
DMSVIVA
2024

Proceedings of the 30th
International DMS Conference on

Visualization and

Visual Languages

October 29 to 30, 2024
Larkspur Landing South San Francisco Hotel,
USA and KSIR Virtual Conference Center, USA

Copyright ⓒ 2024 by KSI Research Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher.

DOI: 10.18293/DMSVIVA2024

Proceedings preparation, editing and printing are sponsored by KSI Research Inc.

 i

PROCEEDINGS

DMSVIVA2024

The 30th International DMS Conference on
Visualization and Visual Languages

Sponsored by
KSI Research Inc. and Knowledge Systems Institute, USA

Technical Program
October 29 to 30, 2024

Larkspur Landing South San Francisco Hotel, USA and

KSIR Virtual Conference Center, USA

Organized by
KSI Research Inc. and Knowledge Systems Institute, USA

 ii

Copyright ⓒ 2024 by KSI Research Inc. and Knowledge Systems Institute, USA

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-60-8 (print)
ISSN: 2326-3261 (print)

 2326-3318 (online)
DOI: 10.18293/DMSVIVA2024

Additional copies can be ordered from:
KSI Research Inc.
156 Park Square Lane
Pittsburgh, PA 15238 USA
Tel: +1-412-606-5022
Fax: +1-847-679-3166
Email: dms@ksiresearch.org
Web: http://ksiresearch.org/ seke/dmsviva24.html

Proceedings preparation and editing are sponsored by KSI Research Inc. and Knowledge Systems Institute, USA.

mailto:dms@ksiresearch.org

 iii

DMSVIVA2024
The 30th International DMS Conference on

Visualization and Visual Languages

October 29 to 30, 2024

Larkspur Landing South San Francisco Hotel, USA and
KSIR Virtual Conference Center, USA

Conference Organization

DMSVIVA2024 Conference Chair

Walter Balzano, University of Naples, Italy; Conference Chair

DMSVIVA2024 Steering Committee Chair
Shi-Kuo Chang, University of Pittsburgh, USA; Steering Committee Chair

DMSVIVA2024 Steering Committee

Paolo Nesi, University of Florence, Italy; Steering Committee Member
Kia Ng, University of Leeds, UK; Steering Committee Member

DMSVIVA2024 Program Co-Chairs

Martin Erwig, Oregon State University, USA; Program Co-Chair
Maiga Chang, Athabasca University, Canada; Program Co-Chair

DMSVIVA2024 Program Committee

Danilo Avola, University of Rome, Italy
Andrew Blake, University of Brighton, UK
Paolo Bottoni, Universita Sapienza, Italy

Bernardo Breve, University of Salerno, Italy
Loredana Caruccio, University of Salerno, Italy

Maiga Chang, Athabasca University, Canada
WilliamCheng-Chung Chu, Tunghai University, Taiwan

Stefano Cirillo, University of Salerno, Italy

 iv

Mauro Coccoli, University of Genova, Italy
Francesco Colace, University of Salerno, Italy

Gennaro Costagliola, University of Salerno, Italy
Mattia DeRosa, University of Salerno, Italy

Vincenzo Deufemia, University of Salerno, Italy
Tiansi Dong, Bonn-Aachen International Center for Information Technology, Germany

Martin Erwig, Oregon State University, USA
Larbi Esmahi, Athabasca University, Canada

Rita Francese, University of Salerno, Italy
Kaori Fujinami, Tokyo University of Agriculture and Technology, Japan

Angela Guercio, Kent State University, USA
Pedro Isaias, University of Queensland, Australia
Jun Kong, North Dokota State University, USA

Robert Laurini, University of Lyon, France
Weibin Liu, Beijing Jiao Tung University, China

Mark Minas, Universität der Bundeswehr München, Germany
Andrea Molinari, University of Trento, Trento, Italy

Eloe Nathan, Northwest Missouri State University, USA
Paolo Nesi, University of Florence, Italy

Max North, Southern Polytechnic State University, USA
Michela Paolucci, University of Florence, Italy

Giovanni Pilato, Italian National Research Council, Italy
Giuseppe Polese, University of Salerno, Italy

Elvinia Riccobene, University of Milano, Italy
Peter Rodgers, University of Kent, UK

Domenico Santaniello, University of Salerno, Italy
Weiwei Xing, Beijing Jiao Tung University, China

Atsuo Yoshitaka, JAIST, Japan
Tomas Zeman, Czech Technical University, Czech Republic

Yang Zou, Hohai University, China

Publicity Co-Chairs

Danilo Avola, University of Rome, Italy; Publicity Co-Chair
Francesco Colace, University of Salerno, Italy; Publicity Co-Chair

 v

FOREWORD

On behalf of the Program Committee of the 30th International DMS Conference on Visualization and Visual
Languages (DMSVIVA2023), we would like to welcome you. This conference aimed at bringing together
experts in visualization, visual languages, distance education and distributed multimedia computing,
providing a forum for productive discussions about these topics.

We would like to thank all the authors for their contributions. We also would like to thank all the Program
Committee members for their careful and prompt review of submitted papers.

We would like to thank the Steering Committee Chair Professor Shi-Kuo Chang for his guidance and
leadership throughout the organization of this conference. The assistance of the staff at KSI Research is also
greatly appreciated, which made the review process smooth and timely.

Finally, we would like to thank you all for joining us in DMSVIVA2024, and really appreciate your
participation and your desire to support the community year by year.

Martin Erwig, Oregon State University, USA; Program Co-Chair and
Maiga Chang, Athabasca University, Canada; Program Co-Chair

 vi

Table of Content
Keynote: AI-supported Smart City, quo vadis?
Robert Laurini viii

Session I
Text Small Object Detection with Pyramid Pooling and Multi-Scale Feature Enhancement
Yuan Zhu, Yao Jin, Liu Chengjun and Tang Wuxuan 1

Multi-Factor CAPTCHA: A Usability Study
Attilio Albanese, Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella, Alfonso Piscitelli,
Gaetano Ruggero and Marco Salierno 10

Mind Map-Based Video Searching Platform - MVP
Taeghyun Kang, Hyungbae Park and Sunae Shin 19

Drill Core Image Recognition with Three-Dimensional Attention and Self-Calibration
Pu Yong, Xiong Chuanhu, Chen Yonghua and Xu Ziyuan 25

API Knowledge Graph Construction based on Multi-Source Information Fusion
Ruilian Zhao, Zijie Che, Zhan Ma and Weiwei Wang 34

MVKGCL: Recommendation Model based on Knowledge Graph and Comparative
Learning
Zhiyue Xiong, Hankiz Yilahon and Askar Hamdulla 42

Learning-based Approach on Mathematical Models of Microservices for Various
Optimization
Sulochan Naik and Meenakshi D'Souza 49

 vii

Session II
Uncovering the Effects of Quantum Computing on Software Engineering: A Systematic
Mapping
Valter Vieira Camargo, Daniel San Mart穩n Santib獺nez, Renato Bueno, Caio Cadini,
Guilherme Wisniewski, Augusto Vaz, Caio Ueda and Vanderlei de Brito Junior 55

Bus Ridesharing for Millions of Passengers
Xingyan Chen and Zitong Chen 64

AI-augmented Automation for Real Driving Prediction: An Industrial Use Case
Romina Eramo, Hamzeh Eyal Salman, Matteo Spezialetti, Darko Stern, Pierre Quinton and
Antonio Cicchetti 71

Automatic API Upgrade for jQuery Library
Ning Li, Yuhan Chen and Liangyu Chen 80

Automated Generation of Commit Messages in Software Repositories
Varun Kumar Palakodeti and Abbas Heydarnoori 87

Prioritizing App Reviews for Developer Responses on Google Play
Forough Majidi, Mohsen Jafari and Abbas Heydarnoori 96

Improved Gaussian Mixture Model for Feature Classification Based on Hypergraph
Structure
Zhao Zhiwei, Zhang Qiang and Lin Kai 104

Notes: (S) denotes a short paper.

 viii

Keynote

AI-supported Smart City, quo vadis?

Robert Laurini
Professor Emeritus

in Information Technologies
University of Lyon

France

Abstract

In today's landscape, the concept of Smart Cities has become mainstream, with numerous urban centers
proudly adopting this label. But what exactly does it entail? In this thought-provoking keynote address, I
delve into the multifaceted dimensions of Smart Cities, exploring not only various definitions but also the
diverse challenges spanning housing, mobility, education, feeding, commerce, health, industry, security, and
public participation. At the heart of this transformation, lies the goal of enhancing the quality of life for all
citizens. And how do we achieve this? through the seamless integration of information and communication
technologies (ICT). From sensor-based Internet of Things (IoT) solutions to cloud management and
knowledge extraction and reasoning, these technologies underpin the Smart City vision. Indeed, artificial
intelligence emerges as a pivotal player in this approach. Many believe it holds the key to realizing our
ultimate aspirations. During this address, I will survey AI potentialities, including knowledge management,
case-based reasoning, and deep learning. However, I must also acknowledge the caveats and uncertainties
that lie ahead, as the promises and pitfalls of Smart Cities are explored, envisioning a future where
technology harmonizes with human well-being and sustainable urban living. The talk will be concluded by
the importance of territorial intelligence, combining intelligently artificial intelligence and human collective
intelligence for more sustainable cities.

 About the Speaker

Born in 1947, Robert Laurini (aka Roberto) holds two doctorates, one in 1973, and the other in 1980, both in
information technologies awarded by the Claude Bernard University of Lyon, France. He speaks fluently
French, English, Italian and Spanish. Throughout his career, he primarily worked at INSA-Lyon (University
of Lyon), eventually achieving the status of distinguished professor. However, in 1976-77, he spent an entire
year as a research associate at the Martin Centre of the University of Cambridge in the United Kingdom. In
addition, in 1986-87, he served as a visiting professor at the University of Maryland, College Park, USA.
Between 1995 and 2005, he held a part-time position at IUAV University in Venice, Italy. Since 2011, he
has been retired and holds the title of professor emeritus.

Small Text Object Detection with Pyramid Pooling and Multi-Scale Feature
Enhancement

Zhu Yuan1, Jin Yao1, Chengjun Liu1, Wuxuan Tang2

1Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou, China
2Institute of Intelligence Science and Technology, School of Computer Science and Software Engineering,

Hohai University, Nanjing, China
{yuanzhu, yaojin, liuchengjun}@dtsjy.com, tangwx2001@hhu.edu.cn

Abstract

Detecting small text objects has been a key focus in
object detection research due to their unique character-
istics: small size, limited semantic information, suscepti-
bility to interference in complex scenes, and tendency to
be easily obscured, among others. At present, there are
still two common issues in representative object detection
models: First, small objects are easily interfered by the
background or other objects, and second, multi-layer fea-
ture networks cause the loss of small object feature infor-
mation. To address these challenges, this paper proposes
an improved version of the DBNet model by introducing
two modules: the contextual information fusion module
SPP-CIF and the multi-scale feature enhancement mod-
ule DA-MSFE. SPP-CIF fuses global and contextual in-
formation, by replacing the pooling layer of a pyramid
with two sequentially concatenated deliated convolutions
of small expansion rates, to encode semantic information
of high-level features at multiple scales. DA-MSFE em-
ploys spatial attention and channel self-attention to se-
lect critical features at different scales and locations, and
mines and exploits the correlations between channels to
enhance and dynamically aggregate multi-scale features.
Extensive experiments were conducted on the publicly
available datasets MSRA-TD500 and ICDAR2015. The
experimental results show that compared to the baseline
model, the proposed model exhibits significantly superior
performance in terms of the evaluation metrics.

Index terms— Small text object detection, DBnet,
contextual information fusion, dual attention

1 Introduction

As an important carrier of information exchange and
perception, text exists widely in daily life, such as adver-

tising logos, promotional slogans, traffic signs, etc. Text
object is quite unique, as it often located at the edges of im-
ages, far away, or in small fonts. Additionally, the factors
such as varying aspect ratios, lack of clear closed contours,
complex backgrounds, and lighting variations make small
text difficult to detect. Consequently, small text object de-
tection has become an important and challenging research
topic.

In recent years, researchers have proposed various
methods for text detection. Tian et al. [1] introduced a text
detection framework with a vertical positioning mechanism
called CTPN, which detects text lines within fine-grained
text proposals in the convolutional feature map and extracts
contextual information, effectively spotting deeply blurred
text. Shi et al. [2] designed a directed text detection method,
SegLink. It decomposes text into locally detectable seg-
ments and links, and enables full convolutional neural net-
works to perform dense detection at multiple scales through
end-to-end training. Zhou et al. [3] proposed the EAST
model, which employs multi-scale feature fusion to adap-
tively handle text of different sizes and predict words or text
lines in arbitrary directions and quadrilaterals in complete
images. Li et al. [4] introduced PSENet that utilizes a pro-
gressive scale expansion network to generate different scale
kernels for each text instance, addressing the localization
of arbitrarily shaped text. To alleviate the problem of poor
detection of curved text, Long et al. [5] proposed a scene
text representation, TextSnake, which better handles the de-
tection of curved text. DBNet [6] improved the segmen-
tation effects by using adaptive threshold maps for train-
ing and introducing differentiable binarization to solve the
gradient non-differentiability problem. More recently, the
model Transformer has also been introduced into this field
to tackle curved or polygonal scene text detection [7, 8].

However, as one of the representative models for text
detection, DBNet still suffer from two signiffcant draw-
backs:

DOI reference number: 10.18293/DMSVIVA24-001

1

Figure 1: An image in which small texts are disturbed by the background.

Small text can easily be disturbed by the background,
as shown in Figure 1. In natural scenes, the background
of text images is complex and cluttered, and noise such as
lighting interferes with the text detector, reducing the preci-
sion of the model and affecting the overall detection preci-
sion.

Figure 2: An image with text regions of different shapes.

Text regions with variable shapes are prone to omis-
sion. The aspect ratio and size of different text objects in the
same image vary greatly, small-sized text is easily missed,
and long text is difffcult to detect completely. An image
with text regions of different shapes is shown in Figure 2.

To address these issues, this paper proposes an im-
proved model on the basis of DBnet, which introduces a
Spatial Pyramid Pooling-based Context Information Fusion
Module (SPP-CIF) and a Dual Attention-based Multi-Scale
Feature Enhancement module (DA-MSFE) to the original
model. The main contributions are summarized as follows:

SPP-CIF module: It replaces the pooling layer of the
pyramid by applying a tandem dilated convolution in the
last layer of the feature extraction network, to semantically
encode the high-level features at multiple scales, and fuses
the global and contextual information via the global pool-
ing operation, which signiffcantly reduce the interference
of background noise.

DA-MSFE Module: Spatial attention weights the
fused feature maps and generates feature map weights
at different scales, and channel self-attention enhances
inter-channel correlation through matrix manipulation and
weight calculation. By selecting and aggregating features
of different scales and locations, the omission rate of vari-
able text region shapes is considerably reduced.

Experimental Validation: Experimental results on the
publicly available datasets MSRA-TD500 and ICDAR2015
demonstrate that the improved model signiffcantly out-
performs the baseline model in precision, recall, and F-
measure. Particularly, on the MSRA-TD500 dataset, the
improved model achieves an increase of 1.4%, 1.6%, and
1.5% in the metrics of precision, recall, and F-measure re-
spectively.

The rest of this paper is organized as follows: Section
2 provides the overall structure of the improved model, Sec-
tion 3 presents the Spatial Pyramid Pooling-based Context
Information Fusion Module, Section 4 introduces the Dual
Attention-based Multi-Scale Feature Enhancement Module,
Section 5 conducts experiments and result analysis, and fi-
nally Section 6 concludes the paper.

2 MODEL ARCHITECTURE

Figure 3 illustrates the architecture of the improved
model, which differs from the original DBNet by incor-
porating two embedded modules SPP-CIF and DA-MSFE.
The overall architecture consists of three parts: a feature
extraction network, a feature fusion network, and a DBNet
detection head. The feature extraction network consists of
ResNet50 [9] and SPP-CIF. SPP-CIF is inserted to the last
layer of the feature extraction network to fuse local contex-
tual information and global feature information, obtaining
the global contextual information of the feature map. The
feature fusion network is composed of FPN [10] and DA-
MSFE. DA-MSFE is inserted after FPN to enhance the fu-
sion of features from four different scales. The loss function
used in this model is consistent with that of DBNet.

3 Spatial Pyramid Pooling-based Context In-
formation Fusion

As the depth of the network increases, the semantic
information contained in the feature maps becomes richer.
One can effectively capture the contextual information of
the image by further extracting semantic information. PSP-
Net [11] utilized pyramid pooling to fuse features at dif-
ferent scales, thereby reducing the loss of contextual in-
formation in sub-regions. PANet [12] employed pyramid
structure to extract and fuse contextual information, while
also utilizing global pooling to obtain global information.

2

Figure 3: The architecture of the Improved DBNet Model with SPP-CIF and DA-MSFE.

Inspired by these methods, this section proposes a Context
Information Fusion Module based on Spatial Pyramid Pool-
ing (SPP-CIF), which can extract information of high-level
features from six different receptive fields.

Figure 4: Spatial Pyramid Pooling-based Context Information Fusion
Module SPP-CIF.

The network structure of SPP-CIF is shown in Fig-
ure 4, and the module consists of a global pooling path, a
convolutional path and a dilated convolutional path. The
global pooling path is used to acquire global information
to further improve the detection performance of the model.
The convolutional path retains original feature information.

The dilated convolution path employs four dilated convo-
lutions with different dilation rates (r=1, 2, 3, 4) in paral-
lel, increasing receptive fields and obtaining contextual in-
formation from diverse regions. Within the path, two di-
lated convolutions with small dilation rates are sequentially
placed to comprehensively extract contextual information
from high-level features, particularly focusing on small ob-
jects and their surrounding context. The information col-
lected from six different receptive fields are concatenated
along the channel dimension and then convolved by one
layer to attain the fused feature map.

Specifically, the input feature map Fin of SPP-CIF is
the output of the last layer of the feature extraction network.
Fin obtains information with different receptive fields from
three respective paths. The process is as follows:

(1) The input feature map Fin (Fin ∈ RC×H×W) is
fed to the global pooling path where there is a global aver-
age pooling operation, obtaining the global feature descrip-
tor Favg (Favg ∈ RC×1×1). Then, a convolution operation
with kernel size 1 × 1 is performed to gain the global in-
formation Fu (Fu ∈ RC/2×1×1). Finally, the information
is upsampled to achieve F ′

u (F ′
u ∈ RC/2×H×W). This sub-

process can be formulated as:

F ′
u = Up(Conv1×1(AvgPool(Fin))) (1)

3

where AvgPool denotes global average pooling, and Up
represents upsampling operation.

(2) The input feature map Fin is input to the con-
volution path with kernel size 1 × 1 to obtain the feature
map F ′ (F ′ ∈ RC/2×H×W), preserving some of the orig-
inal information of the feature map. The formula for this
subprocess is as follows:

F ′ = Conv1×1(Fin) (2)

where Conv1×1 denotes convolution with kernel size 1×1.
(3) The input feature map Fin is fed into a parallel di-

lated convolution pyramid network. This network uses di-
lated convolutions with kernel size 3×3 and dilation rates r
of 1, 2, 3, and 4, respectively. Concatenating dilated convo-
lutions with smaller dilation rates allows for the extraction
of context information from different regions and focuses
on small objects and their surroundings. This subprocess is
formalized as follows:

A′
i = AConv3×3,i(AConv3×3,i(Fin)), i = 1, 2, 3, 4 (3)

where AConv3×3,i denotes dilated convolution with kernel
size 3× 3 and dilation rate of i.

(4) The feature map with six types of information, Fu
′,

F ′, and Ai
′ where i = 1, 2, 3, 4, are concatenated along the

channel dimension and then fed into a convolution with ker-
nel size 1×1 for further fusion. The output feature map Fout

(where Fout ∈ RC×H×W) integrates both global informa-
tion extracted from high-level feature maps and contextual
information. The subprocess is expressed as follows:

Fout = Conv1×1(Concat(Fu
′,F ′, A′

1, A
′
2, A

′
3, A

′
4)) (4)

where Concat denotes concatenation operation along the
channel dimension.

4 Dual Attention-based Multi-Scale Feature
Enhancement

The feature fusion network outputs feature maps of
four different scales, with downsampling factors of 4x, 8x,
16x, and 32x, respectively. These scale feature maps are up-
sampled to 1/4 of the original image size, and then subjected
to feature enhancement by DA-MSFE. These feature maps
have varying degrees of importance at different scales, and
even within the same scale, the importance varies. Attention
mechanisms enable the model to focus more on object re-
gions with valuable information, thereby improving the ef-
ficiency and generalization capability. Convolutional Block
Attention Module [13] concatenates channel attention and
spatial attention to focus on important object regions. Liao
et al. [14] construct Adaptive Scale Fusion to learn weights
at different scales and spatial locations in the spatial dimen-
sion, achieving scale-robust feature fusion. Fu et al. [15]

introduce self-attention to assign weights to each pixel in
terms of the relationship between input data, thereby cap-
turing dependencies between different positions in the se-
quence. Inspired by these methods, this section proposes
the Dual Attention-based Multi-Scale Feature Enhancement
Module (DA-MSFE) to enhance multi-scale features.

Figure 5: Dual Attention-based Multi-Scale Feature Enhancement
Module.

The Dual Attention-based Multi-Scale Feature En-
hancement Module (DA-MSFE), as shown in Figure 5,
takes as input the feature maps at four different scales out-
put from the feature fusion network. The feature maps at
different scales are upsampled to the same scale and fed
into two sub-modules. Although upsampling brings these
feature maps to the same scale, the features they contain
come from different scales. DA-MSFE consists of a spatial
attention module and a channel self-attention module. In the
spatial attention module, convolutional fusion is performed
on the feature maps of different scales. Operations such as
average pooling, convolution, and activation are applied to
gain the spatial attention weights of the fused feature map.
These spatial attention weights are then employed to weight
the fused feature map. Furthermore, convolution and acti-
vation operations are applied to the enhanced fused feature
map to obtain spatial attention weights for the correspond-
ing four scale feature maps. Finally, these weights are uti-
lized to weight the input four feature maps respectively. In
the channel self-attention module, by reshaping the feature
maps and performing matrix multiplication and weighting
operations, each channel is assigned a weight that measures
its relevance to other channels. The global information con-
structed from all channel weights is leveraged to enhance
multi-scale features. The two sets of enhanced feature maps
are convolved separately, added, and then fused by passing
through another convolutional layer, to obtain the enhanced
feature map.

The upsampling operation for DA-MSFE is formulated
as follows:

F i
in = UpSample(pi+1), i = 1, 2, 3, 4 (5)

4

where p(i+1)(i=1,2,3,4) represents the feature map with a
scale of 1

2i+1 of the original image, UpSample denotes up-
sampling, i.e., nearest-neighbor interpolation.

The operation of fusing the two enhanced feature maps
in DA-MSFE is formalized as follows:

Fout = Conv3×3,ReLU
(

Conv3×3,ReLU(Fouts) + Conv3×3,ReLU(Foutc)
)
(6)

where Fouts is the feature map output from the spatial at-
tention module, Foutc is the feature map output from the
channel self-attention module, and Conv3×3,ReLU represents
the convolution with kernel size 3×3 and ReLU activation.

The following subsections elaborate on the spatial at-
tention and channel self-attention for multi-scale feature en-
hancement, respectively.

4.1 Spatial Attention for Multi-Scale Feature En-
hancement

For the feature maps of different scales upsampled to
the same size, the spatial attention module can capture fea-
ture information that the model focuses on from various per-
spectives and receptive fields. For instance, shallow, large-
scale features can accommodate more detailed information
and small text objects, while deep, small-scale features can
capture richer high-level semantic information. To fuse and
enhance features from different scales, instead of using sim-
ple summation, the spatial attention module DA-MSFE al-
lows the model to autonomously choose important features
from different scales and positions, dynamically aggregat-
ing features to achieve better integration.

Figure 6: Spatial Attention Module.

The structure of the spatial attention module is shown
in Figure 6, and its operation process is described below:

(1) Concatenate the four output feature maps
F i
in(F i

in ∈ RC×H×W , i = 1, 2, 3, 4) to obtain Fin, then
perform convolution with kernel size 3× 3 on Fin to obtain
the intermediate feature map F ′

in(F ′
in ∈ RC×H×W , i =

1, 2, 3, 4). This subprocess is formulated as follows:

F ′
in = Conv3×3(Concat(F 1

in, F
2
in, F

3
in, F

4
in)) (7)

where Concat denotes concatenation operation along the
channel dimension.

(2) Perform global pooling on F ′
in to obtain Favg

(Favg ∈ R1×H×W), then apply a convolution with kernel
size 3×3 to Favg followed by a Sigmoid function to obtain
the descriptor Ms(Ms ∈ R1×H×W). Each position would
bear a weight, allowing the model to learn the importance
of each position in the fused feature map. This subprocess
is formulated as follows:

Ms = Sigmoid (Conv3×3 (AvgPool (F ′
in))) (8)

(3) Multiply the spatial descriptor Ms with the fea-
ture map F ′

in, then apply convolution with kernel size
3 × 3 to the result followed by a Sigmoid function to ob-
tain the spatial attention As for the four scales As(As ∈
RN×1×H×W , N = 4). This subprocess is expressed as
follows:

As = Sigmoid (Conv3×3 (Ms ⊗ F ′
in)) (9)

(4) Split the attention weights As into four attention
weights Ai

s corresponding to the four scale feature maps
F i
in, perform weighting operation for each scale, and then

concatenate them along the channel dimension to obtain the
weighted feature map Fouts ∈ R(N×C)×H×W . This sub-
process is formulated as follows:

Fouts = Concat(A1
s⊗F 1

in, A
2
s⊗F 2

in, A
3
s⊗F 3

in, A
4
s⊗F 4

in)
(10)

4.2 Channel Self-Attention for Multi-Scale Fea-
ture Enhancement

Figure 7: Channel Self-Attention Module.

The spatial attention module only considers the spatial
information but neglects the channel information of differ-
ent scale feature maps. In this section, we introduce the
Channel Self-Attention Module to capture the correlation
between the channels of these features.The global informa-
tion consisting of correlations between channels is exploited
to enhance the multiscale features.

5

Unlike traditional channel attention, the Channel Self-
Attention Module does not utilize convolution to embed the
feature maps. Instead, its implements feature embedding
based on self-attention, which enables to fully explore the
dependencies between all channels in the feature maps. The
structure of the Channel Self-Attention is shown in Figure
7. Its operation process is as described below:

(1) Reshape the concatenated feature map Fin(Fin ∈
R(N×C)×H×W) into three feature maps A, B, and C,
where {A,B,C} ∈ R(K×S), (K = N×C, S = H×W).

(2) Transpose feature map A and perform matrix mul-
tiplication between feature map B and AT to obtain a
K × K matrix X ′. Apply the Softmax function to X ′

to obtain the normalized channel attention weight matrix X
(X ∈ R(K×K)). Xi,j represents the influence of the i chan-
nel on the j channel in the feature map, indicating the weight
value. A higher weight value means a higher correlation be-
tween the two channels. This subprocess is formulated as
follows:

X = Softmax(B ×AT) (11)

(3) Perform matrix multiplication between matrix X
and feature map C to obtain the weighted feature map Ac.
This operation is expressed as follows:

Ac = X × C (12)

(4) Reshape the feature map Ac into AT
c (AT

c ∈
R(N×C)×H×W), and add it to the input feature map Fin to
obtain the final output feature map Foutc. This subprocess
is formulated as follows:

Foutc = Reshape(Ac) + F (13)

5 Experimental Results and Analysis

In this section we designed and conducted ablation ex-
periments and comparative experiments to validate the ef-
fectiveness of the proposed model in detection of small text
objects. Below, we will introduce the datasets, evaluation
metrics, implementation details, and analysis of the experi-
mental results.

5.1 Datasets

Apparently, the types, scales, quantities, and qualities
of objects form different datasets can all affect the learn-
ing performance of small object detection models. In the
experiments, we utilized the following publicly available
datasets:

(1) MSRA-TD500: It is published by Huazhong Uni-
versity of Science and Technology in 2012, containing this
dataset contains 300 training images and 200 test images,

with text boxes labelled as upper-left coordinates, width and
height, and deflection angle.

(2) ICDAR2015: It is published by ICDAR in 2015,
containing this dataset contains 1000 training images and
500 test images, with text boxes labelled as the four vertices
of the polygon.

5.2 Evaluation Metrics

Since the text object is singular, three evaluation met-
rics are employed to assess the performance of the proposed
model: Precision P , Recall R, and F-measure F . The for-
mulas for calculating these metrics are as follows:

P =
TP

TP + FP

R =
TP

TP + FN

F = 2× P ×R

P +R

(14)

where TP refers to the number of positive samples that
the model correctly predicts as positive, FP represents the
number of negative samples that the model incorrectly pre-
dicts as positive, and FN denotes the number of positive
samples that the model incorrectly predicts as negative. Pre-
cision measures the model’s accuracy in predicting posi-
tives, indicating the proportion of predicted positive sam-
ples that are truly positive. Recall measures the model’s
coverage of positives, the proportion of positive samples
that are successfully predicted by the model. F is the har-
monic mean of precision and recall, used to balance preci-
sion and recall.

5.3 Experiment Setup and Implementation

We have set up two sets of experiments:
Ablation Experiments: This set of experiments aims

to validate the performance of the two modules SPP-CIF
and DA-MSFE in detecting small text objects. We use
DBNet as the base model and train the following models:
Model 1: the base model; Model 2: the base model with
embedded SPP-CIF module; Model 3: the base model with
the spatial attention part of DA-MSFE embedded; Model 4:
the base model with the complete DA-MSFE module em-
bedded; Model 5: the proposed model, DBNet-SD, i.e., the
base model with embedded SPP-CIF and DA-MSFE mod-
ules.

Comparative Experiments: We compare the pro-
posed model DBNet-SD with other commonly used text
detection models on the ICDAR2015 and MSRA-TD500
datasets to validate its detection performance.

Due to the high randomness of the model initializa-
tion parameters, to accelerate model convergence, the back-

6

bone feature extraction network pretrained on the SynthText
dataset is loaded, and then trained and tested on the datasets
MSRA-TD500 and ICDAR2015. Since the dataset MSRA-
TD500 has relatively few training images, 400 annotated
images from HUST-TR400 are added to it to create a new
training set, allowing the model to learn more features and
achieve better detection performance.

During training, the input image size is set to 640×640,
the number of training epochs is set to 1000, the batch size
is set to 32, and the optimizer used is SGD with an ini-
tial learning rate of 0.001, following the Poly learning rate
schedule. In addition to using random rotation, cropping,
and flipping for image augmentation, we also conduct im-
age scaling, skewing, and blurring for preprocessing, en-
hancing data diversity and further improving the general-
ization capability of the detection model.

The experiments were conducted on a platform fea-
turing an Intel Gold 6146C CPU and an NVIDIA GeForce
RTX 3090 GPU, and the operating system running on the
platform is Linux and the CUDA version is 11.0.

5.4 Experimental Results and Analysis

(1)Ablation Experimentals

Table 1. Results of ablation experiments on the dataset MSRA-TD500.

Number Model P (%) R (%) F (%)

1 DBNet 86.1 77.0 81.3
2 DBNet + SPP-CIF 87.2 78.0 82.3
3 DBNet + DA-MSFE SAM 86.3 78.0 81.9
4 DBNet + DA-MSFE 86.9 78.3 82.4
5 DBNet + SPP-CIF + DA-MSFE 87.5 78.6 82.8

The ablation experimental results on the MSRA-
TD500 dataset are shown in Table 1. The precision, recall,
and F-measure of DBNet are 86.1%, 77.0%, and 81.3%, re-
spectively.

The precision, recall, and F-measure of Model 2 are
87.2%, 78.0%, and 82.3%, respectively. Compared to
Model 1, the values of the three evaluation metrics increase
by 1.1%, 1.0%, and 1.0%, respectively. This indicates that
the introduction of SPP-CIF can integrate contextual and
global information and, suppress image background noise,
thus enhancing text detection performance and reducing
false positives.

The precision, recall, and F-measure of Model 3 are
86.3%, 78.0%, and 81.9%, respectively. Compared to
Model 1, the values of the three evaluation metrics increase
by 0.2%, 1.0%, and 0.6%, respectively, indicating that the
spatial attention module can promote the model’s focus on
four different scale feature maps, achieving multi-scale fea-
ture enhancement.

The precision, recall, and F-measure of Model 4 are
86.9%, 78.3%, and 82.4%, respectively. Compared to
Model 1, the values of three evaluation metrics improve by
0.8%, 1.3%, and 1.1%, with a comparatively noticeable im-
provement in recall. This indicates that the DA-MSFE mod-
ule can enhance and integrate important information from
multi-scale feature maps, and accurately locate text objects
in feature maps of different scales, thus alleviating the issue
of missed detections and improving detection performance.

The precision, recall, and F-measure of Model 5 are
87.5%, 78.6%, and 82.8%, respectively. Compared to
Model 1, the values of three evaluation metrics improve by
1.%, 1.6%, and 1.5%, respectively. Moreover, Model 5 is
also superior to Model 2 and Model 4 respectively. This in-
dicates that the embedded modules SPP-CIF and DA-MSFE
can work cooperatively in the base model to effectively al-
leviate the issues of small text object susceptible to back-
ground interference and feature loss.

(2) Comparative Experiments The baseline models in-
volved in the comparative experiments include RRD [16]
, TextBPN++ [17], PCR [18], FSG [19], EAST, SegLink,
and DBNet. To validate the generalization performance of
the proposed model DBNet-SD, training and testing of the
involved models were conducted on the ICDAR2015 and
MSRA-TD500 datasets, respectively.

Table 2. The experimental results on the dataset MSRA-TD500.

Number Model Backbone P (%) R (%) F (%)

1 RRD VGG-16 87.1 73.0 79.4
2 TextBPN++ ResNet-50 86.7 80.8 83.6
3 PCR ResNet-50 86.5 77.1 81.5
4 FSG ResNet-50 86.9 81.0 83.8
5 DBNet ResNet-50 86.1 77.0 81.3
6 DBNet-SD ResNet-50 87.5 78.6 82.8

The experimental results on the MSRA-TD500 dataset
are shown in Table 2. The scores of precision, recall, and
F-measure of DBNet-SD are 87.5%, 78.6%, and 82.8%, re-
spectively. Compared to RRD, DBNet-SD shows increases
in precision, recall, and F-measure by 0.4%, 5.6%, and
3.4%, respectively. Compared to TextBPN++, the values of
precision increases by 0.8%. Compared to PCR, DBNet-SD
manifests improvements in precision, recall, and F-measure
by 1.0%, 1.5%, and 1.3%, respectively. Compared to FSG,
the value of precision improves by 0.6%. The experimental
results on the MSRA-TD500 dataset indicate that DBNet-
SD has achieved competitive detection performance among
the involved baseline models, especially in the metric of
precision.

Apparently, the recall and F-measure of DBNet-SD are
a bit lower than that of TextBPN++ and FSG on the dataset
MSRA-TD500, respectively. This can be attributed to its
focus on precision with a stricter detection criterion, lead-

7

ing to potentially miss some true text instances. In contrast,
TextBPN++ and FSG might utilize a comparatively lower
detection threshold, allowing them to discover a broader
range of text instances.

Table 3. The experimental results on the dataset ICDAR2015.

Number Model Backbone P (%) R (%) F (%)

1 RRD VGG-16 85.5 78.9 82.1
2 EAST PVANet 81.1 72.9 76.8
3 SegLink VGG-16 72.8 77.0 74.8
4 FSG ResNet-50 87.8 83.3 85.5
5 DBNet ResNet-50 88.0 82.1 84.9
6 DBNet-SD ResNet-50 88.6 82.5 85.4

The experimental results on the ICDAR-2015 dataset
are shown in Table 3. The scores of precision, recall, and
F-measure of DBNet-SD are 88.6%, 82.5%, and 85.4%,
respectively. Compared to RRD, DBNet-SD shows in-
creases in precision, recall, and F-measure by 3.1%, 3.4%,
and 3.3%, respectively. Compared to EAST, DBNet-SD
manifests increases in precision, recall, and F-measure by
7.5%, 9.6%, and 8.6%, respectively. Compared to SegLink,
DBNet-SD demonstrates improvements in precision, recall,
and F-measure by 15.8%, 5.5%, and 10.6%, respectively.
Compared to FSG, DBNet-SD improves by 0.8% in preci-
sion. The results suggest that the improved model DBNet-
SD can achieve superior small text object detection perfor-
mance among the baseline models in scenarios with com-
plex backgrounds.

Similarly, the recall and F-measure of DBNet-SD are
slightly lower than that of FSG, which can also be attributed
to its focus on the metric of precision.

6 Conclusion

This paper has proposed an improved model DBNet-
SD for small text object detection, which integrates two
novel modules: SPP-CIF and DA-MSFE into the base
model DBNet. SPP-CIF merges the global information
and context information from high-level features to pro-
mote the capability of understanding the context of ob-
jects. DA-MSFE enhances the important regions of fea-
ture maps at four different scales, by using spatial atten-
tion to dynamically aggregate features and channel self-
attention to fully explore the dependencies among all chan-
nels in the multi-scale feature maps. Extensive experiments
were conducted on publicly available datasets MSRA-
TD500 and ICDAR2015. The experimental results show
that the improved model significantly outperforms the base
model, thus alleviating the issues of background interfer-
ence, missed detection, and inaccuracy in small text object
detection.

In future work, we shall continue to optimize the
model DBNet-SD by fine-tuning the network parameters
while pursuing the balance between the two evaluation met-
rics precision and recall.

References

[1] Z. Tian, W. Huang, T. He, et al. Detecting text in natural im-
age with connectionist text proposal network. In Computer
Vision–ECCV 2016: 14th European Conference, pages 56–
72. Springer, 2016.

[2] B. Shi, X. Bai, and S. Belongie. Detecting oriented text in
natural images by linking segments. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2550–2558. IEEE, 2017.

[3] X. Zhou, C. Yao, H. Wen, et al. East: An efficient and ac-
curate scene text detector. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
5551–5560. IEEE, 2017.

[4] X. Li, W. Wang, W. Hou, et al. Shape robust text detection
with progressive scale expansion network. arXiv preprint
arXiv:1806.02559, 2018.

[5] S. Long, J. Ruan, W. Zhang, et al. Textsnake: A flexible
representation for detecting text of arbitrary shapes. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 20–36. Springer, 2018.

[6] M. Liao, Z. Wan, C. Yao, et al. Real-time scene text de-
tection with differentiable binarization. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 11474–11481. AAAI, 2020.

[7] X. Zhang, Y. Su, S. Tripathi, et al. Text spotting transform-
ers. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9519–9528.
IEEE, 2022.

[8] M. Ye, J. Zhang, S. Zhao, et al. Dptext-detr: Towards bet-
ter scene text detection with dynamic points in transformer.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pages 3241–3249. AAAI, 2023.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 770–778. IEEE, 2016.

[10] T.-Y. Lin, P. Dollár, R. Girshick, et al. Feature pyramid net-
works for object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2117–2125. IEEE, 2017.

[11] H. Zhao, J. Shi, X. Qi, et al. Pyramid scene parsing network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2881–2890. IEEE, 2017.

[12] H. Li, P. Xiong, J. An, et al. Pyramid attention network for
semantic segmentation. arXiv preprint arXiv:1805.10180,
2018.

[13] S. Woo, J. Park, J.-Y. Lee, et al. Cbam: Convolutional block
attention module. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 3–19. Springer,
2018.

[14] M. Liao, Z. Zou, Z. Wan, et al. Real-time scene text detec-
tion with differentiable binarization and adaptive scale fu-
sion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(1):919–931, 2022.

8

[15] J. Fu, J. Liu, H. Tian, et al. Dual attention network for scene
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3146–
3154. IEEE, 2019.

[16] M. Liao, Z. Zhu, B. Shi, et al. Rotation-sensitive regression
for oriented scene text detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5909–5918. IEEE, 2018.

[17] S. Zhang, C. Yang, X. Zhu, et al. Arbitrary shape text detec-
tion via boundary transformer. IEEE Transactions on Mul-
timedia, 2023.

[18] P. Dai, S. Zhang, H. Zhang, et al. Progressive contour regres-
sion for arbitrary-shape scene text detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7393–7402. IEEE, 2021.

[19] J. Tang, W. Zhang, H. Liu, et al. Few could be better than
all: Feature sampling and grouping for scene text detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4563–4572. IEEE,
2022.

9

Multi-factor CAPTCHA: a usability study

Attilio Albanese, Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella,
Alfonso Piscitelli, Gaetano Ruggiero, Marco Salierno

Department of Informatics, University of Salerno
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
{gencos, matderosa, vfuccella, apiscitelli}@unisa.it

Abstract

CAPTCHAs are an important tool for distinguishing hu-
man users from computer programs. This paper presents a
user study that examined the accuracy, error rate, and user
preference for different CAPTCHA schemes, both in a tra-
ditional single-factor mode and in a multi-factor mode that
combines two different CAPTCHA types in a single chal-
lenge. The study involved participants interacting with var-
ious CAPTCHA challenges, while collecting data on errors,
completion time, and user ratings.

Analysis of the collected data revealed that text-based
CAPTCHAs had higher error rates than the other types in
both single-factor and multi-factor modes. The checkbox
CAPTCHA was found to have the highest accuracy and lik-
ability in both authentication modes. Conversely, the audio-
based CAPTCHA was the least preferred method by users
and also the slowest to complete.

Keywords: CAPTCHA, Scheme, Single-factor, Multi-
factor, Text, Audio, Puzzle, Checkbox, User study

1. Introduction

CAPTCHA (Completely Automated Public Turing test
to tell Computers and Humans Apart) systems originated
as a mechanism to prevent automated access to online ser-
vices. These systems were developed to distinguish be-
tween human users and automated programs, ensuring the
security and integrity of online platforms.

Since their introduction, multiple CAPTCHA schemes
have been developed, ranging from single-factor to multi-
factor approaches. These schemes aim to provide resilience
against automated attacks, offering enhanced security mea-
sures to protect against unauthorized access.

Single-factor CAPTCHA systems present users with a
single verification challenge, such as identifying distorted

DOI reference number: 10.18293/DMSVIVA2024-002

text, selecting specific images, or ticking a checkbox. While
these solutions are simpler and more expedient for the user,
they may be less secure, particularly if the challenge is not
sufficiently complex or has been compromised by advanced
automated programs.

In contrast, multi-factor CAPTCHA systems require
users to complete multiple challenges in sequence or in
combination. This layered approach significantly enhances
security by making it more arduous for automated pro-
grams to accurately solve all presented challenges. How-
ever, multi-factor CAPTCHA systems can be more time-
consuming and may result in increased user friction, as they
necessitate additional effort and time to complete the nec-
essary tasks.

This paper presents the findings of a user study that in-
vestigated the accuracy, error rate, and user preferences as-
sociated with various CAPTCHA schemes implemented in
both single-factor and multi-factor authentication modes.
A group of voluntary participants were recruited to inter-
act with a custom-built web application that displayed a
range of CAPTCHA challenges, which the users were re-
quired to accurately solve. Concurrently, the application
collected valuable performance data, including the num-
ber of errors, completion times, and detailed ratings pro-
vided by the participants. The researchers then conducted
an in-depth analysis of the gathered data to draw meaning-
ful insights and draw well-supported conclusions about the
effectiveness and user experience of the tested CAPTCHA
approaches.

The paper is structured as follows: Section 2 provides
a review of the relevant literature on CAPTCHA systems.
Section 3 outlines the methodology used to design and con-
duct our user study, detailing the participants, apparatus,
procedure, and experimental design. In Sections 4 and 5,
the researchers present the analysis of the results obtained
during the user study. Finally, Section 6 concludes the paper
with the key findings and implications of the study.

10

2. Related Work

In 1997, the first single-factor CAPTCHA was intro-
duced, which was based on the input of a text without any
form of distortion. With the advent of OCR (Optical Char-
acter Recognition), computers could easily solve them, and
so, text-based schemes were improved to use distorted text.
In [9], researchers conducted a study regarding new trends
of CAPTCHAs tracing their development up to 2021, to
recognise mechanisms and how to develop new strong and
secure schemes. In this context, they described the transi-
tion from simpler text-based CAPTCHA to semantic ones
with distorted image backgrounds.

The studies presented in the papers CAPTCHA in Web
Security and Deep-Captcha Configuration based on Ma-
chine learning [14] and A Security Analysis of Text-
based Captcha Schemes [1] highlight the vulnerability of
text-based CAPTCHAs. According to the authors, each
CAPTCHA should be Secure and robust, usable, prac-
tical, scalable, learnable, universal, localizable, accessi-
ble, customizable, and integrated with websites [1]. Dif-
ferent criteria for a good CAPTCHA give the text Usabil-
ity of CAPTCHAs or usability issues in CAPTCHA design
[14]. Some of the results of the text are, that text-based
CAPTCHAs can be more difficult for foreigners, the use
of colour in a CAPTCHA can have an impact on its us-
ability, security, or both, and whether the length of strings
used in a scheme is predictable or not can have interesting
implications for both its security and usability. Generally
is it notable, that in CAPTCHA there is always a trade-off
in usability and security. This can be justified by the fact
that with increasing difficulty the CAPTCHAs are harder
to solve for humans and computers alike. For each new
method of CAPTCHA, the provider has to research an ideal
level of difficulty to maximize security, while staying us-
able.

Still on this subject, researchers of [8] and [11], reviewed
different types of CAPTCHA and their alternatives to draw
a portrait of the current situation for future studies, being
a benchmark in order to direct the upcoming research ac-
tivities towards inventing more efficient and applicable in-
stances.

A major classification of CAPTCHA schemes was given,
for example, text-based such as GIMPY or EZ-GIMPY;
image-based such as KeyCAPTCHA, Capy CAPTCHA and
ReCAPTCHA; audio-based such as audio ReCAPTCHA or
ebay Audio Captcha; etc.

This paper shows both of the drawbacks of CAPTCHAs,
like being too complex and annoying for genuine users and
accessibility issues, suggesting some alternatives such as
audio-based ones for visual impairment.

Usually, CAPTCHAs aim to discern between human and
computing systems, due to a challenge. The focus of the

researchers was to analyze schemes from an attacker per-
spective, where the goal is to break them, i.e., to solve
the proposed challenge with an automated system and still
be recognized as a human. To this end, for each class of
CAPTCHA, an attack was described.

Between the analysed schemes, the semantic-based ones
are those that seem to tolerate attacks the most as they are
far beyond the abilities of machines when it comes to an-
swering only human questions. Moreover, it shows a critical
need to design mobile-only CAPTCHAs to preserve the se-
curity of growing popular mobile applications, highlighting
that mobile users prefer those which involve touch input.
Another important drawback found is that users sometimes
have either to refresh the CAPTCHA due to the excessive
difficulty found in solving it or completely avoid the ser-
vice. As a last thing, this paper states that other alternatives
to CAPTCHA might be more successful.

Among semantic schemes there is SEMAGE [15], which
is based on the users’ ability to establish semantic rela-
tionships between the different images that are proposed to
them, and which makes it harder for bots to automatically
solve the scheme. As with the other image-based schemes,
it is composed of two components: a database of images and
a “concept” (the relationship among images). Researchers
measured that this scheme was almost on par with Google’s
reCAPTCHA and much better than the other scheme called
Asirra. To demonstrate these results, they conducted a user
study with 174 participants. The subject pool was diverse,
with most users of a non-computer science discipline. They
collected the time taken by each user to complete a chal-
lenge for each system (reCAPTCHA, Asirra and SEMAGE
schemes, 5 challenges each), and also collected the num-
bers of successful and failed attempts. The usability of their
scheme was evaluated according to the following metrics:
time, accuracy and ease of use.

Due to a considerable increase in the ability of bots
to solve CAPTCHAs, from 5% to 77%, Microsoft imple-
mented a multi-factor scheme in 2015. However, research
showed that even this scheme was weak and could be by-
passed with a 44.6% success rate with an average speed of
9.05 seconds. In an attempt to improve it, in [12] an alter-
native called Smart Captcha has been proposed, which is
based on text associated with an image that can be resolved
via just selecting the correct checkbox. It has been tested
with more than 1000 people of which 700 gave positive
feedback (with a score between 90 and 100) with several
users that solved it in less than 5 seconds.

In [13] an upgraded version of [12] called Smart Captcha
Version 1 is presented, which uses text (with alphanumeric
characters) and a puzzle composed of a fragmented and dis-
located image. The scheme was offered to more than 1000
people of which around 400 gave positive feedback (with a
score between 90 and 100) and most of them solved it in

11

less than 10 seconds. The scheme was found to be clear,
readable and easily solvable for humans.

In [2] a new type of scheme is introduced which com-
bines text and images. The goal is to efficiently use im-
age recognition with a challenge that is easy for humans but
hard for automated programs. This uses a database filled
with thousands of images (collected from popular search
engines) and text labels. When the user has to access the
service, an image is fetched along all with four text labels
for verification, labels scattered over the underlying image.
The user, within three attempts, has to recognize the image
and select the correct label to prove he is human.

Another multi-factor scheme is proposed in [6]. The
scheme is composed of two layers: the first one is static and
includes a face recognition CAPTCHA; the second one is
randomly chosen from a text-based, video-based or audio-
based CAPTCHA.

3. User study

We conducted a user study to compare the time re-
quired and accuracy in completing multi-factor CAPTCHA
challenges across different modes. Additionally, we in-
cluded a comparison between single-factor and multi-factor
CAPTCHA schemes. In the experiment, participants were
asked to solve twelve pairs of CAPTCHA challenges. Ta-
ble 1 shows the order of modes for each participant. [si
fa riferimento alla tabella nella pagina seguente]

3.1. Participants

The study involved 12 voluntary participants (7 males
and 5 females), ranging in age from 20 to 28 years old
(M = 23.75, SD = 2.26). Based on the results of
a pre-experiment demographic questionnaire, the major-
ity of participants had prior experience with CAPTCHA
schemes, particularly the checkbox variant. While 5 par-
ticipants expressed frustration with resolving CAPTCHA
challenges, the remaining participants maintained a neutral
stance. According to most participants, the primary purpose
of CAPTCHA systems is to prevent spam and automated
programs from accessing online platforms. Additionally,
the participants reported that they were generally able to
complete the CAPTCHA tasks within 5 to 10 seconds.

3.2. Apparatus

The experiment participants used an Acer Aspire E5-
575G laptop with the following hardware specifications:

• Processor: Intel(R) Core(TM) i7-6500U
• RAM: 16 GB
• OS: Windows 10 Home
• Display: 15.6 inch with 1920x1080 resolution

Figure 1: A screenshot of the application interface depict-
ing a user successfully completing a text-based CAPTCHA
challenge

• Keyboard: Italian QWERTY layout
• Mouse: a generic external optical mouse (15 x 12 x 0,1

cm, 1000 DPI).
The researchers used this laptop to run the software for all
participants, with audio volume and screen brightness both
set to the maximum levels. The software was developed
as a website using the Flask framework for the back-end
with several packages [16–18], which was hosted locally
on the device. The front end of the website was created
using HTML and Bootstrap. Figure 1 shows a screen of the
developed application.

Participants on the landing page selected an option from
a dropdown menu according to an identifier assigned to
them before the experiment. The website then automati-
cally executed the appropriate predefined set of CAPTCHA
challenges. Upon completion of the experiment, the web-
site recorded the log data.

3.3. Procedure

Before the experiment, participants were asked to com-
plete a questionnaire in order to gather demographic in-
formation, like full name, age, gender, country and other
general questions regarding their previous experience with
CAPTCHA schemes.

We proceeded to explain the purpose of this user study
and then instructed the participants on how to go through
the experiment. Afterwards, we gave them an identifier
(a number). Sessions for each participant have been pre-
configured based on their identifier, which represents the
configuration that they will have to solve (selectable on the
landing page of the website). The task given to participants
was to complete a sequence of CAPTCHAs. All partici-
pants completed 12 sessions, which were composed of two
CAPTCHA schemes chosen between:

12

1 2 3 4 5 6 7 8 9 10 11 12
P1 TA TC TP AT AC AP CT CA CP PT PA PC
P2 AT AC AP CT CA CP PT PA PC TA TC TP
P3 CT CA CP PT PA PC TA TC TP AT AC AP
P4 PT PA PC TA TC TP AT AC AP CT CA CP
P5 TC TP TA AC AP AT CA CP CT PA PC PT
P6 AC AP AT CA CP CT PA PC PT TC TP TA
P7 CA CP CT PA PC PT TC TP TA AC AP AT
P8 PA PC PT TC TP TA AC AP AT CA CP CT
P9 TP TA TC AP AT AC CP CT CA PC PT PA
P10 AP AT AC CP CT CA PC PT PA TP TA TC
P11 CP CT CA PC PT PA TP TA TC AP AT AC
P12 PC PT PA TP TA TC AP AT AC CP CT CA

Table 1: Counterbalancing scheme used in the user study.
(T = Text, A = Audio, P = Puzzle, C = Checkbox)

• Text: transcription of the text written inside a distorted
image;

• Audio: transcription of what it is listened in a distorted
audio;

• Puzzle: use a slider to complete the image with the
missing piece;

• Checkbox: tick a checkbox to prove you are not a
robot.

The two schemes are always repeated 5 times to com-
plete a session. When the participant fails a scheme, it is
proposed (a new one is generated, but of the same type) for
a maximum of 5 trials. Participants also took a one-minute
break every 3 sessions. We counterbalanced the experiment
by randomly assigning a different order mode to each par-
ticipant and arranging the sessions according to the order
shown in Table 1.

For this study, we define:
• Single-factor CAPTCHA: The first CAPTCHA chal-

lenge that a participant completes within a session of
trials.

• Multi-factor CAPTCHA: The pair of CAPTCHA
challenges that a participant must complete within a
session of trials.

During the experiment, we recorded the result (both cor-
rect and wrong) and the time spent on every CAPTCHA
trial. Furthermore, we recorded the time for each of the
12 sessions and the time to complete the whole experiment
(namely, from the beginning of the absolute first scheme of
1st session until the absolute last scheme of the 12th session).

After the experiment, participants were asked to com-
plete a System Usability Scale [10] (SUS) questionnaire to
evaluate multi-factor schemes and a questionnaire related to
personal opinions to gather feedback.

3.4. Design

The experiment was a two-factor within-subject design.
The two factors were:

• CAPTCHA type (4 levels):
– Text
– Audio
– Puzzle
– Checkbox

• CAPTCHA modes (2 levels):
– Single-factor
– Multi-factor

The dependent variables were the accuracy (we mea-
sured the error rate percentage), the completion time and
the rating (a 1 to 5 score assigned to each combination of
multi-factor CAPTCHA). To counterbalance, we arranged
the sessions with a specific flow of execution as illustrated
in the Procedure section (Table 1).

4. Results

All participants completed the experiment. For each par-
ticipant, the experiment lasted about 25 minutes, includ-
ing the introductory session. We tested significance us-
ing an analysis of repeated variance measures (ANOVA)
[7]. We also analyzed data for significance using Scheffé,
Bonferroni-Dunn and Fisher LSD Post Hoc Comparison
tests.

4.1. Completion time

Regarding completion time, the entire experiment took
an average of 28:56 minutes (S.D. 3:26 minutes). The chart
in Figure 3 shows the average times obtained by the par-
ticipants for each CAPTCHA pair (multi-factor), while the
chart in Figure 5 shows the times obtained by the partic-
ipants in solving single CAPTCHAs (single-factor). The
times of the single-factor mode were selected as the times
recorded by the users in solving the first CAPTCHA of
the two provided in the multi-factor mode; this choice is
explained by the fact that in the multi-factor resolution,
the CAPTCHAs are proposed sequentially, and therefore
the second CAPTCHA is accessed only after solving the
first one. The solution time of the first CAPTCHA, there-
fore, can also be considered as single-factor resolution time.
However, again the chart in Figure 5 shows that there is no
significant difference between solving a given CAPTCHA
first or second.

The participants performed most rapidly on the
CAPTCHA pair (Checkbox, Puzzle) requiring 12.16s for
CP and 12.05s for PC. They were slightly slower on the pair
(Puzzle, Text) taking 13.89s for TP and 16.81s for PT.
In contrast, the CAPTCHA pair (Text,Audio) demanded
the longest completion time of 33.22s and exhibited the
slowest performance. These findings suggest that certain
CAPTCHA combinations, such as the pairing of Checkbox

13

TA TC TP AT AC AP CT CA CP PT PA PC T A P C

0

10

20
20 19.59

9.16

15.49

4.76

11.76

14.29

3.23
2.44

17.24

7.69

2.44

26.45

10

3.74

0

E
rr

or
ra

te
(%

)

Figure 2: Error rate of all CAPTCHA sequences.
T = Text, A = Audio, P = Puzzle, C = Checkbox.

TA TC TP AT AC AP CT CA CP PT PA PC T A P C

0

20

40

33.22

16.38

13.89

33.22

30.04 30.93

15.76

28.92

12.16

16.81

30.25

12.05

7.33

21.55

5.63 6.14C
om

pl
et

io
n

Ti
m

e
(s

)

Figure 3: Completion time of all CAPTCHA sequences.
T = Text, A = Audio, P = Puzzle, C = Checkbox.

Text Audio Puzzle Checkbox

0

10

20

26.45

10

3.74

0

25.62

8.63

5.26

0

E
rr

or
ra

te
(%

)

Solved as 1st

Solved as 2nd

Figure 4: Error rate when the scheme was solved as first or
as second.

Text Audio Puzzle Checkbox

10

20

30

7.33

21.55

5.63
6.14

7.76

21.17

5.44
6.07

C
om

pl
et

io
n

Ti
m

e
(s

)

Solved as 1st

Solved as 2nd

Figure 5: Time to complete the scheme when solved as first
or as second.

14

TA TC TP AT AC AP CT CA CP PT PA PC

2

3

4

5

3.5

3.92

4.42

3.67

3.33
3.42

4.67

3.5

4.67

4.33

3.67

4.75

R
at

in
g

(1
to

5)

Figure 6: Rating of multi-factor CAPTCHA sequences.
T = Text, A = Audio, P = Puzzle, C = Checkbox.

and Puzzle, may optimize efficiency by minimizing the time
required for users to successfully verify their identity.

The ANOVA results showed that the effect of
CAPTCHA type on completion time was statistically sig-
nificant (F3,33 = 35.081, p < .0001). The effect of mode
on completion time was statistically significant (F1,11 =
589.942, p < .0001). The CAPTCHA type × mode inter-
action effect was statistically significant (F3,33) = 10.019,
p < .0001). Table 2 also shows significance for Scheffé,
Bonferroni-Dunn and Fisher LSD Post Hoc Comparison
tests.

4.2. Error rate

Regarding the number of errors, Figure 2 shows the
average error rate obtained by the participants for each
CAPTCHA pair (multi-factor). In contrast, Figure 4 shows
the average error rate obtained by the participants in solving
single CAPTCHAs (single-factor). For the measuring of the
error rate for single-factor are valid the same arguments are
shown in Section 4.1.

The participants exhibited a lower error rate of
2.44% when interacting with the (Checkbox, Puzzle)
CAPTCHA pair. In contrast, textual CAPTCHA schemes
were found to be the most error-prone, as evidenced by the
higher overall error rate whenever they were included in
the multi-factor CAPTCHA sequences. The data suggests
that the (Checkbox, Puzzle) CAPTCHA pair was more ef-
fectively solved by the participants, resulting in a substan-
tially lower error rate of 2.44% compared to the text-based
CAPTCHA challenges. In the last analysis, Figure 4 indi-
cated that the order in which the CAPTCHA was solved did
not have a statistically significant effect on the error rate.

Pair Scheffé Bonferroni-Dunn Fisher LSD
ST SA * * *
ST MA * * *
ST SP * * *
ST MP * * *
ST SC * * *
ST MC * * *
MT SA * * *
MT MA * * *
MT SP * * *
MT MP * * *
MT SC * * *
MT MC * * *
SA SC * *
SA MC * *
MA SC * *
MA MC * *

Table 2: Statistical Significance Tests for the Completion
Time: Scheffé and Bonferroni-Dunn. Non-significant pair-
wise comparisons were omitted.
ST = Single-factor Text, MT = Multi-factor Text,
SA = Single-factor Audio, MA = Multi-factor Audio,
SP = Single-factor Puzzle, MP = Multi-factor Puzzle,
SC = Single-factor Checkbox, MC = Multi-factor Checkbox

The ANOVA results showed that the effect of
CAPTCHA type on error rate was statistically significant
(F3,33 = 32.632, p < .0001). The effect of mode on error
rate was not statistically significant (F1,11 = 0.137, ns). The
CAPTCHA type × mode interaction effect was not statisti-
cally significant (F3,33 = 0.082, ns). Table 3 shows signif-
icance for Scheffé, Bonferroni-Dunn and Fisher LSD Post
Hoc Comparison tests.

4.3. Rating

The results presented in Figure 6 indicate that partic-
ipants provided good ratings for the various CAPTCHA
challenge pairs evaluated in the study. The rating scale
ranged from 0 to 5 stars, with 5 representing the high-
est level of satisfaction and 0 the lowest. Overall, the
CAPTCHA challenge pairs received average ratings ex-
ceeding 3.5 out of 5, suggesting a generally positive re-
sponse from the participants. The CAPTCHA challenge
pair that received the highest rating from participants was
(Puzzle, Checkbox) with a score of 4.75 out of 5, followed
by (Checkbox, Text) and (Checkbox, Puzzle). In con-
trast, the CAPTCHA pairs that incorporated an audio-based
challenge received lower ratings from the participants, with
the pair that utilized the audio CAPTCHA obtaining the
lowest score of 3.33 out of 5. This suggests that the audio-
based CAPTCHA schemes were less preferred by the par-

15

Pair Scheffé Bonferroni-Dunn Fisher LSD
ST SA * * *
ST MA * * *
ST SP * * *
ST MP * * *
ST SC * * *
ST MC * * *
MT SA * * *
MT MA * * *
MT SP * * *
MT SP * * *
MT SC * * *
MT MC * * *
SA SC *
SA MC *
MA SC *
MA MC *

Table 3: Statistical Significance Tests for the Error rate:
Scheffé and Bonferroni-Dunn. Non-significant pairwise
comparisons were omitted.
ST = Single-factor Text, MT = Multi-factor Text,
SA = Single-factor Audio, MA = Multi-factor Audio,
SP = Single-factor Puzzle, MP = Multi-factor Puzzle,
SC = Single-factor Checkbox, MC = Multi-factor Checkbox

ticipants compared to the other CAPTCHA types evaluated
in the study.

Regarding the single-factor CAPTCHA schemes, Table
5 presents the ranking provided by the participants. The
data indicates that the Checkbox CAPTCHA was the most
preferred, receiving 6 votes for the top position. This was
followed by the Puzzle CAPTCHA, the Text CAPTCHA,
and the Audio CAPTCHA in descending order of partici-
pant preference. The higher preference for the Checkbox
CAPTCHA suggests that it was perceived as the most user-
friendly and effective among the single-factor CAPTCHA
schemes tested in the study.

The ANOVA results showed that the effect of
CAPTCHA type on the rating was statistically significant
(F3,33 = 12.787, p < .0001). The effect of mode on rating
was not statistically significant (F1,11 = 2.555, p > .05).
The CAPTCHA type × mode interaction effect was sta-
tistically significant (F3,33 = 7.121, p < .001). Table 4
also shows significance for Scheffé, Bonferroni-Dunn and
Fisher LSD Post Hoc Comparison tests.

4.4. User Satisfaction and Free-form comments

At the end of the experiments, all involved people filled
out a SUS questionnaire to measure participant satisfac-
tion. Half of the participants expressed a preference for the
single-factor Checkbox scheme (6 out of 12 ranked it first

Pair Scheffé Bonferroni-Dunn Fisher LSD
ST SA * * *
ST MA *
MT SA *
MT SC *
SA SP * * *
SA MP * *
SA SC * * *
SA MC *
MA SP *
MA SC * *

Table 4: Statistical Significance Tests for the user rating:
Scheffé and Bonferroni-Dunn. Non-significant pairwise
comparisons were omitted
ST = Single-factor Text, MT = Multi-factor Text,
SA = Single-factor Audio, MA = Multi-factor Audio,
SP = Single-factor Puzzle, MP = Multi-factor Puzzle,
SC = Single-factor Checkbox, MC = Multi-factor Checkbox

1st 2nd 3rd 4th
Text 1 3 8 -
Audio - 2 1 9
Puzzle 3 4 2 3
Checkbox 6 5 1 -

Table 5: Ranking of the four CAPTCHA schemes.

compared to the others), while the least liked was the single-
factor Audio scheme (ranked last 9 times out of 12). The
most liked multi-factor combination was Checkbox-Puzzle,
followed by Puzzle-Checkbox. On the other hand, the least
liked was the Text-Audio combination. Overall, the SUS
questionnaire regarding the combination of CAPTCHAs in
multi-factor mode had the following average score: 76.88
(SD = 13.15) which is a good value. Table 5 shows partic-
ipants’ preference about individual CAPTCHA modes (1st

to 4th positions).

5. Discussion

The data collected showed that the textual CAPTCHA
had the highest error rate among the various CAPTCHA’s
tested (26%) while for other CAPTCHA’s the participants
made fewer errors (and, for the checkbox-type CAPTCHA,
no errors were detected given the nature of the CAPTCHA
to analyse the movement of the mouse to discriminate
whether the user is human or not). The influence of the er-
rors made with the textual CAPTCHA was also propagated
in the multimodal CAPTCHA, as can be seen in Figure 2.
Figures 4 and 5, however, show that there was no correla-
tion between the number of errors made and the order in
which the textual CAPTCHA occurred: in general, for no
type of CAPTCHA was this observed.

16

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
Text-Checkbox 1 2 2 2 1 3 1
Text-Audio 2 1 2 1 2 4
Text-Puzzle 1 2 4 2 1 1 1
Audio-Checkbox 1 1 1 1 1 1 3 3
Audio-Text 1 1 1 3 1 1 2 2
Audio-Puzzle 1 1 3 1 1 3 2
Puzzle-Text 1 6 2 1 1 1
Puzzle-Checkbox 3 4 1 1 1 2
Puzzle-Audio 3 2 2 2 2 1
Checkbox-Audio 1 2 1 1 1 5 1
Checkbox-Text 2 2 1 1 3 1 1 1
Checkbox-Puzzle 4 2 1 1 1 1 1 1

Table 6: Rank of the twelve CAPTCHA sequences.

Also concerning time, no correlation was observed be-
tween the time required and the order in which the indi-
vidual CAPTCHA was to be completed, as it is possible to
see in Figure 3. The audio-type CAPTCHA, on the other
hand, proved to be the slowest (with an average of about 21
seconds) compared to the 5-7 seconds required by the other
CAPTCHA; this is because the user has to wait for the time
of the pronunciation (interspersed with a brief but random
noise time). It must be considered that although it was the
most ‘demanding’ in terms of time, this type of CAPTCHA
is particularly important for those who have difficulties with
textual CAPTCHA. The study participants did not exhibit
any apparent visual or auditory impairments. However, the
inclusion of individuals with disabilities or specific learn-
ing disorders could potentially alter the results of the exper-
iment. Nevertheless, this study should be considered a valid
experiment, and the researchers plan to address this aspect
as part of their future work.

In the analysis of the multi-modal pairs, the CAPTCHA
puzzle and checkbox pair (regardless of the order) were the
fastest and also those with the fewest errors made, making
it the seemingly best pair in the multi-factor CAPTCHA.

In general, participants seemed to have liked all types of
pairs, with average ratings of more than 3 out of 5. Among
the most liked pairs is the puzzle, checkbox pair (with 4.6-
4.7 out of 5). Surprisingly, the text-puzzle pair was also
highly liked (average 4.3/5) despite taking longer (14-16
seconds) and involving more errors (9-17).

Analyses on some pairs which showed substantial differ-
ences in the order for the number of errors (t-c 19, c-t 14 or
even t-p 9 and p-t 17) will be the subject of future studies:
apparently, the order did not generate particularly discor-
dant results but since for these pairs it did happen we will
look for the reasons for this.

The security of multi-factor CAPTCHAs was not com-
prehensively tested in this study. The primary focus of the
research was to evaluate user interaction and experiences

with multi-factor CAPTCHA schemes, rather than directly
assessing their security against automated attacks. While
this limitation is acknowledged, the researchers suggest that
future work could explore the security aspects of multi-
factor CAPTCHAs in more depth, potentially by incorpo-
rating tests with automated tools to assess their resilience
against bots and other malicious programs.

6. Conclusions and Further Works

Since the advent of CAPTCHAs, attempts have been
made to introduce a multi-factor CAPTCHA design in or-
der to improve security and prevent bots from automatically
submitting web forms. The current study investigated the
introduction of multi-factor CAPTCHA designs as a means
to enhance security and mitigate the threat of automated
form submissions. Specifically, the accuracy and error rates
of four distinct CAPTCHA types were evaluated, com-
paring their performance when employed as single-factor
challenges versus integrated into multi-factor verification
schemes. Participants engaged in a series of 12 counterbal-
anced sessions to assess these different modalities. Given
that CAPTCHAs must strike a balance between security and
minimizing complexity or user frustration, the researchers
also analyzed participants’ preferences by soliciting evalu-
ations after each CAPTCHA pair as well as an overall as-
sessment after the experiment.

To conduct this user study, we developed a Flask-based
web application that allowed participants to solve differ-
ent types of CAPTCHAs, following a controlled procedure.
The application recorded user performance metrics in real-
time, their feedback both in terms of votes and free com-
ments.

The analysis of the results revealed that the audio-based
CAPTCHA was the least preferred option among partic-
ipants, as it was the slowest to complete, despite be-

17

ing one of the most accurate. In contrast, the check-
box CAPTCHA demonstrated the highest accuracy, while
the puzzle CAPTCHA was the fastest scheme. Regarding
the multi-factor CAPTCHA modes, the sequences combin-
ing the puzzle and checkbox challenges, namely Puzzle-
Checkbox and Checkbox-Puzzle, were found to be the most
efficient in terms of the time required by users and the error
rate. Conversely, the Text-Audio sequence was deemed the
least efficient.

Several opportunities exist to extend this research, ad-
dressing the limitations outlined in section 5. First, the ex-
periment should be replicated with a larger participant pool
to confirm the findings and investigate the interaction be-
tween CAPTCHA type and mode (single-factor vs. multi-
factor). Additionally, the researchers intend to explore
additional CAPTCHA modalities, such as CAPTCHAs
with voice recognition for medical forms [4], and their
multi-factor combinations, increasing the number of fac-
tors. Moreover, the researchers will examine the implica-
tions of employing multi-factor CAPTCHAs in educational
games [3, 5] to ensure the participation of human players .

Furthermore, a comprehensive experiment will be con-
ducted to assess the security of multi-factor CAPTCHAs,
including evaluating the effectiveness of recently released
neural models. Finally, we intend to analyze the use of
multi-factor CAPTCHAs with participants who have dis-
abilities affecting their vision, and hearing or have specific
learning disorders, such as dyslexia.

References

[1] A. Algwil. A security analysis of text-based captcha
schemes. 2:309–323, 09 2023.

[2] A. S. Almazyad, Y. Ahmad, and S. A. Kouchay. Multi-
modal captcha: A user verification scheme. International
Journal of Engineering Research & Technology, 2012.

[3] G. Coppola, G. Costagliola, M. De Rosa, and V. Fuccella.
Domus: A multi-user tui game for multi-touch tables. In
Proceedings of the International Conference on Advanced
Visual Interfaces, AVI ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[4] E. Corbisiero, G. Costagliola, M. De Rosa, V. Fuccella,
A. Piscitelli, and P. Tabari. Speech recognition in healthcare:
A comparison of different speech recognition input interac-
tions. In Y.-W. Chen, S. Tanaka, R. J. Howlett, and L. C.
Jain, editors, Innovation in Medicine and Healthcare, pages
142–152, Singapore, 2023. Springer Nature Singapore.

[5] G. Costagliola, M. De Rosa, V. Fuccella, A. Piscitelli,
and P. Tabari. Domus: An educational multiplayer game
for touch tables using a tangible user interface. In P. Za-
phiris and A. Ioannou, editors, Learning and Collabora-
tion Technologies, pages 3–16, Cham, 2024. Springer Na-
ture Switzerland.

[6] Dayanand, M. Saloni, and W. Jeberson. Multi-layered
captcha - a new approach to tackle web robots. International
Journal of Engineering Research & Technology, 2018.

[7] E. Girden. ANOVA: Repeated Measures. Number No. 84 in
ANOVA: Repeated Measures. SAGE Publications, 1992.

[8] M. Guerar, L. Verderame, M. Migliardi, F. Palmieri, and
A. Merlo. Gotta captcha ’em all: A survey of 20 years of
the human-or-computer dilemma. ACM Computing Surveys,
2021.

[9] E. Igbekele, A. A. Adebiyi, F. Ibikunlem, and M. Adebiyi.
Research trends on captcha: A systematic literature. Inter-
national Journal of Electrical and Computer Engineering,
2021.

[10] B. John. Sus: a ”quick and dirty” usability scale. Usability
Eval. Ind, 189, 1995.

[11] M. Moradi and M. Keyvanpour. Captcha and its alternatives:
A review. Security and Communication Networks, 2014.

[12] U. P, Member, IAENG, S. K, and R. P. Smart captcha to
provide high security against bots. Lecture Notes in Engi-
neering and Computer Science: Proceedings of The World
Congress on Engineering, 2019.

[13] D. U. Pujeri and D. P. S. Aithal. Smart captcha version 1.
GIS SCIENCE JOURNAL, 2021.

[14] S. Sharma and D. Singh. Captcha in web security and deep-
captcha configuration based on machine learning. In 2024
3rd International Conference for Innovation in Technology
(INOCON), pages 1–6, 2024.

[15] S. Vikram, Y. Fan, and G. Gu. Semage: A new image-based
two-factor captcha. ACSAC ’11: Proceedings of the 27th
Annual Computer Security Applications Conference, 2011.

[16] https://pypi.org/project/captcha/
[17] https://pypi.org/project/flask/
[18] https://pypi.org/project/flask-

Captchaify/

18

https://pypi.org/project/captcha/
https://pypi.org/project/flask/
https://pypi.org/project/flask-Captchaify/
https://pypi.org/project/flask-Captchaify/

MVP: Mind Map-Based Video Searching Platform

1Taeghyun Kang, 2Hyungbae Park, 3Sunae Shin

1University of Central Missouri, Warrensburg, MO, USA
2University of North Georgia, Dahlonega, GA, USA

3Georgia Gwinnett College, Lawrenceville, GA, USA
Email: tkang@ucmo.edu, hpark@ung.edu, sshin7@ggc.edu

Abstract

Video has now surpassed all other types of content as the
most common medium of disseminating information. Many
videos are created for entertainment, but more are being
made for educational or instructional purposes. Users can
now easily create videos using platforms such as YouTube,
TikTok, and Instagram, which have search algorithms that
recommend videos to users based on their interests. But
with numerous videos being produced on these sites, finding
videos which provide the information they need has become
increasingly difficult for users. In this paper, we have built a
video search platform using a mind map architecture. Mind
map is an effective and efficient tool and a valuable method
for improving critical thinking. It helps people to start ex-
ploring and expanding the topics with the natural way of
doing things in the brain. We have developed MVP (Mind
Map-Based Video Searching Platform), a service that al-
lows users to build mind maps and upload videos to each
node within the mind map.

Index terms— Video sharing platform, Video searching
platform, Mind map, UX design

1 Introduction

The speed of the Internet has improved dramatically as
a result of the growth of Internet-based technologies and
networks, and video content has emerged as the most sig-
nificant information distribution medium. Individuals can
now easily produce videos thanks to advancements in online
video sharing and production platforms. As more experts
in different fields produce videos about content relevant to

0DOI reference number: 10.18293/DMSVIVA2024-004

their fields of work, the importance of the knowledge found
in the videos has increased significantly. Users can search
for videos by using a tag or video title, and platforms often
provide a service that uses a complex algorithm to suggest
videos that users may be interested in. Nevertheless, the
countless videos created by many users every day make it
difficult to perform searches. In addition, it is even more
challenging to find a specific piece of information within a
video. Two main factors identified on Wikipedia could help
address this issue. To begin, Wikipedia provides a table
of contents that provides an overview of the topics that the
user has searched for. This table of contents allows users to
quickly navigate to topics of interest, in a similar fashion to
a car’s navigation system that guides users to their destina-
tions. If users have some background knowledge of the sub-
ject they are looking for, the information can be easily found
by means of links in the content table instead of reading the
complete text. Secondly, links in the text in Wikipedia pro-
vide information that is either directly or indirectly relevant
to the subject. These links, like the recommendation system
of an online video-sharing site, can often pique users’ inter-
est in exploring additional details. Figure 1 shows a guide
to becoming a front-end developer using a mind map struc-
ture [1]. However, since the nodes of the mind map are not
directly linked to their detailed information, users must go
through the hassle of searching for additional information
for each node.

In this paper, we have developed an online sharing
and searching platform with an architecture of mind maps.
Rather than creating an effective video searching algorithm,
we focused on adopting a mind map tree structure to de-
velop a well-defined repository architecture to store videos.
The remainder of the paper is structured as follows: Sec-
tion 2 describes the motivation of the paper and reviews

19

Figure 1: Roadmap of a Frontend Developer Using a Mind
Map Structure

context information and literature references. Section 3 de-
scribes requirements and functionalities of the developed
platform. Section 4 depicts the platform’s implementation
as a proof-of-concept and as a basis for further research to
demonstrate the platform’s efficacy. Section 5 concludes the
paper.

2 Related work

As online video-sharing platforms are getting more at-
tention and popularity, the number of videos posted on-
line has been exponentially increased. Online video-sharing
platforms are utilizing keyword tagging and searching for
users to find videos they are interested in. However, the
extreme growth and distribution of video on the Internet
has made searching for specific videos that satisfy users’
expectation using simple text and keyword-based queries a
significant challenge. These existing indexing, tagging, and
searching has a limited capability as computer AI’s image
recognition and linguistic analysis still have some limita-
tion to perfectly understand images on videos and human
language. In order to efficiently and effectively retrieve rel-
evant videos from the enormously large video database, var-
ious techniques have been developed and implemented.

Temporal Localization with Natural Language: Hen-
dricks et al. [5], Shao et al. [19], Zhang et al. [23], and Zhao
et al. [24] addressed the problems of retrieving a temporary
segment from a video for a given natural language query.
These schemes don’t require any pre- or post-processing
of the video for effective moment localization. This is a
challenging problem as each moment may have different
semantics. Learning discriminative features out of videos
requires an ability to deal with its flexibility and complex-
ity of moment description. They mainly focus on retrieving

a specific temporal segment from a video, but the feature
could be simply extended to video retrieval systems.

Video-Text Embedding Models: Miech et al. [17] pro-
posed a model that learns video-text embeddings from het-
erogeneous data sources. Similarly, Mithun et al. [18] and
Liu et al. [16] proposed a novel framework that utilizes
available multi-modal cues from videos for the cross-modal
video-text retrieval task. For effective video retrieval, [18]
used a fusion strategy and those multi-modal features in-
clude different visual characteristics, audio inputs, and text.
They also proposed a new loss function that further exploits
the multimodal correlation. [16] framework effectively uses
embeddings from different scene, objects, actions, etc. by
learning their combination in order to render them more dis-
criminative. The framework retrieves video contents using
a free-form text query that may contain both general and
specific information.

Content-Based Video Retrieval (CBVR): In order to
tackle the limitations of keyword-based video search,
content-based video retrieval techniques have been pro-
posed [10, 20, 9, 15]. CBVR systems can retrieve a list
of videos by various types of queries such as query by ob-
jects, query by location, query by example, query by sketch,
query by natural language, etc. In this paper, we propose a
simple but innovative way that utilizes a mind map [7, 8] for
efficient and effective video retrieval search engine. Mind
maps have been adopted and used in various ways such as a
learning strategy [21, 14, 25], a user modeling and recom-
mender system [6, 11], document summarization [22, 13],
etc. Our proposed platform use a mind map in a way that
mimics users’ flow of conscious when they need to search
certain videos. This paper discusses the limitations of the
current video information retrieval systems, a new way to
use a mind map, and the technical requirements for imple-
menting a flow of human consciousness-based search en-
gine. To the best of our knowledge, our work is the first to
implement a video search platform using a mind map and to
tackle and overcome challenges and issues in implementing
the platform. Our platform allows users to organize (index
and search) videos based on the flow of human conscious-
ness (thinking process) via mind maps.

3 The Functionalities and UX Design of the
MVP

To design an effective and efficient video search plat-
form, we first elicited user and external interface require-
ments. The majority of video search sites, such as YouTube,
provide search and recommendations based on the user’s
viewing and search history. These platforms are concen-
trating on improving their search and recommendation algo-
rithms. However, a user cannot figure out whether the video
includes the information the user needs until he/she watches

20

the entire video. According to the statistic [2], users tend
to watch short videos, and shorter videos are particularly
engaging when they offer educational and insightful con-
tent [3]. The details found in the video becomes easier to
locate and clearer as the video’s duration is reduced. The
users will not always be able to specify the information they
need. Even if the user searches based on incomplete infor-
mation, the platform must be able to navigate to the infor-
mation the user ultimately wants, like the navigation system
in a car. The user requirements are summarized in Table 1.

Table 1: User and External Interface Requirements

1. The platform should provide videos that deliver
knowledge for educational purposes.

2. Users can easily search for information contained
in videos (not the videos themselves).

3. The mind map ecosystem should be managed and
enhanced through collective intelligence, similar to
Wikipedia.

4. The platform is able to recommend the videos to
users based on the relationship between the infor-
mation in the video. When user watch informative
videos like tutorial, knowledge guide, learning, and
academic classes videos, it should not recommend
video based on the user or other user’s search his-
tory.

We propose MVP (Mind Map-Based Video Searching
Platform) that implements the requirements listed above.
The tree-like structure of a mind map is suitable for rep-
resenting knowledge structured in a hierarchical manner,
such as the table of contents in Wikipedia. In MVP, a video
should be divided and saved according to the mind map’s
hierarchical detail. It allows users to search for information
when moving through the mind map’s hierarchical struc-
ture, allowing them to easily locate the information they
need without having to use complicated search algorithms.
The subject that users are investigating appears as a root
node in the mind map, but it may actually be a sub-topic of
another piece of material.

3.1 UX design of MVP

When users search for videos, instead of searching for
individual videos, the platform displays an information
ecosystem (Mind Map) that contains the desired informa-
tion through a mind map. To meet the requirements defined
in Table 1, The interface is designed as shown in Figure 2
and the functionalities of the mind map is summarized in
Table 2.

Figure 2: UX Design Diagram of the Mind Map

Table 2: Functionalities of the Mind Map

Number in
Figure 2

Description

1 Search mind maps created by individual
users.

2 The search results are listed in Section 2.

3 The layout of the Search tab and the Link
Search tab is identical. The Search tab is
used to find and extract link information
for related mind maps when connecting a
node in the current mind map to others.

4 When connecting related nodes from other
mind maps, it extracts link information us-
ing the ”Copy Link” button.

5 Users can use the extracted link informa-
tion to create new sub-nodes in the mind
map they are currently using.

6 When users move nodes in the mind map
to find desired information, the frequency
of movement is differentiated by the color
and thickness of the lines.

7 User search for other mind maps that refer-
ence the current mind map.

8 When a user clicks a node in the mind map,
the videos associated with that node are
listed in Section 8.

Smartphones have overtaken as the most popular device

21

for watching videos. According to a statistic, mobile de-
vices account for 70% of overall YouTube watch time [4].

We have designed and built a video search platform us-
ing a mind map architecture for mobile devices. The num-
ber of sub-nodes shown on the screen is limited to 10 due to
the smartphone’s screen size, and sub-nodes with more than
10 are not shown on the screen but run in the background.
However, the user can navigate through hidden sub-nodes
by rotating the sub-nodes left and right (placed at #5 in Fig-
ure 3). Also, the buttons that create the root node and the
sub-nodes have been separated and positioned in the upper
left corner to avoid unintended actions that may occur due
to incorrect screen touch.

Figure 3: UX Design of the Mind Map in MVP

Functionalities of the mind map in MVP is summarized
in Table 3.

Table 3: Functionalities of the Mind Map for Mobile Device

Number in
Figure 3

Description

1 Create a root node of a mind map

2 Create a sub-node of a mind map

3 Root node

4 Sub-node

5 Rotate sub-nodes around the root node

6 Search a mind map

3.2 Searching Process of MVP

The user must create a mind map that functions as ta-
ble of contents. If other users have already created a mind
map for the same topic, the user can either upload a video

using one of the existing mind maps crreated by others or
create a new mind map of their own. Users can generate
multiple mind maps for a single topic using the MVP. Even
if the main topic is the same, the way the sub-contents are
arranged and organized will differ. As a result, when users
are looking for a specific mind map, the structure of the
mind map can be used as a source of information. For ex-
ample, in Figure 4, JPA (Java Persistence API) is a collec-
tion of classes and method that allows easy interaction with
database instance. When a user searches for a mind map
using the keyword “JPA”, they can navigate all mind maps
that contain a “JPA” node. In mind maps where JPA node is
used as the root, the user can get an overview of the details
needed to learn JPA from the structure of the mind map. If
the “JPA” node is a sub-node in a mind map, the user can
explore how JPA relates to other technologies and topics.

Figure 4: Mind Map Search Outcome of MVP

3.3 Mind Map Integration and Division

Mind maps help users to see the entire picture by con-
necting one topic to the next. Users can create their own
knowledge map that shows where a video can be found. To
compose a refined mind map, MVP provides a function for
dividing or integrating the mind maps as shown in Figure 5.

4 Implementation

To collect data to verify the efficiency of MVP as a video
sharing platform, The app is implemented using android
with Kotlin and server-side APIs are developed using PHP.
The MVP has restricted video length to 5 minutes to ensure
that each video contains only the essential information [12].
Additionally, dividing the content into smaller nodes within
a mind map helps users locate information more quickly and
effectively. The operating environments are summarized in

22

Figure 5: Integration and Division of Mind Map in MVP

the Table 4. Figure 6 shows the entity diagram for creating
a mind map. Every node has a unique id, and, if a node is a
sub-node in the mind map, it can be identified with the par-
ent node and depth of the node in the MindMap table. When
a video is uploaded to Amazon Cloud Storage, it records the
file name, title, description of the video, URL where a video
is stored, etc.

Table 4: Operating Environments of MVP

Amazon Server Description

EC2 Hosting server

ELB Elastic Load Balancing

RDS1 MySQL 8.0.15 Community, Master
databse

RDS2 MySQL 8.0.15 Community, Read
replicas

S3 Secure cloud storage for videos

ElasticCache Session server, cache

Figure 6: Entity Diagram for Mind Map in MVP

5 Conclusion

For the digital generation, videos are a more interactive
medium. Owing to the long-term COVID-19 pandemic,
many people have become accustomed to taking classes on-
line. So far, videos for basic amusement have dominated
the mainstream online video-creation platforms. The de-
mand for educational and insightful videos to obtain infor-
mation, on the other hand, is also steadily rising. MVP
(Mind Map-Based Video Searching Platform) was created
to provide a more effective and efficient way to store and
share videos with the help of mind maps. When users search
for new content for learning or educational purposes, they
often rely on keyword searches based on fragmented infor-
mation. This can lead to loss of interest or difficulty in ac-
quiring the desired information, especially if they lack suf-
ficient background knowledge. In the age of information
overload, mind maps can leverage collective intelligence to
build a high-level video ecosystem. By showing informa-
tion relevance during the search process, mind maps enable
users to easily grasp the overall structure of the information,
even when they only have fragmented details.

References

[1] Frontend developer. https://roadmap.sh/frontend.
[2] Average youtube video length as of december 2018, by cat-

egory. https://www.statista.com/statistics/1026923/youtube-
video-category-average-length/, 2018.

[3] Distribution of videos removed from youtube world-
wide from 2nd quarter 2019 to 3rd quarter 2023, by
reason. https://www.statista.com/statistics/1132956/share-
removed-youtube-videos-worldwide-by-reason/, 2023.

[4] Youtube usage statistics. https://worldmetrics.org/youtube-
usage-statistics/, 2024.

[5] L. Anne Hendricks, O. Wang, E. Shechtman, J. Sivic, T. Dar-
rell, and B. Russell. Localizing moments in video with natu-
ral language. In Proceedings of the IEEE international con-
ference on computer vision, pages 5803–5812, 2017.

[6] J. Beel. Towards effective research-paper recommender sys-
tems and user modeling based on mind maps. arXiv preprint
arXiv:1703.09109, 2017.

[7] T. Buzan. Make the most of your mind. Simon and Schuster,
1984.

[8] T. Buzan and B. Buzan. How to mind map. Thorsons Lon-
don, 2002.

[9] L. Cao, X.-M. Liu, W. Liu, R. Ji, and T. Huang. Localiz-
ing web videos using social images. Information Sciences,
302:122–131, 2015.

[10] S.-F. Chang, W. Chen, H. J. Meng, H. Sundaram, and
D. Zhong. A fully automated content-based video search en-
gine supporting spatiotemporal queries. IEEE transactions
on circuits and systems for video technology, 8(5):602–615,
1998.

23

[11] M. H. Dlab. Experiences in using educational recommender
system elars to support e-learning. In 2017 40th Interna-
tional Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), pages
672–677. IEEE, 2017.

[12] P. J. Guo, J. Kim, and R. Rubin. How video production
affects student engagement: An empirical study of mooc
videos. In Proceedings of the first ACM conference on
Learning@ scale conference, pages 41–50, 2014.

[13] G.-J. Hwang, M.-R. A. Chen, H.-Y. Sung, and M.-H. Lin.
Effects of integrating a concept mapping-based summariza-
tion strategy into flipped learning on students’ reading per-
formances and perceptions in chinese courses. British Jour-
nal of Educational Technology, 50(5):2703–2719, 2019.

[14] D. Indriani and I. Mercuriani. The effectiveness of experien-
tial learning model by using mind map to the understanding
of concepts on fungi materials at the tenth-grade students of
senior high school. In Journal of Physics: Conference Se-
ries, volume 1567, page 042081. IOP Publishing, 2020.

[15] Y.-G. Jiang, J. Wang, Q. Wang, W. Liu, and C.-W.
Ngo. Hierarchical visualization of video search results for
topic-based browsing. IEEE Transactions on Multimedia,
18(11):2161–2170, 2016.

[16] Y. Liu, S. Albanie, A. Nagrani, and A. Zisserman. Use what
you have: Video retrieval using representations from collab-
orative experts. arXiv preprint arXiv:1907.13487, 2019.

[17] A. Miech, I. Laptev, and J. Sivic. Learning a text-video
embedding from incomplete and heterogeneous data. arXiv
preprint arXiv:1804.02516, 2018.

[18] N. C. Mithun, J. Li, F. Metze, and A. K. Roy-Chowdhury.
Learning joint embedding with multimodal cues for cross-
modal video-text retrieval. In Proceedings of the 2018 ACM

on international conference on multimedia retrieval, pages
19–27, 2018.

[19] D. Shao, Y. Xiong, Y. Zhao, Q. Huang, Y. Qiao, and D. Lin.
Find and focus: Retrieve and localize video events with nat-
ural language queries. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 200–216, 2018.

[20] C.-W. Su, H.-Y. M. Liao, H.-R. Tyan, C.-W. Lin, D.-Y. Chen,
and K.-C. Fan. Motion flow-based video retrieval. IEEE
Transactions on Multimedia, 9(6):1193–1201, 2007.

[21] A. Vimalaksha, S. Vinay, and N. Kumar. Hierarchical mind
map generation from video lectures. In 2019 IEEE Tenth In-
ternational Conference on Technology for Education (T4E),
pages 110–113. IEEE, 2019.

[22] R. Yulianto and S. Mariyah. Building automatic mind map
generator for natural disaster news in bahasa indonesia. In
2017 International Conference on Information Technology
Systems and Innovation (ICITSI), pages 177–182. IEEE,
2017.

[23] S. Zhang, H. Peng, J. Fu, and J. Luo. Learning 2d temporal
adjacent networks for moment localization with natural lan-
guage. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 12870–12877, 2020.

[24] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, X. Tang, and D. Lin.
Temporal action detection with structured segment net-
works. In Proceedings of the IEEE international conference
on computer vision, pages 2914–2923, 2017.

[25] S. Zubaıdah, N. M. Fuad, S. Mahanal, and E. Suarsını. Im-
proving creative thinking skills of students through differen-
tiated science ınquiry ıntegrated with mind map. Journal of
Turkish Science Education, 14(4):77–91, 2017.

24

Drill core image recognition with three-dimensional attention and self-calibration

Yong Pu1, Chuanhu Xiong1, Yonghua Chen1, Ziyuan Xu2

1Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou, China
2Institute of Intelligence Science and Technology, School of Computer Science and Software Engineering,

Hohai University, Nanjing, China
{puyong, xiongchuanhu, chenyonghua}@dtsjy.com, hideon27@hhu.edu.cn

Abstract

Drill core image recognition is an extremely critical
aspect of geological exploration. However, the research on
drill core image recognition faces challenges such as sub-
tle discrepancies between different lithological categories,
complex backgrounds, unclear recognition subjects, and
lack of datasets. Currently, the existing recognition meth-
ods for geological images struggle to accurately classify
drill core images. To address these issues, this paper con-
structs a drill core image dataset called Drill Core Dataset
(DCD), and proposes an image recognition model called
MSL-ResNet50, which combines self-calibration residual
module and three-dimensional attention. By introducing
a self-calibration module with a larger receptive field, the
model captures higher-level semantic information and en-
hances the network’s feature transformation capability.
Furthermore, it integrates the SimAM attention mecha-
nism to mitigate interference in context information, giv-
ing higher attention to key areas. Additionally, the MAM
pooling strategy is utilized to alleviate the loss of image
features and maintain consistency in feature distribution
of feature maps before and after pooling. Extensive ab-
lation and validation experiments were conducted on the
DCD dataset. The experimental results demonstrate that
the proposed model, MS-ResNet50, significantly outper-
forms the related benchmark models in drill core image
recognition. Specifically, it achieves a recognition accu-
racy of 99.3%, an improvement of 4.1% over the original
model, validating the effectiveness of the proposed model
for core image recognition tasks.

Index terms— Drill core image recognition, self-
calibration, three-dimensional attention, MAM pooling

1 Introduction

Image recognition is a key technology in computer
vision to automatically identify and analyze objects and

features in digital images. Drill core image recognition
is a process specifically applied to geological exploration
and petroleum engineering, aiming to automatically analyze
core images to extract geological information. Traditional
methods in drill core recognition rely on the experiences
and technical capabilities of field surveyors, which is time-
consuming, labor-intensive and highly subjective. Further-
more, differences in professional proficiency would lead to
uneven accuracy of drill core identification results. Nowa-
days, automatic core image recognition can be achieved
through deep learning.

Early lithology identification utilized the principal
component analysis (PCA) to reduce the dimensionality of
the original correlated lithology parameters [1, 2, 3]. Re-
cently, deep learning has been applied to strata identifica-
tion. Cheng proposed a particle size analysis method for
rock images based on convolutional neural networks [4].
Zhang et al. accomplished the identification of three types
of rocks by building a deep convolutional neural network
model based on Inception-v3 [5]. Liu et al. proposed an
optimal method for automatic identification of thin argilla-
ceous interlayers, providing reference for the efficient de-
velopment of oil sand projects [6]. Alférez et al. employed
the convolutional neural network (CNN) model developed
by TensorFlow to classify granite rocks [7]. Xu et al. pro-
posed the Faster R-CNN architecture for rock image pre-
diction, based on the ResNet structure and retaining the
detailed information of the original image through residual
learning [8]. Chen et al. established a classification frame-
work for tunnel face rock structure based on the Inception-
ResNet-V2 convolutional neural network [9]. Zhang et al.
presented an improved Branch Module structure based on
the AlexNet network to promote recognition accuracy and
reduce the number of model parameters [10]. Bharadiya et
al. combined a CNN model for image classification with
learning representation to tackle the shortcomings of tradi-
tional feature selection methods [11]. Baraboshkin et al.
applied CNN to the field of rock classification and sug-
gested that GoogLeNet and ResNet are architectures with

DOI reference number: 10.18293/DMSVIVA24-008

25

Figure 1: The structure of the proposed model MS-ResNet50.

preferable performance [12]. Zhang et al. developed an in-
telligent system for identifying continental shale lithology
using data balancing and deep learning, with the Efficient-
Net model performing best and providing technical support
for evaluating continental shale reservoirs [13]. Wang et
al. constructed an improved lightweight MobileViT model
to analyze rock slice images covering most common lithol-
ogy, addressing issues of unbalanced lithology datasets and
numerous identification model parameters [14].

Despite remarkable progress in lithology recognition
research, some challenges remain in this field. First, the
images sampled at different times and locations would ex-
hibit significant variations due to environmental influences,
which places high demands on the generalization ability
of the model. Second, since many rocks are highly simi-
lar in appearance and composition, the lithology of rocks
presents the issue of large intra-class differences and small
inter-class differences, making accurate identification diffi-
cult. Third, in dealing with diverse samples acquired from
complex geological conditions, existing methods have diffi-
culty in accurately separating and identifying each lithology
in strata with mixed lithologies. This could be especially
true when the lithology data has a highly unbalanced distri-
bution.

To address the above challenges, on the basis of
ResNet [13], a deep network that has been proven by the
above-mentioned existing work to be effective in tackling
lithology identification, this paper proposes an improved
deep network model MS-ResNet50 dedicated to the identifi-
cation of drill core images, by optimizing the residual struc-
ture, pooling strategy and activation function of the original
model. The main contributions of the paper are summarized

as follows:
1. A dataset for drill core images, called Drill Core

Dataset (DCD), is constructed. It includes 3070 drill core
images, which are sampled under various environments,
weather conditions, shooting angles, lighting, and depths.

2. A residual network that combines SimAM and self-
calibrated convolution is constructed. The latent space is
utilized to calibrate the original space to obtain more sur-
rounding context information, including the contour and
texture of the strata. The three-dimensional attention mech-
anism SimAM is employed to assist the latent space to ex-
tract information in a targeted manner, thus eliminating the
interference in context information.

3. The MAM pooling strategy is introduced. The mean
of each pooling window is compared with the standard de-
viation and mean of the entire pooling domain to select the
appropriate pooling method, so that the feature map after
pooling maintains the same feature distribution as the orig-
inal image, and meanwhile obtains subtle features and sig-
nificant features, and reduces the information loss caused
by the pooling operation, thus improving the ability to dis-
tinguish between similar drill cores.

4. Extensive experiments on the data set DCD are con-
ducted. The experimental results demonstrate that the pro-
posed model significantly outperforms the existing models
in lithology recognition. In particular, the accuracy of the
improved model reaches 99.3%, which is 4.1% higher than
the original model.

The remainder of the paper is organized as follows.
Section 2 provides the overall architecture of the proposed
model, Section 3 presents the self-calibrating convolution
module with three-dimensional attention mechanism, Sec-

26

tion 4 introduces the MAM pooling method, Section 5 con-
ducts experiments and result analysis, and finally Section 6
concludes the paper.

2 MODEL ARCHITECTURE

The architecture of the proposed model MS-ResNet50
is shown in Figure 1. There are three fundamental com-
ponents appearing in the network: CBL, MCB and CB,
where CBL stands for Convolution, Batch normalization
and LeakyReLU, MCB stands for MAM pooling, Convo-
lution and Batch normalization, and CB stands for Convo-
lution and Batch normalization. It incorporates three crucial
improvements on the original model ResNet50.

As an improvement to the conventional residual mod-
ule, MS-ResNet50 constructs a module called sscblock that
combines the self-calibrated convolution and the SimAM
attention mechanism. This module divides the input into
two parts. One part is the same as that of ResNet50, per-
forming a standard 3×3 convolution, and the other is di-
vided into two paths. Path 1 obtains the context informa-
tion of the surrounding area after downsampling as a la-
tent space with large receptive field, whereas Path 2 ex-
tracts features in the original scale space. Then, the outputs
from the two paths are added and convolved to obtain the
calibrated feature map. Since the self-calibration strategy
would inevitably bring in useless background information,
the SimAM mechanism is introduced in the latent space to
acquire the context information, and the cross-dimensional
information obtained from the interaction between the three
dimensions of space and channel can be leveraged to reduce
the interference of background information.

To tackle the issue that the original pooling method
may cause information loss when reducing the model size,
an improved strategy is proposed. Specifically, average
pooling is not conducive to the extraction of edge features,
and maximum pooling merely focuses on obvious features
and ignores details and texture features, resulting in seri-
ous feature loss. Therefore, the MAM pooling method is
employed to replace the original pooling, setting different
pooling strategies in terms of the pooling window and the
global situation. The flexible selection of pooling strategies
can keep the style of the feature map before and after pool-
ing consistent, and meanwhile enhances the model’s per-
ception of image details.

Additionally, the original activation function ReLU is
replaced by LeakyReLU, to alleviate the issue of neuron
“necrosis”. A comparative experiment has validated that
LeakyReLU is the most beneficial activation function for
enhancing the recognition performance of the model.

3 Self-calibrated convolution module with
3D attention mechanism

Traditional convolution operations are performed by
sliding a fixed-size convolution kernel over the input feature
map. For a set of convolution kernels K = [k1, k2, . . . , kc],
and input data X = [x1, x2, . . . , xc], the output data after
convolution is denoted as Y = [y1, y2, . . . , yc]. The out-
put of the i-th channel can be expressed as yi = ki ∗X =∑

j=1 k
j
i ∗ xj .

This kind of convolution uses the same formula to cal-
culate the output of each channel, and the final feature map
is obtained by summing these outputs. Consequently, the
features learned by the convolution kernels often lacks di-
versity, and the extracted feature map also lacks distinctive-
ness. In addition, the predefined convolution kernel size
determines the receptive field of each spatial position, mak-
ing it challenging for the network to effectively capture the
high-level semantic information and generate optimal out-
put results. The network constructed using such convolu-
tion layers exhibit clear drawbacks, such as insufficient re-
ceptive field and inadequate grasp of high-level semantic
information.

Given that the feature transformation capability of a
network is one of the critical factors affecting the recog-
nition performance of convolutional neural networks, this
section introduces a feature extraction method based on a
self-calibrated residual network. This method leverages an
internal message-passing mechanism to break away from
the traditional use of small-size kernels for information fu-
sion and extraction in both channel and spatial dimensions
without adding additional learnable parameters.

However, when using self-calibrated convolutions to
acquire surrounding context information, irrelevant back-
ground information would inevitably interfere with the net-
work. Therefore, to assist the network in focusing attention
on key beneficial areas, a self-calibrated convolution mod-
ule with a three-dimensional attention mechanism is pro-
posed. The module captures the critical information over-
looked across three dimensions, avoiding the interference
caused by long-range context information, and helps the
model better understand the overall structure and context
of the image.

3.1 Self-calibrated residual module

The structure of the Self-Calibrated Convolution (SC-
Conv) is shown in Figure 2. It divides the convolution ker-
nels of a specific layer into multiple parts, which are then
fed into two different scale spaces for feature transforma-
tion. This allows for more effective capture of the rich
context information surrounding each spatial position. In
SCConv module, the self-calibration operation can be uti-

27

lized to adaptively adjust the learning of long-distance spa-
tial positions and the interaction between channels, thereby
achieving the objective of expanding the receptive field of
convolutions. The heterogeneous convolution communica-
tion means significantly expands the receptive field of each
spatial position, thereby improving the perception ability of
the network.

Figure 2: The structure of self-calibrated convolution module.

The specific calculation steps are as follows:
(1) The size of the input feature map is C×H×W . It

is split into two parts, each with a size of C/2×H×W , and
sent into different paths to collect different types of context
information.

(2) There are 4 convolution kernels, denoted as
K1,K2,K3, and K4, each with dimensions C/2×H ×W .

(3) Processing the self-calibrated scale space:
For X1, there are two parts: one entering the origi-

nal space and the other entering the latent space. In the
latent space, feature X1 undergoes average pooling with a
4x downsampling:

T1 = AvgPoolr (X1) (1)

Then, bilinear interpolation is used for upsampling,
mapping the small-scale space back to the original feature
space:

X ′
1 = Up(F2(T1)) = Up(T1 ∗K2) (2)

where ∗ indicates the convolution operation. Then, a resid-
ual structure is constructed by addition and passed through
the sigmoid activation function:

M1 = σ (X1 +X ′
1) (3)

where σ is the sigmoid function, and X
′

1 serves as the resid-
ual to form the calibration weight. In the original space, X1

is passed into the K3 convolution kernel and calibrated us-
ing the features obtained from the latent space to produce
Y1:

Y ′
1 = F3 (X1) •M1 = (X1 ∗K3) •M1

Y1 = F4 (Y
′
1) = K4 ∗ Y ′

1

(4)

where F3(X1) = X1 ∗ K3, and • represents element-wise
multiplication. Y1 is the final output after calibration.

(4) Processing the original space: perform a K1 con-
volution operation on feature X2 to extract feature Y2;

(5) Concatenate the output features Y1 and Y2 from the
two scale spaces to obtain the final output feature Y .

3.2 Three-dimensional attention mechanism

The essence of the attention mechanism lies in the pro-
cess of to dynamically select information in the input im-
age using different weights. In the current research on the
combination of attention mechanisms and neural networks,
CBAM (Convolutional Block Attention Module) is a repre-
sentative attention mechanism module, which sequentially
connects the channel attention module and the spatial atten-
tion module. Its structure is shown in Figure 3.

Figure 3: The CBAM structure.

The CBAM module can serially generate attention fea-
ture map information in the channel and space dimensions
for the input feature map, and then achieve adaptive feature
correction by multiplying it with the original input feature
map. The structures of the channel attention and spatial at-
tention are shown in Figure 4 and Figure 5, respectively.

Figure 4: The channel attention structure.

Figure 5: The spatial attention structure.

In terms of neuroscience theory, human spatial atten-
tion and channel attention often coexist and interact, jointly
promoting visual processing. However, according to the
above analysis, although the CBAM module takes into ac-
count the feature information of both spatial and channel

28

dimensions, this serial approach makes the channel and spa-
tial channels relatively independent, neglecting the interac-
tion between them, which leads to the loss of important
cross-dimensional information.

The SimAM mechanism can make up for the above
shortcomings of the CBAM module. SimAM assigns a
unique weight to each neuron without adding additional pa-
rameters, and treats the channel and spatial attention oper-
ations equally. This strategy generates three-dimensional
weights that amplify the interaction features across all di-
mensions and reduce information diffusion.

Neuroscientific research indicates that if a neuron car-
ries a large amount of information, its discharge pattern
tends to significantly differ from that of other surrounding
neurons. When these neurons are activated, they usually
cause inhibition of surrounding neurons, a property known
as spatial inhibition. In other words, in a neural network,
neurons with spatial inhibition property should be given
more attention and assigned higher weights compared to
other neurons. The simplest way to identify such neurons is
to measure the linear separability between neurons.

According to neuroscience theory, an energy function
can be defined for each neuron to evaluate its importance,
as shown in Equation 5:

et (wt, bt, y, xi) =
(
yt − t̂

)2
+

1

M − 1

M−1∑
i=1

(yo − x̂i)
2

(5)
where M represents the number of neurons in each chan-
nel, with M = H × W ; t denotes the target neuron and
xi denotes other neurons on the same channel as t; t̂ indi-
cates a linear transformation of t defined as t̂ = wt + bt,
and x̂i represents a linear transformation of xi defined as
x̂i = wtxi + bt, where wt and bt are the weights and biases
assigned during the linear change; and yo and yt represent
binary labels.

In order to train the linear separability between the tar-
get neuron and other neurons in the same channel, binary
labels are used, with yt=1 and yo=-1, and a regularization
term is added to minimize Equation 5, yielding the final
energy function:

et (wt, bt, y, xi) =
1

M − 1

M−1∑
i=1

[
(−1− (wtxi + bt))

2

+ (1− (wt + bt))
2
]
+ λw2

t (6)

Theoretically, each channel has M neurons, resulting
in M energy functions per channel. To reduce the compu-
tational overhead, the analytical solutions of wt and bt are
derived:

wt = − 2 (t− µt)

(t− µt)
2
+ 2σ2

t + 2λ

bt = −1

2
(t+ µt)wt

µt =
1

M − 1

M−1∑
i=1

xi

σ2
t =

1

M − 1

M−1∑
i=1

(xi − µt)
2

(7)

where µt represents the mean of all other neurons in the
channel except for the target neuron, and σ represents the
variance of all other neurons in the channel except for the
target neuron. Since all neurons in each channel follow the
same distribution, the minimum energy function for each
position can be expressed as:

e∗t =
4
(
σ̂2 + λ

)
(t− µ̂)

2
+ 2σ̂2 + 2λ

(8)

Equation 8 indicates that the linear separability be-
tween the target neuron and other neurons in the same chan-
nel is inversely proportional to its energy value. That is,
when a neuron bears a lower energy, it is more distinctive
from other neurons, and the importance of the neuron will
be greater.

After determining the importance of neurons, the
SimAM attention mechanism is used to enhance the fea-
tures, resulting in a new feature map X̃ , as shown in Equa-
tion 9. Here, E represents the set of all energy values in the
input feature map, and ”⊙” is the dot product. The Sigmoid
function is applied to limit the impact of excessively large
values in E.

X̃ = sigmoid

(
1

E

)
⊙X (9)

Building on the improved self-calibrated residual net-
work discussed in Section 3.1, this section incorporates the
non-parametric SimAM as the attention module within the
network. This method not only enhances the fusion of
the spatial and channel information without incurring addi-
tional computational costs, but also reduces the introduction
of unimportant feature information when integrating sur-
rounding context information through self-calibration. The
structure of the improved self-calibration residual module
with the SimAM attention is depicted in Figure 6.

4 MAM Pooling

The primary objective of pooling is to reduce the num-
ber of parameters of the model, minimize the interference

29

Figure 6: The structure of self-calibration residual with the SimAM
attention.

of redundant information, and simultaneously retain criti-
cal feature information as much as possible, thereby main-
taining the invariance of the feature map before and after
pooling [13]. Currently, commonly used pooling methods
include maximum pooling and average pooling. However,
these two methods result in feature maps to be either close
to its mean or close to its standard deviation after pooling,
making it difficult to balance both.

When pooling feature maps, the approach that favors
retaining the prominent features or overall style of the im-
age leads to the incomplete understanding of the image. Re-
taining a part of the minimum values during pooling can
preserve subtle features in the image and reduce the loss
of overall features, thereby keeping the style and content
features of the image before and after pooling unchanged.
Additionally, the feature map after pooling shows clear con-
trasts, allowing for the exaction of sharp edges.

Therefore, it is necessary to design a dynamically se-
lectable pooling method. To ensure that the feature map
maintains consistent in content features and style before and
after pooling, the mean Avg(aij) of each pooling window
is compared with the weighted mean mA and standard de-
viation sA of the entire pooling region to determine whether
to retain the maximum value, the average value, or the min-
imum value for each pooling window. The specific pooling
process is expressed as follows:

Bij =

Max(aij) Avg(aij) > mA + αsA,

Avg(aij) mA + αsA ≥ Avg(aij) ≥ mA − βsA

Min(aij) Avg(aij) < mA − βsA.
(10)

Here i and j represent the i-th row and j-th column of
the feature map after pooling, A and B indicates the feature
maps before and after pooling, respectively, and are ad-
justable parameters, and the pooling window size and step
size are both k.

When Avg(aij) is greater than the weighted sum of
mA and sA, it means that the data in the pooling win-
dow tends to be larger values. In this case, selecting the
maximum pooling can better retain the prominent features.
When Avg(aij) is less than the weighted difference be-
tween mA and sA, it means that the data in the pooling
window tends to be smaller values. In this case, selecting
the minimum pooling can better retain the subtle features.
When Avg(aij) is between the weighted difference and the
weighted sum of mA and sA , selecting the average pooling
can better integrate the feature information within the win-
dow, thereby extracting a more comprehensive representa-
tion.

This strategy, at the cost of introducing a small amount
of additional computation, can effectively choose the appro-
priate pooling method in terms of the overall situation of the
data in the pooling window.

5 Experimental results and analysis

5.1 Datasets

We collected images of drill cores from different ge-
ological environments, including images taken at differ-
ent time periods after drilling and from different sections,
to comprehensively reflect the characteristics of cores, and
constructed the Drill Core Dataset (DCD) accordingly. By
retaining the influence of various factors such as different
humidity levels, angles, and background interference, the
dataset is made to be closely aligned with real-world appli-
cation scenarios. The DCD dataset contains 15 represen-
tative rock and soil sub-layer categories, such as silt, silty
soil, fine sand, medium-coarse sand, gravel sand, etc., total-
ing 3,070 images.

5.1.1 Dataset Analysis

(1) Uneven data distribution
Figure 7 lists the number of samples for each category

in the DCD dataset. As shown in the figure, the average
number of samples per category is 264. The category with

30

the most samples is plastic clay (4N-2), having 796 sam-
ples, while the category with the fewest samples is silty
soil (2-1B), having 172 samples. Noticeably, the number of
samples in the plastic clay (4N-2) category is significantly
higher than in other categories. We applied data augmenta-
tion to all sample images and balanced the categories with
large discrepancies in sample numbers.

Figure 7: Number of samples in each category.

(2) Large intra-class differences, small inter-class dif-
ferences

Through observation and comparison, it has been
found that for the same type of drill core, different peri-
ods of photography exhibit varying humidity, texture, and
shape characteristics. The same category of drill cores of-
ten includes two or more forms, with significant differences
between them. Figure 8 illustrates silt clay with diverse col-
ors and textures.

Figure 8: Examples of silty clay drill cores with diverse colors and
textures.

For drill core images of different sublayers, there are
often extremely similar forms that are difficult to distin-
guish. Figure 9 shows images of three categories: silt (2-
1A), silty soil (4-2B), and silty clay (4N-2). Obviously, they

have similar colors, identical shapes, and subtle inter-class
differences.

(a) silt (b) silty soil (c) silt clay

Figure 9: Examples of drill cores for different categories.

5.2 Experimental setup

The experimental settings and parameters are as fol-
lows: Adam is used as the optimizer, cross entropy loss
function is utilized, batch size is 32, learning rate is 0.0001,
number of epochs is 200, and the ratio of training set to
validation set is 9:1. The preprocessing operations on the
images before training include random horizontal flipping,
random cropping, adding Gaussian noise, etc.

5.3 Experimental results and analysis

In this section, the results of extensive experiments are
discussed from four perspectives. The first part is the set of
comparative experiments of residual networks with differ-
ent depths, the second part is the set of comparative experi-
ments for different activation functions, the third part is the
ablation study of the improved modules, and the fourth part
is the set of comparative experiments of the proposed model
and the baseline models.

(1) Comparative experiments of residual networks
with different depths

The set of experiments was conducted using residual
networks with different numbers of layers, and the experi-
mental results are shown in Table 1.

Table 1. Experimental results of residual networks with different depths.

Model Top-1 Accuracy (%)

ResNet34 93.9
ResNet50 95.2

ResNet101 94.7

From Table 1, it can be seen that ResNet50 performs
best on the DCD dataset. In addition, the 101-layer ResNet
performs even worse than the 50-layer ResNet. This phe-
nomenon is likely due to the small size of the DCD dataset,
where a deeper network structure may lead to overfitting,
resulting in performance degradation.

(2) Comparative experiments of activation functions

31

In this set of experiments, the activation function in the
ResNet50 model were replaced with PReLU, ELU, GELU,
and LeakyReLU, respectively, for comparison. The experi-
mental results are shown in Table 2.

Table 2. Residual networks with different activation functions.

Activation Function Top-1 Accuracy (%)

ReLU 95.2
PReLU 95.6

ELU 94.3
GELU 94.0

LeakyReLU 96.4

The results show that the activation functions
LeakyReLU and PReLU perform well on the ResNet50
model, enhancing the model’s recognition performance to
some extent. By examining the computational efficiency
and cost of both, LeakyReLU was chosen as the activation
function due to its higher efficiency.

(3) Ablation study
In order to verify the effectiveness of each improved

module, ablation experiments were conducted on the DCD
dataset, including three models. Model 1 is a ResNet50
network using LeakyReLU as the activation function (L-
ResNet50), Model 2 is formed by adding SCConv and
SimAM modules to model 1 (SL- ResNet50), and Model
3 is formed by using MAM pooling on the basis of model
2 (MSL- ResNet50). The experimental results of the three
models on the DCD dataset are shown in Table 3. Adding
both the self-calibrated convolution SCConv and the three-
dimensional attention mechanism SimAM, and the MAM
pooling mechanism to the ResNet50 model with improved
loss function, results in varying degrees of improvement in
the network’s recognition accuracy, with increases of 1.9%
and 1.0% respectively.

Table 3. Ablation study on the DCD dataset.

Number Model Top-1 Accuracy (%)

1 L-ResNet50 96.4%
2 SL-ResNet50 98.3%
3 MSL-ResNet50 99.3%

Each of the three models was trained for 200 epochs,
and the running results of validation accuracy of these mod-
els on the DCD dataset are shown in Figure 10.

Table 4 shows the recognition results of the MSL-
ResNet50 model on all the categories.

(4) Comparative experiments of related models
To further validate the classification performance of

the proposed model for drill core images, we compared
the proposed model MSL-ResNet with several representa-
tive benchmark models. The benchmark models include

Figure 10: The curves of validation accuracy of the three ResNet50
models.

Table 4. The recognition precision and recall of MSL-ResNet50 for each
category.

Category Precision Recall

2-1A 0.941 0.941
2-1B 1.0 0.941
3-1 1.0 1.0
3-2 0.9 1.0
3-3 1.0 0.947

4-2B 0.954 0.954
4N-2 1.0 1.0
4N-3 1.0 1.0

5C-1A 1.0 1.0
5C-2 1.0 1.0
5Z-2 1.0 1.0
7Z-A 1.0 1.0
9C-1 1.0 1.0
9H 1.0 1.0
9Z 1.0 1.0

some mainstream image classification deep network mod-
els, such as AlexNet [15], GoogleNet [16], Vgg16 [17],
Vision-Transformer [18], and the classification model Con-
vNet for plutonic rocks. In the experiments, all models used
the same dataset partitioning, training epochs, and initial
learning rate. Table 5 exhibits the classification results of
the involved models and Figure 11 depicts the curves of val-
idation accuracy of them. It can be observed that the MSL-
ResNet50 proposed in this paper achieves significantly su-
perior classification accuracy.

6 Conclusion

This paper has proposed an improved model, MSL-
ResNet50, for drill core image recognition. On the basis
of ResNet50, a self-calibrated residual structure is first in-
troduced, which leverages a latent space with a larger re-
ceptive field to calibrate the original space so as to obtain
more context information. Then, a simple parameter-free

32

Table 5. Experimental results of involved models for comparison.

Number Model Top-1 Accuracy
(%)

1 AlexNet 93.4
2 GoogleNet 86.6
3 VGG16 87.3
4 Vision-Transformer 68.3
5 ConvNet 74.3
6 MSL-ResNet50 99.3

Figure 11: The curves of validation accuracy of the involved models for
comparison.

attention mechanism, SimAM, is integrated into the model
to further optimize the self-calibrated residual structure,
thereby avoiding the interference from the acquired con-
text information. Third, the MAM pooling method, which
has demonstrated preferable performance, is applied within
the model. The MAM method can dynamically select the
pooling strategies for the network, preserving important de-
tailed features and alleviating the issue of feature loss. Ad-
ditionally, a drill core dataset DCD was established. Ex-
tensive experiments were conducted on the DCD dataset,
and the results manifested that the proposed model, MS-
ResNet50, significantly outperforms the related benchmark
models in drill core image recognition. Specifically, the
proposed model achieves a recognition accuracy of 99.3%,
indicating an improvement of 4.1% over the original model,
which validates the effectiveness of the improved model in
the task of drill core image recognition.

References

[1] Y. Zhong and R. Li. Lithology identification method based
on principal component analysis and least squares support
vector machine. Well Logging Technology, 33(5):5, 2009.

[2] Y. Zhang and B. Pan. Application of principal component
analysis-based som neural network in volcanic rock lithol-
ogy identification. Well Logging Technology, 33(6):550–
554, 2009.

[3] A. Liu, L. Zuo, J. Li, et al. Application of principal com-
ponent analysis in carbonate rock lithology identification —
a case study of cambrian carbonate reservoir in YH area.
Petroleum and Natural Gas Geology, 34(2):192–196, 2013.

[4] G. Cheng and W. Guo. Rock images classification by us-
ing deep convolution neural network. In Journal of Physics:
Conference Series, volume 887, page 012089. IOP Publish-
ing, 2017.

[5] Y. Zhang, M. Li, and S. Han. Lithology automatic recog-
nition and classification method based on rock image deep
learning. Acta Petrologica Sinica, 34(2):333–342, 2018.

[6] Y. Liu, J. Huang, Y. Yin, et al. Optimization and application
of core image recognition algorithms for oil sand reservoirs.
Fault-Block Oil & Gas Field, 27(4):464–468, 2020.

[7] G. H. Alférez, E. L. Vázquez, A. M. M. Ardila, et al. Au-
tomatic classification of plutonic rocks with deep learning.
Applied Computing and Geosciences, 10:100061, 2021.

[8] Z. Xu, W. Ma, P. Lin, et al. Deep learning of rock images
for intelligent lithology identification. Computers & Geo-
sciences, 154:104799, 2021.

[9] J. Chen, T. Yang, D. Zhang, et al. Deep learning based clas-
sification of rock structure of tunnel face. Geoscience Fron-
tiers, 12(1):395–404, 2021.

[10] B. Zhang. Research on neural network-based core image
recognition algorithms. PhD thesis, Yangtze University,
2022.

[11] J. Bharadiya. Convolutional neural networks for image clas-
sification. International Journal of Innovative Science and
Research Technology, 8(5):673–677, 2023.

[12] E. E. Baraboshkin, L. S. Ismailova, D. M. Orlov, et al. Deep
convolutions for in-depth automated rock typing. Computers
& Geosciences, 135:104330, 2020.

[13] Z. Zhang, J. Tang, B. Fan, et al. An intelligent lithology
recognition system for continental shale by using digital cor-
ing images and convolutional neural networks. Geoenergy
Science and Engineering, 239:212909, 2024.

[14] Q. Wang, J. Yang, F. C. Huo, et al. Lithology identifica-
tion method of rock thin section images based on mobilevit.
Geological Bulletin of China, 43(6):938–946, 2024.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, vol-
ume 25, 2012.

[16] C. Szegedy, W. Liu, Y. Jia, et al. Going deeper with convolu-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9, 2015.

[17] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al. An image is
worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

33

API Knowledge Graph Construction Based on
Multi-Source Information Fusion

Ruilian Zhao1, Zijie Che1, Zhan Ma1, Weiwei Wang2

1Beijing University of Chemical Technology, Beijing, China
2Beijing Institute of Petrochemical Technology, Beijing, China

Email: rlzhao@mail.buct.edu.cn, wangweiwei@bipt.edu.cn

Abstract—API-related knowledge is typically dispersed across
various sources of information, including API documentation,
Q&A forums, and other unstructured texts. This fragmentation
of knowledge makes it challenging for developers to effectively
query and retrieve APIs. In this paper, an API knowledge graph
construction method based on multi-source information fusion
is proposed to overcome these issues and enhance API retrieval.
Specifically, the API-related knowledge is acquired from multiple
sources, including API documentation and Stack Overflow, where
API documentation describes the function and structure of
APIs from designers’ perspective, and Stack Overflow provides
insights into the purpose and usage scenarios of APIs from
users’ perspective. They complement each other and together
provide support for API query and retrieval. By analyzing
API documentation, the corresponding APIs and domain con-
cepts are extracted as entities and relationships between them
are identified. Moreover, to extract Q&A entities from Stack
Overflow, machine learning is adopted to classify the purpose
of the question and performs the summary generation for its
answers. Since there exists a gap between the entities from
API documentation and Stack Overflow, a fusion method is
raised to establish connections between them, constructing a more
comprehensive API knowledge graph. To verify the effectiveness
of our API knowledge graph construction method, we evaluate
it in terms of the accuracy of knowledge extraction and API
recommendation. The experimental results demonstrate that our
API knowledge graph can significantly improve the efficiency and
effectiveness of API recommendation.

Index Terms—API knowledge graph, Multi-source informa-
tion, Knowledge extraction, Knowledge fusion, API retrieval

I. INTRODUCTION

API (Application Programming Interface) plays a critical
role in software development. According to statistics, 87% of
developers frequently leverage APIs to address diverse pro-
gramming issues [1]. However, retrieving and finding suitable
APIs is still a challenging task. To improve the efficiency and
quality of API retrieval, researchers have built corresponding
API recommendation systems from various resources to assist
developers in solving programming issues related to APIs.

Currently, several typical API recommendation systems
have been developed, such as RASH [2], BIKER [1], RACK
[3] etc. RASH leverages lexical similarity to recommend APIs
based on API documentation and the Stack Overflow (SO).
In contrast, BIKER utilizes semantic similarity by combining
API documentation and SO to recommend APIs. RACK
establishes relationships between keywords in titles of SO

and API to recommend APIs. These methods have enhanced
retrieval efficiency in contrast to conventional API retrieval.
However, they solely concentrate on valid APIs utilized in
resolved problems and overlook the interconnection between
APIs. In fact, different types of relationships between APIs,
such as inheritance between classes and invocation between
methods, may have varying impacts on API recommendation.
Additionally, APIs that resolve identical problems may possess
functionally similar relationships with one another, which
could enhance the effectiveness of API retrieval. Nevertheless,
the previous API recommendation techniques have not fully
leveraged such relationships.

The Knowledge Graph is a knowledge network that can ef-
fectively represent the semantic association between informa-
tion, which is suitable for expressing API-related knowledge.
For example, Liu et al. [4] constructed an API knowledge
graph by extracting relevant knowledge from API documen-
tation and Wikipedia, while Li et al. [5] constructed an API
warning knowledge graph by extracting warning statements
from API documentation and API tutorials. Ling et al. [6]
constructed an API knowledge graph based on open-source
projects, which took APIs involved in projects as entities,
and the calls, returns and implementations between APIs as
relationships. As can be seen, API documentation can provide
the dependency between APIs, Wikipedia can provide the
concept of software engineering, and open-source projects
can provide the relationship (call, return, implementation etc.)
between APIs. However, all of them lack descriptions on actual
API usage scenarios, which hinders the practical use of API
knowledge graphs in solving real programming issues.

Stack Overflow is an IT technical Q&A website for pro-
grammers. It aims to help solve the actual problems of devel-
opers, and provide information about the purpose of API usage
and real usage scenarios [7]. If the actual usage scenarios of
APIs in SO are incorporated into the knowledge graph, it will
greatly facilitate API retrieval for users. But SO suffers from
a lack of clarity of purpose and information overload. The
statistics show that more than 37% of SO questions contain
more than one answer, with an average of more than 789 words
per answer [8]. This makes it more difficult to capture useful
knowledge from SO.

Thus, this paper proposes an API Knowledge Graph con-
struction based on Multi-Source Information Fusion (AKG-
MSIF), which synthesizes APIs and usage scenarios fromDOI reference number: 10.18293/DMSVIVA2024-027

34

API documentation and stack overflow. In particular, it en-
tails extracting API and domain concepts as entities from
API documentation and establishing relationships, such as
inclusion, inheritance, and overloading, between them. More
importantly, for SO, to extract its Q&A entities, our method
uses machine learning to classify the purpose of the question
and performs the summary generation for its answers. On this
basis, multi-source knowledge is integrated to construct an
API knowledge graph. Since there exists a gap between the
entities from API documentation and SO, a fusion method is
raised to establish connections between them. To validate the
effectiveness and efficiency of our method, the constructed
API knowledge graph is evaluated from two perspectives:
knowledge extraction accuracy and recommendation effect.
The experimental results show that compared with existing
studies, our AKG-MSIF approach improve the API recom-
mendation effectiveness and efficiency. Our contributions are
as follows:

1. A novel API knowledge graph is constructed by integrat-
ing information from both API documentation and SO,
facilitating API retrieval for users.

2. Due to unclear purpose and information overload in SO,
a machine learning-based method is raised to classify the
purpose of the question and performs the answer sum-
mary generation to obtain the Q&A entities. In addition,
a knowledge fusion methods are raised to bridge the gap
between entities of API documentation and SO.

3. To validate our approach, a series of experiments are con-
ducted, and the experimental results show that compared
with existing API recommendation systems, our novel
knowledge graph has enhanced the recommendation ef-
fectiveness and efficiency.

The rest of this paper is organized as follows: Section 2
introduces the background of related techniques. Section 3
describes our method in detail. Section 4 verifies the validity
of the approach. Section 5 summarizes the whole paper.

II. RELATED WORK

Currently, several typical API recommendation systems
have been developed, such as RASH [2], BIKER [1], RACK
[3] etc. RASH leverages lexical similarity to recommend APIs
based on API documentation and the Stack Overflow. In
contrast, BIKER utilizes semantic similarity by combining
API documentation and Stack Overflow to recommend APIs.
RACK establishes relationships between keywords in titles of
Stack Overflow and API to recommend APIs. These methods
have enhanced retrieval efficiency in contrast to conventional
API retrieval.

Ye et al. [9] proposed a rule-based entity extraction method,
which mostly uses keywords, central words, superlatives,
subordinate words, punctuation marks and other features in
the text. This approach relies on the creation of a complete
knowledge base and lexicon. Stephen et al. [10] proposed
an approach for entity extraction through NLP and pattern-
matching to classify Stack Overflow sentences. This approach

also requires the design of extraction rules. Unlike the rule-
based approach, it takes the syntax and grammar of the
text as the focus, converts it into a syntactic dependency
tree through NLP techniques and analyzes its dependencies,
thereby obtaining the structural parts of the text such as
noun phrases and verb phrases. For example, Lin et al. [11]
manually defined 157 grammatical templates for the language
style of the Stack Overflow. It can be seen that this method
works better for texts with more uniform content formatting.

III. API KNOWLEDGE GRAPH CONSTRUCTION BASED ON
MULTI-SOURCE INFORMATION FUSION

In this paper, we propose an API knowledge graph con-
struction based on multi-source information fusion, where
the API-related knowledge derives from API documenta-
tion and SO. The framework of our approach is shown in
Fig.1, which mainly consists of knowledge acquisition and
knowledge fusion. Concretely, in knowledge acquisition, APIs
and corresponding domain concepts are extracted from the
API documentation and taken as entities. And relationships
between them, such as inclusion, inheritance, and overloading,
are established. Furthermore, Q&A and API concepts are
identified from SO by using machine learning and regarded as
entities. And relationships between Q&A and API concepts are
built. In knowledge fusion, multi-source knowledge from API
documentation and SO is integrated to construct a more com-
prehensive API knowledge graph based on these entities and
relationships. Since there exists a gap between the entities from
API documentation and SO, the relationship between them is
established by various fusion strategies. In the following, we
will detail each part of our approach.

A. Knowledge Acquisition from API Documentation

API documentation provides functional descriptions and
structural information (such as method, parameters and return
values etc.) for APIs. This part focuses on the knowledge
representation and extraction of API documentation about the
PyTorch framework.

1) Knowledge representation of API documentation: The
structural information of the API refers to modules, classes,
methods/functions, etc., which are related to each other by in-
clusion, inheritance, overloading, etc. Moreover, the functional
description in API documentation implies the application
domains of the API, which indirectly reflect the relationship
between the API and application domain. Both the functional
description and structural information can provide useful guid-
ance in API retrieval. Thus, we use the domain concept and
API modules, classes, methods/functions to express the API
knowledge in the document. Further, the APIs and domain
concepts can be associated through ”refer to”, which means
that the description of an API mentions the corresponding
domain concept. So, this paper regards the API and domain
concepts as entities in the API documentation and their ”refer
to” as the relationship between them.

35

Fig. 1. The Framework of API Knowledge Graph Based on Multi-Source Information Fusion

2) Knowledge extraction from API documentation: To ex-
tract API entities, the API documentation is analyzed. And we
found that API documentation is semi-structured data, where
different HTML tags represent different types of API entities,
such as functional descriptions, parameters, return values, and
return value types etc. Thus, API entities are recognized
through HTML tags. Further, the relationships between API
entities include inclusion, inheritance, overloading. According
to the declaration rules of the class, regular expressions
are used to extract the inheritance relationship, and syntax
analysis is employed to extract the inclusion and overloading
relationship.

Furthermore, each API corresponds to a functional descrip-
tion, and the functional description implies domain concepts.
Thus, for the application domain in API function descriptions,
we use existing domain concept dictionary [12] and NLP to
match and recognize them. And the ”refer to” relationship
between the API and the domain concept can be extracted from
this corresponding structure. For example, the functional de-
scription of API “torch.normal” contains the domain concept
“standard deviation”. When the domain concept “standard
deviation” is identified, a ”refer to” relationship can be es-
tablished between the API ”torch.normal” and the domain
concept ”standard deviation”.

B. Knowledge Acquisition from Stack Overflow

Stack Overflow provides many information (such as title,
the body of the question, label, accepted answer etc.) which
contains specific application scenario information of the API.
This part mainly focuses on the knowledge representation and
extraction on the Q&A tagged by ”PyTorch” on the Stack
Overflow.

1) Knowledge Representation of Stack Overflow: The Q&A
information of SO contain terms related to the API, where
these terms are related to software development, without being
limited to a specific field. Intuitively, these terms implicitly
abstract and summarize the functional role of a specific API.

Thus, these terms are adopted to express the API-related
knowledge and regarded as API concept entities.

What’s more important, the Q&A in SO describe the actual
problems encountered by developers and provide answers
about its usage scenario as well as the purpose of API. So the
Q&A is critical in API retrieval. But the Q&A in SO suffers
from problems of unclear purposes and information overload.
The unclear purpose refers to the difficulty for Q&A to grasp
the reason behind a user’s question and find the corresponding
answer. And information overload refers to the fact that a
single question may have multiple long answers. Statistics
show that over 37% of Q&As include more than one answer,
and each answer has an average of over 789 words [8], making
it challenging to obtain critical information from the Q&A.

Thus, in this paper, we propose a questions’ purpose iden-
tification method through classifying the Q&A automatically.
Further, the answers are summarised based on the features
of Q&A to alleviate the issue of information overload. And
the simplified Q&As that consists of the purpose of questions
and summary of answers are referred to as Q&A entities.
Besides, the “refer to” relationship between Q&A entities and
API concept entities can be established.

2) Knowledge extraction from Stack Overflow: The API
in SO is usually labeled with <code> tags. Thus, API can
be recognized through matching the element labeled with
this tag with the API name in the API documentation. For
the concepts of API in SO, they often appear in the same
sentence, paragraph, or Q&A with the API. Since the API
concept may be a multi-word concept, such as ”convolutional
layer”, this paper proposes a frequency-based API concept
recognition method. Concretely, we look for words that often
appear consecutively but not often separately in SO through
NLP, and take them as API concepts. NLP is used to segment
and remove stop words from SO Q&A to form single-word
concepts. According to the frequency of consecutive words,
we calculate the phrase score and extract the API concept.

36

The phrase score is shown in formula (1):

score(wiwj) =
count(wiwj)− δ

count(wi)× count(wj)
(1)

Where count(wiwj) represent the number of times two con-
secutive words wi and wj appear in the whole documentation.
count(wi) and count(wj) represent the number of times the
words wi and wj appear. δ is a threshold. When the frequency
of the two consecutive words wi and wj is less than δ, wi and
wj cannot form a two-word phrase. When a two-word concept
is formed, formula (1) can be repeated to detect three-word
phrases. Since API concepts consisting of more than three
words are uncommon, this paper only recognizes phrases of
up to three words as API concepts.

To extract the Q&A entities from SO, this paper employs
machine learning to classify the purpose of the questions and
obtain the purpose type. Based on this, the answer summary
generation based on feature extraction is performed.

In more detail, based on the categorization of SO Q&A
by Stefanie Beyer et al.’s [13], this paper divides the Q&A
into seven categories based on the purpose of question as
follows: (1) “API USAGE” class is to seek suggestions for
implementing a feature or API; (2) “DISCREPANCY” class
is to request Code segments to resolve unexpected results;
(3) “ERRORS” class is to request a bug fix or handle an
exception; (4) “REVIEW” class is to request the best solution;
(5) “CONCEPTUAL” class is to ask about the rationale or
background of the API; (6) “API CHANGE” class is to seek
solutions to issues arising from API version changes problems;
(7) “LEARNING” class is to ask for documentation or tutorials
to learn a tool or language.

XGBoost(eXtreme Gradient Boosting) is one of machine
learning algorithms, which have the capability of fast learn-
ing and prediction [14]. Therefore, in this paper, XGBoost
algorithm is used to train classifiers for SO questions to
determine the purpose of questions. The main steps include:
(1) Label SO Q&A into one of the seven categories. (2)
Convert questions into corresponding word lists through NLP
including as segmentation, stop word removal, and lemmatiza-
tion. (3) The TF-IDF reflects the importance of a word by its
frequency, where TF (term frequency) measures the frequency
that a term appears in a document and IDF (the inverse
document frequency) estimates the ratio of total documents
to the documents that contain the term. In this paper, the TF-
IDF of a question is used as its textual feature and fed into
the XGBoost algorithm to identify the type of the question.

Furthermore, to address information overload in answers
of SO, this paper generates summaries for answers based on
the relevant paragraphs in the answers. That is, based on the
characteristics of SO, the relevance of each paragraph to the
question is calculated by combining question-related features,
content-related features, and user features, and the top M
paragraphs are selected as the summary of the answer. The
concrete feature analysis is as follows:

(1) Question-related feature: if a paragraph contains key
words from the question, it is considered to be related to the

question. The more key words a paragraph contains, the higher
its relevance. In this paper, tags of SO are used as the set of
key words. And the relevance of each answer paragraph and
the question is calculated based on the ratio of the key words
involved in them.

(2) Content-related feature: This feature evaluates the im-
portance of content of paragraphs from three sub-features: the
API occurrence, information entropy, and semantic templates.
For the API occurrence, if at least one API appears in the
paragraph, this sub-feature value is set to 1. Otherwise, it is
set to 0. For information entropy, the inverse documentation
frequency (IDF) value of a word can be used to measure its
information entropy, which can be calculated using formula
(2), where p represents the total number of paragraphs and p′

represents the number of paragraphs containing a particular
word. The higher the IDF value, the lower the occurrence fre-
quency of the particular word, indicating greater importance.
The entropy value of a paragraph can be represented by the
sum of its words’ IDF values, normalized to (0,1].

If a paragraph conforms to at least one semantic template,
the sub-feature value is set to 1. Otherwise, it is set to 0. The
feature value of the content is the sum of the three sub-feature
values.

IDF = log(
p

p′ + 1
) (2)

(3) User feature: In SO, each answer has a corresponding
vote, and the higher the vote, the higher the quality of the
answer. Therefore, the number of votes for the current answer
indicates the importance of the paragraph in this answer, which
can be regarded as the user feature.

For the above three features, we add a smoothing factor
of 0.0001 to avoid the feature score of 0. All features are
normalized to (0,1], and the normalized values of each feature
are multiplied together to obtain the total score of each
paragraph. Finally, the top M paragraphs are selected as the
summary of the answer.

By identifying the type of question and generating the
answer summary, an valid Q&A entity can be obtained.
Furthermore, since a Q&A usually mentions multiple API
concepts, a ”refer to” relationship can be also established
between the API concept and the Q&A entities.

C. Knowledge Fusion from API Documentation and Stack
Overflow

To construct a complete API knowledge graph, the API
knowledge from API documentation and SO Q&A website
should be integrated. As there is a gap between entities from
the API documentation and SO, a fusion method is proposed
to establish a link between them. As mentioned above, entities
about APIs and corresponding domain concepts are extracted
from the API documentation. And entities about API concepts
and Q&A are extracted from SO. Since domain concepts
are not directly related to Q&A entities, it is not mandatory
to establish a connection between them. Thus, this paper
performs knowledge fusion between entities about API and

37

API concept, API concept and domain concept, and API and
Q&A.

1) Fusion between entities of API and API concepts based
on word co-occurrence: Intuitively, API concepts abstract
and summarize the functional role of a specific API. Thus,
semantic relationships exist between them. In fact, API and
API concepts usually co-occurs in the same paragraph, so
word co-occurrence can be used to link them. Co-occurrence
frequency can evaluate the degree of correlation between API
and API concepts, which refers to the number of times the API
and API concepts appear in the same paragraph. Therefore,
this paper captures the semantic relationship between API and
API concepts by calculating their co-occurrence frequency. Its
formula is shown in formula (3), where freq(Ai → Acj)
represents the co-occurrence frequency between API Ai and
API concept ACj , and α is the threshold. If the co-occurrence
frequency is not lower than the threshold α, a ”refer to”
relationship can be established between API Ai and API
concept ACj .

freq(Ai → ACj) ≥ α (3)

2) Fusion between entities of API concept and domain con-
cept based on semantic similarity: The relationship between
API concepts and domain concepts can help establish indirect
connections between the API, which can help improve the
possibility of retrieving relevant APIs. Thus, it is necessary to
build the links between them. Since API concepts and domain
concepts are composed of phrases, their relationship can be
determined by combining lexical and semantic similarity.
When the similarity between them is higher than the given
threshold, their ”related to” relationship can be established.

In more detail, the lexical similarity simlex can be calcu-
lated using Jaccard similarity, as shown in formula (4), where
Token(n) represents the words that make up the concept.
The semantic similarity between n1 and n2 is calculated using
formula (5), where Vp(n1) represents the vector of the concept
entity, and simcos represents the cosine similarity between
the two vectors. In this paper, based on SO Q&A and API
documentation corpora, we use word2vec [15] to train a word
embedding model and convert concepts into word vectors.
Based on the lexical and semantic similarity, a weighted
similarity calculation formula is raised, which is shown in
formula (6). Generally, semantic similarity is more important
than lexical similarity, so w1 < w2 is set.

simlex(n1, n2) =
|Token(n1)

⋂
Token(n2)|

|Token(n1)
⋃
Token(n2)|

(4)

simcon(n1, n2) =
simcos(Vp(n1), Vp(n2)) + 1

2
(5)

sim(n1, n2) = w1 × simlex(n1, n2) + w2 × simcon(n1, n2)
(6)

Formula (4) measures the similarity between domain concepts
and API concepts in terms of both lexical and semantic
aspects, where n1 and n2 represent the candidate domain
concept and API concept, respectively.

3) Fusion between entities about API and Q&A based on
heuristic algorithm: The relationship between API entity and
Q&A entity enables the integration of the general knowledge
of the API (such as functional description, parameters, return
values, etc.) with their specific knowledge in concrete usage
scenarios (such as how to solve specific problems), which pro-
vides developers with a more comprehensive API information.
Thus, a fusion strategy is raised to establish the relationship
between them.

However, APIs mentioned in SO Q&A are not always in
the form of fully qualified names. For example, the API
”forward()” is mentioned in SO in answer to the question
”what does model.train() do in PyTorch”. But ”forward()”
can be associated with multiple APIs. In order to establish
an unambiguous correlation between Q&A entities and cor-
responding API entities, we design a heuristic strategy. In
general, in SO Q&A, the appearance of code elements has
locality, i.e., APIs mentioned in the same Q&A usually belong
to the same module or class. By parsing the tag in HTML,
we can identify the module or class of the API mentioned
in the Q&A. By specifying regular expressions to identify
the module or class in the code block, their APIs can be
determined. Once unambiguous APIs are identified, a ”refer
to” relationship can be established between the Q&A entity
and the API entity.

IV. EXPERIMENTAL ANALYSIS

In order to verify the validity of our AKG-MSIF approach
for API retrieval, we conduct a series of experiments on
PyTorch API documentation and 7043 API Q&A on Stack
Overflow, and the effectiveness and efficiency are evaluated
on the basis of these experiments. To assess our approach,
three research questions are raised as below.
• RQ1. Can the API knowledge be accurately extracted

from multi-source information?
• RQ2. Can our integrated API knowledge graph obtained

by fusing API documentation and SO improve the effec-
tiveness of API retrievals?

• RQ3. How effective is our AKG-MSIF approach in the
API recommendation? How much improvement can be
achieved compared to baseline methods?

A. Experimental Subject

In this paper, we extracted questions and answers marked
as ”PyTorch” from the official SO data (data released as
of June 2022). We extracted 7043 questions and answers
labeled as ”PyTorch” as the subjects. In order to ensure the
quality of the Q&A, we excluded the Q&A with no answer
and those with a rating of less than 1 (indicating that the
content of the answer was not accepted), and finally collected
3361 Q&A with good quality. Besides, we develop a crawler
script based on scrapy framework, and obtain information
about the API by crawling the official API documentation of
PyTorch. In total, 27 modules, 314 classes, 1570 functions or
methods and their corresponding basic description information
are extracted. The fully qualified names of these API classes

38

and functions/methods are used to build the API dictionary of
PyTorch.

The final constructed API knowledge graph includes 28730
entities and 142,578 relations. Among them, there are 1912
API entities, 16216 API concepts, 7116 domain concepts, 3361
Q&A entities.

B. Experimental Design

When extracting API concepts, the threshold δ of the
frequency of the two consecutive words was set to 5 to
avoid the recognition of uncommon phrases. Furthermore,
when integrating API and API concepts, the co-occurrence
frequency threshold is set to 3 to capture the semantic
association between entities about API and API concept.
And when integrating API concepts and domain concepts,
considering that semantic similarity is more important than
lexical similarity, weights w1 and w2 were set to 0.3 and 0.5
respectively.

Besides, in order to create experimental queries for retriev-
ing knowledge graph, the following selection criteria were
used: 1) The questions had a rating at least 1. 2) The answer
to the question contains the explicit and exact API and the title
of the question does not contain the API. Based on them, 10
questions were randomly selected from the PyTorch-related
questions in SO as the queries for the experiment, and the
corpus for constructing the knowledge graph did not contain
these 10 questions in order to ensure that the search of API
knowledge graph was valid.

The API knowledge graph constructed in this paper is
stored in a Neo4j graph database. For queries, correspond-
ing keywords are extracted by syntactic analysis using the
StanfordCoreNLP[21]. And for each keyword, we search a
semantically similar concept entity in the API knowledge
graph. The API entity with a ”refer to” relationship with
the concept entity is used as a candidate API, and the Q&A
associated with the candidate API is information about the
specific usage scenario. Since there may be multiple candidate
APIs, they are ranked according to their semantic relevance
to the query. That is, the APIs are ranked by calculating the
semantic similarity (formula(5)) between the query and each
candidate API function description, and the top K APIs are
recommended to users.

The related APIs obtained by searching the API knowledge
graph are further analyzed, so as to verify the effectiveness of
API recommendation based on our knowledge graph. In partic-
ular, we invite 10 masters from the same lab with two years of
experience in using PyTorch to analyze the accepted or highly
rated responses to these questions together with the authors
themselves. When disagreements arose, consistent conclusions
were drawn by analyzing the official API documentation. The
final 10 experimental queries and the number of correct APIs
for them are shown in Table 2.

C. Experimental Results and Analysis

1) Results for RQ1: The focus of this experiment is to
demonstrate the effectiveness of knowledge extraction from

the perspective of entities and relationships extraction. Thus,
the accuracy of entities and relationships extracted from the
API documentation and SO is evaluated.

As is known, API entities and their relationships are derived
from semi-structured API documentation. Based on specific
HTML tags and declarations, entities and relationships related
to them can be extracted and validated easily. Therefore, this
paper mainly evaluates the extraction accuracy of entities from
unstructured text, namely API concept, domain concept and
Q&A entities, as well as their relationships. Since the number
of domain concept entities and relations exceeds tens of thou-
sands, it takes a lot of time to check all entities and relations.
Thus, this paper adopts the random sampling. In more detail,
random samples of 5% of the entities or relationships from
the constructed API knowledge graph is selected with a 95%
confidence level, and the sample estimation accuracy has an
error margin of 0.05.

To assess the validity of API concepts and domain concepts,
we manually identifying the accuracy of sampling results.
After random sampling, the accuracy of 356 domain concepts
obtained from domain concept entities is up to 95.6%, and
the error mainly comes from the domain concept dictionary
itself. The accuracy of 800 API concepts sampled from API
concept entities is 97.8%, and the main reasons affecting the
accuracy are some numerical indicators often mentioned in
SO Q&A, such as ”200k images”. These terms should not
be identified as API concepts. To evaluate the validity of the
relationship between the API concept and domain concept,
the accuracy of sampling results is also manually identified.
After random sampling, 4000 relationships were obtained from
the API knowledge graph, of which 94.3% of API concepts
and domain concept semantics were identified as relevant.
The missing relationships are due to API concepts or domain
concepts not being correctly identified.

To evaluate the effectiveness of the Q&A entity extraction,
the accuracy of the classification of SO questions and the
quality of answer summary is measured. For the classifi-
cation of SO question, the XGBoost algorithm is used to
classify the question types. Through manual labeling, 326
labeled Q&A were obtained, including 118 ”API USAGE”,
accounting for 36.2%, and 65 ”CONCEPTUAL”, accounting
for 20%; 45 ”DISCREPANCY”, accounting for 13.9%; 34
”ERRORS”, accounting for 10.4%; 24 ”REVIEW”, accounting
for 6.1%. The number of ”API CHANGE” and ”LEARNING”
is 20, accounting for 6.1%. In this paper, a 10-fold cross-
validation method was used to verify the validity of SO Q&A
classification. The classification effectiveness was evaluated
using precision, recall, F1 value and accuracy. To verify the
advantages of XGBoost-based classification, the experiment
uses SVM (Support Vector Machine) and RF (Random Forest)
as comparison methods. The comparison of classification
effectiveness of different algorithms are shown in Table II.
The precision of XGBoost is improved by 14.6% and 5.7%
compared to SVM and RF, respectively, and the accuracy is
improved by 5.9% and 4.6%, respectively. Therefore, it can be
seen that the classification for questions of SO using XGBoost

39

TABLE I
QUERIES AND THE NUMBER OF STANDARD ANSWERS

SO Number Question Number of Related API
44524901 How to do product of matrices in PyTorch? 6
54716377 How to do gradient clipping in PyTorch? 2
48152674 How to check if PyTorch is using the GPU? 7
50544730 How do I split a custom dataset into training and test datasets 1
55546873 How do I flatten a tensor in PyTorch? 4
53841509 How does adaptive pooling in PyTorch work? 4
53266350 How to tell PyTorch to not use the GPU? 2
53879727 PyTorch-How to deactivate dropout in evaluation mode? 2
51136581 How to do fully connected batch norm in PyTorch? 4

algorithm is better than other methods.

TABLE II
COMPARISON OF CLASSIFICATION EFFECTIVENESS OF DIFFERENT

ALGORITHMS

Method Precision Recall F1 Score Accuracy
XGBoost 0.871 0.847 0.834 0.910

SVM 0.760 0.851 0.785 0.850
RF 0.824 0.903 0.849 0.870

Furthermore, to evaluate the quality of summary generation,
this part measures the quality of summary in terms of rele-
vance, usefulness, and diversity. Relevance indicates whether
the summary is relevant to the question. Usefulness indicates
whether the summary content can solve the problem, and
diversity indicates whether the question can be answered from
multiple perspectives. In this part, we set a maximum score
of 5 and a minimum score of 1 for each indicator. To evaluate
the quality of the summary, master students with two years
of experience using PyTorch were invited to participate in
the evaluation. Table III represents the evaluators’ assessment
of the 10 SO Q&A summaries in Table I, where the three
evaluation metrics for each query ranged from 3 to 5, and
the average results for the 10 questions were 3.6, 3.4, and
3.7, respectively, indicating that the feature extraction-based
summary generation method is effective.

2) Results for RQ2: To validate whether the integrated API
knowledge graph obtained by fusing API documentation and
SO improve the effectiveness of API retrievals, we compare
the retrieval results based on multi-source API knowledge
graph with single-source API knowledge graph. The single-
source API knowledge graph is constructed by extracting API-
related knowledge from API documentation and SO Q&A
websites, respectively. The single-source API knowledge graph
extracted from the API documentation includes API entities,
domain concept entities and the relationships among them;
And the other single-source API knowledge graph extracted
from SO Q&A website includes API entities, API concept
entities, Q&A entities and the relationships among them. Three
commonly used metrics in information retrieval are selected
to evaluate the effectiveness of API retrieval, namely, HR(Hit
Ratio), MRR(Mean reciprocal rank) and MAP(Mean average
precision). HR evaluates the percentage of correct results out
of all correct results in the top K search results. MRR is the
position where the first correct result appears. MAP is the
ranking of all correct results. Since the number of the API

related to query is less than 10, this paper sets K=10.

The experimental results are shown in Table IV. It can
be seen that the API recommendation effectiveness of multi-
source API knowledge graph is better than that of single-
source API knowledge graph. This is because that information
fusion indirectly associates the API related to the questions
through the mentioned concepts, which improves the rec-
ommendation effectiveness. In addition, it is worth noting
that there is a large difference between the recommendation
results based on API documentation and those based on SO
Q&A websites. The reason is that the functional descriptions
provided by the API documentation do not involve specific
usage scenarios. Thus, it is difficult to match the domain
concepts with the keywords in the specific questions, resulting
in unsatisfactory recommendation results by using only the
API documentation. In a summary, we can see that our
API knowledge graph is more comprehensive, and enhances
the effectiveness of API retrieval, indicating our AKG-MSIF
approach is effective.

3) Results for RQ3: To evaluate the effectiveness of our
AKG-MSIF approach in API recommendation, three metrics
including HR, MRR and MAP are also used. Besides, the
BIKER recommendation system also combines two types of
data sources (API documentation and Stack Overflow), and
it uses the same dataset as the approach in our paper. While
RACK recommendation system uses only Stack Overflow data
sources. These two techniques are used as our comparison
methods. The experimental results are shown in Table V.
It can be seen that the HR index of our AKG-MSIF has
increased by 49% compared with BIKER and 87% compared
with RACK. The MRR index has increased by 22% compared
with BIKER and 52% compared with RACK. This indicates
that in the first 10 search results, AKG-MSIF can search
more APIs related to the query, and can find the first correct
API earlier than BIKER and RACK. Thus, our AKG-MSIF
has improved retrieval efficiency compared with BIKER and
RACK. Besides, Table VI shows the comparison in terms of
time cost. The construction time of AKG-MSIF is mainly
concentrated in the training of the classifier and summary
generation. Although the time cost of the construction of the
method in this paper is higher than that of BIKER and RACK,
there is a significant improvement in the query speed and the
recommendation effectiveness of the API. Thus, our AKG-
MSIF approach is more effective in API retrieval.

40

TABLE III
Q&A SUMMARY SCORE

Question Relevance Usefulness Variety
How to do product of matrices in PyTorch? 3 3 3

How to do gradient clipping in PyTorch? 2.85 3 3.57
How to check if PyTorch is using the GPU? 4 3.5 3.5

How do I split a custom dataset into training and test datasets 3.5 4 3.5
How do I flatten a tensor in PyTorch? 3.57 2.85 3.57

How does adaptive pooling in PyTorch work? 3.5 3 4
How to tell PyTorch to not use the GPU? 4.5 4 4.5

PyTorch-How to deactivate dropout in evaluation mode? 3 3 3.5
How to do fully connected batch norm in PyTorch? 4 3.5 4

How to create a normal distribution in PyTorch? 4.5 4 4
AVERAGE 3.6 3.4 3.7

TABLE IV
COMPARISON OF RECOMMENDATION RESULTS BETWEEN MULTI-SOURCE

INFORMATION FUSION AND SINGLE-SOURCE INFORMATION

Method HR MAP MRR
Only SO 0.726 0.490 0.583

Only API Doc 0.322 0.181 0.149
Both 0.774 0.558 0.701

TABLE V
COMPARISON OF RECOMMENDATION EFFECTIVENESS BY DIFFERENT

METHODS

Method HR MAP MRR
AKG-MSIF 0.774 0.558 0.701

BIKER 0.520 0.521 0.573
RACK 0.415 0.420 0.462

TABLE VI
COMPARISON OF TIME COST BY DIFFERENT METHODS

Method Cost Query Cost
AKG-MSIF 16 min 1s/query

BIKER 5 min 2s/query
RACK 10min 5s/query

V. CONCLUSION

This paper proposes an API knowledge graph construction
approach based on multi-source information fusion(AKG-
MSIF), which integrates the functional and structural informa-
tion of APIs, as well as the specific usage scenarios of APIs
from documentation and SO Q&A websites. The experiment
validated the effectiveness of our approach from two aspects:
information extraction and API recommendation effectiveness.
And the results show that the accuracy of domain concept
identification is up to 95.6%, and that of API concepts is
97.8%. And 94.3% of relationships between API concepts and
domain concept are correctly identified. Meanwhile, the Q&A
entities from SO are identified effectively by machine learning
and summary generation. Furthermore, compared with exist-
ing API recommendation systems, our API knowledge graph
is more comprehensive, enhancing the effectiveness of API
retrieval.

REFERENCES

[1] Q. Huang, X. Xia, Z. Xing, D. Lo, and X. Wang, “Api method
recommendation without worrying about the task-api knowledge gap,”

in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 293–304.

[2] J. Zhang, H. Jiang, Z. Ren, and X. Chen, “Recommending apis for api
related questions in stack overflow,” IEEE Access, vol. 6, pp. 6205–6219,
2017.

[3] M. M. Rahman, C. K. Roy, and D. Lo, “Rack: Automatic api recom-
mendation using crowdsourced knowledge,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 349–359.

[4] M. Liu, X. Peng, A. Marcus, Z. Xing, W. Xie, S. Xing, and Y. Liu,
“Generating query-specific class api summaries,” in Proceedings of
the 2019 27th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering,
2019, pp. 120–130.

[5] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Improving
api caveats accessibility by mining api caveats knowledge graph,” in
2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018, pp. 183–193.

[6] C.-Y. Ling, Y.-Z. Zou, Z.-Q. Lin, and B. Xie, “Graph embedding based
api graph search and recommendation,” Journal of Computer Science
and Technology, vol. 34, pp. 993–1006, 2019.

[7] C. Treude and M. P. Robillard, “Augmenting api documentation with
insights from stack overflow,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 392–403.

[8] S. Nadi and C. Treude, “Essential sentences for navigating stack over-
flow answers,” in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2020, pp. 229–
239.

[9] D. Ye, Z. Xing, J. Li, and N. Kapre, “Software-specific part-of-speech
tagging: An experimental study on stack overflow,” in Proceedings of
the 31st Annual ACM Symposium on Applied Computing, 2016, pp.
1378–1385.

[10] S. Soderland, “Learning information extraction rules for semi-structured
and free text,” Machine learning, vol. 34, pp. 233–272, 1999.

[11] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-
based mining of opinions in q&a websites,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 548–559.

[12] C. Wang, X. Peng, M. Liu, Z. Xing, X. Bai, B. Xie, and T. Wang, “A
learning-based approach for automatic construction of domain glossary
from source code and documentation,” in Proceedings of the 2019 27th
ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, 2019, pp. 97–
108.

[13] S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically clas-
sifying posts into question categories on stack overflow,” in Proceedings
of the 26th Conference on Program Comprehension, 2018, pp. 211–221.

[14] S.-E. Ryu, D.-H. Shin, and K. Chung, “Prediction model of dementia risk
based on xgboost using derived variable extraction and hyper parameter
optimization,” IEEE Access, vol. 8, pp. 177 708–177 720, 2020.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

41

MVKGCL: Recommendation Model Based on

Knowledge Graph and Contrastive

*Corresponding author: Hankiz Yilahun (hansumuruh@xju.edu.cn)

DOI reference number: 10.18293/DMSVIVA2024-050

Learning

Abstract—Most existing recommendation models based on

knowledge graphs and contrastive learning employ random

augmentation schemes to enhance the data in knowledge graphs;

however, noise in knowledge graphs can lead to inaccurate

recommendation results. Furthermore, most contrastive

learning methods are only applied between one or two views,

thereby failing to exploit the semantic information in the data

fully. Therefore, this model proposes a recommendation model,

MVKGCL, which integrates knowledge graphs and contrastive

learning mechanisms. Firstly, it incorporates random noise into

attention weights to conduct contrastive learning among

different attention weights, and subsequently introduces a novel

automatic masking mechanism to augment the Knowledge

Graphs, performing local contrastive learning on the derived

user and item embeddings. Secondly, it employs Graph

Attention Network to encode the user-item-entity graph,

yielding representations for users and items. Lastly, global level

contrastive learning is conducted between the locally learned

user and item embeddings and the node embeddings from the

user-item-entity graph, uncovering comprehensive graph

features and structural information. Experiments demonstrate

that this model outperforms others on the Amazon-book and

Yelp2018 datasets, with average increases of 3.5% and 4.4% in

Zhiyue Xiong1, Hankiz Yilahun1*, Sadiyagul Anwer2, Askar Hamdulla1

(1. School of Computer Science and Technology, Xinjiang University, Urumqi 830017, China;

 2. Xinjiang Agricultural Vocational Technical University, Urumqi 830017, China)

Recall, and 2.4% and 2.6% in NDCG, respectively.

Keywords—Knowledge graphs; Recommendation model;

Contrastive learning; Graph attention network.

I. INTRODUCTION

As networks have rapidly advanced and contemporary
tech products have become widespread, humanity has entered
the epoch of big data, giving rise to colossal volumes of data
in everyday life. The capability of users to handle information
lags significantly behind the pace at which information
disseminates, a dilemma termed the issue of information
overload. Recommendation models automatically assist users
in pinpointing pertinent information amidst this sea of data,
furnishing them with tailored data services. Fundamentally,
collaborative filtering recommendation algorithms hinge on
scrutinizing user conduct, item characteristics, and the
historical interplay between users and items [1,2]. By doing
so, they distil the traits of users and items, facilitating
individualized recommendations tailored to diverse users.
Even though these algorithms endeavor to model intricate
dynamics between users and items, numerous models
grounded in collaborative filtering grapple with sparse data
complications and the cold start predicament. Knowledge
graphs (KG), brimming with substantial entities and relational
insights, can potentially augment the semantic depictions of
both users and items. Consequently, incorporating KG as

supplementary data into recommendation frameworks serves
as a remedy for these hurdles and bolsters overall efficacy [3].
Nonetheless, KG is beset by issues about noise and a shortage
of dense supervisory cues [4].

Inspired by contrastive learning’s approach of mining
supervisory signals from the data itself, this model focuses on
exploring a multi-view contrastive learning mechanism to
alleviate the challenges above. The main contributions of this
model are as follows (shown in Figure 1):

• Incorporates random noise into attention weights to
conduct contrastive learning among different
attention weights, and introduction of a novel
automatic masking mechanism for data augmentation
of KG, enhancing the consistency of KG-augmented
subgraphs to fortify user-item interaction graphs.

• Implementation of local-level contrastive learning
between KG and user-item graphs, fostering a
detailed contrastive understanding at the granular
level.

• Employment of graph attention mechanisms for high-
order semantic encoding of user-item-entity graphs,
assigning varying weights to nodes, thereby
generating embeddings for users and items that reflect
their unique roles and relationships.

• Conduction of global-level contrastive learning
between locally embedded nodes and the node
embeddings within the user-item-entity graph,
yielding more nuanced node embeddings. This
process enriches representations and mitigates issues
of data sparsity and noise prevalent in
recommendation models.

II. RELATED WORK

A. Knowledge-aware Recommendation

The embedding based method [5] uses Knowledge Graph
Embedding (KGE) [6,7] to preprocess KG, and then
incorporates the learned entity embeddings and relationship
embeddings into recommendations. Collaborative Knowledge
Base Embedding (CKE) [8] combines the CF module with
project structure, text, and visual knowledge embedding in a
unified Bayesian framework. KTUP [9] considers the
incompleteness of knowledge graphs when using them for
recommendation algorithms, and combines learning
recommendation and knowledge graph completion. This
method proposes a TUP (translation based user preference)

42

mailto:hansumuruh@xju.edu.cn

model combined with knowledge graph learning, and utilizes
multiple implicit relationships between users and items to
reveal user preferences. KTUP combines TUP and TransH [10]
for joint learning, enhancing project and preference modeling
by transferring entity knowledge and relationships. RippleNet
[11] is a classic recommendation algorithm based on
knowledge graph propagation mechanism. In RippleNet, the
items that users interact with are called seeds, and each seed
propagates in the knowledge graph, spreading to other entities,
thereby extending and expanding user interests. The
embedding based method demonstrates high flexibility in
utilizing KG, but the KGE algorithm focuses more on
modeling strict semantic correlations (e.g. TransE [12]
assumes head+relation=tail),which is more suitable for link
prediction rather than recommendation.

The method of graph-based information aggregation
mechanism neural networks (GNNs) [13,14] integrates multi
hop neighbors into node representations to capture node
features and graph structures, thus simulating long-range
connectivity. KGCN [15] combines knowledge graph and
graph convolutional neural network to effectively capture
local neighborhood information and consider neighbor node
weights for recommendation. This model samples the
neighboring nodes of candidate items in the knowledge graph,
and then iteratively samples the neighboring nodes for each
entity, using a linear combination of neighboring node
information to characterize the neighborhood information of
the nodes. KGAT [16] combines the user item interaction
matrix with the knowledge graph in the Collaborative
Knowledge Graph (CKG) embedding layer and obtains the
graph item vector representation through embedding. Then, in
the attention embedding propagation layer, the item
representation is enhanced by passing the propagation vector
back to neighboring multi hop nodes. By calculating the
relationship weights based on the attention mechanism of the

The contrastive learning approach [18,19] acquires node
representations by differentiating between positive and
negative examples. Initially, DGI [18] incorporated Infomax
into graph representation learning, focusing on contrasting
local with global node embeddings. Following this, GMI [20]
proposed contrasting central nodes with their adjacent nodes,
considering both node attributes and structural positions. In a
similar vein, MVGRL [21] generates node and graph-level
representations of neighborhoods and graph propagation from
two distinct structural perspectives (including first-order
graphs), and contrasts the encoded embeddings across these
two views. More recently, HeCo [19] introduced learning
node representations from both network pattern and meta path
perspectives, conducting contrasting learning between them.
KGCL [22] employs a KG augmentation scheme to mitigate
noise in information aggregation. It also leverages additional
supervisory signals from the KG enhancement process to
guide cross-view contrastive learning, further suppressing
noisy user-item interactions. However, KGCL only performs
contrastive learning between the KG and user-item views,
which not consider the complete semantic information in the
CKE view

knowledge graph, the node vector representation is completed
after aggregating information. Finally, in the prediction layer,
the user click probability is calculated and normalized through
vector calculation, and recommendation is achieved. KGIN
[17] models each intention as a combination of relationships
in the knowledge graph to achieve better modeling capability
and interpretability. In addition, this method proposes a new
information aggregation scheme that recursively integrates the
relationship paths of remote connections. KGIN provides
interpretability for predictions by identifying influential
intentions and relationship paths.

B. Contrastive Learning

.

Fig. 1. MVKGCL model architecture

43

III. METHOD

A. Preliminaries

In a recommendation scenario, we typically have historical
user-item interactions such as purchases and clicks. Here, we
represent this interaction data as a bipartite graph between

users and items, defined as {(u, Yui, i) | u ∈ U, i ∈ I}, where

U and I denote the sets of users and items respectively, and a
connection Yui = 1 signifies an observed interaction between
user u and item i; otherwise, Yui = 0.

In addition to user-item interactions, our model
incorporates side information for items, comprising attributes
and external knowledge that enriches item descriptions. This
supplementary data involves real world entities
interconnected through various relationships, effectively
profiling each item. To bridge the gap between items in our
primary dataset and entities within KG, we establish a
mapping referred to as item-entity alignments, represented by

the set A = {(i, r, e)|i ∈ I, e ∈ E, r∈ R}. Each pair (i, e) in A

signifies that the item i corresponds directly to an entity e
within KG, thereby integrating domain-specific knowledge
into our recommendation framework.

The concept of a Comprehensive Knowledge Graphs
(CKG) is introduced, merging user behaviors and item
knowledge into a unified graph. Each user action is depicted
as a triplet (u, Yui, i), signifying an 'Interact' relation between
user u and item i when Yui = 1. Leveraging item-entity
alignments, the user-item graph integrates smoothly with KG,

forming a unified graph G = {(h, r, t)|h, t ∈ E', r ∈ R'}, where

E' combines entities E from KG with users U (E' = E∪U), and

R' expands relations R with Yui (R' = R∪{Yui}).

B. CKG Based Graph Attention Network

Firstly, the TransR [23] method is used to generate the
embedding representations of CKE. Consider entity h,

represented by Nh = {(h, r, t) | (h, r, t) ∈ G}, which denotes

the set of triples with h as the head entity. To characterize the
first-order connectivity structure of entity h, this model
calculates a linear combination of h’s neighborhood Nh:

ENh
= ∑  

(h,r,t)∈Nh

π(h,r,t)et (1)

 π(h, r, t)=(Wret)
⊤
tanh((Wreh+er)) (2)

Where π(h,r,t) represents the weight parameters

associated with the tail entity, and tanh is a non-linear

activation function.

Following the aggregation of information for entity eh

and its neighborhood combination representation eNh, we

obtain 𝑒ℎ
(1)

= f (eh, eNh), where f serves as the aggregator. This

paper further explores higher-order connection information

by gathering signals propagated from higher-hop neighbors

and concatenates multi-hop vectors to achieve a final global-

level representation for users and items:

eh

(l)
=f (eh

(l-1)
,eNh

(l-1)
) (3)

u u u i i i
(4)

C.

e
glo

=e
(0)
||⋯|| e

(L)
, e

glo
=e

(0)
||⋯||e

(L)

Automatic Masking Mechanism

Firstly, calculate the different weights between project i
and the entity e it is connected to in KG:

 g(e,re,i,i)=
exp(LeakyReLU(re,i

⊤ W[xe||xi]))

∑  e∈Ni
exp(LeakyReLU(re,i

⊤ W[xe||xi]))
 (5)

Then, noise is added to the attention weights g(e,re,i,i):

 g'(e,re,i,i)=g(e,re,i,i)-log(-lo g(ϵ));ϵ∼Uniform(0,1) (6)

where 𝜖 is a random variable sampled from a uniform
distribution. Treat the representation learned for item i from
KG as one contrastive view, and consider the representation
of item i' after adding random noise as another contrastive
view.

 xi

(l)
=ei

(l-1)
+ ∑  

(e,r,i)∈Ni
g(e,re,i,i)xe

(l-1)
 (7)

 xi'
(l)

=ei

(l-1)
+ ∑  

(e,r,i)∈Ni
g'(e,re,i,i)xe

(l-1)
 (8)

The contrastive loss ℒ𝑛𝑜𝑖𝑠𝑒 after adding random noise:

 ℒnoise=-log
exp(s(xi

(l)
,x

i'
(l)

)/τ)

∑  I
i=0 exp(s(x

i
(l)

,x
i'
(l)

)/τ)
 (9)

Where s is the similarity function, and τ is the temperature
parameter.

 (e,re,i,i)

0,
 (10g(e,re,i,i)= {

g(e,re,i,i)∈top-k (g

otherwise

)
)

Where LeakyReLU serves as the activation function, and
W represents trainable parameters.

Secondly, unlike the random data augmentation scheme
employed by the KGCL model, this model leverages the

function g(e, re,i, i) to generate enhancement operators Mk
1 and

Mk
2 for KG triples:

Mk
1=g(e,re,i,i) (11)

𝑀𝑘
2 = 1 − 𝑔(𝑒, 𝑟𝑒,𝑖 , 𝑖) (12)

Where Mk
1 and Mk

2∈{0,1}, and finally a specific selection

is made for the neighborhood Ni of item i:

η
1
(Gk)= ((e,r,i)⊙Mk

1) ,η
2
(Gk)= ((e,r,i)⊙Mk

2) (13)

Wherein, the masking vectors Mk
1 and Mk

2 indicate
whether specific KG triples are selected during the sampling
process.

D. Local Contrastive Learning

Firstly, data augmentation is performed on the user-item
view by leveraging KG to enhance consistency among
subgraphs:

ci=s (f
k

(xi,η1
(Gk)) ,f

k
(xi,η2

(Gk))) (14)

Where fk denotes the aggregator function, xi represents the
embedding of items in KG.

Following this, ci is utilized to generate two masking
vectors, Mu

1 and Mu
2 , which are derived from a Bernoulli

44

distribution [24], to perform data augmentation on the user-
item interaction view:

φ(Gu)=(V,Mu
1⊙Y),φ(Gu)=(V,Mu

2⊙Y) (15)

Where V represents the set of nodes in the user-item
interaction graph, and a random deletion is performed on the
edge set Y within this interaction graph.

 Following this, the nodes are encoded using the LightGCN
[25] model:

eu
loc=eu

(0)
+⋅⋅⋅+eu

(L)
,ei

loc=ei

(0)
+⋅⋅⋅+ei

(L) (16)

ℒloc= ∑  

n∈V

-lo g
ex p(s(xn

1,xn
2)/τ)

Σ
n'∈V,n'≠n

ex p(s(xn
1,xn

2)/τ)
(17)

parameter, (x
Where s is the similarity function, and τ is the temperature

n
1,xn

2) are generated from the enhanced KG and
the subgraph of user-item interactions mentioned above, ℒloc
denotes the local contrastive loss function.

E. Global Contrastive Learning

Firstly, the node embeddings are fed into an MLP with one
hidden layer:

zc
glo

=W
(2)

σ(W
(1)

ec
glo

+b
(1)

)+b
(2) (18)

zc
loc=W

(2)
σ(W

(1)
ec

loc+b
(1)

)+b
(2) (19)

Where W ∈ Rd×d and b ∈ Rd×1 are trainable parameters,

and σ denotes the sigmoid function.

The sampling scheme for positive and negative examples
is as follows: for any node in one view, the embedding of the
corresponding same node learned in the other view serves as
a positive example, while embeddings of all other distinct
nodes are regarded as negative examples:

 ℒglo=-log
e

s(zc
glo

,zc
loc)/τ

e
s(zc

glo
,zc

loc)/τ
+ ∑  k≠c e

s(zc
glo

,z
k

glo
)/τ

+ ∑  k≠c e
s(zc

glo
,zk

loc)/τ
 (20)

 positive pairs negative pairs within negative pairs between

 the view

To combine the recommendation task with the self-
supervised task, this paper adopts a multi-

the view

task training
strategy to optimize the entire model. Firstly, the BPR [26]
loss ℒ BPR is constructed, therefor, the primary function after
introducing the contrastive loss is as follows:

2

Wherein, a and 𝛽 are parameters respectively for
regulating the weights of local-global contrastive loss and
overall contrastive loss, while λ is the parameter that controls
regularization. Details of the contrastive learning strategy are
illustrated in Figure 2 below.

IV. EXPERIMENTS

A. Dataset

The experiment selects two datasets, Amazon-Book (for
product recommendation) and Yelp2018 (for business venue
recommendation) [27], which exhibit different levels of
interaction sparsity and KG characteristics. Detailed statistical
information on the datasets is provided in Table I below.

Fig. 2. Contrastive learning strategies

TABLE I. STATISTICS OF THE DATASETS USED IN EXPERIMENTS

 Amazon-book Yelp2018

User-Item

Interactions

#Users 70679 45919
#Items 24915 45538

#Interactions 846434 1183610

KG

#Entities 29714 47472
#Relations 39 42

#Triples 686516 869603

B. Evaluation Metrics

To evaluate the Top-N recommendation results of
different models, we select two commonly used metrics for
recommendation model, including Recall and Normalized
Discounted Cumulative Gain (NDCG).

C. Evaluation Protocols

The recommendation model is implemented using the
Pytorch deep learning framework, with the embedding vector
dimension fixed at 64 for all methods. Model optimization is
carried out with a learning rate of 1e−3 and a batch size of 2048.
The initial Top-k is set to 20, with both Recall and NDCG
metrics considered for model evaluation. This model also
conducts grid search over relevant parameters: adjusting the
Top-k value within {5, 10, 20, 50, 100}, setting local
contrastive loss weights to {0, 0.2, 0.4, 0.6, 0.8, 1}, and
contrasting learning weights to {1, 0.1, 0.01, 0.001}
respectively.

D. Baselines for Comparison

In the experiments, we contrast the MVKGCL with
several SOTA recommendation models, which can be divided

:

•
based on traditional collaborative filtering methods:

ℒMVKGCL=ℒBPR+β(a(ℒloc+ℒnoise) + (1-a)ℒglo)+λ||Θ||
2 (21)

into thre

T

e

h

c

e

at

f

e

i

g

rs

o

t

r

c

ie

a

s

tegory comprises recommendation models

•

•

E.

BPR [26]and GC-MC [28].

The second category comprises recommendation
models based on graph neural networks: LightGCN

[25] and SGL[29].

The third category comprises recommendation
models based on knowledge graphs: CKE [8],
RippleNet [11], KGCN[15], KGIN[17], CKAN[30],
MVIN[31], and KGCL[22].

Performance Comparison with SOTA

Table II below presents the experimental results of all

45

Fig. 3. The result of Recall@𝐾 in top-𝐾 recommendation

TABLE II. PERFORMANCE RESULTS OBTAINED

Model

Amazon-book Yelp2018

Recall NDCG Recall NDCG

BPR 12.44% 0.0658 5.55% 0.0375

GC-MC 10.33% 0.0532 5.35% 0.0346

LightGCN 13.98% 0.0736 6.82% 0.0443

SGL 14.45% 0.0766 7.19% 0.0475

CKE 13.75% 0.0685 6.86% 0.0431

RippleNet 10.58% 0.0549 4.22% 0.0251

KGCN 11.11% 0.0569 5.32% 0.0338

KGIN 14.36% 0.0748 7.12% 0.0462

CKAN 13.80% 0.0726 6.89% 0.0441

MVIN 13.98% 0.0742 6.91% 0.0441

KGCL 14.96% 0.0793 7.56% 0.0493

MVKGCL 15.86% 0.0846 7.73% 0.0526

models. Through observing the contrast experiments between
model MVKGCL and the baseline models, the following
observations are derived:

• Overall, in the experiments conducted on the
Amazon-book and Yelp2018 datasets, MVKGCL
demonstrates superior performance compared to other
models. In terms of the Recall evaluation metric,
MVKGCL achieves 15.86% and 7.73%, respectively,
and for the NDCG evaluation metric, it reaches
0.0846 and 0.0526, respectively, surpassing the
current SOTA model KGCL.

• In the Top-k recommendation task, our model
MVKGCL surpasses the best baseline models in
Recall@K metrics at multiple different K values.
Among them, the joint recommendation
methodologies (MVKGCL, MVIN, and KGCL) excel
in recommendation effectiveness compared to
embedding-based methods (CKE) and path-based
methods (RippleNet). Specifically, on two datasets,
MVKGCL enhances Recall by 3.5% to 4.4% and
NDCG by 2.4% to 2.6% in contrast to CKE and
RippleNet. The rationale behind this is that the model
fully leverages the advantages of both embedding and
path-based approaches, refining the depiction of
entities and their relations through an iterative
updating strategy, thereby compensating for the
limitation of embedding methods in capturing higher-
order semantic information. For more detailed
outcomes, please refer to Figure 3 above.

• As a joint recommendation model, MVKGCL
performs well, outperforming models such as KGIN,
CKAN, and KGCL on both datasets. The main
reasons for this include: firstly, the MVKGCL model,
through global contrastive learning, comprehensively

considers the complete structural information within
the graph; furthermore, the automatic masking
mechanism proposed in this paper adequately
considers the varying attention weights between items
and entities, selectively enhancing the data of KG.

F. Ablation Study of MVKGCL Framework

The experiment investigates the model’s performance
from the perspectives of KG and contrastive learning.
Ablation experiments can verify the functions of different
components of the model. MVKGCLw/o glo denotes the
model variant without global contrastive learning, a
component primarily utilizing an automatic masking
mechanism to augment KG data. Meanwhile, MVKGCLw/o
mask signifies the model version sans the automatic masking
mechanism, which employs GAT for embedding learning on
CKE graphs; subsequently, it leverages global contrastive
learning to derive node embeddings enriched with semantic
and structural information at the global level. Each component
in the MVKGCL model contributes positively, with the
complete MVKGCL model outperforming both
MVKGCLw/o glo and MVKGCLw/o mask across evaluation
metrics on two datasets. Furthermore, MVKGCLw/o glo
consistently surpasses MVKGCLw/o mask in all metrics,
highlighting the efficacy of employing attention weights to
generate mask vectors for data augmentation of KG. The
experimental results are shown in Table III below.

TABLE III. IMPACT STUDY OF MVKGCL MODEL VARIANTS

Model

Amazon-book Yelp2018

Recall NDCG Recall NDCG

MVKGCL 15.86% 0.0846 7.73% 0.0526

MVKGCLw/o glo 15.66% 0.0829 7.63% 0.0511

MVKGCLw/o mask 15.60% 0.0820 7.60% 0.0502

Fig. 4. Impact of local-

G. Impact of local-level contrastive loss weight a

Investigating the impact of local versus global contrast
weights on model metrics. Specifically, to study the effect of
the weight parameter b, the model varies a’s value within the
set {0, 0.2, 0.4, 0.6, 0.8, 1.0}, leading to the following
observations: (1) For the Amazon-Book dataset, the model
achieves its best performance when a=0.4; for the Yelp2018
dataset, the optimal performance is reached when a=0.2,
indicating that at these points, a balance between local and
global contrastive losses is achieved; (2) In the case of the
Amazon-Book dataset, the worst performance typically
occurs when a=0, highlighting the significance of the
automatic masking mechanism. For the Yelp2018 dataset,
poor performance is observed when the parameter a is either
0 or 1, suggesting that both levels of contrastive loss play a
crucial role in the model’s functioning. See Figure 4 below for
further details.

level contrastive loss weight a

H. Impact of contrastive loss weight β

46

 By adjusting the weights of contrastive learning, we
explore the role contrastive learning plays in the model to
uncover the significance of contrastive loss during multi-task
training. Specifically, we vary the parameter β within the set
{1, 0.1, 0.01, 0.001}, observing performance metrics across
different datasets. The experimental results indicate that the
model performs best when the parameter β is set to 0.1. The
primary reason for this improvement is the adjustment of the
contrastive loss to a level comparable with the
recommendation task loss, thereby enhancing the model’s
performance. Details are provided in Table IV below.

TABLE IV. IMPACT OF CONTRASTIVE LOSS

 Amazon-book Yelp2018

Recall NDCG Recall NDCG

β=1 15.63% 0.0823 7.70% 0.0513

β=0.1 15.86% 0.0846 7.73% 0.0526
β=0.01 15.58% 0.0818 7.69% 0.0511

β=0.001 15.40% 0.0806 7.67% 0.0510

I. Vector Embedding Representation

To evaluate whether the contrast mechanism affects the

performance of representation learning, this paper employs

SVD decomposition to embed items into a two-dimensional

space. As shown in Figure 5, this work contrasts the

visualization results of MVKGCL, MVKGCLw/o glo, and

MVKGCLw/o mask on the Amazon-book dataset. The

following observations can be drawn from the figure below:

• The item node embeddings generated by
MVKGCLw/o mask are mixed to some extent, while
those produced by MVKGCLw/o glo fall into a
narrow cone shape. In contrast, the node embeddings
generated by the MVKGCL model exhibit a more
diverse distribution: specifically, they are distributed
more evenly and sparsely, thereby capable of
representing different node feature information. This
indicates that the MVKGCL model has superior
capabilities in representation learning and mitigating
representation degradation.

• By contrasting MCCLK and its variants, it is observed
that removing the auto-mask or the global contrastive
learning component makes the embedding
representations less distinguishable. This evidence
supports that the MVKGCL model enhances the
effectiveness and robustness of representation
learning.

V. CONCLUSION AND FUTURE WORK

Fig. 5. Project Embedding Representation in Amazon-book

The work proposes a recommendation model MVKGCL
based on KG and contrastive learning: firstly, an automatic
masking mechanism is introduced to augment the data in KG;
secondly, by employing graph attention neural networks, the
complete structural information within CKG is mined. The
node embeddings learned from this process are then globally
contrasted with node embeddings obtained through local
contrastive learning, fully exploiting the structural and
semantic information within KG. Experiments constructed
demonstrate that MVKGCL outperforms other existing
models in terms of performance.

In future work, to address the issue of inadequate
exploitation of structural views by the model, a new paradigm
of graph attention neural networks will be considered for
feature optimization of structural views. This enhancement
aims to further elevate the model’s performance.

ACKNOWLEDGMENT

The authors are immensely grateful to the anonymous

reviewers and editors for their diligent efforts. Their valuable

comments and constructive suggestions have significantly

enhanced the quality of this work. We also extend our

gratitude to the creators of the contrastive algorithms for

generously sharing their source codes. This research was

made possible through the financial support of the National

Natural Science Foundation of China (62341607) and the

Key Projects of the National Language Commission (ZD145-

58).

REFERENCES

[1] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony
Jebara. 2018. Variational autoencoders for collaborative filtering. In
WWW. 689–698.

[2] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020.
Neural collaborative filtering vs. matrix factorization revisited. In
Recsys. 240–248.

[3] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua.
2019. Kgat: Knowledge graph attention network for recommendation.
In KDD. 950–958.

[4] Guanying Wang, Wen Zhang, Ruoxu Wang, Yalin Zhou, Xi Chen, Wei
Zhang, Hai Zhu, and Huajun Chen. 2018.Label-free distant supervision
for relation extraction via knowledge graph embedding. In EMNLP.
2246–2255.

[5] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua.
2019.Unifying knowledge graph learning and recommendation:
Towards a better understanding of user preferences. In WWW. 151–
161.

[6] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014.
Knowledge graph embedding by translating on hyperplanes. In AAAI.

[7] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu.
2015. Learning entity and relation embeddings for knowledge graph
completion. In AAAI.

[8] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-
Ying Ma. 2016.Collaborative knowledge base embedding for
recommender systems. In SIGKDD.353–362.

[9] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua.
2019.Unifying knowledge graph learning and recommendation:
Towards a better understanding of user preferences. In WWW. 151–
161.

[10] Wang Z, Zhang JW, Feng JL, et al. Knowledge graph embedding by

Xing Xie,and Minyi Guo. 2018. Ripplenet: Propagating user
preferences on the knowledge graph for recommender systems. In
CIKM. 417–

translating on hyperplanes. Proceedings of the 28th AAAI Conference
on Artificial Intelligence. Quebec City: AAAI, 2014. 1112–1119.

[11] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li,

426.

47

[12] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason
Weston, and Ok sana Yakhnenko. 2013.Translating embeddings for
modeling multi-relational data. In Neural Information Processing
Systems (NIPS). 1–9.

[13] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu.
2018.Leveraging meta-path based context for top-n recommendation
with a neural co-attention model. In SIGKDD. 1531–1540.

[14] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip.
2018.Heterogeneous information network embedding for
recommendation. IEEE Transactions on Knowledge and Data
Engineering (2018), 357–370.

[15] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo.
2019.Knowledge graph convolutional networks for recommender
systems. In WWW. 3307–3313.

[16] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua.
2019.Kgat:Knowledge graph attention network for recommendation.
In SIGKDD. 950–958.

[17] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan,
Zhenguang Liu, Xiangnan He, and Tat-Seng Chua. 2021. Learning
Intents behind Interactions with Knowledge Graph for
Recommendation. In WWW. 878–887.

[18] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm. 2019. Deep Graph Infomax.
ICLR (Poster) (2019), 4.

[19] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised
Hetero geneous Graph Neural Network with Co-contrastive Learning.
arXiv preprint arXiv:2105.09111 (2021).

[20] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong,
Tingyang Xu, and Junzhou Huang. 2020. Graph representation
learning via graphical mutual information maximization. In WWW.
259–270.

[21] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive
multi-view representation learning on graphs. In ICML. PMLR, 4116–
4126.

[22] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022.
Knowledge Graph Contrastive Learning for Recommendation. In
Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. Association for
Computing Machinery, New York, NY, USA, 1434–1443.

[23] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu.
2015. Learning entity and relation embeddings for knowledge graph
completion. In AAAI.

[24] Albert W Marshall and Ingram Olkin. 1985. A family of bivariate
distributions generated by the bivariate Bernoulli distribution. J. Amer.
Statist. Assoc. 80, 390(1985), 332–338.

[25] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and
Meng Wang. 2020. Lightgcn: Simplifying and powering graph
convolution network for recommendation. In SIGIR. 639–648.

[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars
Schmidt-Thieme. 2012. BPR: Bayesian personalized ranking from
implicit feedback. arXiv (2012).

[27] Ding Zou, Sen Zhao, Wei Wei, Xian-ling Mao, Ruixuan Li, Dangyang
Chen, Rui Fang, and Yuanyuan Fu. 2023. Towards Hierarchical Intent
Disentanglement for Bundle Recommendation. IEEE Transactions on
Knowledge and Data Engineering(2023).

[28] Rianne van den Berg, Thomas N Kipf, and Max Welling.2017. Graph
convolutional matrix completion. arXiv preprint arXiv:1706.02263.

[29] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen,
Jianxun Lian, and Xing Xie. 2021. Self-supervised graph learning for
recommendation. In SIGIR.726–735.

[30] Ze Wang, Guangyan Lin, Huobin Tan, Qinghong Chen, and Xiyang
Liu. 2020. CKAN: Collaborative Knowledge-aware Attentive Network
for Recommender Systems. In SIGIR. 219–228.

[31] YChang-You Tai, Meng-Ru Wu, Yun-Wei Chu, Shao-Yu Chu, and
Lun-Wei Ku. 2020. MVIN: Learning Multiview Items for
Recommendation. In SIGIR. 99–108.

48

Learning based Approach for Optimizing Microservices Configuration
Parameters

Sulochan Naik , Meenakshi D’Souza
International Institute of Information Technology Bangalore

Bangalore, India
sulochan.naik@iiitb.ac.in,meenakshi@iiitb.ac.in

Abstract

Adoption of microservices has increased exponentially
worldwide. Despite higher adoption, there is a lack of work
on possible auto tuning of configurable parameters for var-
ious optimisation in terms of cost, resources and other as-
pects. We propose a novel way to find the best possible
configuration for a service based on certain parameters.
Each service is modeled mathematically by considering the
various configurable parameters that a service can have.
We then use learning methodologies to optimise on the cost
and find the best parameters for optimised on the cost with-
out affecting the service, thereby cutting down on over pro-
visioning of the configuration. Our in-house implemen-
tation and experimentation on Samsung owned microser-
vices achieved an optimization in terms of cost by $1593
per month. When compared with the benchmark commer-
cial solution called Kubecost, our solution outperformed by
33% on an average for CPU and 27% for memory across
12 microservices over a month of data.

Index terms— Microservices, Configurable Parame-
ters, Bayesian Optimization, Objective Function, Surrogate
Function

1 Introduction

Adoption of microservices has become a new industry
standard owing to several of its inherent properties and the
resulting advantages. According to the report [11], mi-
croservices had an adoption rate of 37% worldwide and
is increasing exponentially. The need for better mainte-
nance and optimization would be the key with increased
adoption. Typically parameters of a service are configured
blindly without taking the nature of a service and its be-
haviour into consideration. A service might just be a proxy
where no computation heavy processes exists or there could

DOI reference number: 10.18293/DMSVIVA2024-133

be a computationally intensive service. Often configurable
parameters are over provisioned by blindly setting a value
inherited from another service.

In this paper, we propose a novel way to provide opti-
mal configurable parameters thereby reducing cost of over-
all service without affecting the functionality. An important
thing to consider is that there is no liberty in live produc-
tion systems to change configuration, deploy, observe and
penalise or award the changed configuration. If a configu-
ration doesn’t work, we need to change and redeploy. Since
we don’t have the option to re-configure on live production
systems and the available data set to handle this problem
is limited, we propose a Bayesian Optimization algorithm
[13] which suits such kind of live production systems.

Our methodology was implemented and tried on various
in-house Samsung owned microservices meant for achiev-
ing inter-connectivity and interoperability among the smart
devices and appliances for memory configuration. Our
methodology achieved optimization in terms of cost by
1593 USD per month, by decreasing the CPU and mem-
ory configuration for an optimized number of running in-
stances. We also illustrate how our approach saves impor-
tant configurable parameters when compared with a com-
mercial benchmark, Kubecost [7].

Rest of the paper is organized as follows. Section 2 deals
with the background on microservices and Bayesian Opti-
mization. Section 3 contains related work in in the area
of optimization of the various parameters of microservices.
Section 4 explains our methodology which is followed by
results and analysis in Section 5. We conclude in Section 6.

2 Background

2.1 Microservices

The microservices architectural style is an approach to
develop a single application as a suite of small services,
each running in its own process and communicating us-

49

ing lightweight mechanisms, often an HTTP resource API
[4, 10]. These services are built around business capa-
bilities and are independently deployable by a fully auto-
mated deployment machinery [4, 10]. There is a bare min-
imum of centralised management of these services, which
may be written in different programming languages and use
different data storage technologies [4, 10]. Decentralisa-
tion and Componentization are major characteristics of mi-
croservices.

In a microservices architecture, each service, apart from
interacting with other services, also interacts with vari-
ous resources like databases, queues or message passing
services and other consuming application. Configuration
management in microservices involves defining a consis-
tent way to configure the connections and other operating
parameters of each service. In an ideal state, the configura-
tions should be adapted without the applications needing a
re-start. This is the main problem considered in this paper.

2.2 Bayesian Optimization

Bayesian optimization is a methodology to find optimal
values for expensive objective functions and it has proven
success in various fields including Sciences, Engineering
and beyond [9, 5, 6]. It is a sequential design strategy for
global optimization where functions are not known or are
too expensive to formulate. Bayesian Optimization builds a
probability model of the objective function and uses it to se-
lect hyper-parameter to evaluate in the true objective func-
tion. [9, 5, 6]. There are various terminologies associated
with this optimisation technique. A true objective function
is the actual function which depicts your service. Surro-
gate functions approximate true objective functions and are
used initially to start with. An acquisition function is used
further and the next hyper-parameter of choice is where the
acquisition function is maximized. After using an acquisi-
tion function to determine the next hyper-parameter, the true
objective function score of this new hyper-parameter is ob-
tained. Since the surrogate model has trained on the (hyper-
parameter, true objective function score) pairs, adding a new
data point updates the surrogate model. The above steps are
repeated for several iterations (until maximum iterations are
reached or memory is exhausted) to be as close to true ob-
jective function as possible.

3 Related Work

So far, the research focus has been on monitoring vari-
ous aspects of microservices and suggesting certain cost op-
timizations based on simple techniques like usage, average,
minimum, maximum etc. Kubecost is able to associate a
cost in a given time window to each of the main Kubernetes

Figure 1: Various steps for our model

abstractions: from the Pod to the Service, from the Deploy-
ment to the Namespace [7, 2, 3]. It suggests an optimization
based on the average usage with utilization capped to 65%
of usage. Cost Optimization Strategies for AWS Infrastruc-
ture [12] rely on a heuristics approach based on monitoring
of various cost explorers rather than a data-driven approach.
Optimization of resource provisioning costs in cloud com-
puting [2] suggests various optimization techniques by ex-
ploring various provisioning of services like reserved, spot
etc which are again based on the acumen gained but not the
data driven approach. There is no focus on auto tuning of
configurable parameters using data-driven approaches and
thereby optimizing services based on their nature. Our so-
lution focuses on achieving this by replacing the heuris-
tics based approach or simple techniques used so far with
a technique based on Bayesian optimization. The above-
mentioned techniques will not work effectively for auto tun-
ing as they work without considering the nature of a service
and properties like whether service requires high computa-
tion, resources etc.

4 Methodology for Optimizing the Configu-
ration Parameters

Figure 1 gives a description of our proposed methodol-
ogy. Initially, we consider as input, any micro service with

50

all the configurable parameters where optimization is re-
quired and perform various steps required for optimization
which includes set of parameters under considerations and
ground truth of sample distribution. A loss function is cal-
culated with training data set and an appropriate algorithm
. Starting with the definition of the objective function, the
various parameters are specified in the second step and the
Bayesian optimization algorithm is applied. The iterations
of the algorithm through the various steps as highlighted in
Section 2.2 are completed to obtain the desired results con-
taining the configuration parameters. Our experiments in-
dicate that the parameters are indeed optimized when com-
pared to other benchmarks.

We now present the details of the algorithm. Mathemat-
ically, we would like to compute the following function

λ∗ = argminλ∈ΛEx∈Gx
[L(x,A(Dtraining−data))]] (1)

where Λ is the set of configuration parameters that we
would like to optimize (e.g., CPU, memory etc.), G is the
ground truth of the sample distribution, and x is the un-
derlying machine learning algorithm that operates over the
training data set Aλ. The algorithm that will compute this
equation will minimize the loss function L.

Table 1 provides the list of various configurable and de-
rived parameters that are considered as input. There are
various categories under which we can have various con-
figurable parameters for a service. CPU and memory are
basic configuration that each service would have. CPU and
memory desired capacity are configured while we can opti-
mise based on derived parameter that is utilisation percent-
age found through various monitoring tools. Similarly scal-
ing policy, storage, cache etc are other categories which are
configured and we found out whether they are over provi-
sioned or under provisioned based on derived/measurable
attributes

An objective function is nothing but a function which
determines our service. Defining true objective function is
difficult for our scenario. Reason being there are lot of pa-
rameters to consider and its complex to arrive at true objec-
tive function with limited data that we have. Hence, we start
with a surrogate objective function based on data we have.
We use following steps for our model to function:

• We initiate a surrogate model and an acquisition func-
tion. Surrogate model is kind of false objective func-
tion like Gaussian which is improved to make it close
to true objective function by using acquisition func-
tions which picks next best candidate based on certain
rules [1]

• Then for each iteration, we find the parameter x∗

where the acquisition function is maximized. The ac-
quisition function is a function of the surrogate model,

which means it is built using the surrogate model in-
stead of the true objective function.

• Obtain the objective function score of x∗to check the
performance of this point

• Next, we have to include the (parameter x∗, true ob-
jective function score)in the history of other samples

• Next, we have to train the surrogate model using the
latest history of samples and these steps to be repeated
until the max number of iterations is reached

5 Results and Analysis

Model explained earlier was applied on various services
owned by Samsung for it’s inter device (Internet of Things)
operations. Data required to feed the model were taken from
couple of places. Configurable parameters’ values were
taken from code repository and derived parameters were
captured from Datadog [8]. Datadog is a tool which is used
to monitor various parameters that are fed from services.
All the running instances feed data to this tool which can
be sought whenever required. Experiments were performed
independently on various parameters. CPU utilisation was
captured with number of instances and this particular sce-
nario was optimised and ideal value of CPU for minimal
number of instances was calculated. Model was then built
for higher dimension to consume cpu and memory together
and suggest optimal values for the chosen parameters.

Table 2 provides the results obtained for CPU from 12
different microservices in comparison with benchmark. It
can be clearly seen from the Figure 2 as well that our so-
lution outperforms benchmark solution for every services.
Overall there is an average improvement of 33.32% per ser-
vice as compared to benchmark solution. There is also a
cost savings of roughly 1593 USD per month accross 12
services calculated based on cpu savings against actual cost
of these services.

Table 3 provides the results obtained for memory from
12 different microservices in comparison with benchmark.
It can be clearly seen from the Figure 3 as well that our so-
lution outperforms benchmark solution for every services.
Overall there is an average improvement of 27.83% per ser-
vice as compared to benchmark solution.

Figure 4 shows one of the sample result with various
iterations (20 iterations were chosen based on standard)
through which objective function was improved and model
suggested optimised default value for CPU.

6 Conclusion

In this work, we proposed a model which will provide
optimal values for various configurable parameters based on

51

Table 1: Common Parameters

S.No Configurable Parameters Derived Parameters
1 CPU desired capacity CPU Utilization
2 Memory desired capacity Memory Utilization
3 Language specific RAM (JVM) Heap/Threads
4 Scaling Policy (threshold) Number of Pods
5 Queue Queue size per event
6 Cache Cache Hit/Miss
7 Storage Parameters Record size

Figure 2: CPU configuration recommendation

Figure 3: Memory configuration recommendation

52

Table 2: CPU Result comparison with Kubecost benchmark soluton

Service CPU cores requested Kubecost rec-
ommended CPU
cores

Recommendation
based on our
model

Percentage im-
provement

Savings (Dollar
per month)

Service 1 1 0.244 0.146 40.2% 74.02
Service 2 1 0.147 0.101 31.3% 41.76
Service 3 2 0.669 0.472 29.3% 97.74
Service 4 0.7 0.207 0.114 44.9% 36.2
Service 5 1 0.379 0.257 32.2% 30.4
Service 6 3 0.206 0.1 51.5% 305.4
Service 7 1 0.24 0.187 22.1% 28.06
Service 8 2 0.134 0.099 26.2% 92.06
Service 9 2 1.829 1.188 35.04% 8.64

Service 10 3 2.757 2.016 26.88% 40.17
Service 11 3.1 1.998 1.44 27.92% 798.96
Service 12 2 2.27 1.53 32.4% 40.07

Table 3: Memory(RAM) Result comparison with Kubecost benchmark solution

Service Kubecost recommended RAM in bytes Recommendation based on our model Percentage improvement
Service 1 5,58,66,98,240 3,38,78,90,236.32 39.36%
Service 2 1,65,23,57,908 1,22,57,10,064.8 25.82%
Service 3 5,49,96,04,677 3,27,06,54,417.168 40.53%
Service 4 1,44,29,45,182 94,86,84,140.424 34.2%
Service 5 3,45,16,36,185 2,27,72,61,561.35 34.02%
Service 6 7,06,02,62,597 3,44,39,96,994.51 51.2%
Service 7 5,26,51,43,336 3,04,52,70,026.47 42.2%
Service 8 4,17,90,92,087 3,72,72,36,137.75 10.8%
Service 9 3,18,90,32,173 3,10,15,24,558.77 2.74%

Service 10 10,11,09,00,382 8,69,53,74,328.52 14.02%
Service 11 5,31,58,32,911 4,14,63,49,670.58 22.04%
Service 12 6,56,24,15,853 5,44,68,05,157.99 17.03%

53

Figure 4: Results for various iterations and improvement

nature of service and thereby save cost as high as 1593 USD
per month. In addition, this model will also help to auto tune
parameters during sudden increase/decrease in load, predict
future values based on history and finding maximum and
minimum value that a particular metrics can have for a stan-
dardised configuration set. Our model is compared with one
of the benchmark solutions where our model outperforms
the other one. This model will save lot of manual effort and
cost for all the cloud services that exist in this era.

References

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms
for hyper-parameter optimization. Advances in neural infor-
mation processing systems, 24, 2011.

[2] S. Chaisiri, B.-S. Lee, and D. Niyato. Optimization of re-
source provisioning cost in cloud computing. IEEE transac-
tions on services Computing, 5(2):164–177, 2011.

[3] F. Cicchiello. Analysis, modeling and implementation of cost
models for a multi-cloud Kubernetes context. PhD thesis,
Politecnico di Torino, 2021.

[4] M. Fowler. Microservices, 2014.
[5] R. Garnett. Bayesian optimization. Cambridge University

Press, 2023.
[6] P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic

Numerics: Computation as Machine Learning. Cambridge
University Press, 2022.

[7] kubecost. kubecost, 2019.
[8] A. Mckaig and T. Khan. How the metrics backend works at

datadog. 2022.
[9] J. Mockus and J. Mockus. The Bayesian approach to local

optimization. Springer, 1989.
[10] S. Naik and M. D’Souza. Detection of faults in microser-

vices using petri nets. In Proceedings of the 16th Innova-
tions in Software Engineering Conference, pages 1–5, 2023.

[11] Organizations’ adoption level of microservices worldwide in
2021, 2021.

[12] L. Tammik. Cost optimization strategies for aws infrastruc-
ture. Integrated Journal of Science and Technology, 1(2),
2024.

[13] W. Wang. Bayesian optimization concept explained in lay-
man terms. Towards Data Science, 2020.

54

Uncovering the Effects of Quantum Computing on
Software Engineering: A Systematic Mapping

Valter Vieira de Camargo∗, Renato Bueno∗‡, Caio O. W. G. Cadini ∗‡, Guilherme d. S. Wisniewski∗‡

Augusto d. S. G. Vaz∗‡, Caio U. Sampaio∗‡, Vanderlei de Brito Junior∗‡ and Daniel San Martı́n†
‡Tutorial Educational Program (PET-BCC/UFSCar), ∗Federal University of São Carlos (UFSCar), SP, Brazil,

†EIC-Universidad Catolica del Norte, Coquimbo, Chile

Abstract—Quantum computing has attracted the attention of
researchers and practitioners in recent years. It presents a com-
pletely new way of thinking about computation, offering much
faster problem-solving performance compared to classical com-
puting. As with any new paradigm, the emergence of quantum
computing requires us to revisit many established concepts and
methodologies—this is particularly true for software engineer-
ing. Established methodologies, quality attributes, and processes
provided by software engineering need to be reviewed in light of
quantum computing. Therefore, in this paper, we present a sys-
tematic mapping (SM) of how quantum computing has affected
software engineering. The goal is to understand what researchers
have accomplished regarding four software engineering topics:
testing and quality, reengineering/modernization, modeling and
processes, and development platforms. We considered the most
important digital libraries up to June 2023.

Index Terms—mapping review, quantum computing, software
engineering

I. INTRODUCTION

Quantum computing has emerged as one of the most
promising technologies of the 21st century. It relies on the
power of qubits, the fundamental units of quantum informa-
tion. Unlike classical bits that can represent either 0 or 1,
qubits can exist in a superposition of states, enabling quantum
computers to process vast amounts of information simulta-
neously. This capability allows efficiently solve previously
intractable problems [1] [2].

Software engineering concerns the development of tech-
niques, methodologies, and tools aimed at assisting the de-
velopment of high-quality software [3]. Whenever a new
development paradigm emerges, software engineering needs
to be reviewed to accommodate new features and provide
techniques and methods more suitable for the new context.

Similar to what happened with the advent of object-
oriented programming, aspect-oriented programming, and
other paradigms, we are currently facing an even more drastic
change as a new form of computation presents itself. In this
regard, various aspects of software engineering need to be
revisited in the light of quantum computing, including devel-
opment processes, code quality metrics, modeling techniques
and languages, and more.

While software engineering plays a pivotal role in the cre-
ation and maintenance of complex software systems, quantum
computing presents a revolutionary potential for efficiently

DOI reference number: 10.18293/DMSVIVA2024-090

solving previously insurmountable problems. As these two
fields progress, the pursuit of synergy between them becomes
increasingly pertinent.

Nevertheless, despite the presence of numerous research
groups worldwide dedicated to various aspects of applying
software engineering to quantum computing, a comprehen-
sive systematic mapping (SM) that synthesizes these efforts
remains elusive. The advent of quantum computing has in-
troduced novel challenges, necessitating a reevaluation of
established software engineering principles. Consequently, re-
searchers must reassess fundamental concepts, design method-
ologies, and software development practices.

This paper presents a SM providing an overview of four
critical aspects of software engineering: i) testing and quality;
ii) reengineering/modernization; iii) modeling and iv) pro-
cesses and development platforms/IDEs. This is a systematic
mapping that aims to complement a quasi-systematic-mapping
we have previously developed [4]. Here, we delineate the
methodology employed to conduct this SM and offer an
analysis of the principal findings and identified trends.

The paper is structured as follows. Section II provides the
background information, followed by Section III detailing the
SLR methodology. Section IV presents the results, and Section
V concludes the findings.

II. QUANTUM COMPUTING AND HYBRID SYSTEMS

In classical computing, the most basic unit of information
is the so-called bit, represented by two possible values, 0 and
1. In this scenario, data is processed and manipulated using a
binary approach, working with one value at a time. However,
with the emergence of quantum computing, information is
currently portrayed through a fundamental unit known as
the qubit, used to depict data and perform operations with
increased speed and efficiency, leveraging its intrinsic charac-
teristic of superposition [5].

A qubit can be conceptualized as a mathematical abstraction
capable of existing in two distinct states, denoted by |0⟩ and
|1⟩. In contrast to classical computing, where a bit can only
hold either the value 0 or 1 at a given time, a qubit can exist
in what is known as a superposition of the states |0⟩ and |1⟩,
which in its most general form is formalized as Figure 1, left
formula. Note that α and β are complex numbers satisfying
|α|2 + |β|2 = 1. Consequently, we can represent the state of
a qubit as a normalized vector in a complex vector space of
dimension 2, as illustrated in Figure 1, right formula [5].

55

|ψ⟩ = α |0⟩+ β |1⟩ |0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
Fig. 1: A qubit and Vectorial representation of states

The superposition allows the performance of calculations
and operations with the qubit in both states simultaneously,
enabling a significant leap compared to the processing time of
classical computers. However, following the superpositional
phenomenon, the qubit collapses after measurement, adhering
to only one of the possible information states. In this regard,
it becomes essential to manipulate the qubit in a way to avoid
collapse, in this case, through the use of quantum gates.
Among the quantum gates, special emphasis is given to the
Hadamard and CNOT gates. The first one is responsible for
putting the input qubit in a balanced superposition state as
output, where there are equal chances of the qubit collapsing
to |0⟩ or |1⟩. The second one takes as input a control qubit and
another qubit; if the control qubit is in superposition (equal
chances of collapse to both quantum states), it is said that the
two input elements are now entangled.
Currently, there has been a growing number of different
hardware implementations in the field of quantum comput-
ing [6]. The differences brought by quantum computing are
quite fundamental for the current understanding of computing,
requiring that various aspects that were once established be
revisited in the light of this new form of computation. The
emergence of quantum programming languages, for example,
demands a reconsideration of various aspects of software
engineering, such as software testing, development processes,
source code metrics, modeling techniques, and more.
Hybrid quantum applications, typically combine both quantum
algorithm implementations (QAIs) and classical programs
[7]. These hybrid applications often involve multiple QAIs,
such as clustering followed by classifier training, alongside
classical programs responsible for tasks like data loading and
visualization [8]. Even within a single QAI, hybridity per-
sists, as quantum programs (QP) are integrated with classical
ones. The structure of a gate-based QAI typically involves
classical programs handling preprocessing tasks, like state
preparation circuit generation, executed on classical computers
[9]. Quantum programs, represented as quantum circuits, are
then executed on a quantum computer, with pre- and post-
processing tasks typically managed by classical programs [10].

III. METHODOLOGY OF THE SYSTEMATIC MAPPING

SM involve the selection, analysis, and categorization of
scientific works to provide a broader overview of a particular
area [11]. The specific goal of this SM is providing a detailed
analysis on how quantum computing has affected four software
engineering topics: Software Testing and Quality (TQ); Soft-
ware Reengineering/Modernization (RM); Software Modeling
(M) and Software Processes and Development Platforms (PP).
This section is divided into 3 subsections: Protocol, Conduc-
tion and Data Extraction. Protocol is the phase responsible
for detailing the initial preparation of the SM. In the second
subsection, called Conduction, the focus is on how the protocol

(“Software Model” OR “Software Engineering” OR “Software
Development” OR “Software Lifecycle” OR “Software Devel-
opment Methodologies” OR “Software Project Management”
OR “Testing” OR “Design Pattern” OR “Reengineering” OR
“Reverse Engineering” OR “Metrics” OR “Service-Oriented”)
AND (“Quantum Software” OR “Quantum Programming” OR
“Quantum Computing” OR “Quantum Software Development”
OR “Quantum Subroutine” OR “Quantum Program”)

Fig. 2: Base Search String

was put in practice. In the Data Extraction section we extract
some important data from the final set of papers.

A. Protocol

We have defined four research questions (RQs) covering four
software engineering topics:

• RQ1: How has QC impacted software testing and qual-
ity? This RQ aims to identify proposed methods for
testing quantum software and topics related to quantum
metrics and bugs.

• RQ2: How has QC influenced software reengineering and
modernization practices? This RQ seeks to analyze the
treatment of reverse engineering and refactorings within
this context.

• RQ3: How to model quantum software? This RQ aims
to investigate the impact of QC on modeling languages
and the granularity level used.

• RQ4: How have development processes and platforms
been shaped by QC? The goal is to assess the current
maturity of processes and platforms for QC.

Based on the RQs, we created the Base Search String shown in
Figure 2, that was adapted to the syntax of each digital library.
The upper part includes terms related to software engineering
and the lower part covers the quantum terms.
The digital libraries we have used in the searches were the
following: ACM, Science Direct, IEEE Xplore and Scopus.
Another important task of the protocol is the definition of
inclusion and exclusion criteria for filtering the studies. This
is necessary to refine the initial set of primary studies obtained.
These criteria were applied throughout the filtering stages to
converge towards a final set of primary studies that truly met
our goals. The inclusion criteria (IC-#) and the exclusion ones
(EC-#) were the following: [IC-1] The study is published in
English; [IC-2] The content of the study is related to the topic
being analyzed; [EC-1] The study is not available; [EC-2] The
study is duplicated; [EC-3] The study is not primary study
surveys, systematic reviews/mappings, talks, proceedings, etc);
[EC-4] The content of the study is not related to the theme
or it is too superficial; [EC-5] The content of the study was
updated in a next more-complete version.

B. Conduction

Figure 3 presents all the steps we have followed for filtering
the initial set of 1299 recovered studies. This figure details the
stages of the filtering process and the number of papers being

56

removed as the exclusion criteria are applied. In the first step,
called duplicate removal, 265 papers were removed, resulting
in a total of 1034. In the second step, papers that aren’t primary
studies were removed resulting in a total of 936 papers. In the
third step, a reading process of titles and abstracts was carried
out to identify papers that did not meet the desired criteria. In
this step, 625 primary studies were then removed. In the last
stage of the process, the papers were fully read, in this stage,
257 papers were removed, resulting in a final set of 53 papers.

Fig. 3: Steps of the Filtering Process

The papers of the final set can be seen in Tables I and II. The
first table shows journal papers and the second one conference
papers. In both tables, there is an identification we have created
to facilitate the reference to the paper. Papers identified with
P# were published in journals and with C# in conferences.
Regarding the conferences, we have used just the acronym
because of space limitations. In the second column is the title,
in the third the authors, in the fourth the publication venue,
and in the fifth the publication year. In both tables, the papers
are classified chronologically, from the oldest to the newest.
The final column in both tables categorizes the papers based on
our objectives to address the research questions. The acronyms
represent the following: PP = Processes and Platforms; TQ =
Testing and Quality; RM= Reengineering/Modernization, and
M = Modeling. In cases where the paper’s content is related to
more than one topic, we categorize it based on the area where
it provides the most significant contribution.

C. Data Extraction

Figure 4 shows the classification of final set according to
the classification proposed by Wieringa et al. [12]. 50.9% of
the papers were classified as Proposal of Solution, which are
proposals of approaches or techniques but without a complete
validation. 22.6% were classified as Validation Research,
which concentrates on the properties of a proposal that has
not been implemented. 15.1% were classified as Evaluation,
which are papers that present assessments or technique imple-
mentation in practice. 9.4% were classified as Opinion Papers,
which express an opinion. The category with the least number
of papers was Personal Experience Papers, with only one
representative (1.9%), which emphasized what and not why
in the authors’ experience. We believe Proposal Of Solution
represent the highest value in consequence of the novelty of the
QC theme. Figure 5 depicts the evolution of paper publications
by year and topic.

Fig. 4: Classification According to Wieringa et al. [12]

A clear trend emerges: there has been a steady increase in
publications over the past four years (2018 − 2022). This
highlights the growing interest in software engineering for
quantum computing, indicating its status as a prominent and
dynamic field captivating the software engineering comm
unity. Analysis by research topic shows a notable focus on
Testing and Quality (TQ), while Modeling (M) and Reengi-
neering/Modernization (RM) have received less attention. This
trend could be explained due to the inherent complexities
involved in testing quantum software.
For example, the superposition property allows qubits to exist
in multiple states simultaneously, complicating testing tasks
due to the unpredictability of qubit behavior until measured.
Therefore, it is plausible that significant effort is being directed
towards developing approaches for testing quantum software
to ensure the reliability of quantum systems.
On the other hand, as the technology has not yet reached a
level of maturity where it can reliably outperform classical
computing for a wide range of practical tasks, many practition-
ers are hesitant to invest significant resources into a technology
that is still evolving. As a consequence, reengineering and
modernization tasks still are not strongly required. However,
with growing acceptance anticipated in the near future, we
foresee a surge in interest in this research domain.

IV. OVERVIEW OF PAPERS AND ANSWERS FOR RQS

This section has four subsections; each one dedicated to
address one RQ. At the end of each subsection one can find
the answer to the RQ.

RQ1 - How has QC impacted software testing and quality?
As this RQ involves two related topics (testing and quality),
we decided to break it down in two sub-RQs. One focusing
no testing and another addressing quality.

RQ1.1 - How has QC impacted software testing?
To answer this RQ we considered twenty papers divided into
the following sub-categories: 1) Quantum Software Testing in
General; 2) Mutation Testing; 3) Search-Based Testing;
1) Quantum Software Testing in General: In [C01], the au-
thors advocate for black-box testing on quantum computers to
prevent a possible superposition collapse from white-box test-

57

Fig. 5: The number of papers by topic and year

TABLE I: Papers published in journals (10 papers)

Ref. Title Author(s) Journal Year Topic
[P01] ProjectQ: An open source software framework for

quantum computing
Steiger et al. Quantum 2018 PP

[P02] On the definition of quantum programming mod-
ules

Sánchez and Alonso Applied Sciences (Switzerland) 2021 TQ

[P03] QuantumPath: A quantum software development
platform

Hevia et al. Software - Practice and Experience 2021 PP

[P04] QRev: migrating quantum code towards hybrid
information systems

Pérez-Castillo et al. Software Quality Journal 2021 RM

[P05] Software modernization to embrace quantum tech-
nology

Pérez-Castillo et al. Advances in Engineering Software 2021 RM

[P06] Design of classical-quantum systems with UML Perez-Castillo and
Piattini

Computing (Springer) 2022 M

[P07] Studying efficacy of traditional software quality
parameters in quantum software engineering

Faryal et al. Optical and Quantum Electronics 2022 TQ

[P08] Mutation Testing of Quantum Programs: A Case
Study With Qiskit

Fortunato et al. IEEE Transactions on Quantum Engineering 2022 TQ

[P09] Comparing Quantum Software Development Kits
for Introductory Level Education

Scekic and Yakary-
ilmaz

Baltic Journal of Modern Computing 2022 PP

[P10] Formalization of Structural Test Cases Coverage
Criteria for Quantum Software Testing

Kumar International Journal of Theoretical Physics 2023 TQ

ing. They note that code reviews are feasible, but interactive
debugging is challenging. In [C08], the authors propose var-
ious quantum program testing approaches. Functional testing
requires multiple executions due to quantum program char-
acteristics. White-box testing, particularly mutation testing,
simulates potential programming errors. Model-based testing
uses UML testing profiles for thorough circuit evaluation.
In [C02], the Scaffold QP language is enhanced with assertions
and breakpoints, defining three breakpoint states: classical,
superposition, and entangled. They use chi-square testing and
contingency table analysis to compare program states with
expected outcomes, aiding bug detection. The approach is

validated with case studies like Shor’s algorithm and Grover’s
search, showing its effectiveness in identifying incorrect states
and potential bugs.
In [C28], a method for testing deterministic quantum algo-
rithms directly on quantum machines through cost-effective
quantum test case generation is proposed, aiming cost re-
duction with simulation performance. The algorithm defines
qubits, creates output registers, runs the circuit under test, and
compares outputs using Toffoli gates. If the outputs match, the
desired output is obtained.
In [C14], the authors propose a five-step testing flow for
validating Q# programs using QDK tools: 1) implement the

58

TABLE II: Papers published in conferences (43 papers)

Ref. Title Author(s) Conference Year Topic
[C01] On Testing Quantum Programs Miranskyy and Zhang ICSE 2019 TQ
[C02] Statistical assertions for validating patterns and finding bugs in quantum programs Huang and Martonosi ISCA 2019 TQ
[C03] Towards a Pattern Language for Quantum Algorithms Leymann QTOP 2019 M
[C04] A tool for quantum software evolution Jiménez-Navajas et al. Q-SET 2020 RM
[C05] Is Your quantum Program Bug-Free? Miranskyy et al. ICSE 2020 TQ
[C06] Property-based Testing of Quantum Programs in Q# Honarvar et al. ICSEW 2020 TQ
[C07] Quantum DevOps: Towards Reliable and Applicable NISQ Quantum Computing Gheorghe-Pop et al. GC

Wkshps
2020 PP

[C08] Quantum software testing Usaola QANSWER 2020 TQ
[C09] The Quantum Software Lifecycle Weder et al. APEQS 2020 PP
[C10] Towards a Quantum Software Modeling Language Perez-Delgado and Perez-Gonzalez ICSE 2020 M
[C11] Quantum agile development framework Hernandez Gonzalez and Paradela QUATIC 2020 PP
[C12] KDM to UML Model Transformation for Quantum Software Modernization Jimenez-Navajas et al. QUATIC 2021 RM
[C13] Towards a Set of Metrics for Quantum Circuits Understandability Cruz-Lemus et al. QUATIC 2021 TQ
[C14] Testing quantum programs using Q# and Microsoft quantum development kit Mykhailova and Soeken QSET 2021 TQ
[C15] Bugs4Q: A Benchmark of Real Bugs for Quantum Programs Zhao et al. ASE 2021 TQ
[C16] Identifying Bug Patterns in Quantum Programs Zhao et al. Q-SE 2021 TQ
[C17] Modelling Quantum Circuits with UML Perez-Castillo et al. Q-SE 2021 M
[C18] Muskit: A Mutation Analysis Tool for Quantum Software Testing Mendiluze et al. ACE 2021 TQ
[C19] Non-functional requirements for quantum programs Saraiva et al. Q-SET 2021 TQ
[C20] Poster: Fuzz Testing of Quantum Program Wang et al. ICST 2021 TQ
[C21] QBugs: A Collection of Reproducible Bugs in Quantum Algorithms and a

Supporting Infrastructure to Enable Controlled Quantum Software Testing and
Debugging Experiments

Campos and Souto Q-SE 2021 TQ

[C22] QDiff: Differential Testing of Quantum Software Stacks Wang et al. ASE 2021 TQ
[C23] Quantum Computing Platforms: Assessing the Impact on Quality Attributes and

SDLC Activities
Sodhi and Kapur ICSA 2021 PP

[C24] Quito: a Coverage-Guided Test Generator for Quantum Programs Wang et al. ASE 2021 TQ
[C25] Some Size and Structure Metrics for Quantum Software Zhao Q-SE 2021 TQ
[C26] Generating Failing Test Suites for Quantum Programs With Search Wang et al. SSBSE 2021 TQ
[C27] On Decision Support for Quantum Application Developers: Categorization,

Comparison, and Analysis of Existing Technologies
Vietz et al. ICCS 2021 PP

[C28] Automatic Generation of Test Circuits for the Verification of Quantum Deter-
ministic Algorithms

Garcı́a de la Barrera Amo et al. QP4SE 2022 TQ

[C29] QMutPy: A mutation testing tool for Quantum algorithms and applications in
Qiskit

Fortunato et al. ISSTA 2022 TQ

[C30] Mutation Testing of Quantum Programs Written in QISKit Fortunato et al. ICSE 2022 TQ
[C31] Mutation-based test generation for quantum programs with multi-objective search Wang et al. GECCO 2022 TQ
[C32] Using Quantum computers to speed up dynamic testing of software Miranskyy QP4SE 2022 TQ
[C33] QuSBT: search-based testing of quantum programs Wang et al. ICSE 2022 TQ
[C34] A Comprehensive Study of Bug Fixes in Quantum Programs Luo et al. SANER 2022 TQ
[C35] A multi-lingual benchmark for property-based testing of quantum programs Pontolillo and Mousavi Q-SE 2022 TQ
[C36] Metamorphic Testing of Oracle Quantum Programs Abreu et al. Q-SE 2022 TQ
[C37] Asserting the correctness of Shor implementations using metamorphic testing Costa et al. QP4SE 2022 TQ
[C38] Quokka: A Service Ecosystem for Workflow-Based Execution of Variational

Quantum Algorithms
Beisel et al. ICSOC 2022 PP

[C39] A Tool For Debugging Quantum Circuits Metwalli and Meter QCE 2022 TQ
[C40] Classical to Quantum Software Migration Journey Begins: A Conceptual Readi-

ness Model
Akbar et al. PROFES 2022 RM

[C41] Silq2Qiskit - Developing a quantum language source-to-source translator Hans and Groppe CSSE 2022 RM
[C42] Paraconsistent Transition Systems Cruz et al. EPTCS 2023 M
[C43] Quantum Software Architecture Blueprints for the Cloud: Overview and Appli-

cation to Peer-2-Peer Energy Trading
O’Meara et al. SusTech 2023 PP

main quantum algorithm; 2) integrate it with the classical part;
3) simulate the quantum code; 4) estimate required resources;
and 5) execute on quantum hardware. [C14] also introduces
Quantum Katas, an open-source project for validating quantum
algorithms with immediate feedback.
In [C24], the authors introduce Quito, a QP testing tool
that generates test suites based on Input Coverage, Output
Coverage, and Input-Output Coverage. Quito uses Wrong
Output Oracle and Output Probability Oracle for correctness
checks. Users provide input information, select coverage crite-
ria, choose a significance level for OPO assessment, and define
test generation budgets.

2) Mutation Testing: The mutation testing sub-category
presents ten mutation testing papers, which consist of inducing
faults along the generation of the mutants.
In [C29] [P08] [C30], the authors propose a new quantum
mutation testing approach, introducing five quantum mutation
operators and a tool called QMutPy. Meanwhile, the authors
in [C31] explore classical mutation testing in QPs using a
multi-objective, search-based approach. The approach gener-
ates minimal test cases to eliminate mutants across various
difficulty levels. In [C18], the authors presented Muskit, a
mutation analysis tool with a command line interface, GUI,
and web application that can execute test cases on mutants

59

and generate results for test analyses.
In [C06], the authors present QSharpCheck, offering a property
specification language, architectural overview, and statistical
analysis techniques. Their framework contributes a language
for specifying test properties, a method for generating concrete
test cases, and demonstrates effectiveness through mutation
testing. [C35] provided a benchmark for property-based testing
across Qiskit, Cirq, and Q#, evaluating frameworks by generat-
ing properties and mutants for each language. The study found
Qiskit and Cirq excel in property-based testing, whereas Q#
lacks generic testing libraries and optimization.
Quantum metamorphic testing involves defining metamorphic
relations, which are rules that relate the program input to
an output to determine its correctness. The authors in [C36]
and [C37] define metamorphic relations specific to Shor’s
algorithm and introduce mutants to evaluate its effectiveness.
In [C22], the authors introduce QDiff, a differential testing
strategy for QP stacks. QDiff enhances input diversity through
semantic-preserving gate transformations and mutations. Ap-
plied to Qiskit, Cirq, and Pyquil, QDiff generates logically
equivalent QPs, optimizes them, and selects a subset for testing
on noisy simulators or quantum hardware.
3) Search-Based Testing: The search-based testing sub-
category uses search algorithms to find failing inputs and tests,
accelerating defect detection in QPs.
In [C26] and [C33], QuSBT is introduced, using a genetic
algorithm to generate test suites with maximum failing cases.
[C32] uses Grover’s search algorithm to identify error-causing
inputs. [C20] proposes a search-based test input generator for
unitary gate-based matrices and applies fuzz testing to detect
buggy behaviors in quantum-sensitive branches.
Answer for the RQ1.1. Most testing papers used Qiskit or
tools based on it, such as Muskit [C18] or Quito [C24].
Other tools include ProjectQ, Cirq, Pyquil, QCEngine, and
Microsoft Quantum Development Kit. Out of the 21 papers
analyzed, nine presented new tools. The most used testing
strategies were mutation-based and search-based. Some QC
testing approaches utilized quantum-specific elements to their
advantage, while others adapted classical testing methods for
QP. Both types of techniques impacted software testing, be it
with the non-deterministic nature of QC or using its specific
elements to ensure test coverage.
An interesting discussion here is regarding the conventional
testing classification. A well-acceptable taxonomy of testing is
composed of testing phases (unit, integration, system) and test-
ing criteria (functional, structural, defect-based (mutation)).
Observing the final set of testing papers it is not trivial to
classify some works considering this taxonomy. Some authors
explicitly classify their proposal in unit testing and mutation
testing, but others do not.
RQ1.2 - How has QC impacted software quality?
To answer this RQ we considered twelve papers. In this topic
RQ1.2, the works are papers linked to quantum software
quality. This topic was divided in the following sub-topics:
QP in General; Metrics; Bug Analysis;
4) QP in General: In [C19], the authors highlight crucial
non-functional requirements for QP development, including
optimizing for the maximum available qubits, circuit depth for

stability, T gate limits, minimizing gates between unconnected
qubits, and reducing unavailable gate usage on the target
quantum device.
The authors in [P07] explores the impact of QC characteristics
on software quality, comparing them with classical parameters
based on ISO/IEC 25010 standards. The analysis covers eight
standards given factors like the specialized environment, non-
public availability, and the ability to accommodate big data,
with Security being the most important. The paper highlights
quantum computers’ efficiency in cryptography, necessitating
the development of quantum-resilient security algorithms.
5) Metrics: Three papers focus on defining terms and metrics
to evaluate the quality of QP. In [P02], the authors intro-
duce quantum programming through modularization, propos-
ing metrics for module coupling and cohesion. In [C13],
the authors present various metrics for assessing QPs, such
as Qubit Cost, Gate Count, and Depth, aiming for a com-
prehensive source for analysis of QP nature. In [C25], the
author focus on metrics for evaluating quantum algorithms,
emphasizing code size, design size, and specification size,
alongside structural metrics analyzing module complexity and
interaction, providing insights into program quality.
The paper [P10] explores Cyclomatic complexity, which quan-
tifies the number of independent paths and paths created due
to the superposition of each control qubit. The method ensures
that every path is tested at least once, ensuring coverage
in testing QP programs. The paper also examines different
coverage criteria based on single, two, and three qubits.
6) Bug Analysis: Several studies have proposed QP Testing
benchmarks or bug collections to enhance QP. In [C21], the
authors developed a benchmark to identify common QPs bugs
and their corrections, addressing challenges like the lack of
open-source projects and bug reproducibility. [C15] focuses
on Qiskit, utilizing its control history to gather, replicate,
and classify bugs. [C34] analyzes 96 real-world bugs, finding
that most bugs are quantum-specific and often resolved with
minor code adjustments. [C16] categorizes Qiskit bugs into
initialization, gate operation, measurement, and deallocation
issues, stressing the importance of safe programming practices.
In [C05], the authors extend classical debugging tactics, such
as backtracking, elimination, and brute force, to QC, address-
ing challenges like measuring variables in superposition and
checking entanglement. In [C39], the author introduces the
Quantum Circuit Slicer tool within a debugging framework,
enabling vertical and horizontal division for sub-circuit gen-
eration and bug tracking.
Answer for the RQ1.2. The papers discussed QP, its metrics,
and how to improve it while considering quantum-specific
elements. Many papers have presented benchmarking tools
such as Qbugs and Bugs4Q. These benchmarks use bugs from
various quantum programming languages, for instance, Qiskit,
Cirq, Q#, PyQuill, and ProjectQ. Those benchmarks identify,
solve, or classify quantum bugs, improving the quality of QP.
Similarly, a debugging tool was introduced and validated.

RQ2 - How has QC influenced software reengineering and
modernization practices?
Research related to software reengineering/modernization in

60

the realm of QC started around 2020 with the paper of
Jiménez-Navajas et al., [C04]. They present initial ideas re-
garding the problem of modernizing existing classical systems
into hybrid systems and also how to integrate existing QP pro-
grams into hybrid systems. It also presents an adaptation of the
canonical horseshoe model (reverse enginering, reestructuring
and forward engineering) to cope with QP. They also raise
some challenges of the quantum reengineering process.
This topic is the most related to knowledge extraction since
every reverse engineering approach deals with recovering
knowledge from legacy systems. In [C12], the authors intro-
duce a model transformation approach from KDM (Knowledge
Discovery Metamodel) to UML. This is a kind of transforma-
tion that can be used in the restructuring phase of the horseshoe
modernization cycle. The transformations were developed in
ATL (Atlas Transformation Language), being able to handle
quantum entities like qubits and quantum gates. Quantum
circuits are represented as activity diagrams using a quantum
UML profile. The fact of using UML enables combining
quantum algorithms with other classical software elements.
Furthermore, this approach provides a graphical visualization
of quantum algorithms with UML.
In [P05], the author advocates for a model-driven reengi-
neering process to integrate quantum algorithms into existing
classical systems. The focus is on the Reverse Engineering
phase, which is divided into two modules: parsing Q# files to
build an abstract syntax tree, and generating a KDM model.
The goal is to ensure compatibility and scalability.
In [P04], it is presented QRev, a reverse engineering tool
designed to generate quantum-adapted KDM models from Q#
programs. The extended KDM model is able to represent
classical and quantum information and their relationships.
This technology-agnostic approach allows integrating QPs
from different languages, a significant advancement in QP
engineering. The KDM models provided by QRev can be used
along with software modernization, facilitating refactorings
and introducing new quantum functionalities.
Presented in [C41], Silq2Qiskit is a tool that automatically
translates Silq basic quantum algorithms into Qiskit quantum
circuits. The tool handles quantum function definitions, control
flow, basic gates, and classical statements. The proposed
library extends Qiskit with Silq’s core concepts like Quantum
Indexing and quantum data type emulation and demonstrates
fully automatic and correct translations, successfully running
Silq programs on IBM’s quantum systems. The paper asserts
the feasibility of a source-to-source translator to Qiskit and
OpenQASM, indicating that a complete translation is possible.
Both classical and QP reengineering emphasize understanding
existing systems, restructuring for efficiency and compatibility,
and forward engineering for improvements. Specialized mod-
eling techniques are required to handle quantum entities like
qubits and quantum gates, as seen in [C12], which are unique
challenges in quantum reengineering.
Additionally, as seen in [P05] and [P04], integrating quan-
tum algorithms into classical systems poses integration and
compatibility challenges. Tools like Silq2Qiskit, described in
[C41], address these by enabling automatic translation between
quantum languages, easing integration. These approaches align

with modern software reengineering, where automation aids
informed decisions on system updates.
Answer for the RQ2. The impact of QC on modernization
and reengineering is substantial. One of the most significant
impacts occurs when transitioning from a classical system to
a hybrid one, which is likely to become the most common
scenario. During the reverse engineering phase, it’s crucial
to identify quantum opportunities, elements of the system
that could benefit from quantum reshaping. Subsequently,
in the restructuring phase, there should be quantum-specific
transformations that take classical software and produce a
quantum version.
Quantum Reengineering can be understood as the process of
adapting or leveraging algorithms or techniques from classical
computing to QC. This includes adapting classical algorithms
for use in quantum systems, using classical techniques to
optimize quantum performance, or combining quantum and
classical techniques for mutual benefits.
In conclusion, the main advances in software reengineering
and modernization practices can be summarized as follows:
the adaptation of classical algorithms in order to exploit
the capabilities of QC, [C04]; integration between QPs, or
from QPs into existing classical systems, [C41] and [P05],
often facilitated by model-driven approaches; development of
reverse engineering tools aimed at parsing existing classical
codes and and generating representations suitable for quantum
systems, [P04]; adoption of technology-agnostic approaches,
[P04], which underscores the importance of interoperability
and flexibility in the transition to QC; and the fostering of
collaborative efforts to establish best practices for QP reengi-
neering, [C40], guiding industry-wide adoption and integration
into diverse application domains.

RQ3 - How to model quantum software?
This section explores different methodologies for modeling
QP, defining a collection of five papers.
In [C03], the authors proposed the establishment of a pattern
language for QC. This involves using structured documents
with abstract descriptions of proven solutions to recurring
problems, forming a network of related patterns. The objective
is to create a pattern repository to store pattern documents
and manage the connections between them, with the proposed
PatternPedia repository serving this purpose.
In [C10], the authors introduce Q-UML, an extension of
UML aimed at enabling software engineers to model QP
details. They present two UML diagrams - class and sequence
diagrams - to illustrate details of Shor’s algorithm. A notable
aspect of their proposal is the use of UML to represent details
of a single algorithm, diverging from traditional UML usage
focused on larger system representations. Modifications to
the class diagram include bold font for quantum elements
and double lines for quantum relationships. Similarly, in the
sequence diagram, messages involving quantum information
are depicted with double lines and in bold.
In [C17], a UML profile tailored for quantum circuit modeling
is presented, containing stereotypes specific for representing
quantum circuit, qubits, quantum logic gates, control qubits,
measurements, and reset. This extension enhances UML’s

61

ability to depict domain-specific details and quantum circuits
through diagrams. In contrast, [P06] proposes a UML profile
for hybrid systems, expanding UML to cover structural and
behavioral aspects of classical-quantum systems. It includes
use case diagrams, class diagrams, sequence diagrams, activity
diagrams, and deployment diagrams, facilitating the analysis
and design of such systems.
In [C42], the authors introduced morphism for paraconsistent
labeled transition systems (PLTS). After that, they define the
category and algebra of PLTSs and their morphisms. The paper
also presents the notions of simulation, bisimulation, and trace
for PLTS. Circuits, which consider qubit decoherence as an
error factor, are modeled using PLTS.
Answer for the RQ3.. This answer can be put in several
ways and considering many views. The crucial point is that
modeling QP is quite different from modeling conventional
ones. Nowadays, QP is still confined to algorithms. It is
difficult to find a QP that can be considered a ”system”.
Therefore, most of the initiatives for modeling QP concentrate
on algorithm-level details. As can be seen, most modeling
efforts have focused on extending the Unified Modeling Lan-
guage (UML) to include representations of quantum systems.
This approach enables the retention of the classical systems
standard modeling language accommodating quantum sys-
tems, thus facilitating the representation of hybrid systems.
This approach allows using existing platforms for modeling
purposes, such as Papyrus. The overall granularity focus of
the papers is four high-granularity papers, analysis level, and
two intermediate ones, project level.

RQ4 - How have development processes and platforms
been shaped by QC?
This topic encompasses articles that delve into proposals on
how QP affects software development processes and platforms.
Beginning the development platforms subsection, [P03] intro-
duces a platform for QP development grounded in principles of
agnosticism and independence. The proposed software seeks to
offer a comprehensive toolkit for QP development, including
a circuit editor, annealer compositor, and code editor. The
primary objective of the project is to deliver a toolkit capable
of developing QP for any hardware or vendor.
Similarly, [P01], introduces ProjectQ, an open-source frame-
work for developing QPs. This framework is a high-level
quantum programming language built on Python, designed
to be open and easy to learn for producing QP. ProjectQ
features a modular architecture that supports customization of
the compiler and back-ends, enabling writing code for different
hardware platforms and adding new features such as simulators
and circuit drawing.
In [C38], the authors provide an ecosystem that facilitates
the execution of tasks, given a circuit in OpenQASM. Those
tasks are: circuit execution service, error mitigation service,
objective evaluation service and optimization service. Those
services are provided through API requests.
In [C27], the authors present a categorization and taxonomy
of tools, services, and techniques for QP development. They
outline six main aspects: Quantum Cloud Services, Quantum
Execution Resources, Transpilation and Compilation, Knowl-

edge Reuse, Programming Language, and Classical-Quantum
Integration. Additionally, the authors propose a conceptual
framework for comparison to assist developers in selecting
appropriate technologies.
In [P09], the authors focus on the pedagogical area, compar-
ing 4 different quantum software development kits (QSDKs)
based on how ready they are for newcomers. The authors
evaluated Qiskit, Cirq, Forest (pyQuil) and ProjectQ in terms
of installation, visualization and functionalities by executing 8
tasks proposed by Bronze, an introductory tutorial for quantum
programming. The main contribution of the paper is exposing
the strengths and weaknesses of each developing platform,
providing a detailed benchmark of the platforms in various
aspects in the development of QP.
[C23] proposes a paradigm shift in QP engineering across
the software development life cycle. Enhancements include
a comprehensive architecture for QC platforms, a refined
programming model, and evaluation of architectural features’
impact on quality attributes. The authors emphasize the im-
portance of interoperability, maintainability, and verifiability
unique to quantum platforms. They correlate performance
requirements with software life cycle activities, identifying
thirteen main characteristics of quantum projects and their
impact on overall software quality.
In the process subclass, [C09] explores the lifecycle of QP,
proposing a ten-phase methodology. They integrate classical
SE principles with the current landscape of QP, including pro-
prietary quantum hardware, Noisy Intermediate-Scale Quan-
tum (NISQ) systems, and dependence on classical computing,
to provide an overview of QP development.
[C11] explores agile methodologies in the realm of QC. While
acknowledging that many characteristics of QP development
are covered by agile methodologies, the authors note the
need for adaptation to address specific quantum issues, like
multidisciplinary teams and hybrid quantum-classical systems.
The paper proposes a framework that combines elements from
Scrum with traditional agile paradigms, such as incremental
development and stakeholder collaboration, to better suit the
needs of QP development.
In [C07], the authors introduce a DevOps methodology to
address reliability issues in current NISQ computers. They
propose a 5-step pipeline that regularly checks the state of
various quantum computers and selects the most reliable one
for calculations. The goal is to develop a methodology for
producing reliable software on top of unreliable hardware.
Also in the DevOps theme, [C43] outlines a blueprint for a
cloud service tailored to quantum development. It organizes
key components in a DevOps pipeline and adapts classical
practices for QC. Using a peer-to-peer energy trading appli-
cation as a case study, the authors demonstrate the model and
explore quantum advantages over classical methods with an
Auction Matching Algorithm.
Answer for the RQ4. In summary, QC has spurred the
development of specialized platforms to cater to the unique
characteristics of QC: [P03]’s focus on a hardware-agnostic kit
reflects a shift towards more flexible and adaptable quantum
platforms; [P01]’s open-source framework puts emphasis on
high-level programming languages, facilitating accessibility

62

and ease of development; [C38]’s ecosystems streamline quan-
tum algorithm’s workflow, while [C09] and [C11] adapted
methodologies acknowledges the need for adaptation in current
life-cycle and agile methodologies to address the unique
challenges and requirements of QP development. These de-
velopments represent a significant shift in the landscape of
software engineering, focusing on increasing accessibility and
hardware independence of QC, which reflects the growing
importance and potential of QC technologies.

V. CONCLUSIONS AND RESEARCH OPPORTUNITIES

This paper presented a systematic mapping focusing on the
impact quantum computing has on four software engineering
topics. It is evident that the four topics/RQs do not cover
several other aspects of the sinergy between QC and Software
Engineering. However, we believe this can provide a good
starting point for researchers identify research opportunities.
The final set of papers shows us a great interest of researchers
in the testing area. This is not a surprise, since how to test
quantum software emerges as a clear challenge. The main
challenges are related to qubit superposition and the difficulty
of testing quantum programs without affecting information in
a way that causes a total collapse of the system.
Regarding the topic of software modernization, particularly
within the phase of reverse engineering, an open research area
pertains to the automatic detection of ”quantum opportunities”
within classical systems. The objective is to examine a model
of a classical system and automatically pinpoint segments that
could be potentially transformed into their quantum counter-
parts. To our knowledge, none of the existing literature has
addressed this aspect.
It is interesting to observe that the KDM metamodel is used by
some research groups in the context of systems modernization.
Although KDM and UML were not originally designed to
cope with quantum elements, they are extended (by profiles)
to accommodate the quantum particularities. A very important
detail is the agnostic nature of KDM, which is a platform and
language independent model [13].
In contrast, there is a scarcity of papers related to Met-
rics/Terminology. Thus, the difficulty of standardizing and
defining means to better analyze and understand the quantum
part of programming becomes evident.
Although Quantum Computing is in its early stages, there is
an undeniable collective effort to encourage its advancement
and development. Consequently, a wide range of development
platforms has emerged, each with its own characteristics,
whether through quantum circuit simulation, commercially
focused environments, open-source environments, or cloud-
accessible development environments. The impact of Quantum
Programming is evident.
Supplementary Material: All the material of this SM can be
found here: https://zenodo.org/records/11094668

ACKNOWLEDGMENT

We would like to thank the financial support of Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES
- Financial Code 001) and Programa de Educação Tutorial

(PET)/ Fundo Nacional de Desenvolvimento da Educação
(FNDE) / Brazillian Ministry of Education (MEC).

REFERENCES

[1] N. Yanofsky and M. Manucci, Quantum computing for
computer scientists. Cambridge University Press, 2008.

[2] IBM, “Introduction to quantum circuits,” 2023.
[3] I. Sommerville, “Software engineering,” Addison-

Wesley Longman, Incorporated, 2004.
[4] P. E. Z. Junior and V. V. de Camargo, A systematic

mapping on quantum software development in the con-
text of software engineering, 2024. arXiv: 2106.00926
[cs.SE].

[5] E. F. Combarro, “Quantum computing foundations,”
in Quantum Software Engineering, M. A. Serrano, R.
Pérez-Castillo, and M. Piattini, Eds. Cham: Springer
International Publishing, 2022, pp. 1–24.

[6] M. Möller and C. Vuik, “On the impact of quantum
computing technology on future developments in high-
performance scientific computing,” Ethics and Informa-
tion Technology, vol. 19, no. 4, pp. 253–269, Dec. 2017.

[7] A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and
Y. Nakamura, “Hybrid quantum systems with circuit
quantum electrodynamics,” Nature Physics, vol. 16,
no. 3, pp. 257–267, Mar. 2020.

[8] J. Barzen, “From digital humanities to quantum human-
ities: Potentials and applications,” in Quantum Comput-
ing in the Arts and Humanities: An Introduction to Core
Concepts, Theory and Applications. Cham: Springer
International Publishing, 2022, pp. 1–52.

[9] B. Sodhi and R. Kapur, “Quantum computing platforms:
Assessing the impact on quality attributes and sdlc
activities,” in 2021 IEEE 18th International Conference
on Software Architecture (ICSA), 2021, pp. 80–91.

[10] M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Data
encoding patterns for quantum computing,” in Proceed-
ings of the 27th Conference on Pattern Languages of
Programs, ser. PLoP ’20, Virtual Event: The Hillside
Group, 2022.

[11] B. A. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in software
engineering,” Tech. Rep. EBSE 2007-001, Jul. 2007.

[12] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Re-
quirements engineering paper classification and evalu-
ation criteria: A proposal and a discussion,” Require-
ments engineering, vol. 11, Mar. 2006.

[13] B. M. Santos, A. de S. Landi, D. S. Santibáñez,
R. S. Durelli, and V. V. de Camargo, “Evaluating
the extension mechanisms of the knowledge discovery
metamodel for aspect-oriented modernizations,” Journal
of Systems and Software, vol. 149, pp. 285–304, 2019.

63

https://zenodo.org/records/11094668
https://arxiv.org/abs/2106.00926
https://arxiv.org/abs/2106.00926

Bus Ridesharing For Millions of Passengers

Xingyan Chen
SUN YAT-SEN UNIVERSITY
chenxy878@mail2.sysu.edu.cn

Zitong Chen
SUN YAT-SEN UNIVERSITY

chenzt53@mail.sysu.edu.cn

Abstract

In urban public transit, the ever-evolving and diversify-
ing demands of the public pose significant constraints on
bus operations due to their adherence to fixed routes. To
meet the desire for low-cost and flexible travel, this pa-
per proposes a high-capacity bus ridesharing service that
can be implemented in any city worldwide. This service
will transform buses from adhering to fixed routes to cus-
tomizing personalized routes based on the destinations of
ridesharing passengers. Passengers can submit their travel
requests via mobile devices, and upon receiving these re-
quests, the operator will dispatch suitable buses to provide
service, ensuring that each passenger arrives at their desti-
nation within the allotted time. Utilizing urban public tran-
sit’s passenger flow distribution, we have developed an ex-
perimental platform to emulate real-world bus travel behav-
iors. Our testing involved a genuine dataset of taxi requests
and a simulated bus dataset representing the movements of
4.1 million individual in Chengdu city, China.

1. INTRODUCTION

As urban intelligence advances, the travel needs of the
public become increasingly dynamic and personalized. To
keep pace with this trend, we can innovate the bus operation
model to better cater to the evolving demands of the public.

Ridesharing[6] is an intelligent matching service that uti-
lizes information about passengers, drivers, and road net-
works to facilitate resource sharing. It not only reduces
travel costs for passengers[1] and generates more income
for drivers, but also piques the interest of both service
providers and passengers[21]. Moreover, ridesharing plays
a significant role in easing urban traffic congestion, repre-
senting a triple-win strategy for the advancement of smart
city transportation. However, current carpooling systems,
such as Uber, Lyft, DiDi, and Gaode, are primarily focused
on the ride-hailing market, with limited capacity and high

DOI reference number: 10.18293/DMSVIVA2024-093

costs, making it difficult to meet the needs of the work-
ing class for large-scale, frequent, and low-cost travel. Al-
though taking the bus is an economical option, the fixed
operating mode of buses often results in longer travel times
for passengers.

This paper, rooted in the practical context of public tran-
sit systems, conducts an in-depth exploration of the bus
ridesharing issue and designs an innovative bus rideshar-
ing service system to effectively tackle this challenge. The
algorithm we propose eliminates the need for additional
public funding as it can be seamlessly integrated into the
existing bus infrastructure. Addressing this issue within
the vast urban road network presents two major challenges:
first, the passenger capacity of buses significantly exceeds
that of taxis; second, each bus must simultaneously process
multiple passengers’ requests for origins and destinations,
along with their time constraints, which essentially trans-
lates into the Vehicle Routing Problem with Time Windows
(VRPTW)[16], a problem that has been proven to be NP-
hard.

To the best of our knowledge, this study is the first to ad-
dress ridesharing issues at the million-scale demand level.
We generated passenger travel data based on the morning
and evening rush hours of city public transportation com-
muting, as well as the average commuting distance. This
data is used to simulate the entire bus travel process.

Our main contributions are as follows:

• This paper introduces an innovative bus ridesharing
service that emulates the taxi model, offering personal-
ized route planning to simplify the journey and ensure
timely arrival for passengers.

• This paper presents efficient insertion and scheduling
algorithms capable of swiftly managing real-time re-
quests from a vast number of passengers.

• This paper develops a portable bus ridesharing plat-
form that can be implemented in any city, utilizing
urban road network and bus stop data from Open-
StreetMap, without the need for additional public in-
frastructure investment.

64

2. Related work

Ridesharing represents a quintessential carpooling ser-
vice, with its research origins tracing back to the dial-a-
ride problem introduced in 1975 [20][19]. This topic has
been thoroughly investigated across various domains. Pas-
sengers can send their travel requests via smart mobile de-
vices based on their work or life needs. After receiving
a multitude of requests, vehicle operators record and ana-
lyze passenger demands to predict and forecast their needs
[7][11][13], then proceed to dispatch orders[8][12] and plan
vehicle routes[17]. Throughout this process, various con-
straints must be taken into account, such as waiting times,
pricing, routes, dispatching costs, and passenger payments
[3]. While taxi services offer a more personalized and effi-
cient mode of travel, they come with a significantly higher
cost of transportation.

The core concept of bus ridesharing is to offer a low-cost
and mass-serving transportation solution. Compared to tra-
ditional ridesharing services that allow for flexible pick-up
and drop-off at arbitrary locations with short waiting times,
existing bus-ridesharing services often require passengers to
make certain compromises regarding pick-up locations and
waiting durations. For instance, [2]introduces a minibus
planning algorithm designed to cater to pre-collected travel
demands. This method first clusters travel requests with
nearby origins and destinations and close request times,
then plans routes for each group using a greedy approach.
The algorithm necessitates a pre-existing database of all
passengers’ details, thus precluding the capability to of-
fer services on a real-time basis. [4] proposes a greedy
method for planning new bus lines based on taxi trajecto-
ries, employing DBSCAN to cluster the start and end points
of taxi routes and using a greedy strategy to plan the new
lines.Because the start and end points are random, some
passengers may need to travel a long distance to reach their
destination after clustering. [22]presents a high-capacity re-
quest matching and path planning algorithm based on clus-
tering, which fundamentally merges multiple shortest path
requests from various origins to destinations that are close
to each other on the road network into a single trip. [15]
discusses ”Slugging,” a variant of carpooling and hitchhik-
ing where passenger A abandons their trip to join B’s trip
(i.e., A’s trip is consolidated into B’s). [14] formally defines
the bus ride problem and proposes a large-scale bus ride
service model where passengers can submit their travel de-
mands through an online platform and are picked up once
a sufficient number of people have gathered. In the pro-
posed model, a better pick-up point is designed for passen-
gers—selecting the location closest to both A and B, rather
than having B wait for A.

Previous studies have often aggregated passengers across
a broad area of multiple bus stops, necessitating that passen-

gers congregate at specific locations and endure longer wait
times to benefit from bus services. Our proposed algorithm
diverges from this approach by significantly reducing pas-
senger movement, permitting them to make bookings at the
closest bus stops with the assurance of service within a 10-
minute window. The most extensive dataset of passenger
requests utilized thus far is the NYCTaxi dataset, compris-
ing 400,088 authentic taxi trajectories from New York City
on May 10, 2016. While these data stem from actual taxi
operations, they fail to accurately mimic the commuting de-
mands of public buses in metropolitan areas. To simulate
a day’s worth of public transit activity in Chengdu more
authentically, we have carried out pertinent simulation re-
search.

3. PRELIMINARIES

3.1. Basic definitions

Definition 1. Road Network.A road network is represented
by an undirected graph G = (V,E), where graph G con-
sists of a set of vertices V and a set of edges E . Each edge
(u, v) ∈ E in graph G is associated with a travel cost.

We obtained city road network data from Open-
StreetMap and the locations of city bus stops from Gaode,
using the bus stops and road network data to form a new
undirected graph G, where the set of vertices V now
only includes bus stop locations, and the set of edges E
represents the actual distances between two bus stops V .
The number of bus stop locations in each city is signif-
icantly much smaller than the original road network ver-
tices.Therefore We can record the shortest path distances
between any two vertices u, v ∈ V using a two-dimensional
matrix, denoted as dis(u, v).

Definition 2. Request A request is denoted by r =<
or, dr, pr, sr, er, kr >, where the origin or ∈ V , and the
destination dr ∈ V , with kr representing the number of
travelers. The request is posted on the Bus-Ridesharing
(BRS) platform, referred to as the platform, at the posting
time pr, and must be picked up by a bus before the start
time sr to avoid undue waiting for passengers, the maxi-
mum waiting time for request is sr − pr. Additionally, the
request must be delivered to the destination before the dead-
line er. To facilitate quick filtering, we record the stops near
the origin and destination: Stops Near Original Location
SNOL = {v1, v2, v3, ..., vn} ∈ V , and Stops Near Destina-
tion Location SNDL = {v1, v2, v3, ..., vn} ∈ V .

Definition 3. Bus A bus is represented by B = ⟨L, S,C⟩,
where the bus’s current location L ∈ V , S refers to the
bus’s trip schedule, and C denotes the bus’s capacity. The
capacity of a bus is the maximum number of passengers it

65

can accommodate at any given time, and the current loca-
tion L is the bus stop the vehicle is about to arrive at. We
denote the set of all buses by B = {b1, . . . , b|n|}, where
|n| indicates the total number of buses.The vehicle speed
in this paper is set according to the uniform speed of the
vehicle type in the city.

3.2. Trip schedule

The trip schedule of vehicle bi is denoted by bi.S =
{l0, l1, l2, ..., ln}, which is a sequence of bus stops includ-
ing the origin or or destination dr of request ri. Apart from
l0, which records the current location of the bus bi.L (that
is, l0 = bi.L), we refer to the locations on the trip schedule
as “stops” li. The path between any two adjacent stops lk−1

and lk is called a “segment” denoted as (lk−1, lk).
Following prior research[18], we use three arrays, aar[k],

ddl[k], and slk[k], to record the expected arrival time, the
latest arrival time, and the slack time for b.S respectively:

The estimated arrival time arr[k] records the estimated
arrival time at stop lk via the trip schedule.

The deadline time ddl[k] records the latest acceptable ar-
rival time at the stop lk.

The slack time slk[k] captures the maximum allowable
additional travel time between segments (lk−1, lk).

For stop li, only the detour time ddl[i] − arr[i] is per-
mitted to ensure its final arrival time ddl[i]. The detour be-
tween lk−1 and lk will not only affect the arrival time at
lk but also the arrival time at all subsequent stops; hence,
slk[k] = min{ddl[i] − arr[i]}, for i = k, . . . ,m. slk[k]
can be determined by referencing slk[k+1], that is, slk[k] =
min{ddl[k]− arr[k], slk[k + 1]}.

3.3. Candidate Bus Locations

To avoid long waiting times for requests, we can deter-
mine a distance disoriginal by multiplying the maximum wait-
ing time sr − pr by the vehicle speed. Any bus bi with
location bi.L within the distance disoriginal from or may po-
tentially serve the request. We denote this set of buses as
Bcandidate = {b1, . . . , bn}. To quickly obtain Bcandidate, we
record the set of bus stops within the distance disoriginal from
or, which we call SNOL. Similarly, we set up SNDL based
on the same distance criteria, as detailed in the next section.

Example 1. As shown in Fig.1, or, which is bus stop v2,
has a circle centered at v2 with a radius of diswait. Station
v6 is outside the circle, so bus b6 cannot reach v2 by time sr
to service request r. Bus b5 departs from station v2 heading
towards v5. We assume the vehicle’s current position is the
next bus stop it will reach, so b5 is currently at v5. As it is
outside the circle, it cannot service request r. Stops v1, v2,
v3, and v4 are within the circle’s range. We cannot retrieve

Figure 1: b1,b2 are at v1, b3 , b4 are at v3, b5 leaves v2
heading towards v5, b6 is at v6, the radius of the circle is
disoriginal, and r is at v2.

v4 even though the Euclidean distance between v4 and v2
is less than diswait. However, on the actual road network,
the distance from v4 to v2 is greater than diswait, whether
through v5 , v3or directly. Therefore, the SNOL for request
r is {v1, v2, v3}, and the candidate set of buses Bcandidate is
{b1, b2, b3}.

4. Bus-RideSharing FRAMEWORK

We employ the following simulation process: Record
events occurring at each moment in seconds; at each mo-
ment, update the status of vehicles and passengers based
on the events; process passenger orders at set time inter-
vals, which involves matching passengers with vehicles.
Our approach has three steps: 1.Select: Facing a vast ar-
ray of passengers and vehicles, we first narrow down the
range of candidates; 2.Insert: Based on the selection, de-
termine whether vehicles and passengers can be paired and
construct a bipartite graph between passengers and vehi-
cles;3.Matching: Each edge in the bipartite graph repre-
sents a potential pairing relationship, followed by executing
a maximum weight matching to allocate the matched pas-
sengers to the corresponding vehicles.

1.Select.For a new request r, we select each bi ∈
Bcandidate. If bi is empty, r can be served by bi. If bi.S is
not empty and bi’s direction of travel aligns with r’s re-
quested direction, then r has a high probability of being
served. SNDL is the set of stops around dr. We check if
bi.S will pass through SNDL. If it does, it indicates that
the bus is traveling in roughly the same direction and might
be able to detour to dr to drop off the passengers. To de-
termine this, we check if there is an intersection between
bi.S and SNDL. However, due to the large scale, calcu-
lating the intersection for every bus and request would be

66

Figure 2: request and Candidate bus

time-consuming. Instead, we use a preliminary selection
method: from bi.S = {l0, l1, l2, . . . , ln}, we select three
points: l0, ln/2, ln:

1) (l0 ∈ SNDL) ∨ (ln/2 ∈ SNDL) ∨ (ln ∈ SNDL)

2) dis(l0, dr) > dis(ln/2, dr) > dis(ln, dr)

3) bi.S ∩ SNDL ̸= ∅

bi that satisfies 1) represents buses traveling in the same di-
rection as r. For buses that do not satisfy 1) but satisfy 2),
we then find the intersection between bi.S and SNDL, i.e.,
3). If 3) is satisfied, then the bus is traveling in the same
direction.

Example 2. As shown in Fig.2, b1.l4 ∈ SNDL, so b1 satis-
fies condition 1), and request and b1 are on the same route.
b2 is not on the same route because it does not satisfy con-
ditions 1) and 2), as dis(l0, dr) < dis(l1, dr) < dis(l2, dr).
b3 satisfies condition 2) but does not satisfy condition 3), so
it is not on the same route.

2.Insert.After filtering out the requests r and b that are
on the same route, we find the optimal positions insert(i, j)
to insert or and dr into b.S under time constraints, mini-
mizing the total distance of the updated b.S. Jaw et al.[10]
proves that the complexity of this process is O(n3), where n
is the length of b.S. We propose a new insertion algorithm:

disdetour = dis(lk, vdetour) + dis(lk+1, vdetour)− dis(lk, lk+1)
(1)

Algo 1. The detour distance is defined as:(1)

The detour time timedetour is obtained by dividing the de-
tour distance disdetour by the bus speed. b.C > kr indicates
that the bus can accommodate the requested number of pas-
sengers. We find the optimal boarding position in the set

Algorithm 1 Insert in same direction

Require: b, r, SNOL, SNDL
Ensure: insert(i, j)

1: for i← 0 to n in b.S ∩ SNOL do
2: if insert or at i-th is feasible and disdetour-or is mini-

mal then
3: insert(i)← i-th
4: end if
5: end for
6: for j ← 0 to n in b.S ∩ SNDL do
7: if insert dr at j-th is feasible and disdetour-or +

disdetour-dr is minimal then
8: insert(j)← j-th
9: end if

10: end for
11: return insert(i, j)

b.S ∩ SNOL. If timedetour−or < slk[i] and arr[i − 1] +
timedetour−or < sr, it means the bus can pick up the pas-
senger within the specified time. Then, we find the drop-off
position in b.S ∩ SNDL. If timedetour−or + timedetour−dr <
slk[j] and arr[j − 1] + timedetour−or + timedetour−dr < er, it
means the bus can drop off the passenger within the speci-
fied time. This reduces the time complexity to O(m + n),
where m is the size of b.S ∩ SNDL and n is the size of
b.S ∩ SNOL. As shown in Figure 2, or can be inserted
between (l0, l1) and (l1, l2) of b1, and dr can be inserted
between (l2, l3), (l3, l4), or at the end of l4.

3.Matching.Given a set of buses B = {b1, b2, . . . , bn}
and a set of requests R = {r1, r2, . . . , rm}. For any bi ∈ B,
it may be matched with multiple r, and the same applies to
ri ∈ R. B and R form a bipartite graph (as shown in Fig-
ure 3). We need to do matching in this bipartite graph. The
KM algorithm can assign each bi to the ri with the minimal
detour, but during peak travel times, the scale of B and R

67

becomes very large. The time complexity of the KM algo-
rithm is O((n + m)3), which is impractical for real-time
decision-making. We need to serve more R in a shorter
time, so we use the HK algorithm. Although it cannot guar-
antee the optimal match for each bi, its time complexity is
O(
√
nm), making it more suitable for large-scale problems.

Figure 3: Distribution of distances

5. EXPERIMENTAL

Bus stops map. In this study, we use the vertex set V
as the collection of bus stops in the city, and the edge set
E is composed of any two adjacent bus stops. We down-
loaded the city’s road network from OpenStreetMap, in-
cluding the latitude and longitude of road vertices and the
length of roads. Additionally, we crawled the latitude and
longitude of the city’s bus stops from Amap (Gaode Maps)
and projected the bus stops onto the nearest roads.

Datasets.We conducted experimental evaluations on two
datasets. The first dataset is a taxi dataset collected by DiDi
Chuxing in Chengdu, China, and the second dataset simu-
lates Chengdu’s public bus trips. For the taxi dataset, we
matched the pickup and drop-off locations of the requests
to the nearest stations. For the bus dataset, we generated 2
million requests, with 4.1 million passengers, a bus capacity
of 32, and a fleet of 14,000 buses. These values are based
on actual figures provided by the Chengdu Public Trans-
port Group [9].The disoriginal of SNOL is equal to the disdown
of SNDL. The origins or and destinations dr are randomly
generated on the map, and their distances follow a Poisson
distribution as shown in Fig.3, with an average distance of
12 km. This data is sourced from the Chengdu Institute
of Planning Design[5]. The distribution of requests pr is
simulated using a joint Gaussian distribution function, with
60% of the data derived from a Gaussian distribution repre-
senting morning trips with a mean of 8 AM, and 40% from

(a) SUR and Serviceability Rate

(b) decision-making time

Figure 4: Operation of the day

a Gaussian distribution representing afternoon trips with a
mean of 5 PM. The service time sr is set to pr plus 10 min-
utes. We set a relaxation parameter relax and define x as
(2), relax relationship to sr and er ,x is (3)

x =
distance from or to dr
average vehicle speed

(2)

er = sr + x · relax relax ∈ [1.5, 1.8] (3)

If a request has not been serviced by sr, it is considered
abandoned. Both taxis and buses travel at constant speeds,
with speeds of 48 km/h and 30 km/h, respectively.

Implementation.The experiments are conducted on a
server with Intel(R) Core(TM) i7-12700F 2.10 GHz proces-
sor with 20 threads,running on the Linux operating system,
and implemented in C++.

Table 1: Percentage of service

taxi dataset bus dataset
number of passenger 249,521 4,100,000

Served 234,036 3,812,217
percentage 93.4% 92.9%

68

Experiment Settings.The experiments of bus data set
were repeated 20 times to take average values.The systems
we developed were respectively designed for operating taxis
(utilizing a taxi dataset with a vehicle capacity of 4 and a
fleet size of 2000, representing the number of taxis in the
dataset) and public buses (utilizing simulated datasets with
a capacity set to the commonly used value and a fleet size
representing the actual number of buses in Chengdu, which
is 14,000) as shown in Table 1.

We recorded the bus operation throughout the
day, as shown in Fig.4(a).Seat Utilization Rate =
current number of passengers on board

number of bus seats , We recorded the aver-
age seat utilization rate of all buses at the current
time.Serviceability Rate = current total number of passengers

number of bus seats , The
current total number of passengers includes both those on
board and those waiting, representing the proportion of
current requests that can be accommodated by the buses. It
can be seen that these two lines are very close to each other
and change with the regular travel patterns of passengers,
demonstrating that our algorithm can serve most requests.

We attempted decision-making at different time inter-
vals, as shown in the Fig.5. When the time intervals were
set to 30 seconds and 60 seconds, the number of success-
fully served passengers was almost the same, but the total
simulation time for a day increased significantly. Although
the time interval of 90 seconds required less time, its op-
erational effectiveness was inferior to the former two. We
compromised and decided to make decisions every 60 sec-
onds, which also aligns better with real-world scenarios.

Figure 5: Results at different time intervals

Effective.The 93% service rate proves that our system is
capable of carrying urban public transport.For the healthy
operation of the system, it is essential to ensure that the
time consumed by each decision-making process does not
exceed the interval between decision-making processes. In
Fig.4(b), we recorded the time required for each decision-
making process throughout the day (shown by the red line)
compared to the decision-making interval (shown by the
green line). As we can see, the decision-making time is
much shorter than the interval, even during peak hours.
To handle potentially higher passenger volumes in the fu-
ture, we used OpenMP and TBB parallel acceleration in
the decision-making process, with the results shown by the
blue line in the figure. By using passenger parallelism
in selecting candidate vehicles for all passengers, the to-
tal processing time is significantly reduced. We can ob-
serve that even during peak hours (8 AM and 5 PM), the
decision response time is not significantly affected by pas-
senger volumes.According to the settings provided in [14],
we compared the transportation of the same passenger vol-
ume by taxis and buses. With this setup, taxis success-
fully transported 3.8 million out of 4.1 million passen-
gers. Taxis consume 9.12 XL/100KM,while buses consume
17.1 XL/100KM. To achieve the same passenger capac-
ity, 32,000 taxis would be required. This means that using
our algorithm could reduce the number of vehicles by 57%
and fuel consumption by 32%. These findings indicate that
bus pooling can efficiently utilize resources, demonstrating
good energy efficiency and cost-effectiveness, thus allevi-
ating urban traffic congestion and reducing carbon dioxide
emissions.

6. CONCLUSION

In this paper, we first review and summarize the short-
comings of existing bus ridesharing services. Traditional
bus ridesharing systems often face challenges such as ineffi-
ciency, slow response times, and poor user experience when
matching passenger demands with bus schedules. To ad-
dress these issues, we propose a novel real-time, large-scale
bus ridesharing service. This service utilizes an intelligent
matching algorithm to quickly pair passengers with buses
traveling along similar routes, ensuring that pick-ups and
drop-offs are completed within a constrained time frame,
thereby enhancing overall service efficiency and reliability.

We also developed an innovative linear time insertion al-
gorithm, which significantly reduces the computational cost
of matching buses with passengers and optimizes the use of
system resources. The core advantage of this algorithm lies
in its ability to process large-scale data rapidly, enabling the
system to make decisions in a very short period, thereby im-
proving the response speed and efficiency of the entire bus
ridesharing system.

69

To validate the effectiveness of our proposed solution,
we conducted extensive simulations in a city-scale scenario
involving millions of trips. The results demonstrate that our
solution performs exceptionally well in these large-scale
scenarios, proving its potential applicability to real world
urban bus services. This not only indicates the practical
value of our solution but also provides new theoretical in-
sights and technical support for the development of smart
cities. Our research offers important guidance for the future
development of bus ridesharing services and presents a new
perspective on optimizing urban transportation systems.

References

[1] Constantinos Antoniou, Dimitrios Efthymiou, and Em-
manouil Chaniotakis. “Demand for emerging transportation
systems: Modeling adoption, satisfaction, and mobility pat-
terns”. In: (2019).

[2] Favyen Bastani et al. “A greener transportation mode:
Flexible routes discovery from GPS trajectory data”. In:
19th ACM SIGSPATIAL International Symposium on Ad-
vances in Geographic Information Systems, ACM-GIS
2011, November 1-4, 2011, Chicago, IL, USA, Proceedings.
2011.

[3] Lu Chen et al. “PTRider: A Price-and-Time-Aware
Ridesharing System”. In: Proceedings of the VLDB Endow-
ment 11.12 (2018), pp. 1938–1941.

[4] Seong Ping Chuah et al. “Bus routes design and opti-
mization via taxi data analytics”. In: Proceedings of the
25th ACM International on Conference on Information and
Knowledge Management. 2016, pp. 2417–2420.

[5] Chengdu Institute Of Planning Design. In: (). URL:
https://www.cdipd.org.cn/.

[6] Erik Ferguson. “The rise and fall of the American carpool:
1970–1990”. In: Transportation 24.4 (1997), pp. 349–376.

[7] Yong Ge et al. “An energy-efficient mobile recommender
system”. In: Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data min-
ing. 2010, pp. 899–908.

[8] Andrey Glaschenko et al. “Multi-agent real time scheduling
system for taxi companies”. In: 8th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2009), Budapest, Hungary. 2009, pp. 29–36.

[9] Chengdu Public Transport Group. In: (). URL: https://
www.cdgjbus.com/.

[10] Jang-Jei Jaw et al. “A heuristic algorithm for the multi-
vehicle advance request dial-a-ride problem with time win-
dows”. In: Transportation Research Part B: Methodologi-
cal 20.3 (1986), pp. 243–257.

[11] Junghoon Lee, Inhye Shin, and Gyung-Leen Park. “Analy-
sis of the passenger pick-up pattern for taxi location recom-
mendation”. In: 2008 Fourth international conference on
networked computing and advanced information manage-
ment. Vol. 1. IEEE. 2008, pp. 199–204.

[12] Junghoon Lee et al. “A telematics service system based on
the Linux cluster”. In: Computational Science–ICCS 2007:
7th International Conference, Beijing, China, May 27-30,
2007, Proceedings, Part IV 7. Springer. 2007, pp. 660–667.

[13] Bin Li et al. “Hunting or waiting? Discovering passenger-
finding strategies from a large-scale real-world taxi
dataset”. In: 2011 IEEE International Conference on Per-
vasive Computing and Communications Workshops (PER-
COM Workshops). IEEE. 2011, pp. 63–68.

[14] Kaijun Liu, Jingwei Zhang, and Qing Yang. “Bus pooling:
A large-scale bus ridesharing service”. In: IEEE Access 7
(2019), pp. 74248–74262.

[15] Shuo Ma and Ouri Wolfson. “Analysis and evaluation of the
slugging form of ridesharing”. In: Proceedings of the 21st
ACM SIGSPATIAL international conference on advances in
geographic information systems. 2013, pp. 64–73.

[16] Martin WP Savelsbergh. “The vehicle routing problem with
time windows: Minimizing route duration”. In: ORSA jour-
nal on computing 4.2 (1992), pp. 146–154.

[17] TANG Xinmin WANG Yuting HAN Songchen. “Air-
craft taxi route planning for A-SMGCS based on discrete
event dynamic system modeling”. In: Second International
Conference on Computer Modeling and Simulation2010,
pp. 167–173.

[18] Yongxin Tong et al. “A unified approach to route planning
for shared mobility”. In: Proceedings of the VLDB Endow-
ment 11.11 (2018), p. 1633.

[19] Nigel Henry Moir Wilson, Richard Wayne Weissberg, and
John Hauser. Advanced dial-a-ride algorithms research
project. Tech. rep. 1976.

[20] Nigel HM Wilson et al. Advanced dial-a-ride algorithms.
Tech. rep. 1975.

[21] Wei Zhang et al. “Research on taxi pricing model and op-
timization for carpooling detour problem”. In: Journal of
Advanced Transportation 2019 (2019).

[22] Haojia Zuo et al. “High-capacity ride-sharing via shortest
path clustering on large road networks”. In: The Journal of
Supercomputing 77.4 (2021), pp. 4081–4106.

70

AI-augmented Automation for Real Driving
Prediction: an Industrial Use Case

Romina Eramo
Dept. of Communication Science

University of Teramo, Italy
reramo@unite.it

Hamzeh Eyal Salman
Dept. of Software Engineering

IT Faculty, Mutah University, Jordan
hamzehmu@mutah.edu.jo

Matteo Spezialetti
Dept. of Inf. Eng., Comp. Science and Math.

University of L’Aquila, Italy
matteo.spezialetti@univaq.it

Darko Stern
Dept. of Research Program Management

AVL, Austria
darko.stern@avl.com

Pierre Quinton
Dept. of Methodology and R&D

AVL, Austria
pierre.quinton@avl.com

Antonio Cicchetti
Dept. of IDT

Mälardalen University, Sweden
antonio.cicchetti@mdu.se

Abstract—The risen complexity of automotive systems requires
new development strategies and methods to master the upcom-
ing challenges. Traditional methods need thus to be changed
by an increased level of automation, and a faster continuous
improvement cycle. In this context, current vehicle performance
tests represent a very time-consuming and expensive task due
to the need to perform the tests in real driving conditions. As
a consequence, agile/iterative processes like DevOps are largely
hindered by the necessity of triggering frequent tests.

This paper reports on a practical experience of developing
an AI-augmented solution - based on Machine Learning and
Model-based Engineering - to support continuous vehicle devel-
opment and testing. In particular, historical data collected in
real driving conditions is leveraged to synthesize a high-fidelity
driving simulator and hence enable performance tests in virtual
environments. Based on this practical experience, this paper also
proposes a conceptual framework to support predictions based
on real driving behavior.

Index Terms—Continuous software engineering, DevOps, Ma-
chine Learning, Automotive, Real Driving Emission testing.

I. INTRODUCTION

Software plays an increasingly important role in modern
vehicles. With the introduction of new features, new traffic
regulations, system and security updates, automotive software
requires the continuous verification and validation of new
software versions, even after production. Thus, the traditional
software life cycle, with slow feedback and manual interaction,
is being replaced with a faster automatic feedback cycle and
rapid continuous improvements.

With the advent of DevOps principles [18], [24], the (au-
tomotive) system engineering would benefit from supporting
a continuous development involving a smooth continuum of
information from design to runtime, and vice versa. More-
over, many leading companies have started to apply Artificial
Intelligence (AI) principles and techniques for IT operations
(AIOps) [12], [16], to rethink the DevOps pipeline through
continuous monitoring, alerting, and remediation securely and
reliably.

DOI reference number: 10.18293/DMSVIVA2024-107

Models have a central role in vehicle development. Physical
simulation models have been developed and optimized during
the last decades and have reasonable maturity [32]. Moreover,
software-driven vehicle components are subject to constant
further development, for instance, novel models to meet the
forthcoming emission standards are needed. As a consequence,
new methods to support full continuous software and system
engineering processes are required. The ongoing European
AIDOaRt project1 notably intends to address such issues. The
project aims at providing a model-based framework to more
efficiently support the continuous development of modern
systems via AI-augmentation [8], [20].

This paper reports on a practical experience of developing
an AI-augmented solution - based on Machine Learning (ML)
- to support continuous vehicle development and testing. The
experience is based on a real industrial use case headed
by AVL2, one of the industrial partners of the AIDOaRt
project. In particular, new challenges have been raised with
the introduction of more stringent emissions legislation. In
fact, the Real Driving Emissions (RDE) test procedures [21]
have been introduced in the EU aiming to evaluate nitrogen
oxides (NOx) and particulate number (PN) emissions from
passenger cars during on-road operation. In addition, more
recent RDE legislation (euro7 compliance) extends the existing
RDE criteria towards a much wider scope. In this context, AVL
aims at improving the significance of test results including
their evaluation in different vehicle development stages as
well as the accuracy of simulation models. In fact, RDE
test procedures tend to be time-consuming and expensive in
real environments, and considering the needs for continuous
development and testing they represent a bottle-neck in the
process.

In this paper, we present a conceptual approach that, starting
from the modeling of the driver’s behaviour, defines the core
components of the solution for the prediction of RDE in

1AIDOaRt ECSEL-JU project: https://www.aidoart.eu/
2AVL List GmbH, Graz (Austria) http://www.avl.com/

71

https://www.aidoart.eu/
http://www.avl.com/

virtual environments. The solution is based on model-based
engineering (MBE) and ML: models are used to represent
the necessary concepts that are included in the prediction;
ML is used to generate high-fidelity simulations of the driver
behaviour, and hence to enable the evaluation of driving
emissions.

This paper is structured as follows. In section II, we
provide the necessary background to understand our proposal.
Section III presents the real driving prediction framework.
An application of this framework is provided in section IV.
Experimental results are discussed and evaluated in section V.
Finally, the paper is concluded in section VIII.

II. BACKGROUND

This section describes the basic concepts and context of the
scope of the developed framework.

A. Basic concepts

Model Driven Engineering (MDE): MDE allows raising the
level of abstraction and thus improving the ability to engineer
and handle complex systems [35]. The use of models as
purposeful abstractions of systems and environments is also
increasing within the industry (e.g., digital twining [5]). While
first-generation MDE tools mainly focused on generating
code from high-level models, they now also address model-
based testing, verification, measurement, tool/language inter-
operability, or software evolution, among many other software
engineering challenges. In system and software engineering,
MDE contributes by 1) providing better abstraction principles
and techniques (e.g., for the handled data), 2) facilitating
the automation of engineering activities, and 3) supporting
technology integration among all the covered design and
development activities.

Artificial Intelligence and Machine Learning (AI/ML): The
dissemination of Artificial Intelligence (AI), including Ma-
chine Learning (ML), principles and techniques in a regulated
industry enables systems to decide and act in a more and
more automated manner: it is used by companies to exploit
the information they collect to improve the products and/or
services they offer [2]. Lately, AI/ML is also impacting all
aspects of the system and software development lifecycle, from
specification to design, testing, deployment, and maintenance,
with the main goal of helping engineers produce systems and
software faster and with better quality while being able to
handle ever more complex systems and software [9], [22],
[37].

B. The AIDOaRt approach

Fig. 1 provides a conceptual overview of the global solution
based on the AIDOaRt project: it highlights the key principles
and concepts that should be considered as the foundation of
this work.

The overall component consumes different kinds of data,
including runtime data (e.g., IT monitoring, log events, etc.)
and design data produced during the software development

Fig. 1: AIDOaRt approach

process (e.g., software models, design documentation, trace-
ability information, source code, etc.). All the collected data
and models will be processed and stored; the Data & Model-
based Engineering component is intended to support the
standard DevOps practices by providing methods and tools
for the data and models collection and management. The
AI-augmented Solutions component aims to enhance DevOps
tool-chains (cf. existing DevOps tools [11]) by employing AI
and ML techniques in multiple Engineering Phases of the
system development process (e.g., requirements, monitoring,
modeling, coding, testing, etc.). In an AIOps-enabled context,
AI-augmented tools should support: 1) the monitoring of run-
time data (such as logs, events, and metrics [36]) and software
data and their traceability (namely Observe); 2) the analysis of
both historical and real-time data (namely Analyze); and 3) the
automation of development and operation activities (namely
Automate). These capabilities will consume available design-
time and runtime data that, according to MBE principles,
should be made available to stakeholders as design-time and
runtime models, respectively.

The aim is to extend existing techniques and introduce
novel solutions, enhancing the state of the art of, for instance,

72

requirements engineering, monitoring, and testing, that already
includes mechanisms supporting/leveraging data analysis [7],
[27], [38]. Moreover, search-based techniques have been inves-
tigated to automate MBE-related activities such as language
engineering, model transformation, and model versioning [6].
Nonetheless, especially when dealing with mission-critical
systems, the automated generation of artifacts raises verifica-
tion and validation issues, e.g., for certification purposes [25].

After the data acquisition and management/preprocessing,
the AI-augmented solutions may provide different support to
the DevOps pipelines. In this work, we propose a model-
based and AI-augmented solution for predicting human driver
behavior (addressing the component analysis of the Figure) in
the AVL RDE use case, described in detail in the next section.

C. The Real Driving Emissions case

AVL is a large independent company that deals with the
development, simulation, and testing of power-train systems
and their integration into the vehicle. New challenges have
been raised with the introduction of more stringent emissions
legislation. Particularly, procedures [21] for RDE testing have
been introduced in the EU to evaluate nitrogen oxide (NOx)
and particulate number (PN) emissions from passenger cars.
Comparing the vehicle performance against the prescribed
regulations in real driving conditions is very time-consuming,
subject to unforeseen testing conditions, and very expensive.
Therefore, AVL is developing a high-fidelity driving simulator
to reproduce the RDE test procedure in a virtual environment.
The current AVL’s Smart Mobile Solution - Route Studio3

is composed of a set of models for the route, human driver,
and vehicle (see Figure 2). The most critical component of
the Route Studio Simulator is the human driver model since
it needs to reproduce the behavior of a human driver as
accurately as possible on the selected route for testing and
with arbitrarily generated traffic conditions.

Fig. 2: AVL Route Studio Simulator architecture.

In the current implementation, the behavior of the human
driver is based on a rule-based parametric model, that due to
modeling simplification lacks the fidelity required for high-
fidelity RDE estimations. The deviations between a human
driver and a rule-based parametric model mostly come from
the fact that human drivers have more complex behaviors that
are hard to encapsulate with a heuristic model. Figure 3 show

3https://www.avl.com/documents/10138/6781105/SMS_Simulation+
Package_Solution+Sheet.pdf

Fig. 3: Example of speed profile for a selected route (real
driving in blue, simulated speed in yellow)

an example of a speed profile for both real driving (in blue)
and a simulated one (in yellow) for a selected route.

In the AIDOaRt project collaboration, we aim to improve
the fidelity of the human driver behaviour model by developing
a data-driven model which simulates human-like driving on
any arbitrary test route and under various traffic conditions.
Such ML models will lead to a better estimate of engine
exhaust emissions, and thereby reduce the burden and cost of
assessing vehicle compliance with strict emissions legislation.

III. REAL DRIVING PREDICTION FRAMEWORK

Figure 4 presents a conceptual framework described using
the MODA framework [14], a conceptual modeling [32]
framework that aims at supporting the description of data-
centric systems in terms of models, data, and transformations.
By proposing a conceptual framework, we do not discuss
particular tools or technologies, but we categorize the different
roles and the relationships of artefacts on a conceptual level. In
particular, the figure shows a simplified class diagram for real
driving prediction; it aims at designing components, classes,
and their relationships for the prediction of driver behaviour.
The objective of this framework is to enable predictions
through the analysis of historical data and updated data. It
is composed of two main parts: i) the spatial model and
predictors configuration (part I of Fig. 4) and ii) the domain-
specific classes and relations describing the driving behaviour
model we considered to use the framework (part II of Fig. 4)
[26].

A. Model

This package includes one or more models of the system
under analysis or its parts (represented by the class Model).
In particular, it contains models that reflect the system and its
environment in a descriptive manner, representing current or
past aspects of the actual system, facilitating understanding,
and enabling analysis [19].

B. Prediction

This package contains the abstract class Predictor that en-
capsulates a (predictive) model used to predict information that
has not been measured, allowing decision-making and trade-
off analyses. This can include models for analysis, simulation,
and ML (e.g., different types of ML algorithms like Random
Forest, Ordinary Least Square, KNN, etc.).

73

https://www.avl.com/documents/10138/6781105/SMS_Simulation+Package_Solution+Sheet.pdf
https://www.avl.com/documents/10138/6781105/SMS_Simulation+Package_Solution+Sheet.pdf

C. Data

This package contains different features and metrics defini-
tions. These are Feature, VolatileFeature, and Metric.

D. Driving behaviour

This package represents driving behaviours and related ele-
ments that determine such behaviours. The main elements are
the environment, the vehicle, and the driver. The DrivingModel
class extends the class Model and consists of at least one
Driver, one Vehicle, and one Route. In particular:

• The settings for a specific driver are put in the Driver
class. Driver’s personal data such as reaction speed,
target velocity, action, and driving style, will affect the
driving behaviours. Driving style refers to normal driving,
zigzag driving, risky acceleration, or risky lane changing.
Reaction speed and action attributes refer to reactions
toward other vehicles on the route. The action attribute
takes the following attributes: accelerating, decelerating,
and maintaining the current speed.

• To describe vehicles in detail, we introduce the Vehi-
cle class. It contains attributes that influence driving
behaviours, including vehicle size, weight, engine type,
acceleration, and average emissions. Note that the en-
gineType attribute is an enumeration literal, e.g. petrol,
or hybrid.

• The Route class is the entry point for configuring the
environment for the driving scenario. It includes settings
such as the speed limit, slope, curvature, weather condi-
tions and road conditions. The weather condition attribute
takes the following values: slipperiness and wind while
the road condition attribute has the following values:
highway, urban, mountain. Each route is composed of
an HereMap instance that allows customers to access a
database of locations and map information. Moreover, a
route is composed of signalization details that can be
represented by traffic signs and traffic lights, road shapes.

This package represents a simplified version of a complete
metamodel for defining driver behavior. However, it aims to be
generic enough to suit many applications. In the next section,
an application example is shown.

IV. APPLICATION TO THE RDE CASE

In this section, we present the application of the proposed
framework on the RDE case, described in Sect. II-C. In
particular, according to the RDE case providers, we focused on
a simple case whose goal is to estimate the average behavior of
drivers based on route data (see Route class in the framework).
Thus, our goal is not to analyze individual driver behavior
by considering, for instance, onboard sensors (see Driver and
Vehicle classes in the framework) but rather to be able to
estimate the average speed of drivers on a specific stretch of
road, as the result affects emissions.

A. Data Acquisition

Even if our experiment involved a subset of the dataset,
we initially acquired all the data provided by AVL through

AIDOaRT project (see Table I). The data was collected from
special equipment placed on a car. Data refers to several
drivers and different driving paths: highways, mountains, etc.
The data collected is real driving recordings in time series for-
mat (time-based data on vehicle speed, throttle/brake pedals,
curvature, road gradient, GPS coordinates, etc.). All of these
data are continuous 1D signals with a sample rate of 1Hz up
to 10Hz. The recorded data are then stored as a matrix of the
form M × N where M is equal to the number of measured
channels (features) and N is equal to the number of recorder
values.

B. Features Selection

To reduce the unnecessary computational cost, we filter out
all the channels (features) that are not relevant for modeling
human driver behavior. This filtering process is performed
by the usecase provider based on its importance for driver
behavior modeling. To that end, we take a close look at the
channels (features) in the dataset (see Table I) and found
that there are three types of channels: 1 channels (resp.
their corresponding data) are collected by two-way (snapshots
and real driving recordings), 2 channels (volatile features
like distance) are calculated from other features (speed and
time), and 3 metric channels (such as speed). The follow-
ing channels are considered to train the data model while
others are discarded: spd_lim(16), tfc_flw(17), traf_lig(18),
tfc_sgn(19), toll_booth(22), curvature(23), and slope(26). The
velocity_kmh_raw(9) feature is considered as a target (output).
Numbers in parentheses after each channel refer to channel ID
in Table I.

The discarded features are excluded for different reasons.
Firstly, some features are derived or computed from other
features. For example, distance can be computed using time
and speed. Secondly, some features are repeated but are
computed in different ways. For example, d, d_integrated_raw,
d_raw, represent the distance feature. Thirdly, some features
have a negligible impact on the prediction, such as alt_raw,
lat_raw, lon_raw, sat_raw.

C. Pre-processing

When we explored the features’ data in the dataset, we
found that each feature’s data has a different scale. For exam-
ple,velocity_kmh_raw feature ranges from 0 to 144 while val-
ues of tfc_sgn are integers ranging from 0 to 42. For this rea-
son, we standardized each feature, except velocity_kmh_raw,
before proceeding with the training. The standard score (Zi)
of a value (Xi) is calculated as follows:

Zi =
Xi −mean(X)

Std_Dev(X)
(1)

where Mean and Std_Dev are the mean and the standard
deviation of feature X , respectively.

The velocity_kmh_raw feature represents the target feature
or class. We decided to address the speed inference by posing
the task as a classification problem. Therefore, since it ranges
from 0 to 144 Km/h, we discretized it by dividing each data

74

Fig. 4: Conceptual Framework for Real Driving Prediction

point Xi by 10 and rounding down the result to the closest
integer. In this way, for example, any speed in the interval
[0, 10) has been mapped into class 0, any speed in the interval
[10, 20) into class 1, and so on.

D. Driving Behaviour Prediction

In the literature, there are many different ML algorithms for
classification problems and there is no certain ML algorithm
fit to all datasets. Choosing an ML algorithm depends on the
type and size of the dataset of interest.

In this research work, we compare the performance of
mostly widely used ML algorithms using Python scikit-learn
packages to determine which algorithm is the best fit for the
collected dataset. These algorithms are GradientBoosting, De-
cisionTree, RandomForest, LogisticRegression, KNNeighbors,
GaussianNB, LinearSVM, and AdaBoost. The target algorithm
should be able to predict the driver behaviour on the basis of
the real dataset available and selected features on any arbitrary
test route.

V. EXPERIMENTAL RESULTS AND EVALUATION

A. Evaluation Procedure and Metrics

The ML algorithms used in this research work are applied
to the dataset, which is split into 90% for training and 10%
for testing. For classification purposes, the splitting process

is performed with a random shuffle, and we deal with the
dataset not as time series data, accordingly. Also, the training
data is split further into five portions (cv=5) in a process called
cross-validation (CV for short). The following procedures are
followed for each portion:

1- ML model is trained using CV-1 portions.
2- The generated model is validated using the remaining

portion.
The following standard evaluation metrics for classification

solutions are used to evaluate the performance of these algo-
rithms. The values of these metrics are scaled between 0 and
100%. Our aim is to find an ML algorithm that maximizes
these values. In these metrics, TP, TN, FP, FN refers to
true positive, true negative, false positive, and false negative
prediction for each class, respectively.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(5)

75

TABLE I: Raw Real Driving Features

ID Feature Description

1 velocity_raw Raw imported vehicle speed

2 t Time

3 speed_raw Engine speed imported

4 alt_raw Altitude imported

5 lat_raw Latitude imported

6 lon_raw Longitude imported

7 sat_raw Nbr of satellite used for the measurement

8 d_integrated_raw Distance calculated out of the imported vehicle speed integration

9 * velocity_kmh_raw Raw imported vehicle speed

10 d_raw Distance calculated out of the latitude and the longitude

11 lat Snapped latitude

12 lon Snapped longitude

13 alt Altitude from Here Maps

14 d Distance out of snapped longitude and latitude

15 here_slope Slope from Here Maps

16* spd_lim Speed limit from regulation

17* tfc_flw Average speed from Here Maps

18* traf_lig Traffic light index (until 6) to indicate the number of traffic lights

19* tfc_sgn Traffic sign index

20 sgn_loc Localisation of the traffic sign (1=Left, 2=right, 3=above)

21 conf Confidence value from the snapping

22* toll_booth Index for toll booth

23* curvature Road curvature in 1/m

24 curvature_rad Road curvature in rad

25 bearing Yaw of the vehicle

26* slope Slope calculated from the Here Maps altitude

27 alt_corr Corrected altitude

* Selected features for training the prediction model

We adjusted the hyperparameters of these algorithms to
be the default values in the Python scikit-learn API. We
used these default parameters without deliberate adjustment
to ensure a fair comparison in the experiments among the ML
algorithms. Also, these default values are often chosen by the
library developers to work well in a wide range of scenarios.

B. Results Discussion

The dataset includes 27 features. Since some features have
a minor impact on the target prediction, we selected the
features listed in Table I. The selected data was used for
the train prediction model of several popular ML algorithms
(i.e., GradientBoosting, DecisionTree, RandomForest, Logis-
ticRegression, KNNeighbors, GaussianNB, LinearSVM, and
AdaBoost).

Table II reports the performance results of the prediction
models generated by the considered classifiers in the validation
stage. As shown in this table, the prediction capability of
RandomForest and DecisionTree classifiers is the best over
other classifiers. The performance measures for these classi-
fiers are [Precision: %90 - %91, Recall: %90 - %91, F1-score:
%90 - %91, Accuracy: %90 - %91]. The KNN classifier is
excluded from the validation stage. This is because there is
no generated model by KNN classifier to validate. The KNN
classifier depends on the majority rule for k nearest neighbours
to classify unseen data [3].

Table III lists performance results of prediction models
built by ML algorithms of interest in terms of Precision,

Fig. 5: Performance results of several classifiers.

Recall, and F1-score. These algorithms were applied to entire
dataset records. DecisionTree, RandomForest, and KNNeigh-
bors were the three top models among other classifiers where
all metric values were greater than 90% (for DecisionTree
and RandomForest) and over 80% for KNNeighbors. The
highest metric values were produced by RandomForest as its
values were 92%. The worst metric values were produced by
LogisticRegression, GaussianNB, LinearSVM, and AdaBoost
where their metric values were unable to achieve 50%. The
metric values of the remaining classifiers (GradientBoosting)
take a range between them.

Figure 5 shows the comparison results among the classifiers
of interest in terms of accuracy metric. Similar to what is
noted in Table III, the figure shows the three top predic-
tion models are built using DecisionTree, RandomForest, and
KNNeighbors. The highest accuracy results are produced by
RandomForest classifier. Also, the worst accuracy values were
produced by LogisticRegression, GaussianNB, LinearSVM,
and AdaBoost.

Tables IV shows detailed results of the RandomForest (RF)
classifier, which is the best fit on the considered dataset. We
worked on a multi-class classification problem; in fact, the
dataset contains 15 classes, and each class represents a speed
range (see preprocessing subsection IV-C). Although there is
a large number of classes in the dataset, RF achieves high
metrics values (Precision, Recall, F1-score, and Accuracy) for
each class. RF provides consistent and encouraging results, as
demonstrated by the accuracy values of 92%.

C. Observations and Lessons Learned

We identified the following points as threats to the validity:
- Each driver’s behavior differs from the other. For exam-

ple, there are normal driving, aggressive driving, drowsy
driving, etc. Our prediction model is built using only
normal driving data as normal driving is the usual case.

- In the current approach, we neglect the non-deterministic
nature of environmental conditions like traffic conditions,
due to the fact that it is not recorded when collecting
data of the real driving cycle. In future work we plan

76

TABLE II: Cross validation results with CV=5 for all considered classifiers.

G
ra

di
en

tB
oo

st
in

g

D
ec

is
io

nT
re

e

R
an

do
m

F o
re

st

L
og

is
tic

R
eg

re
ss

io
n

G
au

ss
ia

nN
B

L
in

ea
rS

V
M

A
da

B
oo

st

AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

Weighted Precision 0.56 0.0 0.90 0.0 0.91 0.0 0.28 0.01 0.19 0.02 0.22 0.01 0.17 0.03

Weighted Recall 0.55 0.0 0.90 0.0 0.91 0.0 0.34 0.0 0.19 0.03 0.29 0.0 0.19 0.03

Weighted F1-Score 0.54 0.0 0.90 0.0 0.91 0.0 0.26 0.0 0.10 0.03 0.19 0.0 0.13 0.02

Weighted Accuracy 0.55 0.0 0.90 0.0 0.91 0.0 0.34 0.0 0.19 0.03 0.29 0.0 0.19 0.03

TABLE III: Obtained results using all considered classifiers.

G
ra

di
en

tB
oo

st
in

g

D
ec

is
io

nT
re

e

R
an

do
m

Fo
re

st

L
og

is
tic

R
eg

re
ss

io
n

K
N

N
ei

gh
bo

rs

G
au

ss
ia

nN
B

L
in

ea
rS

V
M

A
da

B
oo

st

Weighted AVG Precision 0.56 0.91 0.92 0.25 0.81 0.18 0.20 0.18

Weighted AVG Recall 0.55 0.91 0.92 0.34 0.81 0.15 0.29 0.20

Weighted AVG F1-Score 0.54 0.91 0.92 0.26 0.81 0.07 0.19 0.15

TABLE IV: Evaluation results of the RandomForest classifier

Class Precision Recall F1-score Support

0 0.99 0.99 0.99 8134

1 0.94 0.93 0.93 2498

2 0.91 0.90 0.91 4556

3 0.90 0.90 0.90 5984

4 0.88 0.90 0.89 7053

5 0.88 0.87 0.88 5339

6 0.92 0.92 0.92 3786

7 0.93 0.92 0.92 3072

8 0.95 0.93 0.94 2283

9 0.93 0.93 0.93 1511

10 0.94 0.96 0.95 1646

11 0.84 0.81 0.83 499

12 0.78 0.79 0.79 285

13 0.88 0.82 0.85 222

14 0.64 0.47 0.54 15

Accuracy 0.92 46883
Weighted AVG 0.92 0.92 0.92 46883

to explore generative models such as variational autoen-
coders (VAE) or generative adversarial networks (GANs)
to model environmental conditions.

VI. RELATED WORK

In this section, we present the most recent and relevant
research works to this study. We categorize these works into
three categories based on the type of algorithm used to predict

the driver behaviour [29]: rule-based algorithms, ML-based
algorithms, and digital twins.

A. Rule-based Driver Behavior prediction
Rule-based algorithms are also called threshold-based algo-

rithms. They are a set of algorithms that depend on the pre-
defined threshold for monitored variables or factors to assign
driver behavior to some class. In [33], Radoslav proposed an
approach based on thresholds computed using data collected
from smart mobile sensors to detect the following deriving
events: acceleration, deceleration, left turn, right turn, lane
change to left, lane change to right. In [30], Murphey et al.
presented an approach based on the number of aggressive
maneuvers to classify the driver behavior into: calm below
50%, aggressive above 100%, and normal otherwise. Another
classification for driver behavior is proposed by [15] and [28].
This classification is based on fuel consumption or, in general,
energy consumption.

The main limitation of all previous-mentioned works is that
they depend on a single parameter and therefore the robustness
and accuracy of the results are considerably limited. Another
research direction relied on fuzzy logic to manage multiple
parameters for driver behavior prediction. The research works
in this direction are also based on predefined thresholds but
are able to include more parameters whilst keeping its sim-
plicity, robustness, easy understanding and low computational
order [17] [23] [34] [39]. However, these works are also
limited in terms of the number of variables and data that
can process. Also, they depend on thresholds computed using
expert intervention.

B. ML-based Driving Behavior Prediction
A variety of ML-based driving behavior prediction ap-

proaches (with different purposes) are proposed. They em-
ployed different types of learning to achieve this prediction
purpose, such as supervised learning, unsupervised learning,
and combined unsupervised and supervised learning [29] [4].
In this section, we focus only on supervised learning ap-
proaches as they are the closest to our work presented in this
article.

The supervised learning approaches depend mainly on using
driving data as training data to build a prediction model.

77

In [31], Campoverde et al. proposed an approach to estimate
emissions by applying ML to an important set of OBD data.
The main aim of this approach is to determine the selected
gear by the driver as the emission can be estimated based on
the gear number used. This is achieved by integrating ANN, k-
means clustering, and random forest algorithm. In [13], Chen
et al. conducted an empirical study to evaluate the performance
of different ML algorithms to classify the behavior of specific
drivers, on the base of the sensor technology installed on
the car. Although their purpose is different from ours (in
fact, the authors want to recognize a specific driver based on
the data collected), the results are interesting. They reported
that there is no single machine-learning algorithm that fits
all problems. Based on their obtained data, their experiments
showed that the random forest approach is a good fit for
identifying driving behaviors. In [10], Karginova et al. made a
comparison between multiple ML algorithms for the purpose
of classifying the driver’s driving style. These algorithms
are KNN, NN, decision tree, and random forest. The KNN
achieved the best performance within the nearest neighbor’s
inherent limits when clustering for K = 4 or 5.

C. Digital Twins

In [1], Dygalo et al. proposed to produce a digital twin
of active vehicle safety systems for a proper simulation and
correct system design. The digital twin consists of a set
of modules ranked according to their priority. For example,
“Wheel” and “Vehicle Body” modules were given top pri-
ority as they define the general parameters of the vehicle’s
movement and location in physical space. This way of ranking
modules within the system helps to detect inconsistencies in
the top-priority modules at the earliest stages, thus tracking
any errors and promptly correcting them.

VII. ACKNOWLEDGMENT

We would like to thank Mutah University for funding the
registration of this conference.

VIII. CONCLUSION AND FUTURE WORK

This paper reported on a practical experience of develop-
ing an AI-augmented solution, based on Machine Learning
and Model-based Engineering, to support continuous vehicle
development and testing. We presented how historical data,
collected in real driving conditions, is leveraged to synthesize
a high-fidelity driving simulator and hence enable performance
tests in virtual environments. Based on this practical expe-
rience, this paper also proposed a conceptual framework to
support predictions based on real driving behavior.

In future work, we aim to extend the Driving Behaviour
package employing a complete metamodel describing the do-
main. Moreover, we aim to propose a Digital Twin framework
[19]; in automotive, a digital twin of the product comprises
the entire car, its software, mechanics, electrics, and physical
behavior. This allows for simulation and validation of each
step of the development to identify problems and possible
failures before producing real parts. We aim to focus on

modeling the behavior of considered physical systems to
make predictions by using several ML techniques. Also, we
aim to validate the framework through several use cases in
different domains (including the automotive and RDE) by
using different implementations.

REFERENCES

[1] Principles of application of virtual and physical simulation technology
in production of digital twin of active vehicle safety systems. Trans-
portation Research Procedia, 50:121–129, 2020. XIV International
Conference on Organization and Traffic Safety Management in Large
Cities (OTS-2020).

[2] Gartner Predicts the Future of AI Technologies, accessed:
28.07.2022. https://www.gartner.com/smarterwithgartner/
gartner-predicts-the-future-of-ai-technologies/.

[3] H. A. Abu Alfeilat, A. B. Hassanat, O. Lasassmeh, A. S. Tarawneh,
M. B. Alhasanat, H. S. Eyal Salman, and V. S. Prasath. Effects of
distance measure choice on k-nearest neighbor classifier performance:
A review. Big Data, 7(4):221–248, 2019. PMID: 31411491.

[4] M. Aliramezani, C. R. Koch, and M. Shahbakhti. Modeling, diagnostics,
optimization, and control of internal combustion engines via modern
machine learning techniques: A review and future directions. Progress
in Energy and Combustion Science, 88:100967, 2022.

[5] F. Bordeleau, B. Combemale, R. Eramo, M. van den Brand, and
M. Wimmer. Towards model-driven digital twin engineering: Current
opportunities and future challenges. In ICSMM 2020, pages 43–54.
Springer, 2020.

[6] I. Boussaïd, P. Siarry, and M. Ahmed-Nacer. A survey on search-based
model-driven engineering. Automated Software Engineering, 24:233–
294, 2017.

[7] L. C. Briand. Novel applications of machine learning in software testing.
In QSIC ’08, pages 3–10, 2008.

[8] H. Bruneliere, V. Muttillo, R. Eramo, L. Berardinelli, A. Gómez, A. Bag-
nato, A. Sadovykh, and A. Cicchetti. Aidoart: Ai-augmented automation
for devops, a model-based framework for continuous development in
cyber–physical systems. Microprocessors and Microsystems, 94:104672,
2022.

[9] L. Burgueño, M. Kessentini, M. Wimmer, and S. Zschaler. MDE
intelligence 2021: 3rd workshop on artificial intelligence and model-
driven engineering. In ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion, MODELS
2021 Companion, Fukuoka, Japan, October 10-15, 2021, pages 148–
149. IEEE, 2021.

[10] S. Byttner, N. Karginova, and M. Svensson. Data-driven methods for
classification of driving styles in buses. In SAE 2012 World Congress
& Exhibition. SAE International, apr 2012.

[11] N. Ceresani. The periodic table of devops tools v.2 is here, June 2016.
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/,
last accessed on 30.06.2021.

[12] S. G. Charley Rich, Pankaj Prasad. Market guide for aiops platforms,
id g00378587. Technical report, Gartner Research, 2019.

[13] W.-H. Chen, Y.-C. Lin, and W.-H. Chen. Comparisons of machine
learning algorithms for driving behavior recognition using in-vehicle
can bus data. In 2019 Joint 8th International Conference on Informatics,
Electronics & Vision (ICIEV) and 2019 3rd International Conference on
Imaging, Vision & Pattern Recognition (icIVPR), pages 268–273, 2019.

[14] B. Combemale, J. Kienzle, G. Mussbacher, H. Ali, D. Amyot,
M. Bagherzadeh, E. Batot, N. Bencomo, B. Benni, J. Bruel, J. Cabot,
B. C. Cheng, P. Collet, G. Engels, R. Heinrich, J. Jezequel, A. Koziolek,
S. Mosser, R. Reussner, H. Sahraoui, R. Saini, J. Sallou, S. Stinckwich,
E. Syriani, and M. Wimmer. A hitchhiker’s guide to model-driven
engineering for data-centric systems. IEEE Software, 38(4):71–84, 2021.

[15] A. Corti, C. Ongini, M. Tanelli, and S. M. Savaresi. Quantitative driving
style estimation for energy-oriented applications in road vehicles. In
2013 IEEE International Conference on Systems, Man, and Cybernetics,
pages 3710–3715, 2013.

[16] Y. Dang, Q. Lin, and P. Huang. Aiops: Real-world challenges and
research innovations. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 4–5, 2019.

78

https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-ai-technologies/
https://www.gartner.com/smarterwithgartner/gartner-predicts-the-future-of-ai-technologies/
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

[17] D. Dörr, D. Grabengiesser, and F. Gauterin. Online driving style
recognition using fuzzy logic. In 17th International IEEE Conference
on Intelligent Transportation Systems (ITSC), pages 1021–1026, 2014.

[18] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. IEEE
Software, 33(3):94–100, 2016.

[19] R. Eramo, F. Bordeleau, B. Combemale, M. van den Brand, M. Wimmer,
and A. Wortmann. Conceptualizing digital twins. IEEE Softw., 39(2):39–
46, 2022.

[20] R. Eramo, V. Muttillo, L. Berardinelli, H. Brunelière, A. Gómez, A. Bag-
nato, A. Sadovykh, and A. Cicchetti. Aidoart: Ai-augmented automation
for devops, a model-based framework for continuous development in
cyber-physical systems. In F. Leporati, S. Vitabile, and A. Skavhaug,
editors, 24th Euromicro Conference on Digital System Design, DSD
2021, Palermo, Spain, September 1-3, 2021, pages 303–310. IEEE, 2021.

[21] European Commission. Commission Regulation (EU) 2018/1832 of 5
November 2018 amending Directive 2007/46/EC of the European Par-
liament and of the Council, Commission Regulation (EC) No 692/2008
and Commission Regulation (EU) 2017/1151. https://eur-lex.europa.eu/
eli/reg/2018/1832/oj, 2019.

[22] M. Felderer, E. P. Enoiu, and S. Tahvili. Artificial intelligence techniques
in system testing. In Optimising the Software Development Process with
Artificial Intelligence, pages 221–240. Springer, 2023.

[23] E. Gilman, A. Keskinarkaus, S. Tamminen, S. Pirttikangas, J. Röning,
and J. Riekki. Personalised assistance for fuel-efficient driving. Trans-
portation Research Part C: Emerging Technologies, 58:681–705, 2015.
Technologies to support green driving.

[24] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer. What is devops? a
systematic mapping study on definitions and practices. In Proceedings
of the Scientific Workshop Proceedings of XP2016, XP ’16 Workshops,
New York, NY, USA, 2016. Association for Computing Machinery.

[25] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella. Automated
verification of neural networks: Advances, challenges and perspectives.
In press, 2018.

[26] G. Lyan, J.-M. Jézéquel, D. Gross-Amblard, and B. Combemale. Data-
Time: a Framework to smoothly Integrate Past, Present and Future into
Models. In MODELS 2021 - ACM/IEEE 24th International Conference
on Model Driven Engineering Languages and Systems, pages 1–11,
2021.

[27] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. Toward data-driven
requirements engineering. IEEE Software, 33(1):48–54, 2016.

[28] V. Manzoni, A. Corti, P. De Luca, and S. M. Savaresi. Driving
style estimation via inertial measurements. In 13th International IEEE
Conference on Intelligent Transportation Systems, pages 777–782, 2010.

[29] C. Marina Martinez, M. Heucke, F.-Y. Wang, B. Gao, and D. Cao. Driv-
ing style recognition for intelligent vehicle control and advanced driver
assistance: A survey. IEEE Transactions on Intelligent Transportation
Systems, 19(3):666–676, 2018.

[30] Y. L. Murphey, R. Milton, and L. Kiliaris. Driver’s style classification
using jerk analysis. In 2009 IEEE Workshop on Computational Intelli-
gence in Vehicles and Vehicular Systems, pages 23–28, 2009.

[31] N. D. Rivera-Campoverde, J. L. Muñoz-Sanz, and B. d. V. Arenas-
Ramirez. Estimation of pollutant emissions in real driving conditions
based on data from obd and machine learning. Sensors, 21(19), 2021.

[32] D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
Computer, 39(2):25–31, 2006.

[33] R. Stoichkov. Android smartphone application for driving style recog-
nition. PhD thesis, Technische Univ, 2013.

[34] F. U. Syed, D. Filev, and H. Ying. Fuzzy rule-based driver advisory
system for fuel economy improvement in a hybrid electric vehicle.
NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy
Information Processing Society, pages 178–183, 2007.

[35] H. Thompson, M. Reimann, and D. Ramos-Hernandez. Platforms4CPS,
Key Outcomes and Recommendations. Steinbeis-Edition, 2018.

[36] G. Valente, T. Fanni, C. Sau, T. Di Mascio, L. Pomante, and F. Palumbo.
A composable monitoring system for heterogeneous embedded plat-
forms. ACM Transactions on Embedded Computing Systems, 2021.

[37] Z. Wan, X. Xia, D. Lo, and G. C. Murphy. How does machine learning
change software development practices? IEEE Transactions on Software
Engineering, 47(9):1857–1871, 2021.

[38] S. Wolny, A. Mazak, M. Wimmer, and C. Huemer. Model-driven runtime
state identification. In H. C. Mayr, S. Rinderle-Ma, and S. Strecker,
editors, EMISA 2019, volume P-304 of LNI, pages 29–44. Gesellschaft
für Informatik e.V., 2019.

[39] J.-S. Won. Intelligent energy management agent for a parallel hybrid
vehicle. PhD thesis, Texas A&M University, 2003.

79

https://eur-lex.europa.eu/eli/reg/2018/1832/oj
https://eur-lex.europa.eu/eli/reg/2018/1832/oj

Automatic API Upgrade for jQuery Library
Ning Li, Yuhan Chen, Liangyu Chen

East China Normal University
Shanghai, China

lychen@sei.ecnu.edu.cn

Abstract—Third-party libraries play a significant role in soft-
ware development, offering great assistance to programmers.
However, they also increase the maintenance costs of projects.
Upgrading these libraries can be time-consuming and laborious,
particularly when dealing with deprecated APIs. jQuery is a
widely used third-party library in JavaScript programs, and
currently, there is no existing tool that can automatically upgrade
its version. To address this upgrade problem of third-party
libraries, this paper proposes an approach for automatically
upgrading the version of jQuery. Firstly, official API documents
are obtained as the basis for migration rules. Then, the abstract
syntax tree is used to parse javascript code, and a replacement
algorithm is designed to replace obsolete APIs, thereby achieving
automatic upgrading of jQuery versions in the project. Finally,
we selected 10 highly popular GitHub projects that included
jQuery dependencies to conduct experiments and do verifications
of jQuery API version upgrades. Compared to the @type version
prompt plugin provided by VSCode1 , our migration tool achieves
74.2% accuracy while VSCode gets 61.4%. This demonstrates our
tool has a better recognition scope and accuracy. Our tool can
automatically identify and replace obsolete API invocations with
ones supported in the new version, effectively upgrading jQuery
in the project code and enhancing the software quality.

Index Terms—API Replacement, JavaScript Library, jQuery,
Abstract Syntax Tree

I. INTRODUCTION

Third-party libraries play a crucial role in software devel-
opment by providing a wealth of features and solutions.
Utilizing these libraries avoids writing code from scratch,
thereby increasing development efficiency. Additionally, these
libraries are optimized through version iterations to enhance
user experience and offer ongoing maintenance support.

jQuery is the most well-known JavaScript (JS) library,
widely favored by frontend developers for its HTML element
manipulation, event handling, and Ajax requests. It holds
a 94.4% market share in early 2024 [1]. However, jQuery
has undergone continuous API modifications and structural
changes through version iterations, such as function renaming,
parameter changes, and even deprecations. These API changes
during updates are often troublesome [2]: deprecated functions
post-update can prevent projects from achieving previous func-
tionalities or even running correctly, which is the reason that
developers are reluctant to upgrade with the latest versions [3].
Unfortunately, there is currently no integrated tool to handle
API changes during jQuery version upgrades automatically.
Therefore, it is very important to enable developers to upgrade

1VSCode is a code editor for building modern web. It can be accessed from
https://code.visualstudio.com/.

outdated jQuery dependencies in their projects, free from
the limitations of older jQuery functionalities, and address
deprecated API issues during upgrades.

In this paper, we propose an automated tool to solve the
problem of jQuery version migration. The jQuery migration
tool has the following features. First, it visually displays all
deprecated APIs between jQuery versions. The tool collects all
changing API information from the jQuery API website using
Python crawlers and forms a document about API differences,
assisting developers in handling API changes during jQuery
version upgrades. Second, it automatically detects deprecated
or unusable API locations in the project after version changes
and automatically modifies the code through a replacement
algorithm based on an abstract syntax tree (AST) to fit the
new API specification. Finally, the effectiveness of the jQuery
migration tool is validated through experiments on several
actual GitHub projects.

In summary, the main contributions of this paper are as
follows:

• We parse jQuery official documents to obtain API usage
and version records, identify deprecated APIs, and get
corresponding new ones.

• We propose a migration method for jQuery API, realize a
jQuery API replacement method based on API documents
information idea, with the help of abstract syntax tree
to realize the API mapping, change the idea is also
applicable to other library API migration. Although this
migration method cannot directly migrate to other third-
party libraries, the method is a trial for upgrading API
versions of other third-party libraries, and this approach
applies to all other third-party libraries.

• We implement a jQuery API migration tool to automat-
ically upgrade old dependencies in real projects. The
tool is verified on 10 projects from Github that were
selected and achieved an average accuracy of 74.2%.
Compared with VsCode’s deprecated function tool, our
tool has a better recognition range and accuracy rate for
jQuery API deprecation. The tool code and datasets in
this paper can be accessed at https://github.com/AaronLi-
Alps/JqueryApiMigration.

The rest of this paper is organized as follows. Section 2
introduces related works, and Section 3 details the design of
the API migration method. Section 4 presents the details of
the implementation of the migration tool. Section 5 conducts
experimental validation on 10 mainstream JS projects from

DOI reference number: 10.18293/DMSVIVA24-136

80

GitHub and records the accuracy of the migration tool. Finally,
Section 6 summarizes the paper and discusses future research
directions.

II. RELATED WORKS

The use of third-party libraries is pervasive in modern software
development [4]. Third-party dependencies are widely adopted
across various programming environments and domains. How-
ever, the application of third-party dependencies introduces
a range of dependency management issues, such as outdated
versions and library conflicts. Research has found that most
developers are reluctant to update the dependencies in their
projects, and upgrading dependencies often leads to compat-
ibility issues [5]. The primary reason is that the latest third-
party libraries may not cover all the necessary features that the
software references [6]. Issues related to third-party libraries
are present in JavaScript, Python, and Java environments, each
showing different degrees of these problems. Wu et al. [7]
found that there are fewer occurrences of deprecated APIs in
third-party libraries in Java ecosystem, whereas Python more
frequently encounters API deprecation and replacement sce-
narios, and JavaScript exhibits the greatest degree of iteration
changes, leading to more compatibility issues. Wang et al. [8]
identified three main causes of disruptive API changes in open-
source software libraries: changes in API signatures, changes
in API implementations, and API deprecation and removal.
These factors disrupt version compatibility during the library
evolution process.

jQuery is one of the most widely used third-party libraries in
the JS ecosystem. Due to frequent version iterations, most de-
velopers have adopted different versions of jQuery in different
files. However, significant version updates in jQuery have led
to the deprecation of many functions, presenting developers
with the challenge of automatically modifying and handling
deprecated functions caused by version upgrades. Existing
tools for handling jQuery APIs do not fully automate jQuery
version upgrades and require manual pre-processing to adapt
to the migration methods of these tools. jQuery Migrate [9]
is an official jQuery plugin designed to help users deal with
disruptive changes by restoring the functionality of deprecated
APIs and displaying warnings in the console. However, it is
only a temporary solution for handling deprecated APIs during
jQuery version updates, ultimately requiring developers to
gradually address deprecated functions in their projects, failing
to solve the issues arising from version updates completely.
As a transitional solution for jQuery version migration, it still
produces deprecated API incompatibility warnings, failing to
completely resolve jQuery API version upgrade issues.

Dereck et al. [10] developed a migration plugin called
unjQuery, which can replace jQuery API invocation with
equivalent modern browser APIs but does not support jQuery
API migration. Romulo et al. [11] conducted a study on
deprecated APIs in JavaScript, categorizing deprecation types
into four categories: utility deprecation, code comments, JS
DOC comments, and console messages. Analyzing the top
320 most popular JS open-source projects on the npm website,

they found that the primary deprecation types adopted in JS
libraries are console messages, project documents, and code
comments.

III. METHODOLOGY

A. Problem Formulation

We first illustrate the versioning issues of jQuery through a
case study. zTree, a multifunctional tree plugin library depen-
dent on jQuery, is widely used for its excellent performance,
flexible configuration, and multifunctional combination. Ver-
sion 3.5.48 of zTree uses a very old version 1.4.4 of jQuery,
possibly because zTree was developed early. This brings about
a problem: when users integrating zTree into their projects use
a jQuery version higher than 1.4.4, e.g. 3.0, it causes issues
with the asynchronous loading of node data in zTree, resulting
in console errors such as “bind is not a function” (see Fig 1).
According to the official jQuery documents, this is because the
bind method is deprecated in jQuery version 3.0. Thus, during
the jQuery version upgrade, zTree encounters dependency
issues that need manual handling of deprecated API calls.
Currently, programmers need to manually check each place
where jQuery is used to see if deprecated functions are called.
If it is possible to automatically detect deprecated functions in
the project following a jQuery API version upgrade and handle
these issues automatically based on official documents, it will
alleviate the development burden and promote programming
efficiency.

The problem of jQuery API automatic upgrade can be
defined as follows: How to automatically locate jQuery API
usage within a project, determine if they are deprecated,
and perform corresponding replacement and upgrade?

B. Method Overview

Figure 2 describes the framework of the jQuery version mi-
gration tool. This migration tool takes project JavaScript files
as input and comprises three modules: jQuery API document
processing, API location and replacement, and API mapping
algorithms. Addressing the questions posed in the previous
section, this research investigates the automatic upgrade of
jQuery APIs, designs an API mapping method for jQuery
version upgrades, and implements a plugin for automatic
jQuery version upgrades. The detailed steps are as follows:

(1) jQuery API Information Extraction and Processing. We
collect records of modifications or deprecations for each API
across different versions from the official jQuery documents,
then form a usable dataset of API differences.

(2) jQuery API Location and Replacement. The Abstract
Syntax Tree (AST) can decompose source code into a tree
[12], effectively supporting code refactoring. By using a parser
to parse JS files and generate ASTs, code location, refactoring,
and replacement can be achieved. We also parse code to
identify jQuery object references and their node positions,
determine the used API methods through node parsing, and
design an API replacement algorithm to replace jQuery APIs
based on the mapping relationships obtained in Step (1).

81

Fig. 1. Abandoned API caused by upgrading jQuery in Ztree.

(3) API Mapping. The mapping of deprecated APIs to new
APIs is accomplished through a mapping set formed by ana-
lyzing API documents. After processing the API documents,
a mapping set of jQuery APIs between different versions is
generated. By iterating this API mapping set, one can check
if the current API has a corresponding mapping relationship,
thus obtaining the new API method that can be used as a
replacement. .

C. jQuery API Information Extraction and Processing

In this section, we retrieve and process data on API changes
from the official jQuery API website. API document is a
crucial information source of third-party libraries, providing
details on function changes and deprecations across different
versions. We aim to collect API information from the jQuery
official documents and use it as a basis for API migration.

API Information Analysis: By examining the official jQuery
documents, it is possible to identify deprecated or modified
API methods and determine the versions where changes oc-
curred. These documents also include notes on deprecated
functions, offering methods for handling them. For instance,
the andSelf() API is marked as deprecated after version
1.8, with a note stating, “This API has been removed. Use
.addBack() instead.” This indicates that andSelf should be
replaced with .addBack to avoid calls to deprecated APIs (see
Fig. 3).

Data Retrieval: We utilize the BeautifulSoup library to
retrieve API information, filtering out deprecated APIs from
the official documents [13, 14]. The steps are as follows:

• Use BeautifulSoup to retrieve information from the gen-
eral API page and individual API detail pages.

• On the general API page: obtain all function names and
tags (including deprecation and abnormal status).

• On each API detail page: retrieve notes containing de-
tailed information on API changes or descriptions.

• Save the data to a result file.
In total, we analyzed 318 jQuery APIs, identifying 40 as

deprecated and 15 removed in updated versions. Among the

40 deprecated APIs, 11 provide corresponding solutions (new
functions or alternative features). The API documents before
version 2.0 often require users to perform feature detection,
while 3.X or later versions provide replacement methods for
user convenience.

D. jQuery API Location and Replacement

We analyze the API invocation of jQuery in JS files and use
a JS parser to locate jQuery APIs and replace deprecated
function APIs using an API migration algorithm.

Unlike Java language, JS lacks strict type definitions, which
makes it difficult to locate jQuery methods precisely. We
explore various methods to locate jQuery API invocations
in projects by searching for jQuery references such as $.
and $.bind. By converting JS files to AST structures with
the Babel2 tool, we process each file, modify the AST, and
recompile it into JS code to replace the original file (see Fig.
4).

E. API Mapping

Algorithm 1: Obtain replaceable new APIs from
jQuery documents.
Input : Two versions of API methods.
Output: API that changes between versions.

1 info← getNoteInf(oldMethodName);
2 if info contains discarded or removed labels then
3 if API document has a replaceable method then
4 newFunctionName←

getNewMethodName(oldMethodName);
if Parameter changes then

5 getReplaceAPIWithParameter
6 (oldMethodName);
7 newFunction←

getReplaceAPI(newFunctionName);
8 end
9 else newFunction←

getReplaceAPI(methodName) ;
10 end
11 else
12 No replaceable API found ;
13 end

We process jQuery API documents to obtain corresponding
API mapping. API documents include suggestions for handling
deprecated functions, commonly recommending replacements.
We process such documents to derive new APIs for replace-
ment.

An API replacement algorithm is proposed to utilize in-
formation from documents to obtain API mapping, shown in
Algorithm 1. When a deprecated API is detected with a doc-
umented replacement, the algorithm maps old API parameters

2Babel is a JS compiler that supports processing JS ASTs. It can be accessed
from https://babeljs.io/.

82

Fig. 2. The framework of our jQuery migration tool.

Fig. 3. Explanation of Deprecated API in jQuery API Documents.

Fig. 4. Abstract Syntax Tree structure.

to the new one, replaces the API name, and rewrites the code
in the original JS files (see Fig. 5).

To analyze jQuery API documents for replacement sugges-
tions, we identify APIs marked as “removed” and their re-
placements. For example, the andSelf() function, first appears
in version 1.8 and is deprecated in version 3.0. It should be
replaced with addBack() as indicated in the documents.

The process includes parsing document notes to map dep-
recated functions to new APIs, storing the information, and
forming a complete API mapping dataset to facilitate code
replacement.

IV. TOOL IMPLEMENTATION

This section integrates the above migration methods for the
jQuery API and implements it as a Node.js-based command-
line tool. It utilizes Babel[15] to upgrade jQuery from the
existing version to the target version. The tool statically
analyzes a given JS file, identifies deprecated jQuery APIs,
and replaces them. It then generates a new AST structure,
translates it back into JS code, and replaces the source file,
effectively updating it to the new version of the jQuery API.

A. Tool implementation method

Figure 2 describes the main steps of the tool implemen-
tation. The specific implementation steps of the tool are as
follows.

1. Construct AST from code. The migration tool retrieves
the source code file and invokes the parsing module, which
first parses the source code to construct an AST, and then
examines the nodes in this AST tree.

With Babel’s code parser, the tool converts the code text
into AST for analysis. The AST makes it easy to categorize
the code by nodes, which is also applicable to weakly typed
languages like JavaScript.

2. Locate the jQuery API invocations. The migration tool
finds the jQuery API by searching the jQuery object as
described in section 2.4. It utilizes Babel’s visitor pattern,
which is a method for AST traversal. This pattern involves
an object that defines methods to identify specific nodes in a
tree structure. By analyzing different types of nodes and their
characteristics, the tool can extract specific information about
each node in the code. To precisely locate the jQuery API
in the source code, the visitor adds a search for distinctive
symbols associated with jQuery nodes.

3. Replacement of the deprecated API invocations. After
obtaining the node of the jQuery API, the function name
within the node is judged and compared with the database
obtained by processing the API documents in Section 2.3. If
the API is marked as deprecated in the new version, it will be
captured. Subsequently, the API mapping algorithm described
in Section 2.5 is executed, and the function nodes with the
deprecated API are replaced with the new version of the API
node structure.

In the replacement process, the tool will replace the data
(mapping pairs of the old and new APIs) also for structural
parsing, the replacement content into function names, param-
eters, return values, and the corresponding set of node parser,
according to the replacement type to replace the node of the
AST structure.

4. Generate the target source code. After replacing the nodes
with old APIs, the migration tool retrieves the complete AST
structure of the source file and utilizes Babel to reverse parse
the syntax tree into JS code, which is finally written into the
source file.

83

Fig. 5. andSelf Replace Info.

Fig. 6. jQuery API upgrade tool result.

Ultimately, the tool identifies and replaces the API by
inputting the source file code and the target jQuery version,
abstract syntax tree parsing through Babel, and finally gen-
erates the replaced source code file. It parses the AST using
Babel and then generates the modified source code file.

B. Tool application

This subsection explains how to use the tool. For projects
that upgrade the jQuery API version, the tool can be run
by configuring the script command. The script is run by
declaring it in the scripts in the package.json file and setting
the name of the script to run to ”jQapiUpgade”: ”node
src/UpgradeJquery.js”. The script can support adding the
target version parameter to upgrade the project to the specified
version of jQuery, add the –version parameter to the script,
then the tool will accept the target version and replace the
jQuery API with the specified version of the API during
the API version upgrade process. After the script has been
declared, the user can quickly execute the script with the help
of the compiler or execute script commands in the console to
upgrade the project’s jQuery API.

After executing the command, the tool will automatically
traverse the project’s files to determine the jQuery API used
in the project and automatically process the replacement API.
if the tool finds that there is a deprecated API that needs to be
replaced, it will output the location of the deprecated API and
the information about the API that will be replaced on the
command line and automatically replace the code. Figure 6
describes the console prompts for upgrading the zTree project
with the API Upgrade Tool.

V. EXPERIMENTS

In this section, we verify the capabilities of the jQuery API
version migration tool through several experiments. We try to
address the following research questions.

RQ1: Can the jQuery version migration tool accurately lo-
cate and replace jQuery APIs in actual projects automatically,
and what is its accuracy?

RQ2: What are the differences between this jQuery version
migration tool and other jQuery API version upgrade tools?

A. Experimental Datasets

To realistically and accurately evaluate the research, we select
GitHub projects that depend on jQuery library, filtering to
get those with a high star count (at least 1000 stars) and
using older jQuery versions. This selection closely aligns with
real project needs, as many projects stop updating due to
jQuery version changes, which may cause some unexpected
functionalities.

When selecting projects, we also check user feedback on
the issues to see if users reported functionality issues due
to jQuery version problems. This filter further verifies the
necessity of upgrading the jQuery version. After these filtering
criteria, we select 10 projects for experimental validation, per-
forming actual jQuery API upgrades (see Table I). The “issue
count” indicates the number of issues related to functionality
problems due to jQuery version changes from the GitHub user
issue list. For the tenth project DataTables, since the developer
did not enable issue reporting, the issue count is unavailable,
but a preliminary check detected deprecated API usage.

TABLE I
GITHUB PROJECTS THAT INCLUDE JQUERY.

name Star jQuery Version ISSUE
zTreev3 4k 1.4.4 5

bootstrap-table 11.6k 1.7.0 4
samizdatco/arbor 2.6k 1.6.1 5
jquery/jquery-ui 11.2k 1.8.0 3
OwlCarousel2 7.8k 1.8.3 8

Jquery-form/form 5.2k 1.7.2 3
jQueryAutocompletePlugi4 5.2k 1.4.4 8

tus-jquery-client 165k 1.9.1 4
Jquery-steps 1.7k 1.9.1 6
DataTables 7.2k 1.12.1 3

B. Experimental Process

We describe the experimental process of using the jQuery
API migration tool on the zTree3 project. The jQuery version
in zTree is 1.4.4, and we aim to upgrade it to the latest
version, 3.7. According to the method of handling jQuery API

3zTree is a multi-functional “tree plugins.” based on jQuery. It can be
accessed from https://github.com/zTree/.

84

documents described in Section 3.3, we identify the migration
changes from version 1.4.4 to 3.7, finding 68 deprecated func-
tions. Thus, the project might encounter up to 68 deprecated
functions during the upgrade.

Next, we locate and replace jQuery APIs in zTree to
see whether these 68 deprecated functions are used. Before
replacing the jQuery APIs, if the console returns an error “xxx
is not a function”, it indicates deprecated function usage during
the update.

Then, using the jQuery version migration tool, we search for
all JS files using the jQuery API bind() method and locate all
jQuery object references in all JS files by parsing them with
AST. According to the steps for obtaining replacement API
information described in Section 3.5, we find that 32 files in
the zTree project contained references to the deprecated bind()
function.

Finally, we validate the migration results. After the jQuery
version migration, the zTree project runs normally, and pre-
vious error messages are eliminated. Functionality tests also
confirm the normal operation, and we check the replaced parts
to ensure proper functionality.

We then apply the jQuery API migration tool to the remain-
ing 9 projects, upgrading their jQuery versions to the latest
version, 3.7. Table II records the migration results for each
project and lists the deprecated APIs detected by the migration
tool. For 10 projects, our tool gets an average accuracy of
74.2% and solves 5 projects completely. Thus, we answer
RQ1.

Note that for the third project arbor, some functions are
similar to jQuery APIs, such as bind(). Although this function
name is equal to the jQuery bind API, it is a customized
method by programmers. The jQuery version migration tool
can handle this by traversing the AST to determine whether
the final call node object is a jQuery object, avoiding incorrect
replacements. In the arbor project, certain upgraded function-
alities required specific event triggers for validation. We wrote
specific test cases to verify the functionality after the method
migration. Proposing a general test method for verification
would make the validation work more effective.

TABLE II
THE JQUERY VERSION MIGRATION AND UPGRADE RESULTS.

Project Target
Ver.

Current
Ver. Total Find Replace

Acc.
Find
Acc.

zTreev3 3.7 1.4.4 5 5 100% 100%
bootstrap-table 3.7 1.7.0 0 0 100% 100%

samizdatco/arbor 3.7 1.6.1 2 2 100% 100%
jquery/jquery-ui 3.7 1.8.0 4 4 75% 100%
OwlCarousel2 3.7 1.8.3 4 4 75% 100%

Jquery-form/form 3.7 1.7.2 8 7 100% 87.5%
jQueryAutocompletePlugin 3.7 1.4.4 10 8 87.5% 80%

tus-jquery-client 3.7 1.9.1 4 2 100% 50%
Jquery-steps 3.7 1.9.1 12 11 90.1% 91.6%
DataTables 3.7 1.12.1 3 5 100% 66.7%

C. Experimental Results and Evaluation

We compare the jQuery version migration tool with VSCode’s
built-in @type type declaration feature to verify the migration
tool’s accuracy and coverage. To verify the migration accuracy

and compare the experimental methods, we conduct manual
verification. Manual verification determines the usage of dep-
recated APIs in each project during the migration process
and compares these findings with the tool’s detection results.
Manual verification is more accurate and can cover almost
all areas involving APIs. Thus, we manually verified these
10 projects for API detection and handling during the jQuery
version upgrade.

TABLE III
OUR TOOL VS. VSCODE: OBSOLETE FUNCTION DETECTION.

name VSCode Our
Tool

Total
APIs

Acc.
(VSCode)

Acc.
(Our Tool)

zTreev3 5 5 5 100% 100%
bootstrap-table 0 0 0 100% 100%

samizdatco/arbor 2 2 2 100% 100%
jquery/jquery-ui 4 4 4 100% 100%
OwlCarousel2 3 4 4 75% 100%

Jquery-form/form 6 7 8 75% 87.5%
jQueryAutocompletePlugin 16 8 10 50% 80%

tus-jquery-client 0 2 4 0% 50%
Jquery-steps 1 11 12 8.3% 91.6%
DataTables 2 5 3 66.7% 66.7%

The comparison results are shown in Table III. Our tool
identifies and updates deprecated APIs used in the projects
to a higher jQuery version, achieving an average accuracy
of 74.2%, while VSCode gets an accuracy of 61.4%. It is
remarked that the tool’s accuracy will decrease in cases where
it couldn’t determine if the object is a jQuery object. The
difference in replacement method accuracy mainly stems from
developers rewriting or renaming API methods, causing the
tool to incorrectly map nodes, leading to lower replacement
accuracy.

VI. CONCLUSION

This paper proposes a tool for jQuery API version migration
by processing API document information based on abstract
syntax tree. It can automatically realize API processing af-
ter the jQuery version upgrade, fix the deprecated methods
generated by the upgrade, and form API mapping based on
the official documents. Through experiments on 10 popular
projects from Github, the jQuery API version migration tool
has an average accuracy of 74.2% in recognizing the depre-
cated jQuery API, which provides a better recognition range
and accuracy compared with the @type plug-in for Visual
Studio.

Since the research object in this paper is mainly jQuery,
our tool has not been able to realize API migration for other
third-party JS libraries. For future work, we hope to continue
the research on version migration for other third-party libraries
on JavaScript and realize version migration for multiple third-
party libraries.

VII. THANK

This work is supported by NSFC(No.62272416) and the Na-
tional Key Research Project of China(No.2023YFA1009402).

85

REFERENCES

[1] W3Techs. “Usage statistics and market share of
JavaScript libraries for websites”. https://w3techs.com/
technologies/overview/javascriptlibrary/all.

[2] Danny Dig and Ralph Johnson. “How do APIs evolve?
A story of refactoring”. In: Journal of software main-
tenance and evolution: Research and Practice 18.2
(2006), pp. 83–107.

[3] Erik Derr et al. “Keep me updated: An empirical
study of third-party library updatability on android”.
In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security. 2017,
pp. 2187–2200.

[4] Parastoo Mohagheghi and Reidar Conradi. “Quality,
productivity and economic benefits of software reuse:
a review of industrial studies”. In: Empirical Software
Engineering 12 (2007), pp. 471–516.

[5] Raula Gaikovina Kula et al. “Do developers update their
library dependencies? An empirical study on the impact
of security advisories on library migration”. In: Empir-
ical Software Engineering 23 (2018), pp. 384–417.

[6] Li S et al. “Survey on Dependency Conflict Problem
of Third-party Libraries”. In: Journal of Software 34.10
(2023), pp. 4636–4660.

[7] Wei Wu et al. “An exploratory study of api changes and
usages based on apache and eclipse ecosystems”. In:
Empirical Software Engineering 21 (2016), pp. 2366–
2412.

[8] Wang Y et al. “Survey on Governance Technology
of Open-source Software Library Ecosystem: Twenty
Years of Progress”. In: Journal of Software 35.2 (2023),
pp. 629–674.

[9] Dave Methvin. jquery-migrate. https : / / github . com /
jquery/jquery-migrate.

[10] Dereck J Bridie, Shinsuke Matsumoto, and Shinji
Kusumoto. “unjQuerify: Migration of jQuery Snippets
to Modern Vanilla JavaScript APIs”. In: 2018 25th Asia-
Pacific Software Engineering Conference (APSEC).
IEEE. 2018, pp. 618–622.

[11] Romulo Nascimento, Eduardo Figueiredo, and Andre
Hora. “JavaScript API Deprecation Landscape: A Sur-
vey and Mining Study”. In: IEEE Software 3 (2022),
p. 39.

[12] Jing Yu, Chenguang Mao, and Xiaojun Ye. “A novel
tree-based neural network for android code smells de-
tection”. In: 2021 IEEE 21st International Conference
on Software Quality, Reliability and Security (QRS).
IEEE. 2021, pp. 738–748.

[13] Resig John. “jQueryAPI Document”. https://api.jquery.
com/.

[14] Resig John. “jQueryAPI Detail Document”. https://api.
jquery.com/API NAME/.

[15] Johannes Braams, Claudio Beccari, Javier Bezos, et al.
Babel. Version 3.58. Available at https : / / babeljs . io/.
2021.

86

Automated Generation of Commit Messages in Software Repositories

Varun Kumar Palakodeti, Abbas Heydarnoori
Department of Computer Science
Bowling Green State University

Bowling Green, USA
{varunkp, aheydar}@bgsu.edu

Abstract

Commit messages are crucial for documenting software
changes, aiding in program comprehension and mainte-
nance. However, creating effective commit messages is
often overlooked by developers due to time constraints
and varying levels of documentation skills. Our research
presents an automated approach to generate commit mes-
sages using Machine Learning (ML) and Natural Language
Processing (NLP) by developing models that use techniques
such as Logistic Regression with TF-IDF and Word2Vec, as
well as more sophisticated methods like LSTM. We used the
dataset of code changes and corresponding commit mes-
sages that was used by Liu et al. [12], which we used to
train and evaluate ML/NLP models and was chosen because
it is extensively used in previous research, also for compa-
rability in our study. The objective was to explore which
ML/NLP techniques generate the most effective, clear, and
concise commit messages that accurately reflect the code
changes. We split the dataset into training, validation, and
testing sets and used these sets to evaluate the performance
of each model using qualitative and quantitative evalua-
tion methods. Our results reveal a spectrum of effectiveness
among these models, with the highest BLEU score achieved
being 16.82, showcasing the models’ capability in automat-
ing a clear and concise commit message generation. Our
paper offers insights into the comparative effectiveness of
different machine learning models for automating commit
message generation in software development, aiming to en-
hance the overall practice of code documentation. The
source code is available at [2].

Index terms— Commit messages, Code documentation,
Machine learning, Natural language processing, Automated
commit message generation

1 Introduction

Commit messages play a vital role in software develop-
ment, documenting changes to facilitate an organized work-
flow and effective collaboration. They offer insights into the
what, why, and how of code modifications, aiding in track-
ing progress, understanding the development process, and
supporting debugging and future enhancements [4, 7, 14].
The increasing complexity and scale of software projects
underscore the necessity for commit messages, to ensure
clear communication. Such documentation is crucial in
open-source projects with diverse geographically contrib-
utors [7].

Crafting these messages manually in a fast-paced devel-
opment environment and with varying documentation skills
among developers leads to inconsistency, impacting code
reviews, maintenance, and debugging [7, 17]. Moreover,
under deadline pressures, developers might resort to generic
descriptions, omitting crucial details [7]. These challenges
highlight the potential of Machine Learning (ML) and Nat-
ural Language Processing (NLP) to automate commit mes-
sage generation, aiming to enhance both consistency and
quality of software documentation [5].

Significant efforts have been made in ML/NLP for au-
tomating commit message generation, including informa-
tion retrieval and LSTM methods. NMT [9] uses a neu-
ral machine translation algorithm to translate code diffs
into commit messages. NNGen [12] uses bag-of-words
model and cosine similarity without a training phase.
CoDiSum [19] and RACE [16] introduce tree-based neu-
ral networks and retrieval-augmented methods to improve
message accuracy and relevance.

Despite their innovation, existing ML/NLP models like
NMT, RACE, and CoDiSum face challenges such as high
computational demands data limitations, and scalability is-
sues, especially with Nearest Neighbors algorithms [9, 16,
19].

We chose conventional machine learning models over
modern transformer-based approaches to ensure efficiency

DOI: 10.18293/DMSVIVA2024-145

87

and lightweight operation. The primary reason was the abil-
ity of these ML models to run on the M1 chip and other
small computational devices. This approach allows for ef-
fective commit message generation without the need for
high-performance GPUs, making it more accessible and
practical for various environments. By focusing on ML
models, we aimed to balance performance with resource
efficiency, ensuring that our solution remains both power-
ful and adaptable to a wider range of hardware configura-
tions [8].

Our approach trains ML/NLP models on a dataset of
code changes and corresponding commit messages to learn
patterns crucial for generating effective commit messages.
Using the same dataset used by Liu et al. [12], we divided
the data into training, testing, and validation phases. Our
experiments, especially the Cosine Similarity with TF-IDF
and Nearest Neighbors algorithm achieving a BLEU score
of 16.82, showcase our model’s ability to align closely with
actual commit messages.

This paper explores lightweight ML/NLP approaches for
commit message generation, evaluating their efficiency, ef-
fectiveness, and architectural nuances. Through compre-
hensive comparative analysis and evaluations, including
BLEU scores and manual assessments, we provide insights
into the models’ performance and the potential of automat-
ing commit message generation.

This paper is organized as follows: Section 2 details our
approach, including data preparation and model training.
Section 3 evaluates the proposed approach. Section 5 dis-
cusses the approach and results. Section 6 addresses threats
to validity. Section 4 reviews related work. Section 7 con-
cludes the paper and provides future research directions.

2 Proposed Solution

This section describes our approach, data preprocess-
ing, data splitting, architecture, and training process of each
model.

We focused on models like cosine similarity with TF-
IDF, Word2Vec [3] combined with Logistic Regression, and
the PyTorch LSTM Model due to their efficiency and adapt-
ability in processing high-dimensional spaces and leverag-
ing pre-trained embeddings for enhanced performance. The
effectiveness of these selected models and the challenges
encountered with others such as XGBoost, SVM, Multino-
mial Naı̈ve Bayes, and DistillBERT, which either fell short
in scalability or were resource-intensive, are discussed com-
prehensively in subsequent sections.

Table 1 shows the categories of the approaches and high-
lights the algorithms used for each approach.

Table 1: Algorithms and Categories of Approaches

Category Algorithm/Approach

Similarity-Based K-Nearest Neighbors, Cosine
Similarity with TF-IDF

Ensemble methods XGBoost
Support Vector Ma-
chines

SVM

Probabilistic models Multinomial naı̈ve bayes
Neural Network models Simple RNN with MPS,

PyTorch LSTM Model, Dis-
tillBERT with Hugging Face
Transformer

Vector Space models Word2Vec with Logistic Re-
gression, Logistic Regression
with TF-IDF

Combined Similarity
and Vector Space

KNN with TF-IDF

2.1 Overview of the Proposed Solution

Our solution integrates machine learning and natural lan-
guage processing to craft commit messages, focusing on
improved data preprocessing and model architecture. We
aim to surpass the limitations of models like NMT, NNGen,
RACE, and CoDiSum by enhancing accuracy, efficiency,
and handling complexity, using standard evaluation metrics
for performance comparison.

2.2 Data Gathering

We utilized the dataset referenced in Liu et al. [12], orig-
inally compiled by Jiang et al. [9], a widely used benchmark
in the field for evaluating new and existing methods.

2.3 Data Preprocessing

Our data preprocessing includes normalization steps
such as whitespace stripping, lowercasing, tokenization,
special character removal, stop word elimination, lemma-
tization/stemming, and vectorization. Except for LSTM, all
machine learning models load data via a load data(path)
function, with preprocessing handled by built-in Python
functions and the NLTK library.

For LSTM, we wrote a custom script for preprocessing to
convert text to indices and build a vocabulary. This involved
tokenizing, lowercasing, removing special characters and
stop words, and tagging the start and end of sentences. We
then divided the data into training and test/validation sets.

A separate vocab.py script generated a vocabulary file,
vocab.txt, ranking tokens by frequency and incorporating
special tokens. Another script standardized input lengths to

88

100 tokens by padding or trimming, using the ¡PAD¿ token
as filler. The processed, padded files serve as the final input
for LSTM model training and testing.

2.4 Model Architecture

Our models, leveraging Word2Vec embeddings and TF-
IDF features, adopt straightforward architectures. The Co-
sine Similarity model, loads the data (training code changes
and commit messages) and converts it into numerical vec-
tors using TF-IDF.The model, trained on the Cosine Sim-
ilarity principle, identifies similar vectors and generates
commit messages by selecting the nearest vector from the
training data [2].

In contrast, our Logistic Regression model with TF-IDF
processes the data through a TF-IDF vectorizer and uses en-
coded commit messages for training. Implemented with Py-
Torch, it employs CrossEntropyLoss and Adam optimizer
on Apple Silicon M1 GPU. This model outputs commit
messages as text files. Both models are compared in Ta-
ble 2.

The Logistic Regression model takes minutes to train
and generate output, while the Cosine Similarity model
takes seconds due to different learning techniques.

For Word2Vec, we use a distinct vectorization approach.
Using Google’s Word2Vec trained on Google News data,
we employ a Cosine similarity-based Nearest Neighbors al-
gorithm. The data undergoes vectorization to generate word
embeddings, and the nearest vector match is used to gener-
ate commit messages. We also experimented with data pre-
processing using the NLTK library for stop word removal,
tokenization, and lower casing before vectorization.

To address scalability, we developed a Logistic Regres-
sion model integrated with Word2Vec, using similar prepro-
cessing steps plus lemmatization. This model follows the
same methodology as the TF-IDF model but uses Word2Vec
embeddings.

Execution times vary, with Nearest Neighbors taking
seconds and Logistic Regression taking minutes. Word2Vec
offers extensive vocabulary and relies on a pre-trained
model. A comparative analysis of Word2Vec-based mod-
els is given in Table 3.

Our LSTM-based model, built using PyTorch, is time-
consuming and resource-intensive. Given the sequential na-
ture of code changes, LSTM and Transformer models are
ideal for capturing complexities in commit message gener-
ation. Preprocessing involves tokenization, stop word re-
moval, and lemmatization. The data is then divided into
training, testing, and validation sets, and standardized to a
fixed length. The model’s architecture is shown in Fig. 1

The LSTM model’s Encoder processes the embeddings,
creating a hidden state transferred to the Decoder, which
generates commit messages sequentially. Training the

Figure 1: The architecture of the NLP model with the
LSTM approach

LSTM model takes hours, with output generation taking
minutes.

3 Evaluations and Results

In this section we present an evaluation of the models,
incorporating both qualitative and quantitative analyses to
assess their effectiveness in generating commit messages.

3.1 Research Questions

Our study aims to answer the following research ques-
tions,

RQ1: Which ML/NLP method is best for creating
commit messages? We will assess each model, comparing
their BLEU scores and conducting manual evaluations.

RQ2: How well do ML/NLP methods reflect human
understanding of code changes? Through manual re-
views, we aim to gauge how these generated messages align
with human perceptions and identify which outputs are pre-
ferred.

RQ3: How do Large Language Models (LLMs) like
ChatGPT compare with traditional ML/NLP methods?
We will prompt ChatGPT with code changes and compare
its commit messages with those from our models in manual
evaluations.

RQ4: Can simpler, quicker methods compete with
advanced models that require more resources? We will
test our streamlined models, designed for efficiency on the
Apple M1 chip, against more complex, resource-intensive
approaches.

89

Table 2: Comparison of TF-IDF based models

Feature Logistic Regression with TF-IDF Cosine Similarity with TF-IDF

Learning Type Supervised Learning Unsupervised Approach
Model Algorithm Logistic Regression (PyTorch) Cosine Similarity with Nearest Neighbors
Training Process Trains on numerical labels of input train-

ing data
No training is required, training data for the simi-
larity model

Hardware-utilized Apple Silicon (mps) Any CPU
Prediction Mechanism Classifies instances into categories Finds the nearest neighbor based on cosine simi-

larity
Model Complexity Involves weight adjustments and learn-

ing
Based on proximity in vector space

Interpretability Can interpret feature importance Straightforward (based on closest match in vector
space)

Table 3: Comparison of Word2Vec based models

Feature Logistic Regression with TF-IDF Cosine Similarity with TF-IDF

Learning Type Supervised Learning Unsupervised Approach
Model Algorithm Logistic Regression (PyTorch) Cosine Similarity with Nearest Neighbors
Training Process Trains on numerical labels of input train-

ing data
No training is required, training data for the simi-
larity model

Hardware utilized Apple Silicon (mps) Any CPU
Prediction Mechanism Classifies instances into categories Finds the nearest neighbor based on cosine simi-

larity
Model Complexity Involves weight adjustments and learn-

ing
Based on proximity in vector space

Interpretability Can interpret feature importance Straightforward (based on closest match in vector
space)

3.2 Evaluations Setup

Our experiments were conducted in a Python environ-
ment with all necessary libraries specified in the require-
ments.txt file of our repository [2]. We used a MacBook Air
with an M1 chip for data preprocessing, model training, ex-
ecution, and evaluation. PyTorch’s MPS backend was used
for leveraging the M1 chip.

3.3 Model Evaluation Criteria

We used the BLEU score to evaluate the performance of
machine-generated text by comparing n-gram overlap be-
tween model output and human output [15]. We calculated
the BLEU score using the script from Liu et al. [12], initially
developed by Jiang et al. [9]. We also conducted manual
evaluations, categorizing diffs into small (under 50 tokens),
medium (50 to 75 tokens), and large (over 75 tokens) sets
for detailed analysis.

In all of the papers and approaches that we have come
across, BLEU, Meteor and Rouge-L are the most com-

mon metrics used for evaluation [16, 19]. However, Rouge-
L metric is usually chose for approaches involving sum-
marization tasks [11], our approach is deals with machine
translation and requires a task that can prioritize precision
and emphasize the establishment of the relevancy of the ma-
chine generated text to the original text on which the ma-
chine is trained on. Meteor, the other common metric is a
computationally complex approach, that deals with flexible
matching where synonyms and stemming is taken into ac-
count when judging the precision of text generated or com-
paring the machine generated text to original [10]. Hence,
we use BLEU has higher accuracy when comparing the gen-
erated text to original as well as BLEU’s approch penalizes
when the words that are being compared are shorter than
original [15].

3.4 Performance Results

Each model had a unique way of producing the output,
but most output messages generated had overlaps with other
models, the highest being 16.82. Table 4 can help under-

90

Table 4: BLEU scores of models

Model BLEU
Score

Cosine Similarity with TF-IDF and NN 16.82
Logistic Regression with TF-IDF 16.13
Cosine Similarity with W2V and NN 11.85
Cosine Similarity with W2V and NN (Prepro-
cessed Data)

15.01

Logistic Regression with W2V and Prepro-
cessed Data

3.17

LSTM Model 0.68

stand the comparative scores of the models.
Model evaluation was based on their ability to generate

commit messages for the test set of code changes. Each
model’s unique approach led to variations in performance
as shown in the table.

For manual evaluation, a script selected random diffs,
and we manually ranked the generated commit messages.
Comments were provided for each diff which explains the
choice.

3.5 Quantitative Results

The Cosine Similarity model with TF-IDF and Nearest
Neighbors achieved the highest BLEU score of 16.82 and
the Logistic Regression model with TF-IDF also performed
well with a BLEU score of 16.13.

In contrast, models using Cosine Similarity with
Word2Vec varied based on preprocessing, without prepro-
cessing they scored 11.85, and with preprocessing improved
to 15.01. The Logistic Regression model with preprocessed
Word2Vec data scored 3.17. The LSTM model achieved a
BLEU score of only 0.68, reflecting its limitations.

3.6 Qualitative Results

Our qualitative evaluation delved into the interpretation
of commit messages generated by various machine learning
algorithms, including LSTM and LLM technologies. Our
qualitative evaluation categorized diffs into small, medium,
and large sizes to assess model performance.

Small Diffs (Under 50 Tokens): The Logistic Regres-
sion model with TF-IDF consistently delivered outputs that
closely matched the actual commit messages, often outper-
forming the more detailed LLM outputs.

Medium Diffs (50 to 75 Tokens): LLMs like ChatGPT
generated commit messages that captured semantic depth,
often surpassing other models, but Logistic Regression with
Word2Vec model generated outputs that were aligned with
actual messages.

Large Diffs (Over 75 Tokens): LLMs provided demon-
strated contextual understanding of the code changes, al-
though sometimes exceeded the desired brevity. They ac-
curately identified specific components within diffs. All the
other methods did not produce good commit messages.

4 Related Work

In this section, we analyzed the related work in the field
of code documentation practice, focusing on and commit-
ting message generation for source code changes. We have
outlined our understanding and analysis of the research
work that was explored.

4.1 Revisiting Learning-based Commit Message
Generation

Dong et al. [6] underscored the importance of commit
messages in software development, analyzing various meth-
ods for automated generation, particularly learning-based
techniques. Their study examined the influence of datasets
and model components on output quality, comparing rule-
based, information retrieval-based, and learning-based ap-
proaches. They noted the advancements in deep learning
have enhanced these techniques, though traditional mod-
els may obscure code semantics, leading to subpar perfor-
mance. To address this, they introduced a two-stage gener-
ation paradigm that first creates an abstract representation
of the commit message, with details added subsequently,
thereby improving message relevance and clarity.

While Dong et al. [6] proposed a two-stage generation
process, our research implemented and evaluated differ-
ent models that utilize TF-IDF, Word2Vec, and LSTM in
the context of commit message generation. This not only
demonstrates the practical application of their theoretical
insights but also provides a comparative analysis of var-
ious models, contributing to a broader understanding of
ML/NLP applications in software documentation. Our re-
search stands out by offering empirical evidence on the
effectiveness of these models and adding to the existing
knowledge base in automated commit message generation.

4.2 Model Architecture

Jiang et al. [9] utilized a Neural Machine Translation
(NMT) approach, leveraging an encoder-decoder architec-
ture, to convert diffs into commit messages. They compiled
a substantial, quality-controlled commit dataset from size-
able projects and trained their NMT model on this data [9].

NNGen uses a bag-of-words model to convert diffs into
vectors, then applies cosine similarity to find the most simi-
lar diffs using the Nearest Neighbors algorithm in the train-

91

ing set, streamlining the commit message generation pro-
cess [12].

CoDiSum (Code Difference Summarization), a tree-
based neural network model proposed by Shengbin Xu et
al. [19], addresses limitations of prior commit message
generation methods, particularly in understanding code
structure and handling out-of-vocabulary (OOV) issues.
CoDiSum’s encoder captures the syntactic framework and
semantic representation of code, identifying and replacing
code identifiers with placeholders. This process helps in
generating more accurate commit messages. The decoder,
a multi-layer unidirectional GRU, uses attention weights
and a context vector to generate commit messages word by
word, integrating a copying mechanism for OOV words.
This mechanism calculates a distribution over the struc-
ture sequence, allowing the model to directly copy specific
terms from the code, thereby maintaining technical accu-
racy. CoDiSum combines generation and copying probabil-
ities, using a sigmoid function to determine the final word
choice in the commit message.

The RACE (Retrieval-Augmented Commit Message
Generation) model is a two-module approach for generat-
ing commit messages from code changes. The model uti-
lizes Information retrieval of similar commits and a Neu-
ral Network approach for the generation of commit mes-
sages. The first phase is information retrieval where the
model identifies the most similar code change from a large
dataset using Cosine similarity [16]. The dataset consists
of around a million pairs of code changes and correspond-
ing commit messages. Once the information retrieval phase
successfully finds a similar diff, it is passed to the second
phase, where the encoder utilizes a Transformer-based ar-
chitecture, Feed Forward Network. Based on the similar-
ity of the input and the retrieved diff - commit message
pair, the model decides how much the example should in-
fluence the new messages and produces an encoding, that
will be passed to the decoder. The decoder, which is also a
Transformer-based component, generates the commit mes-
sage token by token. To generate the next token the model
takes into consideration of the previous token to keep the
commit message tokens meaningful [16].

The models using the encode-decoder seq2seq ap-
proaches are complicated and require high-performance
computational capacity compared to simple and lightweight
approaches like ours. CoDiSum relies on understanding the
semantics of the code changes, but our approaches are in-
dependent of the semantics so when our models encounter
a new code change we base our output on the most similar
vector whereas CoDiSum puts its efforts into understand-
ing the code change’s semantics if the semantics and logic
of the code are complex the right commit message may not
be generated. The major disadvantage of RACE is the re-
liance on information retrieval for commit message genera-

tion, our models in comparison are much more agile to any
code change as they depend on vector similarity, and all of
our models are straightforward and potentially faster to im-
plement than RACE’s two-module system.

4.3 Data Preprocessing

Data preprocessing is a critical phase in commit mes-
sage generation, with each model adopting distinct but
sometimes overlapping strategies. The NMT model fo-
cuses on cleaning commit messages by extracting relevant
lines, removing identifiers, and avoiding large diffs, ensur-
ing meaningful tokenization. CoDiSum goes further by ex-
tracting code structure and semantics, replacing identifiers
with placeholders, and employing a copying mechanism
for better message accuracy by including out-of-vocabulary
words. NNGen simplifies diffs into vectorized “bags of
words,” prioritizing term frequency over syntax or order.
RACE’s unique preprocessing uses token-level actions to
depict code changes, utilizing tags to emphasize code mod-
ifications.

Compared to these approaches ours involves more thor-
ough data cleaning processes, ensuring the removal of ir-
relevant or noisy data which is critical for the quality of
the input. sophisticated tokenization strategies that go be-
yond simple white-space or punctuation-based methods. In
the case of word2Vec, it inherently understands the syntac-
tic and semantic aspects of programming languages. Our
preprocessing steps are optimized to complement the archi-
tecture of your chosen ML models, enhancing their learning
efficiency.

5 Discussion

Our models demonstrated unique performance in gen-
erating commit messages, with notable overlaps. The TF-
IDF Logistic Regression model generally produced outputs
closer to actual commit messages compared to others, in-
cluding the Word2Vec Cosine Similarity model, where data
preprocessing showed limited impact.

To answer our RQ1, regarding the ML/NLP method that
is best for creating commit messages, the TF-IDF Cosine
Similarity model led in BLEU scores, indicating strong
performance in generating commit messages. However,
manual evaluations involving the qualitative analysis re-
vealed the TF-IDF Logistic Regression model produced
more accurate commit messages for certain diffs as for the
LSTM model, given the available data and computational
resources, may not be the most effective approach.

Concerning RQ2, regarding how well do ML/NLP mod-
els reflect human understanding of the code changes, the
interpretation of code changes varies significantly among

92

individuals, often not aligning with actual or generated mes-
sages. Yet, for medium and small diffs, some model’s
outputs did match human interpretation. For example, the
model using the TF-IDF with Logistic Regression has been
noted to match the understanding of code changes in the
same way that the authors of the original commit messages.

Regarding RQ3, Large Language Models (LLMs) like
ChatGPT, outperformed all ML and NLP models in man-
ual evaluations, demonstrating a human-like understanding
unmatched by traditional approaches.

For RQ4, dealing with the conundrum of whether sim-
ple and quicker methods compete with advanced models
that require high computational power, we want to empha-
size that even though RACE model holds the highest BLEU
score (25.66), our TF-IDF Cosine Similarity model sur-
passed other approaches like NMT, NNGen, and CoDiSum
in BLEU score performance, achieving 16.82, yet RACE
remains the top performer in this field. Hence, simple ap-
proaches that can be run locally cannot be dismissed when
it comes to generation of commit messages.

Table 5 shows the comparison of BLEU scores and com-
pares the BLEU scores of the models that we designed to
approaches that were contributed earlier to this domain. Ta-
ble 5 does not include the pre-trained models. The BLEU
score for ChatGPT could not be included as it was not re-
leased.

Also, over the course of our research through the last
year, there have been significant efforts in leveraging LLMs
like ChatGPT for commit message generation. Researchers
have explored various aspects of using ChatGPT, and re-
viewing their work, we have made some observations such
as the context-aware, superior performance of ChatGPT.
In 78% of the evaluated samples, commit messages gen-
erated by ChatGPT were rated the best by human partici-
pants when compared to human-written commit messages,
demonstrating their ability to produce high-quality, contex-
tually accurate messages [20]. Although LLMs are highly
capable, their accessibility and security concerns are rea-
sons to prefer alternatives where the models are deployed
locally, like our approach. Considering a scenario where an
enterprise environment that spans across the globe requires
implementing a model for enhancing their code documen-
tation practice, LLMs like ChatGPT would need access to
proprietary information to generate commit messages. In
this scenario, there would be a higher preference for a model
that runs locally.

Even though a model can run locally, for example the
Llama developed my Meta and the variants of Llama LLM
were primarily developed to run locally, but its entire State
Dictionary that is publicly available consists of billions of
tokens [18], making the model more generic to be an LLM,
rather than our approaches that focus primarily on commit
messages and code changes and are built on data gathered

Table 5: Comparison of BLEU scores of models

Model BLEU
Score

RACE [16] 25.66
Cosine Similarity with TF-IDF and NN 16.82
NNGen [12] 16.42
Logistic Regression with TF-IDF 16.13
Lucene [1] 15.61
NMT [9] 15.52
Cosine Similarity with Word2Vec and NN
(Preprocessed Data)

15.01

Cosine Similarity with Word2Vec and NN 11.85
CommitGen [13] 14.07
CoDiSum [19] 13.97
Logistic Regression with Word2Vec and Pre-
processed Data

3.17

LSTM Model 0.68

for this purpose.
A significant advantage of LLMs that was observed in

our research and the research efforts of Zhang et al. [21] was
that the LLMs outperformed all the traditional models when
the code diff size is large, i.e. when the tokens in the code
diff exceeds 100 tokens, as pointed out in our evaluation of
the large category of diffs. Zhang et al. [21] also notes that
large diffs are not a majority of the cases when it comes to
code changes. Also, there is a significant gap in real time
adaptation of LLMs for code documentation as noted by the
researchers.

6 Threats to Validity

In this section, we scrutinize the potential threats to the
validity of our research, divided into internal validity, exter-
nal validity, and reliability, to better understand their impact
and strategize mitigations.

6.1 Internal Validity

One significant threat in our study is the integrity of the
commit message data. If the developer’s commit messages
in the Java repos- itories we collected do not accurately re-
flect the associated diffs, our models could be trained on
misleading data. The vast number of commit messages
makes it unfeasible to manually validate each one for accu-
racy and relevance to its diff. Any discrepancies between
the commit messages and the actual code changes could
lead to models learning incorrect patterns, thus affecting the
quality of the generated commit messages. But our source
for the dataset is the same as the published work of Liu et

93

al. [12] whose work, in turn, uses the dataset from Jiang et
al. [9]

6.2 External Validity

Our research is bound to the Java programming lan-
guage, chosen for its ubiquity and prevalence in software
development [9]. This choice means our trained models
are fine-tuned to the patterns and idioms of Java and may
not generalize well to other programming languages with-
out additional modifications. This language-specific fo-
cus presents a limitation in applying our findings to the
broader field of automated commit message generation
across diverse programming languages. To enhance the ex-
ternal validity, future work should consider incorporating
datasets from various programming languages. This expan-
sion would necessitate adjusting preprocessing routines to
accommodate different syntactic and semantic structures,
as well as retraining the models to recognize and process
language-specific constructs accurately.

6.3 Reliability

Reliability concerns the reproducibility of our findings,
manual evaluations can introduce subjectivity and bias. In
our case, the evaluators are proven to show a significant
level of experience and expertise with the Java program-
ming language. Their review can be found in the reposi-
tory [2].

7 Conclusions and Future Work

Generating commit messages poses a significant chal-
lenge, necessitating messages that are not only compre-
hensible to humans but also accurately reflect the context
of code changes. Our investigation into various machine
learning algorithms revealed that the Cosine Similarity with
Nearest Neighbors and Logistic Regression algorithms are
notably effective and computationally efficient for this pur-
pose. However, their performance excels predominantly
with smaller diffs, aligning closely with human interpreta-
tions of code changes. In contrast, Large Language Mod-
els (LLMs) like ChatGPT demonstrated superior perfor-
mance for larger diffs. Our attempt to develop a lightweight
LSTM model, despite being tuned for better performance,
fell short of the effectiveness seen in models utilizing high-
performance GPUs. Interestingly, the model with the high-
est BLEU score did not always surpass those with lower
scores, especially within the realm of smaller diffs, where
the Logistic Regression with TF-IDF vectorizer showed su-
perior results.

Moving forward, we aim to broaden our exploration into
commit message generation, considering the potential of

various pre-trained models to enhance our approach. The
objective is to develop a model that deeply understands the
nuances of diffs in a human-like manner, effectively utiliz-
ing new and untrained words within the diffs. The ideal gen-
erated message should be concise, not exceeding 72 charac-
ters, yet meaningful. Additionally, optimizing the prepro-
cessing of diffs for model training and focusing on accu-
rately capturing the “what” aspect of changes remain prior-
ities. This approach seeks to improve the model’s prefer-
ence among human evaluators, ensuring it is adaptable for
training on both CPU and GPU environments.

We shall explore modern technologies and LLMs like
ChatGPT, Mistral AI and Meta-Llama and others. We have
previously seen the potential of ChatGPT during out manual
evaluation. We should explore models that have a potential
for contextual awareness as to understand the semantic con-
text of the code change that has been made, and generate an
appropriate output in the form of commit message.

References

[1] Apache lucene. https://lucene.apache.org/. Ac-
cessed: 07-01-2024.

[2] Automated Generation of Commit Messages in Soft-
ware Repositories. https://doi.org/10.5281/
zenodo.10888106. Accessed: 07-01-2024.

[3] Word2Vec. https://code.google.com/archive/
p/word2vec/. Accessed: 07-01-2024.

[4] R. P. Buse and W. R. Weimer. Automatically documenting
program changes. In Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineer-
ing, pages 33–42, 2010.

[5] J. Chen and Y. Xiao. Harnessing knowledge and reasoning
for human-like natural language generation: A brief review.
arXiv preprint arXiv:2212.03747, 2022.

[6] J. Dong, Y. Lou, D. Hao, and L. Tan. Revisiting learning-
based commit message generation. In Proceedings of the
45th IEEE/ACM International Conference on Software En-
gineering, pages 794–805, 2023.

[7] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. BOA:
A language and infrastructure for analyzing ultra-large-scale
software repositories. In Proceedings of the 35th IEEE/ACM
International Conference on Software Engineering, pages
422–431, 2013.

[8] M. Jafari, F. Majidi, and A. Heydarnoori. Prioritizing app
reviews for developer responses on Google Play. In Pro-
ceedings of the 30th International DMS Conference on Vi-
sualization and Visual Languages, October 2024.

[9] S. Jiang, A. Armaly, and C. McMillan. Automatically gen-
erating commit messages from diffs using neural machine
translation. In Proceedings of the 32nd IEEE/ACM Inter-
national Conference on Automated Software Engineering,
pages 135–146, 2017.

[10] A. Lavie and M. Denkowski. The METEOR metric for au-
tomatic evaluation of machine translation. Machine Trans-
lation, 23:105–115, September 2009.

94

[11] C.-Y. Lin. ROUGE: A package for automatic evaluation of
summaries. In Proceedings of the ACL Workshop: Text Sum-
marization Braches Out, January 2004.

[12] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang.
Neural-machine-translation-based commit message gener-
ation: How far are we? In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering, pages 373–384, 2018.

[13] P. Loyola, E. Marrese-Taylor, and Y. Matsuo. A neural ar-
chitecture for generating natural language descriptions from
source code changes. arXiv preprint arXiv:1704.04856,
2017.

[14] P. R. Mazrae, M. Izadi, and A. Heydarnoori. Automated
recovery of issue-commit links leveraging both textual and
non-textual data. In Proceedings of the 37th IEEE Interna-
tional Conference on Software Maintenance and Evolution,
pages 263–273, 2021.

[15] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: A
method for automatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 311–318, 2002.

[16] E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang,
and H. Sun. RACE: Retrieval-augmented commit message
generation. arXiv preprint arXiv:2203.02700, 2022.

[17] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu. What
makes a good commit message? In Proceedings of the 44th
IEEE/ACM International Conference on Software Engineer-
ing, pages 2389–2401, 2022.

[18] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

[19] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu. Commit
message generation for source code changes. In Proceed-
ings of the 28th International Joint Conference on Artificial
Intelligence, pages 3975–3981, 2019.

[20] L. Zhang, J. Zhao, C. Wang, and P. Liang. Using large lan-
guage models for commit message generation: A prelimi-
nary study. arXiv preprint arXiv:2401.05926, 2024.

[21] Y. Zhang, Z. Qiu, K. Stol, W. Zhu, J. Zhu, Y. Tian, and
H. Liu. Automatic commit message generation: A critical
review and directions for future work. IEEE Transactions
on Software Engineering, 50(4):816–835, April 2024.

95

Prioritizing App Reviews for Developer Responses on Google Play

Mohsen Jafari*

Department of Computer Science
Bowling Green State University

Bowling Green, USA
mjafari@bgsu.edu

Forough Majidi*

Department of Comp. and Soft. Eng.
Polytechnique Montréal

Montréal, Canada
forough.majidi@polymtl.ca

Abbas Heydarnoori
Department of Computer Science
Bowling Green State University

Bowling Green, USA
aheydar@bgsu.edu

Abstract

The number of applications in Google Play has in-
creased dramatically in recent years. On Google Play,
users can write detailed reviews and rate apps, with these
ratings significantly influencing app success and download
numbers. Reviews often include notable information like
feature requests, which are valuable for software mainte-
nance. Users can update their reviews and ratings anytime.
Studies indicate that apps with ratings below three stars are
typically avoided by potential users. Since 2013, Google
Play has allowed developers to respond to user reviews,
helping resolve issues and potentially boosting overall rat-
ings and download rates. However, responding to reviews
is time-consuming, and only 13% to 18% of developers en-
gage in this practice. To address this challenge, we propose
a method to prioritize reviews based on response priority.
We collected and preprocessed review data, extracted both
textual and semantic features, and assessed their impact on
the importance of responses. We labelled reviews as requir-
ing a response or not and trained four different machine
learning models to prioritize them. We evaluated the mod-
els’ performance using metrics such as F1-Score, Accuracy,
Precision, and Recall. Our findings indicate that the XG-
Boost model is the most effective for prioritizing reviews
needing a response.

Index terms— Prioritizing App Reviews, Mobile Ap-
plications, Machine Learning, Sentiment Analysis, App
Stores.

*These authors contributed equally to this work.

1 Introduction

In recent years, the number of mobile apps in app stores,
including Google Play, has increased dramatically. In the
Google Play store, users can express their opinions and rate
apps [1, 19]. These reviews include reports of problems
and suggestions for app improvement. Also, app ratings
indicate users’ satisfaction and affect the number of down-
loads and the success of an app [16]. Studies show that the
app rating is a principal factor for users. Apps with a rat-
ing of less than three stars are not downloaded by 77% of
users [17]. To respond to user needs better, Google Play
introduced a feedback mechanism for developers in 2013.
To avoid receiving low ratings, developers must respond
to user reviews. However, responding to reviews is time-
consuming and costly, and less than 1% of reviews are re-
sponded to according [17]. Based on our knowledge, no
research has been done on prioritizing user reviews to re-
spond. Therefore, in this research, we have addressed the
existing gap in prioritizing user reviews to respond. Two
criteria are defined to measure the importance of reviews.
The first criterion is whether or not to respond to reviews,
and the second criterion is used to determine reviews that
need to be responded to urgently (high-priority reviews).

The approaches presented in this paper include the fol-
lowing main steps. First of all, user reviews and developer
responses are extracted from the Google Play store and are
preprocessed. Secondly, textual and semantic features are
extracted for each review and are measured the impact of
each feature on the importance of the response to the re-
view. Then we labeled our data based on response or not
necessary response. After training four machine learning
algorithms, their performances are evaluated. Finally, the

DOI: 10.18293/DMSVIVA2024-153

96

evaluations of several different apps with different proper-
ties indicate that the XGBoost algorithm shows the best per-
formance.

The proposed approaches in this paper have the follow-
ing main benefits for developers: (i) the volume of reviews
that the developer has to read and respond to is reduced; (ii)
Help developers decide which reviews to respond to; and
(iii) developers are helped to determine the high priority re-
views to respond.

The main contributions of this work include: (i) studying
the overall relationship between textual and semantic fea-
tures of reviews with developer responses, and identifying
and introducing the most influential features in the impor-
tance of reviews. This aims to perform more accurate and
comprehensive predictions of developer behaviour. Addi-
tionally, (ii) comparing the performance of four machine
learning algorithms for solving the problem of prioritizing
user reviews for responses, and selecting the best algorithm.

This paper is organized as follows. Section 2 presents the
proposed approaches. Section 3 provides the evaluations of
the proposed approach. Section 4 discusses the strengths
and weaknesses of the proposed approach. Section 5 pro-
vides an overview of related work. Finally, section 6 con-
cludes the paper and provides future research directions.

2 Proposed Solution

2.1 Approach Overview

We aim to develop a system for prioritizing user reviews
to respond. The proposed solution involves several steps
outlined in Figure 1. Initially, data is collected by select-
ing popular apps from Google Play and those referenced in
previous research. Web crawling is utilized to extract initial
information, which is then merged with existing datasets.
In the preprocessing stage, reviews undergo various treat-
ments such as language filtering, punctuation removal, and
stemming. Textual and semantic features are then extracted
in the third step to describe the reviews. Reviews are la-
beled based on whether a developer response is provided
or not. Four machine learning algorithms are employed,
including Decision Tree, Random Forest, Support Vector
Machine (SVM), and XGBoost to model developer behav-
ior. The impact of features on the output is assessed, and
models are trained and evaluated for the best performance
and result.

2.2 Data Collection

We aim to select datasets from a variety of app cate-
gories, such as photography, news, magazines, maps and
navigation. In the first step, several popular apps on Google
Play Store are identified. Then, all the information of these

Figure 1: Approach overview

Table 1: The structure of the dataset

No. Column Name Description

1 App Name The name of the unit that each app has
2 Review User feedback about the app
3 Review Rating The rating that the user gives to the app from 1 to 5
4 Review Submis-

sion Time
The date the user submitted their review

5 Total Helpful
Votes

The number of people who found the review helpful

6 Response The response that the developer registers for a review
7 Response Sub-

mission Time
The date the developer responded to the review

apps, including reviews and responses, is extracted by a web
crawler. The collected data is merged with the dataset from
the work presented in [7]. We gathered 431512 reviews that
were responded to or not responded to. The dataset consists
of the following 7 columns: App Name, Review, Review
Score, Review Submission Date, Total Useful Score of the
Review, Response, and Response Submission Date. The
structure of the dataset is illustrated in Table 1

2.3 Data Preprocessing

The reviews are in natural language and are posted by
individuals with different languages. Also, those who post
these reviews may have spelling mistakes due to time con-
straints. Therefore, it is necessary to preprocess the in-
put data. It should be noted that in this research, pre-
processing has been done at four levels: character, word,
sentence, and review. At the character level, punctuation
marks are removed. Moving to the word level, stop words
are eliminated, and letters become lowercase. Addition-
ally, spell-checking is conducted, and roots are identified
through morphological analysis, followed by general root
finding. Single-letter words are then removed. At the sen-
tence level, sentences are tokenized by breaking them down
into individual tokens. Finally, at the review level, non-
English reviews are removed, and reviews are segmented
into sentences for further analysis. Most of the functions we
use for preprocessing are from the NLTK library in Python.

2.4 Feature Selection and Extraction

In the field of machine learning, features are seen as mea-
surable characteristics of an event. Selecting independent

97

Table 2: Textual and Semantic Features of Reviews

Feature No. Feature Type Feature Name

1 Textual Clarity level of the review
2 Textual Length of the review
3 Textual Complexity level of the review
4 Textual Number of nouns in the review
5 Textual Number of verbs in the review
6 Textual Number of adjectives in the review
7 Textual Number of adverbs in the review
8 Semantic Sentiment of the review
9 Semantic Neutrality level of the review
10 Semantic Polarity level of the review
11 Semantic Rating of the review
12 Semantic Total usefulness score of the review
13 Semantic Informative level of the review
14 to 18 Semantic Purpose of the review
19 Semantic Title of the review
20 to 24 Semantic Number of commitment-expressing words
25 to 34 Semantic Review inclinations

and informative features is a fundamental step in using ma-
chine learning algorithms. After selecting suitable features
to describe the event, they are prepared as feature vectors
and fed into machine learning algorithms. It is necessary to
transform the reviews into a format understandable by the
computer. For this purpose, reviews need to be described
using various features. These features are divided into two
categories: textual and semantic which are introduced in
Table 2.

2.4.1 Textual Features

Textual features provide us with information about the text
of the review, but they do not provide any information about
the content of the review. The readability of review will
cause the developers to choose reviews that are more read-
able due to time constraints [12]. If the review length is
long, the more likely it contains important information [10].
For example, the two review samples “bad” and “bad user
interface, bad graphical design, the worst GUI.” are differ-
ent in terms of their level of difficulty, which may affect
how they are categorized by developers. Therefore, in this
study, review complexity is chosen as a feature to describe
the review. In [12], the total number of nouns and verbs
is introduced as a feature to describe reviews on the social
web. [3] also states that nouns and verbs convey the major-
ity of the meaning of a text. Therefore, the number of nouns
in review in each review is chosen as a textual feature to de-
scribe it. Also, there are considered textual features for the
number of verbs, adjectives, and adverbs.

2.4.2 Semantic Features

Semantic features in this study are descriptors related to
the content of reviews rather than the text itself. The fea-
tures extracted include the sentiment of the review, neu-
trality, polarity, review rate, total helpfulness score, infor-

mativeness, review purpose, review title, number of words
expressing commitment, and review tendencies. Sentiment
analysis is crucial as users may give positive reviews with
low ratings due to misinterpretation of how to rate an app
correctly [7]. Neutrality and polarity levels are introduced
as features characterizing reviews [12]. The review rate on
Google Play, ranging from 1 to 5 stars, reflects user satis-
faction and influences developer response likelihood [10].
The total helpfulness score indicates the perceived useful-
ness of a review. Informativeness, determined by TF-IDF,
gauges the richness of opinions. Review purpose cate-
gorization includes informative, feature request, problem
discovery, etc [26]. Review titles are considered signifi-
cant descriptors [24]. The count of commitment words like
“must” indicates persuasive elements [4]. Review tenden-
cies encompass categories like anger, sadness, and posi-
tive/negative feelings, each quantified by word count [20].
The article [24] highlights that user reviews and developer
responses have distinct sections with varying Topics and
purposes, influencing the responses. On Google Play, users
review diverse topics such as UI, security, and pricing. This
research used the LDA (Latent Dirichlet Allocation) model
to extract and categorize review topics. The LDA model,
trained on different numbers of topics, found 10 to be op-
timal. The scikit-learn library in Python was utilized to
implement the LDA algorithm and calculate topic assign-
ment probabilities. These features collectively contribute to
a comprehensive understanding of review content and aid in
prioritizing them for response.

2.5 Data Labeling

This section explains the labelling process of the col-
lected data. We use supervised learning methods, which
require data to be labelled. Our main goal is to prioritize
user reviews to respond. There are two approaches to do
the labelling:

1. In the first approach, reviews that have been responded
to by developers are given more importance and re-
ceive a label of 1, while reviews that have not been
responded to receive a label of 0.

2. In the second approach, reviews that have been re-
sponded to more quickly (three days or less) by devel-
opers are given more importance and receive a label
of 1, while reviews that have been responded to in a
longer time frame receive a label of 0.

2.6 Identifying Influential Features

In this study, machine learning algorithms convert train-
ing data into feature vectors for model input [23]. The Pear-
son correlation coefficient is used to analyze the correla-
tion between features and the output value, as well as the

98

correlation among features themselves. If multiple features
are highly correlated, redundant ones are ignored. The best
model is then selected based on its performance in prioritiz-
ing reviews.

2.7 Machine Learning Models

In this study, four classification algorithms, namely De-
cision Tree, Random Forest, Support Vector Machine, and
XGBoost have been used to learn developer’s behavior and
predict reviews that are of greater importance. Finally, a
comparison has been made on the performance of these
four models, and the best model has been selected. It is
worth mentioning that the reason for selecting these four al-
gorithms is their usage in other classification problems [2].
Additionally, these models represent the state of the art for
this kind of dataset, with each employing a completely dif-
ferent algorithm. They are lightweight, resource-efficient,
and have acceptable runtime execution. Once the classifica-
tion algorithms were determined, we proceeded to train the
models and evaluate their performance.

2.8 Prioritizing Reviews

This task is carried out from two perspectives. Firstly, it
is examined whether the target review is worth responding
to or not which we call Approach #1. For this purpose, after
preprocessing and extracting textual and semantic features,
machine learning methods are used to learn developers’ past
behaviour. The best model is selected for this perspective.
Secondly, the importance of the review to the developer is
indicated, and the decision is made on whether to respond
quickly or not which is called Approach #2. After training
the machine learning models, the best model for prioritizing
reviews from this perspective is selected. This model assists
the developer in deciding whether to respond to the review
promptly or defer the response to another time.

2.8.1 Approach #1: Prioritizing Reviews as Requiring
a Response or Not

In this approach, it is analyzed whether or not user reviews
should be responded to. A dataset of 123,130 labeled re-
views has been analyzed. After preprocessing and labeling
the data, the textual and semantic features have been ex-
tracted from the reviews. Table 3 shows the correlation of
each feature with the output variable in Approach #1.

After examining the correlation of each feature with the
output variable and extracting the features that have the
greatest impact on the output, we will train our models with
selected features. Table 3 illustrates the features that we
will use for Approach #1, highlighted in bold such as score,
length, or the readability of the review.

Table 3: Abbreviated Name, Full Name and Correlation of
Extracted Features with Output for Prioritizing Reviews for
Both Approaches

Abbr Feature Name Approach #1 Approach #2

F1 Total Useful Review Score 0.031 -
F2 Review Score -0.51 0.34
F3 Review Length 0.22 0.12
F4 Review Readability -0.16 0.2
F5 Review Complexity 0.21 0.13
F6 Neutrality -0.12 0.56
F7 Polarity of Review 0.23 0.42
F8 Number of Nouns 0.19 0.15
F9 Number of Verbs 0.026 0.33
F10 Number of Angry Words 0.025 0.36
F11 Number of Sad Words 0.007 0.36
F12 Number of Anxious Words 0.023 0.36
F13 Number of Negative Words 0.045 0.36
F14 Number of Positive Words 0.054 0.39
F15 No. of Words Commitment -0.26 0.36
F16 Review Sentiment 0.022 0.27
F17 Topic 0 0.12 0.4
F18 Topic 1 0.099 0.41
F19 Topic 2 -0.021 0.41
F20 Topic 3 -0.023 0.4
F21 Topic 4 0.028 0.4
F22 Topic 5 -0.17 0.41
F23 Topic 6 0.087 0.42
F24 Topic 7 -0.015 0.4
F25 Topic 8 -0.063 0.41
F26 Topic 9 0.12 0.41
F27 Number of Adverbs 0.18 -
F28 Number of Adjectives 0.26 -
F29 Review Informativeness 0.033 -
F30 Feature Request Category 0.092 0.36
F31 Problem Detection Category 0.014 0.36
F32 Information Request Category 0.13 0.36
F33 Informer Category -0.17 0.38
F34 Other Review Categories 1 0.83

Additionally, the features that are dependent on each
other were also identified. It should be noted that, among
the dependent features, the feature that has the highest cor-
relation with the output variable is kept and the other fea-
tures are removed from training the models. In this ap-
proach the features F3, F5, and F8 have strong correlations
over 0.9, so we just consider F3 for our model.

2.8.2 Approach #2: Prioritizing Reviews as High or
Low Priority for Response

In this approach, we determine whether or not a review
needs to be responded to urgently (i.e., in less than three
days) or not. For this purpose, data labelling is conducted
differently from the previous section. Initially, a dataset of
308,382 reviews is earmarked for implementation and eval-
uation. Subsequently, reviews updated after receiving a re-
sponse are removed due to a lack of initial post dates, leav-
ing 284,062 reviews. The average response time to reviews
of the dataset is calculated at 3.76 days, with reviews re-
ceiving responses within 0-3 days labelled as 1 and those
after 4 days as 0. Data is then preprocessed before extract-
ing textual and semantic features for each review. Notably,
four features (useful votes, informative votes, adverbs, and

99

Table 4: Results of the performance of the four selected
models for Approach #1

Model Accuracy F1 Score Recall Precision

Decision Tree 0.71 0.71 0.71 0.71
Random Forest 0.63 0.49 0.63 0.73
SVM 0.75 0.74 0.75 0.75
XGBoost 0.77 0.78 0.77 0.77

adjectives) are excluded. Pearson correlation coefficient is
employed to calculate the correlation between features and
output, as well as between features themselves. The corre-
lation of each feature with the output variable is depicted
in Table 3. Subsequently, our training models are evaluated
using 5-fold cross-validation, ensuring that the data is split
into five subsets, with each subset being used as a test set
once while the remaining four subsets are used for training.
No feature exhibits a correlation of less than 0.1 with the
output variable. However, certain features show high inter-
dependence, with features F8 to F11, F13, and F15 to F28
having correlations exceeding 0.9. Among them, only fea-
ture F21, with the highest correlation with the output vari-
able, is retained, while the others are discarded.

3 Evaluations

This section represents the results obtained from train-
ing four machine learning models for two approaches which
can be seen in Tables 4 and 5. The performance metrics we
used in this research are Accuracy, F1-Score, Recall, and
Precision.

3.1 Evaluations of Approach #1

In this section, the performance of the models trained in
Section 2.8.1 will be evaluated.

After determining the features that had a correlation of
more than 0.1 with the output variable and were also not
dependent on any other feature such as review score, re-
view length, and review readability, the selected models
were trained. The first part of Table 4 shows the results
obtained from the performance of each of the models when
considering only the selected features.

Table 4 shows that the XGBoost model has a higher F1-
Score than other models for this approach with a value of
0.77. The other performance metrics such as Accuracy with
a value of 0.78, Recall with a value of 0.78, and Precision
with a value of 0.77 have higher values as well. According
to the results obtained in this section, it can be concluded
that the proposed approach in this paper for prioritizing user
reviews to respond from the aspect of whether or not to re-
spond to a particular review works well and has achieved
very good and acceptable results.

Table 5: Results of the performance of the four selected
models for Approach #2

Model Accuracy F1 Score Recall Precision

Decision Tree 0.86 0.85 0.86 0.85
Random Forest 0.26 0.32 0.26 0.86
SVM 0.91 0.87 0.91 0.83
XGBoost 0.91 0.87 0.91 0.86

3.1.1 Case Study Evaluations

In this section, the best model obtained was tested on 10
popular applications. Firstly, ten popular applications from
ten different categories were selected, and then 2000 com-
ments were randomly selected for each application. After
selecting the applications, the best model obtained was eval-
uated on these ten applications. The mean of F1-Score for
theses 10 applications is 0.77 that shows the acceptable per-
formance of the selected model. Also, it can be concluded
that the presented model can be used for different types of
applications from different categories.

3.2 Evaluations of Approach #2

In this section, the performance of the models trained
in Section 2.8.2, which aim to prioritize reviews from the
perspective of the importance of responding to them more
quickly (3 days or less than 3 days), will be evaluated.

After determining the features that were not dependent
on any other feature like review readability, neutrality, and
polarity of review, the selected models were trained. The
second part of Table 5 shows the results of the performance
of each model.

Table 5 reveals that the proposed approach has the best
performance with an F1-Score of 0.87 using the XGBoost
algorithm. The other performance metrics of XGBoost have
higher values than other models. The Accuracy of 0.91,
Recall of 0.91, and Precision of 0.85 reveal the best per-
formance of XGBoost among other models used in this re-
search. It has also been observed that the proposed approach
works well and can be used to help developers prioritize re-
views for response.

3.2.1 Case Study Evaluations

In this section, the best-trained model is evaluated on 8
popular applications. Firstly, 8 popular applications from
different categories are selected and the selected model is
tested on 1000 to 1500 reviews from each of the applica-
tions. After running the best model, the mean of F1 Score
for all applications was 0.87 which is acceptable perfor-
mance of the selected model. Also, according to the result,
it can be concluded that the presented model is applicable
for different types of applications from different categories.

100

3.3 Threats to Validity

In this section, the threats to the validity of our results
are discussed. These threats are categorized into internal,
external, construct, and reliability threats.

• Internal Validity: The accuracy and performance of
the proposed approach are influenced by the features
considered (such as the number of sentences, and the
devices on which reviews are recorded) and the tools
and libraries used. To mitigate these threats, the study
uses well-known and accurate tools selected carefully.

• External Validity: The threat here is the potential in-
adequacy of collected data. This is addressed by us-
ing a crawler to extract reviews from many programs
and merging this data with existing data from another
source [7].

• Construct Validity: There is a concern about whether
the textual and semantic features considered are rele-
vant to the output. This is tackled by calculating the
correlation between features and the output variable
using Pearson’s correlation coefficient, demonstrating
that most selected features positively impact the prior-
itization of reviews.

• Reliability: This examines the consistency of results
with similar inputs. The study ensures reproducibility
through steps like preprocessing, feature extraction,
and model training. Despite the probabilistic nature
of machine learning, the study selects a diverse
range of reviews to achieve a comprehensive un-
derstanding and mitigate uncertainty. The source
code and dataset of the research are available at
https://github.com/ISE-Research/
App-Reviews-Prioritization.

4 Discussion

The evaluation results show that the XGBoost model has
the best performance for prioritizing reviews with an F1-
Score of 0.77 and 0.87 from Approach #1 and Approach #2.
Therefore, developers can use the models presented in this
study to prioritize user reviews and spend less time and ef-
fort responding to them.

In the analysis of our dataset, which consists of multi-
ple attributes including ’rate’, ’review length’, ’readability
score’, ’review subjectivity’, and several others, the XG-
Boost algorithm demonstrated superior performance com-
pared to SVM, Decision Tree, and Random Forest algo-
rithms. This can be attributed to XGBoost’s ability to han-
dle complex data interactions and its efficient implementa-
tion of gradient boosting, which allows it to capture intricate

patterns and relationships within the data. Unlike SVM,
which can struggle with large datasets and non-linear sep-
arations, XGBoost effectively scales with the dataset size
and complexity. Similarly, while Decision Trees can eas-
ily overfit and Random Forests, though more robust, may
not achieve the same level of accuracy and fine-tuning, XG-
Boost’s advanced regularization techniques and hyperpa-
rameter optimization make it more adept at producing high-
precision, high-recall, and high F1-Score metrics. This re-
sults in a more reliable and accurate predictive model for
our multi-attribute dataset, highlighting XGBoost’s efficacy
and robustness in handling diverse and intricate data struc-
tures.

Nevertheless, like any other method, this work also ex-
hibits both strengths and weaknesses. In terms of strengths,
it introduces a novel categorization of user reviews based on
two distinct approaches, incorporating a comprehensive ar-
ray of textual and semantic features. It also identifies a sub-
stantial number of features crucial for prioritizing reviews
for response, offering a fresh criterion for evaluating devel-
opers’ perspectives. The study’s validity is reinforced by its
analysis of reviews spanning various application categories,
and it carefully evaluates four machine learning algorithms
to determine the most effective one for review prioritiza-
tion. However, there are also weaknesses to consider. For
instance, we exclude reviews updated after receiving a re-
sponse due to limitations in accessing the initial posted date
on Google Play. If we have a larger dataset, we can use
deep learning techniques to achieve better results. Addi-
tionally, we can enhance the dataset with more features to
obtain more precise outcomes.

5 Related Work

The studies conducted on the reviews are classified into
several important areas: examining the relationship be-
tween users and developers, responding to user reviews,
user review features and developer responses, automated
response generation, user review classification, user re-
view feature extraction, user sentiment analysis, user review
analysis, and other divisions. Our main focus is on studies
that examine user reviews and developer responses.
Importance of Responding to User Reviews: The
study [17] concludes that as the number of downloads of
an application increases, the number of responses develop-
ers provide to user reviews decreases, and conversely, as the
number of downloads decreases, the number of responses to
user reviews increases. It has also been noticed that users
who initially rated an app with one star upgraded their rat-
ing to five stars after receiving a response.
Automatic Response Generation: The works in [25],
[7], [9] examine various techniques used for responding to
user reviews in apps, including linguistic patterns and key-

101

word similarities. These studies are based on two main ap-
proaches. In the first approach, a tool is provided to devel-
opers to help them respond to user reviews on Google Play.
This tool is the first automatic tool that does not rely on
pre-prepared or rule-based responses; instead, it uses neu-
ral networks to generate responses. The second approach
focuses on automatic response generation using neural ma-
chine translation networks. The article [11] presents Cha-
tReview, a ChatGPT-enabled NLP framework designed to
analyze domain-specific user reviews, offering personalized
search results and addressing challenges such as bias and
privacy.
Feature Extraction from User Reviews: [13], [8],
and [27] focus on the automatic extraction of features from
user reviews on internet sites. Finally, [13] deals with the
extraction and matching of features mentioned in app de-
scriptions and user reviews. The approach presented in [8]
investigates the factors that determine the perceived help-
fulness of user reviews. Specifically, it explores the cor-
relation between user innovativeness and the content of re-
views for innovative products, utilizing data gathered from a
questionnaire survey. [27] aims to extract feature-describing
phrases from app descriptions, align each app feature with
its corresponding user reviews, and construct a regression
model to determine which features exhibit significant asso-
ciations with app ratings. Finally, [1] proposes an approach
that assists in augmenting labeled datasets of app reviews
by utilizing information extracted from GitHub issues that
contain valuable information about user requirements.
Sentiment Analysis of User Reviews: In [15], a solution
for employing sentiment analysis tools in software engi-
neering datasets is presented. This work examines senti-
ment analysis in Stack Overflow discussions, JIRA issue re-
views, and Google Play reviews. [22] employs a pre-trained
RoBERTa language model for sentiment analysis and calcu-
lates cosine similarity for content-based recommendations.
In [5], the impact of deep learning on sentiment analysis of
Chinese reviews is examined.
Users’ Review Analysis: This section presents the work
related to the analysis of user reviews on internet sites. The
work in [21] deals with automatic review analysis using
clustering, TF-IDF, vector space model. [6] focuses on au-
tomatic insight extraction from user reviews over some time
and prioritizing them using Gaussian distribution, linear re-
gression, correlation coefficient, moving average, and Pear-
son correlation. [26] presents a tool for user review analysis
using Word2Vec, vector space model, TF-IDF, and mov-
ing average. [14] presents MApp-IDEA tool to identify and
categorize emerging concerns from user reviews, organiz-
ing them into a risk matrix with prioritization levels, and
tracking their evolution over time. Finally, [18] presents
UX-MAPPER, an approach to analyzing app store reviews
and helping practitioners in identifying key elements influ-

encing user experience.
Previous studies have used various machine learning

methods to classify features from user reviews effectively.
However, they have not explored using machine learning
to prioritize reviews for responses. This research addresses
this gap by collecting extensive datasets, identifying effec-
tive textual and semantic features for responding to reviews,
and utilizing machine learning methods for prioritization.

6 Conclusions and Future Work

In recent years, the number of mobile applications in mo-
bile app stores has been increasing, and every day a large
number of users post their reviews and rate applications.
Therefore, these users expect to receive a response from de-
velopers. Sometimes users increase their ratings after re-
ceiving a response from developers. As a result, to increase
the app rating, it is necessary to respond to user reviews.
However, responding to the large volume of reviews is one
of the challenges facing developers, and they are not able
to respond to all the reviews they receive. Therefore, it is
necessary to prioritize user reviews to determine whether
a developer should respond to a review or not. If so, it
is important to know the response urgency associated with
each review. In this paper, we proposed an approach based
on natural language processing and machine learning tech-
niques to prioritize users’ reviews to respond. According to
our evaluations, we observed that the XGBoost yields the
most favourable outcomes with the best F1-Score with the
value of 0.77 for Approach #1 and 0.87 for Approach #2
among other trained models for prioritizing user reviews re-
garding whether a response is necessary. Additionally, the
XGBoost model demonstrates superior performance in de-
termining the priority level of user reviews for response.

In the future, we plan to delve deeper into analyzing
more textual and semantic features, like the number of sen-
tences in a review, mentions of specific topics, and the
types of devices used for leaving reviews. It would also
be beneficial to test out different machine-learning algo-
rithms to see how they compare in terms of performance.
Additionally, it is important to see how well our approach
works specifically within the Apple Store. Another useful
step would be to categorize and group together reviews that
share similar content, making it easier for developers to re-
spond more effectively. Lastly, with the increased popular-
ity of Large Language Models (LLMs) and Generative AI,
we plan to work on generating automated responses to re-
views to streamline the process even further.

References

[1] Y. Abedini and A. Heydarnoori. Can GitHub issues help in
app review classifications? ACM Transactions on Software

102

Engineering and Methodology, July 2024.
[2] N. Ailon and M. Mohri. An efficient reduction of ranking to

classification. arXiv preprint arXiv:0710.2889, 2007.
[3] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and

S. Panichella. Improving IR-based traceability recovery via
noun-based indexing of software artifacts. Journal of Soft-
ware: Evolution and Process, 25(7):743–762, 2013.

[4] S. E. Crawford and E. Ostrom. A grammar of institutions.
American political science review, 89(3):582–600, 1995.

[5] M.-Y. Day and Y.-D. Lin. Deep learning for sentiment anal-
ysis on Google Play consumer review. In Proceedings of the
IEEE International Conference on Information Reuse and
Integration (IRI), pages 382–388, 2017.

[6] C. Gao, J. Zeng, D. Lo, C.-Y. Lin, M. R. Lyu, and I. King.
Infar: Insight extraction from app reviews. In Proceedings
of the 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of
Software Engineering, pages 904–907, 2018.

[7] C. Gao, J. Zeng, X. Xia, D. Lo, M. R. Lyu, and I. King. Au-
tomating app review response generation. In Proceedings of
the 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 163–175, 2019.

[8] Y. Goto and R. Tsuchihashi. What content of user reviews
is considered helpful? In Proceedings of the 12th Inter-
national Congress on Advanced Applied Informatics (IIAI-
AAI), pages 490–494. IEEE, 2022.

[9] G. Greenheld, B. T. R. Savarimuthu, and S. A. Licorish. Au-
tomating developers’ responses to app reviews. In Proceed-
ings of the 25th Australasian Software Engineering Confer-
ence (ASWEC), pages 66–70, 2018.

[10] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E.
Hassan. Studying the dialogue between users and developers
of free apps in the Google Play store. Empirical Software
Engineering, 23:1275–1312, 2018.

[11] B. Ho, K. L. Nguyen, M. Dhulipala, V. K. Pallipuram, et al.
ChatReview: A ChatGPT-enabled natural language process-
ing framework to study domain-specific user reviews. Ma-
chine Learning with Applications, 15:100522, 2024.

[12] C.-F. Hsu, E. Khabiri, and J. Caverlee. Ranking comments
on the social web. In Proceedings of the International Con-
ference on Computational Science and Engineering, vol-
ume 4, pages 90–97. IEEE, 2009.

[13] T. Johann, C. Stanik, A. M. Alizadeh B., and W. Maalej.
SAFE: A simple approach for feature extraction from app
descriptions and app reviews. In Proceedings of the 25th
IEEE International Requirements Engineering Conference
(RE), pages 21–30, 2017.

[14] V. M. A. d. Lima, J. R. Barbosa, and R. M. Marcacini.
MApp-IDEA: Monitoring app for issue detection and priori-
tization. In Proceedings of the XXXVII Brazilian Symposium
on Software Engineering, pages 180–185, 2023.

[15] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and
R. Oliveto. Sentiment analysis for software engineering:

How far can we go? In Proceedings of the 40th Interna-
tional Conference on Software Engineering, pages 94–104,
2018.

[16] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan. Analyzing
and automatically labelling the types of user issues that are
raised in mobile app reviews. Empirical Software Engineer-
ing, 21:1067–1106, 2016.

[17] S. McIlroy, W. Shang, N. Ali, and A. E. Hassan. Is it worth
responding to reviews? Studying the top free apps in Google
Play. IEEE Software, 34(3):64–71, 2017.

[18] W. T. Nakamura, E. C. C. de Oliveira, E. HT de Oliveira,
and T. Conte. Ux-mapper: A user experience method to ana-
lyze app store reviews. In Proceedings of the XXII Brazilian
Symposium on Human Factors in Computing Systems, pages
1–11, 2023.

[19] D. Pagano and W. Maalej. User feedback in the appstore:
An empirical study. In Proceedings of the 21st IEEE Inter-
national Requirements Engineering Conference (RE), pages
125–134, 2013.

[20] J. W. Pennebaker, M. E. Francis, and R. J. Booth. Linguistic
inquiry and word count: Liwc 2001. Mahway: Lawrence
Erlbaum Associates, 71(2001):2001, 2001.

[21] M. V. Phong, T. T. Nguyen, H. V. Pham, and T. T. Nguyen.
Mining user opinions in mobile app reviews: A keyword-
based approach. In Proceedings of the 30th IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE), pages 749–759, 2015.

[22] L. L. Scientific. Sentiment-based recommendation for on-
line shopping. Journal of Theoretical and Applied Informa-
tion Technology, 102(9), 2024.

[23] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto. Comments on researcher bias: the use of
machine learning in software defect prediction. IEEE Trans-
actions on Software Engineering, 42(11):1092–1094, 2016.

[24] P. M. Vu, T. T. Nguyen, and T. T. Nguyen. On building
an automated responding system for app reviews: What are
the characteristics of reviews and their responses? arXiv
preprint arXiv:1908.10816, 2019.

[25] P. M. Vu, T. T. Nguyen, and T. T. Nguyen. Why do app
reviews get responded: A preliminary study of the relation-
ship between reviews and responses in mobile apps. In Pro-
ceedings of the ACM Southeast Conference, pages 237–240,
2019.

[26] P. M. Vu, H. V. Pham, T. T. Nguyen, and T. T. Nguyen. Tool
support for analyzing mobile app reviews. In Proceedings of
the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 789–794, 2015.

[27] H. Wu, W. Deng, X. Niu, and C. Nie. Identifying key fea-
tures from app user reviews. In Proceedings of the 43rd
IEEE/ACM International Conference on Software Engineer-
ing (ICSE), pages 922–932. IEEE, 2021.

103

Improved Gaussian Mixture Model for Feature
Classification Based on Hypergraph Structure

1st Zhiwei Zhao
Dalian University of Technology

School of Computer Science and Technology
Dalian, China

1329065761@qq.com

2nd Qiang Zhang
Dalian University of Technology

School of Computer Science and Technology
Dalian, China

zhangq@dlut.edu.cn

3rd Kai Lin
Dalian University of Technology

School of Computer Science and Technology
Dalian, China

link@dlut.edu.cn

Abstract—In recent years, interest in deep learning methods
based on nonlinear structures for natural language processing
has significantly increased. At the same time, hypergraph con-
volutional neural networks have started to replace graph con-
volutional neural networks, allowing the integration of implicit
information with the complexity of the processed data. However,
these hypergraph-based methods face challenges, such as the
inability to capture hidden relationships and the inaccurate
calculation of feature similarity between structures. A recent
study proposes a hypergraph structure based on probability dis-
tributions. This approach constructs hypergraphs around multi-
label correspondences and introduces a convolutional update
to the framework. The study’s approach includes two main
components: the hypergraph construction model based on the
refined EM algorithm and the adaptive dynamic convolution
model. The refined EM algorithm calculates feature similar-
ity distance to dynamically create the hypergraph structure,
enhancing structural integrity at each layer. Furthermore, the
study introduces a dynamic convolution module consisting of
two phases: vertex convolution and hyperedge convolution. This
module combines the features between the vertices and hyper-
edges. The study evaluates the proposed method using the Cora
and Meld datasets, demonstrating its superior performance com-
pared to contemporary state-of-the-art methods. Additionally,
supplementary experiments demonstrate the method’s efficacy
and resilience across diverse data distributions.

Index Terms—hypergraph, hybrid Gaussian model, dynamic
convolution

I. INTRODUCTION

Graph structures, as extensions of linear relational repre-
sentations, provide a powerful method to interpret and repre-
sent relationships between data using graph-theoretic methods
[1]. Graph structures have had a significant impact on rein-
forcement learning and play a crucial role in the efficiency
of representation learning. Traditional graph structures have
limitations in capturing feature relationships, especially in
multi-dimensional features, leading to suboptimal experimen-
tal results [2]. To address these limitations, a more advanced
structure is needed to support representation learning in neural
network models [3]. Researchers are turning to graph theory to

extend simple graph structures to hypergraph structures, which
can represent complex data relationships more effectively.
As shown in Figure 1, unlike traditional graph structures,
hypergraphs can connect multiple vertices, allowing for better
representation of higher-order relationships in the data and
more accurate descriptions of complex data structures and
interconnections. Although the research field of hypergraphs

Fig. 1. The comparison between graph and hypergraph.

is relatively new, their high adaptability in complex multi-
dimensional data environments has already proven valuable
in various applications. Combining hypergraph and neural
network models can enhance the ability to handle relationships
between data [3]. To address this issue, Jiang et al. proposed
the dynamic hypergraph construction model DHGCN [4]. This
model is divided into two parts, constructing and updating the
network to improve the accuracy of the hypergraph structure.
It outperforms existing methods on the Cora citation network
and microblogging dataset and is robust across different data
distributions. However, DHGCN focuses on improving model
accuracy through dynamic convolution under the hypergraph
structure, which ignores implicit attributes n the feature space.
Additionally, using a uniform similarity projection space for
feature mapping in the hypergraph structure loses relationships

DOI reference number: 10.18293/SEKE2024-157 1
104

between objects and weakly correlated labels.
To address the above shortcomings, this paper proposes an

improved hybrid Gaussian model to compute the similarity
distribution. This model works with a hypergraph structure
to dynamically convolve and update the multidimensional
probability distribution [3]. In the similarity distribution calcu-
lation module, the hypergraph structure is constructed by iter-
atively obtaining the multidimensional probability distribution
mapping using an improved expectation maximization algo-
rithm. The dynamic convolution module computes adaptive
weight transformation matrices to perform node convolution
and hyperedge convolution, respectively. Compared to the
DHGNN method, our approach embeds implicit relations into
object features more effectively [4]. Additionally, adaptively
changing the hyperedge weights ensures better integration of
this embedding information into DHGN and global feature
information. In this study, we apply our model to data with
implicit relationships and perform label classification on the
Cora citation dataset and the MELD multi-modal dataset.

The contributions of this paper are as follows:
1) We propose a hypergraph construction method based on

an improved Gaussian mixture model to compute the
similarity distribution. This method employs a sampling-
optimized EM algorithm to compute the distribution
of mappings from object features to the label space,
embedding implicit relationships into the features.

2) We propose a probability distribution-based adaptive
updating method, which uses probability distributions to
compute the weights of hyperedges and update the hy-
pergraph structure via vertex convolution and hyperedge
convolution modules. This ensures that the hypergraph
structure can fuse the implied relationships into the
global features.

3) We conducted experiments on label classification using
textual citation data. Our method demonstrates superior
performance compared to current state-of-the-art ap-
proaches and exhibits enhanced resilience across various
data distributions.

II. RELATED WORK

A. Graph-based Deep Learning

Graph Neural Networks (GNNs) are neural network models
designed for graph data. Their main purpose is to gain a deeper
understanding of the nodes and edges in the graph structure
to analyze and process graph data efficiently [5]. Graph
Convolutional Networks (GCNs) are an important variant of
GNNs. Through multi-layer convolutional operations, GCNs
can gradually extract and integrate the local and global features
of the nodes while preserving the structural information of
the graph. This process achieves the learning and predictive
representation of the entire graph [6].

Daniel et al. (2018) first proposed an adversarial attack
model on attribute graphs and investigated challenging poi-
soning and causal attacks [7]. In the same year, Chandler Zuo
explored the regularization effect of the Fast Gradient Sign

Method (FGSM) based on IG-FGSM within the framework
of the Generalized Linear Model (GLM). The IG-FGSM
algorithm model was proposed based on this work [8]. Thomas
et al. proposed a scalable semi-supervised learning method
based on graph convolutional networks [9]. Joan et al. ex-
plored the possibility of performing convolutional operations
on signals defined in more general domains without the need
for translation groups [10].

B. Hypergraph Learning

Hypergraphs, as a generalization of graphs, have significant
advantages [11] over simple graph structures in characterizing
complex relationships and expressing higher-order features.
Combining hypergraphs with neural network models can
enhance the ability to manage relationships between data.
William et al. (2017) proposed an inductive representation
learning method, Graph SAGE, which samples features of
neighboring nodes and aggregates them into central node
features [12]. In the same year, Cao et al. proposed a new
hypergraph neural network model, HGNN, which effectively
handles higher-order relationships and better captures complex
dependencies between nodes [13]. Building on the hypergraph
neural network model, Jiang et al. proposed the dynamic
hypergraph construction (DHGCN) method [14]. This method
divides the model into two parts, enhancing the accuracy of
the hypergraph structure through network construction and
updating.

III. METHOD

In this section, we will introduce the proposed improved
probability distribution hypergraph neural network model in
detail. The network framework is shown in Fig. 3.1. The model
consists of two parts: probability distribution hypergraph con-
struction and adaptive hypergraph convolution. We will first
introduce these two parts.

A. Probability distribution hypergraph construction

Given a feature embedding set X = [x1,x2, . . . ,xn], where
xi(i = 1, 2, . . . , n) denotes the feature of the ith sample. In
a hypergraph, vertex u denotes a sample, and hyperedge e
denotes a collection of samples. Thus, a hypergraph can be
expressed as G = (V, E), where V denotes the vertex set and
E denotes the set of hyperedges.

We introduce a probability distribution space to represent
the multidimensional label distribution, characterizing the im-
plied object properties. The feature similarity of the object is
calculated using the Euclidean distance formula as follows:

ric =
πcN (xi | µc,Σc)∑K

k=1 πkN (xi | µk,Σk)
(1)

Here, the specific feature variables of the ith and jth samples
in the matrix X are represented in the rth sample feature
variable of the ith sample, and R represents the total number
of features.

105

Fig. 2. Overview of Our DHGNN Framework. The first part of the framework describes the process of hypergraph construction for the central vertex
and its neighborhood. It uses a GMM algorithm, improved by the sampling method, to iteratively generate object-label mapping relationships. This method
incorporates implicit relationships into the node features and generates the hypergraph structure based on probability distributions. In the second part, the vertex
features in the hypergraph are aggregated into one-dimensional hypergraph features through vertex convolution. Meanwhile, the features in the neighboring
hyperedges are aggregated into central vertex features through hyperedge convolution. After performing these operations on all vertices of the current layer
feature embedding, we obtain a new feature embedding. This new embedding will be used to construct a new hypergraph structure, as shown in the third
frame.

Next, we use a hybrid Gaussian model optimized for the
sampling method to compute a matrix of object feature prob-
ability distributions for each label cluster. This model is trained
using a modified Expectation Maximisation (EM) algorithm
[15]. Using importance sampling to approximate the expec-
tation computation in the E-Step reduces the computational
complexity of the model. Due to the complexity of the original
target probability distribution, we use the normal distribution
to approximate it. The specific sampling formula is as follows:

E(f) =

∫
f(x)

p(x)

q(x)
q(x) dx ≈ 1

N

N∑
n=1

p(x)

q(x)
f(x)

xn ∼ q(z)

(2)

where the importance weight is wn = p(xn)
q(xn) . At this point,

a weighted importance sampling method is used to minimize
the difference between the approximate probability distribution
and the original probability distribution:

E(f) ≈
N∑

n=1

wn∑N
n=1 w

m
f(xn) (3)

The distribution of importance weights uses a normal distri-
bution as an approximation. At each iteration, the probability
distribution obtained from the previous sample is used as a
trajectory to compute the importance weights for the current
iteration.

To compute the implied parameters in the probability dis-
tributions, our maximization formula for θ in the M-step can
be converted into a full log-likelihood expectation calculation
using the following formula:

Q(θ, θold) =

∫
p(Z|X, θold) ln p(Z|X, θ) dZ (4)

where Z is sampled using specific samples, and the computa-
tion of p(Z|X, θ) is as follows:

p(Z|X, θ) =
Zx(1− Z)1−x · α√

2πσ
e−

(Z−1/2)2

2σ2∫ 1

0
Zx(1− Z)1−x · α√

2πσ
e−

(Z−1/2)2

2σ2 dZ
(5)

Here, the Markov Chain Monte Carlo (MCMC) method
is used to sample the new round of iterations using the old
values. This sampling method effectively samples the multi-
dimensional target distribution in a multivariate environment.
It circumvents the drawback of not being able to directly cal-
culate the posterior distribution. Additionally, using multiple
iterations helps reduce the errors generated by sampling.

In the first iteration of hidden variables, a random sample is
obtained as Θ = (θ11, θ

1
2, . . . , θ

1
n), where the joint probability

distribution P (θ11|θ12, x1, x2, x3, . . . , xn) is used. We simplify
the above formula by converting the joint posterior distribution
into a conditional probability formula:

p(θ11|θ12, x1, x2, x3, . . . , xn)

∝ p(θ11, θ
1
2|x1, x2, x3, . . . , xn)

∝ p(x1, x2, x3, . . . , xn|θ11, θ12)p(θ11, θ12)
(6)

Therefore, the Q function in the improved M-step can be
expressed as:

Q(θ, θold) =∫
p(θ1, θ2, . . . , θn, θ

old) ln p(θ1,θ2, . . . , θn, θ) dθ1dθ2 . . . dθn

(7)
On this basis, we iteratively train using the standard EM

algorithm to obtain the object’s probability distribution matrix.
Finally, the probability distribution matrix and the hypergraph
Laplacian matrix are used as inputs to generate the label
cluster-based probability distribution hypergraph.

106

B. Adaptive hypergraph convolution

The adaptive hypergraph convolution method consists of
two parts: the adaptive vertex convolution module and the
hyperedge convolution module. The adaptive vertex convo-
lution module creates a transformation matrix through multi-
dimensional probability distributions to induce vertex features
to approximate high-likelihood label clusters and form hyper-
edge features. It then continues to convolve the hyperedge
features to aggregate hyperedges with similar probability dis-
tributions near the central vertex.

Fig. 3. Adaptive Vertex Convolution Module. For k vertices, the k × k
transformation matrix is calculated by combining the probability distribution
matrices of the vertices. After being processed by the multilayer perceptron,
the transformed vertex feature matrix is multiplied by the transformation
matrix to obtain the transposed and weighted vertex feature matrix. Then,
one-dimensional convolution is performed to obtain the one-dimensional
hyperedge features.

Fig. 4. The hyperedge features are aggregated using a self-attentive mech-
anism. The adaptive weights w are computed from the hyperedge features
through an MLP. The average of the adaptive weights of the hyperedge
features is then computed as the central vertex feature.

1) Adaptive vertex convolution: Most popular vertex con-
volution methods today use pre-computed transformation ma-
trices to perform convolution operations on vertices, which
are an extension of pooling schemes. These methods are
better suited for explicit object-label mapping relationships
that do not contain implicit attributes. To better adapt to these
implicit relationships and one-to-many object-label mappings,

we propose learning the transformation matrix through the
multidimensional probability distributions of the object-label
clusters. This matrix is used to weight and rank the vertices,
as shown in Figure 3.

During the convolution process, we use a multilayer percep-
tron (MLP) combined with conditional probability to generate
the transformation matrix Tp. The transformed features are
then compressed using 1-D convolution [16]. The formula is
as follows:

Tp = MLP (p(k)Xu)

p(k) =
ezk∑K
j=1 e

zj

(8)

xe = conv(T ·MLP (Xu)) (9)

2) Hyperedge convolution: As shown in Fig. 4, the hyper-
edge convolution module aggregates one-dimensional hyper-
edge features into central vertex features, thereby converting
one-to-many object-label mappings into one-to-one mappings.
Specifically, the weight scores of the hyperedge features
are generated using an MLP. The one-to-one central vertex
features are then obtained by performing weighted averaging
based on these weight scores. The formula is as follows:

ω = softmax(b+
∑

xe ∗ Pe)

xu =

|Adju|∑
i=0

ωixi
e

(10)

IV. APPLICATIONS AND EXPERIMENTS

In this section, we apply our model to citation networks
with intrinsic graph structures. Specifically, for data with
intrinsic graph structures, we sample k vertices in the 1st-order
neighborhood of u. These k vertices also form a hyperedge in
Adj(u).

A. Experiments in categorizing citation datasets

An open-source text dataset is selected for experimental
validation of the theoretical methods proposed in this chapter.
Controlled experiments are conducted on the textual dataset to
compare the improved GMM hypergraph construction method
and the probabilistic hypergraph convolution module proposed
in this chapter against the conventional hypergraph convolution
model. The effectiveness and superiority of the two approaches
are verified on the textual dataset and data containing hidden
high-latitude relations through different ablation experiments.

1) Cora dataset: The Cora dataset is used for categorizing
scholarly literature, mainly in machine learning and natural
language processing research. The nodes in the knowledge
network represent papers, and the edges connecting the nodes
represent citation relations. Each node includes information
such as title, author, and more. Based on this information, the
dataset categorizes papers into one or more categories, such
as artificial intelligence, data mining, and target recognition
research.

107

2) Experiment setup: We set specific experimental metrics
for the label classification task on the Cora dataset. For the
citation label classification task, we use test metrics including
Accuracy (ACC) and Loss Rate (LOSS), while we define LR
as the training set size of the dataset. The experiments compare
our method with GCN model, HGCN model and DHGCN
model based on K-means method and the results are presented
in graphical form.

3) Result: We compared our method with the latest
graph/hypergraph-based neural network methods on the Cora
dataset. The experimental results are shown in Table 1, where
our method outperforms state-of-the-art methods by 0.6% to
2% when using 1% to 8% randomly sampled data as the
training set. The results show that the hypergraph structure
is more competitive compared to the graph structure when
the dataset is small. Additionally, the introduction of the
probability distribution enhances the hypergraph structure’s
ability to express implicit relationships.

TABLE I
PERFORMANCE COMPARISON USING DIFFERENT METHODS ON CORA

LR #train HGCN DHGCN DHGCN(ours)
1 27 74.8 79.4 80.8
2 54 75.4 80.3 80.9
4 108 78.8 80.7 81.7
6 162 79.0 80.9 82.9
8 216 79.6 80.9 82.6

10 270 79.9 81.6 81.3

Fig. 5. Comparison of ACC means between HGCN and DHGCN using GMM
method and K-means method.

Fig. 6. Performance comparison of PDHG and AHGC modules in DHGCN
model on sora dataset.

4) Ablation experiments: To demonstrate our method’s ef-
fectiveness, this paper conducts multiple sets of ablation exper-
iments under the same experimental conditions. The ablation
experiments compare the performance of the hypergraph repre-
sentation using the K-means method with that of the DHGCN
model, both with and without the PDHG and AHGC modules.
Our method is also evaluated under the same experimental
conditions. In the case where the AHGC module is removed,
the model employs the standard convolutional module on the
Cora dataset. The results of the ablation experiments using
the K-means method are presented in Fig. 5, while the results
of experiments with the AHGC and PDHG modules removed
are depicted in Fig. 6. The experimental data demonstrate that
our method achieves superior mapping results compared to
the traditional K-means method. This improvement leads to
a 2% increase in ACC over the traditional DHGCN model.
Compared to the traditional HGCN model, the DHGCN
model incorporating the AHGC module demonstrates faster
convergence and improved label classification accuracy. The
inclusion of the AHGC module leads to a 4% enhancement
in label classification accuracy. Furthermore, when the dataset
size reaches 6%, the model’s performance peaks with a 3%
improvement.

B. Experiments in Sentiment Analysis of Multi-modal Datasets

In addition to the citation network experiments, we eval-
uated our model on a more complex task, namely senti-
ment analysis on multi-modal datasets. Multi-modality is an
important feature of social media. We use hypergraphs to
model higher-order relationships between different modalities.
The multi-modal hypernodes jointly represent the correlations
between vertices. In our experiments, we use the MELD
dataset to evaluate our hypergraph model.

1) MELD dataset: MELD (Multi-modal Emotion Line
Dataset) is a multi-modal emotion recognition dataset derived
from the classic English TV series ”Friends”. The MELD
dataset consists of 1,400 dialogue snippets with a total of
13,000 segments. Each dialogue segment is labeled with seven
emotions including anger, disgust, sadness, joy, neutrality,
surprise, and fear.

2) Experiment setup: We constructed three hyperedge sets
for each of the three modalities and merged these sets into one
multi-modal hyperedge set. The number of vertices contained
in each cluster is 64. We select 2 nearest clusters and a labeled
cluster from the GMM clustering as the neighboring hyperedge
set for each vertex. We compare our model with recent multi-
modal sentiment prediction methods, Dialogue RNN method
[17]; Dialogue GCN method [18]; MMGCN method [19].

3) Result: The experimental results of the different methods
on the MELD dataset are shown in Table 2, where each model
obtains an average F1 weight score on the MELD dataset. It
can be seen that our method improves the performance by 7%
to 8% over the Dialogue RNN and Dialogue GCN methods,
and by 5% compared to MMGCN.

4) Ablation experiments: To demonstrate the state-of-the-
art performance of our method, we conducted a series of

108

TABLE II
PERFORMANCE COMPARISON USING DIFFERENT METHODS ON MELD

Method ACC
Dialogue RNN 57.11
Dialogue GCN 58.23
MMGCN 60.84
our method 65.12

ablation experiments using the K-means clustering method and
compared the performance of our clustering method on the
dataset, as shown in Fig. 7. The experimental data demonstrate
that our method achieves superior mapping results compared
to the traditional K-means method, with an experimental
ACC that is 4% better than the traditional DHGCN model.
Furthermore, the model performance reaches its optimal level
when the number of convolutional layers reaches 8.

Fig. 7. Comparison of ACC means between HGCN and DHGCN using GMM
method and K-means method.

V. CONCLUSIONS

In this study, we propose enhancements to the hybrid
Gaussian model for multi-mapping sample classification. Our
improvements involve replacing the uniform mapping space
with probability distributions for hypergraph representation
and optimizing the hypergraph structure for input data features.
We also introduce a dynamic hypergraph convolution module
based on multidimensional probability distributions to dynam-
ically prune and update the structure, remove erroneous asso-
ciations and low-confidence relationships, and express high-
latitude associations among the data, while also uncovering
logical relationships between hidden features.

After thoroughly validating the reliability and effectiveness
of the model using the Sora dataset, we found that our
approach achieves similar or superior performance compared
to state-of-the-art methods. Additionally, we have investigated
the validity of the PDHG module and the AHGC module.

In future work, it may be beneficial to explore improved
and more interpretable hypergraph construction methods.

REFERENCES

[1] Li, Z., Liu, F., Yang, W., et al. ”A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects.” IEEE Trans Neural
Netw Learn Syst, vol. 33, no. 12, pp. 6999-7019, 2022.

[2] Zhang, Z., Cui, P., Zhu, W. ”Deep Learning on Graphs: A Survey.” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp.
249-270, 2022.

[3] Feng, Y., Haoxuan, Y., Zizhao, Z., et al. ”Hypergraph Neural Networks.”
2018.

[4] Jiang, J., Yuxuan, W., Yifan, F., et al. ”Dynamic Hypergraph Neural
Networks.” PROCEEDINGS OF THE TWENTY-EIGHTH INTERNA-
TIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, pp.
2635-2641, 2019.

[5] Zhou, J., Ganqu, C., Shengding, H., et al. ”Graph neural networks: A
review of methods and applications.” AI Open, pp. 157-81, 2020.

[6] Li, J., Tao, X., Liang, C., et al. ”Adversarial Attack on Large Scale
Graph.” 2020.

[7] Alom, M. Z., Paheding, S., Tarek-M, T., et al. ”Handwritten Bangla
Digit Recognition Using Deep Learning.” 2017.

[8] Zuo, C. ”Regularization Effect of Fast Gradient Sign Method and its
Generalization.” Ithaca: Cornell University Library, arXiv.org, 2018.

[9] Li, J., Yongfeng, H., Heng, C., et al. ”Semi-Supervised Hierarchical
Graph Classification.” 2022.

[10] Bruna, J., Mallat, S. ”Invariant scattering convolution networks.” IEEE
Trans Pattern Anal Mach Intell, vol. 35, no. 8, pp. 1872-1886, 2013.

[11] Ramos, M. V. M., Queiroz, R. J. G. B. ”Formalization of simplification
for context-free grammars.” 2015.

[12] Ahmed, N. K., Rossi, R. A., Zhou, R., et al. ”Inductive Representation
Learning in Large Attributed Graphs.” 2017.

[13] Zhang, H., Xin, L., Lidong, B. ”Video-LLaMA: An Instruction-tuned
Audio-Visual Language Model for Video Understanding.” arXiv.org,
2023.

[14] Liu, L., Feng, H., Xuan, L., et al. ”Multi-view Contrastive Learning
Hypergraph Neural Network for Drug-Microbe-Disease Association
Prediction.” In: IJCAI International Joint Conference on Artificial In-
telligence, pp. 4829-4837, Macao, China, 2023.

[15] Ramos, M. V. M., Queiroz, R. J. G. B. ”Formalization of simplification
for context-free grammars.” 2015.

[16] Zaremba, W., Sutskever, I., Vinyals, O. ”Recurrent Neural Network
Regularization.” 2014.

[17] Majumder, N., Poria, S., Hazarika, D., et al. ”DialogueRNN: An
Attentive RNN for Emotion Detection in Conversations.” Honolulu:
2019, pp. 6818-6825.

[18] Ghosal, D., Majumder, N., Poria, S., et al. ”DialogueGCN: A graph
convolutional neural network for emotion recognition in conversation.”
arXiv, 2019.

[19] Hu, J., Yuchen, L., Jinming, Z., et al. ”MMGCN: Multimodal Fusion
via Deep Graph Convolution Network for Emotion Recognition in
Conversation.” Ithaca: Cornell University Library, arXiv.org, 2021.

109

110

	paper002.pdf
	. Introduction
	. Related Work
	. User study
	. Participants
	. Apparatus
	. Procedure
	. Design

	. Results
	. Completion time
	. Error rate
	. Rating
	. User Satisfaction and Free-form comments

	. Discussion
	. Conclusions and Further Works

	paper004.pdf
	Introduction
	Related work
	The Functionalities and UX Design of the MVP
	UX design of MVP
	Searching Process of MVP
	Mind Map Integration and Division

	Implementation
	Conclusion

	paper090.pdf
	Introduction
	Quantum Computing and Hybrid Systems
	Methodology of the Systematic Mapping
	Protocol
	Conduction
	Data Extraction

	Overview of Papers and Answers for RQs
	Quantum Software Testing in General
	Mutation Testing
	Search-Based Testing
	QP in General
	Metrics
	Bug Analysis

	Conclusions and Research Opportunities

	paper107.pdf
	Introduction
	Background
	Basic concepts
	The AIDOaRt approach
	The Real Driving Emissions case

	Real Driving Prediction framework
	Model
	Prediction
	Data
	Driving behaviour

	Application to the RDE case
	Data Acquisition
	Features Selection
	Pre-processing
	Driving Behaviour Prediction

	Experimental Results and Evaluation
	Evaluation Procedure and Metrics
	Results Discussion
	Observations and Lessons Learned

	Related Work
	Rule-based Driver Behavior prediction
	ML-based Driving Behavior Prediction
	Digital Twins

	Acknowledgment
	Conclusion and Future Work
	References

	Blank Page
	dms24foreword.pdf
	DMSVIVA2024 Conference Chair and Co-Chairs
	Bernardo Breve, University of Salerno, Italy; Conference Co-chair Jun Kong, North Dokota State University, USA; Conference Co-chair
	DMSVIVA2024 Steering Committee Chair
	DMSVIVA2024 Steering Committee
	DMSVIVA2024 Program Chair
	Publicity Chair and Co-Chair
	Maiga Chang, Athabasca University, Canada; Publicity Co-Chair Tiansi Dong, Bonn-Aachen International Center for Information Technology, Germany; Publicity Co-Chair
	Notes: (S) denotes a short paper.

	Blank Page

