
If the datawarehouse has been properly constructed, it
provides the organization with a foundation that is
extremely flexible and reusable (Inmon, 2002). So, it is
essential to assure that the datawarehouse is designed
properly. One way of designing a datawarehouse is to use
dimensional modelling, a logical design technique
alternative to the classical database design based on
entity-relationship modelling (together with the
transformation to the relational model).
The dimensional modelling technique seeks to present the
data in an intuitive standard framework that allows high-
performance access. The dimensional model is composed
of a table called the fact table (the primary table that is

meant to contain measurements of the business) and a set
of smaller tables called dimensional tables.
Some authors, such as Kimball et al (1998) argue that
dimensional modelling is the only viable technique for
delivering data to end users in a datawarehouse and has a
number of advantages over the entity-relationship based
methodology. In general, it is argued that decision-
oriented dimensional datawarehouses are fundamentally
different from transaction-oriented relational databases
and a different set of tools is required for their effective
development (Chenoweth et al., 2003).
There is, however, no proof of this assumption. In an
attempt to clarify this assumption, we decided to do a
series of experiments with the intention demonstrating
that the use of the star model makes datawarehouses
simpler to use than when the traditional design is used
(relational and E/R).
The work done until now can be divided into two studies
(one of them was replicated twice). In this article we
present all the results that we have obtained from all these
experimental studies.
In the following section all the experimental processes of
each of the studies together with its conclusions are
described. Section three presents the conclusions and
describes future studies.

2. Experimental work

The objective of our work is to determine if it is better to
design the datawarehouse using a traditional design
methodology (that begins by model E/R and follows with
the transformation to the relational model) or by using the
star design. Until now we have carried out two
experiments and we have replicated one of them twice.
In both experiments the working hypotheses, the
dependent and independent variables with which the
experiments work, the experimental material, the
execution process and many of the threats to the validity
of the experiments are the same. Before explaining in
depth each experiment and the results obtained we will
explain in detail the common elements.

2.1. Hypotheses.

Our hypotheses are:
Null hypothesis (H0): There is no difference in the
understandability of the two kinds of schema (traditional
and star).
Alternative hypothesis (H1): There is a difference in the
understandability of the two kinds of schema (traditional
and star).

2.2. Dependent and independent variables.

In every case we have measured the dependent variable
(understandability) by means of the time used by each
subject in making the indicated tasks, the independent
variable being the model used for the logical
representation of the datawarehouse (traditional or star).

2.3. Experimental material and execution

The experimental material and the form in which the
experiments were carried out were similar in both
experiments. The schematas were provided to the subjects
(six in the first study and twelve in the second) together
with the questions. The subjects must indicate how and to
what tables of each schema they must gain access to
recover certain information from the datawarehouse. They
also had to write down the time used in responding to
each of the questions.
The experiment was done in one session. Before carrying
out the experiment we gave an intensive explanation of
what kind of problems they had to solve, how to answer
the questions and what sort of material was provided for
the accomplishment of the experiment. In no case did the
subjects have knowledge of the aspects that we were
trying to study or of the hypotheses we were working
with.

2.4. Threats to validity

In order to be able to avoid diverse threats to the validity
of the experiment, we tried to control some aspects:

In each experiment subjects had similar
experience and knowledge. Although to work
with students might not appear rigorous, there
exist studies that affirm that the differences
between students and professionals are small and
studies with students are viable under certain
conditions (Hörst et al., 2000).
The domains of the diagrams were simple and
sufficiently known to avoid problems of
understanding.
In order to avoid learning effects the schematas
were given to each subject in a different order.

As it was the first time that the subjects
performed an experiment of this type, persistence
effects do not exist.
Subjects were motivated because the exercises
were included into the knowledge they had to
acquire in their training.
Plagiarism was controlled and conversations were
not allowed among subjects during the
experiment.
All the doubts were solved by the person who led
the experiment.

In the following two sections we will present in depth
individual aspects of each of the experimental studies.

3. First experiment

As we have already mentioned this first experiment was
replicatd twice so, finally we had three examples of the
same experiment (an original experiment and two
replicas).

3.1. Experimental design

The experiment consisted of six schematas, three
traditional schemes and three semantically equivalent
schemas designed using star diagrams. Subjects had to
formulate SQL queries and to write down the time (in
seconds) that it took make them.

3.2. Subjects

In the original experiment the subjects were 11 PhD
students at the School of Computer Science of the
University of Castilla-La Mancha (UCLM) in Spain. One
of the replicas was made by 12 undergraduate students of
the UCLM who were enrolled in the final year (when the
experiment was done they were following a course on
databases lasting two semesters) whereas the other replica
was carried out with 24 PhD students of the Pinar del Rio
University (Cuba).
In all the cases the subjects had knowledge of design and
use of databases and datawarehouses. In addition the PhD
students had a deeper knowledge of datawarehouses
because they had received this information as part of their
PhD studies.

3.3. Limitations

We are conscious of some limitations associated with
these experiments such as the small number of subjects
and objects and the difficulty associated with the use of
SQL for the specification of the exercises given to the
subjects.

3.4. Results

For our experiment we fixed a value = 0.1 to increase
the power of the statistical tests (that is to say, the
probability of rejecting our hypotheses when these are
false). Due to the experimental design and to the gathered
data the most suitable test is a repeated measure
univariate ANOVA test (SPSS 11, 2001).
In tables 1, 2 and 3 the results obtained after applying the
statistical test to the data gathered from the experiment
are shown. Analyzing the significance value we can
observe that all the values are greater than and,
therefore, we cannot reject the null hypothesis. So, there
is no difference in the time used to answer the questions
depending on the type of design used (Schema_type
variable).

Table 1. ANOVA results for PhD students from
UCLM (Spain)

Sum of
squares Df

Mean
Square F Sig. Power

Schema_Type 10730,09 1 10730,09 0,01 0,95 0,10

Table 2. ANOVA results for undergraduate students
from UCLM (Spain)

Source
Sum of
squares Df

Mean
Square F Sig. Power

Schema_Type 8557,55 1 8557,55 0,09 0,82 0,10

Table 3. ANOVA results for PhD students from Pinar
del Rio University (Cuba)

Source
Sum of
squares Df

Mean
Square F Sig. Power

Schema_Type 101117,21 1 101117,21 0,02 0,90 0,10

As a conclusion we can deduce that there seems to be no
difference in the understandability of the schematas
because of the design method used. Nevertheless, as these
conclusions could be due to the sizes of the schematas
used in the experiment (they are not very large) or to the
fact that SQL has been used to obtain the answers, we
decided to replicate the experiment incorporating some
changes that allowed us to avoid these limitations as far as
possible.

4. Second experiment

In the second experiment and taking into account the
previously obtained results, we decided to make a replica
in which, working with the same hypotheses and with the
same variables, we incorporated two fundamental
changes; firstly we decided to increase the number of
objects and, secondly, we tried to facilitate the work of

the subjects allowing them to use natural language instead
of the SQL.
Thus, the new experiment can be characterised as follows.

4.1. Experimental design

In this occasion, the experiment consisted of twelve
schemes (the six ones from the first experiment and other
six new schemas), six traditional schematas and six
semantically equivalent schematas designed with star
diagrams. On each one of them, the subjects had to
indicate (in natural language), the necessary steps to
obtain certain data from the datawarehouse schema and to
write down the time (in seconds) that they took to perform
these steps (as in the previous case, since, as we have
already indicated, the dependent variable did not vary).

4.2. Subjects

In this occasion we had eighteen people, final year
undergraduate students of the School of Computer
Science of Ciudad Real (UCLM) who were doing a
course on Information Retrieval where all the concepts
related to datawarehouses were explained. In addition, all
of them had attended a course on Databases (mandatory at
the third level of their studies) in which all the contents
relative to the relational model are dealt with in depth.

4.3. Limitations

The main limitation in this case is the low number of
subjects.

4.4. Results

We fixed a value = 0.1 and, as the design is the same as
in the previous experiment, we applied also the repeated
measure univariate ANOVA test (SPSS 11, 2001).
In table 4 the results obtained from the experiment are
shown. As the value obtained is less than , we can reject
the null hypothesis, and therefore there is a difference in
the time needed to answer the questions according to the
type of design used (traditional or star, Schema_type
variable).

Table 4. ANOVA results for the second experimental
work

Source
Sum of
squares Df

Mean
Square F Sig. Power

Schema_
Type 154615,005 1 154615,005 11,572 0,001 0,960

As the obtained value is significant, the next step is to
take the Difference of means to obtain more data. In table
5 the results obtained for this statistical test appear.

Table 5. Results of the Difference of means for the
second experimental work

Number
of

Schema
Traditional

design
Star

design
Difference
of means

1 174,33 164,56 9,78
2 263,78 259,72 4,06
3 245,22 243,61 1,61
4 333,83 152,67 181,17
5 168,00 158,61 9,39
6 299,83 184,78 115,06

Total 247,50 193,99 53,51

Based on the results obtained for the Difference of means,
it can be concluded that when the datawarehouse is
designed using star diagrams the time averages are
smaller than when we use traditional design, and so we
could conclude that the star design seems to be easier to
understand than the traditional one for the design of
datawarehouses.

5. Conclusions from all the experimental work
developed

As can be appreciated, the results obtained are not
definitive. Although in the first study we obtained the
result that both modelling techniques could be appropriate
for the logical design of the datawarehouses in the second
study the star model seems to be more suited.
So, it seems that, at least, the use of the star design is not
more difficult than the traditional design.
Nevertheless, to be able to reach more definitive and
trustworthy results it is essential to carry out replicas of
the second experimental work with more subjects with
differing experience (for example with professional
designers of datawarehouses). In addition, it would be
advisable to perform another type of replica, for example,
varying the hypotheses.

6. Conclusions and future works

Datawarehouses are one of the main trends in information
systems since they help in strategic decision making.
Diverse methods for datawarehouse design have been set
out based on star diagrams, since it is supposed that these
diagrams, compared with the use of traditional modeling

(ER and relational), increase the effectiveness and the
understanding of the schemes of datawarehouses.

Although this affirmation is widely accepted, it has not
been empirically demonstrated, which is why we decided
to do a series of experiments. The experiments try to
detect causal relationships between the logical design of a
datawarehouse (traditional vs star) and the
understandability of it. In all of them subjects had to make
queries (in SQL or natural language) about a logical
datawarehouse schema (traditional or star design). The
way to determine the understandability of each of the
schematas was to record the time required to carry out the
indicated operations.
As a conclusion of our study we can say that using the
star model, as was anticipated, we obtain schematas not
more difficult to understand than the relational ones and,
in some cases, they have turned out to be simpler.
To be able to have reliable results and definitive
conclusions it is necessary to perform more replicas of
these experiments and also new experiments together with
their replicas. In addition, it is also fundamental to run
case studies to know if the results obtained from
controlled experiments are the same.

ACKNOWLEDGMENT

This research is part of the MESSENGER project (PCI-
03-001) supported by the Consejeria de Ciencia y
Tecnología of Junta de Comunidades de Castilla-La
Mancha (Spain) and the CALIPO project (TIC 2003-
07804-C05-03) supported by the Ministerio de Ciencia y
Tecnologia (Spain).

REFERENCES

[1] Hörst, M., B. Regnell and C. Wohlin (2000) Using students
as Subjects – A Comparative Study of Students &
Profesionals in Lead-Time Impact Assessment. 4th

Conference on Empirical Assessment & Evaluation in
Software Engineering, EASE, Keele University, UK.

[2] Chenoweth, T., Schuff, D. and St.Louis, R. (2003). A
method for developing dimensional data marts.
Communications of the ACM. December 2003. Vol. 46,
No.12. pp. 93-98

[3] Inmon, W.H. (2002) Building the data warehouse. 3rd ed.
Ed. Wiley

[4] Jarke, M., Lenzerini, M., Vassilou, Y. and Vassiliadis, P.
(2000) Fundamentals of Data Warehouses. Ed. Springer.

[5] Kimball, R., Reeves, L., Ross, M. and Thornthwaite, W.
(1998) The datawarehouse life cycle toolkit. Ed. Wiley

[6] SPSS 11.0. (2001) Syntax Reference Guide,. Chicago,
SPSS Inc., 2001.

Distributed Knowledge Based System Using Grid Computing for Real Time Air
Traffic Synchronization - ATFMGC

Li Weigang1, Daniel Amaral Cardoso2, Marcos Vinícius Pinheiro Dib2, Alba Cristina Magalhães
Alves de Melo1

Department of Computer Science of the University of Brasilia1

Politec Brazil2

email: weigang@unb.br

Abstract. A distributed Knowledge-Based System using
Grid Computing for Real Time Traffic Synchronization is
proposed in this research. The paper presents Air Traffic
Flow Management (ATFM) problem and its
synchronization property. Air Traffic Flow Management
Grid Computing-ATFMGC, the grid architecture, the
basic components and relationships among them and the
Knowledge-Based System (KBS) inference process are
described in order to demonstrate the developed model.
As an illustrative example, a tactical planning case study
in São Paulo airport is reported. Using grid computing
with Distributed Knowledge-Based System to improve
ATFM computational efficiency may be a promise topic
in the further research.

1. Introduction

Air Traffic Flow Management (ATFM) is a kind of Real
Time Traffic Synchronization problem [1,2]. Due to the
large-scale, safety and synchronization characteristics, in
most of the models and systems for ATFM, computing
efficiency is a common critic problem. Since 1970s,
scientists from Artificial Intelligence (AI), Operation
Research and Air Transportation have worked together to
develop more efficient Air Traffic Control (ATC) and Air
Traffic Management (ATM) systems, but the computing-
based solution still needs to be further enhanced to reduce
the aircraft delay.

Some Knowledge-Based Systems (KBS) have been
developed in ATC/ATM, such as 4D-Planner that is a
ground based planning system using a rule-based system
for arrival sequencing and scheduling in ATC [3,4].
Gosling [5] pointed out the potential of AI application in
ATC. A real time knowledge based support for ATM has
been developed by IBM Switzerland [6]. In Brazil, an
expert system for Air Traffic Flow Management (ATFM)
has also been investigated to make timetable schedule and
the traffic flow control [7,8].

A distributed ATM system was studied in Australia [9].
The advantages of that approach are inherent, autonomy,
communication and reliability. Prevôt from NASA Ames
Research Center has studied a distributed approach for
operator interfaces and intelligent flight guidance,
management and decision support [10]. An application of
multi-agent coordination techniques in ATM, which sets
up a methodological framework using multi-agent
coordination techniques that supports the collaborative
work in ATM has also presented recently by Eurocontrol
[11]. It should be mentioned that, the multi-agent
coordination techniques is a useful methodological
framework, however the research in [11] is limited to a
software shell. Due to the great quantity of traffic as
ATFM, this implementation may be difficult when
brought into practical fields.

Recently, grid computing presents a perspective to get the
solution for the large-scale computation task as ATFM.
Computational grid has been defined as “coordinated
resource sharing and problem solving in dynamic, multi-
institutional virtual organizations” [13-17]. They consist
of hardware and software infrastructure which provides
dependable, consistent, pervasive, and inexpensive access
to high-end computational capabilities. An agent-based
resource management system for grid computing shows
the importance of the research in both grid computing and
AI [12]. Grid resource management has been defined as
the process of identifying requirements, matching
resources to applications, allocating those re-sources, and
scheduling and monitoring Grid resources over time in
order to run Grid applications as efficiently as possible
[21].

Based on the mentioned researches, especially on the
paper of [7-11], in this study a Distributed Knowledge-
Based System for a grid-computing environment is
proposed. The paper describes the synchronization
concepts in ATFM, the main structure of the system, the
relationships among the components of the model of

ATFM Grid Computing - ATFMGC, and the
implementation of the prototype. At this moment,
ATFMGC was implemented as a prototype in a network
with three computers. As an example, a tactical planning
case study related with some Brazilian airports is
illustrated. As the preliminary study, the paper shows that
the investigation of a Distributed Knowledge-Based
System using grid-computing for real time traffic
synchronization is not only a simple application, but it is
an important study topic in proper AI. After deep research
on this subject, the potential benefits might be significant
for artificial intelligence, grid computing and air
transportation.

The following sections are organized in five parts: soon
after this introduction, section 2 presents the basic
concept and characteristics about ATFM. In the third
section, architecture and components of ATFMGC are
described. Fourth section presents the implementation of
ATFMGC, agents and inference processing. The case
study is illustrated in fifth section. And finally, sixth
section shows the conclusions.

2. ATFM Real - Time Air Traffic
Synchronization Problem

ATFM is developed to ensure an optimum flow of air
traffic to or through areas within which traffic demands
exceeds the available capacity of the ATC system [8] at
certain times. General scenery of ATFM is shown in
figure 1. ATFM includes four main functions: Strategic
Planning (involving long term: days to years), Pre-
Tactical and Tactical Planning (involving middle term:
from 1 hour to days), Short Term planning (involving
short term: from 20 minutes to 1 hour), and Monitoring
and Control (On-Line operation). As mentioned by [1],
the ATFM system shows the following two special
properties:

Real-time Air Traffic Synchronization, an activity,
which consists in implementing corrective actions on
traffic applicable until the traffic is actually received
by controllers to protect.
Dynamic collaborative decision-making: aimed at
achieving prompt dynamic “agreements” between
Traffic Managers co-involved in the implementation
of corrective actions on traffic transiting from one
sector to the other.

In this study, the scope is limited to the ATFM tactical
planning. The main functions are considered as following
[7,9]:

Creating a schedule for all departing and arriving
flights to the airport, while maximizing the utilization
of the runway and the terminal;

Identifying congestion areas with regards of the air-
space, aircraft and terminal constraints;
Negotiating with other agents on the expected traffic
flow to and from the airport;
Re-schedule the flights according to the outcome
negotiation; and
Communicating the new schedule to other affected
agents.

Figure 1. ATFM system

3. Architecture and Components of ATFMGC

Centralized Expert System for ATFM [7] has a simple
structure and is easy to implement. This study uses the
grid-computing platform to implement a distributed
expert system on the grid computing.

3.1. Architecture

Grid computing distinguishes from conventional
distributed computing by its focus on large-scale resource
sharing, innovative applications and high-performance
orientation. Grid technologies support flexible, safety,
coordinated resource sharing among dynamic collections
of individuals, institutions, and resources.

ATFMGC is proposed to support the sharing and
coordinated using of diverse ATFM resources in dynamic
and distributed Brazilian air traffic control system. As the
airports are geographically distributed, components of
ATFM operate by distinct controllers, some times with
differing policies. ATFMGC in every airport is
developed as a virtual computing system that is
sufficiently integrated to deliver the desired quality of
service over all ATFM.

Using web methods, the computational clients in
ATFMGC can perform the computations on their own

airport data. The controller client does not connect
directly to the “Final Service”, but connects to an
Interface of web service. In this way, the program of
controller clients is proposed for the complexity of
parallel computation to resolve the ATC/ATM conflicts
and insert the changes of flight schedule at each airport.
As shown in figure 2, all the clients communicate the web
methods and receive the results.

The proposed ATFMGC architecture consists of five
components: Interface, Open Grid Services Architecture
(OGSA), Web Services, Knowledge-Based System (KBS)
and Database distributed in a set of airports. The basic
components in the ATFMGC architecture and the
relationship among the components are shown in Fig. 2.

3.2. Basic Components in ATFMGC

Interface. The function of operation interface is to help
the flight controller to use ATFMGC through Web
Services. Assuming that each airport has its own
operation system, with this interface, the controller sends
the requirements and receives the answers from related
airports, through some specific notification services of
grid computing.

OGSA Globus Toolkit. The Open Grid Services
Architecture (OGSA) aims to define a new common and
standard architecture for grid-based applications. Grid
technologies, as Globus Toolkit, are evolving toward an
Open Grid Services Architecture (OGSA) in which a Grid
provides an extensible set of services that virtual
organizations (in this research, ATFM system at each
airport) can aggregate in various ways. Based on the
concepts and technologies from both the Grid and Web
services communities, OGSA defines a semantic uniform
of service (the Grid service); defines standard
mechanisms for creating, naming, and discovering
transient Grid service instances; provides transparency of
location and multiple protocol bindings for service
instances; and supports integration with underlying native
platform facilities. OGSA also defines, in terms of Web
Services Description Language (WSDL) interfaces and
associated conventions, mechanisms required for creating
and composing sophisticated distributed systems,
including lifetime management, change management, and
notification. Service bindings can support reliable
invocation, authentication, authorization, and delegation.
In this work, the basic structure is to create the
synchronism service among the involved airports. Java is
defined by OGSA as a basic framework of Grid Service.

Web Services. This is an essential component for the
implementation of ATFMGC. As expressed on [16,17],
Web Services are the basis for Grid Services, which are

the cornerstones of the Globus Toolkit 3. Since they use
standard XML languages, Web Services are both platform
and language independent. Considering the fact that most
Web Services use HTTP for transmitting messages (such
as the service request and response), it represents an
important advantage to build an Internet-scale ATFM
application in the near future. Web services address
heterogeneous distributed computing by defining
techniques for describing software components, methods
for accessing these components, and discovery methods
that enable the identification of relevant service providers.
A key advantage of Web services is their programming
language, model, network, and system software neutrality.

Figure 2. ATFMGC architecture

Agents and Knowledge Based System (KBS). KBS
contains both domain knowledge (facts and rules) and the
processes of structuring knowledge (knowledge
representation) and is distributed at each airport in
ATFMGC. The facts represent the local and real time
updated information. Rules and the processes of
structuring knowledge are almost the same at each airport.
Each referring airport possesses its own Knowledge Base
constituted of a varsity of functional agents such as Pre-
ATC agent and Tactical Planning (TP) agent etc.

Databases at each airport consist of three parts: flight
timetable, on-line traffic information and database
administration. Due to the real time traffic
synchronization property, the database systems should be
easy and fast accessed. All the data such as aircraft and
runway condition are stored in the database with XML
form. The database is constructed through JDOM parser,
an open source, tree-based, pure Java API.

Parameters need to be considered in using a Grid as
following [21]. Some of them are still in development in
this research.

4. Inference Process and Implementation

In this study, Pre-ATC agent and Tactical Planning (TP)
agent are developed in ATFMGC. The former article is
an expert system for local air traffic control, which is
designed just to simulate the situation for ATFM purpose.
The later is a distributed KBS for Tactical Planning of
ATFM. ATC agent is also mentioned in this research but
is not described in detail. Figure 3 shows the manner of
communication and negotiation among agents in
ATFMGC system.

Figure 3. Communication and Negotiation among Agents

4.1. Pre-ATC Agent

Pre-ATC agent of ATFMGC is represented according to
ATC/ATM rules, which have been defined by the
Brazilian Department of Civil Aviation - DAC [7, 20].
Six processes have been developed for the knowledge
representation of Pre-ATC agent: flight data, scheduling
and control condition, separation standards, holding
assignment, departure and arrival conflict prevention and
take-off delay assignment [7,8]. There are three types of
ATC rules: for landing aircraft, both for landing and take-
off aircraft and for take-off aircraft.

4.2. Tactical Planning Agent

To measure the traffic congestion, Weighted Combined
Total Delay (WCTD) is defined as basic index [9]. It uses
a different delay cost function for the landing and taking
off of flights. Considering that the objective of ATFM is
to minimize the aircraft air holding, in this research the
delay cost function is simplified to multiply every minute
of delay by a weight. For landing flight, the weight is
chosen as 5, and take-off the weight is as 1.

4.3 Inference Process

The main inference process Pre-ATC agent is the same as
[7,8]. The following steps are inference processes of TP
agent:
1. Web Services component of TP agent at airport A is

used to communicate with Pre-ATC agent at airport
B (and others) to get the departure flight delay
requirements at airport A.

2. Schedule process of TP agent at airport A
reschedules the departure flights according to the
accepted WCTD value at A.

3. Diagnosis process checks the new schedule and
stores it in the database at airport A if there is no
conflict. When any conflict takes place, the Schedule
process repeats the work again.

4. Broadcasts and Negotiation generates a message to
Web Services to send to the TP agents at related
airports.

5. At the same time, ATFMGC at related airport is also
working with the changed schedule.

6. If the system detects the conflicts at a related airport,
a new schedule is generated at other airports and the
information is sent back to airport A. Broadcasts and
Negotiation process negotiates with the related
airport.

7. Evaluation and Validation processes verify the actual
schedule within a certain time period.

8. The PT agent at airport A is invoked recursively until
there are no more conflicts.

4.3. Implementation

At this moment, a prototype of ATFMGC has been
developed using Globus ToolKit (version Alpha 3) on a
grid computing. The prototype consists of three personal
computers (Pentium 4). Each computer with ATFMGC
interface represents the ATFM operation system of an
airport. The whole system was codified with JAVA
language.

The KBS, which consists of the rules and facts was
developed using XML language. XML documents use
parser JDOM library to for the interpretation of the stored
data. Web Services and client interface also have been
integrated with ATFMGC in JAVA. Apache TomCat 4.0
is used as Servlet Container. For the installation and
manipulation of the Globus ToolKit, Cygwin is chosen as
emulator.

5. An Illustrative Example

When executing an ATFMGC simulation, flight
information was collected from 9:00 to 10:00 am at
February 16th, 2004 [19]. The simulation started at 7:00

am (Current Time). The Pre-ATC agent (PATC) in
Guarulhos International Airport (GRU) began to estimate
the air traffic congestion in a period of time ∆t2, from t1
to t2, where t1 = Current time + ∆t1, t2 = t1 + ∆t2.
Defining ∆t1 = 2 hours and ∆t2 = 1 hour, the Pre-ATC
agent will consider the period t1= 9:00 and t2 =10:00
hours. Some arrival and departure flights during this
period are shown in Tables 1 and 2.

Table 1. Arrival Flights to Guarulhos Airport

To detect the aircrafts traffic congestion, time period ∆t2
is divided in Time Slices (TS) and the traffic congestion is
calculated in each slice. Each TS is selected with duration
of 5 minutes. The Pre-ATC is used to calculate the
WCTD for the flights in tables 1 and 2 from 9:00 to
10:00. First, a WCTD value of 50 is an accepted holding
delay. Figure 4 illustrates the WCTD values at GRU.

Only at TS5 from 9:20 to 9:25, the WCTD was greater
than the acceptable WCTD value, as shown above. At
other TSs, including the TS4 and TS7 whose numbers of
flights exceeds the airport capacity, the WCTDs values
were still acceptable. Local ATC agent solved the
conflicts in all TSs, except TS5, according to ATC/ATM
rules. Some flights were delayed en-route and others on
ground. New schedule is presented in columns 6 and 7 of
tables 1 and 2. The flights in TS5 were re-scheduled by
the negotiation with other airports.

There are 5 arrivals at 9:20 am of TS5: PU222 is from
Montevideo (MVD), RG2308 is from Porto Alegre
(POA), RG8902 and RG8936 are from Galeão (GIG) and
AA995 is from Miami (MIA). In order to reduce the time
the aircraft will be holding in the air, some of them had
been kept on ground at their original airports. An aircraft
can be delayed on ground in the original airport,
whenever there is a request from any other airport in a
given time before the planned schedule time for take-off.
This time was called MINTIME [9] and was defined, in
this research, as 40 minutes.

Table 2. Departure Flights from Guarulhos Airport

Because its condition, the international flight AA995 from
Miami was arranged to land at 9:20 am and due to its
priority, it was impossible to change the situation. The
flight PU222 from Montevideo, was kept in the air for 2
minutes and the land schedule at 9:22 am. Concerning the
others flights, the Pre-ATC negotiated with other Tactical
Planning agents at original airports. As a result of the
negotiation, it was considered to delay on ground the
flight RG8902 in 6 minutes and RG8936 in 4 minutes,
both at Galeao International Airport (GIG). The flight
RG2308 was proposed to delay on ground 8 minutes at
Porto Alegre International Airport (POA).

Figure 4. WCTD values at GRU from 9:00 am to 10:00 am

At the same time, the Pre-ATC agents at GIG and POA
also verified occasional conflicts and may ask for flight
delays at other airports. When the TP agent at GIG
received the request for the delay of flights RG8902 and
RG8936 from Pre-ATC agent at GRU, the conflict
analysis process was repeated again and again. In spite of
enhances the WCTD, this change in the flight schedule is

Delay Planned

σ 1 Departure
Change

RG8631 738 EZE 06:30 09:05 09:05 TS2

UA861 763 IAD 21:30 09:10 09:10 TS3

RG2209 733 BSB 07:35 09:15 09:17 00:02 TS4

RG8920 M11 GIG 08:15 09:15 09:15 TS4

PU222 73S MVD 07:00 09:20 09:22 00:02 TS5

RG2308 735 POA 07:50 09:20 09:28 00:08 07:58 TS5

RG8902 733 GIG 08:20 09:20 09:26 00:06 08:26 TS5

RG8936 738 GIG 08:20 09:20 09:24 00:04 08:24 TS5

AA995 777 MIA 23:20 09:20 09:20 TS5

AR1240 73S EZE 06:50 09:37 09:37 TS8

RG2331 735 SSA 07:15 09:40 09:40 TS9

Time
Slice

Confirmed
Arrival
Time

Planned
Arrival
Time

Flight Type Departure
Airport

Planned
Departure

Time

JJ3315 100 CPQ 09:15 09:45 09:18 00:03 TS4

JJ3811 100 CWB 09:15 10:10 09:19 00:04 TS4

JJ8001 320 EZE 09:15 12:15 09:29 00:14 TS4

RG2306 733 SSA 09:15 11:35 09:30 00:15 TS4

JJ3342 100 CNF 09:25 10:30 09:31 00:06 TS6

JJ3490 320 NAT 09:30 13:00 09:32 00:02 TS7

JJ3506 320 REC 09:30 12:40 09:33 00:03 TS7

JJ3804 320 CGR 09:30 10:10 09:34 00:04 TS7

RG3490 320 NAT 09:30 13:00 09:35 00:05 TS7

RG8880 733 VVI 09:35 11:45 09:36 00:01 TS8

PZ0707 100 ASU 09:40 11:30 09:43 00:03 TS9

Flight Type

of
Aircraft

Arrival

Airport

Planned

Departure
T ime

Planned

Arrival
T ime

Confirmed

Departure
Time

Deley

σ2

T ime

Slice

still possible because the value remains acceptable due to
the flights RG8936 and RG8902.

The TP agent at GRU might also communicate to the
agents in the destination airports in the case there are
significant delays of flight departures, which is defined as
σ2. As shown in table 2, any flight whose σ2 is greater
than 10 minutes, this delay is informed to the destination
airport. In this case, the flight delay of RG2306 was
informed to TP agent at Salvador airport (SSA).

In this way, the TP agents of different airports involved in
this study coordinate their processes until the whole
ATFMGC net achieved synchronism. In the case it does
not happen, a maximum time ρ shall not be exceeded. The
value of ρ means the maximum time that the Pre-ATC
can wait to receive the request confirmation.

6. Conclusions

Using grid computing to the Real-Time Traffic
Synchronization problem, especially ATFM, was
proposed in this research. ATFM is an interesting domain
for the application of distributed Knowledge based
system. Any study about distributed Knowledge based
system in real time air traffic synchronization problem
using grid computing hasn’t ever been reported until now.
Bearing in mind the advantages of grid computing, this
proposal also presents a solution for air transportation.
The result obtained in this work may represent a
significant contribution to the research of artificial
intelligence, grid computing and air traffic transportation
[12,18]. For further study, the following aspects may be
taken into deep consideration:

Constructing an special grid computing for ATFM, to
study the main components (both hardware and
software), and relationship among computing and air
traffic control;
Parameters to organize the rescheduling among the
grid nodes (airports) are still in the development.
They are still important for the further evaluation of
the system;
Implementing the ATFMGC to the whole Brazilian
ATC/ATM system in order to make ATFM tactical
planning and real time control.

References

[1] S. Stoltz, R. Guerreau - EUROCONTROL, “Future ATFM
Measures (FAM) operational Concept”, EEC Note No.
13/02, 2002.

[2] S. Stoltz and P. Ky, “Reducing Traffic Bunching More
Flexible Air Traffic Flow Management”, 4th USA/Europe
ATM R&D Seminar, New_Mexico, 2001.

[3] D. Dippe, “4D-Planner – A Ground Based Planning System
for Time Accurate Approach Guidence, DLR- Mitt, 1989,
89-23.

[4] U. Vôlckers, “Approach Towards a Future Integrated Airport
Surface Traffic Management”, DLR- Mitt, 1989, 89-23.

[5] G. D. Gosling, “Application of Artificial Intelligence
Application in Air Traffic Control”, Trans. Res., 21A(1),
1987.

[6] U. R. Schlatter, “Real Time Knowledge Based Support
for Air Traffic Flow Management”, IEEE Expert, 1994,
pp. 21-24.

[7] L. Weigang, C. J. P. Alves and N. Omar, “An expert system
for Air Traffic Flow Management”. Journal of Advanced
Transportation”, Vol. 31, No. 3, 1997, pp. 343-361.

[8] L. Weigang, C. J. P. Alves and N. Omar: Knowledge -
Based System for Air Traffic Flow Management:
Timetable Rescheduling and Centralized Flow control,
Applications of AI in Engineering VIII, Vol. 2, G. Rzevski,
J. Pastor, and R. A. Adey (Eds.), Elsevier, (1993), 655-670.

[9] G. Tidhar, A. Rao, M. Ljunberg, “Distributed Air Traffic
Management System”, Technical note, No. 2, 1992.

[10] T. Prevôt, “Exploring the Many Perspectives of Distributed
Air Traffic Management: The Multi Aircraft Control
System MACS”, in S. Chatty, J. Hansman, and G. Boy
(Eds.), Proceedings of the International Conference on
Human-Computer Interaction in Aeronautics (HCI-Aero
2002), AAAI Press, Menlo Park, CA, pp. 149-154.

[11] M. Nguyen-Duc, J.-P. Briot, Alexis Drogoul, V. Duong,
“An application of Multi-Agent Coordination Techniques
in Air Traffic Management”, in the Proceedings of the
IEEE/WIC International Conference on Intelligent Agent
Technology (IAT’03), 2003.

[12] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R.
Nudd: ARMS: an Agent-based Resource Management
System for Grid Computing, Scientific Programming, vol.
10, (2002), 135-148.

[13] F. Berman, G. Gox, T. Hey: Grid Computing: Making The
Global Infrastructure a Reality, John Wiley & Sons, (2003).

[14] L. Ferreira, V. Berstis, J. Armstrong, M. Kendzierski, A.
Neukoetter, M. Takagi, R. Bing-Wo, A. Amir, R.
Murakawa, O. Hernandez, J. Magowan, N. Bieberstein:
Introduction to Grid Computing with Globus, IBM, (2003).

[15] G. J. Portella, A. C. M. A. Melo: A Load Balancing
Strategy to Schedule Independent Tasks in a Grid
Environment, to appear at Europar04, (2004).

[16] B. Sotomayor: The Globus Toolkit 3 Programmer’s
Tutorial, (2003).

[17] I. Foster and C. Kesselman: The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publisher
(1999).

[18] G. Weiss (Ed): Multiagent systems, The MIT Press, (2000).
[19] Panrotas Editora Ltda, “Guia de Horário de Nacionais e

Internacionais”, No. 370, 2004.
[20] DEPV, IMA 100-12, portaria DEPV No. 46 de 30/06/99,

Departamento de Previsão de Vôo – DEPV, Ministério de
Aeronáutica, 1999.

[21] Nabrzyski, J. M. Schopf, J. Weglarz (Eds.): Grid resource
management - State of the Art and Future Trends, Kluwer
Academic Publishers, (2003).

Extracting Minimal Non-Redundant Implication Rules
by Using Quantized Closed Itemset Lattice

LI Yun1,2 LIU Zongtian1 CHENG Wei2 WU Qiang1 LIU Wei1

1 School of Computer Science, Shanghai University,Shanghai,200072,China
2 School of Information Engineering, Yangzhou University,Jiangsu,225009,China

E-mail: yzliyun@163.com

Abstract: The association rules are usually extracted
from frequent itemsets(FIs), but the number of FIs is
enormous, and many redundant rules exist in the mined
rules.The frequent closed itemsets are adopted in order to
reduce the number of FIs. With the inherent closure
properties in objects and attributes, concept lattice is very
suitable for representing the relation between closed
itemsets. In this paper, the quantized closed itemset lattice
is formed with the modified node structure. As well, a
scheme for quantized closed itemset lattice built
incrementally from database is adopted. Extracting
minimal non-redundant rules decreases the number of
rules without reducing any useful information. The
implication rule is exact,and an innovative algorithm for
extracting such rule is presented, which can directly
extract minimal non-redundant implication rules from the
quantized closed itemset lattice.

Keywords: Frequent itemset, Frequent closed itemset,
Quantized closed itemset lattice, Implication rule.

1. Introduction

 The association rule[1] is the main form of knowledge
extracted from database, and is usually extracted from
frequent itemsets(FIs), but their number is enormous. In
order to reduce the number of FIs without losing any
useful information, frequent closed itemsets(FCIs) [2,3,4]
are adopted to extract association rules.

A rule is described as the relation between intension
(attribute) sets, and reveals the inclusion relation between
extension (object) sets. In a concept lattice[5], a node
consists of intension and extension,and the relation
between nodes reflects the generalization and
specilization relationship between concepts. With the
inherent closure properties in objects and attributes,
concept lattice is very suitable for representing the
relation between closed itemsets.

Some algorithms such as CLOSE[3],CHARM[6],
CLOSET[7] are used for mining FCIs. Both CLOSE and

CHARM need to scan database more than once and
generate candidate itemsets, and must regenerate the
whole FCIs when new transactions are inserted into
database. Although CLOSET algorithm needs to scan
database only once and doesn’t need to generate candidate
itemsets, it also doesn’t fit for the dynamic databases. An
approach for generating the FIs incrementally has been
presented in the literature [2]. If the database is updated,
only parts of the FIs need to be updated. This approach
utilizes the method of concept lattice for incremental
updating.

The closed itemset lattice can be formed by closed
itemsets using the Galois connection. In this paper, we
adopt the incremental approach to build the lattice, and
modify the lattice node. This modified lattice is called
quantized closed itemset lattice.

According to the confidence, association rules can be
classified into exact and approximate. Exact association
rules can also be named as implication rules, which have
100% confidence. Many redundant rules are obtained
when rules are extracted from context. A minimal non-
redundant rule is one with minimal antecedent and
maximal consequent, and the other rules can be deduced
by a set of these rules. An algorithm for extracting such
rules was presented by Y.Bastide et al [8], but it generates
the FCIs by using CLOSE algorithm.

In this paper, we adopt a scheme for building a
quantized closed itemset lattice incrementally from a
database, and an innovative approach for extracting
implication rules is presented, which can directly extract
minimal non-redundant implication rules from the
quantized closed itemset lattice.

2. Basic Notion of Association rule

Let I={i1,i2,…,im} be a set of items, D be a transaction
database. A transaction T is a set of items in I, and has an
unique identifier called TID or tid. A sample of
transaction database is shown in Table 1. The proportion
of transactions in D that contain an itemset X is called the
support of X and is denoted sup(X). An itemset X is

frequent when sup(X) reaches at least a user-specified
minimum threshold called minsup, i.e. sup(X) minsup.

An association rule R is an expression X Y, where
X,Y I and X Y= .The support of rule R is defined
as sup(X Y) while its confidence conf(R) is computed
as the ratio sup(X Y)/sup(X). A rule R is confident
when conf(R) reaches at least a user-specified minimum
threshold called minconf, i.e. conf(R) minconf.

Table 1 A sample of transaction database
TID items

 1
2
3
4
5

 6

A, C, D
B, C, E
A, B, C, E
B, E
A, B, C, E
B, C, E

The association rule extracted from D is a valid rule if
its support and confidence are more than or equal to a
user-specified minsup and minconf.

A rule X Y is called exact association rule if its
confidence reaches 100%,also referred to as an
implication rule in this paper.
Definition 1 Let X, Y be two frequent itemsets, X,Y I,
and their supports be sup(X) and sup(Y) respectively. If
Y X, Y and sup(X) =sup(Y), then Y X-Y is an
implication rule.

As for the transaction database shown in Table 1, if
minsup=2/6, all frequent itemsets form a lattice shown on
the left of Fig.1 or Fig. 1(left). Each node in the lattice is a
pair of a frequent itemset and its corresponding tidset, i.e.
(tidset, itemset).

3. Frequent Closed Itemset and Quantized Closed
Itemset Lattice

 Fig. 1(left) shows that there are some different FIs with
the same tidset in the set of FIs.
Definition 2 Let (X,Y) be a pair of the frequent itemset Y
and corresponding tidset X. The frequent itemsets with
the same tidset X is referred to as the same tidset’s

frequent itemsets, these itemsets and tidset X form the Set
of Pairs of the Same Tidset’s Frequent Itemsets ,denoted
SPSTFI.

Some SPSTFIs in Fig. 1(left) are shown in different
fonts. For example, there is a SPSTFI with the tidset 35(it
actually stands for {3,5}, and similarly, ABC for
{A,B,C}), this SPSTFI with the tidset 35 is denoted as
SPSTFI35, and SPSTFI35={(35,ABCE), (35, ABC),
(35,ABE), (35,ACE), (35,AB),(35,AE)}, shown with
boldface type.
Definition 3 Let (X,Y) be an element of a SPSTFI. If
there is not another element (X,Y’) such that Y’ Y,
then (X,Y) is defined as the largest pair of the tidset and
itemset, and Y is a largest frequent itemset; Similarly, if
there is not another element (X,Y’) such that Y’ Y, then
(X,Y) is defined as the least pair of the tidset and itemset,
and Y is a least frequent itemset.

For instance, in above SPSTFI35, (35,ABCE) is the
largest pair,and ABCE is the largest frequent itemset;
(35,AB) and (35,AE) are the two least pairs, AB and AE
are the two least frequent itemsets
Theorem 1 If (X,Y) is the largest pair of the tidset and
itemset in a SPSTFI, then it is unique.
Proof: Suppose there is another largest pair (X,Y’) in the
SPSTFI besides (X,Y), and let (X,Y)=(X,Y1Y2...Yk

Yk+1...Ym) and (X,Y’)=(X,Y1Y2...YkY’k+1...Y’n).
According to the definitions of the pair of the tidset and
itemset, the tidset X contains the itemset
Y1Y2...YkYk+1...Ym and Y1Y2...YkY’k+1...Y’n, therefore, the
tidset X certainly contains the itemset
Y1Y2...YkYk+1...YmY’k+1...Y’n Y1Y2...YkYk+1...Ym. It
conflicts with that (X,Y) is a largest pair.

For the space limitation , the proof of other theorems is
omitted.

Not only are these frequent itemsets with same tidset
unable to convey new useful information but they also
increase the complexity of lattice. Therefore,the frequent
closed itemset (FCI) is adopted.

A transaction database can be easily denoted as a
formal context which is a triple D=(O,A,R), where O is
the set of objects, corresponding to the tids in the
transaction database,and A is the set of attributes,

(35,ABCE)

(35,ABC) (35,ABE) (35,ACE) (2356,BCE)

(35,AB) (35,AE) (135,AC) (2356,BC) (2356,CE) (23456,BE)

(135,A) (23456,B) (23456,E) (12356,C)

(123456,)

(35,ABCE)

(2356,BCE)

(23456,BE)

(135,AC)

(12356,C)

(123456,)

Fig.1 The lattice of all frequent itemsets with support 2/6 and its
corresponding frequent closed lattice of the sample database

corresponding to the items. R O A is a binary relation,
For an object o O, an attribute a A, then oRa means
that transactions o has item a.

The object set X P(O) and the attribute set Y P(A)
are connected with the relation as follows:
f(X)={y A | x X, xRy } , g(Y)={x O| y Y, xRy }.
This connection is Galois connection. As for a binary
tuple (X,Y), X=g(Y) is the tidset which contains the
itemset Y and Y=f(X) is the itemset that is contained in
all the transactions in X. A pair (X,Y) of the tidset and
itemset is known as an itemset concept.

If itemset concepts C1=(X1,Y1), C2=(X2,Y2) satisfy
Y1 Y2 , then (X1,Y1) is called child concept and (X2,Y2)
is called parent concept, and the sub-super relation can be
denoted by (X1,Y1) (X2,Y2). If there is not C3=(X3,Y3)
such that (X1,Y1)<(X3,Y3)<(X2,Y2),then (X1,Y1) is direct
child concept and (X2,Y2) is direct parent concept.
Definition 4 Let D=(O,A,R) be a transaction database or
a formal context,Y is an itemset and Y A, then Y is
referred to as Closed Itemset denoted CI if Y=f(g(Y)),
and its support sup(Y)=| g(Y)|/| O |.
Definition 5 If Y is a closed itemset, and its support is
not less than minsup, then Y is referred to as Frequent
Closed Itemset denoted as FCI.

A pair (g(Y),Y) is an itemset concept composed of a
frequent closed itemset Y and its corresponding tidset
g(Y).These Pairs of FCI and its corresponding tidset can
consist of the frequent closed itemset lattice. For example,
such lattice of the sample database is shown on the right
of Fig.1 where minsup=2/6. It can be found out that the
number of FCIs is much smaller than that of FIs.
Actually,a SPSTFI is associated with one FCI, and that,
the pair of this FCI and its corresponding tidset is the
largest pair of the tidset and itemset in the SPSTFI.
Theorem 2 Let Y be a largest frequent itemset in a
SPSTFI, then it is certainly a frequent closed itemset, and
vice versa.

Since the transaction database is frequently updated,
there is a need to keep the whole set of CIs including
those which are not frequent. The closed itemset lattice
can be built incrementally. While database is updated, it
is only to make the parts of nodes in the lattice update.
For extracting rules conveniently, the node structure in
the lattice is modified and it includes some components as
follows: (Itemset, Tid_count, Dirt_parents, Dp_count,
Dirt_childs, Dc_count) where Itemset is the itemset
contained in the node , Tid_count is the cardinality of
tidset, Dirt_parents and Dp_count are the node’s direct
parent concepts and their number, Dirt_childs and
Dc_count are the direct child concepts and their number.
The closed itemset lattice with these node structure is
known as the Quantized Closed Itemset Lattice denoted
QCIL, and its building algorithm is similar to that in our
previous work reported in [9]. Because of the brief length
of this paper, the algorithm isn’t presented here.

4. Extraction of Minimal Non-redundant
Implication Rules

Among the rules extracted from FIs with the same
support and confidence, some can’t give any additional
information, that is to say, they are redundant rules. For
example, ab cde, ab c, ab d, abc d, abcd e,
abde c are six valid rules with the same support and
confidence. But compared with the first rule, the other
five rules don’t give additional information. They are
redundant to the first rule ab cde, and the rule
ab cde is that with minimal antecedent and maximal
consequent.

It can be found out that the implication rule Y X-Y
certainly exists where X , Y are itemsets in a SPSTFI and
Y X, Y . The rules extracted from a SPSTFI have
the same support and confidence. Therefore, with a
SPSTFI, it is enough to extract the implication rule with
minimal antecedent and maximal consequent.
Defnition 6 An implication rule X Y is a minimal non-
redundant implication rule iff there doesn’t exist another
rule X’ Y’ with sup(X)=sup(X’) , X’ X and Y Y’.

Evidently,if Y is a least frequent itemset and X is the
largest frequent itemset in a SPSTFI, then Y X-Y
induced by itemsets X and Y is certainly a minimal non-
redundant implication rule. For example, ABCE is the
largest FI and AB, AE are two least FIs in SPSTFI35, so
there exist two minimal non-redundant implication rules
AB CE, AE BC.

The QCIL can be directly built in an incremental
manner from the context D=(O,A,R).According to
Theorem 2, the node C in QCIL is certainly the largest
pair in its corresponding SPSTFI denoted as SPSTFIC if
sup(C)=Tid_count(C)/|O| minsup and |Itemset(C)| 2,
and if only the C’, the least pair of tidset and itemset in
SPSTFIC is found, the minimal non-redundant implication
rule can be obtained. The condition |Itemset(C)| 2 is
guaranteed to extract the rule with non-null consequent.
Theorem 3 Let node C in QCIL be frequent, then the
other pair C1 in the SPSTFIC satisfies Itemset(C1)
Itemset(C) and Itemset(C1) Itemset(Dirt_childs(C)).

According to the theorem 3, the method for searching
the least itemsets among the corresponding SPSTFIC of
node C in QCIL is to examine whether the elements
(itemsets) of the powerset of Itemset(C) are contained in
the itemsets of Dirt_childs(C) in the ascending order of
the element cardinality, and then get the least itemsets
which are the least elements not in the itemsets of
Dirt_childs(C). Furthermore, the cardinality of the least
itemset is at most the number of Dirt_childs(C), which
can be used as the terminal condition of search procedure,
and will greatly reduce the time for searching the set of
the least pairs of the tidset and itemset.

Using above method, the algorithm for extracting such
implication rules is described as follows:
Algorithm 1:extracting the minimal non-redundant
implication rules
INPUT:the quantized closed itemset lattice L, minimal
support minsup
OUTPUT: the set of minimal non-redundant implication
rules MIR
MIR=
FOR each node C in L in ascending |Itemset(C)| DO
IF |Itemset(C)| 2 and Tid_count(C)/|O| minsup THEN
MCS= ; it is the set of least pairs in SPSTFIC

FOR each non-null Ck P(Itemset (C))
 in ascending |Ck| DO

IF |Ck|>Dc_count(C) THEN exit FOR ENDIF
FOR each Cp Dirt_childs(C) DO
flg=true
IF Ck Itemset (Cp) THEN flg=false;

exit FOR ENDIF
ENDFOR
IF flg and no such Ck’ itemset in MCS

that Ck’ Ck THEN
MCS= MCS (Tid_count(C), Ck)
ENDIF
ENDFOR
FOR each C’ MCS DO
MIR=MIR {Itemset(C’) Itemset(C)\Itemset(C’),

sup= Tid_count(C)/|O|}
ENDFOR
ENDIF
ENDFOR

If minsup=2/6, the minimal non-redundant
implication rules is shown in Table 2 by applying
Algorithm 1 to the QCIL built from the sample database
shown in Table 1.The result is identical with that obtained
by using CLOSE algorithm in the literature [8].

Table 2 Minimal non-redundant implication
rules extracted from the sample database
 MIR support

A C
B E
E B
AB CE
AE BC
BC E
CE B

3/6
5/6
5/6
2/6
2/6
4/6
4/6

5. Conclusion

The CI is the subset of the itemset,and the FCI is the
subset of CI. The number of FCIs is much less than that
of FIs and without reducing any useful information.
Extracting the rule from the FCIs will decrease the search
space and benefit to reduce the complexity of the rule

extraction. The QCIL is the closed itemset lattice with
modified node structure.The scheme of building the QCIL
incrementally from database will take only one pass over
the database and only parts of the nodes in this lattice
need updated when new transactions are inserted into the
database, and it is specially suitable for managing the
dynamic database,but other algorithms such as
CLOSE,CHARM, CLOSET don’t fit for the dynamic
databases. The innovative algorithm can be applied to
directly extract minimal non-redundant implication rules
with minimal antecedent and maximal consequent from
the QCIL.

Acknowledgment

This work is supported by National Natural Science
Foundation of China, No. 60275022

References

[1]Han J.,Kamber M, “Data Mining:Concepts and
Techniques”,Morgan Kaufmann Publisher,2000

[2]Petko Valtchev, Rokia Missaoui, Robert Godin,
Mohamed Meridji, “Generating frequent itemsets
incrementally: two novel approaches based on Galois
lattice theory”, Journal of Experimental and Theoretical
Artificial Intelligence 14(2-3) , 2002, pp.115-142.

[3]N.Pasquier,Y.Bastide et al, “Efficient Mining of
Association Rules Using Closed Itemset
Lattices”,Information Systems,24(1) ,1999,pp.25-46.

[4]M.J.ZaKi, “generating Non-Redundant Association
Rules”, In proceedings of the 6th international
Conference on Knowledge Discovery and Data
Mining,2000,pp. 24-43

[5]B.Ganter , R.Wille, “Formal Concept Analysis:
Mathematical Foundations”, Springer-Verlag, 1999.

[6] M.J.ZaKi , C.J.Hsiao, “CHARM: An Efficient
algorithm for Closed Association Rule Mining”,
Technical report 99-10, Rensselaer Polytechnic, 1999.

[7]J.Pei,J.Ha and R.Mao, “CLOSET:An Efficient
Algorithm for Mining Frequent Closed Itemsets”, In
proceedings of the ACM SIGMOD workshop on
Research Issues in Data Mining and Knowledge
Discovery,2000,pp.21-30

[8] Y.Bastide, N.Pasquier et al, “Mining Minimal Non-
Redundant Association Rules using Frequent Closed
Itemsets”,Lecture Notes in Computer Science,vol
1861,2000,pp.972-986.

[9]Xie Zhi-peng, Liu Zong-tian, “Concept Lattice and
Association Rule Discovery”,Journal of Computer
Research and Development,Vol 37,No.12,2000,
pp.1415-1421(in chinese)

Formal Description Techniques for CSPs and TCSPs

Malek Mouhoub, Samira Sadaoui and Amrudee Sukpan
Department of Computer Science, University of Regina
3737 Waskana Parkway, Regina SK, Canada, S4S 0A2

{mouhoubm,sadaouis,supkan1a}@cs.uregina.ca

Abstract

LOTOS is a formal specification technique for describing
and verifying complex systems. In this paper, we investi-
gate the applicability of LOTOS to specify and solve Con-
straint Satisfaction Problems (CSPs) as well as Temporal
Constraint Satisfaction Problems (TCSPs). A CSP is a gen-
eral framework used to represent and solve a large variety
of combinatorial problems including frequency assignment,
configuration and conceptual design, network management
and transportation. A TCSP is one particular case of CSPs,
where constraints are temporal relations between tempo-
ral variables defined over a set of time intervals. TCSPs
are used to handle problems involving temporal constraints
such as scheduling, planning and computational linguis-
tics. Through simulation and model-checking verification,
we show, in this paper, how to solve CSPs and TCSPs using
LOTOS specifications.

1. Introduction

LOTOS [BB89] is a formal specification technique for
describing and verifying complex systems. In this pa-
per, we investigate the applicability of LOTOS to specify
and solve Constraint Satisfaction Problems (CSPs) [Mac77,
HE80, Kum92] as well as Temporal Constraint Satis-
faction Problems (TCSPs) [All83, Mei96, DMP91, vB92,
MCH98]. A CSP is a general framework used to repre-
sent and solve a large variety of combinatorial problems
including frequency assignment, configuration and concep-
tual design, scheduling and planning. A CSP involves a list
of variables defined on finite domains of values and a list
of relations restricting the values that the variables can si-
multaneously take. If the relations are binary we talk about
binary CSPs. Solving a CSP consists of finding an assign-
ment of values to each variable such that all relations (or
constraints) are satisfied. A CSP is known to be an NP-
Hard problem. Indeed, looking for a possible solution to
a CSP requires a backtrack search algorithm of exponen-

tial complexity in time 1. The backtrack search algorithm
is a depth first search technique that incrementally attempts
to extend a partial solution toward a complete one by re-
peatedly choosing a value for another variable. If a partial
solution violates any of the constraints, backtracking is per-
formed to the most recently instantiated variable that still
has alternatives available.

In order to deal with problems involving numeric and
symbolic temporal information, we have developed the
model TemPro [MCH98], extending the interval algebra de-
fined by Allen [All83] to handle numeric constraints. Tem-
Pro transforms any problem under qualitative and quanti-
tative constraints into a binary CSP where constraints are
disjunctions of Allen primitives [All83] and variables, rep-
resenting temporal events, are defined on domains of time
intervals. We call this later a Temporal Constraint Satisfac-
tion Problem (TCSP) 2.

LOTOS (Language of Temporal Ordering Specification)
[ISO87, BB89] is the ISO standardized formal specification
technique to describe and verify concurrent and open dis-
tributed systems. LOTOS has also been widely applied to
other applications, such as bus architecture, conformance
testing, computer integrated manufacturing, and distributed
transaction processing. LOTOS combines a process calcu-
lus with a data type language. A data type identifies a set
of values or domains, a set of associated operations, and
a set of equations. Equations are equalities between terms.
With the data part we can specify the different constraints of
a CSP, their corresponding variables and domains, as well
as the temporal constraints of a TCSP. In the other hand,
the process part, describing processes or behavior expres-
sions, defines the external behavior of a system. In CSPs
and TCSPs, it corresponds to the description of the resolu-

1Note that some CSPs can be solved in polynomial time. For example,
if the constraint graph corresponding to the CSP has no loops, then the
CSP can be solved in O(nd2) where n is the number of variables of the
problem and d is the domain size of the different variables.

2Note that this name and the corresponding acronym was used in
[DMP91]. A comparison of the approach proposed in this later paper and
our model TemPro is described in [MCH98].

tion process, such as the constraint propagation and back-
tracking algorithms. Behavior expressions are built using
LOTOS operators such as the action prefix ; which denotes
a sequence of actions, and exit the successful termination
of a specification. An action can be followed by the con-
struct ? in order to input values from the environment, e.g.
Input?X: color expresses that the user can enter a value of
type color. In LOTOS, the unary constraints are defined us-
ing the selection predicates [] in order to restrict the values
offered within an action, e.g. Input?X:natural [X<4] means
that the domain of the variable X is restricted to the set {1,
2, 3}.

LOTOS brings many potential advantages: a high level
of abstraction, structuring capabilities, specification simula-
tion (execution) and verification by model-checking. There
are many supporting tools for LOTOS, and in this paper, we
use the CADP environment [Gar96] to reason about CSPs
and TCSPs. In LOTOS, a specification is translated into a
finite labeled transition system (LTS) which encodes all its
possible execution sequences.

The rest of the paper is structured as follows. In the next
section we show how to represent and solve a CSP using
LOTOS. Section 3 is dedicated to the applicability of LOTOS
to TCSPs. Concluding remarks and possible perspectives
are finally presented in section 4.

2. LOTOS for CSPs

Through the example of the map coloring problem, we
describe how to represent and solve a CSP using LOTOS.
The problem consists of coloring each region of a given map
such that no two adjacent regions have the same color. Fig-
ure 1 illustrates an example of the map coloring problem
and the corresponding representation by a CSP.

The CSP of figure 1 is translated into a LOTOS specifi-
cation shown in figure 2. The specification is interpreted as
follows :
• Each variable, X1, X2, X3 and X4, in the CSP is a

variable in LOTOS.

• The domain of these variables is the sort color. There
are three colors (blue, green, and yellow) which are
defined as the constructor operations of the sort color.

• The constraints are defined in selection predicates us-
ing the two operations not and and defined in data type
Boolean, eq defined in type Color.

• The domain of the next assigned variables will be re-
duced automatically. Only satisfied values are left in
the domain.

After specifying the map coloring problem in LOTOS,
we can automatically perform the following operations us-
ing the CADP toolbox:

Checking the Consistency. This consists of checking if a
solution exists to this problem. In LOTOS, a problem
is consistent if its corresponding specification is dead-
lock free (a progress is always possible). Our map-
coloring problem is consistent (i.e. we can always use
the three colors in the map) since the LOTOS specifica-
tion is deadlock free.

Finding All Possible Solutions. In LOTOS, the simula-
tion of the specified CSP can generate one or all pos-
sible solutions. In the map-coloring problem, find-
ing all the solutions means all the possible ways to
color the map. The simulation of the LOTOS spec-
ification leads to six solutions, such as: {X1 =
green,X2 = blue,X3 = blue, X4 = yellow},
{X1 = yellow,X2 = green, X3 = green, X4 =
blue}, {X1 = blue, X2 = green,X3 = green, X4 =
yellow} . . . etc.

Checking if a Path is Solution. This consists of checking
if a given assignment of values to variables is con-
sistent. For instance, is it possible to color the map
with the following path: {X1 = blue, X2 =
green, X3 = yellow and X4 = green}? In LOTOS,
we generate first the transition systems of both path
and LOTOS specification, called respectively LTSp

and LTSs. Then with the model-checker, we verify
if LSTp is a sequence of LSTs. For our map-coloring
problem, LTSp is not a sequence of LTSs, i.e. the
above path cannot be a solution.

Completing a Partial Solution. This consists of extend-
ing a partial solution to a complete one. For instance,
if X1 = green, X2 = blue, what are the possi-
ble colors of X3 and X4? In LOTOS, we create
the partial sequence given as X1! green X2! bleue
< any > ∗. Then, the model-checker completes
the partial path in an incremental way if it is possi-
ble, such as X3 = bleue,X4 = yellow. Let us con-
sider another partial path given as X1! green X2! bleue
X3!yellow < any > ∗., the model-checking leads to a
deadlock since the above path cannot be a solution.

3. LOTOS for TCSPs

Let us consider the following temporal reasoning prob-
lem:

“John, Mike and Lisa work for a company in Cal-
gary. It takes John 20 minutes, Mike 25 minutes
and Lisa 30 minutes to get to work. Every day,
John left home between 7:20 and 7:26. Mike ar-
rives at work between 7:55 and 8:00 and Lisa ar-
rives between 7:50 and 8:00. We also know that

X
1

X
2

X
3

X
4

=

=

=

=

{blue,green,yellow}

1

2

3
4

=

{blue,green,yellow}

{blue,green,yellow} {blue,green,yellow}

Figure 1. Map-coloring problem and its CSP representation.

specification Map-Coloring[Input]:exit
library Boolean endlib
type Color is Boolean
sorts color
opns
 blue (*!constructor*): -> color
 green (*!constructor*): -> color
 yellow (*!constructor*): -> color
 _ eq _: color,color->boolean
eqns forall x,y:color
ofsort boolean
 x eq x = true; x eq y = false;
endtype
behaviour
 Input?X1,X2,X3,X4:color [((not(c1 eq c2) and not(c2 eq c4))
 and (not(c1 eq c4) and not(c1 eq c3))) and not(c3 eq c4)];
 exit
endspec

Figure 2. Map-Coloring Specification in LOTOS

John

Mike Lisa
S S-F

F-O
O-D

D-E
S S-E

BMODS

{(20 40) .. (26 46)}

 {(30 55) .. (35 60)} {(20 50) .. (30 60)}

Figure 3. A Temporal Constraint Satisfaction
Problem.

John and Mike meet at a traffic light on their way
to work, Mike arrives to work before Lisa and
Lisa and John go to work at the same time”.

Using our modeling framework TemPro[MCH98], the
problem above is translated to the TCSP represented by the
graph in figure 3. The nodes of the graph correspond to the
three events of our story, namely: John, Mike and Lisa are
going to work. The domains of the three events are the pos-
sible time intervals each event can take. Arcs are labeled
with the disjunctive relations between events (disjunctions
of basic Allen relations). For example, the relation S∨S�∨
E (denoted S S- E in the graph) between John’s and lisa’s

events indicates the fact that the start times of John and Lisa
are equal (see table 1 for the definition of the basic Allen’s
relations).

This TCSP is then translated into a LOTOS specification
(see figure 4) as follows:

• Each interval variable in TCSP is a variable of sort in-
terval in LOTOS.

• A set of constraints between two interval variables in
TCSP is a variable of sort relation in LOTOS.

• The constructor operation of the sort interval is inv(s,
e) where s and e are natural numbers representing the
starting and ending point of an interval.

• The operation duration of the sort interval computes
the duration of an interval.

• The constructors of the sort relation corresponds to the
thirteen basic relations of Allen illustrated in table 1.

• The operation checkrel of the sort relation checks the
consistency of the binary interval relations.

Once we have the LOTOS specification corresponding
to the temporal problem, we can reason about the story and
answers the following queries:

Is the Story Consistent? In the case of TCSPs, a solu-
tion is an assignment of numeric interval to tempo-

specification TSCP[Mike, John, Lisa, R]: exit
 library Boolean, Natural endlib
 type interval is Natural,Boolean
 sorts interval
 opns inv(*!constructor*):natural,natural -> interval

duration: interval -> natural
start:interval -> natural
end:interval -> natural

 eqns forall e s,d: natural
 ofsort natural
 e>=s => duration(inv(s, e))= e-s;
 e<s => duration(inv(s,e))=0;
 start(inv(s,e))=s;
 end(inv(s,e))=e;
 endtype

 type Relation is interval,boolean,natural
 sorts relation
 opns b(*!constructor*),s(*!constructor*),f(*!constructor*), o(*!constructor *),

d(*!constructor *),m(*!constructor*),eq(*!constructor*), bi(*!constructor*),
si(*!constructor *),fi(*!constructor*),oi(*!constructor*),di(*!constructor*),
mi(*!onstructor *): -> relation

 eq,neq : relation, relation -> boolean
checkrel: interval, relation, interval -> boolean

 eqns forall x,y:interval, x1,x2,y1,y2:natural, r1,r2:relation
 ofsort boolean
 eq(r1, r1) = true;
 eq(r1, r2) = false;
 neq(r1,r2) = not(eq(r1,r2));
 (x2 > y1) => rel (inv (x1, y1), b, inv (x2, y2)) = true;
 (x2 <= y1) => rel (inv (x1, y1), b, inv (x2, y2)) = false;
 ((x1 == x2) and (y1 < y2)) => rel (inv (x1, y1), s, inv (x2, y2)) = true;
 ((x1 <> x2) or (y1 >= y1)) => rel (inv (x1, y1), s, inv (x2, y2)) = false;
 ((y1 == y2) and (x1 > x2)) => rel (inv (x1, y1), f, inv (x2, y2)) = true;
 ((y1 <> y2) or (x1 <= x2)) => rel (inv (x1, y1), f, inv (x2, y2)) = false;
 ((x1 < x2) and ((y1 < y2) and (x2 < y1))) => rel (inv (x1, y1), o, inv (x2, y2)) = true;
 ((x1 >= x2) or ((y1 >= y2) or (x2 >= y1))) => rel (inv (x1, y1), o, inv (x2, y2)) = false;
 ((x1 > x2) and (y1 < y2)) => rel (inv (x1, y1), d, inv (x2, y2)) = true;
 ((x1 <= x2) or (y1 >= y2)) => rel (inv (x1, y1), d, inv (x2, y2)) = false;
 (x2 == y1) => rel (inv (x1, y1), m, inv (x2, y2)) = true;
 (x2 <> y1) => rel (inv (x1, y1), m, inv (x2, y2)) = false;
 ((x1 == x2) and (y1 == y2)) => rel (inv (x1, y1), eq, inv (x2, y2)) = true;
 ((x1 <> x2) or (y1 <> y2)) => rel (inv (x1, y1), eq, inv (x2, y2)) = false;
 rel (x, bi, y) = rel (y, b, x); rel (x, si, y) = rel (y, s, x); rel (x, fi, y) = rel (y, f, x);
 rel (x, oi, y) = rel (y, o, x); rel (x, di, y) = rel (y, d, x); rel (x, mi, y) = rel (y, m, x);
 endtype

 behaviour
 Mike?mike:interval[(dur(mike) eq 25) and ((start(mike) >= 30) and (end(mike)<= 60))];
 John?john:interval[(dur(john) eq 20) and ((start(john) >=20)and (end(john)<=46))];
 Liza?liza:interval[(dur(liza) eq 30) and ((start(liza) >= 20) and (end(liza)<=60))];
 R?m_j,j_l,l_m:relation
 [(((neq(m_j,b) and neq(m_j,bi)) and (neq(m_j,m) and neq(m_j,mi))
 and checkrel(mike,m_j,john))and ((eq(j_l,s) or eq(j_l,si) and checkrel(john,j_l,liza))
 and ((eq(l_m,b) or eq(l_m,m)) or (eq(l_m,o) or (eq(l_m,d) or eq(l_m,s))))
 and checkrel(mike,l_m,liza)))];
 exit
endspec

Figure 4. TCSP Specification in LOTOS

ral variables such that all the symbolic temporal re-
lations are satisfied. Since the TCSP specification is
deadlock free, that means a solution exists for this
problem. Indeed, the specification simulation gener-
ates only one solution: {Mike!inv(30, 55) John!inv(26,
46) Lisa!inv(26, 56) R!OI!SI!D}. We also note that the
simulation not only finds the possible interval times
of events of John, Mike and Lisa but also gives the
satisfied binary relations between the events. Indeed,
from the generated path above R!OI!SI!D represents
the TCSP relations: Mike O� John, John S Lisa and
Lisa D� Mike.

What are the Possible Arrival Times of Lisa? This
consists of looking for all possible solutions to the
problem and get, for each solution provided, the end
time of Lisa’s event. First, we generate the LTS of

the LOTOS specification and then by using model
checking, we verify if there is a path leading to a
successful termination. For this problem, there is
only one path: {Mike!inv(30,55) John!inv(26,46)
Lisa!inv(26,56) R!OI!SI!D}. This solution means that
there is only one possible arrival time of Lisa, and
which is 7:56.

What is the Earliest Start Time of Mike? This can be
obtained by choosing an order of assigning temporal
intervals to temporal events when looking for a pos-
sible solution. In this case, the order should be from
left to right (from the smallest value of begin time of
Mike’s event to the largest value). In LOTOS, we use
the model checking in the same way as the question
above but we look at Mike’s event. The possible start
time of Mike is a set of the start times of Mike’s event,

X precedes Y

X equals Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

Relation Symbol Inverse Meaning

X Y
P P-

E E
X

YM M- X

Y

O

D

S

F

O-

D-

S-

F-

YX

YX

YX

Y X

Table 1. Allen Primitives

and the earliest start time is the minimum value of this
set. Consequently, 7:30 is the earliest start time of
Mike.

Checking if a Possible Scenario is a Solution. A sce-
nario corresponds to a possible assignment of temporal
intervals to temporal events. A given scenario is a
solution to the problem if it satisfies all the symbolic
temporal constraints. For example, the scenario {John
= (20, 40), Mike = (30, 55), Lisa = (20, 50)} is not a
solution since it violates the constraint between Mike
and Lisa. In LOTOS, we first generate the transition
systems of both the path given as : Mike!inv(30,55)
John!inv(20,40) Lisa!inv(20,50)<any>* and LOTOS
specification, called respectively LTSp and LTSs.
Then with the model-checker, we verify if LTSp is a
sequence of LTSs. This is not the case, i.e. the above
path cannot be a solution.

4. Conclusion

In this paper, using the specification language LOTOS,
we have seen how to represent and solve constraint satis-
faction problems in general as well as those involving tem-
poral constraints. Throught the model-checking we can for
instance verify if a problem is consistent, check if a given
scenario is a solution or extend a partial solution to a com-
plete one. On the other hand, the specification simulation
can enumerate all the possible solutions of a problem. Our
future work is to compare the efficiency in running time
and memory cost of the C code automatically generated
from LOTOS specifications with the CSP algorithms based
on backtrack search and constraint propagation.

References

[All83] J.F. Allen. Maintaining knowledge about tempo-
ral intervals. CACM, 26(11):832–843, 1983.

[BB89] T. Bolognesi and E. Brinksma. Introduction
to the ISO Specification Language LOTOS. in
P.H.J. van Eijkand, C.A. Vissers and M. Diaz,
eds., The Formal Description Technique LOTOS
(North-Holland, Amsterdam), pages 303–326,
1989.

[DMP91] R. Dechter, I. Meiri, and J. Pearl. Temporal con-
straint networks. Artificial Intelligence, 49:61–
95, 1991.

[Gar96] H. Garavel. An Overview of the EUCALYP-
TUS Toolbox. In Proc. of COST247, Interna-
tional workshop and Applied Formal Methods in
System Design, University of Maribor, Slovenia,
June, 1996.

[HE80] R.M. Haralick and G.L. Elliott. Increasing
tree search efficiency for Constraint Satisfaction
Problems. Artificial Intelligence, 14:263–313,
1980.

[ISO87] ISO. ISO LOTOS - A Formal Description Tech-
nique Based on The Temporal Ordering of Ob-
servational Behaviour. International Organiza-
tion for Standardization- Information Processing
Systems Open Systems Interconnection, Gen-
eve, July 1987.

[Kum92] V. Kumar. Algorithms for Constraint Satistisfac-
tion Problems: A survey. AI Magazine, 1992.

[Mac77] A. K. Mackworth. Consistency in networks
of relations. Artificial Intelligence, 8:99–118,
1977.

[MCH98] M. Mouhoub, F. Charpillet, and J.P. Haton. Ex-
perimental Analysis of Numeric and Symbolic
Constraint Satisfaction Techniques for Tempo-
ral Reasoning. Constraints: An International
Journal, 2:151–164, Kluwer Academic Publish-
ers, 1998.

[Mei96] I. Meiri. Combining qualitative and quantitative
constraints in temporal reasoning. Artificial In-
telligence, 87:343–385, 1996.

[vB92] P. van Beek. Reasoning about qualitative tempo-
ral information. Artificial Intelligence, 58:297–
326, 1992.

Handling unanticipated requirements change with aspects

Ana Moreira and João Araújo
Departamento de Informática, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, Quinta da Torre,
2829-516 Caparica,

PORTUGAL
{amm, ja}@di.fct.unl.pt

Abstract. Supporting software evolution and maintenance
are two of the major issues of aspect-oriented software
development. This paper adds to aspect-orientation by
proposing (i) a classification of concerns, (ii) volatile
concerns to be kept separately and handled as candidate
aspects independently of the crosscutting property, (iii)
the use of adaptable use cases and activity diagrams to
cope with generic model elements that facilitate the com-
position of concerns, (iv) the extension of the use case
model to support our ideas.

1. Introduction

Aspect-oriented software development aims at handling
crosscutting concerns by proposing means to their sys-
tematic identification, modularisation and composition.
Crosscutting concerns are properties whose implementa-
tion is scattered among several implementation modules,
producing tangled systems that are hard to understand,
difficult to maintain and hard to evolve. Our work is at the
requirements engineering level and uses facilities avail-
able in aspect-orientation to increase support for
unanticipated changes in requirements.

Use cases, proposed by Jacobson [4] and later adopted
by the UML [9], are a simple technique to structure the
requirements of a system and to facilitate the communica-
tion with the stakeholders. However, use cases are only
used to define functional requirements, leaving out global
properties (such as response time, availability and com-
patibility) that affect the whole or part of the system.
Furthermore, the crosscutting nature of some require-
ments (functional and non-functional) is not handled
properly, even if the <<include>> and <<extend>> rela-
tionships are a good starting point [5].

This paper has two main goals: to extend the use case
model so that concerns that were not modularised (e.g.
non-functional requirements) can now be handled sepa-
rately; to promote software evolution by externalising at
this early stage volatile concerns that can be handled as
candidate aspects. By externalising volatile concerns,
such as business rules, that need to change on client’s or
market demands, we can build a stepping stone for further

management of unanticipated requirements change. In
order to accomplish this we classify each concern, we
keep volatile concerns separated and handle them as can-
didate aspects, we use adaptable use cases and activity
diagrams to address generic model elements that facilitate
the composition of concerns and, finally we extend the
use case model to support our approach.

In the remaining of this paper section 2 introduces our
approach, section 3 applies the approach to an example,
section 4 discusses related work and section 5 draws some
conclusions, pointing directions for further investigation.

2. Aspects to support requirements evolution

Figure 1 proposes a simple model to improve modularisa-
tion of a use case driven approach with consequent
increase of software reuse and evolution.

Elicit concern-oriented
requirements

Integrate concerns
with use cases

Identify & compose
candidate aspects

List of concerns
Table of classified concerns
Template of concern description

Map of concerns into use case model
Use case packages & projections
UC model with pattern specifications

List of candidate aspects
Composition rules
Composed model

Figure 1. A model to promote requirements evolution

Task 1: Elicit concern-oriented requirements. The goal
here is to produce a requirements document organized in
terms of the major concerns1 that define the problem do-
main. Each concern refers to a feature that the future
system needs to address to satisfy the stakeholders’ needs.

After identifying and defining concerns we classify
them according to its type that depends on two factors: (i)
longevity, that can be enduring or volatile and (ii) concep-
tual nature, that can be services or constraints. Enduring
concerns are “relatively stable requirements which derive
from the core activity of the organization and which relate

1 A concern may be defined as a set of related requirements.

directly to the domain of the system” [8]. Volatile con-
cerns “are likely to change during the system
development or after the system has been put into opera-
tion” [8]. Constraints are properties that the system must
satisfy. Services reflect functionalities that the system
must offer. This information is collected in a bi-
dimensional table where each cell contains the list of con-
cerns that satisfy a combination of those two factors.
Concerns are then described in more detail in a template
such as the one depicted in Table 1.

Table 1. Template describing a concern
Concern # <Concern identification >
Name <Concern name >
Interrelationships <List of concerns that this concern relates to>

List of pre-conditions
Pre-condition # < What we expect is already done>

List of responsibilities
 Responsibility # <Responsibility name> <Required concern>

The row “Interrelationships” lists the concerns that a
given concern relates to. A responsibility is an obligation
to perform a task, or know certain information [11]. A
required concern is a subset of the interrelationships’ list.

Task 2: Integrate concerns with use cases. This task
starts by mapping concerns into use cases (one to one),
stakeholders into actors (stakeholders that directly use
systems’ services are mapped into actors) and interrela-
tionships (listed in each template) into relationships
between use cases. A one-to-one mapping between con-
cerns and use cases promotes, as we will show in Section
3, the early externalization of constraints and volatile
business rules that would, otherwise, be spread through-
out the original use cases, making the evolution harder.

There are six kinds of relationships between concerns.
Three of them are those used by the use case model [4]:
<<include>>, <<extend>> and <<inherit>>. The remain-
ing three are new ones: <<collaborate>>, <<damage>>
and <<constrain>>. While <<collaborate>> reflects a
positive contribution of one concern to another, <<dam-
age>> reflects a negative contribution. These two
relationships are specific for global properties, i.e. non-
functional concerns, and can be validated using the NFR
catalogue [1]. Finally, <<constrain>> says that a global
property restricts another concern.

The second step of this task, is concerned with han-
dling complexity. As one concern is mapped into one use
case, the resulting use case diagram is a too large dia-
gram, even for a not so big system. One way of managing
this problem is to project each global property on a use
case diagram. The result of such a projection is a use case
diagram with the global property connected with a

<<constrain>> relationship with all the use cases that
must satisfy it.

The last step has two main goals: (1) promote concrete
use cases to generic use cases; (2) describe each use case
using an activity diagram with generic elements. Generic
use cases can be defined in an abstract way and later be
instantiated to a particular situation. A generic use case
will be represented by a Use Case Pattern Specification
(UCPS). Each element in a pattern specification is a role
that is a UML meta-class specialized by additional
properties that any element fulfilling the role must
possess. Role names are preceded by “|”. (An UCPS is
based on the idea of Pattern Specification [3].)

Use case roles are concerns that are more likely to
change over time, such as constraints and volatile ser-
vices. The idea is that such concerns, in the end, will be
instantiated differently for particular configurations of a
system. We can apply the same idea to relationships and
have relationship roles that can be later instantiated. The
instantiation is given by a rule of the form:

<step #.> Replace |<modelElement A>
 with <modelElement B>

Use cases can be described in more detail using activ-
ity diagrams. We propose a generalization of the activity
diagrams to include element roles. We call these Activity
Pattern Specifications (APSs). Use case roles, therefore,
should be described using APSs.

Task 3: Identify and compose candidate aspects. Can-
didate aspects2 handle crosscutting concerns and promote
software evolution by externalising volatile concerns that
are typically conditions, business rules and constraints. A
crosscutting concern is one that is required by several
concerns. (Or, it is a use case that is related to more than
one use case.) However, we propose that all constraints
and volatile services should be considered as good candi-
date aspects, independently of being crosscutting or not.

Composing use cases with candidate aspects gives the
developer a possibility to understand the full picture.
Composition rules are defined to weave service use cases
with both constraint and volatile use cases specified with
activity diagrams or APSs. A composition rule consists of
a set of instantiation steps, where APS elements are re-
placed with concrete elements or other APS elements. It
takes the form:

Compose <use case A> with <use case B>
{<step #.> Replace |<modelElement A>

 with
 <modelElement B>

 []
|<modelElement B>

}

2 The term “candidate aspect” was defined in [7].

Where “[]” represents the choice operator and “|” de-
notes that the model element is a role.

3. A subway system example

This section illustrates the approach described in the pre-
vious section by means of an example based on the
Washington subway system, described below:

“To use the subway, a client uses a card that must
have been credited with some amount of money. A card is
bought and credited in buying machines available in sub-
way stations. The card is used in an entering machine to
initiate a trip. When the destination is reached, the card is
used in an exit machine that debits it with an amount that
depends on the zones travelled. If the card has not enough
credit the gate will not open. During periods of low usage
(e.g., weekends), special package promotions are of-
fered.”

3.1 Elicit concern-oriented requirements

List concerns. By analysing the requirements described
above, we discovered concerns C1-C7 listed in Table 2.
Additionally response-time, availability and multi-access
are intrinsic properties in this type of systems. In particu-
lar, response time is needed as the system needs to react
in a short amount of time to avoid delaying passengers;
availability is needed as the system must be available
when the subway is open; multi-access is needed so that
several passengers can use the system concurrently; Con-
cerns C8-C10 express these properties as concerns.

Table 2. List of concerns for the subway system
Concern # Concern description

C1 A client buys a card in a buying machine
C2 A client must own a valid card
C3 Clients credit cards with minimum amounts of

money in buying machines
C4 A client enters a subway station using a card in

an entry machine
C5 A client leaves the subway station using his

card in an exit machine that debits it according
to the zones travelled

C6 An exit machine will not open its gate for cards
without enough balance to pay the trip

C7 Special package promotions are offered during
periods of low usage

C8 The system is used for several passengers si-
multaneously

C9 The system needs to react in time to avoid de-
laying passengers while they are entering or
leaving the subway, or crediting their cards

C10 The system must be available for use

The number of concerns identified depends on the
level of granularity used to look at the system. For exam-
ple, instead of C1-C7 we could have one concern to
handle each machine (entry machine, exit machine and
buying machine).

Classify concerns. Each concern in Table 2 is classified
according to characteristics defined in Table 3.

Table 3. Concerns classification of the system
 Enduring Volatile

Services C1, C3, C4, C5 C7
Constraints C2, C8, C9, C10 C3, C5, C6

Constraints impose conditions on services. For exam-
ple, constraint C6 is a pre-condition on service C5; C2 is a
pre-condition on services C3, C4 and C5. Constraint C9 is
a global property that C1-C7 must satisfy.

Note that C3 and C5 appear in two cells of the table,
being classified both as enduring services and volatile
constraints. This means that they should be divided into
two separate concerns. From C3 we can derive:

C3A Clients credit cards in buying machines
C3B Cards are credited with a minimum amount

Similarly, for C5 we have:
C5A A client leaves the subway station using his

card in an exit machine that debits it
C5B Exit machines calculate amount to debit

cards according to the zones travelled
C3A and C5A are enduring services and C3B and

C5B are volatile constraints. For example, C5B is volatile
because we can change the way prices are calculated (e.g.
fixed prices).

Describe concerns. Each concern is described using the
template presented in Section 2, Task 1 (see Table 4).

Table 4. Template for “Exit subway”
Concern # C5A
Concern name Exit subway
Interrelationships C2, C5B, C7, C8-C10

List of pre-conditions
Pre-condition 1 Card is valid

List of responsibilities
R1 Calculate amount to be paid C5B, C7
R2 Check balance C6
R3 Debit card
R4 Register end of trip
R5 Let client leave

Notice that while some concerns from the interrela-
tionships list are required by particular responsibilities,
C8-C10 affect the whole concern. Also, precondition 1 is
a C2 responsibility.

3.2 Integrate concerns with use cases

Map concerns into a use case model. Figure 2 depicts
the use case model. Each concern was mapped into one
use case. The stakeholders Client and ClientCard were
mapped onto actors. Some of the relationships between
use cases were identified based on the interrelationship
list of each concern. Examples of each type of relation-
ship are: <<include>> is used to relate ValidateCard with
CreditCard, EnterSubway and ExitSubway; <<extend>>
is used to extend the original use case CalculateAmount
with Promotion. <<constrain>> is defined between C8-
C10 and all the other use cases; C8-C10 are related be-
tween them with <<collaborate>> and <<damage>>
relationships (this information was taken from the cata-
logue offered by the NFR framework [1]). We could,
complement the template of the concern with this infor-
mation by adding the name of the relationship between
brackets after the name of the concern in the interrelation-
ship row.

Handling complexity. In complex situations where dif-
ferent global properties affect different subsets of use
cases, we use the projections as described in Task 2 of
Section 2. Figure 2 illustrates this for Availability.

ValidateCard

WeekendPromotion

Buy card

CreditCard

Client ExitSubway

EnterSubway

ClientCard

CalculateAmount
MinimumAmount

HasBalance

<<include>>

<<include>>

<<include>>

<<include>>

<<extend>>

<<include>>

<<include>>

Availability

<<constrain>><<constrain>>

<<constrain>>
<<constrain>>

Figure 2. Projecting Availability on a set of use cases

Describe use cases with pattern specifications. A use
case model is made generic by “marking” the use cases
that are more likely to change as use case roles. For ex-
ample, “Promotion” is a good example of a use case role,
as special prices can be defined for weekends, bank holi-
days, seasonal periods, handicap users. It should then be
preceded with “|” in the use case model. The resulting use
case model is called UCPS. Later, during composition,
“|Promotion” can be instantiated to “Weekend Promo-
tion”, for example, through the rule:
Replace |Promotion with WeekendPromotion

Figure 3 shows APSs for ExitSubway and Validate-
Card.

|ValidateCard

|CalculateAmount

|HasBalance

DebitCard

RegisterTrip

OpenGate

EjectCard

TakeCard

a)

InsertCard

ReadCard

CheckCard

|HandleError

|Terminate

|ContinueExit

[Card NOK]

[Card OK]

b)
Figure 3. a) Exit subway; b) Validate Card

3.3 Identify and compose candidate aspects

List candidate aspects. The use cases ResponseTime,
Multi-access, Availability, CalculateAmount and Vali-
dateCard are crosscutting and so, are candidate aspects.

One of the contributions of this paper is that candidate
aspects do not have to be crosscutting. Examples are
Promotion, HasBalance and MinimumAmount. Since
these are volatile business rules that can change according
to the market needs, modularise them and handle them as
candidate aspects promotes software evolution, since as-
pects are more easily enabled and disabled from a system
than a class, for example.

Define composition rules. All concerns need to be com-
posed so that the developer gets a full picture of the
system. Composition will be accomplished by replacing
role elements of one APS with concrete or role elements
from another model.

Below there is a simple composition rule for Exit-
Subway and ValidateCard:
Compose ExitSubway with ValidateCard
1. Replace |ValidateCard with InsertCard
2. Replace |ContinueExit with |CalculateAmount
3. Replace |Terminate with EjectCard

The APS resulting from this composition is illustrated
in Figure 4.

|CalculateAmount|HasBalance

DebitCard RegisterTrip

OpenGate EjectCard

TakeCard

InsertCard

ReadCard CheckCard

|HandleError[Card NOK]

[Card OK]

Figure 4. Diagram resulting from (partial) composition

To obtain the full view of ExitSubway, we need to
compose it with all the use cases that are in any way re-
lated to this. This information is in the interrelationships
row of its template description.

4. Related work

An aspect-oriented requirements model was proposed in
[11]. Jacobson [5] agrees that use case extensions are a
way to handle aspects during requirements and uses SDL
to demonstrate that. However, his work is not on the as-
pect-oriented software development context and gives no
systematic process to handle evolution through constraints
and volatile services.

Our pattern specifications are based on the work of [3,
10]. [3] defines an aspect through role models to be com-
posed into UML diagrams. However, the approach only
handles role models and does not allow concrete elements
in those models, which decreases the amount of instantia-
tions required. Concrete modeling elements are dicussed
in [10] for sequence diagrams. Our only similarity with
this work is the structure of the composition rules and the
use of concrete elements in the APSs.

Clarke and Walker [2] define aspects using UML
templates, but at design level. Also, they are concerned
with how to specify the aspects rather than composing
aspects with non-aspectual models.

In [6] an extension of use case modelling to handle
evolution through coordination contracts is proposed. The
work we present here differs not only on the level of ab-
straction and the use of aspects, but also the focus on
concerns and composition rules.

5. Conclusions and Future Work

This paper complements our previous results in the area
of aspect-oriented requirements engineering with four
main innovations: a classification of concerns into ser-
vices and constraints, and each one into enduring and
volatile; an extension of pattern specification for activity
diagrams to define role elements in a model that can be
later instantiated; the externalization, i.e. modularisation,
of constraints and volatile services that reflect business
rules that are important in the organization; the integration
of the notions above with use cases, in the context of as-
pect-oriented requirements engineering.

For future work we will investigate how (1) to handle
possible conflicts resulting from composing APSs of con-
cerns that have a <<damage>> relationship between
them; (2) to address conflicting emergent behavior that
may appear when two or more candidate aspects are al-
lowed to co-exist; (3) to extend this approach to the
modeling and design activities; (4) to develop a tool that
supports the identification of concerns, their specification
and composition.

References

[1] L. Chung, B. Nixon, E. Yu, J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Academic
Publishers, 2000.

[2] S. Clarke and R. J. Walker, “Composition Patterns: An
Approach to Designing Reusable Aspects”, 23rd Interna-
tional Conference on Software Engineering (ICSE), 2001.

[3] G. Georg, I. Ray, R. France, “Using Aspects to Design a
Secure System”, 8th IEEE International Conference on En-
gineering of Complex Computer Systems, Maryland, USA,
December, 2002.

[4] I. Jacobson, Object-Oriented Software Engineering – a Use
Case Driven Approach, Addison-Wesley, Reading Massa-
chusetts, 1992.

[5] I. Jacobson, “Aspects: the Missing Link”, Software Devel-
opment, November 2003.

[6] A. Moreira, J. Fiadeiro, L. Andrade, “Evolving Require-
ments through Coordination Contracts”, 15th International
Conference CAiSE’2003, Springer-Verlag, pp. 633-646.

[7] A. Rashid, A. Moreira, J. Araújo, “Modularisation and
Composition of Aspectual Requirements”, 2nd Interna-
tional Conference on Aspect-Oriented Software
Development, ACM Press, 2003, pp. 11-20.

[8] I. Sommerville, Software Engineering, Addison-Wesley,
6th edition, 2001.

[9] Unified Modeling Language Specification, version 2.0,
January 2004, in OMG, http://www.omg.org

[10] J. Whittle, J. Araújo, “Scenario Modeling with Aspects”,
IEE Proceedings Software. Under review.

[11] R. Wirfs-Brock, B. Wilkerson, L. Wiener, Designing Ob-
ject-Oriented Software, Prentice-Hall, 1999.

Integrating Security Administration into Software Architectures Design �

Huiqun Yu, Xudong He, Yi Deng, Lian Mo
School of Computer Science

Florida International University
Miami, FL 33199, USA

�yhq�hex�deng�lmo01�@cs.fiu.edu

Abstract

Software architecture plays a central role in developing
software systems that satisfy functionality and security
requirements. However, little has been done to integrate
system design with security enforcement, which would
otherwise benefits both development process and system’s
quality of service (QoS). This paper proposes a formal
method to integrate security administration into software
architecture design. We use the Software Architecture
Model (SAM), a general software architecture model
combining Petri nets and temporal logic, as the underlying
formalism. Several techniques for designing functionality
of software architectures are presented. Security modeling
and administration methods are proposed. As such, SAM
serves as a common platform for modeling, design and
analysis of secure software architectures.

Keywords: Software architecture, security, formal
method, design, analysis

1. Introduction

Software security is a critical concern for modern infor-
mation enterprises. Breach of software security could cause
a loss of money or even disaster. Software architecture plays
a central role in developing software systems that satisfy
functionality and security requirements [12]. Two major
elements of architectures are components and connectors.
Important security concerns, such as authentication and ac-
cess control, arise out of interactions between components.
However, architecture descriptions are typically expressed
informally and accompanied by box-and-line drawings in-
dicating the global organization of computational entities
and interaction among them [1]. While informal description

�Supported in part by the NSF under grants HRD-0317692 and CCR-
0226763, and by NASA under grant NAG 2-1440.

of software architecture may provide useful documentation,
it is impossible to analyze an architecture for consistency or
determine non-trivial properties. There is no way to check
that a system implementation is faithful to its architectural
design.

A high degree of assurance of software security is usu-
ally achieved by independent verification of the security
properties apart from good design practices and testing pro-
cesses. To this end, many security policy models were pro-
posed [11]. Various formal security verification methods
were established in order to prove the correctness of secu-
rity policies against the corresponding models [10, 8]. Un-
fortunately, security modeling and verification have been
largely independent of system requirements and system de-
sign. Significant benefits can be gained by integrating sys-
tem design modeling with security policy enforcement [3].

To address the above problems, we propose a formal ap-
proach to designing secure software architectures based on
SAM [14]. SAM is a general software architecture model
based on a dual formalism combining Petri nets and tempo-
ral logic. Security system architecture design in SAM in-
cludes two parts. One is the functionality part, which deals
with the overall structure of the software architecture. The
other is the security part, which handles security require-
ment modeling, specification, and enforcement. Several
heuristics are proposed in order to guide the architectural
design at both element level and composition level. Soft-
ware security is enforced through well-defined rules. Anal-
ysis techniques are presented to ensure the correctness of
architectural design. The main contribution of this paper
is providing a formal method for integrating security ad-
ministration into software architecture design on a common
semantic domain.

The rest of the paper is organized as follows: Section 2
presents software architecture design techniques in SAM.
Section 3 proposes security administration method. Section
4 is the conclusion.

2. Software Architectures Design

2.1. The Structure of SAM Models

A SAM software architecture is defined by a hierarchi-
cal set of compositions, each of which consists of a set of
components, a set of connectors and a set of constraints to
be satisfied by the interacting components. Basically, be-
haviors of components and connectors are modeled by Petri
nets, while their properties (or constraints) are specified by
temporal logic formulas. In this paper, we use predicate
transition nets (PrT nets) [4], and a linear-time temporal
logic (LTL) [9]. The interfaces of components and connec-
tors are ports (places). One interface requirement is that the
input and output ports of the element must be maintained at
a lower level.

2.2. Element Level Design

In SAM, each element (either a component or a connec-
tor) is specified by a tuple � ��� �, where � is a property
specification (written in LTL), and � is a behavior model
(defined by a PrT net). To define an element constraint
�, we can either directly formulate the given user require-
ments or carry out a cause and effect analysis by viewing
input ports as cause and output ports as effects. Canonical
forms [9] for a variety of properties such as safety, guaran-
tee, obligation, response, persistence and reactivity are used
as guidelines to define property specifications.

The general procedure to develop� includes the follow-
ing steps.

1. Use all the input and output ports as places of �;

2. Identify a list of events directly from the user require-
ments or through Use Case analysis [2];

3. Represent each event with a simple PrT net;

4. Merge all the PrT nets together through shared places
to obtain �;

5. Apply the transformation technique [6] to make �
more structured and�or meaningful.

2.3. Composition Level Design

SAM supports both top-down and bottom-up system de-
velopment approaches. The top-down approach is used to
develop a software architecture specification by decompos-
ing a system specification into specifications of components
and connectors and by refining a higher-level component
into a set of related sub-components and connectors at a low

level. The bottom-up approach is used to develop a soft-
ware architecture specification by composing existing spec-
ifications of components and connectors and by abstracting
a set of related components and connectors into a higher-
level component. Often both the top-down approach and
the bottom-up approach have to be used together to develop
a software architecture specification.

In SAM, only a pair consisting of a related component
and connector can be composed meaningfully. Suppose that
� ��� �� � and � ��� �� � be a pair of a related compo-
nent and connector, i.e. they share some ports. The their
composition is obtained through: (1) composing�� and��

by merging identical ports, and (2) composing �� and �� by
conjoining �� � ��.

2.4. An Example

Consider a simple clinical information (SCI) system,
which manages and maintains the personal health infor-
mation. The patients’ medical documents, including basic
information, test results and treatment records, are classi-
fied into different access levels by the security administra-
tor. The users (or roles), such as registration clerks, nurses,
technicians, physicians etc., have different clearance levels
to access those documents. The architecture of the SCI sys-
tem includes four components as illustrated in Figure 1.

� the Application System (AS), which provides users
with documents access services,

� the Access Interface System (AIS), which coordinates
the interactions between other components,

� the Policy Evaluator (PE), which performs evaluation
decisions based on certain security policies that govern
the access to the protected resources, and

� the Database Management System (DBMS), which
manages the medical documents.

T

T

T

0

P12
11

10

9 8

7

6

54

3

2P1

P

P P

T

AIS

(u,op,ob)

(u,op,ob)(u,op,ob,res)

(u,op,ob,res)

(u,op,ob,res) (u,op,ob,res)

(u,d,op,ob)

(u,d,op,ob)(u,sa,op,ob)

(u,sa,op,ob)
(u,sa,op,ob)(u,sa,op,ob)

(u,op,ob) 6
T5 4

T32

1

PP
P

P

PP

P

P

AS

PE

DBMS

Figure 1. The SCI software architecture

Table 1. Variables in Figure 1

Description

Result feedback res

Access control decision

sa Static attributes of the user

Object nameob

op

User name

Requested operation

u

d

Variable

The properties of components and connectors can be
specified by LTL formulas.

� ��� – A user request will be sent to the AIS service:
���� ��� ���������������� ��� ���� ������ ��� ��� �����

� ���� –
(1) AIS will invoke PE once a request is received:
���� ��� ��� ������������ ��� ��� ���

� ������ ��� ��� �����

(2) If AIS gets a positive decision, it will forward the
user request to DBMS. Otherwise it will directly in-
form the user that the request was ‘denied’:
���� 	� ��� ������������� 	� ��� ��� � 	 � �
 �

� ������ ��� ����

� ������ 	� ��� ��� � 	 � �� �

� ������� ��� ��� �	���	
�����

� ��� – When PE is invoked, it will return access con-
trol decision:
���� ��� ��� �����	��������� ��� ��� ���

� ������ 	� ��� �����

� ����� – Once DBMS receives a request from AIS,
DBMS will feedback a result:
���� ��� ����������������� ��� ���

� ��	��� ��� ��� ������

The following are connector property specifications, where
every connector plays the role of a pipe.

��: ���� ��� ��� ������������ ��� ��� ���

� ������ ��� ��� �����

��: ���� ��� ��� ������������ ��� ��� ���

� ������ ��� ��� �����

��: ���� 	� ��� ������������ 	� ��� ���

� ������ 	� ��� �����

��: ���� ��� ������������ ��� ���

� ������ ��� �����

��: ���� ��� ��� ���������	��� ��� ��� ����

� ������� ��� ��� ������

��: ���� ��� ��� �������������� ��� ��� ����

� ������� ��� ��� ������

The composition-level property specification (denoted
by ���) is obtained by conjoining the property specifi-
cations of all components and connectors, i.e.

���: ��� � ���� � ��� ������
� �� � �� � �� � �� � �� � ��

One overall requirement 	�
 of the SCI system is that
every user request must be processed, which can be speci-
fied by the following LTL formula:
���� ��� ����������������� ��� ���� ������� ��� ��� ������

One way to ensure the composition-level correctness is
to show ��� � 	�
. The following is a proof outline.

(1) Assume precedence ����� �� ��
(2) �, � and � instantiation in ��� :

����� �� ��� ������ ��� �� ��
(3) Apply modus ponens rule to (1) and (2):

������ ��� �� ��
(4) Instantiate � and � in �� to � in (3):

������ ��� �� ��� ������� ��� �� ��
(5) Apply modus ponens rule to (3) and (4):

������� ��� �� ��
(6) Apply� absorbing rule to (5):

������ ��� �� ��
(7) By repeating the above Steps (4) to (6) to all sub-

sequent element property specifications ���� , ��,
��� , ��, ���� , ��, ����� , ��, ���� , ��,
we can derive the formula in Step (8).

(8) ������� �� �� ����
(9) Eliminate precedence assumption in (1) by (8):

����� �� ��� ������� �� �� ����
(10) �, �, and � generalization in (9):

���� �� ���������������� �� ��
� ������� �� �� ������

Thus we proved DES � REQ.
For the element-level correctness analysis, we need to

show that the property specification � holds in the corre-
sponding behavior model �. To this end, several auto-
matic verification techniques were developed [5, 15], which
include symbolic model checking, theorem proving, and
reachability tree analysis.

3. Security Administration Method

3.1. Security Policy Modeling

A security policy model is a mathematical restatement
of the security policy that must be enforced by the com-
puter system. In the following, we present a framework for
administration of security policies based on SAM. The ad-
ministration commands is a generalization of the take-grant
model [13].

Places We assume that the data types include � (Enti-
ties), ��� (Subjects), ��� (Objects), � (Rights), where
� � ��� � ���. We assume that � � ��� �� �� �	,
which contains four access rights: take, grant, read, and
write, respectively. Each place � represents a subject in

���. The type (or called inscription) of the place � is
���� � ��

�
� ��� ��, where � is power set operator, and

�
� is mapping operator. Access matrix can be derived from
the markings of places. �� �� 	� �
��� means that the
subject � has 	 right(s) on the entity � under the marking

 .

Transitions The state changing commands include four
rules: the take-rule, grant-rule, create-rule, and revoke-
rule. Each rule corresponds to a transition in a PrT net.
In the following, �� ��� �� denote subjects, 	� denote sub-
sets of access rights, and � denotes an entity. We assume
that firing of the transition �� update the marking from

to
 �.

� The take-rule
The command �������� ��� � makes the subject ��
to grant its right(s) to ��. Formally, the command
corresponds to the transition �� in Figure 2, where
the dashed parts are newly added by applying the
command, while the solid parts are the old ones.

2

C2

1

1

1

C’

C
tr ss

Figure 2. A PrT net for the take-rule

– �� � �����

– �� � �����

– ��

� � ������ �� ���� � �� �� �� � ������ �� 	
,
where � is the overriding operator.

– ����� � 	
��������������� �� � �� ����� � ��

��

Informally, �����
�����
����� � is a first-order
formula of security policy specification1 that stipulates
the relationship on capabilities of �� and ��, as well as
the set . After firing ��, certain access rights in of
the subject �� are passed to the subject ��.

� The grant-rule
Using the command ��������� ��� �, �� grants its
right(s) to ��. Its formal definition is similar to that of
the take-rule, and omitted.

� The create-rule
The command ��������� �� � makes � to create an en-
tity � and to claim right(s) to �, whose formal defini-
tion is illustrated in Figure 3.

1Additional elements may be needed in order to specify a particular
security policy. For example, to specify Multi-level security (MLS) pol-
icy, elements such as clearance levels, and the mapping from entities to
clearance levels are necessary.

(2)

tr1Cs

1C’

(1)

eC1

1C’

trs

Figure 3. PrT nets for the create-rule

Case 1: if � is a subject, then a new place � and a new
transition �� are added, and

– �� � ����

– ��

� � �� � ��� �� ��

– ����� � 	
������������� �� � �� ���� � ��

��.

Case 2: if � is an object, then only a new transition ��

is added, and

– �� � ����

– ��

� � �� � ��� �� ��

– ����� � 	
�������� �� �� � �� ���� � ��

��.

� The revoke-rule
The command ��������� �� � removes right(s) to
the entity � from the subject �, whose formal definition
is illustrated in Figure 4.

s tr

C’1

1C

Figure 4. A PrT net for the revoke-rule

– �� � ����

– ��

� � �� � �� �� ��� ����� �� �� � ��

– ����� � 	
������������� �� � �� ���� � ��

��.

3.2. Security Administration

A security policy enforcement consists of a sequence of
PrT nets, such that

1. the initial PrT net contains only one place that denotes
the security administrator (the super user), and

2. at each step, one of the state changing rules is applied
to the current PrT net to obtain a new PrT net.

The constraint for each transition in the PrT net guarantees
the correctness of the security policy enforcement.

For the SCI system, let ��� � ��� ��� � � � � ��� de-
note the set of the security administrator and users, and
��� � ���� � � � � ��� denote the set of the patients’ medi-
cal documents. The security administrator construct a PrT
model as follows.

� The create-rule is used to create users and/or docu-
ment. Hence, the security administrator take the access
rights from all of the users.

� The revoke-rule is used to remove access rights from
users.

� The take-rule and the grant-rule to exchange rights
among users.

By applying these rules, a security policy model is obtained
as illustrated in Figure 5. The security model plus its con-
nections to ports �� and �� actually constitute a refinement
of the Policy Evaluator in Figure 1.

. . . .
.

.

u 1

u 2

u m

s

Figure 5. A security model of the SCI system

4. Concluding Remarks

This paper proposes a formal approach to designing se-
cure software architectures. We use SAM, a general soft-
ware architecture model combining Petri nets and temporal
logic, as the underlying formalism. A systematic method
for software architecture design and security administration
proposed.

Our method has several advantages. Firstly, the method
provides a rigorous way to modeling and designing secure
software architectures. The method is based on a well es-
tablished formalism SAM [5]. Not only SAM is capable
of modeling complex software architectures, it also proves
to be a powerful method for system analysis; Secondly,
we integrate security administration into software architec-
tures design, which is based on a common semantic model;
Thirdly, the separation of security concerns from function-
ality decreases design complexity and helps to enhance sys-
tem’s QoS.

Interesting topics such as multi-policy enforcement,
modularity in policy representation, composition, design
and analysis tools are omitted in this paper. Another
promising direction is aspect-oriented approach [7] to secu-
rity system design , which addresses separation of concerns
in software development by using specialized mechanisms
to encapsulate concerns whose behavior crosscuts essential
application functionality.

References

[1] R. Allen and D. Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, 6(3):213–249, 1997.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley Longman,
Inc., 1999.

[3] P. Devanbu and S. Stubblebine. Software engineering for se-
curity: a roadmap. In Proceedings of the Conference on the
Future of Software Engineering, ICSE’00 Special Volume,
pages 227–239. 2000.

[4] X. He. A formal definition of hierarchical predicate transi-
tion nets. In Proceedings of the 17th International Confer-
ence on Application and Theory of Petri Nets, LNCS 1091,
pages 212–229. Springer-Verlag, 1996.

[5] X. He and Y. Deng. A framework for developing and an-
alyzing software architecture specifications in SAM. The
Computer Journal, 45(1):111–128, 2002.

[6] X. He and J. Lee. A methodology for constructing predicate
transition net specifications. Software-Practice and Experi-
ence, 21(8):845–875, 1991.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), LNCS 1241,
pages 220–242. Springer-Verlag, 1997.

[8] C. Ko and T. Redmond. Noninterference and intrusion de-
tection. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 177–187, 2002.

[9] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag,
1992.

[10] R. Ritchey and P. Ammann. Using model checking to an-
alyze network vulnerabilities. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 156–165, 2000.

[11] P. Samarati and S. Vimercati. Access control: policies, mod-
els and mechanisms. In R. Focardi and R. Gorrieri, editors,
Foundations of Security Analysis and Design, LNCS 2171,
pages 137–196. Springer Verlag, 2001.

[12] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, Inc., 1996.

[13] L. Snyder. Formal models of capability-based protection
systems. IEEE Transactions on Computers, C-30(3):172–
181, 1981.

[14] J. Wang, X. He, and Y. Deng. Introducing software architec-
ture specification and analysis in SAM through an example.
Information and Software Technology, 41:451–467, 1999.

[15] H. Yu, X. He, Y. Deng, and L. Mo. A formal method for an-
alyzing software architecture models in SAM. In Proceed-
ings of COMPSAC 2002, pages 645–652. IEEE Computer
Soecity Press, 2002.

Learning to Select Software Components

Valerie Maxville1, Chiou Peng Lam1, Jocelyn Armarego2

1Edith Cowan University, 2Murdoch University
vmaxvill@student.ecu.edu.au, c.lam@cowan.edu.au,

jocelyn@eng.murdoch.edu.au

Abstract. Developers using software components need to
be confident in their selection of the most suitable
component. Manual searching is time consuming and
unlikely to be able to consider large numbers of
components. The Context-driven Component Evaluation
(CdCE) project is investigating ways to use Artificial
Intelligence to assist the selection process. This paper
describes our Machine Learning approach where we train
a system to recognise candidates that match an ideal
component specification. We utilise automated test
generation techniques to create data for training the
system. This results in a generic assessment system that
can automatically short-list components for further
investigation.

1. Introduction

Software Engineering is a movement to apply engineering
principles to software development. Component-based
Software Engineering (CBSE) uses software components
as the building blocks for new systems, similar to
hardware components. Software components are
replaceable, reusable modules of executable code with
well-defined interfaces [1]. As CBSE becomes more
popular, we are presented with a range of components for
a given application. Developers need a means for
selecting the most suitable components from the growing
number available in repositories and broker sites. This is
not only during initial development, but also when
updating components or the surrounding system.

The component selection task is normally undertaken
by experts who use heuristics to determine which
components are to be selected or investigated further.
The desire to evaluate components using a repeatable,
traceable method leads us to develop evaluation
processes, such as the Context-driven Component
Evaluation (CdCE) Process. Structured processes allow
us to standardise how we deal with candidates, but a
manual assessment is unable to scale to large numbers of
components. We propose that Artificial Intelligence (AI)
techniques be applied to automate parts of the selection

process to allow the consideration of larger numbers of
candidates.

A common approach to assessing components is to
take weighted scores against a list of attributes and
aggregate them. An expert’s holistic view of a candidate
may incorporate interplay between attributes – conflicting
or reinforcing its suitability. This interplay can be
recorded as a series of relations between attributes. Rules
associated with these relations can then interact with the
candidate’s “scores” against attributes and their overall
evaluation. This interplay between attributes is lost in a
numerical aggregation. In this paper we describe our
approach to selecting components, which works from a
specification of the ideal component, then uses machine
learning and test case generation techniques to train the
system to automatically evaluate candidate components.
Our Selector system automates the determination of rules
and building the knowledge base so that the user interface
is simple and intuitive. We address the issues of
scalability, attribute interplay and the ability to explain
the reasoning behind a selection decision.

The following section discusses component selection,
AI techniques and the application of AI to component
selection. Section 3 describes our Machine Learning
approach to selection. A case study is presented in
Section 4. The CdCE Project is described in Section 5,
with conclusions and future work in Section 6.

2. Related work

Selection of components is a similar problem to selection
of Commercial Off-The-Shelf (COTS) software, and
COTS research can be applied to component selection.
Research in component selection begins with defining the
selection criteria. Most selection approaches have a
component model that describes the criteria or attributes
to be used in the assessment, often implemented as a
hierarchy. A discussion of these models is given in [3].
Other schemes develop a hierarchy for the specific
problem [4][5]. The relative importance of the criteria
may be determined using a structured approach such as
AHP [2][5]. An assessment of each component against

the criteria is then carried out, most often as a manual
process. A recommendation or ranking can then be
determined. This normally involves an aggregation of
results using the Weighted Scoring Method (WSM) or the
AHP [2]. In other cases, techniques such as Outranking
are used [6]. Recent research has begun to use AI
techniques to address issues with assessing components,
in particular the inherent problems with aggregating
results. Neuro-fuzzy [7] and Rough fuzzy sets [8] have
been used to deal with imprecision and uncertainty in
component assessment, while overcoming some
overheads of determining the original fuzzy sets. Most
techniques are more applicable to in-house repositories
where the documentation of components can be
standardised and detailed, with up to 1320 attributes for
each component [9]. Our project is concerned with third
party components sourced from a range of repositories.
We then have a very large number of components to
screen and rudimentary information about them. This
leads us to AI to carry out both coarse screening and more
in-depth analysis of the technical features of candidate
components. It is important that the overheads for the AI
technique are low as each selection process will have new
requirements and is thus a new problem.

Artificial Intelligence is a field that provides a range
of techniques for representing and processing knowledge.
When selecting an AI technique, it is important to
consider the features that are needed, and which are more
critical to the particular problem. In the component
selection problem, we are trying to classify the
components as being acceptable or rejected. We also want
to be able to adjust thresholds to include or exclude more
candidates, where criteria may have been too restrictive or
lenient. Working with metadata from various sources
introduces inconsistency to our data, so some tolerance
for missing or uncertain data is important.

Tables 1 and 2 in this document show how traditional
and hybrid AI systems perform against eight criteria, all
which are quite important for the automated selection of
components. Knowledge representation is important to
component selection as our process is working with the
metadata supplied by vendors and brokers, and the results
need to be understandable to users. As we will be
working with information from diverse sources, there is a
risk of missing and uncertain data. Many of the selection
criteria for components can be considered “a match” or
“not a match”, but the facility to deal with imprecision
may be more useful when looking at how well a
description meets our needs, e.g. how close the cost of the
component is to our ideal.

Our interest in AI is to automate the selection of
components. An automated assessment is unlikely to be
trusted unless there are explanation facilities to give the
reasoning behind any decisions. The traditional AI
systems that perform well on explanation ability rate

Table 1. Comparison of Traditional AI Techniques,
adapted from [10]

Feature

Ex
pe

rt
Sy

st
em

s

Fu
zz

y
Sy

st
em

s

N
eu

ra
l

N
et

w
or

ks

G
en

et
ic

A

lg
or

ith
m

s

C
4.

5
C

la
ss

ifi
ca

tio
n

Knowledge
representation + ++ -- - +

Uncertainty
tolerance + ++ ++ ++ -

Imprecision
tolerance -- ++ ++ ++ --

Adaptability -- - ++ ++ ++
Learning ability -- -- ++ ++ ++
Explanation
ability ++ ++ -- - ++

Knowledge
discovery and
data mining

-- - ++ + +

Maintainability -- + ++ + ++

Table 2. Comparison of Hybrid AI Techniques

Feature
N

eu
ra

l E
xp

er
t

Sy
st

em
s

N
eu

ro
-f

uz
zy

Sy
st

em
s

Ev
ol

ut
io

na
ry

N

eu
ra

l N
et

w
or

ks

Fu
zz

y
Ev

ol
ut

io
na

ry

Sy
st

em
s

Knowledge
representation + ++ -- ++

Uncertainty
tolerance ++ ++ ++ ++

Imprecision
tolerance ++ ++ ++ ++

Adaptability ++ ++ ++ +
Learning ability ++ ++ ++ +
Explanation
ability ++ ++ -- ++

Knowledge
discovery and
data mining

-- - ++ +

Maintainability ++ ++ ++ +

poorly on adaptability, learning and maintenance. This
would lead to a trade off where the reasoning can be
explained, but there is a heavy load on the expert to
develop and tune rules – diminishing the advantage of
using AI. Neural expert or neuro-fuzzy systems may
overcome this, assuming we can generate data to train the
neural network. Our interest in looking for components

on the Internet does imply an interest in data mining and
an AI technique that can extend to knowledge discovery
would be an advantage. Although not one of the criteria
in the comparison tables, we also want to be able to deal
with the interplay between attributes. Any of expert
systems, fuzzy systems or neural networks is capable of
encoding these dependencies.

It is clear that an AI technique for component
selection would ideally rate well in all of the above
categories. For this investigation, we have chosen to use
the C4.5 decision tree classifier [11]. C4.5 takes labelled
data and grows a large tree which is pruned to create a
decision tree of understandable size. As can be seen in
Table 1, this approach rates well in all features except
uncertainty and imprecision tolerance. We will be
addressing these very important issues in future work by
investigating other AI techniques for classifying data. An
evaluation of the relative performance will then be carried
out.

3. Intelligent Selection

Any selection process begins with a requirements
specification for comparison with candidate components.
We work with an ideal specification based on an XML
Schema template [12]. The ideal specification includes
all attributes of interest to the application developer. The
specification is annotated with information regarding the
priority of attributes and any interplay between them. Our
system combines the ideal specification with the schema
definition to create an internal model of the desired
component. The system is not tied to the CdCE
component model and can import any XML Schema and
instance documents for a generic selection problem.

The attributes describing the components are split into
four categories, according to datatype. This binding is
determined from the Schema document. The simplest is
“string” where there can only be a single value per
candidate. An example is the dc:creator attribute –
the Dublin Core [13] tag representing the software
developer. We also have date and numeric attributes
where an optimal value is specified along with optional
minimum and maximum values. The final datatype is the
multiString. A multiString is used in situations where an
attribute can have one of a set of values. MultiString
attributes are split into multiple attributes for input into
the machine learning software. For example, the desired
values for the operatingSystem attribute may be
UNIX and Linux. We map these to
operatingSystem_UNIX and operating-
System_Linux for training data and the data to be
assessed.

An issue in using supervised learning techniques1 is
that they require either large amounts of historical data, or
a manual evaluation of input data. We have used
techniques from test data generation to create a set of
training data from the internal model of the ideal
component. Values for each attribute are grouped into
equivalence classes, and the attributes themselves are
grouped according to how they influence the evaluation.
The internal model provides enough information to
determine whether a component is accepted or rejected,
which is used to attach a result to the generated datasets.

Exhaustive generation of data is not practical. With
32 attributes in use of simple types (Boolean for this
calculation), we would need over 4,000 million data
entries to cover all combinations of the data. The
algorithm for generating the data targets groups of entries
as “lessons” to train the system to learn a specific aspect
of the assessment. The lessons first focus on
distinguishing datasets to help the system learn where the
border between acceptance or rejection of a component
lies. It also creates lessons around areas of complex
interaction between attributes to reinforce the learning
process. The size of the generated dataset is dependent
of the number of attributes in the selection task, and the
amount of interplay between them. Training the C4.5
classifier is not greatly affected by the size of the dataset,
and takes a few seconds. We have used the same data
with an Artificial Neural Network which takes over 20
minutes to generate the classifier.

A balance is required between the amount of data in
each output category. Early training sets oversimplified
the decision to “reject all” due to the selection of training
data. A component selection process is likely to reject a
high percentage of candidates, but using data that follows
that distribution skews the training. We are continuing to
investigate how to balance the training to work with an
optimal size and number of lessons. The best results to
date have come from generating between 1/2 to 2/3 of the
training data falling within the acceptable class.

4. Case Study

In this case study we revisit a manual selection exercise
working with real world data, updating it to use machine
learning. The scenario for the case study is the selection
of a software component to provide scientific calculator
functionality. The XML for the ideal specification is
given in Figure 1. It uses the CdCE Schema as a base

1 Supervised learning relies on a manual labelling of the training
data for the system to learn the patterns for each classification.
Unsupervised learning works with the patterns formed within
the training data and attempts to group them into clusters. Data
falling inside a cluster can them be labelled according the
closest cluster.

Table 3. Case Study Manual Assessment [14] with 32 attributes in the following categories: three
numeric, one date, 21 String and seven multiString
(enumerated). The Schema allows some tags to be
repeated, which map to multiString attributes in our
system. Potential component information was taken from
four online sites. These had been assessed previously
with a manual application of the CdCE process. A
summary of that assessment is in Table 3. It gives an
indication of the rejection rate and the number of
possiblilites that would need to be considered in a
component selection problem. The automation of
selection is highly dependent on the adoption of a
standard specification format by component brokers.

Site Number of
entries

Number of
candidates

I >8,000 1
II >12,000 7
III >36,000 4
IV >30,000 0

Total >86,000 9 (3 duplicates)

Table 4. Case Study Ideal Specification

Attribute Type Importance Values

Description Multi-
String Mandatory Scientific

Calculator
Development
Status String Mandatory Mature

Licence String Preferred GPL
Price Numeric Preferred $0-$75
Development
Language

Multi-
String Preferred Java

C++
Operating
System

Multi-
String Mandatory Linux

Memory Numeric Preferred 5-70Mb
Disk Space Numeric Preferred 10-90Mb

The attributes used in the case study are shown in
Table 4. The attributes are classified as being mandatory,
preferred or other. Mandatory attributes must all be met
for the candidate to be accepted. A threshold value
modifies the number of preferred attributes that need to
be matched to accept the candidate. The other attributes
do not affect the assessment. This provides three
equivalence classes for our data generation. Test
generation uses equivalence classes to reduce the number
of test cases by having one value represent the whole
class of values, and may have rules for the output based
on the input class. For training the system, we use the
equivalence classes to enumerate the combinations of
attribute values inside and between classes, and the
corresponding classification for that component. In this
case, three of the attributes are mandatory and five are
preferred, the remaining attributes are categorised as
other. We have arbitrarily selected a threshold of 0.5
which rounds down to two out of five preferred attributes
for acceptance.

We use the Weka system [15] to access machine
learning algorithms. Weka uses ARFF format files where
attributes and values are listed, then the training and/or
test data. For supervised learning, the last attribute
denotes the classification of the entry, in this case
result=accept/reject. As mentioned previously,
the generated training data is grouped into lessons. We
start with lessons in acceptable attribute values, then look
at what values will lead to rejection. Parameters on the
generation can adjust the number and size of lessons. The
lessons focus on the patterns of attribute values that are
near the border of acceptable/unacceptable. Random
selection of training data would almost certainly result in
all candidates being classified as rejected. Our solution is
to apply Boundary Value Analysis (BVA) techniques.
We select training data that sits close to the boundary
between acceptance and rejection, along with some more
straight-forward entries. This has prevented the classifier
from over-simplifying its decision tree and allows us to
work with relatively small training sets.

Figure 1. Ideal Specification in XML

Our system provides great flexibility in the generation
of training data. We use Weka’s implementation of the
C4.5 classifier which outputs a decision tree. It also gives
an analysis of the resultant tree’s performance against the
training and test data. The derived decision tree matched
the model of the candidate selection criteria and when
applied to the training data, it correctly classified 100%
entries. Another test of the classifier was run against
simulated data and correctly classified all the components
and selected 27 out of 2000 components as potential
candidates.

We then ran the trained classifier over real component
data where it identified 17 suitable components for the

578 that were considered. Although the four repositories
offered over 86,000 entries, we worked with a subset of
those matching the search criterion “calculator” as manual
conversion of all entries to XML was impractical.
Incorrect results were given for less than 7% of the data,
in situations where values for attributes were missing.
Classification of missing data is one of the limitations of
C4.5. If it has not seen a particular value for an attribute,
it will still try to classify the instance according to its
decision tree, with unpredictable results. In our data,
missing information was replaced with “-” for text
attributes and -1 or 1000 for numeric attributes. We are
investigating the substitution of average or default values
for missing values, as well as alternate Machine Learning
approaches to improve the handling of missing data.

At this point, we can consider updating or tuning the
ideal specification. Using the facilities provided by
Weka, we can look at the component data as individual
attributes or as groups of attributes. Statistical
information about individual attributes helps us to adjust
ranges for numeric values. Clustering tools help us to
find components that have a similar profile to our ideal
specification. We can then adjust the ideal specification,
retrain the classifier and re-run the component data to get
a tighter match on suitable components.

5. Context-driven Component Evaluation2

This work is part of the CdCE Project. The Project
aims to develop strategies for the assessment of software
components, both through static comparison of developer
requirements to a candidate component specification and
by generating context-driven tests for the dynamic
assessment of short-listed components. We address the
issues of sourcing, selection and evaluation of software
components, with indirect benefits in testing and trust.
The process is driven by a specification of the ideal
component and its operating context, which provides a
foundation for the automation of the selection process.
We focus on the selection of third party components from
commercial and open source brokers and repositories
where the format and detail of component documentation
can vary widely.

An important attribute of third party software
components is that they are written for the general case.
They then require contextual information and testing to
fully evaluate their suitability to an application [16]. The
developer needs to know that the component is not only
reliable and meets its specification, but that it is suited to
the target system. Component certification can improve
confidence and trust, but is not sufficient reason for a
particular selection as it does not take context into

account and cannot ensure that a component will behave
correctly in another environment [17]. Our ideal
component specification includes details of the
requirements for the component and aspects of the target
system to allow a context-aware evaluation of a
component's suitability.

Figure 2 shows our process for component evaluation.
In the first step we define the requirements which become
the ideal component specification. The ideal component
is specified on two levels, metadata for descriptive
information, and a formal specification of the interfaces
and behaviour in Z notation. Step 2 searches for
candidates matching the ideal specification, resulting in a
short-list for further examination. Abstract test cases are
generated for the components in Step 3, based on the
formal specification of the ideal component. The tests
can also be used for system and regression testing. An
adaptation model is developed for each candidate in Step
4 and used to adapt the abstract test cases to match each
of the short-listed candidates.

Figure 2. Activity diagram for CdCE Process

The tests are executed against the candidates in Step 5,
and the test and short-listing results are combined in Step
6 to get an overall picture for each component. In Step 7
we look at the results across the candidate components to
generate a comparison. This may involve aggregation for
scores against criteria, or other methods such as the C4.5
classifier described in this paper. We can then move to
Step 8 and provide a recommendation for component2 Formerly known as the Context-driven Component Testing

(CdCT) project

selection, including reasons behind the recommendation,
and information to assist in adapting and integrating the
component. A more detailed description of the process
appears in [18] and [14]. We are currently developing a
tool to assist developers through the CdCE process,
linking to classification and test generation software and
compiling the results of each step for generation of the
recommendation(s) in Step 8.

6. Conclusion

We have explored the use of Machine Learning
algorithms for the selection of software components. Our
case study results show promise, with the generated data
training the C4.5 classifier and providing an appropriate
decision tree. It then gave correct classification for all
candidate components (in minutes) compared with a
manual approach which missed some candidates and took
over eight hours. Our training data generation overcomes
a major issue with supervised Machine Learning in that it
does not require large amounts of historical or statistical
data as we generate the training data and labels
(accept/reject) from a model. We also address the
problems of aggregation-based component selection
approaches where the relationships between components
are lost.

Machine Learning is not normally economical for
one-off classification problems. Each new search for a
component is a new problem with different selection
criteria. Our approach works from the ideal specification,
which is always necessary for component selection. We
automate the training data generation from the ideal
specification using generic techniques and can easily train
for the selection task at hand. The result is a considerable
automation of the selection process requiring a small
amount of expert time. We are currently applying this to
the short-listing or filtering stage of component selection,
but it can also be used for the more technical evaluation
required later in the selection process (Step 7 of CdCE
Process). The Machine Learning tools can also be used to
adjust or tune the ideal specification based on statistical
and clustering information.

This work is one way that AI can be applied to benefit
those in the computing community. We plan to extend
this work by investigating and evaluating other classifiers
and Neural Networks to further utilise the generated
training data for supervised learning of component
selection criteria. We are also looking at improving the
data representation so that more information can be fed
back into the process via clustering and other learning
techniques.

References

[1] C. Szyperski, Component software: beyond object-oriented
programming. New York: ACM Press, 1997.

[2] T. L. Saaty, “The Analytical Hierarchy Process”, McGraw-
Hill, 1990

[3] S. Sassi, L. Jilani and H. Ghezala, “COTS Characterization
Model in a COTS-based Development Environment”, Asia-
Pacific Software Engineering Conference (APSEC),
Chiang Mai, Thailand, 10-12 December, 2003

[4] J. Kontio, “OTSO: A Systematic Process for Reusable
Software Component Selection”. Tech. Report UMIACS-
TR-95-63, University of Maryland, 1995.

[5] M. Ochs, D. Pfahl, G. Chrobok-Diening and Nothhelfer-
Kolb, “A Method for Effective Measurement-based COTS
Assessment and Selection – Method Description and
Evaluation Results”. Tech. Report IESE-055.00/E,
Fraunhofer IESE, 2000.

[6] M. Morisio and A. Tsoukis, “IusWare: a Methodology for
the Evaluation and Selection of Software Products”, IEEE
Proceedings of Software Engineering, Vol. 144(3), pp. 162-
174, June 1997.

[7] Y.-H. Kuo, J.-P. Hsu and M.-F. Horng, “Neuro-fuzzy
Based Search Robot for Software Components”,
International Journal on Artificial Intelligence Tools,
Vol.8(2), pp. 119-135, 1999.

[8] D.V. Rao and V.V.S. Sarma, “A Rough:Fuzzy Approach
for Retrieval of Candidate Components for Software
Reuse”, Pattern Recognition Letters, 26(6), March, 2003.

[9] S. Nakkrasae, P. Sophatsathit and W.R. Edwards, Jr,
“Fuzzy Subtractive Clustering Based Indexing Approach
for Software Components Classification”, Proceedings of
the 1st ACIS International Conference on Software
Engineering Research & Applications (SERA'03), San
Francisco, USA., June 25-27, 2003, pp. 100-105.

[10] M. Negnevitsky, “Artificial Intelligence:A Guide to
Intelligent Systems”, Addison Wesley, 2002

[11] J. Ross Quinlan, “C4.5: programs for machine learning”,
Morgan Kaufmann Publishers Inc., CA, 1993

[12] World Wide Web Consortium. "XML Schema" [Web
page]. Accessed 20/12/2003, from the WWW:
http://www.w3.org/XML/Schema, 2003.

[13] Dublin Core Metadata Initiative. "DCMI Website."
Accessed 20/12/02, from the World Wide Web:
http://www.dublincore.org/, 2002

[14] V. Maxville. “Context-driven Component Testing Project
Website” [web page]. Accessed 6/9/03, from the WWW:
http://www.scis.ecu.edu.au/research/PhD/vmaxvill/, 2003

[15] I. Witten and E. Frank, “Data Mining: Practical Machine
Learning Tools and Techniques with Java
Implementations”, Morgan Kaufmann Publishers, 2000.

[16] E. Weyuker, “Testing Component-based Software: A
Cautionary Tale”. IEEE Software, 15(5), pp. 54-59., 1998

[17] A. Cechich, M. Piattini, and A. Vallecillo, “Assessing
Component-based Systems”, In: Cechich et al. (Eds.)
Component-Based Software Quality, LNCS 2693, pp. 1-
20, Springer-Verlag Berlin Heidelberg2003.

[18] Maxville, V., Lam, C. P. and J. Armarego “Selecting
Components: a Process for Context-Driven Evaluation”,
Asia-Pacific Software Engineering Conference (APSEC),
Chiang Mai, Thailand, 10-12 December, 2003

Organizational Knowledge: an XML-based Approach to Support Knowledge
Management in Distributed and Heterogeneous Environments

Carmen Maidantchik, Gleison Santos, Mariano Montoni
Federal University of Rio de Janeiro - COPPE

Caixa Postal 68511 – CEP 21945-970 – Rio de Janeiro, Brazil
Phone: +55-21-25628699 Fax: +55-21-25628676

E-mail: {lodi, gleison, mmontoni}@cos.ufrj.br

Abstract. This work presents an approach to support
knowledge identification, capturing and maintenance in
distributed and heterogeneous environments. A
worldwide telecommunication company has being
employing an XML-approach that represents diverse data
through distinct files. The tags identify the data, facilitate
its understanding, and structure all related information.
An importation process associates the incoming data with
stored procedures placed in the main repository. The
insertion, update, or removal of data and related
knowledge are easily performed, facilitating the
management of knowledge that continuously evolves.

1. Introduction

This work presents an approach to support knowledge
identification, capturing and maintenance in distributed
and heterogeneous environments. A worldwide
telecommunication company that supplies high
technology services for all Brazilian states developed a
software system to support the activation process of its
clients’ network. The required rationale to launch a new
telecommunication service used to be an assembled of
various kinds of knowledge that were previously located
in corporate systems, documents, personal programs, and
within working members. An effective implantation of
these telecommunication services guarantees the company
market position. In order to assure high quality software,
the design process considered the distinctiveness of the
company activation groups and posed some questions to
be considered. How system requirements and knowledge
could be extracted, gathered, and understood without
delaying the application development? How the acquired
knowledge could be represented in such a way that
telecommunications specialists could understand? How
this representation could be structured to allow the
description of several kinds of data? As knowledge
evolves, changes, and matures, how the activation process
could be codified to avoid numerous modifications?

Answering the first question, user centered design
methods along with knowledge acquisition techniques
were used in an evolutionary software life cycle process
[1, 2]. In order to achieve an efficient representation, our
software engineers group constructed an XML-based
organizational knowledge repository aiming at integrating
all expertise that was previously distributed among
different departments. As XML (eXtensible Markup
Language) is a markup language, the tags identify the data
and may explain details about the knowledge origin,
default format, author, and so one. Therefore, XML is
easily understood by human beings and efficiently
represents a large variety of different kinds of knowledge.
The last question is related to knowledge evolution. As
the organization strategic directives may change
according to market, internal processes and economical
changes, corresponding support software also suffer
adaptations. To avoid software maintenance each time an
evolution phase occurs, a flexible importation process was
designed. The goal was to import knowledge from other
systems repository independently of the knowledge
representation format and system technology.

In the following section we describe some basic
knowledge management concepts. In section 3, we
present our XML-based approach to construct knowledge
repository through organizational knowledge
identification, capture and maintenance. The section 4
presents future work and directions. Finally, in section 5,
we conclude with the benefits of our proposal.

2. Managing Organizational Knowledge

Currently in some organizations, it is possible to observe
a tendency to establish activities to acquire, organize and
communicate tacit and explicit organization members’
knowledge. The outcome benefit is that other members
can make use of available information to enhance their

effectiveness and productivity [3, 4]. The set of these
organizational activities is commonly known as
Knowledge Management (KM). The main objective of
KM is to make relevant knowledge accessible and
reusable by organization members. However, considering
the diversity of information types, it is necessary to
identify the relevant ones. Knowledge that facilitates or
improves organization members’ activities execution and,
therefore, probably results in benefits for the organization,
have to be distinguished [5]. According to M. Alavi and
D. Leidner [6], KM also provides the means to create
innovative organizational practices to support
communication and collaboration among professionals
from the same or different domains. Several authors
suggest a basic set of fundamental activities to
systematically manage knowledge [4, 5, 7]: (i) identify
important knowledge that can be used to increase its
visibility and access; (ii) capture and store useful
knowledge in a repository. Expertise acquisition
requirements must meet defined knowledge types (i.e.
explicit or tacit) and easiness to access its sources; (iii)
maintain knowledge in the organizational memory
through update or removal of irrelevant, useless and
outdated information. The next section presents an XML-
based approach to support these KM activities. Some of
the benefits of this approach are also described.

3. The XML-based approach to Identify, Capture
and Maintain Organizational Knowledge

Within the worldwide telecommunication company,
knowledge was not always represented in an adequate
format to allow its identification and capture. The
management of such wisdom is very useful to support
organizational managerial activities, such as network
resources management. Consequently, it was imperative
to develop an approach that could efficiently identify
knowledge sources, capture and store the data in a
repository. As a result, other systems and organization
members can make use of the stored information.

Existing corporate systems provide simple text files,
denominated flatfiles, as a mirror of their databases. Since
there is no standard format, the generated flatfiles are
different from each other. As a consequence, analyses and
interpretation of data placed in the archives are laborious
tasks. Besides that, flatfiles may contain redundant or
incomplete data, and the documentation is inadequate and
not frequently updated. Due to these problems it was
mandatory to develop an approach that could provide an
efficient data integration and exchange mechanism. It
should also store information about the system from
which the data were extracted, flatfile structures and
details of each processed data item. Once the knowledge

has been identified, it has to be captured and stored in a
knowledge repository, in such way that organization
members could rapidly make use of it. Nonetheless, all
acquired knowledge placed in the repository should
constantly be reviewed and updated in order to guarantee
reliability.

The knowledge representation format is an important
aspect that was considered to efficiently manage the
whole data. Markup languages, as XML, can be used to
describe knowledge structures and to support the
organizational memory development [8, 9]. XML
provides a standard layout to communicate and exchange
information and knowledge among different systems.
This language makes possible to create multiple visions of
the same item and also provides an easy mechanism to
capture, store, present and recover knowledge [10]. The
use of XML allows uniform knowledge acquisition,
systems interoperability and offers efficient mechanisms
for information recovery. Considering these benefits, we
developed an XML-based approach to construct a
knowledge repository that integrates data from different
sources, previously represented in different formats. The
mechanism also supports knowledge identification,
capture and maintenance activities.

3.1. Constructing an XML-based Organizational
Knowledge Repository

The construction of an organizational knowledge
repository requires data sources identification and
integration. The information is generated by different
corporate systems and placed in non-standard flatfiles.
The merging process starts with the identification of
related knowledge and then, connecting the items through
XML files. Due to the great amount of information, the
processing time could make the integration unfeasible.
Two archives were created directly from the flatfile. The
first one contains all data stored in the main knowledge
repository. The other archive holds only the latest
modifications. By using this approach, only new, updated
or removed data originated from corporate systems are
processed. Therefore, the first importation of modified
data corresponded to a small percentage of the total
generated volume.

Through XML, it was possible to guarantee file format
independence and to associate semantic information of
data to their values. The XML files construction follows
three steps: (i) redundancies removal, (ii) definition of
information structure, and (iii) elimination of irrelevant
data. The importation program converts flatfile into XML
archives in only one step. These operations are performed
simultaneously, reducing processing time. Figure 1

illustrates this process. Flatfiles exported from corporate
systems are parsed and transformed into two XML files.
The complete file contains all data that exists in the
original flatfile, while the partial one contains only the
data that was modified since last importation.

Figure 1. Conversion process from
flatfile to XML archives

The partial file is generated by comparing a complete
previously generated file with its correspondent current
complete one. The program also inserts an index to
optimize the importation process. For instance, complete
XML archives containing clients’ information have
approximately 170 Mbytes, while partial XML archives
have approximately 50 Kbytes, i.e., just 0.03% of the
complete XML file size. Processing time is reduced
because with this approach, it is not necessary to execute
queries to verify whether a specific item has to be inserted
or deleted in the knowledge repository. With XML tags,
this information is already available in the archives.

The first step to construct a knowledge repository is to
identify data suppliers. In our approach, another XML
archive contains information about knowledge sources. A
header and a body compose this file. The header section
contains managerial information, such as knowledge
source objectives and last modification date. The body
section is formed by a set of tags holding information
about XML archives to be created, knowledge format and
structure, data types (e.g. clients’ or circuits’
information), source location, items descriptions and
corresponding tags that identify them, rules, and so on.
The capture and maintenance knowledge processes are
facilitated since data sources descriptions are represented
in XML archives. Header, body and footer sections
compose the partial and complete XML archives. The
header contains a description of the file and information
about its creation. It also contains information about the
action to be executed for each register: “D” means delete,
“I” means insert, and “U” means update. The XML file
body contains the knowledge to be imported, and the

footer contains information about the total number of
registers in the file.

3.2. XML Importation Process

The importation process is independent of the XML files
structures. An auxiliary file contains information about
the stored procedures that should be executed when a
certain data type has to be imported. During importation
process, the XML archive is parsed to identify operations
(insert, update, delete) and stored procedures that execute
these operations. Within this approach, stored procedures
depend only on the data type being imported. Therefore,
changes in XML files structure do not imply importation
program maintenance.

Missing parameters are reported by the stored procedure.
The existence of exceeding attributes in the XML file do
not interferes on the stored procedure execution since the
importation program ignores this information. Figure 2
illustrates the importation process. An XML archive that
contains the data to be imported (“Partial XML file”) is
parsed together with another file (“Stored procedure
descriptor”) that defines all stored procedure associated to
the data type that will be imported into the database.

Partial XML
file

Stored
procedure
descriptor

Corporate Data base

Figure 2. XML file importation process

3.3. Importing Knowledge with XML

Once knowledge has been captured, structured and stored
in the repository, it can be imported into any corporate
database. This process can be performed independently of
knowledge representation format since XML archives
map knowledge items to specific stored procedures that
should be executed to import the data.

A header and a body compose the parsed XML archive to
import knowledge about a network management system.
The header section has information about the file, for
example, its objective and last modification date. The
body contains information about the stored procedure

Flatfile Complete
XML file

Partial
XML file

Complete
XML file

(previous)

Flatfile
descriptor

parameters used during the importation process. The body
also contains information about stored procedure name
and output values, parameters, data size and type, XML
tags that identify a specific parameter value in the archive
to be imported, and so on.

4. Future Work

The developed system generates more then 20 different
types of topologies of the telecommunication clients’
network. Each type is related to one service that the
company provides. Currently, the application supports the
management of approximately 235,500 clients, 52,600
circuits, 18,000 network accesses (e.g.: optic fibers,
radios, and satellites), and 54,700 different sites spread
throughout 6 regions of the Country. For each data that is
held during the activation process of a telecommunication
service, several diverse kinds of information have to be
associated with. And, for each type of information,
explicit or tacit knowledge is linked. An efficient
management of this enormous net of records depends on
the skills of professionals, which are now supported by
the application developed by our group.

There are other working teams that could be benefited by
our approach. Besides telecommunication services
managers, sales and marketing departments have to
understand a client’s network quite well in order to
provide new solutions. The technical assistance group
also needs a deep comprehension of consumer’s services
in order to repair possible defects. Therefore, we intend to
extend the software to also support other activities within
the enterprise. The telecommunication offers more than
100 kinds of services. Many of them are small variation
of other services. A goal is to enlarge the application to
support all of them. Finally, taking into consideration the
huge amount of data and knowledge that is held by the
software, managerial reports can be generated, providing
useful understanding of the clients’ needs in order to
establish the organization market directives.

5. Conclusions

This work presented an XML-based approach to support
knowledge identification, capturing and maintenance. The
proposed mechanism is very efficient in distributed and
heterogeneous environments since it easily integrates
data, related information and associated knowledge from
different sources. The proposed XML-approach
represents diverse data through distinct files containing
tags to identify the data and facilitate its understanding.
An importation process associates the incoming data with

stored procedures placed in the main repository. As the
files are described with XML, they can be parsed by any
corporate system. This attribute makes the knowledge
capture independent of any information structure and
chosen technology.

The insertion, update, or removal of data and related
knowledge are easily performed. When a new aspect of an
existing understanding is identified, a corresponding tag
and stored procedure are created. Neither the importation
process, nor the software program that supports it has to
be adapted. Therefore, knowledge management is
facilitated. The proposed approach has being used for
more than a year. The aggregation of novel knowledge
has become an easy task to the professionals of the
telecommunication company. The developed software
also provides the advantage of managing the
organizational memory.

6. References

[1] C. Maidantchik, M. Montoni and G. Santos, “Learning
Organizational Knowledge: An Evolutionary Proposal for
Requirements Engineering”, In: Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), Ischia, Italy, July
2002, pp. 151-157.

[2] K. Emam., S. Quintin and N. Madhavji, “User Participation
in the Requirements Engineering Process: An Empirical
Study”, Requirements Engineering Journal, Springer-
Verlag, v. 1, 1996, pp. 4-26.

[3] P. Hendriks and D. Vriens, “Knowledge-based systems and
knowledge management: Friends or foes?” Information &
Management, v. 35, n. 2 (Feb), 1999, pp. 113-125.

[4] T. Davenport and L. Prusak, “Working Knowledge: How
Organizations Manage What They Know”, Boston, USA,
1998, Harvard Business School Press.

[5] G. Fischer and J. Ostwald, “Knowledge Management:
Problems, Promises, realities, and Challenges”, IEEE
Intelligent Systems, v. 16, n. 1 (Jan/Feb), 2001, pp. 60-72.

[6] M. Alavi and D. Leidner, “Knowledge Management
Systems: Emerging Views and Practices from the Field”,
In: Proceedings of the 32nd Hawaii International
Conference on System Sciences, Maui, Hawaii, Jan, 1999.

[7] G. Probst, S. Raub and K. Romhardt, “Managing
Knowledge: Building Blocks for Success”, 368 pp, 1999,
ISBN: 0-471-99768-4.

[8] A. Rabarijaona, R. Dieng, C. Olivier and R. Quaddari,
“Building and Searching an XML-Based Corporate
Memory”, IEEE Intelligent Systems, v. 15, n. 3 (May),
2000, pp. 56-63

[9] J. Cook, “XML Sets Stage for Efficient Knowledge
Management”, IT professional, v. 2, n. 3 (May/Jun), 2000,
pp. 55-57.

[10] R. Dieng, “Knowledge Management and the Internet”,
IEEE Intelligent Systems, 2000, pp. 14-17

Sense-and-Respond Grid
J. Jeng, H. Chang, J. Chung, J. Schiefer, L. An, L. Zeng

IBM T.J. Watson Research Center
Yorktown Heights, New York, U.S.A.

Abstract. This paper proposes the framework for
building the Sense-and-Respond (S/R) Grid in order to
support a complete functionality to sense, interpret,
predict, automate and respond to business activities and
aims to decrease the time it takes to make the business
decisions. Such infrastructure by default subsumes the
hardware-based feedback loop in the common control
systems. Actually, there should be almost zero-latency
between the cause and effect of a business decision. The
S/R grid enables analysis across corporate business
processes, notifies the business of actionable
recommendations or automatically triggers business
operations, effectively closing the gap between business
intelligence systems and business processes..

1. Introduction
Enterprises are striving to be adaptive since there are
growing needs of increasing the visibility and
responsiveness of business solutions due to the pressure
from market and competitors. A well-accepted means of
achieving an adaptive enterprise is using Sense-and-
Respond (S/R) paradigm to monitor and manage business
solutions in the enterprise [1]. In general, an S/R system
can be categorized as a system that is continually
interacting with its represented business organization and
assisting organizational agents (software or humans) to
make right decisions at right time. Such system is capable
of autonomous actions in order to meet its business
commitments. However, to build S/R systems is a big
challenge.

The early development of Grid technologies was
motivated by the problems of creating scientific resource
sharing applications, e.g., collaborative visualization of
large scientific data sets, and increasing functionality and
availability by coupling scientific instruments and remote
computer and archives [2]. Grid promises to offer
solutions to the construction of reliable, scalable, and
distributed systems, all of which are very important
characteristics of S/R systems. The goal of this work is to
combine the features from two worlds, S/R systems and
Grid based computing systems, to create the S/R grid for
enterprise to be extremely adaptive in the complex
business environment.

The S/R operations are implemented by grid services,
which export the management capabilities, intermediate
execution results, state information and resource
utilization information to facilitate the real-time control of
Sensor-and-Respond systems. The S/R grid supports a
complete functionality to sense, interpret, predict,
automate and respond to business activities and aims to
decrease the time it takes to make the business decisions.
Such infrastructure by default subsumes the hardware-
based feedback loop control in the autonomic computing
framework. Actually, there should be almost zero-latency
between the cause and effect of a business decision. The
S/R grid enables analysis across corporate business
processes, notifies the business of actionable
recommendations or automatically triggers business
operations, effectively closing the gap between business
intelligence systems and business processes. In particular,
the S/R grid addresses the issues of large scale distributed
business solutions and resource management. The
organization of this paper is as follows. Section 2 gives an
account of the conceptual framework. Section 3 presents
the high-level architecture of the S/R grid and the basic
components. Section 4 shows an example of
implementation. Section 5 mentions some related efforts.
Section 6 presents the future work and conclusion.

2. Sense-and-Respond Framework
The S/R grid comes from two domains: Grid computing
and S/R systems. A defining feature of Grids is the
sharing and management of highly heterogeneous
resources with the consideration of satisfying user’s
expectations on both functional and non-functional
perspectives. Similarly, an S/R system needs to monitor
and control business solutions. Business solutions come
of many forms: business processes, legacy systems,
business organizations, networks, enterprise data and so
forth. Doubtless Grid based infrastructure is one of the
best approaches to develop an enabling platform for
creating S/R systems. The S/R grid needs to be policy-
driven due to the dynamic nature of business
environment. The S/R grid is an infrastructure used to
construct policy driven S/R systems. The S/R grid drives
the behaviour and functionality of target business
solutions and business resources. As illustrated in Figure

1, the S/R grid takes business events from target business
solutions, performs S/R operations and renders business
actions back to business solutions. There are five
functional stages of the S/R grid: Sense, Detect, Analyze,
Decide and Effect. The aforementioned S/R stages are
materialized into management services of the S/R grid:
Event Processing Service (EPS), Metric Generation
Service (MGS), Situation Detection Service (SDS),
Analytics Processing Services (APS) and Action
Rendering Services (ARS). EPS monitors and collects
desired data from the business environment in the form of
events. The functions of EPS include data extraction and
cleansing, event filtering, event chaining, event
transformation, event correlation, and creating qualified
events. MGS receives qualified events from the EPS and
calculates desired metrics based on metric generation
rules. The generated metrics can be either published to
message bus or stored into persistent storage. Business
metrics generated by MGS can be the key performance
indicators of suppliers and carriers. SDS receives metrics
from the MGS and detects business situations and/or
exceptions based on situation rules. Situations can be
inferred by rules engine or calculated via normal
procedural codes such as Java. APS enables the process
of making the “optimal” decision for resolving business
situations. This service covers the stages of “analyze” and
“decide” in the S/R grid depicted in Figure 1. Such
decision making process may be involved very
complicated business intelligence modules. ARS renders
appropriate management directives based on the decision
that has been made. Examples of actions for an inventory
S/R grid include modification of the data entries for target
inventory policies; and sending altering messages to LOB
managers.

B
us
in
es
s

U
ni
tSense-and-

Respond
Gird

Event
Processing

Metric
Generation

Situation
Detection

Action
Rendering

Analytics
Processing

Business Solutions

Bu
si

ne
ss

 P
ro

ce
ss

es

S
im

ul
at

or

Business Processes

Business
DataBusiness Systems

Business
Organizations

Business
Commitments

Business
Events

Business
Actions

Business Solutions

Figure 1: S/R Grid and Business Solutions.

3. Grid Based Architecture
From the point of view of adaptive enterprise, an
important issue is how to enable transparent and dynamic
monitoring and control of target business solutions across
business organizations. In this context, the S/R grid serves
as the platform spanning multiple networks, business

systems, business processes and organizations. The S/R
grid facilitates secure and efficient sharing of the data and
services needed for monitoring and managing business
solutions. The S/R grid comprises management services,
business resource managers, and business resources
including business organizations, processes, documents,
all other data, and accompanying applications. All of the
above entities are virtualized into uniform view of grid
services. The motive is to make the S/R grid more
flexible, adaptive, and powerful by querying service
registries at run time in order to discover information and
network-addressable third-party S/R components.

For example, a computation-intensive business
forecasting application looks for remote services that
manifest appropriate composition of features such as
matched algorithms, suitable interfaces and operations,
and quality of services. Grid services can be described,
discovered, matched, and used via the extension of
existing Web Service based standards [3]. Contrary to
conventional system management domain, the demand of
monitoring and controlling business solutions needs to be
sensed or even inferred from given data through
quantitative metrics using monitoring centric services,
i.e., EPS, MGS and SDS. The management capabilities of
the S/R grid will be accomplished through response-
centric services such as APS and ARS. The policies of
selecting and invoking management services are
described by an XML-based policy specification coined
as Business Performance Commitment Language (BPCL)
[4]. A document in that language describes the target
business solutions with all available management services
of its governing S/R grid and their relationships.

A fully-fledged S/R grid consists of four building blocks.
First, it contains grid based infrastructure for business
solutions. The motive of such infrastructure is simple:
since business solutions are the target of the S/R grid,
there should be an integrated approach of defining the
monitoring and control interfaces. The most important
requirement of such infrastructure is using grid services to
model and wrap target business solutions. Similarly,
target business resources within an enterprise require
uniform treatment as grid services too. They constitute the
second building block of the S/R grid, a virtualization
layer of situated business resources in the enterprise.
Business resources include anything supporting the
functionality and behavior of business solutions: business
processes, business systems, business organization, data
repositories and so forth. Grid services provide the means
of achieving this goal of virtualization of the above two
building blocks. The third building block is the collection
of all management capabilities in an integrated
infrastructure. All management capabilities are described
and developed as grid services. The detail account of
management services will be given in next section. The

4. Implementation and Validation fourth building block is the controller and choreographer
of the S/R grid that provisions management services,
mediates their invocations, and maintains the
relationships among them.

We are working with a chip maker and applied the S/R to
fulfill the requirements raised in the domain of electronic
manufacturing. Specifically, we are implementing an S/R
system based on the framework described in this paper.
This system senses events generated from the
manufacturing organization, detects manufacturing-
related business situations, conducts analysis on the data
embedded in the situations and enterprise database,
provides recommended actions to decision makers and
finally renders business actions to the target business
solution and systems. Automated software agents
materialize business actions into system-level actions and
realize them to the target business systems. Between the
dashboard and the S/R grid, there is a presentation layer
with different grid services. Figure 3 presents the unified
view of a business dashboard for the S/R system users to
monitor the manufacturing processes and activities,
manufacturing exceptions, links to perform OLAP
analysis, presents recommended actions to manufacturing
exceptions and so on. The right-hand side of this console
presents four monitoring portals and the real-time
monitoring of events are shown in the portal on the left-
hand side.

Figure 2 introduces the general architecture of the S/R
system which consists of 5 layers: (1) A layer of virtual
business resources (VBR), made up of the business
resources provided by the enterprise and its partners,
provisions resource specific monitoring and control
interfaces. (2) A layer of virtual business solutions (VBS),
made up of the business solution grid services, provisions
solution specific monitoring and control interfaces.
Business solutions signify the source of management
demands that can be either pulled or pushed to an S/R
system. (3) A layer of virtual management capabilities
(VMC), made up of the management services, provisions
management capabilities and performs capability-to-
service mapping. (4) A layer of virtual business
organizations (VBO), made up of S/R services, each of
which represents a business organization. Here,
commitment is referred to as business commitment. A
business organization grid service makes decisions and
enforces them to resolve business situations through its
governed business resources and management services.

There are many-to-many relationships between business
solutions and business organizations. AN S/R controller
possesses an overlay-structure S/R network of nodes that
maintain information about business organizations,
business solutions and their relationships. This network
structure reflects the business relationships in the context
of S/R domain. Such relationships can be either logical or
physical, and are defined by business commitments.

Virtual Business
Organizations

Bu
s

in
e ssU n itSRG

EP

MG

SD

AR

DMB
u

si
n

es
sU n itSRG

EP

MG

SD

AR

DM

B
u
si
n

es
sU n itSRG

EP

MG

SD

AR

DM

Sense-and-Respond Interfaces

Bu si
n

es sU n itSR
G

E
P

M
G

S
D

A
R

D
M

B
u

si
n es sU n itSR

G

E
P

M
G

S
D

A
R

D
M

EPSEPSEPS

EPSEPSARS

EPSEPSSDS

EPSEPSAPS

EPSEPSMGS

Management Capability Interfaces
Virtual

Management
Capabilities

Virtual
Business
Solutions

Virtual Business
Resources

Business Resource Monitoring & Control Interfaces

Business
Commitments

Sense-and-Respond
Controllers

Figure 2: The Architectural for S/R Grid.

Figure 3: S/R Dashboard for Processes.

Figure 4 shows the revenue performance of a
manufacturing process. The portal on the left-hand side
shows the revenue statistics including both actual and
predictive performance data. On the right-hand side, a
graphical representation of the performance data is shown
in a portal where the upper and lower bounds indicate the
performance targets. A business situation will be raised
whenever the revenue performance data is out of the
boundaries. Thereafter, a decision making process will be
triggered to resolve such situation. As mentioned, all of
these interactions are handled by designated web services

based upon predefined business commitments and
enforced by the S/R grid in the back end.

Figure 4: Monitoring Revenue Performance.

Based on our experience of using the S/R grid to
implement S/R systems, we have obtained the following
observations: (1) The formal model of the S/R nets makes
explicit the S/R concepts and helps developers to model
and develop such systems more effectively. (2) As we
migrated from one the S/R project to another, we
experienced shorter development lifecycle. According to
our experience, the third project is witnessed to have more
than 50% reduction of development cycle. (3) The S/R
grid makes possible the intimate interplay between
policies and runtime artefacts. Thus, the behaviour of the
S/R systems can be consistently and soundly changed
without much trouble of the mismatch between
requirements and system behaviour. (4) The reference
architecture and implementation based on the S/R grid
have proven to be a group of reusable assets for creating
Grid-based S/R systems. (5) The S/R grid actually renders
the patterns of monitoring and controlling service-
oriented business solutions, which can be very valuable
for future direction of Grid implementation. In reality, we
are trying to standardize the S/R specification into
standards bodies.

5. Related Work
IBM’s Autonomic Computing [5] vision aims to provide
self-managing systems to create systems that respond to
capacity demands and system failures without human
intervention. The S/R grid is aimed to achieve the similar
purpose at the business level and extend it into global-
scale service grids. Traditional grid based approach [6]
such as Globus (www.globus.org) focus on distributed
supercomputing, in which schedulers make decisions
about where to perform computational tasks. The S/R grid
is governed by business commitments that are a mode
sophisticated policies than OGSA policy. Graupner et al.
[7] proposed an architecture for automated demand–
supply control system based on a formalization of service

demands and supplies in an overlay meta-system.
Although the approach of using S/R to mediate the
management capabilities (supply) and business situations
(demand) is similar to their approach on meta-systems,
we are taking a policy driven approach to creating S/R
grids.

6. Future work and Concluding Remarks
In this paper, we advocate using grid service to implement
the S/R systems. We are investigating how the S/R
system in the distributed business solutions utilizes the
S/R grids for allocating computing resources and
addressing load balance (adaptive resource distribution) to
routing business events among service components and to
conduct business data-mining and mathematical analysis.
We are developing the presented approach as a research
project under the mission of establishing globally
distributed S/R grids for adaptive enterprise. The idea is
to automate management tasks with the ultimate goal of
achieving extremely adaptive behavior, a vision IBM calls
on demand business. The S/R grid is one step toward that
goal.

References
[1] S.H. Haeckel, and A.J. Slywotzky, Adaptive

Enterprise: Creating and Leading S/R
Organizations, Harvard Business School Publisher,
August, 1999.

[2] I. Foster, and C. Kesselman, eds., The Grid:
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, San Francisco, 1999.

[3] E. Christensen, F. Curbera, G. Meredith and S.
Weerawarana, Web Services Description Language
(WSDL) 1.1 W3C Note 15, 2001.
http://www.w3.org/TR/wsdl.

[4] H. Li, J.J. Jeng, “Managing Business Relationship
in E-Services Using Business Commitments”,
Proceedings of Third International Workshop, TES
2002, Hong Kong, China, August 23-24, 2002,
LNCS 2444, pages 107-117.

[5] P. Horn, “Autonomic Computing: IBM’s
Perspective on the State of Information
Technology,” white paper, IBM Research, 2001,
http://www.research.ibm.com/autonomic/manifesto

[6] K. Krauter, R. Buyya, and M. Maheswaran, “A
Taxonomy and Survey of Grid Resource
Management Systems,” Software—Practice and
Experience, vol. 32, no. 2, 2002, pp. 135–164.

[7] S. Graupner, V. Kotov, A. Andrzejak, and H.
Trinks, “Service Centric Globally Distributed
Computing,” IEEE Internet Computing, Vol. 7,
No. 4, pp. 36-43, July-August, 2003.

The KAMET II Architecture for Problem-Solving Method Reuse

Instituto Tecnológico Autónomo de México (ITAM)
Osvaldo Cairó
cairo@itam.mx

Julio César Alvarez
calvarez@alumnos.itam.mx

Abstract. Problem-solving methods are ready-made
software components that can be assembled with
domain knowledge bases to create application systems.
In this paper, we describe this relationship and how it
can be used in a principled manner to construct
knowledge systems. We have developed a methodology
that strongly relies on ontologies: first, to describe
domain knowledge bases and problem-solving methods
as independent components that can be reused in
different application systems; and second, to mediate
knowledge between the two kinds of components when
they are assembled in a specific system. We present our
methodology and a set of associated tools that have been
created to support developers in building knowledge
systems and that have been used to conduct problem-
solving method reuse.

1. Ontologies

Ontologies provide a structured framework for modeling
the concepts and relationships of some domain of
expertise. Ontologies support the creation of repositories
of domain-specific reference knowledge -domain
knowledge bases- for communication and sharing of this
knowledge among people and computer applications.
Ontologies provide the structural basis for computer-
based processing of domain knowledge to perform
reasoning tasks. In other words, ontologies enable the
actual use of domain knowledge in computer
applications. Problem-Solving Methods provide
reusable reasoning components that participate in the
principled construction
of knowledge-based applications.

2. Problem-Solving Methods

Overcoming the limitations of both rule-based systems
and custom programs, Problem-Solving Methods
(PSMs) were introduced as a knowledge engineering
paradigm to encode domain-independent, systematic
and reusable sequences of inference steps involved in

the process of solving certain kinds of application tasks
with domain knowledge.KAMET Architecture
The KAMET II Methodology [1, 2] relies on a
conceptual and formal framework for the specification
of knowledge-based systems. This conceptual
framework is developed in accordance to the
CommonKADS model of expertise [5]. The formal
means applied are based on combining variants of
algebraic specification techniques and dynamic logic
[4]. The framework consists of the following elements:
a task that defines the reasoning process of a
knowledge-based system, a problem-solving method that
defines the reasoning process of a knowledge-based
system, and a domain model that describes the domain
knowledge of the knowledge-based system. Each of
these elements is described independently to enable the
reuse of tasks descriptions in different domains.
Therefore, a fourth element of a specification of a
knowledge-based system is an adapter which is
necessary to adjust the three other (reusable) parts to
each other and to the specific application problem. Fig.
1 shows the architecture. [4] gives a detailed
explanation of these elements.

Task Definition
. Goals
. Requirements

Problem-solving Method (PSM)
 . Competence

. Operational Specification
 . Requirements

PO-ii

PO-iv

PO-i

Domain Model
 . Meta knowledge

. Domain knowledge
 . Assumptions

PO-iii

Adapter
. Signature Mappings
. Assumptions
. Requirements

Fig. 1 The KAMET II Architecture

3. An Ontology-based Approach to Developing
Knowledge Systems

The use of ontologies in constructing a knowledge
system is pervasive. At least, ontologies support the
modeling of the domain-knowledge component
counterpart of PSMs in knowledge applications.
However, PSMs and domain ontologies are developed
independently and therefore need to be reconciled to
form a coherent knowledge system. As the basis for
reconciliation, PSMs declare the format and semantics
of the knowledge that they expect from the domain to
perform their task [3]. A PSM provides a method
ontology, that elicits its input and output knowledge
requirements, independently of any domain. For
instance, the generate-and-test PSM declares its input-
knowledge needs in terms of state variables, constraints
and fixes. This way, the method ontology assigns roles
that the domain knowledge needs to fill so that the PSM
can operate on that knowledge. Further, the method
ontology states the assumptions that the PSM makes on
domain knowledge. Besides making all domain
knowledge requirements explicit, refined versions of the
PSM can be modeled directly by weakening or
strengthening its assumptions by way of additional sets
of ontological statements - or adapter component [3].

PSM
Description
Ontology

Method
Ontology

Domain
Ontolgy

Mapping
Ontology

PSM<<models>

<<defines & operates>>

<<references>

<<references>>

<<transforms>> <<populates>>

Fig. 2 Use of Ontologies in KAMET

To avoid impairing the independence of either the
domain or the method ontologies, this approach includes
a mediating component. This third, separate knowledge
component holds the explicit relationships between the
domain and the method ontologies assembled in a
specific knowledge application [3]. Underlying this
mediating component is a mapping ontology that
bridges the conceptual and syntactic gaps between the
domain and method ontologies. [3] studies this in depth.

4. Modeling a Diagnosis Task in KAMET

This section presents an example of how to model a
diagnosis task by means of KAMET II. We will take a
simple economic problem: how to determine if a
country’s economy is going through a recession. The
definition of recession is the prolonged period of time
when a nation’s economy is slowing down or
contracting. This period might go from six months to
two years. The economy is the production and
consumption of goods and services. Before continuing,
the symbols of KAMET are presented in order to make
the example comprehensible. The symbols of KAMET
are used for modeling visually knowledge models and
problem-solving methods and they are the means by
which the concepts needed by ontologies are modeled.
The KAMET II CML has three levels of abstraction.
The first corresponds to structural constructors and
components. The second level of abstraction
corresponds to nodes and composition rules. The third
level of abstraction corresponds to the global model [2].
Table 1, 2 and 3 present them.

Problem. Expresses an
alteration, disorder or
abnormality.

Classification. Expresses
alterations, disorders or
abnormalities that can be
considered a classification
problem. Therefore, it can be
represented within a table.

Subdivision. Expresses an
alteration, disorder or
abnormality that can be
subdivided into smaller
problems.

Table 1. Structural Constructors

Symptom. Manifestation or
signal related to an alteration,
disorder or abnormality.

Antecedent. Expresses previous
circumstances that can be used to
judge something that can happen.

Solution. Expresses possible
solutions to a disorder, alteration
or abnormality. It is always related
to structural constructors.
Time. Expresses the duration of
structural components (symptoms
and antecedents) as web of
structural constructors (problems
and subdivisions).
Value. Expresses characteristics
of symptoms, antecedents or
groups.

Inaccuracy. Expreses
uncertainty due to the lack of
precision of an intermediate or
terminal node.
Process. Expresses the sequence
of actions and operations required
to obtain a result.

Formula. Expresses calculus that
must be completed in order to
determine the alteration, disorder
or abnormality.

Examination. Expresses a
recommendation or necessity of
making studies, examinations,
proofs for determining an
alteration, disorder or abnormality.

Table 2. Structural Components

Division. Expresses that an
alteration, disorder or
abnormality is subdivided
into...

Implication. Expresses
connection between a cause
and a complication.

Action. Expresses that
hi b

something must be
completed, a formula or an
exam.

Union. Expresses
connections between
subdivisions.

Table 3. Composition Rules.

Fig. 3 shows the causal chain that explains the
behaviour of a nation’s economy.

Fig. 3. When things go wrong

Lack of confidence
about the economy
by the consumers Demand

decreases

Producers lay off
people and decrease
consumption of raw
materials

Unemployed workers
have less money to spend,
so demand decreases
further

Employed workers fear
they will lose their jobs,
so they spend less money

Investors fear the value of
stocks will decrease, so
they are less willing to
invest in new companiesStock market falls

Confidence about
the economy by the
consumers Demand

increases

Increased employment
means even more
consumers can buy
stuff

Investors believe trend
will continue, so value of
stock increases

Stock market rises

With more money , investors
buy more stocks and consume
more goods and services

Fig. 4 When things go well

Below it is presented the knowledge base of this
application using the KAMET II Conceptual Language.

Enddm
Fig 6 The domain modelDecrease in

factory
production

People buying less
stuff

The diagrammatic representation in KAMET of
generate-and-test is presented below.

Fig 5. Brief economy knowledge base

We present an ontology description in Fig. 5.

Domain model economy
Signature

Sorts hypothesis, hypotheses set of hypotheses,
symptom

Predicates
Causes: hypothesis x symptom

Variables
h: hypothesis
s: symptom
H, H’: hypotheses

Domain knowledge
Causes (People buying less money,

decrease in factory production)
Causes (decrease in factory production,

growing unemployment)
Causes (growing unemployment, slump in

personal income)
Causes (slump in personal income,

unhealthy stock market)
Causes (unhealthy stock market and six

months, index decreasing)

Fig 7 The problem-solving method

result

verify
finding

obtain

observablespecifyhypothesis

select

hipothesiscover

complaint

Growing
unemploymentDecrease in

factory
production

Slump in
personal incomeGrowing

unemployment

Slump in
personal income 5. Conclusions Unhealthy stock

market

We presented the KAMET II capabilities for modeling
domain knowledge as well as for modeling reasoning
knowledge. We showed the architecture that enables
domain knowledge and problem-solving knowledge
reuse.

Dow Jones
Industrial
Average

goes down

Unhealthy stock
market

References
Six

months

1. Cairó, O.: A Comprehensive Methodology for
Knowledge Acquisition from Multiple Knowledge
Sources. Expert Systems with Applications, 14(1998).

2. Cairó, O.: The KAMET Methodology: Content, Usage
and Knowledge Modeling. In Gaines, B. and Musen, M.,
editors, Proceedings of the 11th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop,
pages 1-20. Department of Comp uter Science, University
of Calgary, SRGD Publications

3. Crubézy, M., and Musen, M.: Ontologies in Support of
Problem Solving. Handbook on Ontologies in
Information Systems. S. Staab and R. Studer, Springer.

4. Fensel, D.: Problem-Solving Methods Understanding,
Description, Development, and Reuse. Lecture Notes in
Artificial Intelligence, Vol. 1791. Springer-Verlag.

5. Schreiber, G.: Knowledge Engineering and Management:
the CommonKADS Methodology. MIT Press, Cambridge,
Massachusetts, 1999.

6. Schreiber, G., Crubézy, M., and Musen, M.: A Case
Study in Using Protégé-2000 as a Tool for
CommonKADS. In Dieng, R. and Corby, O., editors,
12th International Conference, EKAW 2000, Juan-les-
Pins, France.

Using COSMIC-FFP for Predicting Web Application Development Effort

G. COSTAGLIOLA, F. FERRUCCI, C. GRAVINO, G. TORTORA, G. VITIELLO
Dipartimento di Matematica e Informatica, Università degli Studi di Salerno

Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
email:{gcostagliola, fferrucci,gravino,tortora,gvitiello}@unisa.it

Abstract. In the paper we provide a set of rules to apply
the COSMIC-FFP method for measuring the size of
dynamic web applications. The rules can be applied to
analysis and design documentation in order to provide an
early estimation. We also describe the empirical analysis
carried out to verify the usefulness of the method for
predicting web application development effort. Such
analysis provides promising results encouraging us to
further investigate the validity of the approach.

1. Introduction

In the last years the demand for web applications is quickly
increasing, since they are an essential support for the
activities of organizations which operate in various areas.
The complexity and size of such applications have also
dramatically augmented. Thus, there is the need for tools
supporting project development planning with reliable cost
and effort estimations.
In the context of traditional software engineering many
software measures have been defined to gather information
about relevant aspects of software products and then
manage their development. In particular, several size
measures have been conceived to be employed in
effort/cost models to predict the effort and cost needed to
design and implement the software (see, e.g., [1, 6]). When
dealing with web applications such measures turn out to be
rather inadequate failing to capture some specific features
which significantly affect the size and then the effort
required for those applications [8,9,11,12]. Nevertheless,
many researchers agree that some existing methods can be
generalized and or adapted in order to be successfully used
for measuring size of web information systems. In
particular, Rollo considered COSMIC-FFP (cosmic full
function point) [5], which represents an adaptation of the
Function Point method [1], especially focused on data
movements. Although specifically devised to tackle real-
time and embedded applications, COSMIC-FFP turned out
to be able to capture the functional size of other systems
such as Management Information Systems. In [9] Rollo

applies the measure to an Internet Bank System and
suggests its use in the context of web based applications.
Following his suggestion in [7] Mendes et al. provide a
formalization of the method for hypermedia web systems
and report on an initial statistical analysis which has been
carried out on systems designed and authored by students.
In this paper we propose an adaptation of COSMIC-FFP
taking into account dynamic web applications. Indeed, the
measure turns out to be suitable for capturing also the
dynamic aspects of such applications which are
characterized by data movements to and from web servers.
A formalization of the adaptation is provided by suitably
revising some basic concepts of the method and defining
appropriate procedures to measure the functional size of
software by counting the data movements. Such procedures
have been conceived to be applied on design documents,
such as use cases and class diagrams in order to provide an
early size estimation. An encouraging, yet initial, empirical
validation of the measure has been gained by applying an
Ordinary Least-Squares (OLS) regression analysis on a set
of dynamic applications developed by undergraduate
students of an academic course on web engineering.
The paper is organized as follows. In Section 2 we recall
the main concepts of the COSMIC-FFP method, and
explain how we have adapted it for web applications. An
example of use of the method is also illustrated. Section 3
presents the results of the empirical analysis carried out so
far. Section 4 concludes the paper giving some final
remarks and discussion on future work.

2. The method

In the present section we recall the main concepts of the
COSMIC-FFP method, and explain how we have adapted it
for web applications, by providing a set of rules specifically
conceived to measure the size of dynamic web applications.
Example of use of those rules are also described.
COSMIC-FFP involves to apply a set of models, rules and
procedures to Functional User Requirements to obtain a
numerical value which represents the functional size of the
software, expressed in terms of CFSU (cosmic functional
size unit) [5]. In order to apply the method, two models are

identified: the context model and the software model. The
former establishes what is part of the software to be sized
and what is part of the software’s operating environment
(see Fig. 1), by identifying boundaries and illustrating the
generic functional flow of data attributes from a functional
perspective. The flow of data attributes is characterized by
two directions, back-end and front-end, and by four distinct
types of movements: entries and exits, which allow the
exchange of data with user, and reads and writes, which
allow the exchange of data with the persistent storage
hardware.

Software

READS

ENTRIES

EXISTS

ENTRIES

EXISTS

USERS

or

Engineered
Device

St
or

ag
e

H
ar

dw
ar

e

I/O
 H

ar
dw

ar
e

B
O

U
N

D
A

R
Y

WRITES

“Front
end”

“Back
end”

Figure 1. Generic flow of data attributes from
functional perspective [5]

The software model assumes that two general principles
hold for the software to be mapped and measured: 1)
software takes input and produces useful output to users,
and 2) software manipulates pieces of information
designated as data groups which consist of data attributes.

Functional Users
Requirements

Functional
Process Type

Sub-Process Type
Data Movement

Type
Data Manipulation

Type

Software

Figure 2. A generic software model for measuring
functional size [5]

Such software model allows us to consider the functional
user requirements decomposed in a set of functional
processes, where each process is a unique set of sub-
processes performing either a data movement or a data
manipulation (see Fig. 2). The data movement sub-
processes entry, exit, read, write, which move data
contained in exactly one data group, are considered. The
functional size of software is directly proportional to the
number of its data movement sub-processes. Such an
assumption is justified by the nature of the software the

method was initially targeted at, namely real time
applications, which are characterized by several movements
of data. The consideration on the fact that dynamic web
applications are also characterized by data movements
(from a web server to the client browser), has suggested us
to apply the principles of the COSMIC-FFP method to size
this type of web applications in terms of their functionality.
To this aim, the context model and the software model have
been suitably adapted. Moreover, appropriate procedures to
count the data movement sub-processes have been defined
that can be applied on design documents, such as use cases
and class diagrams. When dealing with web applications,
the flow of data attributes gives rise to the context model
illustrated in Fig. 3. Web applications are bounded in the
back-end direction by the web server which allows us to
interact with the information stored in the server and to
communicate with the web browser to provide the
requested documents. In the front-end direction web
applications are bounded by I/O hardware and users are
humans which interact with web applications across the
boundary1.

Web
Application

“Back
end”

ENTRIES

EXISTS

USERS

W
eb

 S
er

ve
r

I/O
 H

ar
dw

ar
e

 B
O

U
N

D
A

R
Y

WRITES

READS

“Front
end”

Figure 3. The functional flow of data attributes through
web application

Fig. 4 depicts the generic software model, where the data
movement sub-processes are identified by analyzing use
cases and class diagrams obtained from functional user
requirements.

Functional Users
Requirements

Software

Use Case Class
Diagram

Functional
Process Type

Sub-Process
Type

Figure 4. A generic software model to measure
functional size of web applications

1 It is worth noting that a similar model was provided by Mendes
et al. in [6], where the write data movement type was missing
since only static web applications were considered.

In order to provide the rules to measure data movements let
us identify the possible components of a web application as
follows.

Multimedia Component: able to generate output in
multimedia format (e.g., graphics, audio, video).
Server-Side Dynamic Component: able to provide
dynamic functionality on the server side. The two main
approaches are compiled modules and interpreted scripts.
Client-Side Dynamic Component: scripts and
applications used to build web applications and automate
their functionality on the client side.
External Reference: used to provide a reference to
external applications.

In order to count the data movement sub-processes (entry,
exit, read and write) we have provided the following rules.

1. For each static web page count 1 entry + 1 read + 1 exit.
Indeed, an entry is sent to the application by requesting
the client page (entry), the page is read from the web
server (read) and then shown to the user (exit).

2. For each multimedia component, which is visualized
after an explicit request of the client, count C*(1 entry +
1 read + 1 exit). In other words, the media is considered
as another web page downloaded from the server when it
is requested. C denotes a weight associated to the
component and is determined by considering its influence
on the development process. In particular, C=1, means
little influence; C=2, means medium influence; C=3,
means strong influence.

3. For each script used to provide a functionality to
manipulate document on the client side (i.e., in the web
browser), count 1 entry.

4. For each application executed on the client side, count
C*(1 entry + 1 exit). The entry is considered to run it and
the exit to show it. Again C denotes a weight associated
to the component and is determined by considering its
influence on the development process. In particular, C=1,
means little influence; C=2, means medium influence;
C=3, means strong influence.

5. For each server side interpreted script or compiled
module used to produce a dynamic web page, count 1
entry + 1 read + 1 exit. In this case, a form allows users
to input data and request a dynamic page (entry). The
web server elaborates the input of the user through the
server-side script or module (read) and produces a web
page which is sent to the user (exit). Moreover, count an
additional read if an access control is first performed
(e.g., for checking login and password) and then the input
is elaborated to generate the web page.

6. For each server side script modifying persistent data
through the web server, count 1 entry + 1 write + 1 exit.
The user inputs data through a form (entry), the data is

written through the web server (write) and the result is
shown to the user (exit). Count an additional read if an
access control is first performed.

7. For each web page that contains confirmation, alert or
error messages sent by the web server to the browser,
count 1 read + 1 exit.

8. For each reference to external applications such as
commercial package, library routine, count 1 entry + 1
exit.

Let us note that rules 5, 6, 7, 8 are specifically conceived to
consider dynamic aspects of web applications, rule 2 refers
to multimedia components and rules 1, 3, 4 take into
account elements common to static web applications. In
particular, the latter rules are analogous to the ones
provided by Mendes et al. in [7] to measure hypermedia
web applications.

To determine the functional size of a web application, the
corresponding use case and design documents are analyzed
in order to apply the above rules. The resulting sum is
expressed in terms of CFSU.

An example of application of the proposed method

In the sequel we show the application of the rules for
counting data movements. To this aim, let us consider the
class diagram depicted in Fig. 5, which is referred to a web
application designed for e-learning purposes.

Menu(){ }

MServlet
<<media>>

MSession
<<media>>

MJSP
<<media>>

MOverview
<<media>>

MSummary
<<media>>

MForms
<<media>>

MIntro
<<media>>

MJSPElements
<<media>>

MDataStoring
<<media>>

Servlet SessionCookie JSP

Summary

DataStoringFormsJSPElements

Overview

Intro

HomePage

<<Link>> <<Link>>
<<Link>>

<<Link>>

<<Link>>
<<Link>><<Link>>

<<Link>>

<<Link>>

 Figure 5. The UML class diagram modelling the
activities for a e-learning course

The diagram adopts the UML notation for the web
proposed in [3] which exploits stereotypes, tagged values
and constraints to suitably denote components that are
particular to web applications such as sever pages, client
page, form, frameset, client script, etc. In Fig. 6 the icons
denoting some of these components are depicted.

client page server page client script

f () { }

HTML form

Figure 6. Icons representing web components according
to Conallen’s UML extension

The class diagram in Fig. 5 models the activities for
presenting learning objects in a distance course. From the
client page HomePage, 9 client pages can be accessed,
namely Intro, Servlet, SessionCookie, JSP, JSPElements,
Forms, DataStoring, Overview and Summary. Each of those
web pages contains a request for a media which is specified
by the stereotype <<media>>. Moreover, HomePage
contains a client script.
By applying rule 1 we obtain 30 CFSUs due to the presence
of 10 client pages. The presence of a client script in the
HomePage determines the application of rule 3, and then
one more CFSU. Finally, the application of rule 2
determines further 81 CFSUs, since 9 media are requested
by the client pages, with an estimated weight C=3. Thus,
for this class diagram we have a total of 112 CFSUs.

Now, let us analyze the class diagram modelling the final
test activities for the given learning object (see Fig. 7). The
description of the corresponding use case (see Fig. 8) can
further support us in the comprehension of the diagram and
in the identification of data movements.

Use Case Final Test
ID: Final Test
Actors: User
Entry condition: The user requests the final test by

registering his/her data
Flow of events:

The system checks the user data and prepares the final test.
The user compiles the test (by answering the multiple-
choice questions), then the system evaluates it and sends
the results back to the user.
The system stores the score and the user data into the
database.

Exit condition: the user receives the test results.

Figure 7. The use case Final test

The user requests the final test by specifying his/her data
through the HTML form UserRegistration contained in the
client page FinalTest. The server page UserIdentification
verifies whether or not the user is registered and the server
page TestCreation prepares the form TestForm by using the
information of the class Test. The user fills in the form by

answering the questions and submits his/her test. Then, the
server page Scoring interacts with the database and
determines the score which is sent back to the user as an
HTML page (i.e., Score). Moreover, the server page
DBUpdating inserts the score into the database by using the
user data contained in the object Session.
The presence of the server pages UserIdentification,
TestCreation, Scoring determines the application of rule 5,
resulting in 9 CFSUs. Rule 6 is instead applied considering
the server page DBUpdating, determining other 3 CFSUs.
Finally, the presence of the static web page FinalTest which
contains the HTML form UserRegistration, causes the
application of rule 1, counting further 3 CFSUs. Thus, the
total counting for the considered piece of design
documentation is 15 CFSUs.

Session
LastName
FirstName
ID

STUDENT
LastName
FirstName
ID
Score

InsertScore()
DeleteScore()

TestCreation

UserIdentification

<<Redirect>>

Score

TestForm

<<Build>>

DBUpdating
11

TEST
LastName
FirstName
ID

LoadTest()
Create_html()
ScoreCalc()

11

11

Scoring
<<Build>>

<<Redirect>>

11

FinalTest

UserRegistration

11

<<Submit>>

Figure 8. The UML class diagram modelling the final
test

3. Empirical Evaluation

A statistical analysis has been performed to establish
whether the proposed adaptation of COSMIC-FFP can be
used to predict web application development effort in terms
of person-hours. We have exploited data coming from 22
web projects developed by students during an academic
course on web engineering. Students were instructed on
web design by using Conallen’s UML extension and on
common web technologies. In order to allow uniformity,
the most skillful students were equally distributed among
the 22 groups. Each group was asked to design and
implement a client-server hypermedia application and to
record information on the actual effort required for the
development process in terms of person-hours.
Table 1 reports the data of the 22 projects. A descriptive
statistics has been performed both for the variable Effort

(denoted by EFH), expressed in terms of person-hours, and
the variable COSMIC-FFP (denoted by C-FFP), expressed
in terms of CFSUs, related to the 22 systems used. The
summary statistics of those variables are given in Table 2.

Table 1. The data for the 22 web development projects
OBS EFH C-FFP OBS EFH C-FFP

1 110 165 12 128 430
2 108 250 13 145 600
3 141 519 14 133 483
4 104 417 15 148 543
5 118 311 16 119 255
6 120 298 17 125 380
7 152 612 18 153 577
8 135 475 19 159 263
9 131 355 20 171 807
10 105 187 21 163 778
11 135 401 22 172 833

Table 2. Descriptive statistics of EFFORT and size
expressed in C-FFP

OBS MIN MAX MEAN STD. DEV.
EFH 22 104 172 135,2273 22,8119
C-FFP 22 165 833 451,7727 193,3758

In order to perform the empirical validation of the proposed
method, we have applied an Ordinary Least-Squares
regression analysis.2

CFFP

900800700600500400300200100

EF
FO

R
T

180

170

160

150

140

130

120

110

100

Figure 9. The scatter plot for EFH and C-FFP

Fig. 9 illustrates the scatter plot obtained by considering
EFH as dependent variable and C-FFP, as independent
variable. The scatter plot shows a positive linear
relationship between the variables involved. This suggests
that a linear regression analysis of EFH and C-FFP can be
performed. The linear regression analysis allows us to
determine the equation of a line, which interpolates data
and can be used to predict the development effort in terms
of the number of person-hours required.
The goodness of fit of a regression model is determined by
the square of the linear correlation coefficient, R2.We can

2 For our study, we have employed the package SPSS for
Windows, release 9.0.

observe that the linear regression analysis shows a high
R2=0,690, which indicates that 69% is the amount of the
variance of the dependent variable EFH that is explained by
the model related to C-FFP. Moreover, the F value and the
corresponding p-value (denoted by Sign F) are useful
indicators of the degree of confidence of the prediction.
Specifically, in Fig. 10.a we can observe a high F value
(44,617) and a low p-value (0,000), which indicate that the
prediction is indeed possible with a high degree of
confidence. We have also considered the p-values and t-
values for the corresponding coefficient and the intercept
(see Fig. 10.b). The p-values give an insight into the
accuracy of the coefficient and the intercept, whereas their
t-values allow us to evaluate their importance for the
generated model. In particular, since for both variables the
p-value is less than 0.05, the variables are significant
predictors with a confidence of 5%. As for the t-value, a
variable is significant if the corresponding t-value is greater
than 1.5, which is the case for both the coefficient and the
intercept.

R2 R Std Err F Sign F
0,690 0,831 11,8644 44,617 0,000

(a)

Value Std. Err t-value p-value
Coefficient 8,943E-02 0,013 6,680 0,000
Intercept 94,825 6,556 14,463 0,000

(b)

Figure 10. The results of the OLS regression analysis for
evaluating the EFH using C-FFP

Thus, the equation of the regression model obtained with
this data set is:

EFH = 8,943E-02*C-FFP + 94,825
where the coefficient 8,943E-02 and the intercept 94,825
are significant at level 0.000, as from the T test.
In order to assess the acceptability of the derived effort
prediction model, we have considered the Magnitude of
Relative Error, which is defined as

MRE = |EFHreal — EFHpred | / EFHreal
where EFHreal and EFHpred are the actual and the predicted
efforts, respectively. The rationale behind this measure is
that the gravity of the absolute error is proportional to the
size of the observations. Such value has been calculated for
each of the 22 observations in the data set. We have
evaluated the prediction accuracy by taking into account a
summary measure, given by the Mean of MRE (MMRE), to
measure the aggregation of MRE over the 22 observations.
The values of such measures are reported in Table 3. In
particular, we can observe that the model exhibits an
MMRE value less than 0.25. As suggested by Conte et al in
[4], this represents an acceptable threshold for an effort
prediction model.
Moreover, we have considered another meaningful
measure, namely the prediction at level l, defined as

PRED (l)= k /N

where k is the number of observations whose MRE is less
than or equal to l, and N is the total number of
observations. Again, according to Conte et al., at least 75%
of the predicted values should fall within 25% of their
actual values. In other words, a good effort prediction
model should have PRED(0.25) 0.75. Also this condition
turns out to be satisfied by the derived model.

Table 3. The validation results
EFH = 8,943E-02*C-FFP +94,825 OBS EFFreal

C-FFP EFFpred MRE
1 110 165 109,581 0,0038
2 108 250 117,1825 0,0850
3 141 519 141,2392 0,0017
4 104 417 132,1173 0,2704
5 118 311 122,6377 0,0393
6 120 298 121,4751 0,0123
7 152 612 149,5562 0,0161
8 135 475 137,3043 0,0171
9 131 355 126,5727 0,0338
10 105 187 111,5484 0,0624
11 135 401 130,6864 0,0320
12 128 430 133,2799 0,0412
13 145 600 148,483 0,0240
14 133 483 138,0197 0,0377
15 148 543 143,3855 0,0312
16 119 255 117,6297 0,0115
17 125 380 128,8084 0,0305
18 153 577 146,4261 0,0430
19 159 263 118,3451 0,2557
20 171 807 166,995 0,0234
21 163 778 164,4015 0,0086
22 172 833 169,3202 0,0156

MMRE 0,0498
PRED(0,25) 0,91

4. Final remarks

In the paper we have addressed the problem of estimating
the effort required to develop web applications, which
represents an emerging issue in the field of web engineering
[2,7,8,9,10,11,12]. In the context of traditional software
systems, Function Points (FP) have achieved a wide
acceptance to estimate the size of business systems and to
indirectly predict the effort, cost and duration of their
projects [1]. However, it is widely recognized that such
method is no longer adequate for web-based systems, since
it is not able to capture the specific features affecting the
size and the effort required for those systems [8,9,11,12].
Nevertheless, the appealing features of the FP approach
have motivated recent proposals of adaptation/extension of
the method, meant to exploit its main ideas in order to
predict the size of web applications. In particular, Web
Objects represent an extension of FP, especially conceived
for web systems [10,11,12]. It is characterized by the
introduction of four new web-related components
(multimedia files, web building blocks, scripts and links)
added to the five traditional function types of FP. A
different solution was outlined by Rollo, who employed
COSMIC-FFP, an adaptation of FP originally defined for
real-time applications, to measure functional size of an

Internet bank system [9]. Following his suggestion in [7]
Mendes et al. provide a formal method which adopts
COSMIC-FFP to measure size of static hypermedia web
applications. In the paper we have extended their approach
by considering dynamic web applications and defining a set
of rules that allow us to measure functional size of client-
server applications. Since COSMIC-FFP measure is
focused on the counting of data movements, it turns out to
be particularly suitable for client-server applications, which
are characterized by large amounts of data movements. The
proposed rules have been conceived to be applied on
design documents, such as use cases and class diagrams in
order to provide an early size estimation.
Several research directions can be planned as future work.
First of all, further analysis is needed for the assessment of
the method. Indeed, the empirical evaluation provided in
the paper has to be considered a preliminary analysis,
useful for encouraging us in further investigation. Data
coming from the industrial world are presently being
collected, in order to obtain more reliable results. Such data
will be also used to perform a comparative analysis with
respect to other proposals, such as Web Objects.

References

[1] A.J. Albrecht, “Measuring Application Development
Productivity”, in Proc. of the Joint SHARE/GUIDE/IBM
Application Development Symposium, Oct. 1979, pp. 83-92.

[2] L. Baresi, S. Morasca, P: Paolini, “Estimating the Design
Effort of Web Applications,” in Proc. of the 9th Intern.
Software Metrics Symposium, Sydney, 2003, 62-72.

[3] J. Conallen, Building Web Applications with UML, Addison-
Wesley Object Technology Series, 1999.

[4] D. Conte, H.E. Dunsmore, V.Y. Shen, Software engineering
metrics and models, The Benjamin/Cummings Publishing
Company, Inc., 1986.

[5] COSMIC: COSMIC-FFP Measurement manual, version 2.2,
http://www.cosmicon.com, 2003.

[6] B. Henderson-Sellers, Object-Oriented Metrics: Measures of
Complexity, Prentice-Hall, 1996

[7] E. Mendes, N. Mosley, S. Counsell, “A Comparison of Length,
Complexity & Functionality as Size Measures for Predicting
Web Design and Authoring”, in Proc. of the EASE
Conference, 2001, Keele, UK, 1-14.

[8] M. Morisio, I. Stamelos, V. Spahos and D. Romano,
“Measuring Functionality and Productivity in Web-based
applications: a Case Study”, in Proc. of the 6th Intern.
Software Metrics Symposium, 1999, 111-118.

[9] T. Rollo, “Sizing E-Commerce”, in Proc. of the ACOSM 2000
- Australian Conference on Software Measurement, Sydney,
2000.

[10] D. Reifer, “Web-Development: Estimating Quick-Time-to-
Market Software”, IEEE software, vol. 17, no. 8,
November/December 2000, 57-64.

[11] M. Ruhe, R. Jeffery, I. Wieczorek, “Using Web Objects for
Estimating Software Development Effort for Web
Applications”, in Proc. of the IEEE Software Metrics
Symposium, 2003.

[12] M. Ruhe, R. Jeffery, I. Wieczorek, “Cost estimation for web
applications”, in Proc. of 25th International Conference on
Software Engineering, 3-10 May, 2003, 285 – 294.

Web based architecture for Dynamic eCollaborative work

Ioakim (Makis) Marmaridis, Jeewani Anupama Ginige, Athula Ginige
Advanced enterprise Information Management Systems Group

School of Computing and Information Technology

University of Western Sydney
{makis, achandra, athula}@cit.uws.edu.au

Abstract. Traditionally organisations have been
collaborating to complement one another’s capacity and
capability. The nature of these collaborations has been
long-term, taking a long time to establish, and once
established stay in operation for a long period of time
enabling fairly rigid IT infrastructure to be put in place to
support these collaborations. Now organisations are
beginning to collaborate on specific short-term projects
that are put together in a very short period of time. A new
IT infrastructure is needed to support this type of dynamic
collaboration. It should facilitate the rapid flow of
required information among the collaborating
organisations to support the cross organisational
workflow. Having analysed the requirements we
developed a Web based architecture to support dynamic
eCollaborative work. It is a peer-to-peer model and the
information is exchanged among collaborating
organisations based on workflow tasks. We also surveyed
the technology required to implement this architecture
and identified that two critical technologies need to be
developed. We are in the process of developing these
missing technologies and then we will deploy this
architecture.

1. Introduction

Collaboration is defined as “to work together, especially
in a joint intellectual effort” [1]. This is by no means a
new term and it is not even directly relevant to
information technology. Collaboration has been well
known to happen many centuries before computers were
invented, or even electricity for that matter.

Flowing from the definition of Collaboration above,
eCollaboration, in today’s business world is defined as
“the use of internet based technologies to enable
continuous automated exchange of information between
suppliers, customers and intermediaries” Donnan (2002)
[2]. To date eCollaboration is constantly gaining
popularity and acceptance as a common business practice.
The term eCollaboration takes on different meanings in

different contexts, such as eLearning, software
development etc. This paper concentrates on how
eCollaboration can be used to benefit organisations in
today’s highly competitive business world.

For two or more organisation to collaborate first there
needs to be business level agreement between them as
well as a degree of trust for each other. Typical example
of such collaborative work would be for two plastic
manufacturing companies; one specialising in plastic
bottles and the other on caps for bottles, agreeing to
jointly market and cross sell their complimentary
products. In order for this collaboration to be realised,
some of the internal business processes, such as planning
and development, marketing etc., need to cross the
organisational boundaries and be shared. By enabling this
collaboration to happen over the Web, these companies
can benefit in many ways [2]. In this paper we briefly
look at the factors that impediment the eCollaboration
once the higher-level business decision is made, followed
by a discussion on the need for an eCollaborative
framework and bring forward a Web based architecture
based on Component Based EApplication Development
(and Deployment) Shell (CBEADS©) [3, 4] that can
support eCollaborative work.

2. What is Dynamic eCollaboration and the need
for it

Although eCollaboration is gaining popularity as a
common business practise, there is still some resistance in
its uptake. Business level trust aside, there also needs to
be considerable compatibility in several areas between the
business partners; from their high level joint business
processes to their exchanged documentation and all the
way to their ICT infrastructure and systems [5]. Also,
eCollaboration is not well suited for the rapidly changing
business environment of today. Establishing the technical
framework for eCollaborative work typically involves
high setup and maintenance costs. As a result, the

collaboration links established between business partners
are typically few and rigid.

Contrary to eCollaboration as discussed previously,
Dynamic eCollaboration involves very flexible
relationships between business partners. It facilitates
common work on typically short to medium term projects.
Its goal is to assist businesses in realising a true “sense
and respond” approach to doing business.

Under Dynamic eCollaboration, new relationships can be
created almost ad-hoc, and taken down just as fast,
without tying the business partners into inflexible, long
term relationships.

Admittedly, Dynamic eCollaborative work is not yet as
widespread as one would expect, given the benefits it has
to offer to the organisations practising it. To this also
contributes the lack of the necessary ICT framework that
can support such efforts [5].

2.1. The need for an eCollaborative framework

It is becoming obvious that ITC infrastructure will have to
play an integral part of realising Dynamic eCollaboration.
Robust technology is necessary to facilitate the rapid
communication, exchange of documents, sharing of
applications and inter application messaging that is
needed in Dynamic eCollaboration.

Unfortunately, ICT has so far been hindering the process
instead. To our knowledge, there is no single framework
that companies can adopt and architecture they can follow
in order to be ready for Dynamic eCollaboration, and this
is where a change is needed.

If such a framework is put in place in an organisation, it
will greatly assist its participation to eCollaborative
efforts, both at the local, regional, national and even
international level. A common framework and
architecture for Dynamic eCollaboration will provide the
host organisation with the benefits of rapid deployment of
systems for internal communication, enhanced
information flow between business partners and a
consistent approach to managing the eCollaborative
relationships.

Arguably, once an ICT framework with such capabilities
is in place for an organisation, and the lower level
infrastructure consistency and interoperability is ensured,
the organisation can then shift its attention to actually
doing what it does best, business.

3. Overview of the Conceptual Framework for
Dynamic eCollaborative work

While keeping in mind the benefits a Dynamic
eCollaborative framework has to offer, this section will
proceed in describing such conceptual framework in more
detail.

Such framework must be capable of supporting very
flexible, almost ad-hoc establishment and tearing down of
various collaborations. It should also be able to secure
those collaborations by means of securing the associated
communication channels and data exchanges.

In addition to that, the framework should drive down the
costs and effort associated with creating, maintaining and
tearing down eCollaborative projects. The changeover of
eCollaborative links from dealing with a particular
business partner to dealing with another one must be
simple, quick and as inexpensive as possible. The
framework must provide consistency in its approach to
dealing with different eCollaborative projects, as well as
managing the ongoing joint work relationship between
organisations.

Security must be an integral part of the framework. It
should offer a flexible mechanism for enforcing
authentication and granular access control per
eCollaborative project, for each business partner and the
associated data that might be used or created during the
joint work. Also, in order to further enhance security, the
framework must not have a single point of control or
failure that could risk the integrity of the entire
eCollaborative network if compromised.

It is critical to ensure that if there is a security breach at a
particular member organisation, this can be contained and
by design will not put at risk the entire eCollaborative
network.

Finally, given the importance that the framework for
Dynamic eCollaboration will play in an organisation over
time, it is critically important that it is robust by design
and will maintain its availability. Also it is necessary to
ensure that if the framework in one of the participating
organisations stops working, this does not compromise
the integrity or availability of the entire eCollaborative
network.

CBEADS
Framework

Organisation A

CBEADS
Framework

Organisation A
CBEADS

Framework

Organisation D

CBEADS
Framework

Organisation D

CBEADS
Framework

Organisation C

CBEADS
Framework

Organisation C

CBEADS
Framework

Organisation B

CBEADS
Framework

Organisation B

eCollaborative
Network #1

eCollaborative
Network #2

Legend

eCollaborative
Network #1

eCollaborative
Network #2

Legend

� � � � � � � � 	 �
 � � � � �
 � � 	 � � � 	 � �
 � � � �

4. Identifying Critical Technologies of the
Dynamic eCollaborative framework and their
availability

To build an eCollaborative framework that adheres to the
requirements laid out in the previous section will involve
many different technologies. In addition, we believe that
not all of those technologies are readily available and that
at least two of them would still need to be developed.

Table 1 below shows the relevant, critical technologies
for implementing the Dynamic eCollaborative framework
along with their availability today.

Table 1. Critical Technologies for implementing a
Dynamic eCollaborative Framework

Critical Function Suitable
Technologies

Exists
Today

Encrypting Communications
between organisations

SSL / IPSec Yes

Unified end-to-end Security
across the entire framework

To be
developed

No

Encryption of business
documents exchanged

Cryptography
(Asym. Key)

Yes

Auto configuration of
connections between business
partners and security policy
management

To be
developed

No

Non repudiation of Messages Digital
Signatures

Yes

Framework for developing
and running eApplications

CBEADS©

Web Sphere
etc

Yes

The first of the two items that still need to be developed
will provide an end-to-end security system, capable of
creating, managing and enforcing policy-based directives
across an entire eCollaborative project. Its main focus will
be to provide a consistent virtual view of the resources
and people on the project for the purposes of
authentication and access control. Second will be to
provide a mechanism for configuring the connections
between business partners in an eCollaborative project
with focus on the ease of establishing and tearing those
connections down with minimum costs and expertise
required.

5. Architecture of the eCollaborative framework

Flowing from the high level requirements of the
conceptual framework for Dynamic eCollaborative work
between business partners, this section describes a
proposed implementation of such framework. We believe
that the proposed implementation of the architecture can

effectively address all of those high level requirements for
Dynamic eCollaboration.

We propose an implementation based on CBEADS©.
CBEADS© was developed by the AeIMS research group
at the University of Western Sydney, in Australia.
CBEADS© offers a flexible component based
environment [6] facilitating incremental development and
deployment of the eBusiness applications that can be used
to support Dynamic eCollaborative work. It is being
actively developed for several years now offering a
mature technology platform, which has now been
deployed in few organisations.

As Figure 1 below depicts, we envisage that there should
be a CBEADS© available to handle the interactions at
each organisation that wishes to form or be part of a
Dynamic eCollaborative network.

Figure 1 - eCollaborative Network Formations

With CBEADS© serving as part of the core technology
platform, many of the issues around protocol
interoperability and data interchange are alleviated. Also,
because of the component-based approach adopted by
CBEADS©, multiple applications can be present and
running in any single organisation allowing multiple
collaborations to go on in parallel with each other. At the
same time, data and applications can be kept secure and
segmented due to the built-in security features of
CBEADS©.

Key strength of the proposed implementation is that it is
based on the pure peer to peer architecture [7] of the
conceptual framework while allowing for simple and
inexpensive formation and evolution of the Dynamic
eCollaborative networks.

A
ccess

A
P

Is

CBEADS
Framework

(Core components,
Data and applications)

Looking Inside Organisation B

� � � � � � � � � 	 �
 � � � � �
 � � � � �
 �
� � � � � � � � �
 � � � � � � � � � �

Link to other
organisations

Internal
Corporate
Systems

Internal
Data

Stores

S
ecurity

S
ubsystem

S
ecurity

S
ubsystem

Applications for eCollaboration
Request &
Response

Broker

Once again, the policy-driven security subsystem of
CBEADS© can encapsulate and enforce decisions
regarding what organisations should participate in what
eCollaborative projects and also, what data and
applications are to be shared, what users and groups of
users are to access these and to what extend. In addition,
to end an eCollaborative project it will be enough to
revoke the respective policy through CBEADS© for all
access to the associated data and application to be
removed.

Figure 2 below shows the components of our proposed
CBEADS© based implementation of the framework for
Dynamic eCollaboration. The view is of a single
participating organisation and amongst other also shows
the relationship between the eCollaborative platform and
other internal systems and data repositories.

Worth noting in figure 2 is the Access APIs layer that
isolates, controls and monitors access to internal (legacy)
resources from the outside. Also, the Security Subsystem
that provides clearance for all access requests made to the
organisation for the purposes of eCollaborating. As a
result, all access to internal data and applications is
centrally controlled and managed for the entire
organisation through CBEADS©.

Figure 2 - The eCollaborative Framework inside an
organisation

By taking this approach, any participating organisation is
free to choose the level of data exchange it requires and
can detach itself from the eCollaborative network at a
later stage without having to recover data that has been
published externally, as the case would have been in a
shared portal establishment scenario [8]. Under this
architecture, data remains in its native system (the
organisation’s data store) and only the elements needed
for the eCollaboration are exchanged.

6. Conclusions and future work

We have presented an architecture that can facilitate
Dynamic eCollaboration among organisations. We have
validated this architecture against the detailed
requirements such as no single point of failure, easy to set
up and break down links to support the workflow
activities related to the collaboration etc.

We also surveyed the technologies that can be used to
implement this architecture. We have identified that
before we can implement this architecture we need to
develop two critical technologies. These are a consistent
approach to managing the necessary policies as well as
security across the entire framework and a mechanism for
intelligent, automated configuration of the connections
between business partners, as they are required. We are in
the process of developing these technologies. Once
developed, we plan to deploy a pilot of these systems to
several organisations in the Western Sydney Region of
Australia.

References

[1] "The American Heritage® Dictionary of the English
Language," vol. 2004, Fourth ed: Houghton Mifflin
Company, 2000.

[2] D. Donnan, "CEO/Presidents' Forum - Action Plan for
Trading Partner e-collaboration," GMA
CEO/Presidents’ Forum June 7-10 2002.

[3] A. Ginige, "New Paradigm for Developing
Evolutionary Software to Support E-Business," in
Handbook of Software Engineering and Knowledge
Engineering, vol. 2, S. K. Chang, Ed.: World
Scientific, 2002, pp. 711 725.

[4] A. Ginige, "Re Engineering Software Development
Process for eBusiness Application Development,"
presented at Fifteenth International Conference on
Software Engineering and Knowledge Engineering,
San Francisco Bay, USA, 2003.

[5] K. Schuster, "Cross-Industry Standard Key to
eCollaboration Success," in News Release issued by
Ticona. Philadelphia, 2002.

[6] I. Marmaridis, J. A. Ginige, A. Ginige, S. Arunatilaka,
"Architecture for Evolving and Maintainable Web
Information Systems," IRMA04, 2004.

[7] V. Prasad and Y. Lee, "A scalable infrastructure for
peer-to-peer networks using web service registries and
intelligent peer locators," presented at Cluster
Computing and the Grid, 2003. Proceedings. CCGrid
2003. 3rd IEEE/ACM International Symposium on,
2003.

[8] S. Woodman, G. Morgan, and S. Parkin, "Portal
replication for Web application availability via
SOAP," presented at Object-Oriented Real-Time
Dependable Systems, 2003. (WORDS 2003).
Proceedings of the Eighth International Workshop on,
2003.

Feature Value Propagation Analysis for Natural Language Grammars

Ettore Merlo
�
, Michel Gagnon

�
, Giuliano Antoniol

�
, and Dominic Letarte

��
Department of Computer Engineering, École Polytechnique de Montréal,
P.O. Box 6079, Downtown Station, Montreal, Quebec, H3C 3A7, Canada
e-mail:

�
ettore.merlo, michel.gagnon, dominic.letarte � @polymtl.ca�
Department of Engineering, University of Sannio,
Research Centre on Software Technology (RCOST),

Via Traiano - Palazzo ex Poste - I-82100 Benevento - ITALY
e-mail: antoniol@ieee.org

Abstract

Grammars used in parsers for natural language are usu-
ally based on feature values that are propagated by the
rules. In this paper, we present a flow analysis that has
been developed for these grammars and we show that it is
useful to identify defects in a grammar.

1 Introduction

The construction of a large-scale grammar for natural
language parsing is a task that requires many men-years of
work. Not only must we build the rules to cover all the
possible syntactic forms, but we must also achieve a fine
tuning of these rules to take into account all the subtleties
of the language and the idiosyncratic forms. The task be-
comes even worse if our objective is a grammar tolerant to
mistakes. Generally, this results in a big grammar and a
large lexicon, both with many intricated features.
When one is faced with a situation that requires a mod-

ification of the grammar or the lexicon, it is very difficult
to identify the impact of this modification in the parsing
process. With the tools available at this moment, typically,
we would resort to a pre-analysed corpus of sentences and
check that the analysis of these sentences remains the same
after the modification. The problem with this approach is
that it is time-consuming and does not point specifically at
the problem in the grammar design. For example, it would
be useful to know what are the other grammar rules or lexi-
cal entries that could potentially be affected by some change
in a grammar rule.
To assist this kind of impact measures, we propose to

adapt a flow analysis that is well known in software engi-

neering. We will argue that using this simple method, we
can easily identify problems in the design of a grammar.
In the next section, we present briefly the grammatical

formalism that has been used to test our method. The flow
analysis itself is formally described in section 3. Finally, a
small experiment on a grammar for Portuguese is presented
and used to show the advantages of our method.

2 Unification grammar

Unification grammar is a constraint-based formalism,
where every symbol in the grammar rules is paired with
a feature structure. Based on an unification process origi-
nally prosed by Kay [5] which is an extension of the Prolog
unification, it is now used in the majority of mainstream
grammar formalims, such as Head-Driven Phrase Structure
Grammar [9] and Tree-adjoining Grammar [10]. It is also
at the base of the general purpose tools that are available for
designing grammars, such as ALE [3, 2].
A feature structure is essentially a list of feature-value

pairs. The structure is recursive in the sense that a fea-
ture value may be another feature structure, but here we
will simplify by assuming that the value of a feature may
be either an atom or a variable. This simplification turns
easier the undestanding of the propagation mechanism de-
scribed in the next section, without affecting its theoretical
foundations.
For example, the following structure says that feature a

has the value 1, and that the values for features b and c are
unknown but must be the same, since they share the same
variable: � � �
 � a 1

b X
c X �

The mechanism used to obtain the derivation tree is the
unification. The algorithm is well known (see for example
[4] for a description of the algorithm) and an efficient im-
plementation is proposed in [6]. Intuitively, the unification
algorithm tries to find a value for all the variables in such
a way that the feature structures become identical. In the
derivation process, a rule may be activated when its head
feature structure may be unified with some feature struc-
ture in the body of another rule. The terminal nodes in the
derivation are feature structures associated to lexical items.
For example, the grammar illustrated in Figure 1 may be
used to produce the derivation of Figure 2. Note that vari-
ables and atoms are expressed by capital symbols and un-
capitalized tokens, respectively. Note also that the value of
a feature may be propagated into another feature structure,
in the body or the head of the grammar, by simply reusing
the same variable.

S � NP � NUM X � , VP � NUM X �
NP � NUM X � � DET � NUM X � , N � NUM X �
VP � NUM X � � V � NUM X

VAL intr �
DET � NUM sing � � the

N � NUM sing � � baby

V � NUM sing
VAL intr � � slept

Figure 1. Example of grammar

S� � � � � �������
NP � NUM sing �� � � �����

DET � NUM sing �
the

N � NUM sing �
baby

VP � NUM sing �
V � NUM sing

VAL intr �
slept

Figure 2. Example of derivation

3 Flow analysis

The feature value propagation can be fully described by
giving the lattice of the problem, the partial order the lattice
is defined on, the direction of analysis - forward or back-
ward - and the flow equations. A general description of flow

analysis can be found in [1], while an approach for constant
propagation analysis has been presented in [7].
A grammar 	 is defined as follows:

 � � � � � � � � � � � � � ! � $ � &
') + ' . 0 � 2 4 6 + 8 : � � � � � � �

') + ' . 0 � < > : � � � � � �� ! � $ � @ B C $ � � E $ � G H � I
J K M O 2 � < > Q : � � � � � �� ! � $ � @ B C $ � � E $ � G H � I & U � K W Y [&

\ .) Q : � � � � � � C $ � �

(1)

where ^ is the set of non-terminals, _ is the set of tokens
or lexical items, ` a c d f is the set of production rules used
in the derivation process, f is the start symbol, and g d h _
is the set of features propagated by the grammar rules.
Some functions are defined on rules. i j k i l m f n p q k r re-

turns the non-terminal on the left hand side of a production
rule, i j k i l m f s u returns the set of features and their values
propagated by a rule, v w y { n f s u } returns the n-tuple of sets
of features and their values or variables used by the right
hand side of a production rule for unification purposes, and~ l j } returns the name space of variables in a rule.
The feature propagation flow analysis problem can be

defined as follows: at any rule j in the grammar and for any
feature l , determine the set � of values l may have.
A solution lattice for the flow analysis problem can be

build by considering the partial order existing between sets
of feature values. � represents the lattice node for which
all features do not have any propagated value. � represents
the lattice node in which all the features in the grammar
can have all the possible values in their domains. A generic
node f � in the lattice represents a particular configuration
of information about the values of all the features in the
grammar.
Suppose there are n distinct features named l � to l � in

a grammar 	 . Formally, a node f � is denoted by the flow
information associated to it as follows:

f �
where � � � � � � � h _ � � f � is the set of values associ-

ated with feature l � .
The top and bottom of the lattice are respectively:

� � � � � � � � � � � � � � � � � � � �
� (2)

where � � is a special symbol indicating that feature l �
has an associated set of values which is equal to the total set
of atoms and � � is a special symbol indicating that feature

l � has an empty set of associated values.
For any node f � in the lattice the partial order is defined

as follows:

� � � �� � � � (3)

For any two nodes � � and � 	 in the lattice which are nei-
ther � nor � the partial order between nodes is defined on
the set inclusion between the sets of values corresponding
to all the features in the grammar:

� � � � 	 � � � � � � � � 	 � � � � � � � � (4)

Let’s define " # % � & (�) & (* to be the grammar
derivation graph such that:

% � & (# , . 0 *
% 1 2 � 1 4 6 � & (* � % 1 2 � 1 4 * 6) & (� �% : ; 2 � ; 4 6 = ? A) � E% 1 2 6 A G � % ; 2 * * L % 1 4 # = G � % ; 4 * * *

(5)

Flow analysis can be computed on the derivation graph.
The direction of analysis is forward since we compute the
current set of values based on previous values in the gram-
mar derivation graph.
Feature propagation equations for any given grammar

rule ; are described in terms of the flow information coming
in and out rule ; . Sets O , % ; * and Q ? 0 % ; * denote such in-
formation and correspond also to nodes in the flow problem
lattice.
Initially the flow analysis starts with with empty sets for

all features, that is R ; 6 = ? A) � � O , % ; * # Q ? 0 % ; * #% � U � W W W � � U � W W W � � U * # % Z � W W W � Z � W W W � Z * .
Let the flow information coming into rule ; be O , % ; * #% � � � 2 � W W W � � � � � � W W W � � � � c * and the flow information coming

out from ; be Q ? 0 % ; * # % � 	 � 2 � W W W � � 	 � � � W W W � � 	 � c * .
Elements of Q ? 0 % ; * can be computed as follows:

e f g h i

jkkkkkkkkkkl kkkkkkkkkkm

e n
if o p q r h s t u v x y z x r | } ~ � q y u

� t � if
q r h s t u v x y z x r | } ~ � q y u �q t v � � � � } u

�
e � v � � q y u �q p � � � � � } ~ � � v � � � � � } ~ � � q y u �q r � s � u v � � � � � } ~ � � u

e � if
q r h s � u v x y z x r | } ~ � q y u �q � v e � � } q y u u (6)

When several arcs of the grammar derivation graph
merge in a rule, it is necessary to merge the flow in-
formation coming out from ; � and ; 	 , for example,
to obtain the flow information coming into ; . Let
us assume that Q ? 0 % ; � * # % � � � 2 � W W W � � � � � � W W W � � � � c * andQ ? 0 % ; 	 * # % � 	 � 2 � W W W � � 	 � � � W W W � � 	 � c * .
The merged information is:

O , % ; * # Q ? 0 % ; � * ¡ Q ? 0 % ; 	 * ## % � � 2 � W W W � � � � � W W W � � � c * (7)

where ¡ is the merge operator and
R � � % � � � � � * � � � � # � � � � . � 	 � � (8)

Since the presented flow equations preserve the partial
order defined by equations 3 and 4, fix-point solution is
guaranteed to converge.

4 Experimentation and results

The grammar used in our experimentation is adapted
from a Portuguese grammar that has been built for another
project [8], where the objective was to test the sensibility of
some parsers for phrase structure grammar. The grammar,
which contains about 84 rules and uses a lexicon of about
7250words, recognizes basic sentences. An important char-
acteristic of this grammar is that it has been designed with
the objective of making it insensible to common mistakes
that could appear in texts written by Brazilians.
The flow analysis has been implemented in Perl on an

AMD Athlon XP1700+ processor with 1477 MHz speed.
The grammar derivation graph is obtained in 0.9 sec. and
contains 100 nodes (84 for the rules and 16 for the terminal
symbols). The grammar uses 24 features, 308 variables and
81 possible values for the features.
Table 1 gives a summary of the results. It gives the num-

ber of features in the grammar whose set of values has one
of the following cardinality: maximal (all values are possi-
ble), any cardinality greater than one and less than maximal,
singleton, and empty set.
Theses results show that in almost all cases, the method

is not very informative about the possible values of the fea-
tures. In 76% of the cases the domain value is uncon-
strained. This is not a surprise, considering the very con-
servative choice of union for the merging operator, which
does not take into account the strong constraining effect of
unification on the possible values. Even so, four singletons
have been identified, and each one points to an actual prob-
lem in the grammar or a peculiar characteristic that is worth
mentioning. In two cases, it happens that the value propa-
gated to some feature in a rule is always the same, making
this propagation useless. In this case, we can either remove
the feature in every rule that propagates it, and replace the
variable by the propagated value in the rule where the sin-
gleton has been detected. It may be also the case that some
rule is missing that would propagated another value. In both
cases, some decision must be made to fix the grammar, or
at least document the idiosyncrasy.
In the other two cases of singleton, the feature has a

unique possible value because all the entries in the lexicon
instantiate this feature with the same value. The lexicon
could contain other entries that would give another value
to this feature, but at this moment it does not have such an
entry.

Cardinality Feature %
Maximal 235 76
1 � card � Maximal 69 23
Singleton 4 1
Empty set none 0

Table 1. Summary of results

5 Conclusion and future work

In this paper, we proposed a simple flow analysis that
can be used to identify potential problems in the design of
a grammar for natural language processing. As far as we
know, this kind of technique, widely known in software en-
gineering, has not been used in computational linguistic re-
searches. We showed that even with a very conservative ap-
proach regarding the propagation,we can identify real prob-
lems in a grammar. Every instance of singleton or empty set
points to a potential error in the grammar design.
We conclude that this approach is very promising, and

should give more convincing results when applied to a very
large grammar. Also, a refinement of the formalism, to
make it reflect more precisely the effect of unification in the
derivation process, should turn the analysis more expressive
in terms of problems identified in the grammar design.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers—
Principles, Techniques, and Tools. Addison-Wesley
Publishing Co., 1986.

[2] B. Carpenter and G. Penn. Compiling types attribute-
value logic grammars. In Recent advances ind Parsing
Technology. Kluwer, 1996.

[3] Bob Carpenter and Gerald Penn. The Attribute Logic
Engine - User’s guide. Philosophy Department,
Carnegie-Mellon University, 1994.

[4] Daniel Jurafsky and James H. Martin. Speech and
Language Processing. Prentice Hall, 2000.

[5] Martin Kay. Functional grammar. In Proceedings of
the Fifth Meeting of the Berkeley Linguistics Society,
pages 142–158, Berkeley, 1979.

[6] A. Martelli and U. Montanari. An efficient unification
algorithm. ACM Transactions on Programming Lan-
guages and Systems, 4(2):258–282, 1992.

[7] E. Merlo, J.F. Girard, L. Hendren, and R. De Mori.
Multi-valued constant propagation analysis for user
interface reengineering.

[8] Mariza Miola. Construção de gramática to português
para um estudo comparativo da robuestez de alguns
algoritmos de análise grammatical. Technical report,
Master Dissertation, Universidade Federal do Paraná,
2002.

[9] C. Pollard and I. A. Sag. Head-Driven Phrase Struc-
ture Grammar. University of Chicago Press, Chicago,
1994.

[10] K. Vijay-Shanker and A. Joshi. Feature structure
based tree adjoining grammars. In Proceedings of the
12th International Conference on Computational Lin-
guistics, pages 714–719, 1988.

Recovering Traceability Links between Requirement Artefacts: a Case Study

Andrea De Lucia, Fausto Fasano, Rita Francese, Rocco Oliveto
Dipartimento di Matematica e Informatica

Università degli Studi di Salerno
Via Ponte don Melillo, 84084, Fisciano (SA), Italy

adelucia@unisa.it, ffasano@unisa.it, francese@unisa.it, r.oliveto@tiscali.it

Abstract. Recently, researchers have addressed the
problem of recovering traceability links between code and
documentation using information retrieval techniques [1],
[11]. We present a case study of applying Latent
Semantic Indexing to recovering traceability links
between artefacts produced during the requirements
phase of a software development process and discuss the
application of our approach within an artefact
management system.

1. Introduction

Recently, researchers have addressed the problem of
traceability link recovery between code and
documentation mainly to help the software engineers in
aligning them during maintenance [1], [11]. However, the
problem of maintaining traceability links is not only
restricted to source code and high level documentation,
but involves all the artefacts produced during a software
development process [2], [9]. This is especially true for
evolutionary processes, where artefacts can be added,
updated, or deleted in each phase, thus requiring a
continuous reorganization of the traceability links.
Several research and commercial tools are available that
support traceability between artefacts: TOOR [13],
REMAP [15], and Rational RequisitePro [14] are only a
few examples. Some tools [3], [4], [12] also combine the
traceability layer and event-based notifications to make
users aware of artefact modifications. For example,
Cleland-Huang et al. [3] have developed EBT (Event
Based Traceability), an approach based on a publish-
subscribe mechanism between artefacts. However, the
main drawback of these tools is the need for a manual
detection and maintenance of the traceability links while
the system changes and evolves, a difficult task for the
software engineer [3], [4], [9]. Indeed, inadequate
traceability is one of the main factors that contributes to
project over-runs and failures [6], [10].
The aim of our work is to support the software engineer in
the identification of the traceability links between
software artefacts, throughout the development process,

by using Information Retrieval (IR) techniques [5], [8]. In
particular, we present a case study of applying Latent
Semantic Indexing (LSI) [5] to recover traceability links
between artefacts produced during the requirements phase
of a software development process.
IR techniques have already been used to recovering
traceability links between code and documentation [1],
[11], between requirements [9], and between maintenance
requests and software documents [2]. In particular, our
work presents similarity with work by Marcus and
Maletic [11], concerning the use of LSI [5] as IR
technique for traceability link recovery, although we
apply it to different types of documents. Our work also
presents similarity with work by Huffman Hayes et al. [9]
concerning the application of traceability link recovery to
artefacts produced during the requirement phase, although
we use different type of artefacts, namely use cases and
interaction diagram descriptions.
The paper is organized as follows. Sections 2 and 3
present the method and the case study, respectively.
Section 4 concludes and discusses the application of our
approach within an artefact management system.

2. Traceability Link Recovery Method

IR based traceability link recovery methods compare a
document di (used as a query) against the other documents
in the document space and ranks them according to their
similarity with di. Moreover, these methods use some
(fixed or variable) threshold to present the software
engineer only a subset composed by the top documents in
the ranked list having a similarity measure with di greater
than or equal to the selected threshold. In this way, they
restrict the document space, while recovering all the
relevant documents.
Given a similarity measure between two documents,
establishing if these have to be considered similar can be
based on different approaches. A first method, called cut
point [1], [11], consists of imposing a threshold on the
number of recovered links regardless of the actual value
of the similarity measure. In this way, we select the top µ

ranked documents for each query, where µ ∈ {1, 2, …,
n}. A different approach consists of using a threshold on
the similarity measure. Among all the pairs of documents,
only those having a similarity measure greater than or
equal to will be retrieved. We have compared three
methods to compute the cosine thresholds:

1. Constant threshold: this is the standard method used
in literature [11]. The cosine threshold is constant.

2. Variable threshold: this is an extension of the
previous approach. The constant threshold is
projected in a particular interval, where the lower
bound is the minimum similarity measure (instead of
-1) and the upper bound is the max similarity
measure (instead of +1). This has not been used in
previous researches.

3. Scale threshold: a threshold is computed as the
percentage of the best similarity value between two
artefacts:

 = c MaxSimilarity

where 0 c 1 [1]. Of course, the higher the value
of the parameter c, the smaller the set of documents
returned by a query.

It is worth noting that if MaxSimilarity is 1, the scale
threshold and the constant threshold methods are
equivalent. The scale threshold method is useful when the
maximum similarity measure is low, while the variable
threshold method is useful when the distance between the
maximum and minimum similarity is low.
The IR method we used for traceability recovery is Latent
Semantic Indexing (LSI) [5]. This is an important
extension of the Vector Space Model [8] that assumes that
there is some underlying or “latent structure” in word
usage that is partially obscured by the variability in the
choice of the words, and use statistical techniques to
estimate this latent structure. A description of terms,
documents, and user queries based on the underlying
(“latent semantic”) structure is used for representing and
retrieving information. In this way LSI partially
overcomes some of the deficiencies of assuming
independence of words, and provides a way of dealing
with synonymy automatically without the need for a
manually constructed thesaurus and preliminary text pre-
processing and morphological analysis (stemming).
Indeed, stemming is particularly challenging for
languages, such as Italian, that presents a complex
grammar, verbs with many conjugated variants, words
with different meanings in different contexts, and
irregular forms for plurals, adverbs, and adjectives [1].
The heart of LSI is Singular Value Decomposition (SVD),
a technique closely related to eigenvector decomposition
and factor analysis [5]. LSI applies this technique to the
term-by-document matrix to decompose it into a set of k
orthogonal factors from which the original matrix can be

approximated by linear combination. The result of SVD
analysis is used to identify the similarity between each
pair of artefacts. In fact, SVD provides the coordinates of
the vector that represents an artefact; the similarity
between a pair of artefacts is computed as the cosine of
the angle between the corresponding vectors.

3. Case Study

We have experimented with the traceability link recovery
method based on the LSI model on software artefacts
produced during the requirement phase of a development
project conducted by final year students at the University
of Salerno, Italy. The project aimed at developing a
software system implementing all the operations required
to administer and manage a medical ambulatory. Table 1
shows the analyzed artefact statistics. The first two
columns represent the type and the number of artefacts,
respectively. The last two columns represent the average
number of words composing an artefact and the average
number of meaningful different words extracted from the
artefacts, respectively.

Artefact type # artefacts Avg. #
words

Avg # unique
words

use cases 30 240 12
interaction
diagrams 21 255 14

Total number 51 246.2 12.8

Table 1. Analyzed artefact statistics

The results of the application of LSI was assessed using
two widely accepted IR metrics, namely, recall and
precision. In general, for a given document di, the
similarity measure and the defined threshold will be used
to retrieve only the subset retrievedi of top documents in
the ranked list that are deemed similar to di. The set of
retrieved documents does not in general coincide with the
set correcti of documents in the document space that are
in fact similar to di. In general, the method will fail to
retrieve some of the correct documents, while on the other
hand it will also retrieve documents that are not correct.
In our experiments the set correcti for each document di
was provided by the original developers of the
application.
Recall and precision for di can be defined as follows:

i

ii
i

i

ii
i retrieved

retrievedcorrect
precision

correct
retrievedcorrect

recall
∩

=
∩

=

Both measures will have values between [0, 1]
(alternatively [0%, 100%]). If the recall is 1, it means that
all the correct links are recovered, though there could be
recovered links that are not correct. If the precision is 1, it
means that all the recovered links are correct, though

there could be correct links that were not recovered. For
the entire system the recall and precision are computed as
follows:

∩
=

∩
=

i
i

i
ii

i
i

i
ii

retrieved

retrievedcorrect
precision

correct

retrievedcorrect
recall

In general, retrieving a lower number of documents for
each query would result in higher precision, while a
higher number of retrieved documents would increase the
recall: in other word, the consequence of higher precision
is a lower recall and vice versa.
In the first experiment we indexed all the artefacts within
the same collection. Figure 1 shows the results. The 100%
recall is reached with = 0.3 for the constant threshold
(with about 18% precision) and = -0.6 (80% of the
interval [min similarity, max similarity]) for the variable
threshold (with about 20% precision). For the cut point
method 30 artefacts are necessary to reach the 100%
recall (with about 19% precision). The variable threshold
performs generally better than the other two methods. It is
worth noting that in this experiment we have not used the
scale threshold, because for each query the maximum
similarity measure was very high, thus giving similar
results as the constant threshold. The best results were
achieved with = 0.5 for the constant threshold, with
 = -0.1 for the variable threshold, and with 20 artefacts

for the cut point method. For example, for the variable
threshold we achieved a reasonable compromise between
recall (about 85%) and precision (about 30%).
We observed that the artefacts belonging to the same
category have similar structures and this increases their
similarity measure, even if they are not relevant to each
other (false alarm [7]). If a use case description is used as
query, the related interaction diagram descriptions will
have a lower similarity measure than irrelevant use case
descriptions. To have more evidence from this, we
performed a second experiment to recover traceability
links between use cases and interaction diagrams. The
results are shown in Figure 2: 100% recall is reached with
 = 0.28 for the constant threshold and = 0.2 (30% of the

interval [min similarity, max similarity]) for the variable
threshold. For the cut point method only 5 artefacts are
necessary to reach the 100% recall. It is worth noting that
for a variable threshold = 0.7 we achieve more than 90%
recall with 40% precision.
Due to this observation, we performed a third experiment,
where the documents are indexed in two different
collections, one for each category of artefacts. Queries are
then performed against each document sub-space and for
each of them a specific ranked list is created. Figure 3
shows the results: 100% recall is reached with c = 0.4 for
the scale threshold and = -0.6 (80% of the interval [min
similarity, max similarity]) for the variable threshold. For
the cut point method 27 documents in the use cases

collection and 7 in the interaction diagram collection are
necessary to reach the 100% recall. In this case we did not
use the constant threshold, because it does not take into
account the differences in the maximum similarity values
achieved in the two different collections of artefacts. It is
worth noting that the results achieved in this case are
better than the results achieved with a single collection of
documents (compare Figures 1 and 3). In particular, for
the variable threshold more than 40% precision with
about 85% recall is achieved for = 0.3.

Figure 1. Precision/recall results in experiment 1

Figure 2. Precision/recall results in experiment 2

Figure 3. Precision/recall results in experiment 3

4. Conclusion and Future Work

We have presented a case study of applying a traceability
link recovery method to software artefacts produced in the
requirements phase of the software development process,
in particular use case and interaction diagram
descriptions. The contribution of our work can be
summarized as follows:

• application of LSI [5] to requirements documents.
Unlike other IR technique, LSI requires a slighter
amount of pre-processing. To achieve comparable
results, Huffman Hayes et al. [9] had to use an
improvement of the vector space model based on a
key-phase lists that has to be manually provided or
extracted by introductory sections of a requirement
document;

• use of a variable threshold to cut the ranked list of
retrieved documents; in our case study this method
seems to outperform previous methods [1], [11];

• categorization of artefacts of different types in
different document subspaces to achieve better results.
Our findings are also confirmed by other authors who
used LSI on documents of different nature [7].

Ongoing experiments aim at extending these results to all
the artefact types, including requirement, design, and
testing documents, as well as code components. The first
results show that the application of this technique to
document spaces of larger sizes gives better results in
terms of recall and precision, while keeping good
performances.
We have implemented a tool that enables the software
engineer to select the desired ranked list cut method and
to tune the threshold. We plan to integrate this tool in
ADAMS (ADvanced Artefact Management System), an
artefact based process support system that integrates
project management features and artefact management
features, with particular emphasis on coordination of
cooperative workers, context-awareness, and artefact
versioning and traceability [4].
In particular, besides being useful for impact analysis
during software evolution, traceability links in ADAMS
are also useful to manage the software process and notify
software engineers that the production of a given artefact
can start, or that an artefact has to be changed, because of
some changes in artefacts it depends on. Usually, software
engineers are in charge of identifying traceability links
between software artefacts, but as the project grows up,
this task tends to be hard to manage [3], [4].
Another application of such a tool would be helping the
software engineer in checking the loss of consistency in
the usage of domain terms within software documents, in
case a link is supposed to exist between two documents
and it is not discovered by the traceability recovery tool.

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.
Merlo, “Recovering traceability links between code and
documentation”, IEEE Transactions on Software
Engineering, vol. 28, no. 10, 2002, pp. 970-983.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia,
“Identifying the Starting Impact Set of a Maintenance
Request”, Proceedings of 4th European Conference on
Software Maintenance and Reengineering, Zurich,
Switzerland, 2000, IEEE CS Press, pp. 227-230.

[3] J. Cleland-Huang, C. K. Chang, and M. Christensen,
“Event-Based Traceability for Managing Evolutionary
Change”, IEEE Transaction on Software Engineering, vol.
29, no. 9, 2003, pp. 796-810.

[4] A. De Lucia, F. Fasano, R. Francese, and G. Tortora,
“ADAMS: an Artefact-based Process Support System”,
Proceedings of International Conference on Software
Engineering and Knowledge Engineering, Banff, Canada,
2004 (to appear).

[5] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman, “Indexing by Latent Semantic
Analysis”, Journal of the American Society for Information
Science, vol. 41, 1990, pp. 391-407.

[6] R. Domges and K. Pohl, “Adapting Traceability
Environments to Project Specific Needs”, Communications
of the ACM, vol. 41, no. 12, pp. 55-62, 1998.

[7] S. T. Dumais, “LSI meets TREC: A status report”, D.
Harman (Ed.) The First Text REtrieval Conference (TREC-
1), NIST special publication 500-207, pp. 137-152.

[8] D. Harman, “Ranking Algorithms”, in Information
Retrieval: Data Structures and Algorithms, 1992, pp. 363–
392.

[9] J. Huffman Hayes, A. Dekhtyar, and J. Osborne,
“Improving Requirements Tracing via Information
Retrieval”, Proceedings of 11th IEEE International
Requirements Engineering Conference (RE'03), Monterey,
California, USA, 2003, IEEE CS Press, pp. 138-147

[10] D. Leffingwell, “Calculating Your Return on Investment
from More Effective Requirements Management”, Rational
Software Corporation, 1997. Available online at
http://www.rational.com/products/whitepapers.

[11] A. Marcus and J. I. Maletic, “Recovering documentation-
to-source-code traceability links using Latent Semantic
Indexing”, in Proceedings of the 25th International
Conference on Software Engineering, Portland, Oregon,
USA, 2003, pp. 125-135.

[12] D. Nutter, S. Rank, and C. Boldyreff, “Architectural
requirements for an Open Source Component and Artefact
Repository System within GENESIS”, in Proceedings of
the Open Source Software Development Workshop,
University of Newcastle (UK), 2002, pp. 176-196.

[13] F.A.C. Pinhero and J.A. Goguen, “An Object-Oriented
Tool for Tracing Requirements”, IEEE Software, vol. 13,
no. 2, 1996, pp. 52–64.

[14] Rational RequisitePro,
http://www.rational.com/products/reqpro/index.jsp

[15] B. Ramesh and V. Dhar, “Supporting Systems
Development Using Knowledge Captured During
Requirements Engineering”, IEEE Transactions on
Software Engineering, vol. 9, no. 2, 1992, pp. 498–510.

Reengineering an Industrial Legacy Software Towards an Object-Oriented
Knowledge-Based System *

Hakim Lounis Kaddour Boukerche Houari A. Sahraoui
Department of Computer Science
Université du Québec à Montréal

UQÀM, Canada

 Centre de Recherche
Informatique de Montréal

CRIM, Canada

Department of Computer Science
and Operations Research

Université de Montréal, Canada
lounis.hakim@uqam.ca sahraouh@iro.umontreal.cakaddour.boukerche@crim.ca

*This work is part of an industrial project between the ALCAN Ltd group and CRIM, a research center. It was supported by a joint grant
from ALCAN Ltd and NSERC, operation grant #CRDPJ 228746-99.

Abstract. A software product is expected to fulfill some
need and meet some acceptance standards that dictate
the qualities it must have. This paper presents a
reengineering work tending to increase to a significant
degree some software qualities relevant in the
management of production of a hydroelectric network.
An object-oriented knowledge-based architecture is
proposed to ensure an intelligent and automatic
management of the knowledge in use in the daily
decisional process of a major Canadian company.

1 Introduction

Reengineering is the examination and the modification
of an existing system to reconstitute it in a new form and
the subsequent implementation of the new form. The
first phase of reengineering is some form of reverse
engineering so as to abstract and understand the existing
system. The second phase is traditional engineering or
full restructuring using new specification and knowledge
of the old system obtained from reverse engineering.
This process is generally motivated by the will of
moving old programs and systems to new platforms, as
in source code translation, or restructuring programs that
were corrupted by repeated maintaining activities.
However, the most promising axis of reengineering is
certainly moving legacy systems to emerging
technologies and paradigms. Indeed, many organizations
have been migrating their legacy systems to emerging
technologies, e.g., Object-Oriented (OO) technology.
Lehman and Belady present this migration as an
economical choice through their three laws on the
evolution of large systems [1].

OO approaches and languages have become quite
popular, partially because of their potential benefits in
terms of maintainability, reusability, separation of
concerns, information hiding, etc. However, the vast
majority of software available today is not OO. The
effort to simply rewrite them from scratch using an OO
approach would be prohibitive, and significant expertise
recorded in the procedural software would be lost. The
cost of manual conversion would also be prohibitive.
Support coming from tools, documentation, and
developers of the legacy software would ease the
introduction of OO technology in many organizations.
This kind of reengineering process could be especially
helpful to integrate existing systems and new ones
developed with OO approaches.

On the other hand, Knowledge-Based Systems (KBS)
are used in numerous application domains, of which the
field of hydroelectricity in which this work fits [2] [3]
[4]. KBS are used to reproduce an expert’s reasoning
and are based on two distinct components: knowledge
and reasoning. Separation between these two levels of
intervention makes it possible to offer a flexibility of
operation that many traditional software approaches are
missing. KBS are presently an effective and useful
solution to integrate the necessary analyses of
hydropower experts and to meet the needs of the
hydroelectric industry.

In the balance of this paper, we first present in section 2
the problem description. In section 3, we introduce what
we consider as motivations for moving towards an OO
knowledge-based architecture. In section 4, we describe
the adopted solution and present its main features.

Finally in section 5, we conclude and present some of
the lessons we learned.

2 Problem description

Alcan is one of the two world biggest player in the
aluminum industry. With a total surface area of 73 800
km², the Alcan hydropower network under study,
constitutes a territory larger than the province of New
Brunswick (Canada). The network has, on average, an
annual energy capacity of approximately 2000
megawatts; it includes 6 hydroelectric power stations, 28
reserve installations, 43 turbine-alternators groups
(TAG), 850 kilometers of energy transport lines, a
network of about thirty hydro-meteorological stations,
etc.

The objective of planning the operation of such a
network can be summarized as the satisfaction of the
following requirements:

- Effective use of water
- Account of future hydrological uncertainty
- Satisfaction of energy need
- Respect of safety constraints.

To reach these goals, a semi-automated decision-making
process of water stock management is used that consists
of four steps:

1) Weather hydro measurements and gathering of the
data

2) Data analysis
3) Weather and hydrological forecasting
4) Planning.

In these planning tasks, information processing systems
based on mathematical models tested for this kind of
applications, are used for optimization and simulation
purposes. These models are implemented in Fortran
within more than 65 routines totalising around 10.000
lines of code. A part of the legacy application contains
what we consider as expert knowledge within its source
code. However, most of the knowledge is used implicitly
and in a non-automated way by Alcan analysts at
different steps of their decision-making process.

This decision-making process is part of the knowledge
management (KM) policy of Alcan Ltd. Currently, a lot
of companies, often multinationals, face a significant
problem of management of their knowledge, their know-
how and their competences. They thus should constitute
an alive and productive memory for their company,
resting on three following main topics: the management
of the experts and their expertise, the return of
experiment, and the knowledge and information transfer
in the company. From a theoretical point of view [5],
KM makes it possible a company to manage (i) its

specific expertise, which characterize the company
capacities in the study, the realization, the sale and the
support of its products and its services and (ii) individual
and collective know-how, which characterizes the
company capacities of action, adaptation and evolution.

The knowledge used in the studied decision-making
process, is many and varied. The problem is that this
knowledge is often hidden in the code of the programs
which use it, or consigned in internal documents, or
even used implicitly by the experts, as in our case! This
situation becomes more problematic, when the Alcan
hydrological resources analysts wants to explore new
scenarios, while modifying a little one of this
knowledge. It has no other choice than to traverse the
source code of the implemented programs, in order to
make the discounted modifications there. It is, for
example, the case of the operation rules of each power
station and tank.

3 The Reengineering Motivations

The main disadvantage of the solution used since several
years and described above, is the absence of separation
between the knowledge level and the inference or
reasoning one, in a product used in a knowledge
intensive process! An immediate consequence is the
restriction in the possibilities of investigation and
exploration wanted by the Alcan analysts. Moreover, the
adopted "black box" architecture produces a lack of
flexibility of the whole decisional process. A
consequence of that is the difficulty of maintaining and
making evolve such a system.

An essential requirement of the KBS design process is
the use of efficient representations of large amounts of
knowledge; this ensures the consistency and effective
exploitation of the KBS algorithms. The available
knowledge can be explicit or implicit. An explicit
representation consists of a symbolic expression of
human expert knowledge. Rules are an example of that;
they allow you to separate the expertise from the
application code. This makes the application adaptable
and maintainable. Since expert rules are externalized
from the application code, they can be changed
independently without recompiling the application. An
implicit representation is knowledge that is usually
hidden in data (numerical in our case). It requires further
processing of the data before useful information can be
extracted from it. For that, Machine-Learning (ML)
techniques have been widely used to capture hidden
knowledge from stored historical data. In each case, the
goal was to determine trends or behaviour patterns that
would allow the improvement of KBS procedures. For
instance, ML techniques have been used in

hydroelectricity to produce rules from a power
generation database [6] [7].

On the other hand, adding new functionalities is not the
only goal of such a reengineering process. We also want
to reach some quality attributes in the reengineered
product. Some of these qualities are:

- Evolvability: software is evolvable if it allows
changes that enable it to satisfy new requirements. It
is a quality attribute close to flexibility. The initial
design of a product as well as any succeeding
changes must be done with evolvability in mind.

- Usability: a software system is usable if its human
users find it easy to use. In our case, users are Alcan
experts and analysts, and they have special needs.

- Reusability: this quality attribute is close to
evolvability. It may be applied at different levels of
granularity, from whole applications (including
pieces of knowledge) to individual routines.

- Understandability: the activity of software
maintenance is dominated by the subactivity of
program understanding. Understandability helps in
achieving many of other qualities, such as
evolvability.

All these qualities could be in fact achieved thanks to
internal software attributes, which deal largely with
structure of the new software architecture.

4 The Object-Oriented Knowledge-Based
Solution

As stated above, this work deals partly with the
knowledge management of the Alcan experts, including
data, thus allowing the hydropower resources planning
or simulation. To help perform the planning tasks, we
have developed a KBS called HYPERPIK (Hydro
Power Resources Planning based on Inference and
Knowledge). Figure 1 summarizes our system
architecture. It consists of an inference engine that is
coupled with a knowledge base resulting from the
problem modeling. The knowledge base contains an
explicit knowledge that is the symbolic expression of
Alcan experts’ know-how. A machine-learning
framework exploits a historical database and produces
explicit or implicit knowledge, depending on the
selected learning mechanism [7]. The produced
knowledge is then used in the decision process. In
particular, it uses natural contributions flow values
predicted from the historical database. These
contributions flow values help evaluate the ability of the
power system to face various contingencies and to
propose appropriate remedial actions.

Figure 1. The HYPERPIK architecture

On the other hand, the planning step exploits explicit
knowledge. It takes the form of rules we have built after
weeks of an elicitation work with Alcan experts. The
goal of this elicitation work was to explicit experts
knowledge used implicitly in the previous semi-
automated solution. Rule technology is based on the
philosophy of providing fast and flexible software
components to empower computer applications with
“business” or “expert” rules capabilities. The general
idea of a rule is that actions on the right-hand side are
carried out whenever all the patterns on the left-hand
side are successfully matched. A pattern is an
expression that is capable of designating one or more
objects. The objects result from our modelization of the
hydropower domain and the classes diagram, given in
figure 2, is an illustration of them.

The decision or inference engine processes the rules
using the objects in a working memory. It implements a
RETE algorithm [8] (it is widely recognized as by far
the most efficient algorithm for the implementation of
production systems) where rules are compiled into a
network. Input data to the network consists of changes to
working memory. Objects are inserted, removed and
modified. The network processes these changes and
produces a new set of rules to be fired. This process
continues cyclically until there are no further rules to be
fired.

The rules have a simple structure, composed of a header,
a condition part and an action part. The header part
defines the name of the rule, the packet to which the rule
is attached, and its priority (if needed). The condition
part utilizes the object-oriented structure of Java to carry
out pattern matching on class instances, i.e. objects. This
pattern matching binds (instantiates) variables to objects
and field values. Rule conditions are also used to test

Explicit Knowledge

Decision
Engine

Historical
Data-base

Machine -Learning
Framework

Knowledge
Base

Implicit Knowledge

Planning Decision

field values. This provides a filtering mechanism for
objects. When the condition part of a rule is verified, i.e.
valid objects have been found, the action part of the rule
may be executed. Actions may vary from simple to
complex, e.g. printing a message to creating new objects
or calling a pre-existing Fortran routine (through a Java
method).

Figure 2. Objects involved in the planning process

The rules are written in the Ilog Jrules language1 and the
following one illustrate their structure:

rule short_TermDischargeRiskStJeanLake {
packet = shortTermRiskStJeanLake;
when {

site(name =="StJeanLake");
predicted_averageDischarge_InNextdays(currentDa
te + 7) > -100 ;
precited_averageDischarge_InNextdays(currentDate
+ 7) <= 0); }

then {
modify { shortTermRiskDischarge(currentDate) =
50; } } };

Our reengineering work yields to about 150 rules
organized in 16 packets. A packet allows us to group
rules with regard to their goal in the whole process.
Examples of packets are: short-term risk at St-Jean Lake
(see the rule above), overflow risk, Saguenay sub-
system production, etc. This reengineering work yields
also to a new interaction model between Alcan analysts

(final users of the system) and the system. Figure 3 gives
the use-cases and illustrates these new functionalities
and particularly the flexible way that the experts from
now on have to configure their network or run a
simulation session.

1 Ilog Jrules is a general-purpose expert-system
generator that combines rule-based techniques and
object-oriented programming (www.ilog.com).

 Figure 3. The Reengineered system use-cases

5 Conclusion and Lessons Learned

The reengineered system is currently used within the
hydropower resources management group at Alcan. It
results from a long collaborative process between
authors of this paper and Alcan analysts. The latter were
active and decisive actors; they have to maintain their
Fortran routines (e.g., short term evaluation functions,
water rise rate calculation functions, volume calculation
functions, etc.) and we have to build a bridge between
these functions and the objects methods we have
implemented. The exercise was not so easy; we have to
keep a good separation between what we consider as an
expert knowledge and the procedures that exploit this

knowledge. This critical step of the project was iterative
and it requires, even now, many adjustments.

The following points could summarize the strengths of
the proposed solution:

- A greater flexibility of the tool during its use within
the decisional process, by facilitating the exploration
of new power network management scenarios. It is
the main need of Alcan analysts.

- Better user interfaces allowing better usability during
system configuration and simulation. For instance,
the user-friendliness (i) of the configuration process
of the network before each simulation (see use-case
<define hydropower network> in figure 3), and (ii)
of the updating process of the knowledge base (see
use-case <edit rule-set base> in figure 3), are
important factors.

- A better evolvability of the system thanks to the OO
rules-based architecture. This architecture fosters
evolvability, especially by offering the means of
updating expert knowledge to explore new planning
schemes.

- An understandability of the system much higher than
it was in the previous system. Reaching
understandability is a difficult task in complex
systems with multiple functionalities. However,
separating knowledge from the procedures that use
it, and producing a new OO design are undeniable
steps towards this objective.

- A better reusability of different components of the
system. For instance, in our context, mathematical
models implemented in Fortran reusable components
are part of our global architecture.

This work is still in progress. We are working now on
some extensions of the system. By adding priority
factors to the rules, mainly to those dealing with
management instructions, we expect to improve the
whole performance of the tool. In fact, the tuning of
such a system is a long and meticulous work; it is
actually one of the main tasks of Alcan analysts. Finally,
a next step will be to produce a rules verification
module, in order to maintain the knowledge base free of
anomalies (redundancy, inconsistency, etc.).

Acknowledgement. The authors want to thank Ms.
Louise Rémillard and Janine Dufour from Alcan Ltd for
their precious collaboration.

References

[1] M. M. Lehman, L. A. Belady, "Program evolution",
Academic Press, New York, 1985.

[2] S. Samarasingh., A. McKinnon, J. Bright, “Expert
System for Flood Management in Lake Manapouri”,
IEEE Comput. Soc. Press, Los Alamitos, CA, USA.
First New Zealand International Two-Stream
Conference on Artificial Neural Networks and Expert
Systems, Dunedin, New Zealand, 1993.

[3] J. Chang Tiao, D. Moore, “Reservoir Operation by
the Use of an Expert System”, Ohio Univ, Athens, OH,
USA. Proc. of the 1994 ASCE National Conference on
Hydraulic Engineering. Buffalo, NY, USA, 1994.

[4] A. S. Leslie, A. Moyes, J. R. McDonald, G. M. Burt,
J. McGowan, W. Charlesworth, “CEPE, Intelligent
System for the Management of a Hydro-electric
Scheme”, Strathclyde Univ., Glasgow, UK. 31st
Universities Power Engineering Conference, Iraklio,
Greece, 1996.

[5] M. Grundstein, “La capitalisation des connaissances
de l’entreprise, système de production de
connaissances”, 1995.

[6] M. Mejia-Lavalla, G. Rodriguez-Ortiz, “Obtaining
expert system rules using data mining tools from a
power generation database”, Expert systems with
applications, 14, 37-42. 1517, 1998.

[7] H. Lounis, M. Boukadoum, V. Siveton, “Assessing
Hydro Power System Relevant Variables: a Comparison
Between a Neural Network and Different Machine
Learning approaches”, Proc. International Conference
on Neuro-Fuzzy Technology (Neuro-Fuzzy2002),
Havana (Cuba), 45-51, 2002.

[8] C. L. Forgy, “Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem Artificial
Intelligence”, 19, 17-37, 1982.

Towards Knowledge Discovery in Software Repositories to Support Refactoring

Jörg Rech
Fraunhofer IESE

67661 Kaiserslautern, Germany
joerg.rech@iese.fraunhofer.de

Abstract. Software repositories are typically used to store
code together with additional information. These reposito-
ries are a valuable source to train knowledge discovery al-
gorithms to detect code smells and other qualitative defects.
In this paper we present a lightweight framework to detect
previously unknown knowledge from software reposit ories
to support refactoring. The results will be usable by soft-
ware reengineers in the process of inspection and quality
asses sment of legacy systems.

1. Introduction

During the last years refactoring has become an important
part in agile processes to improve the structure of software
systems between development cycles. Especially in agile
development under-engineering usually happens when the
focus lies on adding more functionality to a system without
improving its design along the way. When code works it is
often simpler to engage the next task than cleaning up the
previous work. Additionally, as systems are getting larger
refactoring gets more and more complex and time consum-
ing to do manually. Even if one knows how to refactor
software it is not clear where and under what conditions
what refactoring should be used [1].

In praxis, refactoring is a great challenge, as most soft-
ware systems are badly implemented and therefore hard to
evolve, maintain, and reengineer (e.g., Y2K). This aggra-
vates if the software has to be optimized in order to meet
new requirements, remove defects, or improve qualities like
maintainability or reusability. Product managers need sup-
port to organize refactoring chains and to analyze the im-
pact of changes due to refactorings on the software system.
Analogously, quality managers and engineers need infor-
mation to assess the software quality, identify potential
problems, select feasible counterme asures and plan the
refactoring process as well as preventive measures.

This paper describes a lightweight framework for the
quality-driven, experience- and metrics-based instrument to
support the refactoring of large-scale software systems.
Developed instruments will give decision-support to soft-
ware reengineers in the process of managing (i.e., measur-
ing, monitoring, controlling, evaluating, and guiding) cor-
rective, perfective, adaptive and preventive changes (esp.,
refactorings) to a software system. Based on the problems

described our framework is targeted to enable the monitor-
ing and controlling of quality defects (a.k.a. “code smells”)
in software systems based on software repositories (e.g.,
nightly, integration and release builds). The semi-automatic
diagnosis of quality defects in a software system based on
techniques from knowledge discovery in databases will
help to detect refactoring candidates. Information from the
diagnosis will support maintainers to select countermea-
sures (e.g., refactorings) and will act as a source for the
initialization of preventive measures (e.g., code inspec-
tions). The evaluation of the work will be based upon in-
formation and source code from open source systems.

1.1. Related Work

Research in software maintenance has been undertaken in
several large areas. As Bennett and Rajlich state in their
roadmap paper the central research problem is the inability
to change software easily and quickly [2]. Current research
issues are to gain more empirical information about the
nature of software maintenance, to build predictive models,
to preserve and manage knowledge for the future mainte-
nance of software, or the restructuring of code and data to
remove unnecessary complexity [2, 3].

Previous research has resulted in behavior-preserving
approaches to refactoring object-oriented software systems
[4], tool support for refactoring application [5], methods for
design-pattern based refactoring [6], metrics based and
visually supported quality assurance with a similarity
measure [7], modeling of object-oriented software to sup-
port later reengineering and refactoring [8], automated sup-
port for evolution and refactoring of object-oriented frame-
works [9], and metrics based visual approaches to under-
stand object-oriented soft-ware systems for reengineering
[10]. Publications in the field of this thesis are concerned
with collections of refactorings [1] as well as reengineering
patterns [11].

Current research in the field of software refactoring is
very active and is beginning to address formalisms, proc-
esses, methods, and tools to make refactoring more consis-
tent, planable, scaleable, and flexible [12]. Metric based
refactoring was currently only done for the refactorings
“move method”, “move attribute”, “extract class”, and
“inline class” based on one similarity measure with subse-
quent human interpretation [13].

2. Knowledge discovery and SW repositories

Today, several activities in software engineering like plan-
ning, monitoring, controlling, quality improvement, deci-
sion support, or automation benefit from knowledge engi-
neering techniques [14]. Knowledge discovery in databases
(KDD) is concerned with the detection of previously un-
known information from large datasets. Discovery of
knowledge is a process that can be divided into the five
sub-processes Selection, Preprocessing, Mining, Validation,
and Representation [15]. These sub-processes underpin the
importance of clean data for the mining process (e.g., nu-
merical without missing data) and the need for representa-
tion of clear valid knowledge (e.g., visualization of clus-
ters).

Today, the term data mining is often used as a synonym
for KDD. While Data Mining is the detection of “nuggets”
in numerical data various forms of mining exists which
examines different types of data. For exa mple, text mining
focuses on the extraction of knowledge from collections of
long texts (e.g., books) while web mining focuses on typi-
cally small hypertexts (e.g., web pages), clickstreams, or
log data.

The goals of KDD can be divided into the groups clus-
ter discovery (i.e., answering “Are there related ele-
ments?”), class discovery (i.e., answering “How to classify
elements?”), association discovery (i.e., answering “Do
causal relations exist between elements?”), model discov-
ery (i.e., answering “Do valid causal models exis t?”), trend
discovery (i.e., answering “What will happen in x days?”),
pattern discovery (i.e., answering “Are there typical reoc-
curring structures (e.g., design patterns)?”), and correlation
discovery (i.e., answering “Do correlations between (meas-
ured) variables exist?”).

Specific techniques for these goals like neural networks,
decision trees, rough sets, or genetic algorithms can then,
for example, be used to construct prediction models for
decision support. These techniques as well as fuzzy set the-
ory, case-based reasoning, or Bayesian analysis can be used
to support software managers in the planning or control-
ling of their projects.

KDD promises to support various goals in software
maintenance with the detection of knowledge in software
repositories. For example, classification techniques can be
used to detect similar methods or data structures in software
systems. This can either happen on the code itself or on
additional information (e.g., software metrics) attached to
the code. Another example is the re-classification of meth-
ods from old classes into new ones to decrease coupling
and increase cohesion of the renovated system. Further-
more, other scenarios are realistic like the automated classi-
fication of code fragments (i.e., methods or smaller) for the
rapid development of code repositories to support reuse in
agile environments.

2.1. Software repositories

Repositories in software engineering are used for nearly all
elements, objects, or data related to software. After the
speech of McIlroy late in the sixties repositories for code
elements became more and more popular [16]. In the early
eighties the experience factory (EF) – basically a repository
about project experience and products – was established by
Victor Basili [17]. Today, various other repositories for
configuration management (e.g., CVS, SourceSafe), code
reuse (e.g., ReDiscovery, InQuisiX), defect management
(e.g., Bugzilla), or project databases exist in software engi-
neering. Furthermore, if nightly- or daily-builds are com-
piled these also represent file-based repositories with valu-
able information about a project or software product. Soft-
ware maintenance and development can benefit from these
code repositories (i.e., CVS or nightly builds) if they are
used to train defect detection techniques on previous builds
of a software product.

In our repository source code from projects is measured
and written into an XML document as well as a database
for faster access. As depicted in Fig. 1 the code is cut into
method blocks and contains metrics on every level (“Metri-
cList”). The source code is attached to methods for later
reuse and builds the basis for further diagnosis of defects or
reporting.

Fig. 1. Repository elements in XML

Comments in methods or javadoc elements are also at-
tached and stored in special tags, but not shown in Fig. 1.

3. Discovery of quality defects in legacy software

Given the fact that activities in software product mainte-
nance account for the majority of the cost in the software
life-cycle [2] refactoring is a valid approach to prolong the
software lifetime and improve its maintainability. Espe-
cially in evolutionary software development (i.e., agile
methods) methods as well as tools to support refactoring
become more and more important [12].

<Package name="views">
 <Class name="TableViewerExample.java"> {
 import org.eclipse.swt.SWT; …
 private Table table; … }
 <Method name="main" modifiers="public"> {
 Shell shell = new Shell();
 shell.setText("Task List Example");
 …
 tableViewerExample.run(shell); }
 <MetricList na me="Basic Method Metrics">
 <Metric name="LOC" value="7" /> …
 </MetricList>
 </Method> …
 <MetricList name="Basic Class Metrics">
 <Metric name="NumberOfCasts" value="6"/> …
 </MetricList>
 </Class> …
 <MetricList name="Basic Package Metrics">
 <Metric name="NumberOfClasses" value="6"/> …

 </MetricList>

</Package> …

As shown in Fig. 2 we define six phases for the con-
tinuous discovery of quality defects. First we start with the
definition of qualities that should be monitored and im-
proved. This may result in different goals as, for example,
reusability demands more flexibility or “openness” while
maintainability requires more simplicity. Phase two repre-
sents the application area for KDD. It is concerned with the
measurement and preprocessing of the software to build a
basis for the defect discovery. Results form the discovery
process (i.e., quality defects) can than be represented (e.g.,
visualized) and priorized to plan the refactoring in phase
three. Here the responsible manager or engineer has to de-
cide which refactorings are to be executed in what configu-
ration and sequence in order to minimize work (e.g., change
conflicts) and maximize effect on the quality. In phase four
the refactoring itself is executed on the software system by
the (re-)engineers that results in an improved product.
Phase five is used to compare the improved with the orig i-
nal product in order to detect changes and their impact on
the remaining system. Finally, in the sixth phase we report
the experiences and data about tasks, changes, and effects
to learn fro m our work and continuously improve the model
of relationship between quality, refactorings, and code
smells.

Fig. 2. Quality-driven metrics-based refactoring

As indicated in the previous paragraph the KDD sub-
processes are grouped in phase two. We select source code
from a specific build, preprocess the code and integrate the
results into the software repository, analyze the data to de-
tect quality defects, discover deviations from average be-
havior, cluster elements with severe or multiple defects, and
represent or visualize discovered and priorized quality de-
fects.

For example, we use a classificator to classify if a
method belongs to the class “defective methods” (i.e., if it
is similar to methods that typically have quality defects). To
train the classificator we use old source code and nightly
builds to discover potential quality defects. The training
code has to previously be analyzed by experts in order to
detect and mark potential defects. The classification algo-

rithms can then determine under what attributes can be used
by the classifier to distinguish defective from defect-free
code. The trained classifier can than be used to discover
quality defects in new software or current builds.

3.1. Current Status and Future Work

The current status can be described as work in progress. For
the motivation and foundation of our work an extensive
literature survey was made. Regarding the technology and
tools a first prototype for the measurement of build se-
quences from software systems is currently in work. To
evaluate our approach we will employ a quantitative analy-
sis of open-source software systems, their versions, releases
and nightly-build over a longer period of time. For the
quantification of the problems in refactoring, evaluate the
state of the art and praxis, and to get feedback about spe-
cific analysis results it is planed to integrate open-source
communities.

To conquer the described problems and reach the cho-
sen goals the following actions and ideas will be realized:
• Investigation of existing metrics as well as the devel-

opment of new metrics to detect specific quality defects.
Histories of nightly builds will be analyzed and used to
accumulate massive amounts of data to detect changes
and quality defects. Manual investigation of detected
defects will help to evaluate the classifier and process.
OSS communities will be informed about the analysis
(i.e., they get a quality report) in order to receive feed-
back on the proposed changes and report structure. In-
vestigated metric -defect dependencies will later support
the goal-oriented planning of measurement activ ities
with GQM.

• Investigation of existing refactoring as well as the de-
velopment of new refactorings to increase specific
qualities. Existing refactoring catalogs and quality mo d-
els (e.g., ISO-9126) will be analyzed in order to synthe-
sis a dependency model of refactorings mutually and
between qualities and refactorings. Quality measure-
ment plans from our projects or described in literature
that are based on software product metrics will be ana-
lyzed and relations of metrics to qualities will be used to
strengthen the dependency model. Pre-post evaluations
of quality changes based on controlled refactoring ex-
periments will be used to assess the impact of refactor-
ings on different qualities. Investigated refactoring-
quality dependencies will later support the goal-oriented
planning of measurement activities with GQM.

• Elaboration of a quality-driven method to control refac-
toring processes and know where, when, and why to use
what refactoring. A GQM-based process will be defined
to support quality and product managers to reach a spe-
cific quality goal through refactoring. Furthermore, a
CBR based repository of refactoring cases will be cre-
ated in order to enable managers to reach different goals
parallel based on the same metrics or to support him in
what metrics he could include to reach other goals.

6. Report 6. Report
ChangeChange

4. Refactor 4. Refactor
ProductProduct

3. Plan 3. Plan
RefactoringRefactoring

1. Define 1. Define
QualitiesQualities

2. Measure 2. Measure
ProductProduct

5. Monitor 5. Monitor
QualityQuality

Optionally, we need to examine if software for specific
application areas like embedded, distributed, or knowledge-
based systems as well as product lines need additional
techniques . In order to detect quality defects in the specifi-
cations of hardware (e.g., in VHDL) or knowledge (e.g., in
OWL) new metrics might be needed.

Additionally, several side products will be produced
like a correlation analysis of metrics to reduce measurement
effort, the usage of metrics from different abstraction levels
(e.g., requirements), the support of decisions in various
phases (e.g., testing), or approaches for the visualization of
quality defects in software systems.

4. Conclusion

The proposed framework promises the systematic and
semi-automatic support of refactoring activities for pro duct
or quality managers. The incremental and low invasive (i.e.,
cheap) approach for the monitoring of software product
quality in order to control refactoring activities will make
maintenance activities more simple and increase overall
software quality. Optionally, the project manager can use
the monitoring of daily builds of the software to detect
quality defects and initiate countermeasures during soft-
ware development.

The framework developed expands the knowledge
about quality and its measurement in software systems. It
promises knowledge about how to detect quality defects
(i.e., where should we refactor?) by software product met-
rics, the elicitation of knowledge about refactorings and
their effect on software qualities (i.e., why should we refac-
tor?), and if and in what sequence to refactor the software
(i.e., when and how should we refactor?).

References

[1] M. Fowler, Refactoring: Improving the Design of Existing
Code, 1st ed: Addison-Wesley, 1999.

[2] K. H. Bennett and V. T. Rajlich, "Software Maintenance and
Evolution: A Roadmap," presented at Future of Software
Engineering Track of 22nd ICSE, Limerick, Ireland, 2000.

[3] H. Müller, J. Jahnke, D. Smith, M.-A. Storey, S. Tilley, and
K. Wong, "Reverse Engineering: A Roadmap," presented at
Future of Software Engineering Track of 22nd ICSE,
Limerick, Ireland, 2000.

[4] W. F. Opdyke, "Refactoring object-oriented frameworks," in
Graduate College. Urbana, Illinois: University Illinois at
Urbana-Champaign, 1992, pp. 142.

[5] D. B. Roberts, "Practical Analysis for refactoring," in
Graduate College : University of Illinois at Urbana-
Champaign, 1999, pp. 127.

[6] M. O. Cinneide, "Automated Application of Design Patterns:
A Refactoring Approach," in Department of Computer
Science. Dublin: Trinity College, 2000, pp. 231.

[7] F. Simon, "Meßwertbasierte Qualitätssicherung: Ein
generisches Distanzmaß zur Erweiterung bisheriger
Softwareproduktmaße (in German)," in Fakultät für
Mathematik, Naturwissenschaften und Informatik. Cottbus:
Brandenburgische Technische Universität Cottbus, 2001, pp.
286.

[8] S. Tichelaar, "Modeling Object-Oriented Software for
Reverse Engineering and Refactoring," in Institut für
Informatik und angewandte Mathematik an der
Philosophisch-naturwissenschaftlichen Fakultät. Bern:
Universität Bern, 2001, pp. 186.

[9] T. Tourwe, "Automated Support for framework-based
Software Evolution," in Department Informatica. Brussel:
Vrije University Brussel, 2002, pp. 225.

[10] M. Lanza, "Object-Oriented Reverse Engineering: Coarse-
grained, fine-grained, and evolutionary software
visualization," in Institut für Informatik und angewandte
Mathematik an der Philosophisch-naturwissenschaftlichen
Fakultät. Bern: Universität Bern, 2003, pp. 131.

[11] S. Demeyer, S. Ducasse, and O. M. Nierstrasz, Object-
oriented reengineering patterns. San Francisco: Morgan
Kaufman Publishers, 2003.

[12] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, and P. Van
Gorp, "Refactoring: Current Research and Future Trends,"
Electronic Notes in Theoretical Computer Science, vol. 82,
pp. 17 pages, 2003.

[13] F. Simon, F. Steinbruckner, and C. Lewerentz, "Metrics
based refactoring," presented at Fifth European Conference
on Software Maintenance and Reengineering (CSMR), Los
Alamitos, CA, USA, 2001.

[14] L. C. Briand, "On the many ways Software Engineering can
benefit from Knowledge Engineering," presented at Software
Engineering Knowledge Engineering (SEKE), Ischia, Italy,
2002.

[15] U. Fayyad, S. G. Piatetsky, and P. Smyth, "From data mining
to knowledge discovery in databases," AI Magazine, vol. 17,
pp. 37-54, 1996.

[16] M. D. McIllroy, "Mass-produced software components,"
presented at NATO Conference in Software Engineering,
Garmisch, Germany, 1968.

[17] V. R. Basili, G. Caldiera, and H. D. Rombach, "Experience
Factory," in Encyclopedia of Software Engineering , vol. 1, J.
J. M. (ed.), Ed. New York: John Wiley & Sons, 1994, pp.
469-476.

Architecture for an Intelligent Web Application

Indra Seher, Athula Ginige
School of Computing and Information Technology, College of Science, Technology and Environment,

University of Western Sydney, Australia.
indra@cit.uws.edu.au, a.ginige@uws.edu.au

Abstract

There is very large amount of information on the Web
today, and users of Web usually use search engines to
find Web sites relevant to their queries. The outputs from
search engines contain long list of documents including
irrelevant ones. Using new Web technologies, we can
develop applications that use an intelligent approach to
find information on the Web. The output of these
applications will be a page of synthesised information,
rather than a list of Web site addresses. This paper
proposes an architecture for such an intelligent
application on the Web. When humans communicate, they
can understand messages better, if they share the same
context. We based our architecture on this concept and
expand the user query with relevant contextual
information of the user. Thus the architecture consists of
a Communicator module to handle all interactions with
the user, a Query Expander module to expand user query
by adding contextual information, and a Synthesiser
module to synthesise the output using existing structured
data on the Web. There is also a module that stores
information about the domains, based on domain
ontology. This architecture was validated using some
scenarios.

1. Introduction

There is very large amount of information on the Web
today. According to Hobbes' Internet Timeline v7.0[3],
the number of Web sites in December 2003 were about
45 million. The statistics of Online Computer Center
Library [2] shows that there are 4,400 new web sites
added every day. Users of Web usually use search
engines to find Web sites relevant to their queries.
Though search engines can rapidly process large number
of Web documents, they do not consider the context of
the documents. To process user query, user context in
which the query is made has to be considered. Since
search engines do not consider user context, they fail to
identify the information requested by the user and
produce long list of documents including irrelevant ones.

With emerging technologies of Semantic Web[1] such as
XML, RDF, and Ontology, it is now possible for
applications to understand and analyse document contents
to aid automated processing. XML allows to structure
data on the Web by separating the data from presentation
information. Since XML lacks semantics, RDF is defined
on top of XML to express meaning. As different data
repositories could use different identifiers for the same
concept, there should be a mechanism to identify
relationships among terms. As concepts and relationships
are specific to subject areas, their definitions will be
specific to the area in consideration. A subject area or
area of knowledge such as medicine, financial
management and travelling is referred to as a domain.
Ontologies allow to model a domain with computer-
usable definitions of basic concepts in the domain and
relationships among them. Ontologies will therefore
enable some context-based access and interoperability
across the Web.

With the availability of these upcoming technologies, the
Web could have more intelligent applications to produce
the needed information for the user. This could be a page
of synthesised information rather than list of sites. This
paper proposes an architecture for such an intelligent
application on the Web.

2. Requirements of an Intelligent Web
Application

This section describes the desired operations of an
intelligent Web application. We used this as the basis to
develop the architecture.

An intelligent Web application should accept user query
and should synthesise a solution, which will be a single
page of information, from existing data on the Web. User
queries can be from different input devices from different
locations. It may be from a mobile in a car, a telephone
call from a workplace, a palm top at a work site, or from a
Computer at home. Independent of the input device and
media, user query has to be taken in by the application.

These could then be converted to text for processing.

User query alone may not be sufficient to process the
request of the user. For example, a user query may be
“Get me a place for Lunch”. To process this query, some
more information about the user will be needed. These
information may include user preferences such as
restaurants and meal types preferred by the user. As these
user preferences change less frequently, they could be
kept stored by the application. To choose restaurants, the
application has to consider information such as location
of the user. This must be captured at the time of query.
The application can use the input device of the user to
capture environmental information such as location of the
user and time of user query. Therefore, to process user
query, the application has to expand user query using
user context which could be user preferences and
environmental information of the user.

After expanding user query, the application could begin to
synthesise a response. For the synthesis, the application
needs to use information on the Web related to user
query. An information on the Web can be identified as
related, if the domain of the Web site containing the
information is same as the domain of the user query.
Therefore, the intelligent application needs to identify the
domain of user query and domains of Web sites.

After obtaining related information from the Web, the
intelligent application can analyse these data to synthesise
a result. As usage and naming of data could vary not only
for domains but also for Web sites of the same domain,
the intelligent application needs some knowledge about
domains. This knowledge should include terms used in a
domain and their relationships. Therefore, ontologies will
play a crucial role in the representation of domain
knowledge.

Using available data on the Web and domain knowledge,
the intelligent application could synthesise a result for the
user. This result may not be a single solution. When all
required information is not specified, the output can have
list of solutions out of which the user can select one. In
the example given above, “Get me a place for lunch”, the
output may not be a single meal from a single restaurant.
If the user prefers a particular restaurant, still the output
can be several types of meals at the restaurant. If the user
is not particular about the restaurant, and therefore does
not have the restaurant as part of his preferences or query,
then the output can include list of restaurants, their
locations, and available meals. If the user is not happy
about the results, the user could give stricter preferences
and the whole process could be redone.

These intelligent applications can also have learning

capabilities. Based on what user selects from the options
provided, these applications could learn user preferences
and use these in the future.

3. Proposed Architecture

Based on the above analysis, we have developed an
architecture for an intelligent Web application. This
architecture has four basic modules. They are
Communicator, Query Expander, Synthesiser and Domain
Knowledge Repository. Figure 1 shows the architecture
and functions of each of the modules are explained below.

Figure 1. Proposed Architecture

3.1. Domain Knowledge Repository

The modules Query Expander, and the Synthesiser need
some knowledge about the domain to expand the user
query and to synthesise a result. Domain experts can
analyse domains and structure the necessary knowledge
which is stored in Domain Knowledge Repository.

3.2. Communicator

The Communicator handles all interactions with the user.
It accepts user query in different forms depending on the
user device. Independent of the methods used to capture
query, the Communicator converts the query to text and
sends it to the Query Expander. As the Query Expander
needs to know the user of the query, the Communicator
has to identify the user. This could be done by asking the

Domain
Parameters

Result

Query

User
QueryUser Identity Environmental

Context

Expanded
Query

R
esult

Data from
Web sites

Domain
Details

Domain
Information

Domain
Ontology

Domain Data
Selectors

Domain
Identities

Login Details

CommunicatorUser

Query ExpanderD
om

ain
K

now
ledge

R
epository

Synthesizer

WebDomain
Expert

user to login or using more sophisticated biometric based
approaches.

3.3. Query Expander

The Query Expander receives identification of the user
and the query as text, from the Communicator. The Query
Expander adds additional contextual information required
to process the query. This contextual information will
depend on the query. For example, for the query
explained in section 2, “Get me a place for lunch”, user
preferences such as user’s preferred meals, restaurants,
types of meals and location of the user are needed to
process user request. The Query Expander can store less
frequently changing contextual information about the
user. We refer to this information as user profile. In the
above example, user profile should include user’s
preferred meals, restaurants, and type of meals. The
Query Expander can request the Communicator for
changing user information related to the environment
such as location of the user.

To support different scenarios and domains, the user
profile should contain user preferences for the domains.
Therefore, the Query Expander needs to identify the
domain of user query, to decide the user preferences it has
to add from user profile. Since it is hard for the
applications to identify the domain of user query, a
domain expert who has knowledge about the domain can
analyse the domain, structure and store values that could
be used to identify the domain. These values could be
stored as part of the domain knowledge repository which
we refer to as domain identities. Domain expert can also
identify the contextual information needed for the
expansion of queries in the domain. These also can be
stored as part of the domain knowledge repository. We
refer to these as domain parameters. For each domain we
have a predefined template that specify the information
required to process the query. The Query Expander
expands the user query by filling the template using
information from user query, user profile and the
environmental context.

If the Query Expander cannot identify the user domain
from the user query, then it could analyse the user query
to identify keywords in the query. These keywords can be
used to identify the domain using data on the Web related
to the keywords. As the Query Expander does not have
access to the Web, it sends these keywords to the
Synthesiser, with a request to identify the domain. For
example, for the query “Get me a ticket for SEKE2004”,
the domain may vary depending on the location of the
conference SEKE2004. If the location is beyond a
distance the user can drive, then the domain may be
“travelling”. When the domain is identified and sent by

the Synthesiser, the Query Expander can expand the
query with user preferences stored in it, such as starting
airport and preferred class to travel.

3.4. Synthesizer

Once the user query is expanded, the application can
begin the synthesis. The synthesis is carried out by the
Synthesiser module. The Synthesiser receives the
expanded query which has user request and domain of
request, from the Query Expander. Next, the Synthesiser
has to decide the Web sites from where it could get data
needed for synthesis. To choose the Web sites, the
Synthesiser has to use some of the information in the
expanded query. This information could vary for
domains. For example, for the query “Get me a place for
meal”, the Synthesiser could choose the Web sites of the
restaurants that are closer to the user at the time of
request. For the query “Get me a meal from McDoanlds”,
the Synthesiser has to choose data from Web sites of
McDonalds restaurants closer to the user location. The
information in the expanded query, that could be used to
choose Web sites will be identified and stored by the
domain expert as part of the domain knowledge
repository. We refer to this as Domain Data Selectors.
The Synthesiser could use these selectors to analyse the
expanded query and could obtain relevant Web sites.
Web data in the sites are assumed to be available in XML
format.

The Synthesiser needs to understand the information
obtained from Web sites, to synthesise a solution.
Different Web documents could use different terms with
the same meaning within the same domain. Therefore,
there will be a need to model domains by defining the
terms used in the domains and their relationships. As
ontologies allow these definitions, domain ontology
could be the main component of the domain knowledge
repository. Initially, the domain ontology can be defined
manually by the domain expert.

With the aid of domain ontology, the synthesiser will next
synthesise a result using information obtained from Web
sites related to the domain. The result may not contain a
single solution. The number of solutions will depend on
the amount of expansion done to the query. In other
words, it will depend on the extent to which the user
request was understood. Stricter preferences of the user
may lead to more expansion to the query, giving less
number of solutions or just one solution. When there are
multiple solutions, the synthesiser could rank the
solutions based on some of the domain data, which are
also identified by the domain expert and stored as part of
the domain knowledge repository.

The Synthesiser will send the result to the Communicator
to present it to the user. When the result has more than
one solution, user can choose the one user prefers. If the
user is not satisfied with the result, user can add further
restrictions or preferences to the query. Then the whole
process will be redone. In these situations, the intelligent
application could learn more about user preferences, and
could update stored user profile.

4. Validating the Architecture

We used several scenarios with different text inputs in
English to validate this architecture. Out of these, one
scenario of the domain “meal”, is explained below.

Figure 2. Information flow and activities of a Scenario

The text form of user query is “Find a place for lunch”.
Using stored domain identities and the word “lunch” in
the query, the Query Expander can identify the domain as
“meal”. Next, the Query Expander will use the domain
knowledge repository and obtain domain parameters that
need to be provided. For this example, the parameters are

preferred meals, preferred restaurants, location of the user
etc. Domain parameters indicate information stored in the
Query Expander. The Query Expander could get most of
this information from the user query and user profile. It
gets user location specific information from the
communicator. This information is next sent to the
Synthesiser. The Synthesiser analyses the expanded query
using stored domain data selectors to choose Web sites
from which it needs to get information. In this example, it
will make use of location of user, and preferred
restaurants to choose Web sites. The result will contain
list of restaurants, meals, types of meals, cost, location
and distance to travel.

5. Conclusion and Challenges

Though we found this architecture to be domain
independent and suitable for several scenarios, some of
the issues given in the following paragraph have to be
addressed before a system like this can be widely used.

As domains to which queries belong are important for
synthesis, domains have to be correctly identified. For
proper identification, there should be an agreement in
naming domains. Still identification may be harder for
queries which do not contain any key words related to
stored domain identities. Out of the available Web sites,
the sites related to the requested domain have to be
identified correctly. Meta tags available in the sites can be
used for this purpose. If the user query is accepted in a
form other than text, it has to be converted to text prior to
the expansion. This will involve several complex tasks
depending on the form of inputs such as voice. Using the
devices used by the user, the system has to capture user
context such as location, time etc. The main component
needed for synthesis is the domain ontology. This needs a
proper study of heterogeneous data sources on the Web
and their representation. Information on the Web sites
change with time. Thus, proper maintenance of domain
ontology is also needed.

References
[1] Tim Berners-Lee, J. H. a. O. L. (May 2001). "The Semantic

Web." Scientific American(May 2001).
http://www.scientificamerican.com/article.cfm?articleID=0
0048144-10D2-1C70-84A9809EC588EF21&catID=2

[2] Online Computer Library Center, Web Characterization
Project, "Number of web sites."
http://atlantis.uoc.gr/doc/Part%20II_web_site_numbers.doc

[3] Robert H'obbes' Zakon, “Hobbes' Internet Timeline v7.0”,
http://www.zakon.org/robert/internet/timeline/

[4] Peter Clark , “Some Ongoing KBS/Ontology Projects and
Groups”, http://www.cs.utexas.edu/users/mfkb/related.html

[5] Hans-Georg Stork, “Semantic Web Technologies in
Europe's IST Programme 1998 – 2002”, http://www.ercim
.org/publication/Ercim_News/enw51/stork

Synthesise Results

Find a place for lunch

Domain = Meal

Get domain parameters

Fetch Information
Preferred Meal=(user profile)
Preferred Restaurants=(user profile)
Location of User=(Communicator)
Time of Query=(communicator)
Budget=(user profile)
Size of meal=(user profile)
Type of meal=Lunch(user query)

Domain Data selectors

Domain Identities

Domain Parameters

Domain Ontology

Domain Knowledge
Repository

Communicator

Analyse Expanded Query
Obtain Domain Data

Web Data

User Profile

Domain(lunch, meal)

Q
uery

E
xpanderPreferred Meal,

Preferred
Restaurants,
Location of User,
Time of Query,
Budget, size of
meal, type of meal

Expanded
Q

uery

Meal(Location of
User, Preferred
Restaurant)

Preferred Meal,
Preferred
Restaurants,
Budget, Size of
meal

Location of
user,
time of
query

Synthesizer

Environment
al Contexts

Restaurants(Name,Meals,
Type of meals,Cost of
meals, location),
Locations(Distance among
locations)

List of Restaurants,
Meals, Type of
meal, Cost,
Location, Distance

DMTF - CIM to OWL: A Case Study in Ontology Conversion

Dennis Heimbigner

Computer Science Department
University of Colorado

Boulder, CO 80309-0430 USA
dennis.heimbigner@colorado.edu

Abstract
The process and problems associated with translating a
specific software engineering ontology into a different
ontology language are described. The software
engineering ontology is the Distributed Management Task
Force (DMTF) Common Information Model (CIM). The
target ontology language is the W3C OWL DL language.
The specific translations are described for various CIM
constructs. Difficulties in translation are characterized.

1. Introduction

As part of a larger project, we had a need to integrate
a number of software engineering models. Our approach
was to choose a common modeling language into which
all of the other models would be translated. Once
translated, the various models could then be integrated.

Each of the existing models used a different modeling
language, which meant that we either had to choose one
of them or choose a language different from all of the
others. After some examination, it became clear that each
of the existing modeling languages was closely tied to the
model’s content, and thus not suitable for representing the
other models. Further, each of the modeling languages
appeared to be ad-hoc in one or more parts.

In light of this, we chose to use a completely separate
modeling language, namely OWL [1] which is the latest
ontology language from the World Wide Web
Consortium (W3C). OWL had well-defined semantics,
and was intended to represent the content of a wide
variety of web-based data.

Our initial goal was to translate the Common
Information Model (CIM) developed by the Distributed
Management Task Force (DMTF) [2]. This model is
designed to represent “…an implementation-neutral
schema for describing overall management information in
a network/enterprise environment”.

To be precise, CIM is a model of the domain of
managed software systems. Thus it has notions such as
services, clients, and software components. This domain
is represented using a more-or-less classical object-
oriented programming model. For clarity, the modeling
language will be referred to as CIM-O, and the domain
representation (specific uses of CIM-O) will be referred to

as CIM-D. The term CIM will be used for the
combination. Our goal, then, was to re-represent the CIM
domain (CIM-D) in OWL. The approach taken was to
translate the CIM-O constructs used in the CIM-D
representation to corresponding OWL constructs.

To give some additional background, the goal of the
overall project is to address the problem of detecting
previously unseen intrusions (e.g., viruses and worms)
using structural anomaly detection. Instead of checking
the behavior of software systems looking for anomalous
behavior, our approach validates the structure of a
running system against a comprehensive model describing
that structure. Deviations are used to signal possible
intrusions. This project requires a relatively complete
model of the structure of a software system at run-time.
This in turn requires the integration of a number of
existing models, none of which alone is sufficient.

2. CIM-O Overview

The CIM-O language is a typical, although somewhat
ad-hoc, object-oriented language. It has notions of class,
attributes, and methods. The attributes represent named
values associated with instances of the classes.

2.1. Classes

Classes in CIM-O use a single-inheritance model, so a
basic class has the following skeleton

 class <classname> : <superclass> {…}
where the superclass specification is optional. The body
of the class is enclosed in curly brackets and contains a
sequence of attributes and methods (with arguments).

2.2. Attributes

Attributes take one of the following general forms:
<simple type> name;

or
<class name> REF name;

The first case is used for a fixed set of literal types such as
string, uint16 (e.g., 16 bit unsigned integer), Boolean, and
so on. The second case is used when the attribute value is
a pointer (“REF”) to an instance of some class.

Any attribute may be designated as having a vector of
values. Thus one might say

string commands [];
to indicate that a command attribute is a vector of strings.

Alternatively, one may indicate that an attribute has an
initial/default value using this syntax.

uint16 priority := 0;

2.3. Methods

A method (procedure) has the following general form
<return type> name (arg, arg, …);

where each argument has the form of an attribute.

3. OWL Overview

We assume familiarity with OWL [1], or at least RDF
[3]. OWL is basically much like the semantic models that
were popular in the early 80’s in the AI and Database
communities. It has notions of class and property. In
fact, it is essentially constructed using only binary
relations consisting of a relation name, a domain set and a
range set (a triple in RDF terminology). Thus, subclass
inheritance is a relation between the parent and subclass.

Note that OWL comes in three “flavors”: lite, DL, and
full. The term DL stands for “description logics” because
this level of OWL is equivalent to description logics in
expressive power. We adhere to OWL DL except where
noted.

4. Translation Phase 1

The first translation phase addressed the most
significant problems: how to translate the specific classes
and simple attributes used in CIM-D.

4.1. Class Conversion

Converting a specific class skeleton in CIM-D to
OWL is relatively straightforward. The following class

class Service : System {…}
would translate to the following.

<OWL:Class rdf:ID="Service">
 <rdfs:subClassOf rdf:resource=”#System"/>
</OWL:Class>

OWL supports a variety of class formation
mechanisms, including multiple inheritance, union, and
intersection. But these are unneeded for translating
CIM-D classes, although they are needed for translating
attributes.

4.2. Attribute Conversion

At first glance, it might appear that CIM-O attributes
can naturally be converted to OWL properties.
Unfortunately, a number of conversion problems
surfaced.

The first problem, name scoping, is one that occurs
repeatedly in any attempt to map CIM-O to OWL. In

CIM-O the domain of an attribute is implicitly scoped to
the class in which the attribute is defined. One would
normally map an O-O attribute to an OWL property with
the class being the domain and the value type of the
attribute being mapped to the range of the OWL property.
We would expect to map the specific CIM-D attribute

string Name;
to the following OWL format.

<OWL:DataTypeProperty rdf:ID="Name">
 <rdfs:domain rdf:resource="#Service"/>
 <rdfs:range rdf:resource="xsd:string"/>
</OWL:DataTypeProperty>

This is technically correct, but incomplete, because in
OWL, normal properties have global scope, and hence are
independent of classes. If, as is common, the same CIM-D
property occurred in another class, then this would
conflict with the existing definition of the Name property
because we would be trying to define the property with
two different domains.

A similar problem exists for the range specification.
The default is that the range of a property is global to all
uses of the property. Thus we cannot have an alternative
definition of Name whose range is integer instead of
string.

There are basically two ways out of these problems.

1. We can rename the property to include the domain
class and thus make each property unique. Thus, the
above example would be converted from Name to
something like Service_Name. This also implicitly
handles the range problem because each unique
property can have whatever range it requires.

2. We can utilize the OWL allValuesFrom restriction on
the property to essentially indicate that when the
domain comes from a specific class, the range is the
class specified by the allValuesFrom restriction.

We chose the second solution, but recognized that it
complicated our translation process. The first solution was
rejected because it would be difficult to decide the name
of the property to use when constructing instances, and it
apparently would complicate the handling of inheritance.
In choosing solution 2, we hoped it would not be needed
very often. In many cases, attributes were in fact unique
to a specific class; hence, they could be defined using the
simple approach.

In some cases, all definitions of attributes with the
same name in fact had the same range. This is true of the
Name attribute; its range is always a string. This would
result in the very general definition such as the following.

<OWL:DataTypeProperty rdf:ID="Name">
<rdfs:domain rdf:resource="OWL:Thing"/>

 <rdfs:range rdf:resource="xsd:string"/>
</OWL:DataTypeProperty>

 This case can be extended because even if not all
ranges are the same, most of them may be the same, in
which case the more complex use of a restriction need
only be used for those exceptional situations. If it turned

Ontology Model

Reasoner

Jena Graph Interface

Reasoner

Jena Graph Interface

Base RDF Graph

Jena Graph Interface

Base RDF Graph

Jena Graph Interface

Figure 1. Jena Graph
Layering.

out that Name had an integer range (sint32) for the class
Device, then we would add a specific restriction for that
class.

4.3. Attribute Objectification

CIM-D contains one specific class whose purpose is to
represent directed dependency relationships between two
arbitrary objects. This class, named “CIM_Dependency”
has two attributes: Antecedent and Dependent. The
direction is from Antecedent to Dependent. Subclasses of
this class are frequently created in CIM-D to represent
specific dependency relationships. The following example
defines a relationship between a service object
(CIM_Service) and a managed element, which is any
generic software object.

class CIM_ProvidesServiceToElement
: CIM_Dependency {

 CIM_Service REF Antecedent;
 CIM_ManagedElement REF Dependent;
};

Such classes are often referred to as objectified
attributes. Clearly any such relationship could be
represented by an attribute attached to the antecedent
class, but instead, it has been converted to a separate class
of objects representing the relationship. Objectification is
typically used when either the relationship does not
naturally associate with the antecedent (or the dependent,
for that matter), or when the objectified relationship is
actually an n-ary relationship for n > 2. CIM-D uses
objectification for both reasons. Many of the
CIM_Dependency subclasses are independent of the
antecedent, and as well, some of the subclasses have
additional attributes that convert them to ternary
relationships.

We have followed the CIM-D model in this approach
and have kept objectified relationships in our translation.
Of course, for n-ary relationships, we have no choice
since OWL does not support n-ary properties.

5. Secondary Translation Issues

The first phase of translation indicated that the process
was generally feasible. The second phase involved
examination of various secondary features of CIM-O used
in CIM-D to see how they might be translated to OWL.

5.1. Vectors

CIM-O class attributes can specify that their range is
actually a vector of values (Section 2.2). Mapping vectors
into OWL is one of those topics for which no discussion
could be found in the OWL documentation. Frankly we
have no idea what the “proper” mapping should be, so we
have developed our own representation using the rdf:List
class which is defined as OWL’s sole container type; this
is at the technical cost giving up the random access
behavior of the vector. OWL uses only lists because they
contain a fixed number of elements: the first and rest

properties as of the rdf:List class. This two-element
definition apparently simplifies reasoning about lists.

Our solution defines for each class C, another class,
vectorC, representing the vectors whose elements are of
type C. The vectorC object is defined as follows.

<OWL:Class rdf:ID="vectorC">
 <rdfs:subClassOf rdf:resource=”rdf:List"/>
</OWL:Class>

This definition is unsatisfying because it places no
restrictions on the types of elements in the list. In an
attempt to remedy this, we make use of the
allValuesFrom restriction to force the values to be of the
correct type and to force the list nodes to be of type
vectorC.

A possible solution recently suggested was to model
vectors as multi-valued properties and use the
MaxCardinality restriction to handle non-vector attributes.
This would, however, appear to give up the ordering
property of a vector, which the list approach keeps.

5.2. Default Values

Another feature of CIM-O is the assignment of default
values for attributes. Surprisingly, modeling default
values turns out to be very difficult in OWL. The subject
has been extensively discussed in the W3C. From that
discussion we concluded that (1) defaulting cannot be
included in the standard OWL DL model, and (2) there
was no agreement about defaulting and users were
encouraged to experiment. In effect, we were on our own.
This was irritating, and almost made us abandon our
choice of OWL as our common modeling language.

The solution we are currently pursuing is to treat
defaulting as a form of inference. This idea came from
experiments with the Jena ontology database system [5].
Figure 1 shows one view of the architecture of Jena. The
idea is that one has a base graph representing some model
— our converted CIM-D model, for example. This is
accessed using the standard Jena graph API. Additional

components can be layered
over that graph with the
proviso that each layer
exports that same standard
graph API. The figure
shows an important case of
layering where the layered
component is a reasoner
that supports inferences
over the underlying graph
and makes those inferred
edges and nodes visible
through its interface. In
effect, the reasoner extends

the base graph with any nodes and edges that can be
inferred from it. This layering can be continued by adding
additional reasoners.

An example is the transitive reasoner. OWL supports
transitivity by explicitly attaching a “TransitiveProperty”

annotation to properties. The transitive reasoner adds
virtual edges to the base graph based on the existence of
transitive markers in that base graph.

Our approach to default values is based on this idea.
The key is to treat default values as an inference problem.
In particular, suppose there is a query for all triples of the
form (A,priority,_). If a search of the base graph returns
the empty set, then the default reasoner applies the
relevant defaulting rules and returns, for example, the
triple (A,priority,0). This assumes that the base graph has
been annotated with defaulting markers.

5.3. Methods

Another problem in translating CIM-D to OWL
involves methods, which are the signatures for executable
procedures associated with a class. An ontology language
like OWL has no built-in concept of procedure, so we
were again forced to improvise.

There are a number of approaches for modeling
methods, but many of them fail in the face of overloaded
names and signatures. Our approach requires several
ontological elements. There is no room for details here,
but, briefly, we define a class for the method, and that
class is used as the value for a property of the class
containing the method. The arguments of the method
become attributes of the method class.

The remaining issue is method inheritance. This is
technically an execution time issue, which we consider to
be out of scope for this current translation effort.

6. Related Work

The RDF primer [3] makes reference to a project to
convert the DMTF CIM model to RDF, however, no
reference is given, and a search of the web found no
references to this project as of the time of writing of this
paper. When it becomes available, a comparison with the
work described here will undoubtedly be instructive.

Others have recognized the potential for using an
ontology language to represent software engineering
information [4]. However, these efforts appear to be in the
early stages of development, and the DMTF CIM model
does not appear to be one of their targets.

7. Discussion and Conclusions

Translating the DMTF CIM(-D) model into OWL
turned out to be more difficult than originally anticipated.
In retrospect, using OWL as the common model for our
project may not have been a good choice.

OWL’s limited notion of scope was a significant
problem. The use of a flat, partitioned namespace makes
it hard to easily represent a system like CIM where nested
naming and implicit reference are inherent in its
semantics. Scoping in CIM has associated semantics
(basically inheritance), and that is not easily represented
in OWL. The only solution may be to flatten the CIM
namespace and then find an approach for handling the
implicit semantics.

The lack of sophisticated containers in OWL is
another major issue. In mapping CIM vectors to lists, for
example, the random access nature of vectors is lost. For
our purposes, this is not essential, but it is irritating and it
may be important in other contexts.

Defaulting is a major problem but we are satisfied
with our solution.

In summary, our experience in attempting a natural
translation from CIM to OWL was disappointing. We
recognize that OWL may not have been designed for this
purpose, but that limits its utility outside of the semantic-
web context.

Acknowledgements. This material is based in part upon
work sponsored by the DARPA and AFRL Rome Labs,
under Contract Number F30602-00-2-0608. The content
of the information does not necessarily reflect the position
or the policy of the Government and no official
endorsement should be inferred.

References

[1] S. Bechjofer, F. van Harmelen, J. Hendler, I. Horrocks,
D.L. McGuinness, P.F. Pagel-Schneider, L.A. Stein. “OWL
Web Ontology Language Reference W3C
Recommendation 10”, W3C Working Group , February
2004. http://www.w3.org/TR/2004/REC-OWL-ref-
20040210/.

[2] Distributed Management Task Force, Inc. ,“Common
Information Model (CIM) Specification Version 2.2”,
January 14, 1999. http://www.dmtf.org/standards/
documents/DMI/DSP0005.pdf

[3] F. Manola, and E. Miller, “RDF Primer”, W3C Working
Group, Sept. 5, 2003. http://www.w3.org/TR/2003/WD-
rdf-primer-20030905/.

[4] J. E. López de Vergara, V. A. Villagrá, J. I. Asensio, J.
Berrocal, “Ontologies: Giving Semantics to Network
Management Models,” IEEE Network, special issue on
Network Management 17(3) (May/June) 2003.

[5] B. McBride, “Jena: Implementing the RDF Model and
Syntax Specification”, Proc. of the 2nd Int’l Workshop on
the Semantic Web, Hongkong, China, May 1, 2001.

Experiences in Using a Method for Building Domain Ontologies

Ricardo de Almeida Falbo
Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES - Brazil
falbo@inf.ufes.br

Abstract. Since 1997 we are working in building domain
ontologies. During this period of time, we have developed
several ontologies using a systematic approach for
building ontologies, first published in 1998, and now
called SABiO. In this paper we discuss strong points and
weakness of this method for building ontologies,
presenting some lessons learned and improvement
opportunities.

1. Introduction

Building domain ontologies is not a simple task. Like any
complex software modeling activity, to build quality
ontologies we need methods and tools to support their
development. In 1997, we defined a systematic approach
for building ontologies (SABiO), first published in 1998
[1]. SABiO was proposed based on Uschold and King
skeletal methodology [2], adding some features to
improve it, such as a graphical languages for expressing
ontologies, an axiom classification, and the use of
competency questions, as proposed by Gruninger and Fox
[6]. Since then, we have been using this approach to build
several domain ontologies, such as an ontology of
software process [1], an ontology of software metrics [3],
an ontology of the port domain [4], and an ontology of
steel metallurgy, among others.

In this paper we discuss our experience in building
domain ontologies using SABiO, focusing on lessons
learned and improvement opportunities. Section 2 briefly
presents SABiO, and some improvements made along
these years of use. Section 3 discusses its strengths,
weaknesses and some lessons learned. Section 4 presents
some improvement opportunities to evolve SABiO.
Finally, section 5 reports our conclusion.

2. A Systematic Approach for Building Domain
Ontologies

According to Guarino [5], an ontology is an engineering
artifact, constituted by a vocabulary used to describe a
certain reality, plus a set of explicit assumptions (formal
axioms) regarding the intended meaning of the

vocabulary words. This set of assumptions has usually the
form of a first-order logical theory, where vocabulary
words appear as unary or binary predicate names,
respectively called concepts and relations.

Like any other conceptual modeling activity, ontology
construction must be supported by software engineering
practices. Thus, we need methods and tools to support
ontology engineering. In 1997, we proposed SABiO, a
Systematic Approach for Building Ontologies [1], that
encompasses the following activities:
• Purpose identification and requirement specification:

concerns to clearly identify the ontology purpose and
its intended uses, i.e. the competence of the ontology.
To do that, competency questions are used.

• Ontology capture: the goal is to capture the domain
conceptualization based on the ontology competence.
Relevant concepts and relations should be identified
and organized. A model using a graphical language
and a dictionary of terms should be used to aid
communication with domain experts.

• Ontology formalization: aims to explicitly represent
the conceptualization captured in a formal language.

• Integration of existing ontologies: during ontology
capture or formalization, it could be necessary to
integrate the current ontology with existing ones, in
order to use previously established conceptualizations.

• Ontology evaluation: the ontology must be evaluated
to check whether it satisfies the specification
requirements. It should be evaluated in relation to the
ontology competence and some design quality criteria,
such those proposed by Gruber [7].

• Documentation: all the ontology development must be
documented.

During ontology capture, the use of a graphical
representation is essential in order to facilitate the
communication between ontology engineers and experts.
Such representation is basically a language representing a
meta-ontology, and thus this language must own basic
primitives to represent a domain conceptualization [1].

SABiO proposed the use of LINGO [1], a graphical
language for expressing ontologies. In its first version,
LINGO had notations for representing concepts, relations,

and properties, and some types of relations that have a
strong semantics, such as subsumption and whole-part
relations. For each one of these types of relations, a
specialized notation was proposed. In fact, this was the
striking feature of LINGO and what made it different
from other graphical representations: any notation,
beyond the basic notations for concepts, relations and
properties, aims to incorporate an axiomatization. During
its use, some new notations were incorporated to LINGO
to address other types of relations, always defining
explicitly the axiomatization imposed by them.

More recently, we decided to allow ontology capturing
in UML too [4], since UML has also been used as an
ontology modelling language [8], and we cannot ignore
that UML is a standard and its use is widely diffused.
Based on that, we defined a subset of UML’s elements
that plays the same role of LINGO’s notation, i.e., these
UML’s model elements are applied using the same
semantics imposed by the corresponding elements in
LINGO. For instance, the epistemological axioms
imposed by the whole-part relation are assumed to be
incorporated to the ontology when the aggregation
notation of UML is used. A lightweight extension of
UML was proposed, using stereotypes [4].

A graphical model is useful, but it is not enough to
completely capture an ontology. Axioms should be
provided in order to fix the semantics of the terms, and to
establish domain constraints. To guide axiom definition,
SABiO uses an axiom classification that considers two
classes of axioms: derivation axioms, which allow new
information to be derived from the previously existing
knowledge, and consolidation axioms that define
constraints for establishing a relation or for defining an
object as an instance of a concept.

Derivation axioms can concern the meaning of the
concepts and relations in the ontology, or the way these
concepts and relations are structured. When axioms are
defined to show constraints imposed by the way concepts
are structured, we call them epistemological axioms.
When they describe domain signification constraints, we
call them ontological axioms. This distinction is
important to guide the ontology engineering defining
axioms. Epistemological axioms can be assumed to be
captured by the graphical notation, and should not be
explicitly written. Ontological axioms, in turn, are not
captured by the graphical notation, and need to be
explicitly defined. In Figure 1, we show part of the
software process ontology defined in [1], written in UML.
In this figure, the aggregation notation imposes some
axioms, such as:
∀a ¬subActivity(a,a)
∀a1,a2 subActivity(a1,a2) → ¬ subActivity(a2,a1)
∀a1,a2,a3 subActivity(a1,a2) ∧ subActivity(a2,a3) →

 subActivity(a1,a3)

Artifact
<<Concept>>

Activity
<<Concept>>

0..*

0..*

0..*

0..*

0..*0..*
+input
0..*0..*

0..*1
+output
0..*1

0..* 0..*0..*
+preActivity
0..*

+subActivity
Figure 1 - Part of the software process ontology.

These axioms are part of the mereological theory,
which says that whole-part relations are irreflexive, anti-
symmetric and transitive, respectively, and do not need to
be written by the ontology engineer, since they are
epistemological axioms.

In the same ontology, however, there is the following
ontological axiom:
∀a1,a2,s input(s,a2) ∧ output(s,a1) → preActivity(a1,a2)

This axiom does not refer to the way concepts are
structured, and thus, cannot be captured by the graphical
notation. It is an ontological axiom and must be written
down by the ontological engineer. This way, the
distinction between epistemological and ontological
axioms indicates which axioms must be written by the
ontology engineer.

Going back to the activities of the ontology
development process shown in Figure 1, to formalize
ontologies, SABiO suggests the use of first order logics,
and gives some guidelines to perform this step [1].

In ontology evaluation, SABiO suggests checking the
ontology against its competency questions, and to verify
some quality criteria, as pointed early.

Finally, for documentation purposes, SABiO advocates
the use of hypertexts. Using a hypertext, concepts can be
easily linked to relations, properties, ontology diagrams,
dictionaries of terms, axioms, and competency questions.
This way, people can browse the ontology to learn about
the domain.

3. Strong Points, Weakness and Lessons Learned

After we had used SABiO in several ontology
developments, we can point out some benefits and some
weakness of the method.

Concerning strong points of SABiO, we can highlight:
• The set of activities, artifacts and guidelines proposed

by the ontology development process of SABiO
showed to be good. It can be considered part of a
standard software process for building ontologies, but
we need more.

• The use of competency questions showed to be very
useful to guide ontology capturing, formalization and
evaluation. Concepts, relations, properties and
axioms in an ontology should be those necessary and

sufficient to address the competency questions, as
pointed by Gruninger and Fox [6].

• The use of a graphical language for expressing
ontologies proved to be essential for ontology
capture. It is very hard to communicate with domain
experts without it. More over, the epistemological
axioms incorporated to the graphical notation free
ontology engineers to concentrate in some classes of
axioms, in spite of having to consider all of them.

• The axiom classification also proved to be a good
guideline to drive the axiom definition. Based on it,
ontology engineers can inspect the world looking for
axioms that consider the structuring of the concepts
and relations (the epistemological axioms), their
meanings and constraints (the ontological axioms)
and the integrity laws that govern them (the
consolidation axioms). But the first class of axioms
do not need to be written down.

• Hypertext proved to be an adequate format for
documenting ontologies. Using hypertexts,
ontologies can be easily browsed, and people can use
them to learn about the domain.

But SABiO has also weaknesses, such as:
• SABiO does not address important activities of a

software process, as recommended in Software
Engineering, such as planning and configuration
management. Regarding the last, in fact, SABiO says
nothing about ontology evolution.

• Concerning competency questions, SABiO says
nothing about formal competency questions. We
think they are very important. But we need tools for
verifying ontologies in the light of them.

• Although LINGO has a strong semantics, it is
“another modeling language”. This is a recurrent
claim. Many ontology engineers do not know it, and
sometimes use it in an inappropriate way. Several
times, we notice that notations were not being
correctly used, and the models were not well
interpreted by ontology engineers. When we started
to use UML as modeling language, some of these
problems attenuated. On the other hand, sometimes,
ontology engineers with background in software
engineering used some UML constructions that are
not expected in ontology building, and consequently
without precise semantics.

• As to axiom classification, sometimes ontology
engineers have doubts about how to classify an
axiom. The most common problems are about some
epistemological axioms, like those imposed by
cardinalities. Cardinalities, for instance, express
domain constraints, and thus ontology engineers tend
to classify them as ontological axioms, in spite of
they are related to structural concerns.

• A first order predicate logic language for formalizing
ontologies is good due to its expression power. But it

is difficult to evaluate an ontology formalized using
it, since we do not have inference engines capable to
do that. Other languages, such DAML+OIL [9] and
KIF [10], could be better choices, since we can use
an inference engine to verify the ontology.
Competency questions could be formalized and
submitted to the inference engine to check if the
ontology satisfies them. But some of them, like
DAML+OIL, are less expressive languages.

• Ontology integration in SABiO is extremely
superficial. Nothing is said about consistency and
coherence of the model elements imported to a new
ontology.

Finally, we can enumerate some lessons learned. First,
like any other software product, ontology building must
be conducted as a quality software process. As a software
process, we need tools to support ontology building.
Ideally, such tools have to allow competency question
definition and formalization, ontology capture using a
graphical language, axiom definition and formalization,
ontology integration, ontology verification and validation,
ontology documentation, and ontology evolution.

Second, especially in ontology capturing we need to
achieve consensus from experts. Books, papers, manuals,
web pages and other literature sources are very important
for capturing an ontology, but they are not enough. We
need experts, and need to achieve consensus between
their positions. In this process, Gruber’s minimum
ontological commitment criterion [7] is very useful. In all
work we have been done, we needed to apply this
criterion in order to achieve consensus.

Third, in ontology building, evaluation regards the set
of activities that ensure that the ontology concepts,
relations, properties and axioms answer appropriately the
competency questions. Two questions have to be answer:
“Are we building the ontology right?” and “Are we
building the right ontology?” The first one regards
ontology verification, the second ontology validation. In
both cases, evaluation implies to check each competency
question, looking if it is being correctly answered. For
this purpose, we need tools to support those activities,
since they are hard tasks to be done manually. Particularly
in ontology validation, experts are essential. In ontology
validation not only we are checking if the competency
questions are being correctly answered, but we are also
checking if the competency questions actually pose the
right questions for the ontology purpose.

Finally, although hypertexts proved to be an excellent
way to document ontologies, we need tools to automate,
at least partially, their construction. Ontology engineers
spend a substantial amount of time developing the
ontology documentation. Documentation functionalities
integrated into an ontology editor is an important
opportunity to improve productivity.

4. Improvement Opportunities

Based on the weaknesses of SABiO, we can devise
some improvements to evolve it to a better approach for
building ontologies:
• It is worthwhile to define a standard software process

for building ontologies, in the sense of Software
Engineering. Planning activities and methods to do
that should be investigated. There are few works
addressing this important issue. Metrics for
evaluating ontology development should also be
provided. Software Engineering experience can serve
as basis, but we need to adapt it to better fit ontology
development.

• Regarding a modeling language for expressing
ontology, we think that the use of a lightweight
extension of UML, such that proposed in [11] is a
promising way. We are now studying how to
incorporate it to SABiO.

• We should refine the guidelines for classifying
axioms in order to clarify the categories. Also, we are
studying how relation meta-properties, such as
transitivity and symmetry, can be integrated to our
axiom classification. These are very frequent axioms,
and so it is worthwhile to better support their capture.

• During ontology formalization, competency
questions should be formalized. In ontology
evaluation, they should be submitted to an inference
engine to check if the ontology satisfies them.

• SABiO needs to better address ontology integration.
In its current version, all important decisions are left
to the ontology engineers. We need to better study
this activity to improve the guidelines offered to it.

• SABiO does not consider ontology maintenance or
evolution. Since we are now working in some
ontology evolutions (this is the case of the software
process ontology [1]), we intend to improve SABiO
with practical guidelines to address ontology
evolution.

5. Conclusions

Building domain ontologies is not a simple task. We need
methods, tools and guidelines to drive ontology engineers
in performing their activities. Software engineering
practices should be incorporated to ontology
development, and SABiO goes a step ahead towards a
defined ontology development process.

In this paper we presented some reflections regarding
the strengths and weaknesses of SABiO, and discussed
some lessons learned and improvement opportunities.

Our experience in ontology development highlights an
important issue concerning tool support. We would not be

able to scale up ontology building without good ontology
editors. Fortunately, now there are some of them
available, such as OILEd [12]. We are also working on
ODEd [4], an ontology editor that minimizes some of the
reported problems, such as formalization and evaluation.

Acknowledgments

This work was accomplished with the support of CNPq,
an entity of the Brazilian Government reverted to
scientific and technological development.

References

[1] R.A. Falbo, C.S. Menezes, A.R.C. Rocha. “A Systematic
Approach for Building Ontologies”. Proc. of the 6th Ibero-
American Conference on Artificial Intelligence, Portugal,
Lecture Notes in Computer Science, vol. 1484, 1998.

[2] M. Uschold, M. King. “Towards a Methodology for
Building Ontologies”, Workshop on Basic Ontological
Issues in Knowledge Sharing, IJCAI’1995.

[3] R.A. Falbo, G. Guizzardi, K.C. Duarte. “An Ontological
Approach to Domain Engineering”. Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering, SEKE'2002, pp. 351- 358, Ischia,
Italy, 2002.

[4] P.G. Mian, R.A. Falbo. “ Building Ontologies in a Domain
Oriented Software Development Environment”.
Proceedings of the IX Argentine Congress on Computer
Science, pp. 930 – 941, La Plata, Argentina, 2003.

[5] N. Guarino. Formal Ontology and Information Systems. In
N. Guarino (Ed.), Formal Ontologies in Information
Systems, IOS Press, 1998.

[6] M. Grüninger, M.S., Fox. Methodology for the Design and
Evaluation of Ontologies. Technical Report, University of
Toronto, 1995.

[7] T.R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Int. Journal Human-Computer
Studies, 43(5/6), p. 907-928, 1995.

[8] S. Cranefield, M. Purvis. UML as an Ontology Modelling
Language, In Proceedings of the IJCAI-99, Workshop on
Intelligent Information, 16th International Joint
Conference on AI, Stockholm, Sweden, July 1999.

[9] D. Connolly, F. van Harmelen, I. Horrocks, D.L.
McGuinness, P.F. Patel-Schneider, L.A. Stein.
"DAML+OIL Reference Description", December 2001.

[10] M.E. Genesreth, R.E. Fikes. “Knowledge Interchange
Format, Version 3.0 Reference Manual”. Tech. Rep. Logic-
921, Computer Science Dept., Stanford University, 1992.

[11] G. Guizzardi, H. Herre, G. Wagner, “Towards Ontological
Foundations for UML Conceptual Models”, 1st
International Conference on Ontologies, Databases and
Application of Semantics (ODBASE'2002), Irvine,
California, USA, 2002.

[12] S. Bechhofer, I. Horrocks, C. Goble, R. Stevens. “OilEd: a
Reason-able Ontology Editor for the Semantic Web”.
Working Notes of the 14th International Workshop on
Description Logics (DL-2001), pp.1-9, USA, August 2001.

Learning Materials Ontology and Semantic Web: a case study in Educational
Domain

Moysés de Araújo
Maria A. G. V. Ferreira

Escola Politécnica – Universidade de São Paulo
e-mail: [moyses.araujo,maria.alice.ferreira]@poli.usp.br

Abstract. In order to restructure the World Wide Web
there is a new technology, known as Semantic Web, being
developed. It aims to structure and organize information
for more intelligent and effective search, making use of
the ontology concept. This work presents an ontological
modeling for learning materials case study, based on
Semantic Web technology for an educational platform
named CoL (Courses on LARC). This proposal extends
such platform, adding to it the possibility of organizing
and structuring its learning materials, making possible
more “intelligent” and structured searches on the
materials as well as making possible the reuse of the
materials contents.

1. Introduction

The Web is becoming the world virtual library, where
information on any subject is available at any time and
anywhere, with or without cost, creating chances in some
areas of the human knowledge, amongst which the
Education.
However, with the revolution that the Web has made
possible in the access to the information, new boarding
can be made to improve the quality and to develop the
efficiency of the education based on the Web. Among
them can be cited [1]:

Sharing and reuse of learning materials between
applications;
 Learning materials structuring through common
reference points;
Computers qualification so that they can understand
and interpret the learning materials.

Currently, no automatic form exist to share and to reuse
learning material between applications. Most of the
systems uses different formats, languages and
vocabularies to represent and to store these materials. For
this reason, teachers have a great problem to address:

How to find information on learning materials to
illustrate their lessons, destined to an auditorium

ever more demanding and used to television and
Internet?
How to reuse the existing material easily, without
having to produce new material, each time?

A solution to this problem is to develop educational
applications in which the learning material is based on
ontologies.
In this work, a method is discussed that allowed to extend
a conventional educational platform (CoL) [2] to search
and retrieve learning material, through ontologies. The
work is structured as follows. In item 2, some concepts
about Semantic Web and ontologies are provided. In
items 3 and 4, the CoL plataform and the learning
material ontology are, respectively, introduced and in
item 5, the conclusion of the work is presented.

2. Education based on Semantic Web and
Ontologies

“The Semantic Web is not a separate Web but an
extension of the current one, in which information is
given well-defined meaning, better enabling computers
and people to work in cooperation”. In these words,
Berners-Lee et al. define the Semantic Web [3].
Ontologies is an essential technology for the Semantic
Web. In Gruber [4], Studer et al. [5], Swartout [6] and
Chandrasekaram [7] can be found other definitions and
discussions on ontologies. In the scope of this work, it can
be said that ontology is a set of concepts, terms and
relations that can be used to describe some area of
knowledge or to construct its representation. Through
these terms, facts can be described on a certain domain, so
that they can be understood by the machines, making
intelligent search in the Web possible.
To structure the learning materials with common
reference points, concepts and relations must be based on
a standard vocabulary. With this vocabulary, and using
the ontologies, all the parts composing the learning
materials can be kept linked together.
So, if computers have to understand and interpret the
learning materials, the pages that compose the

applications need to contain semantic tags, established in
the terms defined for one or more ontologies. These
annotations make possible for structured search to be
carried through learning materials and objects.
In this context, the following definition for learning object
is adopted: “Learning object is any digital resource that
can be reused to support learning" [8]. So, learning
objects are elements of a new type of computer-based
instruction grounded in the object-oriented paradigm of
computer science. Object-orientation highly values the
creation of components (called "objects") that can be
reused in multiple contexts [9]. This is the fundamental
idea behind learning objects: instructional designers can
build small (relative to the size of an entire course)
instructional components that can be reused a number of
times in different learning contexts.
This idea makes possible for the learning materials to be
centralized in the Web in many different formats, such as
hipertext, video, animations, simulations etc. Thus, the
Web-based learning systems will have to adopt a new
approach in their development, the use of the technologies
that form the base of the Semantic Web (XML, RDF and
ontologies), with the use of learning objects.
However, to attend these requirements languages that
represent semantics of the information on the Web are
necessary to enable the data exchange between
heterogeneous environments. Several languages for
ontologies were developed in the context of the Semantic
Web, among them the language DAML+OIL, a new
proposal of the consortium W3C, to serve as starting point
for the activities of the Semantic Web. According to
Horrocks [10] “DAML+OIL is an ontology language, and
as such is designed to describe the structure of a domain.
DAML+OIL takes an object oriented approach, because
the structure of a domain can be described in terms of its
classes and properties”.

3. The CoL Platform

The CoL (Courses on LARC) plataform is a Distance
Learning system, developed by LARC Laboratory of the
Polytechnic School of the University of São Paulo.
A course in CoL is formed by modules, disciplines and
groups. A group can have several disciplines and a
discipline can have several modules. Module is the basic
unit of a course in CoL. It is considered an abstraction of
a concept, a chapter of a book or any subject. It should be
formed by one or more HTML pages linked to each other
and can contain any kind of file related with the content,
like video, sound, images, animations, etc.
In order to improve the understanding of the CoL
structure, an example is provided as follows. Suppose a
post graduation course on Semantic Web, formed by any
group sample of students. The disciplines to be attended
can be: XML – Basic Concepts, RDF/RDF Schema,

Ontologies and Languages for Semantic Web. The
discipline XML – Basic Concepts can have the structure
shown in Fig. 1. The same structure can be applied to the
other disciplines. The numbered items represent the
programmatic content of each module. Each item is an
HTML page, as shown by the links in Fig. 1, developed
by the teacher.

 Module 1- Markup Languages
1.1 – Definition
1.2 – SGML
1.3 – HTML – Definition
1.4 – HTML – Format
1.5 – Summary
1.6 – Tests

Fig. 1 – A module of discipline XML – Basic Concepts

4. Building a Learning Material Ontology

The main goal in constructing an ontology for educational
systems is to make possible a representation of the
semantics of the educational materials that are stored in
the educational platform, so that they can be reused,
shared, structured and so, that the users of this platform
(teachers, learners, administrators) can perform queries
wisely. To extend CoL plataform, the concept of its
educational material need to change to introduce
semantics. The ontology will provide a vocabulary so that
the material can be annotated, as well as allowing for a
set of relationships to be established between the terms of
the vocabulary, to provide inferences in the knowledge
base.
For the introduction of a learning material ontology
following steps must be taken:

Step 1 - To establish competency questions for learning
materials - the ontology must answer, for example,
competency questions like:
1.Which learning materials compose the platform?
2. What are the requirements of some learning material?
3. Are there similar learning material in the platform?
4. What are the types of learning objects that compose the
learning materials?
To answer the competency question 1 it is necessary to
incorporate new concepts concerning learning objects and
learning materials. These elements will relate with the
modules. Thus, it can be said that modules are formed by
learning materials that, in turn, are constituted by learning
objects. Fig. 2 presents the new elements. The following
relationships exist between the concepts of module and
learning material:

the relationship hasMat denotes that a module is
formed by learning materials. This relation has the
cardinality (1,n) that determines the axiom: “Every
module is formed by one, or more, learning
materials”.
the relationship isInMod indicates that the learning
materials compose modules.

In Fig. 1, Module 1 will be composed, now, by six
learning materials (numbered itens 1.1 to 1.6).
Competency questions 2 and 3 are answered by the
following relationships between learning materials:

The relationships isRequisiteOf and
hasRequisite are inverse relations, and say that if
a learning material B has a requisite A, then A is
requisite of B.
The same reasoning is applied for the relationships
isSimilarTo and isSimilarOf. A learning
material is similar to another one, when the same
subject, for example, equations visualization, can be
treated through a text, a graph or an animation.

Competency question 4 mentions the learning objects that
form the learning materials. According to the Learning
Technology Standards Committee of the IEEE
specification [11] and the Global IMS Learning
Consortium specification [12], the types of learning
objects are: Exercises, Simulation, Questionnaire,
Diagram, Figure, Graph, Index, Table, Narrative Text,
Examination, Experience, Problem Enunciation and Auto
Evaluation. These concepts are represented by the
following relations:

the relationship hasObject denotes that the
learning materials have one or more learning
objects. This relationship has cardinality (1,n) and
determines the following axiom: “Every learning
material has one or more learning objects”.
the relationship isInMat is the inverse relationship
of hasObject and indicates that the learning
objects can belong to the learning materials. The
relationships of type subclassOf that appear in
Fig. 2 indicate that Exercise, Simulation, Problem,
Text and others not shown in Fig. 2 are Learning
Object specializations.

Step 2 – Specification of the ontological knowledge base
in DAML+OIL - In DAML+OIL the objects are described
through classes (named daml:Class). To relate individuals
with each other, properties (named daml:ObjectProperty)
are used, and class attributes are described through
properties of the data (named daml:DatatypeProperty).
The property’s range and domain are stated by rdfs:range
and rdfs:domain, respectively. For example, DAML+OIL
codification of the concept Learning Material,
showed in Fig. 2, is presented in Fig. 3. Fig. 4 presents

the instance of Module concept, showed in Fig. 1, in
DAML+OIL.

Fig. 2 – Learning Materials Ontology

<daml:Class rdf:ID="Learning_Material">
</daml:Class>
<daml:DatatypeProperty rdf:ID="code">
<daml:domain rdf:resource="#Learning_Material"/>
<daml:range
rdf:resource="http://www.w3.org/2000/10/XMLSchem
a#string"/>
</daml:DatatypeProperty>
<daml:DatatypeProperty rdf:ID="name">
<daml:domain rdf:resource="#Learning_Material"/>
<daml:range
rdf:resource="http://www.w3.org/2000/10/XMLSchem
a#string"/>
</daml:DatatypeProperty>
<daml:ObjectProperty rdf:ID="isInMod">
<rdfs:domain rdf:resource="#Learning_Material"/>
<rdfs:range rdf:resource="#Module"/>
 <daml:minCardinality>1</daml:minCardinality>
 <daml:maxCardinality>n</daml:maxCardinality>
</daml:ObjectProperty>
<daml:ObjectProperty rdf:ID="hasObject">
<daml:domain rdf:resource="#Learning_Material"/>
 <daml:range rdf:resource="#Learning_Object"/>
 <daml:minCardinality>1</daml:minCardinality>
 <daml:maxCardinality>n</daml:maxCardinality>
</daml:ObjectProperty>

Fig. 3 – Partial Code for Learning Material in
DAML+OIL

One should notice that the ontology forms on ontological
knowledge base, that can have its information in one or
more files: one file stores elements like vocabulary,
relationships and attributes and the other file stores the

IsSimilarTo

<<inverseOf>>

isSimilarOf

IsRequisiteOf

<<inverseOf>>

hasRequisite

Module

[1..n]
hasMat isInMod

[1..n]
[1..n] [1.. n]

Learning Material

[1..n]
hasObject isInMat

[1..n] ComposedBy

Learning Object [1..n]

Exercise Text
<<subclassOf>>

Simulation Problem…

generated instances. This separation aims to facilitate
ontology maintenance; therefore, the instances archive is
constantly modified.

 Module 1- Markup Languages
 1.1 – Definition
 1.2 – SGML

 <col:Module rdf:ID=" Markup_Languages ">
<col:url>www.pcs.usp.br/~moyses/col/col.html</col:url>
 <col:name> Markup_Languages </col:name>
 <col:hasMat rdf:resource="#Definition"/>
 <col:hasMat rdf:resource="#SGML"/>

 <col:Learning_Material rdf:ID="Definition">
 <col:name>Definition</col:name>
 <col:IsRequisite rdf:resource="#SGML"/>
 <col:hasObject rdf:resource="#Text"/>
 <col:hasObject rdf:resource="#Exercice"/>
 <col:isInMod rdf:resource="#Markup_Languages "/>
 </col:Learning_Material >

 <col:Learning_Material rdf:ID="SGML">
 <col:name>SGML</col:name>
 <col:hasRequisite rdf:resource="#Definition"/>
 <col:hasObject rdf:resource="#Simulation"/>
 <col:isInMod rdf:resource="#="Markup_Languages "/>
<col:isSimilarTo df:resource="#="RDF_Concepts "/>
<col:isInMod rdf:resource="#Markup_Languages "/>
</col:Learning_Material >

Fig.4 – Learning Material instances

Step 3 - To develop the search engine for the ontological
knowledge base - To carry through the search in the
ontological knowledge base a search engine is needed.
This engine will verify the relationships and ontological
instances codified in the ontological language. Since
DAML+OIL is chosen as the representation language in
Step 2, one should be able to use any DAML+OIL
reasoner. In this work, a prototype engine named
AQ_Search was used. AQ_Search is available in the
official page of the DAML (DARPA Agent Markup
Language - http://www.daml.org). This search engine,
developed with Java tools, is composed by a graphical
interface, that allows the users to carry through the
research and to return the results, and by an agent to
process the research in the ontological knowledge base.

5. Conclusion

The current work of the Semantic Web community is
directed mainly for the representation of information in
the World Wide Web, so that these pieces of information
can be used by the machines, not only to show

information but also for tasks automation, more intelligent
integration, sharing, research and reuse of information
between the applications. In the educational scope,
Distance Education is an important goal to pursue and the
Semantic Web offers optimistic perspectives. One system
prototype was modeled according to the methodology
described in Araújo [13].

References

[1] V. Devedzic. “What does current web-based education
lack.”. Proceedings of the IASTED International
Conference APPLIED INFORMATICS. Innsbruck,
Austria, Feb 2002.

[2] R. M. Silveira et al. COL – Ferramenta de Apoio ao
Ensino. Technical Report. LARC Laboratory.University of
São Paulo. São Paulo, 2002.

[3] T. Berners-Lee.; J. Hendler; O. Lassila. “The Semantic
Web”. Scientific American. v. 284, n. 5, 2001, pp. 28-37.

[4] T. R. Gruber. “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing”. In: Nicola
Guarino and Roberto Poli (Ed.). Formal Ontology in
Conceptual Analysis and Knowledge Representation..
Kluwer Academic Plubishers, 1993.

[5] R. Studer; V. Benjamins; D. Fensel. “Knowledge
Engineering: Principles and Methods”. IEEE Transactions
on Data and Knowledge Engineering, v.25, n.1-2, 1998,
pp.161-197.

[6] W. Swartout. Ontologies. IEEE Intelligent Systems. v. 14,
n. 1, Jan. 1999, pp. 18-19.

[7] B. Chandrasekaran; R. Josephson; V. R. Benjamins. “What
Are Ontologies, and Why Do We Need Them?”. IEEE
Intelligent Systems. v. 14, n. 1, Jan. 1999, pp. 20-25.

[8] D. A. Wiley. “Connecting learning objects to instructional
design theory: A definition, a metaphor, and a taxonomy”.
In D. A. Wiley (Ed.) The instructional use of learning
objects.2001. http://reusability.org/read/chapters/wiley.doc.
(link 25-03-2003).

[9] O.-J. Dahl, K. Nygaard, “Simula: an Algol-based
simulation language, Comm. of the ACM, v.9, n.9,
Sept.1966, pp. 671-678.

[10] I. Horrocks. “DAML+OIL: a Reason-able Web Ontology
Language”. In Proc. of EDBT2002, in Lectures Notes in
Computer Science, No. 2287, March 2002, pp. 2-13.

 [11] Learning Technology Standards Committee of the IEEE,
New York, 15/07/2002. Draft Standard for Learning Object
Metadata. http://ltsc.ieee.org/wg12/index.html. (link 9-04-
2003).

[12] IMS Global Learning Consortium, “IMS Learning
Resource Meta-Data XML Binding”, Version 1.2.1 Final
Specification, 28 Set. 2001. http://www.imsglobal.org.
(link 20-02-2003).

[13] M. Araújo. Educação a Distância e a Web Semântica:
Modelagem Ontológica de Materiais e Objetos de
Aprendizagem para a Plataforma COL. PHD Thesis, .
University of São Paulo, São Paulo, 2003.

Non-taxonomic Relations in Semantic Service Discovery and Composition

Michael Lutz
Institute for Geoinformatics, Robert-Koch-Str. 26-28, D-48149 Münster, Germany

m.lutz@uni-muenster.de

Abstract. Existing approaches for semantic web service
discovery are often based on subsumption reasoning, i.e.
on evaluating taxonomic relations between the ontology
concepts used in the service descriptions. If these con-
cepts are not related taxonomically, no match is found. In
this paper we present an approach that recognizes the im-
portance of non-taxonomic relations. To increase recall, it
uses operations defined in the domain ontology as a
common template for semantic descriptions of web ser-
vice inputs and outputs. The problems of existing ap-
proaches and the benefits of the proposed solution are
illustrated using a real-world example and a state-of-the-
art tool for semantic service discovery.

1. Introduction

The ability of composing several simple web services into
more complex ones is often seen a main advantage of
service-oriented computing. An important task during
service composition is to discover services with appropri-
ate functionality whose inputs match – syntactically and
semantically – the outputs1 of adjacent services.

With a growing number of web services available, the
task of service discovery is becoming increasingly impor-
tant. Searches in current service registries (e.g. UDDI) are
based on keywords, fixed taxonomies and syntactic ser-
vice descriptions like WSDL. As this approach leads to
numerous problems causing low precision and recall [1]
approaches based on reasoning with semantic service de-
scriptions that refer to ontologies have been proposed
(e.g. [2-4]). Most of the semantic descriptions proposed
are closely linked to or inspired by OWL-S [5].

Many of these approaches are based on evaluating
subsumption relationships between the ontology concepts
the service descriptions refer to. This means that in cases
where ontology concepts are related via non-taxonomic
relations rather than simple taxonomies service discovery
based on subsumption reasoning will not always yield the
desired results. This will be illustrated using the approach
for service discovery described in [2].

1 Or vice versa, depending in which order the composite service
is composed.

In this paper, we present a procedure for deriving al-
ternative semantic descriptions that take into account the
importance of non-taxonomic relations. The goal is to
improve recall during service discovery based on sub-
sumption reasoning.

The remainder of the paper is structured as follows.
We introduce a motivating example in section 2 and pro-
vide relevant background for our work in section 3. In
section 4 the investigated approach to semantic service
discovery is introduced and the problems connected with
subsumption reasoning are discussed. Our proposed solu-
tion is introduced in section 5 and discussed in section 6.

2. Motivating Example

To illustrate current problems during ontology-based ser-
vice discovery and our proposed solution, we use the fol-
lowing example throughout the paper. Susan is a service
provider who wants to build a complex service that com-
putes the distance between two industrial plants. She has
already found a service2 providing the location of a given
industrial plant as a point geometry. The point is repre-
sented as a complex type consisting of two geographic
coordinates (latitude, longitude).

type point (latitude : double, longitude : double)

Susan uses this output type as a requirement during her
search for services that compute distances between points.
For our example, we consider two candidate services3

each of which provides an operation for computing the
great circle distance (gcd) between two points (each rep-
resented by two coordinates):

gcd1 (lat1: double, long1: double,
lat2: double, long2: double) : double

gcd2 (x1: double, y1: double,
x2: double, y2: double) : double

The input parameters of gcd1 can be any geographic co-
ordinates; those of gcd2 represent coordinates in a spe-

2 adapted from http://acegis.e-blana.com/
PreEmergencyPlanService/PreEmergencyPlanService.asmx

3 adapted from http://samples.bowstreet.com/bowstreet5/
webengine/xmethods/gcd/Action!getWSDL

cific projected coordinate reference system (“WGS84 /
UTM zone 11N” in our example). Both operations return
the (great circle) distance in miles.

If Susan relied only on syntactic descriptions of the
operations (i.e. their signatures) in her search, both gcd1
and gcd2 would seem appropriate, because the result of
the “plant location” service (two doubles) could be fed
into both services. However, the geographic coordinates
representing the plant’s location would not be interpreted
correctly in gcd2, leading to wrong results. Methods and
tools for semantic service discovery have been introduced
to avoid such mistakes.

3. Background

In this chapter, we introduce the logic notation used in
this paper as well as the domain and application ontolo-
gies employed for our example.

The Notation. We use a Description Logics (DL) nota-
tion to define concepts. DL is a family of knowledge rep-
resentation languages that are subsets of first-order logic.
They provide the basis for the Ontology Web Language
(OWL), the proposed standard language for the Semantic
Web [6].

Of the available DL language features, we use concept
definition (C D) and concept inclusion (C D) in this
paper, and the following constructors for concepts (C, D)
and roles (R, S):

D C D | (intersection)
R.C | (value restriction)
R.C | (existential quantification)
 (=) n R (number restrictions)

S R– (inverse)

Of the available inference procedures, the possibility to
compute subsumption relationships is of special impor-
tance for our work. For a more detailed introduction to
DL languages see [7].

Domain Ontology. Our example is drawn from the do-
main of geographic information (GI). Therefore, we use a
collection of models from this domain as a basis for a
domain ontology, the 19100 series of ISO standards.
Here, we only consider a small and simplified extract of
this model (for the relevant standards see [8, 9]) contain-
ing the following concepts:
– Points (GM_Point) can (but need not) be associated to

one coordinate reference system (coordRefSys) of type
SC_CRS. They have n (1) coordinates, which are
represented as Numbers.

– Geographic coordinate reference systems (Geog_CRS)
are a specific family of coordinate reference systems,
one of whose members is denoted as EPSG4326.

– EPSG26911 denotes a coordinate reference system
(WGS84 / UTM zone 11N) that is not a member of the
family of geographic coordinate reference systems.

A schematic illustration of the model is given in Figure 1.

coordRefSyscoordinates
1..n

GM_PointNumber

EPSG4326

0..1
SC_CRS

EPSG26911

Geog_CRS

Figure 1: Extract of the domain ontology

In order to use the ISO model as a domain ontology for
web service discovery its semi-formal UML models and
natural language definitions have to be translated into DL.
The extract of the domain ontology is described by the
following axioms:

Application Ontology. The application ontology contains
more specific concepts, which can be used for annotating
syntactic service descriptions and for specifying a re-
quester’s requirements. In our example, the output of the
first service discovered by Susan is annotated with the
concept Plant_Location, the input parameters of gcd1 and
gcd2 with the concepts Geog_Coord and UTM_Coord:
– Plant_Location is a specific kind of point, which has a

specific geographic coordinate reference system
(EPSG4326) and two coordinates.

– Geog_Coord is a Number that is a coordinate of a spe-
cific kind of point (GM_Point1). This point has two co-
ordinates and some geographic coordinate reference
system (Geog_CRS).

– UTM_Coord is a Number that is a coordinate of a dif-
ferent kind of point (GM_Point2), which also has two
coordinates, but EPSG26911 as a coordinate reference
system.

In DL syntax, this is expressed by the following axioms:

coordinates–

Note that the definitions of Geog_Coord and UTM_Coord
use an inverse relation (isCoordinateOf) to express that
they are the range of the relation coordinates and that the
domains of that relation are the previously defined con-
cepts GM_Point1 and GM_Point2, respectively.

The application ontology is illustrated in Figure 2.

2 GM_Point1Number coordinates

Geog_Coord isCoordinateOf

inverse-of

coordRefSys

1
EPSG4326

coordRefSys
0..1

coordinates

1..n

GM_Point SC_CRS

2

GM_Point2coordinates

UTM_Coord isCoordinateOf

coordRefSys
1

EPSG26911

2

Plant_Locationcoordinates coordRefSys

1
Geog_CRS

Figure 2: Extract of the application ontology (domain
ontology concepts are shown in white)

Even though it is not stated explicitly in the axioms, it can
be inferred that Plant_Location is subsumed by
GM_Point1, and that both GM_Point1 and GM_Point2 are
subsumed by GM_Point (Figure 3).

GM_Point1

GM_Point

GM_Point2

Plant_Location

Figure 3: Inferable taxonomic relationships between
application and domain concepts

4. Problems During State-of-the-art Semantic
Service Discovery

In this section, we introduce a state-of-the-art approach to
semantic service discovery based on subsumption reason-
ing and illustrate some of the problems associated with it.

The Semantic Services Matchmaker. The Semantic
Services Matchmaker (SSM) [2] is a tool for matching
between semantic descriptions of services and user re-
quests in order to enhance the discovery facilities of
UDDI. For referring to the ontology classes required for
the matchmaking algorithm described below, the SSM
uses an extension to WSDL called Web Service Semantic
Profile (WSSP), which is inspired by the OWL-S Service
Profile [5].

The SSM is based on the LARKS and the OWL-S
matching algorithms [4, 10]. Specifically, it adopts the

LARKS approach to offer a series of five filters, which
can be combined to implement three different degrees of
match. For our work, we are specifically interested in the
I/O Type Filter. For an in-depth discussion of all filters,
see [10].

The I/O Type Filter checks whether the definitions of
the input and output parameters match. In the semantic
service description used by the SSM, parameter types of
inputs and outputs are defined as ontology classes. Match-
ing in this filter is mainly based on identifying subsump-
tion relationships between input and output parameters4.

Problems. The SSM generates a template from the ser-
vice’s WSDL document, in which the user has to select a
matching ontology concept for each input and output pa-
rameter. We assume for our example that the inputs of
gcd1 are annotated with the Geog_Coord and the inputs
of gcd2 with the UTM_Coord concept from the applica-
tion ontology.

Susan, on the other hand, uses the Plant_Location con-
cept in her search for a point distance service that accepts
the output of the “plant location” service. However, as
there exist only non-taxonomic relations between
Plant_Location and Geog_Coord or UTM_Coord (Figure
2), Susan discovers neither gcd1 nor gcd2.

5. Template Operations as a Basis for Semantic
Service Descriptions

In order to avoid problems as those described above we
introduce an alternative way to semantically annotate web
services that is not based directly on syntactic (WSDL)
descriptions. Rather, we use a template operation as a
common basis for specifying service capabilities and re-
quirements.

Template operations are part of the domain ontology.
In the geo-spatial domain, they can also be derived from
the ISO 19100 series of standards, which also include
operations, e.g. a distance operation between points:

The parameters of the template operation serve as a basis
for defining more specific concepts, which can be used
for describing inputs and outputs of a specific service.
These concepts must always have a taxonomic relation to
the domain concepts describing the template operation’s
parameters. For example, the inputs to our example opera-
tions gcd1 and gcd2 can be annotated using the applica-
tion ontology concepts GM_Point1 and GM_Point2, re-
spectively. Both concepts are subsumed by the domain
concept GM_Point, which describes the template opera-
tion’s input.

4 The algorithm also considers the number of parameters. For
details see [2].

Likewise, a requester like Susan can use the inputs
and outputs of template operations as a basis for describ-
ing her requirements. She can use the Plant_Location con-
cept as a requirement in her query because it is subsumed
by GM_Point and thus in accordance with the distance
template operation. Because of the inferable taxonomic
relations between the used concepts (Figure 3) Susan now
correctly discovers gcd1 but not gcd2 when using service
discovery algorithms based on subsumption reasoning
(like that employed in the SSM).

6. Discussion and Future Work

We have introduced a procedure for generating descrip-
tions of the input and output parameters of web services
based on template operations, which recognizes the im-
portance of non-taxonomic relations for service discovery
and composition. When these descriptions are used with
existing algorithms based on subsumption reasoning, re-
call can be increased.

In future work we are aiming to test our procedure
with additional real-world examples. Also, several parts
of the procedure need to be refined:
– With the presented approach an ontology concept can

refer to several input parameters rather than just one.
This means that semantic service descriptions, too,
should allow the annotation of several parameters with
one ontology concept. The WSSP templates suggested
in [2] seem presently not to provide this option.

– We currently assume that an appropriate operation is
always available in the domain ontology. For more
complex services, e.g. with additional (compared to the
template operation) parameters or functionality, it
might become necessary to combine several operations
from the domain ontology.

– Our current focus on describing only inputs and out-
puts of services can lead to low precision [11]. There-
fore, preconditions and effects will also be included
into the descriptions.

The adapted procedure will then be integrated into an
architecture for discovery and retrieval of geographic in-
formation [12].

Finally, the reasoning procedures offered by tools
such as the SSM will be examined more closely. E.g., it
might be sensible to extend the matching algorithm from
only considering input parameters that are more general to
also acknowledging concepts that are more specific. This
might be helpful if a requester has only a vague idea of
what she is looking for.

Acknowledgements

The work presented in this paper has been supported by
the European Commission through the ACE-GIS project

(grant number IST-2002-37724) and the BMBF as part of
the GEOTECHNOLOGIEN program (grant number
03F0369A). It can be referenced as publication no. GEO-
TECH-64.

References

[1] M. Klein and B. König-Ries, "A Process and a Tool for
Creating Service Descriptions based on DAML-S", pre-
sented at 4th VLDB Workshop on Technologies for E-
Services (TES'03), Berlin, 2003.

[2] T. Kawamura, J.-A. De Blasio, T. Hasegawa, M. Paolucci,
and K. Sycara, "Preliminary Report of Public Experiment
of Semantic Service Matchmaker with UDDI Business
Registry", presented at First International Conference on
Service-Oriented Computing (ICSOC 2003), Trento, Italy,
2003.

[3] E. Sirin, J. Hendler, and B. Parsia, "Semi-automatic Com-
position of Web Services using Semantic Descriptions",
presented at "Web Services: Modeling, Architecture and In-
frastructure" Workshop (in Conjunction with ICEIS2003),
2003.

[4] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara,
"Semantic Matching of Web Service Capabilities", pre-
sented at 1st International Semantic Web Conference
(ISWC2002), Sardinia, Italy, 2002.

[5] The DAML Services Coalition, "DAML-S: Web Service
Description for the Semantic Web", presented at 1st Inter-
national Semantic Web Conference (ISWC2002), Sardinia,
Italy, 2002.

[6] G. Antoniou and F. Van Harmelen, "Web Ontology Lan-
guage: OWL", in Handbook on Ontologies, S. Staab and R.
Studer, Eds.: Springer, 2003, pp. 67-92.

[7] F. Baader and W. Nutt, "Basic Description Logics", in The
Description Logic Handbook. Theory, Implementation and
Applications, F. Baader, D. Calvanese, D. McGuinness, D.
Nardi, and P. Patel-Schneider, Eds. Cambridge: Cambridge
University Press, 2003, pp. 43-95.

[8] ISO/TC-211, "Text for DIS 19107 Geogaphic information -
Spatial Schema", International Organization for Standardi-
zation 2002.

[9] ISO/TC-211, "Text for FDIS 19111 Geogaphic information
- Spatial Referencing by Coordinates. Final Draft Version",
International Organization for Standardization 2002.

[10] K. Sycara, S. Widoff, M. Klusch, and J. Lu, "Larks: Dy-
namic Matchmaking Among Heterogeneous Software
Agents in Cyberspace", presented at First International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, Bologna, Italy, 2002.

[11] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller,
"Adding Semantics to Web Services Standards", presented
at The SemanticWeb - ISWC 2003. 2nd International Se-
mantic Web Conference (LNCS 2870), Sundial Resort,
Sanibel Island, Florida, USA, 2003.

[12] E. Klien, U. Einspanier, M. Lutz, and S. Hübner, "An Ar-
chitecture for Ontology-Based Discovery and Retrieval of
Geographic Information", presented at 7th Conference on
Geographic Information Science (AGILE 2004), Heraklion,
Greece, 2004.

Supporting Interface Integration with a Simple Ontology

Damien Conroy, Jim Buckley, Tony Cahill

Department of Computer Science and Information Systems, University of Limerick.
E-mail:

�
damien.conroy,jim.buckley,anthony.cahill � @ul.ie

Abstract

When an interface to a software component is changed
it is likely that clients of that interface must adapt their in-
vocations. Where parameters of those invocations repre-
sent quantities with dimensions there may be potential to
recombine them. Analysis of possible combinations must
ultimately be carried out by domain experts. This paper de-
scribes how simple representations of parameters and their
dimensions may be quickly compared using logical opera-
tors in a structured search space so as to narrow the search
for useful combinations. We consider these representations
to constitute a simple ontology, simple in the sense that it
supports only the relation ’is a constituent dimension of’,
but capable nonetheless of supporting an efficient narrow-
ing of the search space.

1 Introduction

Composing a system from independent software compo-
nents involves the task of aligning client invocations with
service interfaces. While the alignment of invocations and
interfaces with syntactic discrepancies may be achieved
through casting or simple translations, overcoming discrep-
ancies in the real-world concepts that are represented is a
more difficult task. Detailed specifications of interfaces and
associations with structured knowledge of the application
domain are required in order to specify the necessary trans-
lations.

Structured knowledge of a domain may be represented in
one or more ontologies. The term ontology as used here is
informally defined as a collection of concepts and the rela-
tions between them. In information systems the term ontol-
ogy may often refer to a piece of software implementing the
services of such a collection, concept searching or matching
for example[1].

2 An Illustrative Example

Software components provide services through inter-
faces. In this example a Java API is used as an example
of a component interface. The same principles would apply
to an electronic trader presenting a structured XML docu-
ment, an invoice for example, as an interface.

Consider a method that determines whether or not a ve-
hicle has broken the speed limit. Such a method might have
the following signature if used between tollbooths on a mo-
torway:

Boolean isOverLimit(Integer distance,
Integer time)

Alternatively a computer attached to a radar detector
might use a method with the following signature:

Boolean isOverLimit(Integer speed)

What must be done if the tollbooth system is to use the
same ’isOverLimit’ method as supplied with the radar de-
tector? The parameters used in invoking the ’old’ method
interface must be recombined to suit the ’new’ method in-
terface.

3 Information Insufficiency

The type of mismatch that we call information insuffi-
ciency arises when there is no apparent one-to-one mapping
between the concepts associated with the available and re-
quired parameters, as depicted in Table 1. Often however,
the apparently missing information could be discovered, if
the means by which it may be inferred from available infor-
mation were known. In this example, the knowledge that
a distance divided by the time taken to travel it produces a
speed is enough to provide a likely solution.

The ability to deal with the apparent insufficiency is de-
pendent upon knowledge of concepts and the relations be-
tween them. Such knowledge, held in an ontology for the
domain, could be used to identify potential inferences.

Table 1. Information Insufficiency

Required Available

Speed (Integer)

Distance (Integer)

Time (Integer)

Table 2. SI Base Units

Base Quantity Name Symbol

Length Metre M

Mass Kilogram Kg

Time Second S

Electric current Ampere A

Thermodynamic temperature Kelvin K

Amount of substance Mole mol

Luminous intensity Candela Cd

4 A Simple Ontology based on Dimensional
Analysis

One category of domain concepts to which inference is
traditionally applied in physics is that of International Stan-
dard (SI) quantities. There are seven base SI quantities or
dimensions as listed in Table 2. These are the fundamental
quantities from which all others are derived[2]. The process
of determining whether or not the results of equations are
of a particular quantity is well known in physics as dimen-
sional analysis.

The representation of dimensions in ontologies is not
novel. Gruber, for example, provides Knowledge Inter-
change Format (KIF) specifications for dimensions such as
length, time and length/time to illustrate principles of on-
tology design for knowledge sharing[3]. However, for the
purpose of narrowing the search space of parameter combi-
nations we use simpler representations based on vectors.
Any base or derived quantity in the SI system may be repre-
sented using a vector of seven exponents[4]. For example,
using the order of appearance in Table 2, distance would be
represented with the following vector:

[1 0 0 0 0 0 0]

� � � � �

would be represented by the following vector:

[0 0 -1 0 0 0 0]

and speed would be represented using the vector (the
vector sum of the previous two):

[1 0 -1 0 0 0 0] = [1 0 0 0 0 0 0]+
[0 0 -1 0 0 0 0]

This set of vectors may be considered as a simple ontol-
ogy, representing the SI concepts and the hierarchical ”is
a constituent dimension of” relationships between them. It
may be used to identify potential inferences from combina-
tions of the available parameters.

5 Combining Available Parameters

When searching for the required parameters several com-
binations of the available parameters must be considered.
The process involves three steps:

Enumerate all subsets of available source parameters.

Eliminate all subsets that lack the necessary dimensions.

Examine the remaining subsets to determine if they can
infer a missing parameter.

5.1 Enumeration

In the example the following possibilities must be con-
sidered when deriving speed from distance and time.

{distance, time} => {speed} ?
{distance} => {speed} ?
{time} => {speed} ?

Once it has been determined that speed can be inferred
from a combination of distance and time it makes sense
to re-examine the ontology to determine whether or not it
could be inferred from a smaller subset of the available pa-
rameters, providing a translation with less redundancy. The
sets � distance � , � time � and � distance, time � along with the
empty set, � � , which we shall ignore, are all subsets of the
set � distance, time � . Together they constitute the powerset,
that is the set of all subsets, of � distance, time � . A powerset
of an n-element set contains � � elements.

If the set of available parameters has two elements it can
be seen that, ignoring the empty parameter set, there are
three � � � � �) sets to be considered as the potential source
for the derivation of a missing parameter. If there were m
missing parameters then � � � � �) * m possibilities exist for
inference.

{}

{distance, time, mass}

{distance,
time}

� {time,
mass}

{distance,
mass}

{distance}{time} {mass}

Figure 1. Lattice representation of the power-
set of � distance, time, mass � .

5.2 Elimination

Eliminating ’non-starters’ is a simpler problem that that
of determining whether or not the set of available parame-
ters (which shall be referred to as source parameters) can be
used to infer the set of missing parameters (which shall be
referred to as target parameters.)

In the example the vectors of the ontology may be sim-
plified to binary numbers where a particular bit is set if a
particular dimension is present (regardless of the exponent)
and unset if it is not. This would give the binary number
1010000 for the vector sum of the sources, and the binary
number 1010000 for the target vector. If the result of a bit-
wise AND between the source binary number and the target
binary number results in anything other than the target bi-
nary number itself then the ”has the same dimensions as”
relation does not exist between them. If that relation does
not exist between them then the source parameter set pro-
vides no potential to infer that target parameter. A set of
source parameters may be ruled out if it provides no poten-
tial inference for any of the target parameters. Otherwise
each of its subsets must be similarly analysed to identify
a minimal set. Consequently, it is beneficial to examine
larger source parameter sets earlier in the elimination. This
implies that parameter subsets should be processed in an
order imposed by the subset inclusion operator. The power-
set of a set partially ordered by the subset operator may be
represented as a lattice, as shown in Figure 1. Lattices are
similarly used in data mining applications to mine multidi-
mensional association rules[5].

Here the lattice is modified to produce a tree (Figure 2)
where each node represents a subset of the source parameter

{distance, time, mass}

{distance,
time}

� {time,
mass}

{distance,
mass}

{distance}{time} {mass}

Figure 2. Tree representation of the powerset
of � distance, time, mass � .

set. The tree is traversed depth-first recursively. Starting at
the top of the tree, when a node is visited, the binary number
representing the combined dimensions of its parameter set
is compared using a bitwise AND with the binary number
of each target parameter to test the ”has the same dimen-
sions as” relation. If a node cannot be ruled out then its
child nodes are visited. The nodes that are not ruled out are
potential sources for useful inferences.

5.3 Evaluation

Potential inferences must be presented to a domain ex-
pert for final evaluation. Once the correct inferences have
been identified they may be used as a basis for the genera-
tion of translations. Translations may be implemented with
’glue code’[6]. In the given example a skeleton method ac-
cepting a distance and time as parameters and providing a
speed as a return value might be generated. In other cases
integration experts might develop stylesheets for the trans-
lation of structured documents using the same principles.

6 Current Work

Current work involves expanding the set of domain types
under consideration beyond the SI quantities, looking at
business document elements and ebXML, the electronic
business markup language, in particular[7]. ebXML pro-
vides basic core components, analogous to basic quantities
and aggregate components, analogous to derived quantities.
While these basic and aggregate core components may ad-
equately describe domain entities they do not describe any
relation other than aggregation, an address has a state and

city for example, but a city may not necessarily have a state
associated with it.

The vector representations described are not expressive
enough to depict the relations between such application do-
main concepts. Neither do they support the representation
of properties other than ”has the constituent dimension”.
Application domain concepts necessitate richer representa-
tions and we are using the Web Ontology Language (OWL),
through the Jena API to build these[8][9]. As a first cut
we used OilEd to build the SI quantity ontology described
above using OWL rather than vectors[10]. This proved to
be an interesting exercise as OWL allows the introduction
of properties such as units of representation and conversion
factors that could not be described or associated using the
vectors. Currently we are moving some of the ebXML do-
main concepts into OWL-based ontologies and adding extra
properties, allowing us to infer a missing ’state’ parameter
where the ’city’ is provided, for example.

7 Conclusion

In reconciling component interfaces the final evaluation
of potential inferences and translations rests with a domain
expert. However, much can be done to help the domain
expert focus on the set of most promising combinations
of available information. A suitable ontology for domain
knowledge, coupled with an ordering of the search space
can rule out infeasible combinations at an early stage, and
highlight the most promising possibilities.

Acknowledgements

This research is funded by Enterprise Ireland and
QAD Ireland under the Innovation Partnership Programme
IP/2001/006.

References

[1] B. Smith, in ”The Blackwell Guide to the Philosophy
of Computing and Information”, Blackwell Publishers,
2003.

[2] A. Bhagwat, ”Applying Dimensional Analysis to Busi-
ness Intelligence Systems”,
The Data Administration Newsletter (TDAN.com),
http://www.tdan.com/i020ht04.htm

[3] T. Gruber, “Toward Principles for the Design of Ontolo-
gies Used for Knowledge Sharing”, in “Formal Ontol-
ogy in Conceptual Analysis and Knowledge Represen-
tation”, Kluwer Academic Publishers, 1993.

[4] G. Novak, ”Conversion of Units of Measurement”,
IEEE Transactions on Software Engineering v.21 n.8,
p.651-661, 1995.

[5] J. Han and M. Kamber, ”Data Mining: Concepts
and Techniques”, Morgan Kaufmann Academic Press,
2001.

[6] M. Burstein, D. McDermott, D. Smith and S. Westfold,
”Derivation of glue code for agent interoperation”, in
Proc. of the 4th Int’l. Conf. on Autonomous Agents,
pages 277–284, 2000.

[7] ebXML Enabling a Global Electronic Market, Avail-
able at: http://www.ebxml.org

[8] OWL Web Ontology Language Overview, Avail-
able at: http://www.w3.org/TR/2003/PR-owl-features-
20031215/

[9] Jena 2 - A Semantic Web Framework, Available at:
http://www.hpl.hp.com/semweb/jena2.htm

[10] OilEd, Available at: http://oiled.man.ac.uk/

SWETO: Large-Scale Semantic Web Test-bed

Boanerges Aleman-Meza, Chris Halaschek, Amit Sheth, I. Budak Arpinar, Gowtham Sannapareddy
Large Scale Distributed Information Systems (LSDIS) Lab

Computer Science Department, University of Georgia
Athens, GA 30602-7404

{boanerg, ch, amit, budak}@cs.uga.edu, gowtham@uga.edu

Abstract. The emergent Semantic Web community
needs a common infrastructure for testing the scalability
and quality of new techniques and software which use
machine processable data. Since ontologies are a
centerpiece of most approaches, we believe that for an
accurate evaluation of tools for quality, scalability and
performance, the research community needs a freely
available ontology with a large description base. If the use
of tools is to be for advanced semantic applications, such
as those in business intelligence and national security,
then instances in the knowledge base should be highly
interconnected. Thus, we propose and describe a
Semantic WEb Technology evaluation Ontology
(SWETO) test-bed. In particular, we address the
requirements of a test-bed to support research in semantic
analytics, as well as the steps in its development,
including, ontology creation, semi-automatic data
extraction, and entity disambiguation.

1. Introduction

Considering that there are somewhere between 20 to 50
ontology tools alone [16, 17], the question arises: how do
we test and compare them? Similarly, applications that
utilize ontologies for inference, semantic integration, and
semantic analytics, require a benchmark for quality,
scalability and performance evaluations. Thus, the
emergent Semantic Web community needs a common
infrastructure for both testing and evaluations. In
particular, we feel there is a need to have a large, high
quality test ontology from which various ontology tools
can assess and test their scalability and other properties.

Of particular interest is not just the schema of the
ontology, but also the population (instances, assertions or
description base) of the ontology. A highly populated
ontology (ontology with instances or assertions) is critical
for assessing effectiveness, and scalability of core
semantic techniques such as semantic disambiguation,
reasoning, and discovery techniques. Ontology population
has been identified as a key enabler of practical semantic

applications in industry; for example, Semagix1 reports
that its typical commercially developed ontologies have
over one million objects [18]. So far, such ontologies
have not been available to the research community.

Another important factor related to the population of
the ontology is that it should be possible to capture
instances that are highly connected (i.e., the knowledge
base should be deep with many explicit relationships
among the instances). This will allow for a more detailed
analysis of current and future semantic tools and
applications, especially those that exploit the way in
which instances are related. This is exemplified in our
SemDis2 project, in which new complex semantic
relationships can be queried and discovered through
traversing sequence of links among the instances of
interest. Clearly, an ontology and corresponding
knowledge base of real-world scale are needed as a
benchmark for evaluating and comparing such tools and
techniques.

To this end, we propose a Semantic Web Technology
evaluation Ontology (SWETO3), that captures real world
knowledge with over 40 classes populated with a growing
set of relevant facts, currently at about one million
instances. As part of the creation of SWETO, we have
adopted the following iterative process that allows the
periodic extension the ontology and its instances:

(i) Designing SWETO schema using an ontology
design toolkit (detailed later),

(ii) Identifying knowledge sources that can be used
to populate parts of SWETO without focusing on a
specific domain,

(iii) Utilizing extractors (written by humans using a
toolkit) to periodically and automatically extract parts of
knowledge from various open and public sources,

(iv) Semi-automatically applying disambiguation
techniques to extracted instances in the ontology (with

1 http://www.semagix.com
2 http://lsdis.cs.uga.edu/Projects/SemDis/
3 http://lsdis.cs.uga.edu/Projects/SemDis/Sweto/

limited human involvement) to eliminate redundancies
and improve quality of the knowledge base,

(v) Providing capabilities for exporting SWETO and
its instances from an internal representation to World
Wide Web Consortium (W3C) standards, namely either
OWL [13] or RDF [14]; thus allowing open use of
SWETO.

The remaining sections of this paper are organized as
follows: Section 2 details related work in this area;
Section 3 describes the overall methodology of our
approach for creation of SWETO; Section 4 presents the
current results of our work; Section 5 provides
conclusions and some future directions for SWETO.

2. Related Work

Due to the infancy of the Semantic Web, little research
has been focused on the development of an evaluation
benchmark or test-bed for it. One current and ongoing
effort however is TAP [2], which provides a large
knowledge base annotated using RDF and is described as
a “... shallow but broad knowledge base ...” [2]. Our
work differs in that we provide a smaller schema, but with
a much larger number of instances that are highly
interconnected. Additionally, we provide the option to
serialize the ontology using OWL, allowing for more
constraints and expressiveness at the schema level.

3. Methodology

SWETO is an ontology that incorporates instances
extracted from heterogeneous sources. Automatic
population is created by extractors (detailed in Section
3.3).

3.1. Ontology Creation

The test-bed has been created in a bottom-up fashion
where the data sources dictate the classes and
relationships defined in the ontology, similar in spirit to
the concept of emergent semantics [1, 15].

To illustrate with an example, consider the listing of
“people” in a computer science department. Typically,
they would be listed separately as Faculty, Students and
Staff. In such cases we create appropriate classes in the
ontology and populate them with instances.

In SWETO, the ontology was created using Semagix
Freedom, a commercial product which evolved from the
LSDIS lab’s past research in semantic interoperability and
the SCORE technology [6]. The Freedom toolkit allows
for the creation of an ontology, in which a user can define
classes and the relationships that it is involved in using a
graphical environment.

3.2. Selection of Data Sources

Creation of a solid test-bed requires meticulous selection
of data sources. We focused our selection of data sources
by considering the following factors:

(i) Selecting sources which were highly reliable
Web sites that provide instances in a semi-structured
format, unstructured data with parse-able structures (e.g.,
html pages with tables), or dynamic web sites with
database back-ends. In addition, the Freedom toolkit has
useful capabilities for focused crawling by exploiting the
structure of Web pages and directories.

(ii) We carefully considered the types and quantity
of relationships available in a data source. Therefore we
preferred sources in which instances were interconnected.

(iii) We considered sources whose instances would
have rich metadata. For example, for a ‘Person’ instance,
the data source also provides attributes such as gender,
address, place of birth, etc.

(iv) Public and open sources were preferred, such as
government Web sites, academic sources, etc. because of
our desire to make SWETO openly available.

3.3. Knowledge Extraction

In SWETO, all knowledge (or facts that populate the
ontology) is extracted using Semagix Freedom software.
Essentially, extractors are created within the Freedom
environment, in which regular expressions are written to
extract text from standard html, semi-structured (XML),
and database-driven Web pages. As the Web pages are
‘scraped’ and analyzed (e.g., for name spotting [19]) by
the Freedom extractors, the extracted instances are stored
in the appropriate classes in the ontology. Additionally,
provenance information, including source, time and date
of extraction, etc., is maintained for all extracted data. We
later utilize Freedom’s API for exporting both the
ontology and its instances in either RDF [14] or OWL
[13] syntax. For keeping the knowledge base up to date,
the extractors can be scheduled to rerun at user specified
time and date intervals.

Automatic data extraction and insertion into a
knowledge base also raise issues related to the highly
researched area of entity disambiguation [7, 8, 9, 10]. In
SWETO, we have focused greatly on this aspect of
ontology population. Using Freedom, instances can be
disambiguated using syntactic matches and similarities
(aliases), customizable ranking rules, and relationship
similarities among instances. Freedom is thus able to
automatically disambiguate instances as they are extracted
[6].

Furthermore, if Freedom detects ambiguity among
new instances and those within the knowledge base, yet it
is unable to disambiguate them within a preset degree of
certainty, the instances are flagged for manual

disambiguation with some system help on possible
matches.

Lastly, there a special cases in which neither the
software, nor humans can directly determine if two
instances are the same. For example, consider two persons
named ‘John Smith’. Without metadata attributes, neither
the system nor humans can determine what to do by only
looking at the instance name. This is a future research
direction we wish to follow in which semantic similarity
can be used to state with some degree of certainty that
these two persons (i.e. ‘John Smith’), are in fact the same
person. For now, we remove these types of instances from
the knowledge base in order to maintain both cleanliness
and consistency.

4. Results

Our aim of achieving a test-bed of over 1 million
instances is near completion. The current population
includes over 800,000 instances and over 1,500,000
explicit relationships among them. Here we provide initial
statistics that illustrate the size in terms of instances and
relationships connecting them.

Table 1 summarizes a subset of the classes of the
ontology that are representative of the majority of
instances currently in SWETO ontology.

Table 1. SWETO test-bed ontology initial metrics

Subset of classes in the ontology # Instances
Cities, countries, and states 2,902
Airports 1,515
Companies, and banks 30,948
Terrorist attacks, and organizations 1,511
Persons and researchers 307,417
Scientific publications 463,270
Journals, conferences, and books 4,256
TOTAL (as of January 2004) 811,819

What makes this work more valuable is in respect to
how inter-connected the instances are (this currently is not
available in a taxonomy and in most current ontologies
that are freely available). As mentioned earlier
interconnectedness becomes critical in semantics
analytics applications (such as [3]). Table 2 summarizes a
subset of the relationships connecting instances in the
ontology. Note that some relationships apply to a variety
of types of instances, such as the “located in” relation.

Table 2. SWETO statistics on relationships

Subset of relationships # Explicit relations
located in 30,809
responsible for (event) 1,425
Listed author in 1,045,719
(paper) published in 467,367

As mentioned in Section 3.3, a variety of techniques
for entity disambiguation has been employed in order
improve the knowledge base. The frequency and type of
disambiguation method is presented below in Table 3.

Table 3. SWETO statistics on disambiguation

Disambiguation type # Times used
Automatic (Freedom) 248,151
Manual 210
Unresolved (Removed) 591

In addition, SWETO homepage provides more details
(http://lsdis.cs.uga.edu/proj/Sweto/). There, we provide a
graphical user interface for browsing of SWETO ontology
(through the use of Touchgraph4) as illustrated in Figure
1, the latest version of the knowledge base (instances),
our own native API for easy use (alternately tools such as
Jena [12] could be used), and a detailed description of the
data sources. Currently, SWETO is also being used to
support and evaluate provenance and trust research at
UMBC, and it is being used by Semagix to evaluate
effectiveness and performance of semantic metadata
extraction and enhancement technology.

Figure 1 Subset of SWETO schema visualization

5. Conclusions and Future Work

In this paper, we presented SWETO, a test-bed for
testing effectiveness and scalability of current and future
semantic Web applications and techniques.

As mentioned earlier, the ontology-driven Semagix
Freedom toolkit has been used for graphical creation of
the ontology schema, as well as for automated population
of the ontology with extractors. Additionally, Freedom
was used for entity disambiguation. Lastly, we provided a
summary of the statistics that make up for the current
population of over 800,000 instances and over 1,500,000
explicit relationships among them.

Our research with SWETO test-bed has primarily been
driven by the discovery of semantic associations [4] and
their ranking [5]. Therefore, we aim for continuing the

4 http://www.touchgraph.com/

population of the ontology by further inter-connecting
instances in order to provide a diverse test-bed for testing
semantics analytics research ideas.

As mentioned in Section 3.3, we also wish to further
investigate the use of semantic similarity for entity
disambiguation.

6. Acknowledgements

SWETO test-bed is an effort that incorporated ideas
and suggestions from different people in the LSDIS lab to
whom we are thankful. Additionally, we would like to
acknowledge our UMBC collaborators, especially Tim
Finin, Anupam Joshi, and Li Ding who we are jointly
working with on the SemDis project.

We also thank Semagix, Inc. for providing its Freedom
product. In particular, we would like to especially thank
David Avant and Yashodhan Warke for their insightful
comments and reviews.

This work is funded in part by National Science
Foundation (NSF) Awards 0219649 (“Semantic
Association Identification and Knowledge Discovery for
National Security Applications”) and IIS-0325464
("SemDis: Discovering Complex Relationships in
Semantic Web"). Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the NSF.

References

 [1] S. Staab: Emergent Semantics. IEEE Intelligent Systems
17(1), 2002. pp. 78-86

 [2] R. Guha and R. McCool, “Tap: A Semantic Web Test-
Bed”, Journal of Web Semantics, 1(1), Dec. 2003, pp. 81-
87

[3] A. Sheth, B. Aleman-Meza, I. B. Arpinar, C. Halaschek, C.
Ramakrishnan, C. Bertram, Y. Warke, D. Avant, F. S.
Arpinar, K. Anyanwu, and K. Kochut, Semantic
Association Identification and Knowledge Discovery for
National Security Applications, Special Issue of Journal of
Database Management on Database Technology for
Enhancing National Security, Eds: L. Zhou and W. Kim,
2004 (Accepted).

[4] K. Anyanwu, and A. Sheth. r-Queries: Enabling Querying
for Semantic Associations on the Semantic Web. Twelfth
International World Wide Web Conference, Budapest,
Hungary. May 20-24, 2003; pp. 690-699

[5] B. Aleman-Meza, C. Halaschek, I. B. Arpinar, and A.
Sheth, Context-Aware Semantic Association Ranking, First

International Workshop on Semantic Web and Databases,
Berlin, Germany, September 7-8, 2003; pp. 33-50

[6] A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut,
and Y. Warke. (2002). Managing semantic content for the
Web. IEEE Internet Computing, 6(4), 2002. pp 80-87

[7] R. Mihalcea, and S. I. Mihalcea: Word Semantics for
Information Retrieval: Moving One Step Closer to the
Semantic Web. ICTAI 2001: 280-287.

[8] P. Resnik, “Semantic Similarity in a Taxonomy: An
Information-Based Measure and its Application to
Problems of Ambiguity in Natural Language”, Journal of
Artificial Intelligence Research, 1999.

[9] V. Kashyap, and A. P. Sheth, Semantic and schematic
similarities between database objects: A context-based
approach. VLDB Journal, 5(4):276—304, 1996.

[10] M. Rodriguez, and M. Egenhofer, Determining Semantic
Similarity among Entity Classes from Different Ontologies,
IEEE Transactions on Knowledge and Data Engineering,
Vol. 15, No. 2, March/April 2003.

[11] S. Handschuh, S. Staab. CREAM - CREAting Metadata for
the Semantic Web. Computer Networks. 42, pp. 579-598,
Elsevier 2003.

[12] B. McBride. Jena: A semantic Web toolkit. IEEE Internet
Computing, 6(6), 55-59, 2002.

[13] S. Bechhofer, F. Harmelen, J. Hendler, I. Horrocks, D.
McGuinness, P. Patel-Schneider, et al. (2003). OWL Web
Ontology Language Reference. W3C Proposed
Recommendation, from http://www.w3.org/TR/owl-ref/

[14] O. Lassila, & R. Swick. (1999). Resource Description
Framework (RDF) Model and Syntax Specification. W3C
Recommendation, from http://www.w3.org/TR/REC-rdf-
syntax/

[15] V. Kashyap and C. Behrens. “The Emergent Semantic
Web: A Consensus approach for Deriving Semantic
Knowledge on the Web”, Proceedings of the International
Semantic Web Working Symposium, July 2001, Stanford,
USA.

[16] M. Denny. “Ontology Building: A Survey of Editing
Tools”, available at
http://www.xml.com/pub/a/2002/11/06/ontologies.html

[17] "A survey on ontology tools." OntoWeb Consortium, 2002.
http://www.aifb.uni-
karlsruhe.de/WBS/ysu/publications/OntoWeb_Del_1-3.pdf

[18] A. Sheth, C. Ramakrishnan. Semantic (Web) Technology
In Action: Ontology Driven Information Systems for
Search, Integration and Analysis. IEEE Data Engineering
Bulletin, Special issue on Making the Semantic Web Real,
26(4), pp. 40-48, 2003.

[19] B. Hammond, A. Sheth, and K. Kochut. Semantic
Enhancement Engine: A Modular Document Enhancement
Platform for Semantic Applications over Heterogeneous
Content. In V. Kashyap & L. Shklar (Eds.), Real World
Semantic Web Applications (pp. 29-49): Ios Pr Inc. 2002.

Towards Ontological Modelling of Historical Documents

Vanesa Mirzaee*, Lee Iverson*, Babak Hamidzadeh†

*Dept. of ECE, University of British Columbia, Vancouver BC
†Boeing Corporation, Seattle WA

vanesam@ece.ubc.ca, leei@ece.ubc.ca, babak.hamidzadeh@boeing.com

Abstract. In this paper we describe a methodology we
have adopted for coding the semantic structure of a
historical document and the resulting semantic model. To
do this, we adapted currently available methodologies for
ontology engineering to the context of semantic document
coding. Using Protégé-2000 we then used this
methodology to develop a formal ontological model and
finally to encode a historical document covering the
evolution of the constitution of modern Iran. The resulting
semantic model was then evaluated by direct reference
back to the set of competency questions and motivating
scenarios used to develop the model. Our implementation
was successful in answering these competency questions
as well as in providing support for the selected scenarios.
The implementation and the evaluation results are
presented along with our proposed future work.

1. Introduction

Until recently, it has been assumed that the main
advantage of electronic formats over printed matter is the
convenience of being able to find the material without
having to physically obtain it from a library or other
repository [9]. However, once we have this information in
a digital format, it is unclear as to how the user might
interact with it besides being able to print it and/or read it.
We believe that digital documents have the potential to
provide us with more functionality than traditional printed
matter does.

In particular, we have chosen to use an ontological
approach to code documents, thus allowing a community
to (1) share and reuse their knowledge, (2) capture the
semantics implicit in the documents, and (3) allow
computational manipulation of the acquired knowledge.
This manipulation of the document’s meaning would
allow automatic reasoning beyond the simple queries and
keyword search provided by current information retrieval
methods.

Consider the case of historical document archives. A
wealth of historical information is now available in digital
form through different resources such as digital libraries.
These digital media usually integrate meta-data that

provides some information about their content [4]. These
collections provide the ability to retrieve the best-matched
documents for any search request. The field of
information retrieval for these kinds of document
collections is an active area of research [6].

Instead of basing these searches on keywords, it
would be ideal for electronic historical archives to provide
methods and techniques of posing and resolving historical
questions and then providing access to the sources of the
claims used to resolve them. For example a historian will
want to query relationships between characters,
institutions, events, and locations of these events.
Significantly, it is vital to capture how these relationships
change over time.

To ground our work, we have chosen to examine a
particular historical document, “History of the Iranian
Constitutional Revolution,” [8] describing the evolution
of the modern state of Iran over a 50-year period. We
suggest that the methodology adopted will apply equally
well to a similar class of documents and that our
ontological model will generalize to any document which
records historical events in a similar manner.

Thus, we have presented an approach to representing
the knowledge within a historical document that allows
such sharing, reuse and automatic reasoning by capturing
its semantic content using ontologies. Next we will
present the methodology used to build an ontological
model to represent the knowledge found in a historical
document. We show this with reference to our example
ontology.

2. Methodology and Implementation

Building a well-developed, usable, and sharable ontology
represents a significant challenge. There is great diversity
in the way ontologies are designed as well as in the way
they try to represent the world.

A range of methods and techniques have been
reported in the literature regarding ontology building
methodologies. However, there is ongoing argument
within the ontology community about the best method to
build them [13; 9; 2]. Given that the knowledge to be

captured usually depends critically on a combination of
the domain and the applications being designed to exploit
this knowledge [14], it is no surprise that these
methodologies are primarily inspired by enterprise
modeling or software engineering. For our purposes, it
was important to scale them down and adapt them to
facilitate document coding.

We divide the ontology building process into the
following stages:

1. Identifying the purpose, scope, and users
2. Domain analysis and knowledge acquisition
3. Building a conceptual (informal) ontology model
4. Formalization
5. Evaluation

In our method, we focus on an evolving prototype of the
ontology. In this model, every step forms part of a
process to evolve the prototype. Moreover, at each stage,
it is possible to go back to any previous stage of the
development process, in order to satisfy emerging
requirements. This makes the evolving prototype useful
for developing any ontology from scratch. Figure 1
illustrates how these steps are related, and in what order
they can be performed to complete the ontology building
process. We make every effort to maintain the following
criteria for each and every stage of the development
process: Clarity; Coherence; Extensibility; Minimal
encoding bias; and Minimal ontological commitment [5;
19].

Figure 1 Our ontology development process. Integration,
Knowledge Acquisition, and Documentation are carried
out throughout the entire development process.

2.1. Identify purpose, scope, and intended users

The main purpose for building this ontology is to capture
the semantics of a historical document, especially the
temporal and dynamic aspects of the concepts and their
interrelations. To promote sharing, reuse and enable
better integration with existing knowledge sources we
relied heavily on the consensual terminology available in
general ontologies. The selected audience included both

the general public and historians and biographers who
might directly access the semantic models.

The requirements gathered were formulated as a set of
competency questions and motivating scenarios that our
model must answer and provide support for. A few of
these competency questions are presented in Table 1.

Table 1 Some Competency Questions

1. Who was Person P?
2. In What Events was Person P involved?
3. What Positions did Person P hold?
4. When did Person P hold these Positions?
5. Who was taking over Person P’s Position Po?
6. What was the governmental position hierarchy at the
time Person P held Position Po?

2.2. Domain analysis and knowledge acquisition

Using the competency questions and scenarios we
then produce a set of concepts and terms covering the full
range of information that the ontology must characterize
to satisfy these requirements. In this phase, we use
knowledge acquisition techniques such as brainstorming,
in conjunction with formal analysis of the text to gather
all potential relevant terms into a glossary [3].

Table 2 Partial view of Glossary of Terms

This glossary includes the terms, their definition or
description, and may include additional information, such
as examples that help understanding these definitions. In
order to provide definitions for the terms, we consulted
dictionaries such as the Merriam Webster Dictionary and
the Oxford Dictionary as well as general purpose
ontologies such as SUMO [18], and WordNet [20]. Table
2 shows a partial view of our glossary of terms.

2.3. Building an informal ontological model

Once we have a relatively complete glossary of terms, we
identify concepts, relations within the concepts, and their

attributes. We use the guideline provided in [14] to do so.
The results are stored in document tables called the
Concept Dictionaries [3]. At this stage, the concepts are
structured into naturally occurring groups using a
combination of the approaches introduced in [14] and
[10]. For example, concepts most related to one another
are placed within the same Concept dictionary. We
categorized our concepts into five concept dictionaries
relating to people, places, events, documents, and time.
Each of these categories holds the concepts that are most
related

For the next step, we use the previously generated
concept dictionaries, along with the motivating scenarios
and a middle-out approach to develop our graphical
conceptual ontology model. The middle-out approach
operates by identifying the most important concepts first
and then generalizing or specializing these concepts
within the group from that point [14]. Our conceptual
model not only represents the concept taxonomy but also
the other (non-taxonomic) relations that hold amongst the
concepts within our domain.
Throughout the ontology building stages, we queried
existing ontology libraries, such as Ontolingua [15] and
SUMO [18] to search for similar or related terms and
relations that might be useful. This was done in order to
speed up the development process as well as to gain a
better insight of how to build a particular area or set of
concepts within our ontology. Thus we were able to build
our ontology on a well-grounded structure. In particular,
the time concepts were derived from general time
ontologies [15; 18; 21] and the temporal relations in
TELOS [12]. Events were based on Sowa’s thematic roles
or case relations [17]. Places were defined using standard
ontologies for geographic information representation and
categorization [1; 7; 11].

Figure 2 shows the top-level concepts in our domain.
We identified five central concepts within our ontology:
AGENT, PLACE, EVENT, DOCUMENT, and TIME.
Every other concept in this domain is defined around
these primitive concepts.

An important characteristic of the proposed
ontological model is its capability to represent temporally
dynamic concepts. This is of particular importance for
historical data since the concepts and the relations
between them change and evolve through time. This is
accomplished by associating a time interval with each
relation, as was done in Telos [12]. Additionally, this
model not only captures the relationships between the
concepts but also demonstrates the interrelated hierarchal
structure within them. An example of such hierarchical
structures found within our document is the governmental
position hierarchy. In this hierarchy, not only do the
people that hold positions change but the structure itself
evolves throughout time.

Figure 2 Overview of main concepts and relations in our
history ontology. Dotted-lines denote the existence of
type reflexive relations within a concept. The time tag on
a relation indicates that a particular relation is time-
dependent.

2.4. Building a formal ontological model

The next step in our approach was to build a formal
ontology based on the conceptual model. After a review
of available ontology development environments, we
selected Protégé-2000 [16] to formalize and instantiate
our ontology. Our selection was based on the tool’s
expressiveness, flexibility, customizability, scalability,
extensibility, and usability. Significantly, it also provided
us with the facilities to test and evaluate our model.

Additionally, Protégé-2000 provides facilities to
impose constraints to concepts and relations. While
creating the ontology, it is necessary to make general
assertions about fundamental concepts, and be able to
later test and ensure these assertions hold across the entire
knowledge-base. For example, in our ontology it was
useful to assert common-sense constraints such as:

• All instances of Person have exactly one birth-
date.

• A Person’s birth-date must precede the death-
date.

• Every Event in which a Person is involved, must
take place between his or her birth-date and
death-date.

• For any given time interval there can only be one
person holding the position “king”.

2.5. Evaluation

After designing, building, and formalizing our ontology
using Protégé and enforcing constraints on attributes and
relations, we used the knowledge acquisition forms
provided in Protégé to instantiate our history ontology.

Over seven hundred and fifty (750) instances were
extracted from the history book and included in our
ontology. Amongst these instances we find people, places,
documents, and events.
In order to evaluate the correctness and completeness of
the created ontology, we use the query and visualization
facilities provided by Protégé. We use the built-in query
engine in Protégé for the simple query searches and use
additional query plug-in provided in Protégé to create
more sophisticated searches. We also use Protégé-
visualization plug-ins to browse the ontology and ensure
its consistency. Visualization aids were particularly
helpful when trying to understand hierarchical relations.

3. Conclusions and Future Work

In this work we confronted the limitations of traditional
electronic documents. In particular we were interested in
capturing the semantics of a historical document to allow
for richer retrieval, reuse and manipulation of its
embedded knowledge than what is capable with standard
text manipulation tools.

 After adapting existing methodologies to the problem
of text coding, we developed an ontology motivated by
historical and biographical needs and the contents of the
book “History of the Iranian Constitutional Revolution.”
Using this ontology, we then encoded the book’s claims
and verified our coding and ontology by proving that the
ontology allowed us to answer all of our category
questions. Our implementation allowed us to get an
overview of the general concepts in this book,
relationships amongst these concepts and provided us
with different methods for visualizing dynamic
hierarchical structures of both governmental positions and
geopolitical interdependencies. Additionally, this model
captures the changes that these relations undergo through
time (dynamicity). The temporal aspects of the knowledge
we captured proved to be useful in making our
representation more accurate and realistic.

In order to facilitate the utilization of models such as
the one developed here, we will require applications that
facilitate interacting with this information. One challenge
will be to develop easy, intuitive interfaces to both access
and query these models that will allow both sophisticated
and naïve users to take advantage of the information they
encode. In addition, we hope to develop ontology
development tools that reflect the methodology developed
and facilitate its application to new domains.

References

[1] Alani, H., Jones, C. and Tudhope, D. (2000). "Ontology-
Driven Geographical Information Retrieval." GIScience
2000.

[2] Beck, H. and Pinto, H. S. (2003). "Overview of Approach,
Methodologies, Standards, and Tools for Ontologies." The
Agricultural Ontology Service (UN FAO).

[3] Blazquez, M., Lopez, M. F., Perez, A. G. and Juristo, N.
(1998). "Building Ontologies at the Knowledge Level
Using the Ontology Design Environment." In Proceedings
of KAW’98, Banff, Canada.

[4] Burchardt, J. (2001). "Archiving the Internet - how to
collect historical sources for the future." International
Conference of the Association for History and Computing,
Poznan, Poland.

[5] Gruber, T. R. (1995). "Toward principles for the design of
ontologies used for knowledge sharing." International
Journal of Human-Computer Studies, 43(5-6), 907-928.

[6] Hockey, S. M. (2000). "Electronic texts in the humanities:
principles and practice." Oxford; New York. Oxford
University Press.

[7] Islam, A. S., Bermudez, L. and Piasecki, M. (2003)
Ontology for Geographic Information-Metadata (ISO-
19115) http://loki.cae.drexel.edu/~wbs/ontology/.

[8] Kasravi, A. (1940). “Hoistory of the Iranian Constitutional
Revolution.” Tehran. Amir Kabir Publications.

[9] Lopez, M. F. and Perez, A. G. (2002). "Overview and
Analysis of Methodologies for Building Ontologies."
Knowledge Engineering Review, 17(2), 129-156.

[10] Lopez, M. F., Perez, A. G., Sierra, J. P. and Sierra, A. P.
(1999). "Building a Chemical Ontology Using
Methontology and the Ontology Design Environment." Ieee
Intelligent Systems & Their Applications, 14(1), 37-46.

[11] Mark, D. M., Skupin, A. and Smith, B. (2001). "Features,
Objects, and other Things: Ontological Distinctions in the
Geographic Domain." Conference On Spatial Information
Theory (COSIT), Morro Bay, CA, USA.

[12] Mylopoulos, J., Borgida, A., Jarke, M. and Koubarakis, M.
(1990). "Telos: Representing Knowldege About
Information Systems." ACM TOIS. 325-362.

[13] Noy, N. F. and Hafner, C. D. (1997). "The state of the art in
ontology design - A survey and comparative review." AI
Magazine, 18(3), 53-74.

[14] Noy, N. F. and McGuinness, D. L. (2001). "Ontology
Development 101: a Guide to Creating Your First
Ontology." Stanford, CA, Stanford University.

[15] Ontolingua. www.ksl.stanford.edu/software/ontolingua/
Knowledge System Labratory, Stanford University.

[16] Protege-2000 http://protege.stanford.edu/index.html.
[17] Sowa, J. F. (2000). "Knowledge Representation: Logical,

Philosophical, and Computational Foundation." Pacific
Grove, CA. Brooks Cole Publishing Co.

[18] SUMO (Suggested Upper Merged Ontology)
http://ontology.teknowledge.com/.

[19] Swartout, B., Patil, R., Knight, K. and Russ, T. (1996).
"Toward Distributed Use of Larg-Scale Ontologies."
Proceedings of KAW'96, Banff, Canada.

[20] WordNet http://www.cogsci.princeton.edu/~wn/.
[21] Zhou, Q. and Fikes, R. (2002). "A Reusable Time

Ontology." Proceeding of the Ontologies for the Semantic
Web Workshop, AAAI National Conference.

Applying Evidential Reasoning to Multiple Source Data Integration for Software
Engineering Decision Support

George Shi, Reda Alhajj, Ken Barker
Department of Computer Science

The University of Calgary
2500 University Dr. NW, Calgary, AB, Canada T2N 1N4

{shig, alhajj, barker}@cpsc.ucalgary.ca

Abstract. In order to make optimal decisions during
software engineering practices, we have to make use all
data available, including lines of code, running time,
performance matrix, market survey, benchmark testing,
etc. Data from these sources may have different
measurement scales and different qualities. Further some
sources may provide incomplete data set. All these
characteristics limit the use of traditional statistics method
for data integration. This paper introduces basic concepts
of evidential reasoning and proposes to integrate multiple
data using evidential reasoning for supporting software
engineering decision-making.

1. Introduction

Software Engineering decision-making such as build vs.
buy, requirements prioritization, selection of COTS
(commercial off the shelf) products, adoption of software
process models, selection of business analysis models, is
very crucial to the success of software development
projects. There has been an increasing interest in
software engineering decision support system (SE-DSS)
from both industry and academia [1,2,3,4,5].

To provide support for decision making during software
practices we have to make use all kinds of information
available. For example, within an organization there is
usually variety of data available such as data from
software measurement, benchmark testing, end user
survey, and market analysis. In order to make optimal
decisions, it is better to use all these data. The reasons lie
mainly in two-fold. A single source may not provide all
the information required for decision-making. On the
other hand, multiple source data may provide software
engineering decision makers with information of higher
accuracy and less uncertainty. Therefore we argue that the

integration of data from multiple sources plays very
important role in implementing any SE-DSS.

Data from different sources are the results of qualitative
or quantitative observations. There are variety of software
engineering related data available in organizations: lines
of code of a package, running time of a process,
performance matrix for a web server, market survey for
reporting products, benchmark testing for DBMS, just to
name a few.

It was summarized [6] that there are four different
measurement scales: nominal, ordinal, interval and ratio.
Nominal data is simply a distinct category and serves only
for labelling or naming the phenomenon. A typical
example would be names of COTS product categories:
OS, DBMS, Web Server, App Server, etc. Although
numerical labels may be assigned to categories, the
numerical values 1, 2, 3, … n in nominal data are
merely symbols. They cannot be manipulated
mathematically. Ordinal data is the results of ranking
measurements. For example, the results of performance
test on a software product could be bad, fair, good and
excellent. Data from different sources may also have
different accuracies and completeness because of different
ways of collection, manipulation and representation. All
these characteristics make it difficult to apply traditional
statistical methods to multiple source data integration.

Evidential Reasoning which is based on Evidential
Theory [11] provides a heuristic scheme for handling data
from multiple diverse sources. In fact it has shown great
potential in other applications such as medical diagnosis
[7], route planning [8], remote sensing classification [9]
and geologic mapping [10]. However, there have been no
publications found on applying Evidential Reasoning to
multiple source data integration for software engineering
decision support.

The remaining sections review the basic concept of
Evidential Reasoning and introduce how to apply it to
integrating multiple data sources for software engineering
decision support. Some practical considerations for
implementing Evidential Reasoning are also proposed.

2. Evidential reasoning

Mathematical theory of evidence proposed by Shafer [11]
is an effective approach for data and/or knowledge
integration. The theory also provides a mathematical
framework for the description of incomplete knowledge.
With this theory, a belief structure, along with mass
function or basic probability assignment functions (BPA)
provides a scheme for representing incomplete knowledge
about a piece of evidence. Dempster’s rule of
combination then provides a tool to combine the total
belief support from different sources. The interval
between ‘belief’ and ‘plausibility’ (low and high
probabilities) presents the uncertainty of the knowledge
about the event.

Mass function or Basic Probability Assignment (BPA)

A set of mutually excusive and exhaustive hypotheses is
called a frame of discernment

�
�
= {h1, h2, h3 …}

Any subset of
�

is also a hypothesis. Beliefs can be
assigned to all possible subset of

�
, denoted by 2 � . If the

set is of size n. it will have 2n subsets. The effect (support
contribution) of each distinct evidence on the subset of

�
can be represented by a function called a mass function,
or basic probability assignment (BPA). The mass
function assigns a number in [0,1] to every subset of

�
such that the numbers sum to 1. That is,

⊂

=
θA

1)A(m (1)

and
0)(m =Φ (2)

where m(A) is the mass function and Φ is the empty set.
In fact, a mass function is a quantitative representation of
evidential support.

Belief function and plausibility function

Based on a mass function, a belief function (Bel) on
hypothesis A is the sum of the mass function values of all
subset of A:

⊂

=
AB

m(B)Bel(A) (3)

Therefore, m(B) is the measure of the portion of total
belief committed to hypothesis A, and Bel(A) is a
measure of the total amount of belief in hypothesis A.

A plausibility function of A, Pls(A), is defined as

≠∩

=¬−=
ΦAB

)B(m)A(Bel1)A(Pls (4)

A¬ denotes the complement of A. Bel(A¬) is the
extent to which A has been refuted by the current
evidence. Bel(A) indicates amount of belief committed
to A based on the given evidence, while Pls(A)
represents the maximum extent to which the current
evidence allows one to believe in A. Both Bel and Pls
can be used in decision rules for selecting the optimal
hypothesis.

Belief interval

Usually Bel(A)≠ Pls(A) and the true probability of A
lies somewhere between Bel and Pls, which is often
referred as the belief interval[Bel,Pls].

One of the advantages of applying Evidential Reasoning
over other reasoning methods is its ability to express
ignorance. The commitment of belief to a subset A does
not force the remaining belief to be committed to its
complement (i.e. Bel(A) + Bel(¬A)≤1). The
amount of belief committed to neither A nor its
complement ¬A is the degree of ignorance which
provides a measure of uncertainty.

Dempster’s rule of combination

The central idea of evidential theory is the transformation
of a large body of evidence (such as many sources) into
manageable components. Dempster’s rule of combination
gives us the aggregation approach to combine different
pieces of evidence to get a joint support and reduce the
uncertainty at the same time.

Let Bel1, Bel2 and m1, m2, denote two belief functions
and their corresponding mass functions or BPAs.
Dempster’s rule defines a new mass function, denoted by
m1⊕m2, which represents the combined support
contribution of m1 and m2 over a subset of hypotheses:

m1⊕m2 (Hk) =

=∩

=∩

−
Φji

ji

BA
j2i1

HBA
j2i1

)B(m)A(m1

)B(m)A(m

(5)

where Hk, Ai, Bj ⊂ �
and i,j,k = 1, 2, …,n.�

is a set of mutually excusive and exhaustive hypotheses
with size of n. The corresponding belief function
Bel1⊕Bel2 may be computed from m1⊕m2 described in
(5). Formula 5 is also called orthogonal summation of
evidential support.

Condition

There is a condition to applying Dempster’s rule of
combination. It requires that two evidential sources be
independent. The independence between sources in the
evidential theory is different in meaning from the
statistical independence. Two highly correlated sources of
data may seem redundant in a statistical sense, but can
improve our confidence on accuracies of decision-making
results.

3. Data integration using Evidential Reasoning

Under the framework of the evidential theory, each
individual data source can be considered as a piece of
evidence. The value of each data source can be treated as
a measurement for evaluating the evidential support
committed to a set of hypotheses. In the context of
software engineering decision-making, the study is
mainly focused on the singleton case. That is, our purpose
is to find out the degree of belief of each individual option
(or hypothesis), for instance, choose a DBMS product for
your backend data repository from a set of options:
H {Oracle, SQL Server, Sybase, MySQL}.
We would be more interested in finding Bel(Oracle),
Bel(SQL Server), Bel(Sybase) and Bel(MySQL) than
knowing Bel(Oracle, SQL Server) or Bel(Oracle, SQL
Server, Sysbase), …etc.

In the example shown in Figure 1, mx1(Hi) is the mass
function representing the degree of evidence X1 in support
of a given hypothesis Hi (i = 1, 2, …, n). For example, in
SE-DSS, it represents the contribution from evidence X1
supporting Option Hi.

Figure 1. Evidence evaluation

In the singleton case, for the data source 1, formula (3)
can be simplified as

1XBel (B) =
1Xm (B)

For the example of COTS product selection, belief can be
interpreted as the minimum amount of evidence
supporting from a data source to an option.

Using Dempster’s rule of combination we can then
combines belief values from different data sources. The
integrated evidential support is used to determine which
hypothesis is the most optimal.

(a) Mass Functions of source 1 and source 2

(b) Orthogonal Summation

Figure 2. Dempster’s rule of combination

Suppose
1Xm and

2Xm are two mass functions for source

1 and source 2, which are two independent bodies of
evidences as shown in Figure 2-a. The combined mass

function denoted as
21 xx mm ⊕ can be computed using

Formula (5) as shown in Figure 2-b.

Source1

Source2

Source3

Sourcek

X1

X2

X3

Xk

Data Sources Measurement Hypothesis

H1

H2

H3

Hn

….

….

mX1(Hi) i= 1, 2, …n

Source1

Source2

Source3

Sourcek

X1

X2

X3

Xk

Data Sources Measurement Hypothesis

H1

H2

H3

Hn

….

….

mX1(Hi) i= 1, 2, …n

mX2(Hi) i= 1, 2, …n

Source1

Source2

Source3

Sourcek

X1⊕ X2

X3

Xk

Data Sources Measurement Hypothesis

H1

H2

H3

Hn

….

….

21 xx mm ⊕ (Hi) i = 1, 2, …n

We can treat
21 xx mm ⊕ as a mass function and apply

Dempsters’ rule of combination to integrate it with
3Xm .

Formula (5) can be used iteratively to combine all
evidence support from different sources.

Because Dempster’s rule is both commutative and
associative, the order of combining multiple independent
pieces of evidence does not affect the result. If the
original pieces of evidence are independent, then the
derived pieces of evidence are independent too [8].

An Example of applying combination rule

The aggregation of the evidential supports from each
distinct data sources or evidence is achieved by
orthogonal summation (Formula 5). It can be applied to
any number of data sources.

Table 1. BPA values for a set of evidence from two
different sources for selection of DBMS product

Oracle SQL Server Sybase MySql
Source 1 0.2 0.3 0.3 0.1
Source 2 0.1 0.3 0.4 0.0

To illustrate the procedure of orthogonal summation,
suppose we want to select a DBMS product which would
be best fit the system that is being developed. Here we

could think of two data sources available: for instance,
one is about performance of query processing and
transaction processing; the other is about security. The
data was independently collected. BPA values in Table 1
indicate the degree of preference on the products. From
table 1 you would notice that none of the row-wise sums
equals 1. Taking source 1 as an example, the residual, [1 –
m1(Oracle) - m1 (SQLServer) - m1 (Sybase) - m1 (MySql)]
can be treated as the degree of ignorance (denoted as
Complement in Table 2).

To calculate m1⊕m2(H), where H ⊂ {Oracle, SQL
Server, Sybase, MySql}, we illustrate the procedure in
Table 2. By integrating data from two sources (source 1
and source 2) based on Evidential Reasoning, we get total
amount of belief for each of the product: Belm1⊕m2(H).
Based on Formula (4), the plausibility values are also
calculated: Plsm1⊕m2(H). The evidential interval gives
us a measurement for the uncertainty of preferences on a
DBMS product.

Table 2 only shows an example with two data sources. As
mentioned above, the Evidential Reasoning combination
rule can be applied iteratively to any number of sources.
The combined belief value and plausibility value can be
used for selection of an optimal DBMS product.

Table 2. Orthogonal summation
Source 1

Source 2
Oracle

0.2
SQL Server

0.3
Sybase

0.3
MySql

0.1
Complement

0.1
Oracle 0.1 Oracle

0.2x0.1=0.02
Φ

0.3x0.1=0.03
Φ

0.3x0.1=0.03
Φ

0.1x0.1=0.01

Oracle
0.1x0.1= 0.01

SQL Server 0.3 Φ
0.2x0.3=0.06

SQL Server
0.3x0.3=0.09

Φ
0.3x0.3=0.09

Φ
0.1x0.3=0.03

SQL Server
0.1x0.3=0.03

Sybase 0.4 Φ
0.2x0.4=0.08

Φ
0.3x0.4=0.12

Sybase
0.3x0.4=0.12

Φ
0.1x0.4=0.04

Sybase
0.1x0.4=0.04

MySql 0 Φ
0.2x0=0

Φ
0.3x0=0

Φ
0.3x0=0

MySql
0.1x0=0

MySql
0.1x0=0

Complement 0.2 Oracle
0.2x0.2 = 0.04

SQL Server
0.3x0.2=0.06

Sybase
0.3x0.2=0.06

MySql
0.1x0.2=0.002

MySql
0.1x0.2=0.02

=∩ Oracleyx

ymxm)()(21

=0.07
=∩ SQLServeryx

ymxm)()(21

=0.18
=∩ Sybaseyx

ymxm)()(21

=0.22
=∩ MySqlyx

ymxm)()(21

=0.02

=∩ Complementyx

ymxm)()(21

=0.02

1 -

Φ=∩yx

ymxm)()(21 = 1 – 0.49 = 0.51

)(21 Hmm ⊕ 0.07 / 0.51 = 0.14 0.18/0.51=0.35 0.22/0.51= 0.43 0.02/0.51= 0.04 0.02/0.51=0.04

)(21 Hmm ¬⊕ 0.35+0.43+0.04=
0.82

0.14+0.43+0.04=0.61 0.14+0.35+0.04 = 0.53 0.14+0.35+0.43=0.92 0.96

Bel 21 mm ⊕ (H) 0.14 0.35 0.43 0.04 0.04

Pls 21 mm ⊕ (H) =
1-)(21 Hmm ¬⊕

0.18 0.39 0.47 0.08 0.04

4. Practical considerations of applying Evidential
Reasoning to multiple source data integration

The key to implementing Evidential Reasoning is to
define mass function or BPA for a data source. Most
implementations of Evidential Reasoning defined mass
function values based on domain experts’ knowledge. In
fact, the representation of evidential support knowledge is
actually a transformation of human experience,
understanding and interpretation of nature into a
computational domain.

Peddle [9] proposed a mass function definition approach
based on frequency of data occurrence. In the applications
of SE-DSS, the value of each data source indicates either
a support or an objection to a set of hypotheses. Since we
can treat these data sources as different pieces of
evidence, the frequency of value occurrences within
available data set such as historical software measurement
data indicates the magnitude of support of the hypothesis
to a certain extent. Using this method to represent the
knowledge of evidential support can deal with data at all
measurement scales. For the example of requirements
prioritization, the priorities values of low, medium, high,
highest may come from different stakeholders (difference
data sources). The frequency of each value may be
considered as evidential support to a requirement item.

After applying combination rule, we obtain an aggregated
belief function over the frame of discernment for making
a final decision. In statistic inference, usually there is only
one choice in the decision-making process. With
Evidential Reasoning, since an evidential interval
bounded by support and plausibility is considered, there
are a number of potential options to choose from to reach
a decision. For example, the decision can be based on a
maximum belief value, a maximum plausibility value or a
maximum sum of belief and plausibility value.

5. Summary and Conclusions

The paper briefly introduced Evidential Reasoning. The
focus was put on how to apply Evidential Reasoning to
data integration for SE-DSS. An example was given on
the details of calculating belief support from different data
sources based on Dempster’s rule of combination. Some
practical considerations are also presented. The evidential
reasoning does show its potential to data integration of

multiple sources for software engineering decision
support although further study is needed for finding
systematic ways of evaluation evidential support (mass
function or BPA). Because data from different sources
can be transformed into evidential belief domain,
Evidential Reasoning can handle the different types of
data. Uncertainty can also be measured through evidential
interval.

References

[1] G. Ruhe: Software Engineering Decision Support -
Methodology and Applications. "Innovations in Decision
Support Systems, International Series on Advanced
Intelligence Volume 3, 2003, pp 143-174.

[2] G. Ruhe: "Intelligent Support for Selection of COTS
Products", Proceedings of the Net.ObjectDays 2002,
Erfurt, Springer 2003, pp 34-45.

[3] G. Ruhe: "Software Engineering Decision Support - A New
Paradigm for Learning Software Organizations",
Proceedings of the 4th Workshop on Learning Software
Organizations, Chicago, Springer 2003, (p140).

[4] D. Karlstrom, P. Runeson: “Decision Support for Extreme
Programming Introduction and Practice Selection”,
Proceedings of the 14th Int. Conference on Software
Engineering and Knowledge Engineering, 2002, Ischia,
Italy.

[5] D. M. Raffo, W. Harrison, J. Vandeville: “Software Process
Decision Support: Making Process Tradeoffs Using a
Hybrid Metrics, Modeling and Utility Framework”, of the
14th Int. Conference on Software Engineering and
Knowledge Engineering, 2002, Ischia, Italy.

[6] D. Unwin, “Introductory Spatial Analysis”, Methuen & Co.
Ltd. 1981, London, UK. 207p

[7] J. Bourne, H. Liu, D. Orogo, G. Collins, N. Uckun, A.
Brodersen, “Organizing and Understanding Beliefs in
Advice-Giving Diagnostics System”. IEEE Transaction on
Knowledge and Data Engineering. 1991, pp269-280

[8] T. Garvey “Evidential Reasoning for Geographic
Evaluation for Helicopter Route Planning”. IEEE
Transaction on Geoscience and Remote Sensing, 1987,
Vol. 25, No. 3, pp. 294-304

[9] D. Peddle, S. Franklin, “Multisource Evidential
Classification of Surface Cover and Frozen Ground”,
International Journal of Remote Sensing, 1992, Vol. 13,
No. 17, pp.3375-338

[10] G. Shi, “Evidential Reasoning for Geological Mapping
with Multisource Spatial Data”, Master Thesis, Dept. of
Geomatics Engineering, The University of Calgary,
Alberta, Canada, 1994.

[11] G. Shafer, “Mathematical Theory of Evidence”, Princeton
University Press, 1976

Decision Support for Planning Software Evolution with Risk Management

D. Greer
Queen's University Belfast

Des.Greer@qub.ac.uk

Abstract. Software evolution planning involves a
decision making process about which changes should be
introduced and when. This process is informed by
knowledge relating to the existing product and its
environment. There will be new enhancements as well as
corrections to known problems. There is also knowledge
of operational risks in the system that could manifest as
problems at some time in the future. To counter these, risk
reduction actions may be recommended. These can be
treated as candidate system changes, with their own costs
and possibly extra benefits. Any system changes will also
carry with them development risks. To mitigate these
further risk reduction actions may be formulated, again
with an associated cost. However, there is typically a
limited budget for the next release of the software. This
constraint, along with that of inter-dependencies between
candidate changes and taking account of the stakeholders
varying attitude to risk means that there is a complex
decision to be made. Using the fact that systems changes
are estimable in terms of cost and benefit and that risks
are estimable in terms of probability and potential impact
cost, an approach is described that combines software
evolution with risk management, incorporating simulation
and genetic algorithms to support the decision making
process. The method links product and project
management and provides support for those involved in
planning system evolution and is evaluated here using a
sample project.

1. Introduction

System evolution is an important part of the software life
cycle. This evolution can be corrective where already
logged errors are fixed, adaptive where a program is
enhanced to meet new requirements, perfective where
performance is improved or preventive where an attempt
is made to correct potential faults [6]. Despite the
potential disruption of software failure, preventive
maintenance receives less attention. Preventative
maintenance accounts for typically 5% of maintenance
activities, according to one empirical study [7]. One of the
reasons for this might be an apparent oversight of the
need for risk management relating to the software

maintenance phase [1]. Hence, there is a need to ensure
that risk management is performed as part of the software
evolution process, including an assessment of operational
risks in the existing system and development risks
associated with any planned changes. Indeed there is an
extra sensitivity to both types of risks in a maintenance
situation due to the reduced opportunity for contingency
planning (due to the constraint of having a legacy system)
and the increased impact of risks occurring (due to a
larger user community to possibly suffer) [1].

Where risks are identified and considered serious
enough, risk reduction actions must be considered. For
example, an operational risk could be that some part of
the software may fail under a certain set of conditions. In
this case a risk reduction action could be to amend the
software to avoid or handle the fault. A development risk
could be that the building of some component takes
longer than expected. This might be mitigated by building
a prototype to test the concept. In both cases there is an
associated cost in making the risk reduction.

Current approaches to planning system evolution,
typically involve the change manager distributing their
budget among bug fixes and identified enhancements
based on subjective benefit estimates and without the
knowledge of the real cost of these and of potential
problems that may be present as risks. However, in
planning the evolution of an existing software system, the
system planner must consider, alongside estimated
benefits, the costs of i) enhancements; ii) corrections of
known problems; iii) risk reduction for identified
operational risks and iv) risk reduction for development
risks associated with planned system changes.

The next section will describe the problem more
formally. Section three will describe the proposed
solution to the problem. Section four will describe a
sample project and will illustrate the proposed evolution
process. In the final section, some discussion on the
results and indication of future research is provided.

2. Problem Description

i) After the review stage for an existing system there is a
set of candidate changes, C. These changes have initially

been established from suggested enhancements and
corrections to the existing system. Each change is
described by a textual description, t, a cost value, e and a
benefit value, b.

C = {(t1,e1,b1), (t2,e2,b2), … (tn,en,bn) }
ii) Also in the existing system, a set of operational risks O
can be identified. These are represented by triplet of user-
assigned values consisting of a description oi, probability
value, pi and impact value ii.

O ={(o1,p1,i1), (o2,p2,i2), … (on,pn,in) }, where 0 pi 1
iii) Considering this set of risks may reveal the need for
risk reduction actions, A, which may also be treated as
changes. Thus, the set of changes is extended to C

C = A C
(iii) Each change in C can alter the probability or impact
values of any of the identified operational risks in O.
Thus, we define a function C

C: (oi,pi,it1) (o,pi ,ii) where pi is new probability
after change C and ii is the new impact value after change
C.
(v) Changes may also introduce new risks. Thus for
change Ci there is a new set of risks, X. Should that
change occur the set of operational risks is expanded to O
where O = O X
(vi) Each change in C may have associated with it a set
of development Risks, D. This set consists of the
quadruplet: the identity of the change c triggering the risk,
the description of the risk, d, the probability, p of the risk
occurring and the impact i of the risk occurring.
D = {(c1,d1,p1,i1), (c2,d2,p2,i2),… (cn,dn,pn,in)}, where ci

C, 0 pi 1
(vii) Further changes, M can be defined to reduce
development risks. These contain the identity of the
development risk d, a description t, a cost e and an
additional benefit b.
M ={ (d1,t1,e1,b1), (d1,t2,e2,b2), …(d1,tn,en, bn)} where di D
Thus, C = M C , D = {(c1,d1,p1 ,i1), (c2,d2,p2 ,i2),…
(cn,dn,pn ,in)}
(viii) We will eventually choose a subset C* from C , but
there may be cases of mutual exclusion. Therefore, we
define a binary relation on C such that (xi,xj)
implies ((xi C*) (xj C*)) = FALSE
(ix) There may also be cases where candidate changes
should be selected together or not at all. Therefore, we
define a binary relation on C such that (xi,xj)
implies (xi C*) XOR (xj C*) = FALSE
x) Suppose a function, returns the mean cost of a set of
changes and a function, returns the mean benefit
accrued from those changes and that there is a user-set
limit of L on the mean cost, then a set C* can be selected
from C .
C* C : (C*) < L, [(C*) - (C*)] is maximised

xi) In any product there may be an operational risk
exposure level that is acceptable. This is represented by
the probability that the mean impact cost () from a
simulation using the remaining operational risks in O is
equal to or exceeds the acceptable probability, p, that a set
impact cost () is incurred.
P()) p
xii) There may also be a development risk exposure level

that is acceptable. This is represented by the probability
that the mean impact cost () from a simulation using the
remaining development risks in D is equal to or exceeds
the acceptable probability, q, that a set impact cost () is
incurred. P()) q

3. Decision Support Solution

Figure 1 describes the approach taken to supporting
system evolution decision support. The process starts with
an analysis of the current system. This can be by
traditional methods, although in previous work, a goal
oriented approach where the existing system is compared
against an ideal model of the system, has proved to be
particularly effective at revealing shortcomings and also
suitable for identifying operational risks in the current
product [4]. This analysis reveals required system changes
(C) and operational risks (O). Consideration of these risks
can induce further system changes that will reduce these
risks (A). These are added to the system changes to
produce a new set of candidate changes (C). These in
turn, are considered for possible development risk (D).
Here it is possible to use risk questionnaires such as those
from the SEI [3]. From these, further risk reductions may
be established (M) and added to form a updated set of
candidate changes (C). The probabilities for the risks are
used to create a discrete probability distribution of costs

O

R
ec

om
m

en
de

d
Sy

st
em

C
ha

ng
es

 (
C

)

Candidate Changes (C)

D
ev

el
op

m
en

t
R

is
k

R
ed

uc
tio

ns
 (

M
)

Optimization (Genetic Algorithm)

Top-ranked Changes (C*)
O

pe
ra

tio
na

l
R

is
ks

R
ed

uc
tio

ns
 (

A
)

Monte Carlo Simulation

DAnalysis

Figure 1: Decision Support Process

using Monte Carlo simulation. At the end of each Monte
Carlo simulation, the genetic algorithm executes.
Together the simulation and the genetic algorithm select
changes from the candidate changes to form a number of
solutions (C*).

Genetic algorithms have been shown to be appropriate
in situations where there are complex relationships
between several factors and consequently a very large
solution space [2] and indeed have already been
successfully employed in similar problems [5].

4. Case Study

In order to illustrate the method, a sample system will be
used, where 10 operational risks have been identified by
risk analysts. Table 1 provides the data for these, the risks
being labelled ORn and each risk having with it a
probability of occurrence over the lifetime of the system
and an estimated impact in cash values.
Table 1: Operational risks for existing system in sample

project
Operational

Risk Probability
Impact
(000’s)

OR1
0.1 8

OR2
0.5 7

OR3 0.2 8

OR4 0.4 14

OR5 0.6 16

OR6 0.7 11.5

OR7
0.9 11

OR8
0.1 10.5

OR9
0.4 17.5

OR10
0.3 6.5

As a result of analysis, considering existing problems
and opportunities for innovation a number of system
changes have been identified as shown in Table 2.
Further, consideration of the operational risks induces
additional risk reduction changes, as shown in table 3.
These have the effect of reducing the risk exposure due to
the risk by either reducing the probability of the risk or
the impact of the risk, or both. In Table 3, C11–C15 have
been added to reduce risks OR5-OR9. In most cases there
is no direct benefit from the change, but to illustrate the
flexibility of our approach, one change (C14) accrues a
small benefit if implemented. In addition, table 4 shows
that some of the risks are addressed by already defined by
system changes. To mimic the real-world possibilities, in
some cases a combination of changes is required to
achieve the risk reduction (e.g. C1+C2 to reduce OR1).

Table 2: System Changes with Costs and Benefits

Change
Cost

($000’s)
Benefit

$(000’s)
C1 16 56
C2 17 54
C3 16 102
C4 19 72
C5 15 86
C6 8 67
C7 23 97
C8 10 36
C9 17 46

C10 14 94
Table 3: Operational Risk Reductions

Change
Cost
(000’s)

Benefit
(000’s)

Risk
Reduced

New
Prob-
ability

New
Impact
(000’s)

C11 8 0 OR5 0 0
C12 7 0 OR6 0.1 5
C13 6.5 0 OR7 0.2 2
C14 9 4 OR8 0 0
C15 5.5 0 OR9 0 0

Table 4: Risk reductions via system changes

Change
Risk

Reduced
New

Probability

New
Impact
(000’s)

C1+C2 OR1 0 0
C2 OR1 0.1 3
C6+C7 OR10 0 0
C14 OR10 0.2 4
C2 OR2 0.4 2
C2 OR3 0.1 4
C3 OR4 0.1 14

While clearly not a desirable effect, the introduction
of new operational risks as a result of the some system
changes may occur. This is illustrated in Table 5.

Table 5: Operational Risks Introduced by Changes

Risk Change Probability
Impact
(000’s)

OR11 C15 0.3 5
OR12 C2 0.4 4

A further factor is that system changes may have risks
associated with the development process. Typically these
are risks relating to budget or schedule and may include
personnel risks, technical uncertainties, changing
requirements, and so on. These development risks for the
sample project are illustrated in Table 6.

For each development risk, there is also the possibility
of one or more risk reduction actions. These potentially

reduce the probability and/or impact of the risk (Table 7)
but have a cost associated with them.

To represent inherent dependencies, pairs of system
changes were deemed to be mutually exclusive:

={(C2,C3),(C4,C6)} (1)
Similarly, the following pair was deemed to be coupled:

 ={(C5,C7),(C7,C10)} (2)
Table 6: Development Risk Assessment

Development
Risk Change Probability

Impact
(000’s)

DR1 C2 0.3 5

DR2 C2 0.5 5

DR3 C4 0.4 16
DR4 C4 0.5 5
DR5 C6 0.6 2
DR6 C6 0.8 5

DR7 C7 0.5 10

DR8 C8 0.9 4

DR9 C8 0.7 3

DR10
C9 0.2 10

DR11
C10 0.1 4

DR12
C10 0.2 10

The overall mean budget for the sample project was
set at 130K, so that no solution was allowed that exceeded
this. A further constraint was in the levels of risk
exposure in the proposed system and in the development
process. For operational risks, the constraint was set that
there should not be greater than a 20% chance of a 10K
impact. For development risk, a 10% chance of a 10K
overspend was acceptable.

Table 7: Risk Reduction Actions on Development Risks

Development
Risk

Risk
Reduct-
ion

Cost
(000’s)

New
Probability

New
Impact
(000’s)

DR1 DRR1 1 1 5
DR2 DRR2 2 2 2
DR2 DRR3 2 1 1
DR3 DRR4 2 0 0
DR4 DRR5 2 0 0
DR5 DRR6 1 3 2
DR5 DRR7 1 0 0
DR6 DRR8 2 0 0
DR7 DRR9 1 1 6

DR8 DRR9 1 0 0
DR9 DRR9 1 1 3
DR10 DRR10 3 2 4
DR11 DRR10 3 1 2
DR12 DRR10 3 1 8

4.1. Simulation

Simulation was achieved by Monte Carlo Analysis with
Latin Hypercube sampling. This is made possible due to
the fact that we have a probability value and an impact
value for each of the risks identified, allowing a discrete
probability distribution to be generated. The probability
value is assumed to be over the lifetime of the system. In
the sample project an arbitrary 1000 iterations were used
as a compromise between obtaining a good distribution
and execution time. When applying Monte Carlo
simulation to existing operational risks (Table 1 and 4),
the probability value is that achieved after any risk
reducing change has occurred if that change has been
selected. Also operational risks introduced into the system
(Table 5), will only apply if a candidate system change
has been selected for implementation. Development risks
(Table 6) are also represented by a simulated probability
distribution based on the estimated probability and impact
of each risk, if it occurs. These are also only taken into
account if the associated change has been selected.
Changes are selected using a genetic algorithm. This and
the Monte Carlo analysis were performed using the
RiskOptimizer software tool from Palisade [8].

Each system change (table 2) along with each risk
reduction activity (table 3) is considered a candidate
action. The genetic algorithm is used to select which of
these are taken. The crossover routine used is that of
uniform crossover as described in [2] and recommended
in [9]. This involves randomly choosing items in each of
2 selected parents to use to create an offspring. The
percentage in the first parent chosen is determined by the
crossover rate. The decision to include a change or not is
a binary one, so that crossover means taking some of the
changes from one chromosome (generated solution),
adding these to a new chromosome and then adding the
changes from a different selected chromosome. Mutation
is performed on the offspring by generating a random
number between 0 and 1 for each item. If the number is
less than or equal to the mutation rate then that variable is
mutated. In our case the decision is whether or not a
system change is included. In this case a mutation is
effectively moving from exclusion to inclusion or vice
versa. Following preliminary investigations a crossover
rate of 0.5 was used and an auto-mutation routine
employed that adjusted the mutation rate automatically
when a population ceased to improve.

4.2. Sample Results

Table 8 provides details of the results produced using the
data from the case study. The objective was to maximise
the profit from the activities selected.

The results show a general exclusion of changes C1,
C3 and C6 from the enhancement type changes and of C13

from the operational risk reductions. This is probably a
result of the mutual exclusion set (1). In the sample
project, development risk reduction DRR5 is included in 7
of the top ten solutions with occasional inclusion of
DRR6, DRR7 and DRR8 in the top ten. C1, C3 and C6 did
occur much further down in the rankings.

In practice, an analyst may take the top-ranked
solution but also consider the third ranked solution which,
in this case, has the same content but includes the
development risk reductions of DRR5 and DRR6 with a
loss in profit of 1K. This is as an acknowledgement of the
uncertainty of the input data and that the analyst should be
able to take account of their own judgement.

Note that the profit values also include any risks that
were realised in the simulation. The operational risk
reduction, C13 and several development risk reductions
did not get selected in any of the top ten solutions,
implying that they were not worth the effort within the
limitations of the project.

Table 8: Top ten ranked solutions

5. Conclusions and Future Research

An approach for supporting the decision process in
planning the evolutions of existing systems has been
described. The approach is novel in 3 ways. (i) As well as

considering corrective and enhancive work, operational
risks in the current system are considered as identification
sources for system change. (ii) Risks are modelled along
with predicted costs using estimated probability and
impact values and using Monte Carlo simulation. This is
not novel in financial applications, but is regarding
software evolution. (iii) A genetic algorithm has been
used to optimise the system evolution plan for profit but
maintaining a cost limit, taking account of inherent
dependencies and ensuring development and operational
risk exposure levels are kept below some limit. Overall,
this decision support approach offers an improvement on
the ad hoc approach currently prevalent, in taking account
of risks as well as costs and benefits allows for a truer
prediction of the likely costs of selecting certain changes,
of accepting certain risks and mitigating others.

There remains some practical problems in collecting
cost, benefit and risk data. One promising approach, from
a previous industrial study [4] is the use of symbols to
represent costs, benefits and probabilities and impact
costs for risks. This approach involved choosing phrases
such as “high” to represent the measure and mapping this
to a preset value. This work was successful in capturing
cost and risk data, requiring minimal expertise from the
project planner, other than past experience. Incorporating
this work further constitutes future work which will also
involve further empirical studies of the approach, and the
various trade-offs involved.

M
ea

n
P

ro
fit

12
9.

6

12
9.

1

12
8.

6

12
7.

6

11
7.

1

11
6.

6

11
6.

1

11
5.

6

11
5.

1

11
2.

0

M
in

.

86
.5

83
.5

85
.5

84
.5

63
.5

60
.5

62
.5

59
.5

68
.0

62
.5

M
ax

.

17
2.

5

16
9.

5

17
1.

5

17
0.

5

16
7.

0

16
4.

0

16
6.

0

16
3.

0

15
8.

5

15
4.

5

Rank 1 2 3 4 5 6 7 8 9 10
C2

C4

C5

C7

C8

C9

C10

Sy
st

em
C

ha
ng

es

C11

C12

C14

C15

O
p.

 R
is

k
R

ed
.

DRR5

DRR6

DRR7

DRR8

D
ev

. R
is

k
R

ed
.

6. References

[1] Charette, R.N.; Adams, K.M.; White, M.B, Managing
Risk in Software Maintenance, IEEE Software, Volume:
14 (3), 1997. pp. 43 – 50.

[2] De Jong, K A. An Analysis of the Behavior of a Class of
Genetic Adaptive Systems, Doctoral Thesis, Univ.
Michigan, Ann Arbor 1975.

[3] Dorofee, A., Walker, J., Alberts, C.J., Higuera, R.P.,
Murphy, R.L. and Williams, R.C., Continuous Risk
Management Guidebook, Software Engineering Institute,
Carnegie Mellon University, 1996.

[4] Greer, D., Bustard, D. and Sunazuka, T. Prioritisation of
System Changes using Cost-Benefit and Risk
Assessments, Fourth IEEE International Symposium on
Requirements Engineering, pp 180-187, June, 1999.

[5] Greer, D. & Ruhe, G., Software Release Planning: An
Evolutionary and Iterative Approach, J. Information and
Software Technology, vol. 46, issue 4, pp 243-253, 2004.

[6] IEEE. 1993. IEEE Standard for Software Maintenance.
IEEE Std 1219-1993. IEEE, New York, NY.

[7] Kemerer, C.F. & S. Slaughter, Determinants of Software
Maintenance Profiles: An Empirical Investigation, J.
Software Maintenance, vol. 9, 1997, pp. 235-251.

[8] Palisade Corporation, Guide to RISKOptimizer: Release
1.0, October, 2001, Palisade Corp.

[9] Spears, W.M.; De Jong, K.A., On the virtues of
parameterized uniform crossover, Proc. International
Conference on Genetic Algorithms, pp. 230-237, 1991.

Machine Learning-Based Quality Predictive Models: Towards an Artificial
Intelligence Decision Making System

Hakim Lounis Lynda Ait-Mahiedine
Department of Computer Science
Université du Québec à Montréal,

Canada

Department of Computer Science and
Operations Research

Université de Montréal, Canada
lounis.hakim@uqam.ca aitmemel@iro.umontreal.ca

Abstract. The ISO/IEC international standard (14598)
on software product quality states that “Internal metrics
are of little value unless there is evidence that they are
related to external quality”. Many different approaches
have been proposed to build such empirical assessment
models. Different Machine Learning (ML) algorithms
are explored with regard to their capacities of producing
predictive models. The predictability of each model is
then evaluated and their applicability in an Artificial
Intelligence (AI) decision-making system is discussed.

1 Introduction

Integration of metrics computation in most popular
CASE tools is a marked tendency. Software metrics
provide quantitative means to control the software
development and the quality of software products. They
are necessary to identify where the resources are needed,
and are a crucial source of information for decision-
making. Moreover, early availability of metrics is a key
factor to a successful management of software
development.

As it is stated by the ISO/IEC international standard
(14598), internal metrics are especially helpful when
they are related to external quality attributes, e.g.,
maintainability, reusability, etc. Predictive models can
take different forms depending on the building technique
that is used. For example, they can be mathematical
models (case of statistical techniques like linear and
logistic regression) or AI-based models (case of ML
techniques). In all cases, they allow affecting a value to
a quality characteristic based on the values of a set of
software measures, and they allow the detection of
design and implementation anomalies early in the
software life cycle. They also allow organizations that
purchase software to better evaluate and compare the
offers they receive.

As far as we know, Selby and Porter [1] have been the
first to use a ML classification algorithm to
automatically construct software quality models. They

have used ID3 [2], a ML classification algorithm, to
identify those product measures that are the best
predictors of interface errors likely to be encountered
during maintenance. After Selby & Porter, many others,
e.g., [3], [4], have used ML classification algorithms to
construct software quality predictive models. More
recently, De Almeida & al. [5] have investigated ML
algorithms with regard to their capabilities to accurately
assess the correctability of faulty software components.
Three different families algorithms have been analyzed
on the same data than those used by [3], and FOIL [6],
an inductive logic programming system, presented the
best results from the point of view of model accuracy.

In the present work we reaffirm that machine-learning
approaches, as they are classified in a well-accepted
taxonomy [8], are of a significant help for the building
of software quality predictive models. This statement is
strengthened when the main purpose is the conception of
a Knowledge-Based System (KBS) for quality
assessment. KBSs are used in numerous application
domains. They are used to reproduce an expert’s
reasoning and are based on two distinct components:
knowledge and reasoning. Separation between these two
levels of intervention makes it possible to offer a
flexibility of operation that many traditional software
approaches are missing. KBSs are presently an effective
and useful solution to integrate the necessary analyses of
software engineer experts and to meet the needs of the
software industry, in terms of quality. It is especially
true when we consider the recent progress done within
the tools that help KBSs design.

In the balance of this paper, we first briefly present in
section 2 the different ML approaches we have
analyzed. In section 3, we introduce the three working
hypotheses we have stated and verified with the ML
algorithms. Section 4 provides the experimental results
we have obtained. Finally, conclusions, current research
and directions for future research are outlined and the
architecture of a KBS for quality assessment is
proposed.

2 Artificial Intelligence Approaches

Machine Learning is a prolific subfield of AI where
many approaches have been developed. The taxonomy
[8] in figure 1 illustrates only a subset of them:

Figure 1. Machine Learning Taxonomy

Most of the work done in machine learning has focused
on supervised machine learning algorithms. Starting
from the description of classified examples, these
algorithms produce definitions for each class. The most
popular approach is an induction one - the divide and
conquer approach -. In this approach, a decision tree
generally represents the induced knowledge. It is the
case of algorithms like ID3 [2], CART [9], ASSISTANT
[10] and C4.5 [11]. This algorithm could summarize
their principle:

If all the examples are of the same class
 Then- Create a leaf labeled by the class name;
 Else

- Select a test based on one attribute;
- Divide the training set into subsets, each
associated to one of the possible values of the
tested attribute;
- Apply the same procedure to each subset;

Endif.

The key step of the algorithm above is the selection of
the “best” attribute to obtain compact trees with high
predictive accuracy. Information-based heuristics have
provided effective guidance for the division process.

OC1 (Oblique Classifier 1) is also a decision tree
induction system designed for applications where the
instances have numeric (continuous) feature values,
which is the case in our study. However, it builds
decision trees that contain linear combinations of one or
more attributes at each internal node:

1
1

k
ki

i
ii axa

These trees then partition the space of examples with
both oblique and axis-parallel hyper planes. More
details on this algorithm are given in [12].

The induction of rules is another important ML branch.
Because the structure underlying many real-world
datasets is quite rudimentary, and just one attribute is
sufficient to determine the class of an instance quite
accurately, it turns out that simple rules frequently
achieve surprisingly high accuracy. The pseudo-code for
such an approach (called one rule) is the following:

Machine
Learning

Deduction Induction
For each attributeAnalogy

For each value of that attribute, make a rule as
follows:Neural

networks - Count how often each class appears;Case-based
learningProbabilistic

algorithms
- Find the most frequent class;
- Make the rule assign that class to this

attribute value;Induction of
rules

Induction of
decision trees

Calculate the error rate of the rules;
Choose the rules with the smallest error rate.

The covering algorithms illustrate a more sophisticated
approach. They represent classification knowledge as a
disjunctive logical expression defining each class. CN2
[13] is an instance of such a family. The following
algorithm could summarize it:

- Find a conjunction that is satisfied by some
examples of the target class, but no examples from
another class;
- Append this conjunction as one disjunct of the
logical expression being developed;
- Remove all examples that satisfy this conjunction
and, if there are still some remaining examples of
the target class, repeat the process.

In the case-based learning (CBL) approach the training
examples are stored verbatim, and a distance function is
used to determine which member(s) of the training set is
closest to an unknown test instance. Once the nearest
training instance(s) has/have been located, its class is
predicted for the test instance. Although there are
multiple choices, most instance-based learners use
Euclidian distance. Despite several practical problems, it
is considered as a good compromise.

The multilayer perceptron is probably the most widely
used neural network architecture to solve classification
problems with supervised learning. It consists of an
input layer, one or more hidden layers, and an output
layer of neurons that feed one another via synaptic
weights. The input layer simply holds the data to be
classified. The outputs of the hidden and output layers
are computed, for each neuron, by calculating the sum of
its inputs multiplied by its synaptic weights and by
passing the result through an output function. The

synaptic weights of the hidden and output neurons are
determined by a training procedure where examples of
the patterns to be learned are presented successively, and
where the weights are adjusted so as to minimize the
error between the obtained classification results and the
desired ones. The standard training procedure for the
multilayer perceptron uses the backpropagation
algorithm [14] or one of its derivatives. For instance, the
resilient backpropagation (RPROP) algorithm [15] has
faster learning and a better overall performance than
regular backpropagation or backpropagation with a
momentum [14].

Lastly, Bayesian techniques have long been used in the
field of pattern recognition, but only recently have they
been taken seriously by ML researchers [16] and made
to work on data sets with redundant attributes and
numeric attributes. Such a probabilistic algorithm is
trained by estimating the conditional probability
distributions of each attribute, given a class label. The
classification of a case, represented by a set of values for
each attribute, is accomplished by computing the
posterior probability of each class label, given the
attributes values, using Bayes’ theorem. The case is
assigned to the class with the highest posterior
probability. The following formula corresponds to the
probability of the class value C=cj given the set of
attribute values ek={A1=a1k, …, Am=amk}:

c

h

m

k hhik

m

k jjik
kj

cpcap

cpcap
ecp

1 1

1

)()/(

)()/(
)/(

Recent empirical evaluations have found the Bayesian
algorithms to be accurate [17] and very efficient at
handling large databases (e.g., data mining tasks). The
simplifying assumptions underpinning the Bayesian
algorithms are that the classes are mutually exclusive
and exhaustive and that the attributes are conditionally
independent once the class is known. It is a great
stumbling block; however, some attempts are being
made to apply Bayesian analysis without assuming
independence.

3 Working Hypotheses

The goal of this work is double: (i) to prove that ML
algorithms can have predictive accuracies as good as
those of other approaches, and, (ii) to consider the use of
the learned models within a knowledge-based
architecture. To do that, we consider hypotheses linking
internal measures to three different quality attributes.

The first hypothesis (let us call it, H1) concerns the
relevance of some internal product measures for
assessing corrective maintenance costs. Many different
approaches have been proposed to build corrective

maintenance estimation/evaluation models. To do so,
and as in [3] and [5], we have used (1) data collected on
corrective maintenance activities for the Generalized
Support Software reuse asset library located at the Flight
Dynamics Division of NASA's GSFC and (2) internal
product measures extracted directly from the faulty
components of this library, e.g., size metrics, cyclomatic
complexity, Hastead’s metrics, etc. The corrective
maintenance data come from the maintenance of a
library of reusable components. We have dichotomized
the corrective maintenance cost into two categories: low
and high. For more details about the data, please see [5].

The second hypothesis is about the impact of three
internal characteristics (inheritance, coupling and
complexity) of OO applications on reusability.
Reusability is a complex factor, which is domain
dependent. Some components are more reusable in one
domain than in others. Our goal is not to search for a set
of methods measuring reusability universally but to
study some specific aspects and characteristics
pertaining to OO programming languages, e.g. C++ that
affect reusability. We propose four reusability
hypotheses (H21, H22, H23, and H24) regarding the
relationships between reuse and each of inheritance,
coupling (at the code and design level), and complexity,
respectively. Different aspects can be considered to
measure empirically the reusability of a component
depending on the adopted point of view. One aspect is
the amount of work needed to reuse a component from a
version of a system to another version of the same
system. Another aspect is the amount of work needed to
reuse a component from a system to another system of
the same domain. This latter aspect was adopted as the
empirical reusability measure for our experiments. To
define the possible values for this measure, we worked
with a team specializing in developing intelligent
multiagents systems. The obtained values are:

1. Totally reusable: means that the component is
generic to a certain domain (in our case "intelligent
multiagents systems").

2. Reusable with minimum rework: means that less
than 25% of the code needs to be altered to reuse the
component in a new system of the same domain.

3. Reusable with high amount of rework: means that
more than 25% of the code needs to be changed
before reusing the component in a new system of the
same domain.

4. Not reusable at all: means that the component is too
specific to the system to be reused.

For more information about the data, see [7].

Finally, the goal of the third hypothesis is to empirically
investigate the relationships between object-oriented
design measures and fault-proneness at the class level.

We select a practical measure of fault-proneness as the
dependent variable for our study: in a non-faulty
component, there was not any change of corrective type
and in a faulty one, there were one or more changes of
corrective type during the development/maintenance
phase. The measures of inheritance, coupling, and
cohesion identified in a literature survey on object-
oriented design measures are the independent variables
used in this study; we obtain 3 more hypotheses called
H31, H32, and H33. We focus on design measurement
since we want the measurement-based models
investigated in this study to be usable at early stages of
software development. Furthermore, we only use
measures defined at the class level since this is also the
granularity at which the fault data could realistically be
collected. More details about used data are in [18].

4 Hypotheses Verification and Predictive
Models Accuracy Computation

Figure 2 illustrates the different steps of the empirical
process we follow to verify the 8 hypotheses stated in
section 3.

Predictive models production

Figure 2. Empirical Process

From the ML taxonomy presented in section 2, we select
7 algorithms representing different approaches. Finally,
the computation of models accuracy is done thanks to a
cross-validation procedure. It is helpful when the
amount of data for training and testing is limited; we try
a fixed number of approximately equal partitions of the
data, and each in turn is used for testing while the
remainder is used for training. In the end, every instance
has been used exactly once for testing.

Table 1 summarizes the accuracy computed for each of
the 8 models. Dark grey cells show accuracies greater
than 75%, and light grey ones contain accuracies
between 60% and 75%.

The accuracies computed for yet studied ML algorithms
are confirmed by this study. As we were expecting, C4.5
(decision tree), CN2 (covering rules), and the RPROP
neural network present the best result in terms of

predictive power. Even, simplistic algorithms (e.g., one
rule and naïve Bayes) show some results higher than
60%! On the other hand, a basic CBL algorithm shows
promising results; these results could be improved by
changing, for instance, the distance function. Lastly,
OC1 gives some interesting results, mainly for
hypotheses H31, H32, and H33.

Table 1. Computed Accuracies (%)
Stated
Hypotheses
ML algos

H1 H21 H22 H23 H24 H31 H32 H33

C4.5 66 73.8 86.9 88.1 89.3 73.8 77.5 73.7

OC1 68.8 48.8 51.2 53.6 54.8 72.5 73.8 70.9

One-rule 58.5 45.2 53.6 56 42.9 72.5 76.3 65.8

CN2 54 67.3 62.5 63.1 60 87.5 78.5 72.2

CBL 56.7 54.8 66.7 63.1 60.7 73.8 71.3 70.9

RPROP
neural net

56.7 56.3 75 75 68.8 81.3 75 81.3

Naïve Bayes 54.9 45.2 46.4 57.1 45.2 36.2 68.8 70.9

In terms of selected internal metrics, we found a certain
uniformity between the different models, and we
confirm some results previously published. For instance,
various ML algorithms select CSB (size of the object in
bytes) as a complexity metric having an impact on the
reusability of the component. It is also the case for
design export coupling metrics like OCAEC and
OMMEC. They are selected by numerous ML
algorithms as relevant for assessing the reusability of a
C++ class. On the other hand, the classic CBO metric
(the number of other classes to which a class is coupled),
and methods invocation, e.g., ACMIC (ancestor class
method import coupling), RFCOO (the number of
methods that can potentially be executed in response to a
message received by an object of that class), and IH-ICP
(the number of ancestor methods invocation in a class,
weighted by the number of parameters of the invoked
methods) are identified as relevant design coupling
measures for fault-proneness assessment. In the case of
inheritance measures, NMI (the number of methods
inherited), NMO (the number of overridden methods),
and DIT (the maximum length from the class to a root)
are the three that are retained as relevant for our fault-
proneness hypothesis.

Hypothesis proposal

Metrics selection

Models evaluation

5 Towards an AI Decision Making System

This work aims first at showing that ML algorithms are
a serious alternative for the production of quality
predictive models. Despite the fact that obtained
accuracies are broadly high, we know that for some ML
algorithms, e.g., C4.5 and CN2, the results will be much
higher with non-continuous numeric data. Our past work

on the fuzzyfication of such measures [7] is an example
of such a data pre-processing step. It also gives a
solution to the problematic use of precise metric
thresholds values. We are now working on a pre-
processing tending to discretize such attributes, based on
statistical considerations.

On the other hand, the main strength of ML produced
models is that we can incorporate them in an AI
decision-making process, where, a KBS architecture
keeps a good separation between what we consider as an
expert knowledge (the produced models) and the
procedures that exploit this knowledge. We are working
on an object-oriented (OO) knowledge-based
architecture, which allows us (i) analyze OO source
code, (ii) compute internal metrics, (iii) produce ML-
based predictive models, and (iv) exploit these models
by an inference system. Even the KBS is object-
oriented, as we use the ILOG Jrules1 API for build it.
Figure 3 illustrates such an architecture.

Figure 3. An OO KBS for quality assessment

One distinction between C4.5 and CN2 (for instance)
from one part, and RPROP from the other part is on the
induced knowledge. The two first produce explicit
pieces of knowledge, e.g., rules or decision trees, that
could be stored in a knowledge base and exploited by a
knowledge-based system in a decision making process.
RPROP doesn’t produce any kind of explicit knowledge.
However, it allows predicting a quality attribute value,
giving some internal measures values. In this case, we
talk about implicit knowledge.

References

[1] A. Porter, R. Selby, “Empirically-guided software
development using metric-based classification trees”, IEEE
Software, 7(2):46-54, 1990.

[2] J.R. Quinlan, “Induction of decision tree”, Machine
Learning journal 1, p 81-106, 1986.

1 ILOG: www.ilog.com

[3] V. Basili, S. Condon, K. El Emam, R. B. Hendrick, W. L.
Melo, “Characterizing and Modeling the Cost of Rework in a
Library of Reusable Software Components”, In Proc. of the
IEEE 19th Int’l. Conf. on S/W Eng., Boston, MA, 1997.

[4] M. Jorgensen, “Experience with the Accuracy of Software
Maintenance Task Effort Prediction Models”, In IEEE TSE,
21(8):674-681, 1995.

[5] M.A. De Almeida, H. Lounis, W. Melo, "An Investigation
on the Use of ML Models for Estimating Software
Correctability", In the Int. Journal of Software Eng. and
Knowledge Eng., special issue on Knowledge Discovery from
Empirical Software Engineering Data, 1999.

[6] J.R. Quinlan, “Learning Logical Definitions from
Relations”, In ML journal, vol 5, n°3, p 239-266, 1990.

[7] H.A. Sahraoui, M. Boukadoum, H. Lounis, “Building
Quality Estimation models with Fuzzy Threshold Values”, In
“L’objet”, volume 7, numéro 4, 2001.

[8] Y. Kodratoff, “Apprentissage symbolique : une approche
de l’IA”, tome 1&2, Cépaduès-Editions, 1994.

[9] L. Breiman, J. Friedman, R. Olshen, C. Stone,
“Classification and Regression Trees”, Published by
Wadsworth, 1984.

Implicit Knowledge

Explicit

Knowledge

Knowledge
BaseML Framework [10] B. Cestnik, I. Bratko, I. Kononenko, “ASSISTANT 86: a

knowledge elicitation tool for sophisticated users”, Progress in
machine learning, Sigma Press, 1987.

Projects
Data [11] J.R. Quinlan, “C4.5: Programs for Machine Learning”,

Morgan Kaufmann Publishers, 1993.
Data Sets Decision Engine

[12] S.K. Murthy, S. Kasif, S. Salzberg, “A System for
Induction of Oblique Decision Trees”, Journal of Artificial
Intelligence Research 2, 1-32, 1994.

Object-Oriented Static Analysis Framework

[13] P. Clark, T. Niblett, “The CN2 induction algorithm”, In
ML Journal, 3(4):261-283, 1989.

[14] D. E. Rumelhart, J. L. McClelland, ed., Parallel
Distributed Processing, Explorations in the Microstructure of
Cognition; vol. 1: Foundantions, MIT press, 1986.

[15] M. Riedmiller, H. Braun, “A Direct Adaptive Method for
Faster Backpropagation Learning: The RPROP Algorithm”,
Proc. of the IEEE Intl. Conf. on Neural Networks, San
Francisco, CA, 1993.

[16] P. Langley, W. Iba, K. Thompson, “An analysis of
Bayesian Classifiers”, In Proc. of the National Conference on
Artificial Intelligence, 1992.

[17] R. Kohavi, “Scaling up the accuracy of naive-Bayes
classifiers: a decision-tree hybrid”, In Proc. of the 2nd Int.
Conference on Knowledge Discovery and Data Mining, 1996.

[18] L.C. Briand, J. Wust, H. Lounis, “Replicated Case Studies
for Investigating Quality Factors in Object-Oriented Designs”,
In Empirical Soft. Engineering, an Int. Journal, 6 (1):11-58,
2001, Kluwer Academic Publishers.

Requirements for a Tool in Support of SE Technology Selection

Andreas Jedlitschka and Dietmar Pfahl
Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6, 67661 Kaiserslautern, Germany
{Andreas.Jedlitschka; Dietmar.Pfahl}@iese.fraunhofer.de

Abstract. Decision support in software engineering is an
emerging field. The need to select the best method,
technique or tool in a given business context is becoming
increasingly important. In today’s software development
organizations, technologies are employed that frequently
lack sufficient evidence regarding their suitability, their
limits, qualities, costs, and inherent risks. This paper
presents ongoing research towards the development of a
decision support system that aims at improving software
engineering technology selection by software managers.
To develop such a system, a multiple-step requirements
analysis, consisting of a literature survey, a pilot study
amongst research managers, and the analysis of
additional use cases, was performed. The focus of this
paper is on presenting and discussing the results of this
three-step requirements analysis process.

1. Introduction

Software engineering decision support (SE-DS) is an
emerging field [1, 2]. One of the major goals of SE-DS is
to support software managers in selecting suitable SE
technologies. Suitability implies the existence of a defined
level of evidence about the effectiveness of a specific SE
technology in a given context. Similar to work done in the
area of empirical software engineering (ESE), SE-DS
implies data collection, analysis, and modeling. In
addition, SE-DS involves model application, possibly
supported by software infrastructure.

In this paper, we rely on a new approach to
comprehensive SE-DS [3]. This approach does not require
process simulators but enhances the power of existing
software engineering decision support systems (SE-DSS)
that focus on providing local evidence. Examples of such
systems include the ESERNET repository [4, 5]. The
trade-off as compared to using process simulators is that
technology interaction and development context can only
be modeled in a black box like manner via pre/post-
conditions.

The focus of this paper is on requirements elicitation
for comprehensive SE-DSS serving software managers in

making SE technology selection decisions aligned to
project goals and/or business objectives.

The structure of the paper is as follows. Section 2
reviews the sets of generic requirements to SE-DSS
proposed by others. Section 3 and 4 present our
requirements elicitation process for a comprehensive SE-
DSS. Section 5 maps our findings to a standard
architecture and a generic requirements classification
framework. The paper concludes with a brief discussion
of the results and an outlook to future work.

2. Generic Requirements for SE-DSS

Several authors have proposed sets of requirements for
SE-DSS on various levels of abstraction. Ruhe [1], for
example, suggests nine categories of SE-DSS
requirements. The focus of his analysis is on requirements
“that combine the intellectual resources of individuals and
organizations with the capabilities of the computer to
improve effectiveness, efficiency and transparency of
decision-making”.

Also related to our proposal of building a
comprehensive SE-DSS is the work done by Biffl et al.
[6]. They describe functional and non-functional
requirements of a knowledge management system that
builds upon a framework to support software inspection
planning.

3. Requirements Elicitation via expert interviews

The purpose of conducting expert interviews was to elicit
a relevant and reliable set of requirements for a
comprehensive SE-DSS. In order to be relevant,
interviewees had to be sufficiently mature with regards to
software management experience. In order to be reliable,
a sufficient number of subjects had to be interviewed.
Being a research institute that is largely involved in
conducting research and transfer projects with software
industry, Fraunhofer IESE offered enough experts to
conduct a pilot study. In total, seven business area
managers, one institute director, and one department head
participated in the pilot study. Business area managers are

senior consultants who establish and maintain contacts
with industrial partners, acquire projects, and help transfer
research results into industrial environments. Personal
industrial project experience within the group of
interviewees ranged from 5 to 17 years.

We used structured interviews for requirements
elicitation. Each interviewee had to answer seven
questions. All questions were formulated as open
questions (i.e., “yes” or “no” answers were not feasible).

In order to help interviewees imagine concrete
decision support tasks and situations in which a
comprehensive SE-DSS might (or might not) be helpful,
we offered three scenarios. A scenario consisted of a
common part that served for setting the scene of
management decision-making (i.e., what kind of
information can be obtained, what is the basis for decision
support, what is not available), and specific parts linked to
the following: (1) quality manager, (2) project manager,
and (3) product manager.

The questionnaire was developed in collaboration with
an expert in cognitive psychology and was based on
experience gained in previous projects (cf. for example
[7]). The questions not only aimed at eliciting
requirements from potential future users of a
comprehensive SE-DSS, but also to substantiate the
validity of the scenarios offered to the interviewees.

The interviews were conducted as follows.
Interviewees received the common part of the scenario
description and two role-specific scenario descriptions a
couple of days prior to the interview. When the interview
started, first the role-specific scenario was presented to
the interviewee. Then, the interviewee was asked to
answer the questions from the perspective of the first role.
When all questions related to the first role had been
answered, the second role-specific scenario was presented
to the interviewee, and the interviewee was asked to
assume the second role and think about differences in the
requirements for that role. ¾ of the time were assigned to
the first role, ¼ to the second role. Eight of the nine
interviews were recorded with an MP3 stick. In one case,
a scribe recorded the interview on paper. All interviews
lasted between 25 and 35 minutes.

Table 1. Scenario assignments to interviewees
Interviewee A B C D E F G H J

Role 1 1 2 1 1 2 1 1 2
Role 2 3 3 2 3 3 2 3 3
Each interviewee was randomly assigned to two of the

three specific roles (c.f. Table1; 1 = quality manager; 2 =
project manager; 3 = product manager). The purpose of
having different scenarios for three different management
roles was to find out whether these differ in their user
requirements. The set of questions was not sent to the
interviewees in advance. Also, there was no

communication between interviewees about the content of
the interviews while the study was conducted.

The procedure we used to aggregate and synthesize
the answers given by the interviewees was inspired by the
grounded theory approach [8]. We started the
transcription with the first interview and the first question.
Then we took the next interview and tried to find
communalities and differences related to the first answer
of the first question. If a similar answer was found, the
counter of the first answer to the first question was set
from 1 to 2. If no sufficient similarity was encountered,
then the new answer from the second interview was added
to the list of answers related to the first question. When all
interviews were checked for question one, we repeated
this procedure for question two, starting with the first
interview. If an answer was found to be more related to
another question, it was re-assigned to that question,
following the procedure described above. After having
processed all answers related to all questions, we double-
checked that the aggregated and synthesized answers still
represented sufficiently well the set of answers originally
provided by the interviewees.

In addition to counting the occurrence of similar
answers, a binary ranking was made: the interviewee (H)
explicitly or intuitively expressed high importance of the
response to the question, (M) either explicitly ranked it as
medium important or did not clearly rank it as highly
important. The process of aggregation and ranking
resulted in Tables 2 to 6.

Table 2. Motivation for DSS usage (question 1)
Why would you use a DSS in the given situation?

H M
1.1 To get faster, broader, independent and empirically

validated information about effectiveness and
efficiency of a particular SE technology.

2 3

1.2 To answer the question: Which SE technique is
most efficient / effective in a particular context
(organization, process, product, documents)?

1 2

1.3 To get an overview on the existing techniques. 1 1
1.4 To get quantitative information (costs, quality level,

defect reduction rate) about effectiveness and
efficiency of a SE technique; people often tend to
deliver qualitative information.

3

1.5 Access to external information, which are otherwise
not easy to get

2 2

Table 3. Benefits for organizational improvement
management (question 2)

How could a DSS contribute to organizational
improvement management? H M
2.1 By connecting it with the internal software

improvement management
(One interviewee gave the hint that this connection
will only work in one direction, i.e. data will be
imported from the DSS into the organizational
improvement management but not vice versa)

3

1

2.2 By enhancing experience management 1 1
2.4 By benefiting from experience of others 3

Table 4. Interaction preferences (question 3)
Two alternative interaction strategies.

Table 4. Similar to a search engine but more
specialized.

2. Iterative refinement of the solution area by user model
 based interaction.
Which strategy would you prefer, and why?

H M

3.1 A combination of the alternatives is preferable 3 4
3.2 Transparency is important: Why did I get this result

set? Access to the full set should be possible
4

3.3 Not answering lots of questions, but fill in a
template with check-boxes

2

3.4 Especially in case of a huge result set, the second
alternative becomes more attractive

3 1

3.5 Guidance for reducing the result set (e.g., use the
context to reduce result set)

3

3.6 Interaction has to be goal/problem oriented 1

Table 5. Types of information needed (questions 4+5)
Results from empirical studies can be described and
aggregated differently. Which information should be
provided by the DSS?

H M

4.1 Which techniques are available (information on a
highly aggregated level)?

3 1

4.2 How effective/efficient is a certain technique with
respect to which quality aspect?

3 2

4.3 Description of the process in which a SE technique
shall be applied

1

4.4 Costs for introducing/applying the SE technique 2 2
4.5 To get information about the impact a single SE

technique has on the whole development process
1

4.6 Information that allows for conclusions about the
validity of empirical results associated with a
particular SE technique

3 2

4.7 Context information (kind of system, programming
language, process step)

2 1

4.8 Preconditions that have to be fulfilled prior to the
application of the SE technique (e.g., skills, kind of
documents available)

1 1

The fifth question was used to prioritize different
types of information obtainable from controlled
experiments. Answers to this question were aggregated
with responses given to the fourth question (cf. Table 5).

Table 6. Presentation preferences (question 6)
How should the information be presented?

H M
6.1 Profile for each SE technique (details on request) 1 1
6.2 Aggregated information in multiple graphical

presentation
5 1

6.3 Easy-to-understand, self-explaining diagram 6 1
6.4 Easy-to-understand, self-explaining table 7 1
6.5 Executive management summary 1

The seventh question was not intended to elicit new
requirements but to confirm the relevance of our
scenarios, and to identify new/other application areas for
a comprehensive SE-DSS. Since the answers were not
used for requirement elicitation, we omit the related table
here. The relevance of the scenarios was confirmed. In
addition, the answers confirm findings from question two,
but on a more general level. For example, it was
mentioned that a comprehensive SE-DSS could be used to

educate new employees, or store (and maintain) project
experience. Additionally, the available information might
be used to focus future studies on SE technology
effectiveness/efficiency, and thus help improve the
coordination of empirical research.

4. Additional Requirements

Additional requirements that relate to the needs of content
(data) contributors, administrators, and the sponsor of the
comprehensive SE-DSS were derived from lessons
learned we gained with setting-up and running web-based
repositories [3, 4, 7]. Table 7 lists these additional
requirements. Requirements that emerge from the
envisioned comprehensive DS method will also impact
the internal system functionality, but are not considered
here.

Table 7. Additional Requirements
#
AR1 Support for distributed contribution
AR2 Support for distributed quality management
AR3 Multi-role management
AR4 Multiple cross-linking of content items

(AR1) It must be possible for the research community
to contribute with new studies on SE technologies.

(AR2) AR1 requires at least some degree of quality
assurance (QA), e.g., by establishing a QA board that is in
charge of approving new contributions.

(AR3) AR1 and AR2 lead to at least two more
different roles, i.e., contributor and QA.

(AR4) To enable the drawing of a landscape that
visualizes the relationship between empirical studies on
the effectiveness and efficiency of SE technologies.

5. Structured List of Requirements

Based on the two sources of requirements, described
above, we ordered the requirements according to the
standard three-tier architecture, and according to Ruhe’s
generic requirements categories.

Table 8 Requirements
User Interface Reference
UI1 Support for several kinds of graphical / textual

presentations
6.1, 6.2, 6.3, 4

UI2 Low interaction, easy access 3.1, 3.4, 1.4
UI3 Goal-oriented interaction support 3.6, 3.5
UI4 Alternative interaction modes 3.1, 3.4, 3.3

Presentation
PR1 Transparency of decision process (reduction of

alternatives, priorities)
2.1

PR2 Goal/problem-oriented aggregation of
information

6.1, 6.2, 4.1, 4.3,
4.5, 4.6, 6.5

PR3 Understandable, self-explaining 6.3, 6.4
PR4 Presentation in diagrams, tables, text 6.1-6.5

Content

CO1 Effectiveness/efficiency with respect to quality
aspect

4.2

CO2 Costs for introduction/applying the technique 1.4, 4.4
CO3 Preconditions that have to be fulfilled prior to

the application of the technique
4.8

CO4 Context information 1.2
CO5 Structured meta information for the content 2.3, 4

Experience Management
EM1 Support for distributed contribution AR1
EM2 Support for distributed quality assurance

(distributed content management)
AR2

EM3 Support for export of repository data to
organizational improvement management
systems

2.1, 2.2

EM4 Multi-role management AR3
Repository

RE1 Cross-linking of experience items AR4
RE2 Case-oriented storing 4.5, 4.6, 2.4

Table 9. Mapping to Ruhe’s idealized requirements
Ruhe’s Framework [1] Specific user

requirements for
comprehensive SE-DSS

(R1) Knowledge, model and
experience management

EM1-EM3, CO1-CO5

(R2) Integration into organization EM3-EM4, RE1
(R3) Process orientation CO3-CO5, PR1-PR2, EM4
(R4) Process modeling and simulation CO3-CO5
(R5) Negotiation --
(R6) Presentation and explanation PR1-PR5
(R7) Analysis and decision PR1-PR2, RE1-RE2
(R8) Intelligence RE1-RE2

Table 8 lists the requirements derived from the pilot
study and combines them with the additional
requirements. The set of requirements is grouped into five
categories: user interface (UI), presentation (PR), content
(CO), experience management (EM), and repository (RE).
The first two categories correspond to the first layer of the
standard three-tier architecture, the third category
corresponds to the second layer, and the fourth and fifth
categories correspond to the third layer. Column three of
provides for each requirement the reference to related
aggregated answers or additional requirements.

Table 9 shows the mapping of the requirements for the
comprehensive SE-DSS to the framework “idealized”
requirements (R1-R9) suggested by Ruhe [1]. The
instantiation depends on our concrete problem topic, i.e.,
comprehensive SE technology selection, and usage
scenarios, i.e., on-line, individual and strategic decision
support for project, quality, and product management.
One lesson we learned was that the framework was
sufficiently generic to incorporate all of our specific
requirements.

6. Summary and Future Work

In this paper we have presented the requirements of a
web-based tool for comprehensive decision-making in
support of SE technology selection. The requirements

were collected from a literature survey and from
structured interviews with research managers.

Besides the identification of requirements, the
research yielded the following results: All of the
interviewees accepted the pre-defined scenarios as being
relevant and practical, none had difficulties with
understanding. We interpret this finding to support the
construct validity of our measurement instrument
(scenario-based structured interviews).

Surprisingly, we did not find much difference between
management roles. Apart from prioritization of content
presentation (question 5), the answers given were very
similar, no matter which specific role was assigned to an
interviewee. At the moment, it is not fully clear whether
this indicates that differences between roles are not as
large as we originally expected, or whether the answers
given by the interviewees were too strongly influenced by
the way role-specific scenarios were presented to them.
Also, the subjects might not be fully representative for the
specified roles due to the nature of their work in research
environments, which is probably not as strongly focused
on actual (and mostly short-term) decision-making within
software projects.

Future work is dedicated to the incremental
development of the comprehensive SE-DSS. At each
stage, the underlying method and the resulting tool will be
evaluated through controlled experiments and surveys
among experts from academia and industry. Issues to be
evaluated include effectiveness and efficiency of the
method and tool support, as well as validity of the
delivered information and completeness of the database.

References

[1] Ruhe, G.: “Software Engineering Decision Support – A new
paradigm for Learning Software Organizations”. In: Proc.
Workshop. Learning Software Organizations, Springer, 2003.

[2] Ruhe, G.: “Software Engineering Decision Support: Methodology
and Applications”. In: Innovations in Decision Support Systems
(Ed. by Tonfoni and Jain), International Series on Advanced
Intelligence Volume 3, 2003, pp 143-174.

[3] Jedlitschka, A.; Pfahl, D. and Bomarius, F.: “A Framework for
Comprehensive Experience-based Decision Support for Software
Engineering Technology Selection”; In Proc. of Intern. Conf.
SEKE 2004. Banff, Canada, 2004

[4] Jedlitschka, A.; Ciolkowski, M.: “Towards Evidence in Software
Engineering”; In Proc. of ACM/IEEE ISESE 2004, Redondo
Beach, California, August 2004, IEEE CS, 2004.

[5] Conradi, R.; Wang, A.I (Eds.): Empirical Methods and Studies in
Software Engineering – Experiences from ESERNET; Springer
LNCS 2765, 2003.

[6] Biffl, S.; Halling, M.: “A Knowledge Management Framework to
Support Software Inspection Planning”, in [9]

[7] Jedlitschka, A.; Nick, M.: “Software Engineering Knowledge
Repositories”; in [5] pp.55-80

[8] Strauss, A. & Corbin, J.: Basics of Qualitative Research. Techniques
and Procedures for Developing Grounded Theory. 2nd ed.
Thousand Oaks: Sage, 1998.

[9] Aurum, A.;Jeffery, R.; Wohlin, C.; Handzic, M. (Eds): Managing
Software Engineering Knowledge; Springer-Verlag; Berlin 2003

Reviewers’

A
Silvia Teresita Acuna

Anneliese K. Amschler Andrews
Juan Carlos Augusto

Aybuke Aurum

B
Piefrancesco Bellini

Sami Beydeda
Alessandro Bianchi

Frank Bomarius

C
Kai-Yuan Cai,
Zhining Cao,

Rosa M. Carro,
Alejandra Cechich,

María Dolores Vargas Cerdán,
Yurong Chen
William Chu

Paolo Ciancarini
Oscar Corcho
Patricia Costa

D
Feras T. Dabous

Angélica de Antonio
John Debenham

Yi Deng
Vincenzo Deufemia

Oscar Dieste
Paolo Donzelli
Toncan Duong

Schahram Dustdar

E
Hakan Erdogmus

F
Pascal Fenkam
Xavier Ferre

Filomena Ferrucci
Andres Flores
Rita Francese

Alfonso Fuggetta

G
Shu Gao

Carlo Ghezzi
Marisol Giardina

Athula Ginige
Haitao Gong

Carmine Gravino
Volker Gruhn
John Grundy

Thomas Gschwind

H
Mariele Hagen
Aaron Hector

Bayu Hendradjaya
Pilar Herrero

Lorin Hochstein
Siv Hilde Houmb
Mao Lin Huang

I
Hiroshi Igaki

José Antonio Macías Iglesias Hajimu Iida

J
Letizia Jaccheri

Zhi Jin
Kanta Jiwnani
Natalia Juristo

K
André Köhler

Jun Kong
Serguei Krivov

Cat Kutay

L
Guojun Li

Jingzhou Li
Sheldon X. Liang

Hong-Xin Lin
Huimin Lin

Pdero Linares
Mikael Lindvall

Jiming Liu
Fabiola Lopez y Lopez

Andrea De Lucia
Luqi

M
Sergio Di Martino

Frank Maurer
Nelson Medinlla
Gonzalo Méndez

Abdallah Mohamed
Sandro Morasca
Ana M. Moreno
Jurgen Munch

Ming Muo

N
Lakshmi Narasimhan

Abhaya Nayak
Josef Nedstam

Paolo Nesi
An Ngo-The

O
Andrew O'Fallon
Mehmet Orgun
Alvaro Ortigosa
Thomas Østerlie

P
Luca Paolino

Orest Pilskalns
Martin Pinzger

Giuseppe Polese

Q
Yu Qian

R
Fethi Rabhi

Jaime Ramírez
Michael Richter

Michele Risi
Guenther Ruhe

Ioana Rus

S
Omolade Saliu
Marisa Sanchez

Maria-Isabel Sanchez-Segura
Maribel Sanchez-Segura

Walt Scacchi
Giuseppe Scanniello

Klaus Schmid
Indra Seher

Michele A. Shaw
John Shepherd
Phillip Sheu

Xiaochun Shi
Alejandro Sierra

Almudena Sierra-Alonso
Janice Singer

Guanglei Song
Lorna Stewart
Eleni Stroulia
Weixiang Sun
Magne Syrstad

T
Scott Tilley

Cora B. Excelente Toledo
Genny Tortora

Jeffrey Tsai

V
Sira Vegas

Maximiliano Paredes Velasco
Giuseppe Visaggio
Giuliana Vitiello

W
Qing Wang

Yingxu Wang
Christiane Gresse von Wangenheim

Richard Webber
Stefan Wermter

Xindong Wu

Y
Ying Yang

JingTao Yao
Yiyu Yao
Huilin Ye

InSeon Yoo
Huiqun Yu
Hairong Yu

Z
Guangcun Zhang

Kang Zhang
Xu Zhang

Haiyan Zhao
Liming Zhu

Xingquan Zhu

Authors’ Index

A
Marzia Adorni, 74

J. Ahn, 37
Lynda Ait-Mahiedine, 508

Boanerges Aleman-Meza, 490
Reda Alhajj, 498

C. F. Allgood, 167
Julio César Alvarez, 435

L. An, 431
Anneliese Andrews, 129
Giuliano Antoniol, 449

João Araújo, 411
Moysés de Araújo, 478
Francesca Arcelli, 74

Jocelyn Armarego, 421
I. Budak Arpinar, 490

Mikhail Auguston, 185
Paolo Avesani, 306

B
Fabian B¨uttner, 135

K. S. Barber, 37
Ken Barker, 498

Márcio Barros, 19
Márcio de O. Barros, 282

Steve Battle, 98
M. Baumgarten, 388

Cinzia Bazzanella, 306
Carlos Bento, 258
Erik Berglund, 246
Sami Beydeda, 104

Konstantin Beznosov, 360
Antonio Boccalatte, 45
Frank Bomarius, 342

Kaddour Boukerche, 457
Imen Bourguiba, 252
Barrett R. Bryant, 185
Rebecca Buchheit, 80

A.G. Büchner, 388
Jim Buckley, 486
Carol C. Burt, 185
Y. Bychkov, 270

C
Ernest Cachia, 318
Tony Cahill, 486
Yuhong Cai, 276

Osvaldo Cairó, 435
Coral Calero, 392

Gerardo Canfora, 57

Fei Cao, 185
Daniel Amaral Cardoso, 396

Paulo Carreiro, 258
Luigi Cerulo, 57

Christine W. Chan, 86
Henry Chang, 431

Bo Chen, 300
Chien-Hsien Chen, 384

Wei Cheng, 402
J. Chung, 431

C. M. Chewar, 167
Rem Collier, 25

Damien Conroy, 486
Devin Cook, 179

Kendra Cooper, 360
Alexandre Correa, 294

Hélio R.Costa, 282
G. Costagliola, 439
Adrien Coyette, 192

José A. Cruz-Lemus, 238
Davor Cubrani, 92

D
Xiaoling Dai, 276

Alexandre Dantas, 19
R. Delmonico, 372
Yi Deng, 360, 416

Marcos Vinícius Pinheiro Dib, 396
Tung Do, 192

E
Armin Eberlein, 324
Raimund K. Ege, 155
Karin Ericsson, 205

F
Ricardo de Almeida Falbo, 474

Christos Faloutsos, 80
Behrouz H. Far, 324

Fausto Fasano, 31, 453
Stéphane Faulkner, 192

A. Felfernig, 148
Han Fengyan, 13

Jos L. Ferreira, 258
F. Ferrucci, 439

Stephan Flake, 161
T.W. Fox, 142
B.J. Fox, 142

Rita Francese, 31, 453
Bernd Freimut, 264

519

G
Michel Gagnon, 449

Kehan Gao, 220
Shu Gao, 360

Marcela Genero, 238
Daniel M. German, 336

Jeewani Anupama Ginige, 445
Athula Ginige, 445, 466

Martin Gogolla, 135
Paulo Gomes, 258
Andrea Gozzi, 45

T. Graser, 37
C. Gravino, 439
D. Greer, 503

Alberto Grosso, 45
Volker Gruhn, 104
John Grundy, 276

N. Gujral, 37

H
Chris Halaschek, 490

Babak Hamidzadeh, 494
Xudong He, 360, 416

Dennis Heimbigner, 470
Guillermo Nudelman Hess, 366

Abram Hindle, 336
Reginald L. Hobbs, 330

John Hosking, 276
Zhaoxia Hu, 213
J.G. Hughes, 388

I
Benedetto Intrigila, 7
Cirano Iochpe, 366
Lee Iverson, 494

J
J. H. Jahnke, 270

Dietmar Jannach, 110
Stan Jarzabek, 68

Olga Jaufman, 264
Andreas Jedlitschka, 342, 513

Jun-Jang Jeng, 431
Norman Jordan, 336
Vedang H. Joshi, 226
Natalia Juristo, 378

K
Mira Kajko-Mattsson, 205

Aditya Kalyanpur, 98
Tahar Khammaci, 346

Ridha Khedri, 252
Taghi M. Khoshgoftaar, 220, 226

T. Klinger, 372
Andrew Knight, 129

Yoshitake Kobayashi, 350
Manuel Kolp, 192

Philip Koopman, 80
Gerold Kreutler, 110

L
D. N. Lam, 37

Chiou Peng Lam, 421
Anders Larsson, 246

Anna Rita Laurenzi, 7
Seok Won Lee, 117

Dominic Letarte, 449
Honglian (Elena) Li, 62

Weigang Li, 396
Yun Li, 402

Arne Lindow, 135
Dong Liu, 324
Wei Liu, 402

Zongtian Liu, 402
Hakim Lounis, 457, 508

Andrea De Lucia, 31, 453
Michael Lutz, 482

M
Mamoru Maekawa, 350

Alba Cristina Magalhães, 396
Carmen Maidantchik, 427

Ioakim (Makis) Marmaridis, 445
Valerie Maxville, 421

D. Scott McCrickard, 167
Alves de Melo, 396
Ettore Merlo, 449

Mark Micallef, 318
Vanesa Mirzaee, 494

Lian Mo, 416
Mariano Montoni, 427

Ana Moreira, 411
Ana M. Moreno, 378
Malek Mouhoub, 406
Ethan V. Munson, 288

Gail C. Murphy, 92

N
Ken Nakayama, 350

Tai Nguyen, 192
Tien N. Nguyen, 288

O
Rory V O’Connor, 312
Andrew O’Fallon, 129

Gregory O’Hare, 25
José A. Olivas, 238
Rocco Oliveto, 453

520

Andrew M. Olson, 185
Sergio Orefice, 7

Mehmet Orgun, 51
Mourad Oussalah, 346

P
Julian Padget , 98
Paulo Paiva, 258

Daniel Jiménez Pastor, 98
W.D. Patterson, 388

Giuseppe Della Penna, 7
Francisco C. Pereira, 258

Anna Perini, 306
Dietmar Pfahl, 342, 513

Shari Lawrence Pfleeger, 1
Mario Piattini, 238, 392

Orest Pilskalns, 129

R
Oliver Radfelder, 135
Claudia Raibulet, 74
Rajeev R. Raje, 185

B. Ray, 372
Orna Raz, 80

Jörg Rech, 462
David C. Rine, 117
Dieter Rombach, 2

Francisco P. Romero, 238
Colm Rooney, 25

Shen Ru, 68
Ioana Rus, 264

Sharon Ryan, 312

S
Samira Sadaoui, 300, 406
Houari A. Sahraoui, 457

Isabel Sánchez, 378
Gowtham Sannapareddy, 490

P. Santhanam, 372
Gleison Santos, 427

J. Schiefer, 431
Nuno Seco, 258
Indra Seher, 466

Manuel Serrano, 392
Theodorus Eric Setiadi, 350

Sol M. Shatz, 213
Mary Shaw, 80

Amit Sheth, 490
George Shi, 498
Adel Smeda, 346

Spencer Smith, 384
Peter Stanski, 173

Nenad Stojanovic, 232
Eleni Stroulia, 123

Kalaivani Subramaniam, 324
Amrudee Sukpan, 406

Angelo Susi, 306
Zsofia Szalkai, 205

T
Cheng Thao, 288

Francesco Tisato, 74
G. Tortora, 439

Genoveffa Tortora, 31
Guilherme H. Travassos, 282

Luigi Troiano, 57

V
Christian Vecchiola, 45

G. Vitiello, 439

W
William W. Wadge, 62

Shahtab Wahid, 167
Cláudia Werner, 19, 294
Marselina Wiharto, 173

Qiang Wu, 402

X
Yudong Xiao, 220

Wang Xin, 13
Zhenchang Xing, 123

Liyin Xue, 51

Y
Li Yang, 155
J.T. Yao, 199
Y.Y. Yao, 199

Huiqun Yu, 155, 360, 416

Z
Lotfi A. Zadeh, 3

L. Zheng, 431
Hongyu Zhang, 68

Kang Zhang, 51
Du Zhang, 179
Gang Zhao, 354
Wei Zhao, 185
Y. Zhao, 199

Qin Zheng, 13
Sun Zhenxin, 68

521

Call for Papers

2005 International Conference of
Software Engineering and
Knowledge Engineering

July 14 to 16, 2005
Taipei, Taiwan, Republic of China

SCOPE

The conference aims at bringing together experts in software engineer-
ing and knowledge engineering to discuss on relevant results in either
software engineering or knowledge engineering or both. Special em-
phasis will be put on the transference of methods between both do-
mains.

TOPICS
Solicited topics include, but are not limited to:
Adaptive Systems
Artificial Intelligence Approaches to Software Engineering
Automated Reasoning
Automated Software Design and Synthesis
Automated Software Specification
Component-Based Software Engineering
Computer-Supported Cooperative Work
Databases
Design Methods
Education and Training
Electronic Commerce
Formal Methods
Human-Computer Interaction
Industrial Applications
Integrity, Security, and Fault Tolerance
Knowledge Acquisition
Knowledge-Based and Expert Systems
Knowledge Representation and Retrieval
Knowledge Engineering Tools and Techniques
Knowledge Visualization
Learning Software Organization
Measurement and Empirical Software Engineering
Meta-CASE
Mobile Data Accesses
Multimedia and Hypermedia Software Engineering
Object-Oriented Technology
Ontologies and Methodologies
Patterns and Frameworks
Process and Workflow Management
Programming Languages and Software Engineering
Program Understanding
Reflection and Metadata Approaches
Reliability
Requirements Engineering
Reverse Engineering
Soft Computing
Software Architecture
Software Domain Modeling and Meta-Modeling
Software Engineering Decision Support
Software Maintenance and Evolution
Software Process Modeling
Software Quality

Software Reuse
System Applications and Experience
Time and Knowledge Management
Tools
Tutoring, Help, Documentation Systems
Uncertainty Knowledge Management
Validation and Verification
Web-Based Knowledge Management
Web-Based Tools, Systems, and Environments
Web and Data Mining

STEERING COMMITTEE

Vic Basili, University of Maryland
Bruce Buchanan, University of Pittsburgh
Shi-Kuo Chang, University of Pittsburgh, Pittsburgh
C. V. Ramamoorthy, University of California, Berkeley

GENERAL CO-CHAIRS

J. S. Ke, Institute for Information Industry, Taiwan
B. S. Lin, Industry Technologies Research Institute, Taiwan
A. C. Liu, Feng-Chia University, Taiwan

INFORMATION FOR AUTHORS

Paper deadline is March 1, 2005. Papers must be written in English. An
electronic version (Postscript, PDF, or MS Word format) of the full paper
should be submitted using the following URL: http://conf.ksi.edu/seke05/
submit/SubmitPaper.php. Please use Internet Explorer as the browser. Manu-
script must include a 200-word abstract and no more than 6 pages of IEEE
double column text (include figures and references).

INFORMATION FOR REVIEWERS

Papers submitted to SEKE’05 will be reviewed electronically. The users
(webmaster, program chair, reviewers...) can login using the following URL:
http://conf.ksi.edu/seke05/review/pass.php. If you have any questions or run
into problems, please send e-mail to: seke@ksi.edu.

SEKE’2005 Conference Secretariat
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076 USA
Tel: 847-679-3135
Fax: 847-679-3166
E-mail: seke@ksi.edu

Taipei 101

Sponsored by
Knowledge Systems Institute
iCORE
University of Calgary

Printed by
Knowledge Systems Institute
3420 Main Street
Skokie, Illinois 60076
(847) 679-3135
info@ksi.edu
www.ksi.edu

SEKE

20
04

Alberta, Canada
June 20 to June 24, 2004Printed In USA, May 2004

ISBN 1-891706-14-4

Proceedings of the
Sixteenth International
Conference on Software
Engineering & Knowledge
Engineering

	page_1: 1
	page_15: 15
	page_16: 16
	page_17: 17
	page_18: 18
	page_19: 19
	page_20: 20
	page_21: 21
	page_22: 22
	page_23: 23
	page_24: 24
	page_25: 25
	page_26: 26
	page_27: 27
	page_28: 28
	page_29: 29
	page_30: 30
	page_31: 31
	page_32: 32
	page_33: 33
	page_34: 34
	page_35: 35
	page_36: 36
	page_37: 37
	page_38: 38
	page_39: 39
	page_40: 40
	page_41: 41
	page_42: 42
	page_43: 43
	page_44: 44
	page_45: 45
	page_46: 46
	page_47: 47
	page_48: 48
	page_49: 49
	page_50: 50
	page_51: 51
	page_52: 52
	page_53: 53
	page_54: 54
	page_55: 55
	page_56: 56
	page_57: 57
	page_58: 58
	page_59: 59
	page_60: 60
	page_61: 61
	page_62: 62
	page_63: 63
	page_64: 64
	page_65: 65
	page_66: 66
	page_67: 67
	page_68: 68
	page_69: 69
	page_70: 70
	page_71: 71
	page_72: 72
	page_73: 73
	page_74: 74
	page_75: 75
	page_76: 76
	page_77: 77
	page_78: 78
	page_79: 79
	page_80: 80
	page_81: 81
	page_82: 82
	page_83: 83
	page_84: 84
	page_85: 85
	page_86: 86
	page_87: 87
	page_88: 88
	page_89: 89
	page_90: 90
	page_91: 91
	page_92: 92
	page_93: 93
	page_94: 94
	page_95: 95
	page_96: 96
	page_97: 97
	page_98: 98
	page_99: 99
	page_100: 100
	page_101: 101
	page_102: 102
	page_103: 103
	page_104: 104
	page_105: 105
	page_106: 106
	page_107: 107
	page_108: 108
	page_109: 109
	page_110: 110
	page_111: 111
	page_112: 112
	page_113: 113
	page_114: 114
	page_115: 115
	page_116: 116
	page_117: 117
	page_118: 118
	page_119: 119
	page_120: 120
	page_121: 121
	page_122: 122
	page_123: 123
	page_124: 124
	page_125: 125
	page_126: 126
	page_127: 127
	page_128: 128
	page_129: 129
	page_130: 130
	page_131: 131
	page_132: 132
	page_133: 133
	page_134: 134
	page_135: 135
	page_136: 136
	page_137: 137
	page_138: 138
	page_139: 139
	page_140: 140
	page_141: 141
	page_142: 142
	page_143: 143
	page_144: 144
	page_145: 145
	page_146: 146
	page_147: 147
	page_148: 148
	page_149: 149
	page_150: 150
	page_152: 152
	page_153: 153
	page_151: 151
	page_154: 154
	page_155: 155
	page_156: 156
	page_157: 157
	page_158: 158
	page_159: 159
	page_160: 160
	page_161: 161
	page_162: 162
	page_163: 163
	page_164: 164
	page_165: 165
	page_166: 166
	page_167: 167
	page_168: 168
	page_169: 169
	page_170: 170
	page_171: 171
	page_172: 172
	page_173: 173
	page_174: 174
	page_175: 175
	page_176: 176
	page_177: 177
	page_178: 178
	page_179: 179
	page_180: 180
	page_181: 181
	page_182: 182
	page_183: 183
	page_184: 184
	page_185: 185
	page_186: 186
	page_187: 187
	page_188: 188
	page_189: 189
	page_190: 190
	page_191: 191
	page_192: 192
	page_193: 193
	page_194: 194
	page_195: 195
	page_196: 196
	page_197: 197
	page_198: 198
	page_199: 199
	page_200: 200
	page_201: 201
	page_202: 202
	page_203: 203
	page_204: 204
	page_205: 205
	page_206: 206
	page_207: 207
	page_208: 208
	page_209: 209
	page_210: 210
	page_211: 211
	page_212: 212
	page_213: 213
	page_214: 214
	page_215: 215
	page_216: 216
	page_217: 217
	page_218: 218
	page_219: 219
	page_220: 220
	page_221: 221
	page_222: 222
	page_223: 223
	page_224: 224
	page_225: 225
	page_226: 226
	page_227: 227
	page_228: 228
	page_229: 229
	page_230: 230
	page_231: 231
	page_232: 232
	page_233: 233
	page_234: 234
	page_235: 235
	page_236: 236
	page_237: 237
	page_238: 238
	page_239: 239
	page_240: 240
	page_241: 241
	page_242: 242
	page_243: 243
	page_244: 244
	page_245: 245
	page_246: 246
	page_247: 247
	page_248: 248
	page_249: 249
	page_250: 250
	page_251: 251
	page_252: 252
	page_253: 253
	page_254: 254
	page_255: 255
	page_256: 256
	page_257: 257
	page_258: 258
	page_259: 259
	page_260: 260
	page_261: 261
	page_262: 262
	page_263: 263
	page_264: 264
	page_265: 265
	page_266: 266
	page_267: 267
	page_268: 268
	page_269: 269
	page_270: 270
	page_271: 271
	page_272: 272
	page_273: 273
	page_276: 276
	page_277: 277
	page_274: 274
	page_275: 275
	page_278: 278
	page_279: 279
	page_280: 280
	page_281: 281
	page_282: 282
	page_283: 283
	page_284: 284
	page_285: 285
	page_286: 286
	page_287: 287
	page_288: 288
	page_289: 289
	page_290: 290
	page_291: 291
	page_292: 292
	page_293: 293
	page_294: 294
	page_295: 295
	page_296: 296
	page_297: 297
	page_298: 298
	page_299: 299
	page_300: 300
	page_301: 301
	page_302: 302
	page_303: 303
	page_304: 304
	page_305: 305
	page_306: 306
	page_307: 307
	page_308: 308
	page_309: 309
	page_310: 310
	page_311: 311
	page_312: 312
	page_313: 313
	page_314: 314
	page_315: 315
	page_316: 316
	page_317: 317
	page_318: 318
	page_319: 319
	page_320: 320
	page_321: 321
	page_322: 322
	page_323: 323
	page_324: 324
	page_325: 325
	page_326: 326
	page_327: 327
	page_328: 328
	page_329: 329
	page_330: 330
	page_331: 331
	page_332: 332
	page_333: 333
	page_334: 334
	page_335: 335
	page_336: 336
	page_337: 337
	page_338: 338
	page_339: 339
	page_340: 340
	page_341: 341
	page_342: 342
	page_343: 343
	page_344: 344
	page_345: 345
	page_346: 346
	page_347: 347
	page_348: 348
	page_349: 349
	page_350: 350
	page_351: 351
	page_352: 352
	page_353: 353
	page_354: 354
	page_355: 355
	page_356: 356
	page_357: 357
	page_358: 358
	page_359: 359
	page_360: 360
	page_361: 361
	page_362: 362
	page_363: 363
	page_364: 364
	page_365: 365
	page_366: 366
	page_367: 367
	page_368: 368
	page_369: 369
	page_370: 370
	page_371: 371
	page_372: 372
	page_373: 373
	page_374: 374
	page_375: 375
	page_376: 376
	page_377: 377
	page_378: 378
	page_379: 379
	page_380: 380
	page_381: 381
	page_382: 382
	page_383: 383
	page_384: 384
	page_385: 385
	page_386: 386
	page_387: 387
	page_388: 388
	page_389: 389
	page_390: 390
	page_391: 391
	page_392: 392
	page_393: 393
	page_394: 394
	page_395: 395
	page_396: 396
	page_397: 397
	page_398: 398
	page_399: 399
	page_400: 400
	page_401: 401
	page_402: 402
	page_403: 403
	page_404: 404
	page_405: 405
	page_406: 406
	page_407: 407
	page_408: 408
	page_409: 409
	page_410: 410
	page_411: 411
	page_412: 412
	page_413: 413
	page_414: 414
	page_415: 415
	page_416: 416
	page_417: 417
	page_418: 418
	page_419: 419
	page_420: 420
	page_421: 421
	page_422: 422
	page_423: 423
	page_424: 424
	page_425: 425
	page_426: 426
	page_427: 427
	page_428: 428
	page_429: 429
	page_430: 430
	page_431: 431
	page_432: 432
	page_433: 433
	page_434: 434
	page_435: 435
	page_436: 436
	page_437: 437
	page_438: 438
	page_439: 439
	page_440: 440
	page_441: 441
	page_442: 442
	page_443: 443
	page_444: 444
	page_445: 445
	page_446: 446
	page_447: 447
	page_448: 448
	page_449: 449
	page_450: 450
	page_451: 451
	page_452: 452
	page_453: 453
	page_454: 454
	page_455: 455
	page_456: 456
	page_457: 457
	page_458: 458
	page_459: 459
	page_460: 460
	page_461: 461
	page_462: 462
	page_463: 463
	page_464: 464
	page_465: 465
	page_466: 466
	page_467: 467
	page_468: 468
	page_469: 469
	page_470: 470
	page_471: 471
	page_472: 472
	page_473: 473
	page_474: 474
	page_475: 475
	page_476: 476
	page_477: 477
	page_478: 478
	page_479: 479
	page_480: 480
	page_481: 481
	page_482: 482
	page_483: 483
	page_484: 484
	page_485: 485
	page_486: 486
	page_487: 487
	page_488: 488
	page_489: 489
	page_490: 490
	page_491: 491
	page_492: 492
	page_493: 493
	page_494: 494
	page_495: 495
	page_496: 496
	page_497: 497
	page_498: 498
	page_499: 499
	page_500: 500
	page_501: 501
	page_502: 502
	page_503: 503
	page_504: 504
	page_505: 505
	page_506: 506
	page_507: 507
	page_508: 508
	page_509: 509
	page_510: 510
	page_511: 511
	page_512: 512
	page_513: 513
	page_514: 514
	page_515: 515
	page_516: 516
	page_517: 517
	page_518: 518
	page_519: 519
	page_520: 520
	page_521: 521
	page_2: 2
	page_3: 3
	page_4: 4
	page_5: 5
	page_6: 6
	page_7: 7
	page_8: 8
	page_9: 9
	page_10: 10
	page_11: 11
	page_12: 12
	page_13: 13
	page_14: 14
	page_ii: ii

