

 i

PROCEEDINGS

DMSVLSS 2017

The 23rd International Conference on

Distributed Multimedia Systems,

Visual Languages and Sentient Systems

Sponsored by

KSI Research Inc. and Knowledge Systems Institute, USA

Technical Program

July 7, 2017

Wyndham Pittsburgh University Center, Pittsburgh, USA

Organized by

KSI Research Inc. and Knowledge Systems Institute, USA

 ii

Copyright ⓒ 2017 by KSI Research Inc. and Knowledge Systems Institute, USA

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
consent of the publisher.

ISBN: 1-891706-42-X

ISSN: 2326-3261 (print)

2326-3318 (online)

DOI: 10.18293/DMSVLSS2017

Additional copies can be ordered from:

KSI Research Inc.

156 Park Square Lane

Pittsburgh, PA 15238 USA

Tel: +1-412-606-5022

Fax: +1-847-679-3166

Email: dms@ksiresearch.org

Web: http://www.ksi.edu/ seke/dmsvlss17.html

Proceedings preparation, editing and printing are sponsored by KSI Research Inc. and Knowledge Systems Institute,
USA.

Printed by KSI Research Inc. and Knowledge Systems Institute, USA.

 iii

FOREWORD

Welcome to the 23rd International Conference on Distributed Multimedia Systems, Visual Languages, and
Sentient Systems (DMSVLSS 2017), which takes place this year in Pittsburgh, Pennsylvania. In this forum,
researchers from academia and industry from around the world meet to discuss ideas that involve gathering,
processing, interpreting, visualizing, storing, and retrieving multimedia data originating from sensors, robots,
actuators, websites, and other information sources.

We are pleased to open the conference with a plenary talk by Giuseppe Polese on Relaxed Functional
Dependencies for Big and Multimedia Data Challenges. We also begin this year’s conference by
recognizing the 2017 JVLC S.K. Chang Best Paper Award winners, Neven A.M. El Sayed, Bruce H.
Thomas, Kim Marriott, Julia Piantadosi and Ross T. Smith, for their paper, Situated Analytics:
Demonstrating Immersive Analytical Tools with Augmented Reality (Journal of Visual Languages and
Computing 36, 2016, 13-23). The remainder of the conference is organized into four sessions, each of which
includes specialized topics: (i) Visual Software Support Tools, (ii) Visual-Aided Data Network Analysis, (iii)
Visualization and Computing of Multimedia Data, and (iv) Computational Intelligence, Models, and
Algorithms. The conference has a long history of providing a venue for thought-provoking discussions,
stimulation of research ideas, and both the initiation of new and the strengthening of existing collaborations.
That tradition undoubtedly will continue given the variety of topics that are addressed in this year’s
collection of papers.

As in the past, paper selection for this year’s conference was based upon a rigorous review process. The
acceptance rate for full papers was 33%. The conference program contains contributions of high quality
research papers and short papers that discuss ongoing research activities and applications from an
international population of researchers.

Starting from 2015 The DMS proceedings also contain the Journal of Visual Languages and Sentient
Systems (JVLSS). Volume I of JVLSS was published together with DMS2015 Proceedings, and Volume II
of JVLSS was published together with DMS2016 Proceedings. We are pleased to announce that starting
from 2017 JVLSS will be published independently in a separate volume. Up to 8 papers will be invited and
further reviewed for possible inclusion in a JVLSS special issue and/or a JVLC special issue to be published
in 2018. Invitations will be made after the DMSVLSS2017 conference.

As Program Chair and Co-Chairs, we would like to express our gratitude and appreciation to the Steering
Committee Chair, Dr. S.K. Chang, for his continued support and dedication to the conference, and his
invaluable experience. The high quality of the DMSVLSS 2017 technical program would not have been
possible without the tireless efforts of many other individuals as well. We would like to thank the Steering
Committee for their continuous support and guidance. We also thank the Program Committee whose
invaluable, attentive, and timely work has made possible the creation of a high quality technical program.
Additionally, we would like to extend our sincere appreciation to all of the authors who submitted their
papers to the conference, thereby contributing, through their work and ideas, to the success of this forum.
Last but not least, we would like to acknowledge the important contribution of the KSI Research staff whose
assistance and support has been truly remarkable throughout the entire organization process.

On behalf of the Program Committee, we are delighted to extend to you our warm welcome to the 23rd
International Conference on Distributed Multimedia Systems, Visual Languages, and Sentient Systems
(DMSVLSS 2017). We hope that you will find this year’s conference a stimulating environment for

 iv

exchanging ideas, and an opportunity to network with interesting people. Enjoy your visit to Pittsburg, and
the United States!

Jennifer Leopold, DMSVLSS 2017 Program Chair
Francesco Colace, Weibin Liu and Chaman Sabharwal, DMSVLSS 2017 Program Co-Chairs

 v

DMSVLSS 2017
The 23rd International Conference on

Distributed Multimedia Systems,

Visual Languages and Sentient Systems

July 7, 2017

Wyndham Pittsburgh University Center, Pittsburgh, USA

Conference Organization

DMSVLSS'17 Conference Chair and Co-Chair

Giuseppe Polese, University of Salerno, Italy; Conference Chair

Vincenzo Deufemia, University of Salerno, Italy; Conference Co-Chair

DMS'16 Steering Committee Chair

Shi-Kuo Chang, University of Pittsburgh, USA; Steering Committee Chair

DMSVLSS'17 Steering Committee

Paolo Nesi, University of Florence, Italy; Steering Committee Member

Kia Ng, University of Leeds, UK; Steering Committee Member

DMSVLSS'17 Program Chair and Co-Chairs

Jennifer Leopold, Missouri University of Science & Technology, USA; Program Chair

F. Colace, University of Salerno, Italy; Program Co-Chair

Weibin Liu, Beijing JiaoTung Univ., China; Program Co-Chair

Chaman Sabharwal, Missouri University of Science & Technology, USA; Program Co-Chair

 vi

DMSVLSS'17 Program Committee

Flora Amato, Univ. of Salerno, Italy

Arvind K. Bansal, Kent State University, USA

Loredana Caruccio, University of Salerno, Italy

Alfredo Cuzzocrea, ICAR-CNR and University of Calabria, Italy

Andrea De Lucia, Univ. of Salerno, Italy

Tiansi Dong, Bonn-Aachen International Center for Information Technology, Germany

Martin Erwig, Oregon State University, USA

Kaori Fujinami, Tokyo University of Agriculture and Technology, Japan

David Fuschi, Brunel University, UK

Ombretta Gaggi, Univ. of Padova, Italy

Angela Guercio, Kent State University, USA

Carlos A. Iglesias, Intelligent Systems Group, Spain

Yau-Hwang Kuo, National Cheng Kung University, Taiwan

Fuhua Lin, Athabasca University, Canada

Alan Liu, National Chung Cheng Univeristy, Taiwan

Max North, Southern Polytechnic State University, USA

Antonio Piccinno, Univ. of Bari, Italy

Giuseppe Polese, University of Salerno, Italy

Genny Tortora, University of Salerno, Italy

Atsuo Yoshitaka, JAIST, Japan

Ing Tomas Zeman, Czech Technical University, Czech Republic

Subcommittee on Distance Education Technologies

Maiga Chang, Athabasca University, Canada

Mauro Coccoli, University of Genova, Italy

Angelo Gargantini, University of Bergamo, Italy

Angela Guercio, Kent State University, USA

Pedro Isaias, University of Queensland, Australia

Hong Lin, University of Houston-Downtown, USA

Paolo Maresca, University Federico II, Napoli, Italy

Elvinia Riccobene, University of Milano, Italy

Michele Risi, University of Salerno, Italy

Veronica Rossano, University of Bari, Italy

Subcommittee on Visual Languages and Computing

Danilo Avola, University of Rome, Italy

Paolo Bottoni, Universita Sapienza, Italy

Peter Chapman, University of Brighton, UK

Kendra Cooper, University of Texas at Dallas, USA

Gennaro Costagliola, University of Salerno, Italy

Sergiu Dascalu, University of Nevada, USA

 vii

Aidan Delaney, University of Brighton, UK

Vincenzo Deufemia, University of Salerno, Italy

Filomena Ferrucci, University of Salerno, Italy

Andrew Fish, University of Brighton, UK

Vittorio Fuccella, University of Salerno, Italy

Jun Kong, North Dokota State University, USA

Robert Laurini, University of Lyon, France

Jennifer Leopold, Missouri University of Science & Technology, USA

Luana Micallef, Helsinki Institute for Information Technology, Finland

Joseph J. Pfeiffer, Jr., New Mexico State University, USA

Peter Rodgers, University of Kent, UK

Giuseppe Santucci, University Di Roma, Italy

Gem Stapleton, University of Brighton, UK

Franklyn Turbak, Wellesley College, USA

Giuliana Vitiello, University of Salerno, Italy

Publicity Chair

Eloe Nathan, Northwest Missouri State University, USA; Publicity Chair

 viii

Plenary Talk

Relaxed Functional Dependencies for Big & Multimedia Data Challenges

 Professor Giuseppe Polese
Dipartimento di Informatica

Data Science and Technologies Laboratory
University of Salerno, Italy

Abstract: While multimedia data have always been targeted as 'Big', hence advocating efficient
techniques for large-scale data processing, with the advent of social networks and other modern applications
the term 'Big' Data. and the many related challenges are becoming a main concern also in the context of
Enterprise Information Systems, given the tremendous growth in the Volume of data (4300% estimated
from 2009 to 2020), together with their Variety, and generation Velocity. In this scenario, since enterprise
applications are evolving from the management of structured alphanumeric data only to a broader variety of
unstructured data, especially those exchanged over social networks, past challenges and experiences in the
context of multimedia data can contribute to solve several problems of big data management in Enterprise
Information Systems. To this end, relaxed data dependencies, defined also to improve the organization of
multimedia data, can be exploited to tackle several big data management issues. I will introduce and classify
Relaxed Functional Dependencies, describe the available techniques to automatically discover them from
data, and show some applications in the big data context, such as data cleansing, query relaxation, and view
synchronization upon schema evolutions.

About the Speaker: Giuseppe Polese is Professor of Computer Science at the University of Salerno,
Italy, and Director of the Data Science and Technologies Laboratory. His research interests concern the
areas of Data Science, Multimedia Databases and Web Engineering, with several interdisciplinary
contributions to medical informatics and construction engineering. He has published about 100 papers, some
of which in top scientific journals. He is an ACM and IEEE member, and member of the editorial boards of
International Journal of Software and Knowledge Engineering (2007-present), area editor for Database and
Decision Support Systems, and the Journal of Data Science and Engineering (2016-present). Previously, he
was a project manager at the Italian Airspace Company, Alenia, consultant for several software firms,
including Siemens, Olivetti, and Telecom Italia. He has directed several publicly funded research projects
and projects with industry grants.

DMSVLSS2017 Table of Contents

Table of Contents

Foreword . iii

Conference Organization . v

Plenary Talk: Relaxed Functional Dependencies for Big & Multimedia Data
Challenges
Prof. Giuseppe Polese . viii

Visual Software Support Tools

Gitsubmit and VeCVL: Integrating Version Control in Introductory Computer Science
Education (S) . 1

Nathan Eloe

Package Dependency Visualization: Exploration and Rule Generation (S). 8

Mubarek Mohammed and James W. Fawcett

The Design and Evaluation of a Text Editing Technique for Stylus-Based Tablets 14

Gennaro Costagliola, Mattia De Rosa and Vittorio Fuccella

Visual-Aided Data Network Analysis

Improving MapReduce Performance By Using A New Partitioner In YARN. 24

Wei Lu, Lei Chen, Haitao Yuan, Weiwei Xing, Liqiang Wang and Yong Yang

Interactive Visualization of Robustness Enhancement in Scale-free Networks with
Limited Edge Addition (RENEA) . 34

Armita Abedijaberi, Nathan Eloe and Jennifer Leopold

Effective Path Summary Visualization on Attributed Graphs (S) . 43

Duncan Yung and Shi-Kuo Chang

Visualization and Computing of Multimedia Data

Crowd Behaviors Analysis and Abnormal Detection in Structured Scene (S) 50

Jiaqian Qi, Weibin Liu and Weiwei Xing

Assessing RDF Graph Databases for Smart City Services . 57

Paolo Nesi and Pierfrancesco Bellini

Context Awareness for e-Tourism: an Adaptive Mobile Application . 67

Francesco Colace, Saverio Lemma and Marco Lombardi

A Mobile TDR System for Smart Phones (S) . 75

Shikuo Chang, Wei Guo, Duncan Yung, ZiNan Zhang, HaoRan Zhang and WenBin You

Computational Intelligence, Models and Algorithms

Car2Car framework based on DDGP3 . 86

Walter Balzano, Vinicio Barbieri and Giovanni Riccardi

A text mining methodology for hot topic detection in social networks (S) 92

Flora Amato, Giovanni Cozzolino, Antonino Mazzeo and Antonio Pizzata

ix

DMSVLSS2017 Table of Contents

Sentiment Analysis on yelp social network (S) . 99

Flora Amato, Giovanni Cozzolino, Vincenzo Moscato, Antonio Picariello and
Giancarlo Sperl̀ı

Ergodic Hidden Markov Models for Workload Characterization Problems (P) 107

Alfredo Cuzzocrea, Enzo Mumolo and Gianni Vercelli

Work in Progress: Identifying and Analyzing Original Projects in an Open-Ended
Blocks Programming Environment (P) . 115

Franklyn Turbak, Eni Mustafaraj, Maja Svanberg and Michael Dawson

Authors’ Index . A-1

Progam Committee Reviewers’ Index .A-3

External Reviewers’ Index . A-5

Note:
(S) indicates a short paper.
(P) indicates a poster.

x

Gitsubmit and VeCVL: Integrating Version Control in Introductory Computer
Science Education

Nathan W. Eloe
School of Computer Science and Information Systems

Northwest Missouri State University
Maryville, MO 64468, USA

nathane@nwmissouri.edu

Abstract

Version control systems (VCS), such as Subversion and
Git, are pervasive in industry; they are invaluable tools for
collaborative development that allow software engineers to
track changes, monitor issues, merge work from multiple
people, and manage releases. These tools are most effective
when they are a part of a developer’s habitual workflow.
Unfortunately, the use of these powerful tools is often taught
much later in a developer’s educational career than other
tools like programming languages or databases. Even an
experienced student’s first experience with version control
can be unpleasant. In this work, an assignment submission
system built around the Git version control system is intro-
duced and analyzed for usability and suitability for use in
entry level computer science classes.

Keywords- computer science education, education technol-
ogy, pedagogy, version control, visual language

1 Introducion

Version control tools and methodologies are essential
tools in the increasingly collaborative environment. The
size and complexity of many modern software development
projects require the talent and time of multiple developers
working together. While group projects and collaboration
are a mainstay of computer science classes, the tools that
are used in industry to promote teamwork are often not in-
troduced until later in a computer science curriculum (such
as in a Software Engineering course).

Version Control is most effective when it is interacted
with on a regular basis. It should ideally become part of the
developer’s regular workflow. Introducing such an invalu-
able tool so late in the curriculum forces students to recre-
ate their workflow by breaking bad habits that have been
reinforced through early computer science courses and in-

tegrating industry best practices. Additionally, the use of
these best practices may or may not be reinforced in future
classes, requiring the student to self motivate in maintaining
the use of those skills.

This paper examines an implementation of a submission
system built around the Git version control system that sim-
plifies the process of interacting with version control to only
the important steps in a simple workflow (clone, add, com-
mit, push). The interface developed for students imple-
ments the Version Control Visual Language (VeCVL) [4].
Additionally, there are tools for teachers and graders to
manage assignments and grade submissions. The process
aims to simplify the assignment distribution process and re-
inforce version control workflow in pedagogy, not just as a
topic in a course. The student interface and visual language
is analyzed from a usability perspective through an evalua-
tion using the Cognitive Dimensions of Notations [10].

2 Background and Related Work

2.1 Git Workflow

Git [2] is a Distributed Version Control System that ex-
hibits a great amount of flexibility to allow powerful and
varied workflows [3, 8] to be designed around it. These
workflows primarily differ in their approaches and timings
for branching and merging. Beyond the branching, the
workflows use the same basic cycle of operations for an
individual developer: make changes to the local reposi-
tory, add the changes to the index, and commit the changes
(marking them with a commit message). Once a task
has been completed, the developer can sync their changes
to a remote server (if using a remote for collaboration
or backup). This cycle repeats itself, with the developer
pulling changes from a remote repository, making local
changes, and pushing the changes to the remote repository.

DOI reference number: 10.18293/DMSVLSS2017-005

1

2.2 VeCVL and Scaffolding

Gitsubmit was developed in concert with VeCVL [4] as a
method of introducing version control in education through
scaffolding [1], and can be seen as the initial implementa-
tion of the visual language, expanded to be a full GUI in-
stead of an icon set. VeCVL is a visual representation of
the general steps present in version control system in a way
that conveys direction of the changes’ movement. Section 3
contains an examination of Gitsubmit and its close ties to
VeCVL, as well as a discussion of the deviations from the
icon set introduced in [4] to adapt the visual language to a
full GUI.

2.3 Git in Education

Version control is a topic that is increasingly being intro-
duced in computer science curricula. Significant amounts
of research focus on going beyond introducing version con-
trol as a topic in a course to embedding the use of version
control into pedagogy [11, 5, 1]. As version control be-
comes more prevalent in industry, computer science educa-
tion should move to embrace these technologies and intro-
duce them to students.

Code hosting services such as GitHub are joining in the
efforts to educate computer science students about version
control by offering programs like GitHub Classroom [6] and
offering students free benefits when using their services [7].

2.4 Cognitive Dimensions of Notations

The original 14 Cognitive Dimensions of Notations, as
introduced by Green [10] are used to evaluate the usabil-
ity of an existing interface or appropriateness of the method
of information delivery. As the student interface to Gitsub-
mit is aimed at exposing only the needed functionality for a
simple git-based workflow, evaluation of the interface will
be done by students using the interface in classes (who may
have varying levels of experience with git). Certain dimen-
sions, such as Abstraction Gradient, can only be evaluated
by developers proficient with the workflow, who are famil-
iar enough with the steps to know whether more details can
be encapsulated.

This paper focuses on the following dimensions:

• Diffuseness/Terseness: how many symbols are needed
to express a solution?

• Error-proneness: how well does the interface protect
the user from mistakes?

• Hard Mental Operations: How much additional “pro-
cessing” must a user of the system do to complete a
solution? How much additional information is needed
that is not tracked by the UI?

• Premature Commitment: Is there a firm ordering of
steps needed to express a solution? Can a user go back
and correct mistakes?

• Progressive Evaluation: Does the UI provide enough
feedback as to the current state of the solution?

• Role-expressiveness: How clear is the meaning of each
symbol, and the role it plays in the solution?

Some of the dimensions require analysis from people
who are skilled in the domain solution. These include:

• Abstraction Gradient: How much can be abstracted by
the notation?

• Closeness of Mapping: How well does the notation
correspond to the problem?

3 Gitsubmit

Gitsubmit is a submission system for programming as-
signments with three main parts: a student interface, an in-
structor interface, and a Git hosting system. What follows
is a brief discussion of the hosting system and instructor in-
terface, and an in-depth analysis of the student UI.

3.1 Hosting System

Currently, Gitsubmit uses a self-hosted instance of Git-
lab [9] as the hosting backend. This hosting solution was
chosen to allow full control of user creation, authentication,
and project visibility. The system itself is not tied to Gitlab,
and could be modified easily to use other well known host-
ing solutions such as GitHub or BitBucket. This would re-
quire cooperation from these respective companies to set up
this functionality, but is an attractive option, as this would
move the host system administration away from the instruc-
tor.

3.2 Instructor Interface

The instructor interface is a simple interface to automate
the creation of a class, the assignment of a project to a class,
and the fetching of the student submissions for a specific as-
signment. The interface is not designed to be a replacement
for a full-fledged git client (and indeed abstracts all of the git
operations away from the instructor). When discussing the
different functionalities of the instructor UI, Gitlab termi-
nology is used; where possible the corresponding concepts
from GitHub and BitBucket have been provided.

2

3.2.1 Creating a Class

A class in Gitsubmit maps to the concept of a group in Git-
lab (similar to Organizations in GitHub or Projects in Bit-
Bucket). The instructor provides the semester, course num-
ber, and course name, and a new group is created with the
instructor added as a group administrator. The group name
is formatted to contain this information (for example, the
group W2017.44242.Data Structures is the Data Structures
class (course number 44-242 at Northwest Missouri State
University) that is running during the Spring/Winter 2017
semester). Graders and TAs can be added to this group as
group administrators as well (allowing them automatic ac-
cess to student submissions for grading and assistance).

The instructor also provides a CSV file containing stu-
dent emails and student names. The UI creates a roster in
a git repository that contains a mapping of all students in
the class to their Gitlab user. If any student does not exist
in Gitlab, a user is automatically created. This is one of the
differences between GitHub Classroom and Gitsubmit; Git-
submit removes the need for the student to create their own
user on the system. One of the stated goals of Gitsubmit is
to remove the parts of the process that are not directly tied to
integrating the workflow into the students’ everyday devel-
opment cycle. It also allows a consistent naming convention
for student user IDs.

3.2.2 Creating an Assignment

To create an assignment in the instructor interface, the
teacher selects a class, names the assignment, and provides
either a skeleton directory or a Markdown formatted project
description. Optionally, the instructor may also specify a
CSV of groups (based on student ID) if the project being
assigned is a group project.

The interface fetches the roster from the Gitlab, and cre-
ates a repository in the Gitlab group for each individual or
student team. The skeleton or description is then pushed
to each repository, and the appropriate students are added
to the repositories with the Developer role; this allows the
pupil to push and pull code from the repository, but not
change access permissions (and allow other students to see
their submission or working progress). Finally, the inter-
face creates a single repository that contains every student
repo as a git submodule. This repository enables efficient
fetching of the student submissions with only a few git com-
mands.

This assignment structure is one way Gitsubmit differen-
tiates itself from GitHub Classroom; the assignment struc-
ture is designed to not give students the ability to modify
the permissions on the assignments. In this way, assignment
confidentiality is preserved.

3.2.3 Fetching Student Submissions

Fetching student submissions can be done easily from a
command line with four simple commands:

git clone <url_of_grading_repo>
cd <grading_repo>
git submodule update --init --recursive
git submodule foreach \

git pull origin master

In order to remove the need for the instructor to drop to the
command line, the instructor interface allows the teacher or
grader to select an assignment for a class and download all
student repositories for that assignment.

3.3 Student Interface

The student interface (Figure 1) was designed to be a
very simplified Git client that supports the basic operations
needed to use Git as a submission system: clone, push, pull,
add, and commit. The icons and UI were designed in tan-
dem with VeCVL [4].

To begin an assignment, the student selects the semester,
course, and the assignment (Figure 2). The list of commits
in the repository is shown in the right-most pane. To be-
gin the selection, the student clicks the Clone/Pull button
(circled in Figure 2). Colors as well as icons are used to
indicate the status of the commits. Commits that reside on
the server but not locally are indicated with an orange (or
red if the commit is the HEAD of origin/master) ID and the
Clone/Pull icon. Commits that reside only on the local ma-
chine are blue and indicated with the Push icon. If a commit
is indicated with a green ID and a check icon, the commit
is the HEAD commit on the remote repository and also ex-
ists on the local repository (and is the commit that will be
graded). Gray commit IDs are common to both local and
remote.

After an assignment is started, the student can complete
the work normally; using whatever IDEs or other tools are
used in the course. As files are modified or added, they ap-
pear in the “Unstaged Changes” pane. Students can select
which changes should be submitted. The changes are cho-
sen using the add button (circled in Figure 3). Once the stu-
dent has selected the changes to submit, a commit message
can be specified describing what the changes were, and the
commit finalized by hitting the Commit button (as circled
in Figure 4).

When the student stops working on a n assignment, they
can push their work to the server with the Push button (cir-
cled in Figure 5). Note the colors indicating the states of
the commits in the repositories. The student finalizes their
submission by clicking the push button. A successful sub-
mission is indicated with a green check mark next to the

3

Figure 1. The Gitsubmit Main Window

Figure 2. Assignment Selection in Gitsubmit

Figure 3. Adding files to the Submission in
Gitsubmit

Figure 4. Making a Commit in Gitsubmit

commit the student wants to have submitted (as in Figure 6).

Figure 5. All Commits Ready to Push in Git
submit

3.4 Usability Features

Gitsubmit contains some embedded features to help
guide the students through the submission process, as well
as some visual cues that help form a connection between the
submission process and the version control process.

As a student progresses through an assignment submis-
sion, options that cannot be performed are disabled; for ex-
ample, if no files have been added to the staging area or a
commit message has not been provided, the button to make
a commit is disabled. Actions are only made available to the
student when all prerequisites for the step in the submission
process have been satisfied. Additionally if there is an in-
dication that the student has not completed the submission
process when he or she tries to exit the program (files have
not been added to the staging area, or changes have not been
committed, or commits have not been pushed), the interface
verifies this is intended before closing.

One major stated goal of Gitsubmit is to simplify the in-
troduction to Git and remove steps from the process that are

4

Figure 6. Submission Pushed to Gitlab in Gitsubmit

not related to the Version Control workflow. To this end, all
interactions that are necessary but auxiliary to the Version
Control process are abstracted away. This includes authen-
tication with the central hosting service. When Gitsubmit
is first run, the student provides their Gitlab username and
password in a first run configuration window (not shown in
this paper); this is the only time a student is required to in-
teract with the authentication system. Gitsubmit uses the
student provided username and password to obtain an API
token from the Gitlab server and generate a SSH key that
is used to authenticate and encrypt all Git traffic. This re-
moves the burden of managing authentication methods from
the students without requiring that they learn how to gener-
ate an SSH key, or provide a password on every push or
pull. While authentication is an important part of securing
the workflow, it is an external mechanism that is not neces-
sary to understanding the basics of version control.

Tool tips provide both usability enhancement and sub-
tle introduction to the Git verbs. In the assignment select
panel, tool tips show additional information (the full name
of the project, for example) to help the student determine
which project should be chosen. This is particularly helpful
when there are multiple similarly named projects that might
only differ by the group members (but is not noticeable in
the project name itself). The tool tips for the VCS action
buttons are the git verbs; in this way, the student begins to
make connections between the verbs and the actions those
verbs represent in the Version Control process.

4 Usability Evaluation

The survey used to evaluate the usability of Gitsubmit
was designed to target the six cognitive dimensions that
could be analyzed by a novice in the practice of Version
Control. Individuals using the system were asked to eval-
uate these cognitive dimensions in much the same way
one would ask a novice user to perform a Cognitive Walk-

through. Two statements targeted each of the six identified
dimensions; one statement approached the dimension from
a positive perspective (the UI does X well), while the sec-
ond looked at it in a negative way (the UI does not do X
well). For example, for the dimension of Error-Proneness,
the survey gives the following statements:

• The UI makes it easy to make a mistake in the submis-
sion process.

• The UI makes it difficult to make a mistake in the sub-
mission process.

The exception to this are the statements focusing on Difuse-
ness/Terseness, which asks the user to evaluate two negative
statements:

• The UI is not expressive enough to complete a submis-
sion.

• The UI is cluttered or complex.

All responses are in the form of a five point Likert Scale,
with scores of 1, 2, 3, 4, and 5 corresponding to Strongly
Disagree, Disagree, Neutral, Agree, and Strongly Agree, re-
spectively. To determine the UI’s overall score for a specific
dimension, the scores for the negative and positive state-
ments need to be comparable; as such, the scores for a neg-
ative statement are converted to a positive score by deter-
mining the distance of the average score from 1 (Strongly
Disagree) and taking the score the same distance from 5
(Strongly Agree). This becomes a simple equation:

adjustedScore = 5− (negativeScore− 1)
= 6− negativeScore

The survey was distributed to sections of classes that
have used or are currently using Gitsubmit in their course-
work. This includes two sections of a Sophomore level Data
Structures class, a Senior level Operating Systems class,

5

and a Junior/Senior level Algorithms class. There was some
overlap in students between classes. Of the survey invita-
tions sent out, 34 responses were elicited.

Some of the respondents have experience with Git in
other courses (such as a Software Engineering Course) or
in industry (through an internship or other professional ex-
perience). A portion of the survey asks these students to
evaluate Gitsubmit (and VeCVL) on both the Abstract Gra-
dient and the Closeness of Mapping. The statements posed
to these more experienced respondents include:

• The UI exposes too many git operations to complete a
submission.

• The UI doesn’t expose enough git operations to com-
plete a submission.

• The UI abstracts away too many of the git operations.

• The UI should combine more operations into abstrac-
tions.

• The UI uses too many symbols to indicate a git opera-
tion.

• The UI doesn’t use enough symbols to indicate a git
operation.

For all of these statements, an average score of less than
3 is a positive indicator.

The full survey can be accessed at https://www.
surveymonkey.com/r/922NT9X.

5 Results

Figure 7 shows the average score for each statement in
the survey aimed at all respondents, as well as the aggregate
overall score for each Dimension. For statements posed as
a negative, a score below 3.0 indicates that on average stu-
dents disagree that with the negative statement, and is a de-
sirable score. For positively posed statements, a score above
3.0 shows that Gitsubmit is on average doing well in that
category. The reported overall score is an average of the
scores of the statements for the given Cognitive Dimension
(adjusted in the case of negative statements).

Table 1 shows the average results for the questions di-
rected at students with Git experience. In all cases, the state-
ments were negative, so an average less than 3 reflects well
on Gitsubmit and VeCVL. The number of responses (that
were not N/A or prefer not to answer) varies from question
to question based on student understanding of version con-
trol and Git.

Table 1. Average Results for Nonnovice
Statements. All statements reflected nega
tively; average scores less than 3 is desirable.

Metric Avg. Score Responses
Too Few Operations 2.19 26

Too Many Operations 2.04 26
Too Much Abstraction 2.24 25
Too Little Abstraction 2.71 24

Too Many Symbols 2.08 26
Too Few Symbols 2.31 26

6 Conclusions

The results in Figure 7 show that Gitsubmit as an im-
plementation of VeCVL performs well when analyzed by
these eight Cognitive Dimensions of Notations. Overall,
students of varying experience levels indicated that Gitsub-
mit’s strongest areas were Diffuseness/Terseness and Pro-
gressive Evaluation. This suggests that students find Git-
submit’s interface to be simple enough to use, but provide
sufficient functionality to submit the assignment. Students
also like that it is able to show them the status of their sub-
mission.

The weakest area of those examined is Error-Proneness.
Responses were on average slightly positive; this indicates
that this is an area where Gitsubmit can improve. Further
exploration of the kinds of errors that students are encoun-
tering will be needed to determine whether the failings are
in the UI, in VeCVL, or both. From an instructor and grader
perspective, there have been fewer instances of students
submitting the wrong file (or corrupted files) since moving
to using Gitsubmit in these classes.

The results in Table 1 are overwhelmingly positive to-
wards both Gitsubmit and VeCVL. The survey indicates that
the “Goldilocks Zone” has been reached in terms of num-
ber of operations and symbols needed to complete the task.
The weakest area for GitSubmit is the amount of abstrac-
tion; while students on average agree that there is neither
too much or too little abstraction, the results for too little
abstraction are closer to neutral than outright disagreement.
This indicates an area where Gitsubmit could improve in its
usability.

7 Future Work

Gitsubmit and VeCVL are continually evolving works;
every course they are used in give feedback and a chance
for refinement and improvement. These results show that
one area that Gitsubmit could improve in is how well it pre-
vents users from making mistakes. Of particular interest

6

Figure 7. Average Novice Statement Results from Survey. Note that both statements for Diffuse
ness/Terseness were negatively framed questions; an average score of less than 3 is desirable for
both, and both scores were adjusted to determine the Overall score.

is the kind of errors users are making; the notation needs
to prevent users from making errors related to submitting
the correct files. Most errors that instructors and graders
encounter students making relate to the student closing the
UI in the middle of a git operation (such as clone or pull),
which puts the UI in a state it cannot easily recover from. If
students are making other kinds of errors, it needs to be de-
termined whether the notation (VeCVL) or the UI (Gitsub-
mit) needs to be modified to solve the errors that students
are encountering.

Further analysis of the UI is in progress, both through
surveys of users and analyses with Human/Computer Inter-
action tools. A Cognitive Walkthrough analysis is ongo-
ing, and further directed research will investigate the error-
proneness of the UI.

Additionally, work is progressing to make the UI look
more attractive to users and easier to deploy. Gitsubmit is
currently implemented using Python and QT; while devel-
opment is quick, deployment to multiple platforms (specif-
ically OSX and Windows) is difficult. Updating the UI on
student computers is also difficult. Additionally, the UI is
not optimal when it comes to interface real estate or visual
appeal.

References

[1] D. M. Case, N. W. Eloe, and J. L. Leopold. Scaffolding
Version Control into the Computer Science Curriculum. In
Proceedings of the 2016 International Workshop on Dis-
tance Education Technology (in conjunction with the 22nd

International Conference on Distributed Multimedia Sys-
tems (DMS’16)), 2016.

[2] S. Chacon. Pro Git. Apress, Berkely, CA, USA, 2nd edition,
2014.

[3] V. Driessen. A successful Git branching model, 5 Jan. 2010.
http://nvie.com/posts/a-successful-git-branching-model.

[4] N. W. Eloe, D. M. Case, and J. L. Leopold. VeCVL: A Visual
Language for Version Control. In Proceedings of the 2016
International Workshop on Visual Languages and Comput-
ing (in conjunction with the 22nd International Conference
on Distributed Multimedia Systems (DMS’16)), 2016.

[5] R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tor-
tora. On the Experience of Using Git-hub in the Context of
an Academic Course for the Development of Apps for Smart
Devices. In Proceedings of the 21st International Confer-
ence on Distributed Multimedia Systems (DMS’15), pages
292–299, 2015.

[6] GitHub. GitHub Classroom. https://classroom.github.com.
[7] GitHub. GitHub Education. https://education.github.com/.
[8] GitHub. Understanding the GitHub Flow, 12 Dec. 2013.

https://guides.github.com/introduction/flow/.
[9] GitLab. Code, test, and deploy together with Git-

Lab open source git repo management software.
https://about.gitlab.com.

[10] T. R. Green. Cognitive dimensions of notations. People and
Computers V, pages 443–460, 1989.

[11] J. Lawrance, S. Jung, and C. Wiseman. Git on the cloud
in the classroom. In Proceeding of the 44th ACM technical
symposium on Computer science education, pages 639–644.
ACM, 2013.

7

Package Dependency Visualization: Exploration and

Rule Generation

Mubarek Mohammed

Department of Computer Science and Electrical

Engineering, Syracuse University

Syracuse, USA

mmohamme@syr.edu

James W. Fawcett

Department of Computer Science and Electrical

Engineering, Syracuse University

Syracuse, USA

jfawcett@twcny.rr.com

Abstract— Large software systems are difficult to understand and

complex to manage. Dependency among software components

such as packages is one of the reasons that makes software

complex. To partly cope with complexity, we designed and

implemented a dependency analysis and manipulation tool to

manage package dependency at a higher level. Two major graph

layout algorithms, spring layout and Sugiyama layout along with

clustering algorithms, are used to visualize layout of dependency

graphs. In addition, we propose use of layering with Sugiyama

algorithm to get insight about software design. It is also possible to

generate dependency rules at the architecture level for software

designs that are suited for layering design. Both the visualization

and rule generation have flexibility to be used with manual

restructuring of package dependency.

Keywords- Visualiztion; Dependency; Layering;1

I. INTRODUCTION

Many organizations report that they face problems managing
software complexity using conventional software engineering
techniques [1]. Production sized software may contain millions
of lines of code [3]. Understanding, changing and maintaining
these large software systems is difficult. Documentation may
help reduce complexity to some extent. However, as software
evolves, changes may not entirely be captured in documents. Up
to date characteristics of the software system may be reflected
only in the source code. Extracting information about software
from source code is, therefore, important.

Software visualization can be used to manage complexity.
Software components can be represented as graphical elements
such as node and edges. Graph layout as well as analysis of the
graph gives insight about the design of a software system.
Specially interesting is the use of node-edge graph to represent
dependency of packages.

In this work, we show dependency among components,
particularly packages, with node-edge graphs to qualitatively
examine overall dependency. Using layered graph drawing,
edges are discriminated where those going from upper layers to
lower layers are considered generally acceptable edges. Whereas
those going in the opposite direction are unwanted edges. We
simply use two distinct colors: blue and red respectively.

1 10.18293/DMSVLSS2017-006

For cases where distinguishing edges does not give useful
information, nodes that result in such edges can be clustered into
one of the layers. Strong components algorithm is used to
achieve this. Further examination of dependency can be done
after clustering to see if the resulting dependency graph makes
sense. After examining the dependency, developers may
restructure the dependency or leave it as it is. The dependency
graph can be further clustered by collapsing nodes in each layer
into a single node and adding the corresponding edges among
the layers. Rules can be generated, as xml file, from the resulting
dependency graph. This may be used to restrict further changes
to the existing dependency when change is made to the software
system.

The main contributions of this paper are:

• Dependency analysis tool that can be used to get insight
about a given software project.

• Layering concept that may potentially be used for
planning restructuring package dependency.

• Generation of dependency rules that restricts
introduction of unwanted changes.

The remaining part of the paper is organized as follows.
Section II introduces software visualization and layering
concepts. Sections III briefly discusses the layout algorithms
used in our visualization tool. Section IV presents the tool design
and brief discussion of each component. Section V shows how
the tool can be used in real scenario. Section VI reviews related
works in software visualization and dependency. Section VII
concludes the paper and future extensions of the work.

II. SOFTWARE STRUCTURE VISUALIZATION AND LAYERING

In this section, we briefly discuss software visualization and

layered structure of dependency.

A. Software Structrue Visualization

Software visualization represents software components
graphically. Generally, software developers use pictorial
representation such as UML diagrams at various stages of
software development process. Bringing similar representation
at the time of change or maintenance with some interactivity can

8

Figure 1. Layering software components.

help understand software better and makes changing or
maintenance less complex.

An important concept in software components representation
is dependency. A software component is dependent on another
component if the former uses instances or services of the later
one.

Once dependency analysis is extracted as node-edge graph,
it can be drawn after applying layout algorithms. Nodes
represent packages, header and/or cpp file in c++. Edges are
added if a package depends on another package. Some layout
algorithms such as spring layout show visually appealing
diagrams that clarify the existing dependency [9]. Other layout
algorithms such as the Sugiyama layout algorithm represent
such dependency in a hierarchical way [5]. This helps both in
understanding and investigating the meaning of hierarchical
representation into layers. The next sub-section briefly
introduces layering.

B. Layering

Layering is representing software components in such a way
that lower level layers provide services to upper layers [4]. If
software is designed in the form of layers, it can be extended by
adding upper layers that use services provided by lower layers
and contracted by removal of lower layers.

With a strict hierarchy, each layer uses services in the layer
immediately below it. With a non-strict hierarchy, a layer does
not have to invoke a service at the layer immediately below it,
but it can invoke services at more than one layer below.

Layering of software components results in improved
maintainability, reusability or testability. General layering
concepts can be shown as in figure 1. There are four layers in the
hierarchy, layer 1 at the bottom and layer 4 at the top. Most of
the arrows go from upper layers to lower layers. From a to d and
c to m are two examples. However, there are arrows going from
lower level layers to upper layers indicated by red arrows.
Arrows from k to e and m to e are two such examples. As will
be discussed later, the later kind of arrows are discouraged in a
layered design. Layout algorithms used in this work are
discussed in the next section.

III. LAYOUT ALGORITHMS

Layout algorithms arrange nodes in a node-edge graph in
such a way that the drawing is visually appealing and readable.

Some of the layout algorithms improve symmetry and minimize
crossing. Others may arrange the nodes hierarchically.

A. Sugiyama Layout Algorithm

Sugiyama layout algorithm is used for drawing flow charts,
UML diagrams and other diagrams that needs to be drawn
hierarchically [5]. The algorithm has the following steps:

Step 1 - Cycle removal - removes cycles temporarily as
the other steps need an acyclic graph. Algorithms starting from
the simple depth first search based feedback edge set to the
greedy minimum feedback arc set algorithms can be used to
make a graph acyclic [6].

Step 2 - Layering - The nodes are assigned layers based
on their dependency hierarchy. Independent nodes take the
bottom layer and those depending on lower layers take upper
layers. Spanning tree algorithm can be used to assign layers.
However, restrictions are applied to width and/or height of the
layout. A structure like figure 1 can be obtained using layering.

Step 3 – Cross minimization – this step minimizes the
number of crossing between edges of different layers. This is
done by repeatedly sorting the layered nodes according to
barycentric weights calculated from the index position of nodes
in the layers. This makes the drawing visually less cluttered.

Step 4 – Coordinate assignment - x and y coordinates are
assigned to each node. The y-coordinate of nodes of each layer
will be the same. However, the x-coordinate will be assigned
based on the index position of a node in each layer.

B. Spring Layout Algorithm

Force-directed algorithms model a graph layout problem by
assigning attractive and repulsive forces between vertices, and
finding the optimal layout by minimizing the energy of the
system [7], [8]. The model of Fruchterman and Reigold [9], also
known as spring-electrical model, has two forces. The repulsive
force, exists between any two vertices, and is inversely
proportional to the distance between them. Attractive forces, on
the other hand exist only between neighboring vertices (vertices
that share an arc) and is proportional to the square of the
distance. An example is shown in figure 2. For specific situations
spring layout gives the most visually appealing graph. Graph

Figure 2. Spring layout example

9

interaction discussions that follow, except those that require
layering concepts, are applicable for spring layout. Therefore, it
will not be discussed further.

Before presenting the visualization tool usage, design of the
tool developed will be discussed briefly.

IV. SYSTEM DESIGN AND IMPLEMENTATION

To study software dependency understanding and quality
related issues, a prototype software visualization and analysis
tool has been designed and implemented. The system is depicted
in figure 3. The major components are discussed as follows.

Code Analysis - this component analyzes source code and
extracts information such as packages, classes, methods and
other software constructs that are not used in this work. This part
is implemented based on a light weight C/C++ parser
implementation [2]. This is a rule based parser which, with
minimal change, may be used to parse other programming
languages especially those syntactically similar to C++ such as
Java and C#.

Graph Processing and Layout - uses information extracted
from static analysis as input and results in a node-edge graph.
The graph will be further processed to generate the layout. The
layout can use spring layout or Sugiyama layout algorithms. In
addition, strong components algorithm is used to cluster nodes
to modify the layering. Output of this processing is presented as
an xml file.

Visualization - this component reads the xml representation
of the extracted information with coordinates and renders it on a
canvas. The user can interact with the visualization tool to see
the type of package represented by the node, panning,
dimensional zooming and coordinate based zooming.

Figure 3. System block diagram.

Rule Generation - unwanted dependencies can be
generated as xml rules that may be read automatically, at build
time, to prevent further deterioration of dependency. These
dependencies can be those not shown by arrows going from
upper layers to lower layers. It can also be implicit dependencies
that go from lower layers to upper layers. The later ones are red
edges if they are drawn on the dependency graph.

The static analysis and graph Processing and Layout
components are implemented using C++. Whereas the
visualization part is implemented using (Windows Presentation
Foundation) WPF.

Even though discussion in the sections that follow focuses on

package dependency analysis, the visualization system is

general enough to be used for other purposes.

V. RESULTS AND DISCUSSIONS

The dependency analysis tool can be used in different
scenarios. Some of its uses are:

• Examining dependency when changing software.

• Getting insight to restructure package dependency.

• Generate rules to prevent addition of unwanted

dependency.

We have explored two software systems using the
dependency visualization tool:

• Notepad++ - a multipurpose text editor. It has more

than 300 packages [10].

• Webkit - taken from chromium web browser source

code. It has more than 700 hundred packages [11].

Figure 4. Sugiyama layout of Notepad++ package dependency.

Source

Code

Extracted Data Static
Analysis

Graph
Processing

and Layout

Xml

Representation

Visualizatio

n

Rule

Generati

10

Figure 4. Sugiyama layout of Webkit package dependency.

A. Exploring Package Dependency Graphs

Figure 4 and figure 5 show the dependency graph of
Notepad++ and webkit respectively. One can explore
dependency using features such as zooming, panning and
viewing packages names from tooltips. In addition, one can
explore areas of interest by selecting and zooming specific
selections. In figure 3, the red arrows indicate edges going from
lower to upper layers. Whereas blue arrows go from upper to
lower layers. Generally, the red arrows are unwanted
dependencies in a layered architecture as they result in cycle
between layers. Similar observation can be made in Notepad++.

B. Layout After Applying Strong Components Clustering

To collapse the red edges into one of the layers, strong
components algorithm is run and the layout is redrawn using
sugiyama layout. Figure 6 is the resulting dependency graph.

For sake of clarity some parts are clipped. The clustered
nodes have more than one component. The tooltip text of one of
the nodes is shown as an example. The red edges are
significantly reduced. This is due to strong components
algorithm clusters nodes in a cycle. Generally, we expect that the
red edges to be contained in the clusters.

C. Clustering Each Layer Into A Node

Further clustering nodes in each layer results in a graph that
shows the relationship between the layers. This is achieved by
adding an edge between layers if there is an edge going from any
of the nodes from one layer to any other node in another layer.
Figure 6 shows what we found for webkit.

Even though layering is generated automatically, after
software designers examine its validity and manually restructure
the dependency, they can generate rules, as discussed in the next
section.

Figure 5. Webkit dependency visualization after applying clustering.

Figure 6. Layer dependency of webkit after clustering packages in each layer.

11

D. Generating Dependency Rules

If engineers are satisfied with the above layering or the
change they made manually after restructuring, they can
automatically generate rules similar to figure 8.

Rules can have two parts. The ones shown in figure 8, for
example are the ones that do not appear in figure 7. However,
we can include implicit rules that prevent addition of
dependency from lower layers to upper layers. Note that
generating meaningful names for the nodes is beyond the scope
of this work

Such rules can be used to notify engineers making change to
the software system. This file can be changed by engineers
whenever they want to restrict or relax the dependency structure.

<? xml version="1.0" encoding="UTF-8"?>

<graph title="Invalid Dependency">

 <node id="0">

 <Edge id="1"/> </node>

 <node id="1">

 <Edge id="2"/> </node>

 <node id="2"> <Edge id="3"/>

 <Edge id="6"/> </node>

 <node id="3">

 <Edge id="4"/> </node>

 <node id="4"> <Edge id="5"/> </node>

 <node id="5"> <Edge id="6"/> </node>

 <node id="6"> </node>

</graph>
Figure 7. Dependency rule.

VI. RELATED WORKS

There are many works on software visualization in general.
Source code-based visualization is done in [12], [13]. The work
in [13] addresses some issues of understanding large industry
size software. Class centered visualization is done in [14], [15],
[16]. These works represent a class blue print to show the overall
structure of a class, control flow among methods, and how
methods access attributes. Software organization visualization
has been done with optimized visual representation using trees
[17], [18]. The organization can also be represented as a treemap
[19], [20]. That means containment is defined in rectangular or
circular spaces. Another aspect related to organization is concern
for software components relationships. The most common ones
are Dependency Structure Matrix (DSM), UML class diagrams
and Simple Hierarchcal Multi-perspective(SHriMP) [21], [22].
From the three ways, ShHriMP is a relatively complete work. It
shows software at source code level, class level and package
level.

There are some research works on layering and cycles in
software component dependency. Strong components in
dependency is studied well in [2]. It emphasizes the fact that
strong components make software maintainability and testability
difficult. Some research is done to remove cycles to overcome
this problem. A heuristic greedy algorithm to find the minimum
feedback arc set is used [6]. We used this algorithm at the cycle
removal stage of the Sugiyama layering algorithm.

Some research studies hierarchical organization of systems
using graph algorithms. Sugiyama layout algorithm is used for
hierarchical drawing of graphs [5].

A similar work to ours that visualizes object oriented
programs is implemented as a polymeric view in [23]. It is
different from our work in that it has a fine-grained view of
objected-oriented programs. The approach represents metrics
such as weighted calls per method and lines of code graphically.
This work is extended in [24] by visualizing software programs
at the package level.

In our work, layout algorithms such as spring layout and
Sugiyama algorithms are used to show software component
dependencies. Interactions such as zooming, panning and saving
features allow the user to understand the diagram. Furthermore,
Sugiyama layout algorithm is used to hierarchically represent
dependencies. The layering and discrimination of edges is used
to examine package dependency at a higher level. Strong
component clustering along with Sugiyama layout algorithm is
used to collapse unnecessary dependencies, red edges that may
result in cycle, into a corresponding node in the nearby layer. It
is also possible to cluster each layer after which rules to restrict
dependency can be generated.

VII. CONCLUSION AND FUTURE WORK

We proposed a dependency visualization tool that can
potentially be used to assess software design and generate
dependency restriction rules. We implemented two layout
algorithms that are used to explore package dependency of real
software systems. Features including zooming, panning, pointed
and selected zooming, saving layout and printing layouts are
some of the functionalities of the tool. In addition, it helps one
to explore high level design of a software and possibly help
guide the restructuring of package level dependency.

Layering is one of the software architecture focused
processes used in software design. The logical layering with
additional input from engineers help restructure package
dependency. After automatically identifying strong components
in package dependency graphs, logically layering packages
enables engineers to manage complexity by enabling them to
control change in an ordered manner. Clustering packages in a
layer after possible manual change of the dependency
information results in a layered high level design of the software
under investigation. If the layering in the high level layered
design is found to be useful, rules can be generated that can be
used as configuration file to check software change that prevents
deterioration of design. Of course, such rules can be changed to
further restrict or relax possible dependencies.

This work is a preliminary result. It has limitations that
should be addressed in future work. Some of the planned works
are:

• Getting feedback from real users will make the tool

useful in real software design restructuring. The

future change will be more concrete if we get

feedback from engineers using our tool.

• Strong components hide cycles in package

dependency. Whenever possible breaking these

12

file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml
file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml
file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml
file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml
file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml
file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml
file:///D:/from%20laptop/from%20d/SU/Research/current%20projects/Graph%201.2/Sugiyama/webkitRules01.xml

cycles improves the design. Allowing automatic

suggestions of such restructuring will be very helpful.

• Not all software designs benefit from layering

architecture. Allowing other ways of arranging

packages to automatically suggest high level design is

also useful.

REFERENCES

[1] Ultra –Large-Scale Systems: The Software Challenge of the Future,
Retrieved from
http://www.sei.cmu.edu/library/assets/uls_Book20062.pdf.

[2] J.W. Fawcett et al., Analyzing static structure of large software systems,
proceedings of the 2005 International Conference on Software
Engineering Research and Practice, 2005.

[3] T. Ball and S.G. Eick. Software visualization in the large, IEEE Computer,
Vol. 29, April 1996, pp. 33–43.

[4] H. Gomma, Software Modeling and Design, Uml, Use cases, Patterns, and
Software Architectures, Cambridge Univesity Press, 2011.

[5] K. Sugiyama and et al., Methods for Visual Understanding of Hierarchical
System Structures, IEEE Transactions on Systems, Man, and Cybernetics,
VOL. SMC- 1, NO. 2, 1981, pp. 109-125.

[6] P. Eades et al., A fast and effective heuristic for feedback arc set problem,
Information processing letters, Vol 47, Issue 8, 1993, pp. 319 – 323.

[7] P.Eades. A heuristic for graph drawing. Congressus Nutnerantiunt, 42:149
– 160, 1984.

[8] Hu, Y. F. "Efficient, High-Quality Force-Directed Graph Drawing." The
Mathematica Journal 10, no. 1 (2006): 37-71.

[9] T.M.J Fruchterman and E.M. Reigold, Graph drawing by force directed
placement, Software – Practice and Experience, 21:1129 -1164, 1991.

[10] Notepad++, retrieved from http://notepad-plus-
plus.org/download/v6.2.2.html , sept. 2012.

[11] Webkit from chromium web browser project, retrieved from
http://dev.chromium.org/developers/how-tos/get-the-code , sept 2012.

[12] S. Eick, J. Steffen, and E. Summer Jr., “Seesoft – A Tool for Visualizing
Line Oriented Software Statistics, “IEEE Trans. Software Eng., vol 18,
no. 11, pp. 957-968, Nov. 1992.

[13] T. Ball and S. Eick, “Software Visulization in the Large,” Computer, vol.
29, no. 4, pp. 33-43, Apr. 1996.

[14] M. Lanza, “Object Oriented Reverse Engineering – Coarse-Grained, Fine
Grained, and Evolutionary Software Visualization, PhD dissertation,
Univ. of Bern, 2003.

[15] M. Lanza and S. Ducasse, “A Catogorization of Classes Based on the
Visualization of Their Internal Structure: The Class Blueprint,” Proc. 16th
ACM SIGPLAN Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 300-311,200.

[16] S. Ducasse and M. Lanza, “The Class Blueprint: Visually Supporting the
Understanding of Classes, “IEEE Tans. Software Eng. vol 31, no. 1, pp.
75 – 90, Jan. 2005.

[17] C. Wetherell and A. Shannon, “Tidy Drawings of Trees, “IEEE Trans.
Software Eng., vol SE-5, no. 5, pp. 514 -520, Sept. 1979.

[18] T. Barlow and P. Neville, “A Comparison of 2D Visualization of
Hierarchies, “Proc. IEEE Symp. Information Visualization, pp. 131-138,
2001.

[19] B. Johnson and B. Shneiderman, “Tree-Maps: A Space-Filling Approach
to the Visualization of Hierarchical Information Structures, “Proc. Second
IEEE Conf. Visualization, pp. 284 – 291, 1991.

[20] B. Shneiderman, “Tree Visualization with Tree-Maps: 2D Space-Filling
Approach, “ACM Trans. Graphics, vol. 11, no. 1, pp. 92 – 99, Jan. 1992.

[21] M. Storey, H. Muller, and W.K., “Manipulating and Documenting
Software Structures, “Software Visualization, pp. 244 – 263, World
Scientific Publishing Co., 1996.

[22] M. Eiglsperger, “Automatic Layout of UML Class Diagrams: A
Topology-Shape-Metrics Approach,” PhD dissertation, Univ. Tubingen,
2003.

[23] R. Francese, M. Risi, G. Scanniello, and G. Tortora, “Proposing and
assessing a software visualization approach based on polymetric views,”
Journal of Visual Languages & Computing, vol. 34–35, pp. 11–24, Jun.
2016.

[24] R. Francese, M. Risi, G. Scanniello, and G. Tortora, “Enhancing
Polymetric Views with Coarse-Grained Views,” in 2016 20th
International Conference Information Visualisation (IV), 2016, pp. 57–
62.

[25] J.W. Fawcett, (2016, December 10), Light Weight Parser [Online].
http://www.ecs.syr.edu/faculty/fawcett/handouts/WebPages/blogParser.h
tm.

13

http://www.sei.cmu.edu/library/assets/uls_Book20062.pdf
http://notepad-plus-plus.org/download/v6.2.2.html
http://notepad-plus-plus.org/download/v6.2.2.html
http://dev.chromium.org/developers/how-tos/get-the-code

The Design and Evaluation of a Text Editing Technique for Stylus-Based Tablets

Gennaro Costagliola, Mattia De Rosa, Vittorio Fuccella
Dipartimento di Informatica, University of Salerno
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
{gencos, matderosa, vfuccella}@unisa.it

Abstract

We describe the design and evaluation of a technique
aimed at improving text editing on touchscreen devices that
exploit the use of stylus-based gestures. The technique has
been designed by choosing the most natural gestures for
users, established in a preliminary study. The technique al-
lows the user to interact directly with the text to perform
commands such as select, move, copy, delete and paste. We
conducted an experiment to compare the gestural editing
technique to the classical technique (present on Android de-
vices). Results show an advantage in terms of efficiency for
the gestural technique with large font.

Keywords: Gestures; Text editing; Stylus tablet; Touch-
screen.

1 Introduction

Mobile touchscreen devices such as smartphones and
tablets are becoming ever more popular in recent years.
These devices are used to perform a wide range of oper-
ations: web browsing, chatting, reading documents, etc.
With the proliferation of touchscreens, the research has fo-
cused on improving user interaction with them. At the end
of the 60s, Coleman was one of the first authors to study the
use of handwritten symbols for text-editing [8]. Other stud-
ies dealt with text-processing [17] and sketch-editing [6].
In view of this research, there are increasingly common ap-
plications that take advantage of gestures to facilitate some
operations. A gesture is a sign made by hand (e.g. a circle,
an arrow, etc.) possibly used to denote a command.

A suitable application for gesturing is text editing. While
on a classic personal computer mouse/touchpad, keyboard
and WIMP-based interfaces are used to perform editing op-
erations with reasonable efficiency, text editing can be par-
ticularly difficult on mobile touchscreen devices. In fact,
the screen size can create additional obstacles: the use of a

DOI reference number: 10.18293/DMSVLSS2017-009

finger as a pointing device introduces problems of accuracy
and occlusion (only partially solved by using a stylus). Ad-
ditionally, it is not possible to use keyboard shortcuts (be-
cause a physical keyboard is typically absent).

For the reasons mentioned above, text editing is not a
very common task on mobile devices. Text editing on a
touchscreen is currently performed through a Widget-based
technique. Typically, the user enters text using a soft key-
board (or handwriting) and moves the cursor by simply tap-
ping with his/her finger on the desired point of the text.
Besides entering new text, the user may perform selection
and editing operations by using the widgets that appear in
a menu over the text after a user interaction (e.g. a long
press). In this context, the use of gestures could facilitate
this task, for example, a user may delete a word by simply
performing a specific gesture (e.g. a cross) over it.

The aim of this paper is to design a new text editing tech-
nique based on gestures, which allows performing the main
operations in a simple and intuitive way. In order to iden-
tify the most natural gestures for text editing, a preliminary
exploratory study was carried out. The set of tasks was de-
fined by analyzing some papers on the same topic, includ-
ing [18, 15, 24]). Starting from the data collected through
this preliminary study, we identified the most appropriate
gestures for each editing operation. The user can perform
them directly on the text, thus making the editing technique
independent from the text entry method (e.g. a soft key-
board). This way the user may choose any input method,
depending on the context and its preferences, including key-
boards that make use of gestures [19, 12, 11, 14].

This paper is organized as follows: Section 2 describes
some works related to ours; Section 3 describes the pre-
liminary experiment regarding user preferences on gestural
text editing; Section 4 describes the proposed text editing
technique and Section 5 its experimental evaluation. A dis-
cussion on the limitation of this study and some comments
on future work conclude the paper.

14

2 Related Work

The introduction of touchscreen has led to the study of
new forms of interaction. One of the first metaphors used
was to simulate the use of paper, for example to allow draw-
ing of figures or diagrams [1, 16, 9, 10]. Beyond this simple
form of interaction, much research in the HCI field has fo-
cused on the use of gestures to perform actions. Most of
it developed before the rise of finger pointing and multi-
touch gestures (e.g. [24, 22]) and was based on the slower
but more precise stylus/mouse. Bragdon et al. [4] discov-
ered that in the presence of distractions, the use of gestures
to issue commands improves performance w.r.t. the use of
touch buttons (such as a QWERTY keyboard). The reason
is that using gestures requires less attention than using wid-
gets since in the latter case the user has to look at the keys
before touching them. Moreover, when dealing with short-
cuts, users tend to remember gestures better than keyboard
shortcuts and make fewer mistakes [2].

Findlater et al. [12] pointed out another aspect of the use-
fulness of gestures. In particular, their study focused on
writing non-alphanumeric input using gestures on touch-
screen devices equipped with QWERTY soft keyboards.
The advantage of this technique is that people do not need
to change the interface to enter symbols that are not letters
and numbers. The results showed an overall favor for this
technique over moded-keyboard interfaces.

Text editing research had its climax at the time of the
first graphical user interfaces, starting from the cut/copy-
paste technique developed since the 1970s. Text editors
have become increasingly complex, leading to studies on
the new features [3, 20, 21]. In the literature, there are a few
works discussing text editing with gestures on mobile de-
vices. Some works only focus on a single editing function.
Chen et al. [7] focus instead on the Copy-Paste operations,
that are not as easy to perform on smartphones as on desktop
computers. They propose BezelCopy, a copy-paste tech-
nique based on bezel-swipe gestures, and evaluate it show-
ing that it outperforms alternative approaches for a num-
ber of commonly performed copy-paste tasks. Scheibel et
al. [23] focus on the problem of precise pointing on touch-
screens, proposing a virtual stick controller technique and
evaluate it in a text editing context showing that it may fa-
cilitate the placing of the cursor when the font size is small.

Many commercial applications face the same problem
with different solutions. In Apple iOS, a magnifying glass
appears on the touched text after a long press. Then the user
can move his/her finger on the magnified area and the view
is updated in real time. This technique avoids the prob-
lem of occlusion and allows to correctly position the cursor
even if the text has a very small font. Android implements
a graphical widget attached to the lower end of the cursor.
The widget can be moved with the finger, partially solv-

ing the problem of occlusion, but it is not very practical
for small fonts and does not offer magnification. Moreover,
many soft keyboards offer cursor movement with the help
of arrows on the keyboard, e.g. the Hacker’s Keyboard1 and
the Arrows Keyboard2.

Fuccella et al. [15] compare a gesture-based editing tech-
nique to a widget-based one. The results show a perfor-
mance improvement of 13-24% for the gesture technique.
The feedback from the participants was also positive. More-
over, the two editing techniques use different input chan-
nels, so they can co-exist on a single device. This means
that gestural editing can be added to any soft keyboard with-
out interfering with the experience of the user that chooses
not to use it.

There are several studies in the literature that evaluate the
performance of text editing. The above-mentioned papers
include the evaluation of editing techniques on touchscreen
devices. Older works, however, have a different focus, such
as Wolf and Morrel-Samuels [24] that conducted an exper-
iment on pen and paper for simple text-editing tasks. The
purpose of this study was to analyze the consistency and fre-
quency of gestures for editing operations. This experiment
was performed with 12 participants and was divided into
three phases. In the first phase, participants had to choose
a gesture for each task and perform the editing operations.
The second phase was repeated immediately after the first
one and the participants had to use their chosen gestures
again; the last phase, equal to the previous one, was per-
formed after a week. The feedback from participants was
positive as shown by answers to a questionnaire: 85% said
it had carried out the task of editing without having to think
too much about the gesture to use, 69% said that it seemed
natural to use gestures and 77% easily remembered previ-
ously performed gestures.

3 Preliminary experiment

The aim of this preliminary experiment is to find the
most suitable set of gestures for editing text on the basis
of users’ preferences. This study takes inspiration from the
work of Wolf and Morrel-Samuels [24] described in Sec-
tion 2, with the difference being that in our case the tasks
are performed on a touchscreen instead of on a paper.

3.1 Participants

We recruited 10 participants (3 female) between 19 and
25 years old (M=22.9, SD=2.13). All of them were uni-
versity students who agreed to participate for free. All par-
ticipants had experience with touchscreen devices and 9 of
them also with their use with a stylus.

1http://code.google.com/p/hackerskeyboard/
2http://arrows-keyboard.android.informer.com/

15

3.2 Apparatus

The experiment was carried out on a Huawei P8 smart-
phone running Android 5.0.1. The device has a 5.2” touch-
screen which can be operated with both finger and a stylus.

The experimental software was developed in Java in or-
der to allow execution and recording of editing tasks. It
consisted of an Android application, showing at the top the
description of the requested text editing operation and some
text below, with the parts to be edited highlighted in green.
The gestures performed by the user are shown over the text
as red lines in order to provide a feedback. Since our goal
is just to record the gestures, the gestures produce no effect
on the text. A Next button at the bottom right of the screen
allows the user to advance to the next task. For each com-
pleted task the software logs the data of the user gestures as
a list of (x, y, time) tuple and a screenshot of each of them.

3.3 Procedure

Before starting the experiment, participants had an in-
troductory phase where the experimental procedure was
briefly explained and some demo tasks were shown. Then
they were asked to fill out a pre-experiment questionnaire
with the following information: personal data (age, gender);
handedness (right-handed, left-handed); previous experi-
ence with touchscreen devices (tablets, smartphones, etc.)
whether they had experience using a stylus.

After that, each participant was asked to perform the
editing tasks proposed by the application, following the
shown task descriptions. There was no time limit. We
selected thirteen different editing tasks: split word, delete
character, select phrase, delete paragraph, delete phrase,
delete word, insert character, enter a word, join text, move
row, move phrase, move word and select text. Each task was
presented twice to each participant, for a total of 26 tasks.
The tasks were presented sequentially in a random order.

At the end, a questionnaire was given to each participant
to collect information and opinions.

3.4 Design

The experiment was a within-subjects design. The inde-
pendent variable was the task, with 13 test condition. The
dependent variables were 2: the gesture and the task com-
pletion time.

The screenshots recorded for each task were analyzed by
a human operator in order to classify the editing gesture(s)
made by the participant. Since 10 participants performed 13
tasks, each of them twice, 10 × 13 × 2 = 260 screenshots
were analyzed to identify the gestures.

Task Gestures Other
split
word

90% 10% 0%
delete
character

45% 40% 10% 5%
select
phrase

75% 15% 10% 0%
delete
paragraph

70% 20% 10% 0%
delete
phrase

60% 30% 10% 0%
delete
word

50% 30% 10% 10%
insert
character

65% 25% 10% 0%
enter a
word

35% 30% 25% 10%

join text

40% 25% 10% 25%
move
row

65% 25% 5% 5%
move
phrase

45% 30% 25% 0%
move
word

70% 30% 0%
select
text

55% 25% 20% 0%

Table 1: Gestures classes used by the participants to com-
plete each task and their frequency.

16

3.5 Results and discussion

All participants completed the experiment. Except for
introduction and questionnaires, the mean experiment com-
pletion times among the participants was 202 seconds
(SD=56).

For each task, the gestures used by the participants were
identified. Table 1 shows each gesture class frequency (as a
percentage) and a gesture example (taken from the experi-
ment screenshots).

It is worth noting that only for a subset of the tasks was it
possible to clearly identify a gesture preferred by the partic-
ipants. In fact, for some tasks, the participants split between
different alternatives. An example in which almost all of the
participants used the same gesture is the “split word” task
(9 out of 10 participants performed the same gesture). There
was no consensus, instead, for example for the “delete char-
acter” task.

The final questionnaire indicated that none of the partic-
ipants spent much effort in thinking of a possible gesture to
complete the task, and that in the second trial of a task most
of the participants remembered the gesture performed the
first time.

4 Design of the Gestural Editing Technique

We designed our text editing technique on the basis
of the data collected in the above-described preliminary
study. The selection of the set of editing features sup-
ported through gestures also took into account the work of
Roberts [20]. For most editing actions we selected the first
or second most frequent gesture resulting from the previous
experiment, taking into account the need to remove the am-
biguity between different selected gestures. For the editing
actions requiring the entry of some text, we decided not to
rely on any specific input method (e.g. handwriting), but to
rely on the default system method (usually a soft keyboard).
Moreover, in order to support typical text editor operations,
gestures for operations like copy, paste, cut, undo and redo
were added.

The set of supported editing features and related gestures
are shown in Table 2. The Gesture column shows how the
gesture is performed on the text, while the Explanation col-
umn describes the functionality implemented by that ges-
ture. Every gesture begins with a dot (in red), continues
with a line (in black) and ends with an arrowhead (in red).
This notation shows all the movements of the stylus from
pressure to release, with the arrow indicating the gesture di-
rection. The gesture set can be divided into three categories:

• deletion: gestures indicating the deletion of text (indi-
vidual characters or one or more consecutive words).
To delete a character the user can simply draw a diag-
onal line (slash) over the character to be deleted. To

Gesture(s) Explanation
The character underneath the
gesture will be deleted.

The text underneath the
gesture will be cut (deleted
and copied in the clipboard).

The text enclosed within the
outlined area will be selected
(and highlighted).

The text selected by
enclosing it within the
outlined area will be moved
to the point where the second
gesture ends.
Paste the text from the
clipboard (if present) at the
place where the cursor is
currently placed.
Copy the selected text into
the clipboard.

Undo the last performed
editing operation (if there is
one).
Redo the last operation that
has been undone (if there is
one).

Table 2: Gesture set implemented by the gestural editing
technique. Gesture starts are shown as a red dots, gesture
ends as red arrowheads.

17

delete one or more words, s/he can draw a horizontal
line that covers the portion of text to be deleted. If
more than half of a word is covered, it will be fully
deleted. Word deletion also performs the cut function-
ality, i.e. the deleted text is inserted in the clipboard.

• moving/copying: gestures allowing text movements.
There are two ways to perform such operations: cut-
paste and select-move. In the former, the user first
deletes some text, then places the cursor at the desired
point and performs a paste function. The deletion is
performed as specified at the previous point. The paste
operation is performed through a P gesture. In the lat-
ter, the user first selects some text by drawing an el-
lipse around it. This highlights the selected text and
allows the user to drag it by tracing a line starting from
the highlighted area and ending in the place in which
the text should be moved. The selected text remains
in place and it is moved to its final location only when
the gesture ends. Finally, to only copy a piece of text,
without cutting or moving it, the user can select it as
above and then perform the C gesture. To paste the
copied text, the same procedure used for the cut-paste
is used, i.e. placing the cursor and performing the P
gesture.

• editing correction: to correct editing errors, the user
can perform the U undo gesture. To redo the editing op-
eration that was incorrectly invalidated with an undo,
the user may simply perform the R gesture.

In order to perform the gesture recognition, the
PolyRec [13] gesture recognition method was used.

5 Experiment

To check the effectiveness of the proposed technique, we
compared it to one of the standard text editing techniques
for mobile devices. In particular, we compared it to the stan-
dard text editing technique available on the Android system.
During the experiment, we collected information about the
user performance in carrying out the proposed editing tasks.

5.1 Participants

For the experiment, 12 participants (5 female) between
21 and 30 years old (M=24.17, SD=2.58) were recruited.
All of them were university students who agreed to partic-
ipate for free, with no overlap with the participants of the
experiment described in Section 3.

All of them already had experience with touchscreen
devices, using their smartphones every day. They were
asked how frequently they perform text editing operations
on touch devices, and we found that text editing is rarely

performed, except for a single participant who declared to
perform it frequently to send emails and messages.

All the participants declared an average knowledge of
the English language. We considered this level sufficient to
perform editing tasks (of English text).

5.2 Apparatus

The experiment was carried out on a Mediacom tablet
running Android 4.4.2. The touchscreen display has a size
of 10.1” and a resolution of 1366x768 pixels. A simple
capacitive stylus was used to interact with the device.

The experimental software is an Android application
showing a list of all the tasks to be performed. By tap-
ping on one item, the corresponding task is launched in
an editing view. After the user completes a task, its entry
in the list is highlighted. The editing view uses either the
traditional editing widget (EditText Android widget) or the
gestural editing technique (a custom version of the Android
TextView widget). A task is not considered completed if the
text still contains errors. Nevertheless, the user had the op-
tion to abandon a task (e.g. if the text had been irreparably
changed). In this case, the task was reset and restarted.

The software records all major user actions and calcu-
lates the completion time of each task. The task is consid-
ered completed when the current text equals the text defined
in the task solution. At task completion, an Android toast
with the completion time is shown to the user.

5.3 Procedure

Before starting the experiment the participants were
asked to fill out a form with the following information:
age, gender, English knowledge level, experience level with
touchscreen devices and with text editing on such devices.
Then they received an explanation of the experimental pro-
cedure and were given an instruction sheet, containing a
table with the set of allowed gestures (in gestural editing
mode) and a table with the task list (including the initial text
and correct text). The sheet was left with the user through-
out the whole experiment.

The experiment started after the experimenter ascer-
tained that the participant had well understood the proce-
dure. The experiment consisted of seven tasks in which
the user had to correct the given text, each one repeated
for the two editing techniques. The experiment was divided
into four blocks. The first block was used as user training
(not recorded) and performed with the medium font size.
Half the users first used the gestural editing technique and
then the classic technique, while the other half followed
the reverse order. The other three blocks composed the ac-
tual experiment, each one with a different font size (small,
medium, large).

18

Task Title Description Presented Text Final Text
1 Delete

charac-
ter

Delete the X
characters from
the text

It was a lovely night, so warXm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he stroXlled home, smoking his. . .

It was a lovely night, so warm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he strolled home, smoking his. . .

2 Delete
word

It was a lovely night, so warm that he
threw his coat over his arm and did not
even put his silk scarf XXXXXX
round his throat. As he strolled home,
smoking his. . .

It was a lovely night, so warm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he strolled home, smoking his. . .

3 Delete
phrase

It was a lovely night, so warm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he XXXXX XXXXX strolled
home, smoking his. . .

It was a lovely night, so warm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he strolled home, smoking his. . .

4 Move
word
(cut -
paste)

Move the
highlighted
words in the
correct position
(shown as a
vertical bar)

It was a lovely night, so warm that he
threw his coat over his arm and did
not even put his silk scarf round his
throat. As he strolled home, smoking
his. . .

It was a lovely night, so warm that he
threw his coat over his arm and did not
put even his silk scarf round his throat.
As he strolled home, smoking his. . .

5 Move
word
(select -
move)

It was a lovely night, so warm that he
threw his coat over his arm and did
not even put his silk scarf round his
throat. As he strolled home, smoking
his. . .

It was a lovely night, so warm that he
threw his coat over his arm and did not
put even his silk scarf round his throat.
As he strolled home, smoking his. . .

6 Move
phrase

Move the
highlighted
phrases in the
correct position

He of them heard one whisper to the
other, “That is Dorian Gray.”
He used to be when remembered how
pleased he he was pointed out, or
stared at, or talked about. . .

He heard one of them whisper to the
other, “That is Dorian Gray.”
He remembered how pleased he used
to be when he was pointed out, or
stared at, or talked about. . .

7 Text cor-
rection

Fix the text It was a lovely night, so warXm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he strolled home, smoking his
cigarette, two young men in evening
dress passed him. He heard one of
them whisper to the other, “That
XXXX is Dorian Gray.” He
remembered how pleased he used to be
when he was pointed out, or stared at,
or talked about. He was tired of
hearing his own name now. Half the
charm of the village where he had
little been so often lately was that no
one knew who he was.

It was a lovely night, so warm that he
threw his coat over his arm and did not
even put his silk scarf round his throat.
As he strolled home, smoking his
cigarette, two young men in evening
dress passed him. He heard one of
them whisper to the other, “That is
Dorian Gray.” He remembered how
pleased he used to be when he was
pointed out, or stared at, or talked
about. He was tired of hearing his own
name now. Half the charm of the little
village where he had been so often
lately was that no one knew who he
was.

Table 3: Editing task list (in order to reduce table size, the task texts are only partially shown).

19

The given tasks are shown in Table 3. They were de-
signed using [15] as the base, and considering the most
significant task for the main editing operations that can be
performed (at least partially) with gestures using our tech-
nique. The tasks can be divided into two main groups, de-
pending on the predominant type of operation within them
(in the gestural editing mode). The first group is formed by
delete-intensive tasks (1, 2, 3); the second one is composed
of move-intensive tasks (4, 5, 6), while task 7 is a mixed
task. The first group can be performed with direct gestures:
it is, in fact, possible to perform a single gesture to com-
plete the operation. The second group, instead, can only be
performed with multiple gestures.

After the end of the experiment, participants were asked
to fill out a System Usability Scale (SUS) questionnaire [5]
for each of the two editing techniques. The SUS question-
naire consists of 10 statements to which the user assigns a
score on a scale from 1 (strongly disagree) to 5 (strongly
agree). The final score of the SUS ranges from 0 to 100.
A higher score indicates a greater user usability. Moreover,
after the experiment, user free form comments and sugges-
tion were also collected. In particular, at the end of the
questionnaire, there was a blank space where each partic-
ipant could write his/her comments and suggestions about
the techniques and a checkbox to state if s/he would like to
use the technique in everyday life.

5.4 Design

The experiment was a two-factors within-subjects fac-
torial design. The factors were the text font size (4.0, 5.5
and 7.0 mm) and the editing technique (gesture, traditional).
The font sizes were selected by considering 5.5 mm a com-
fortable size, and adding two more dimensions (one greater
by 1.5 mm and one smaller by the same extent). The or-
der of editing technique and font size was counterbalanced
between participants, as shown in Table 4.

The dependent variables were the overall task comple-
tion time (given by the sum of the 7 task completion times)
and the number of failed tasks.

To evaluate user satisfaction the SUS was used for both
editing techniques.

6 Results

All participants completed the experiment. The exper-
iment took each of them about half an hour. We tested
for significance using a repeated measures analysis of
variance (ANOVA). For significant main effects, we used
Bonferroni-Dunn post-hoc tests. The alpha level was set to
0.05.

The overall task completion times grouped by font size
are shown in Figure 1. As it can be seen, for medium and

Participant Font size order Editing technique order
Training Blocks

1 m s-m-l gesture - classic
2 m s-l-m gesture - classic
3 m l-s-m gesture - classic
4 m l-m-s gesture - classic
5 m m-s-l gesture - classic
6 m m-l-s gesture - classic
7 m s-m-l classic - gesture
8 m s-l-m classic - gesture
9 m l-s-m classic - gesture

10 m l-m-s classic - gesture
11 m m-s-l classic - gesture
12 m m-l-s classic - gesture

Table 4: Counterbalancing used during the experiment.
Font size abbreviated (s - small, m - medium, l - large).

Figure 1: Mean overall task completion time for the two
editing techniques, grouped by font size. Error bars show
the standard deviation.

large font sizes the users were faster with the gestural edit-
ing technique (163” vs 195” for medium size, 100” vs 185”
for large size), while for small font size they were faster
with the traditional technique (324” vs 270”). This is due to
the fact that the small font requires greater precision when
performing the gestures, and with the capacitive stylus, it is
not always easy to work on a small amount of space. Glob-
ally the gesture method is sightly faster (196” vs 216”).

From the ANOVA resulted that there was no signifi-
cant effect of the editing technique (F1,11 = 2.258, p =
.1611). The main effect of the font size on the overall task
completion time was highly significant (F2,22 = 68.682,
p < .0001). The interaction effect between the two fac-
tors was also statistically significant (F2,22 = 10.887, p =
.0005). A Bonferroni-Dunn post-hoc test revealed signifi-
cant differences between Gesture-Large and Classic-Large
(while no significance was sought between Gesture-Small
and Classic-Small, Gesture-medium and Classic-Medium).

20

The mean completion times for each task are shown in
Figure 2. We report a separate chart for small (a), medium
(b) and large (c) font and for their aggregated values (d).
The gestural editing technique was almost always faster
than the classic technique for the medium and large font
sizes, with task 6 (move phrase) as the only exception for
the medium font. The classic technique was instead almost
always faster with small font, with the exception of task 2
(delete word) and task 3 (delete phrase).

Finally, it turned out that the participants failed fewer
tasks with the gestural editing technique compared to the
traditional editing technique. In particular, only one failed
task occurred for the gestural technique (with small font
size), while 6 failed tasks occurred for the traditional tech-
nique (4 with small font size and 2 with large font size).
Nevertheless, the ANOVA results show no significant ef-
fects for the editing technique (F1,11 = 2.570, p = .1372),
the font size (F2,22 = 2.714, p = .0884), or their interac-
tion (F2,22 = 0.865, p = .4348).

6.1 User Satisfaction and Free-form Comments

The average SUS score was 61.25 for the classic edit-
ing technique (SD = 18.68) and 73.13 (SD = 15.88) for
the gestural editing technique. A Wilcoxon matched-pairs
signed-ranks test performed on SUS scores revealed a statis-
tical significance between the two techniques (Z = −2.138,
p < .05).

When asked which editing technique they prefer, all par-
ticipant chose the gestural one, highlighting a greater ease in
task execution with the possibility of omitting many actions.
The only problem highlighted by all participants was the
lack of usability with the small font size. Some users sug-
gested fusing the two techniques in order to allow greater
efficiency. The action that proved to be more complex for
participants were those involving text moving, which re-
quires a greater effort in some conditions. Regarding the
traditional technique, some participants pointed out that it
would be appropriate to add an Undo button, to limit the
cases in which it is necessary to restart a task.

6.2 Discussion

During the experiment, the participants could consult the
sheet with the gesture set supported by the gestural editing
mode, while in a real context this guide would not be avail-
able. A further study will be needed to understand how easy
it is for the users to learn the gesture set and how useful the
addition of an interactive help would be. However, from
participants’ comments and results, the gesture set seemed
quite easy to learn and use, as expected since their choice
is based on the results of the preliminary study. There was
no consensus among participants in choosing the best ges-

(a) Small font mean task completion times.

(b) Medium font mean task completion times.

(c) Large font mean task completion times.

(d) Mean task completion times (mean for all font sizes).

Figure 2: Task completion times. Error bars show the stan-
dard deviation.

21

ture sequence to move text: about 50% of them preferred to
cut-paste while the other 50% preferred select-move. This
reflects their preference when operating on a touch device.
However, on average, select-move is faster than cut-paste,
as can be seen by looking at tasks 4 and 5 in Figure 2.

Some participants also complained about cursor posi-
tioning. Especially with small font size, it was difficult
for them to place the cursor quickly. This is a general is-
sue found in text editing applications, and some techniques
are used to improve the placing, as described in Section 2.
Some participants suggested adding one of those techniques
in order to allow a further efficiency increase. When assess-
ing the results one must also consider that the participants
already knew the traditional editing technique, while they
had to learn the new gesture based technique. Despite this,
all participants showed a fast learning process.

7 Conclusions and further works

This paper presents a new gesture-based text editing
technique, which allows the user to perform operations such
as text deletion and moving text more efficiently. The tech-
nique was designed by taking into account the most natural
gestures for users, investigated through a preliminary study.
A user study was also conducted to compare the proposed
technique with the classical one. The results show that the
gestural editing technique outperforms the traditional one
when the text font size increases. The feedback about the
gestural technique is positive, and participants showed that
the gestures can be learned in a short time. Future work
includes a refinement of the gesture set in order to allow
greater user accuracy, particularly on small fonts. The par-
ticipants’ proposal to integrate a technique to facilitate cur-
sor placement with small fonts can also be implemented.
Lastly, the suggestions of fusing the gesture and classical
techniques might also be considered, in order to allow in-
creased user satisfaction and performance.

Future studies will also aim at mitigating the threats to
the validity of this study, such as increasing the number
of participants and testing with different device and stylus
types.

8 Acknowledgment

The authors thank Luigi Dell’Aglio, Domenico Desi-
ato, Giuseppe Pietravalle and Giuseppe Santaniello for their
support in carrying out the experiments.

References

[1] C. Alvarado and R. Davis. Sketchread: A multi-domain
sketch recognition engine. In Proceedings of the 17th An-
nual ACM Symposium on User Interface Software and Tech-
nology, UIST ’04, pages 23–32, New York, NY, USA, 2004.
ACM.

[2] C. Appert and S. Zhai. Using strokes as command shortcuts:
Cognitive benefits and toolkit support. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 2289–2298, New York, NY, USA,
2009. ACM.

[3] N. S. Borenstein. The evaluation of text editors: A critical
review of the roberts and morgan methodology based on new
experiments. SIGCHI Bull., 16(4):99–105, Apr. 1985.

[4] A. Bragdon, E. Nelson, Y. Li, and K. Hinckley. Experi-
mental analysis of touch-screen gesture designs in mobile
environments. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, pages
403–412, New York, NY, USA, 2011. ACM.

[5] J. Brooke et al. Sus-a quick and dirty usability scale. Us-
ability evaluation in industry, 189(194):4–7, 1996.

[6] W. Buxton, E. Fiume, R. Hill, A. Lee, and C. Woo. Con-
tinuous hand-gesture driven input. In Graphics Interface,
volume 83, pages 191–195, 1983.

[7] C. Chen, S. T. Perrault, S. Zhao, and W. T. Ooi. Bezel-
copy: An efficient cross-application copy-paste technique
for touchscreen smartphones. In Proceedings of the 2014 In-
ternational Working Conference on Advanced Visual Inter-
faces, AVI ’14, pages 185–192, New York, NY, USA, 2014.
ACM.

[8] M. L. Coleman. Text editing on a graphic display device
using hand-drawn proofreader’s symbols. In Pertinent Con-
cepts in Computer Graphics, Proceedings of the Second
University of Illinois Conference on Computer Graphics,
pages 283–290, 1969.

[9] G. Costagliola, M. De Rosa, and V. Fuccella. Local context-
based recognition of sketched diagrams. Journal of Visual
Languages & Computing, 25(6):955 – 962, 2014.

[10] G. Costagliola, M. De Rosa, and V. Fuccella. Extending
local context-based specifications of visual languages. Jour-
nal of Visual Languages & Computing, 31, Part B:184 – 195,
2015.

[11] G. Costagliola, V. Fuccella, and M. D. Capua. Interpretation
of strokes in radial menus: The case of the keyscretch text
entry method. Journal of Visual Languages & Computing,
24(4):234 – 247, 2013.

[12] L. Findlater, B. Q. Lee, and J. O. Wobbrock. Beyond qwerty:
augmenting touch-screen keyboards with multi-touch ges-
tures for non-alphanumeric input. In Proc. CHI’12, pages
2679–2682, 2012.

[13] V. Fuccella and G. Costagliola. Unistroke gesture recogni-
tion through polyline approximation and alignment. In Pro-
ceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pages 3351–3354,
New York, NY, USA, 2015. ACM.

[14] V. Fuccella, M. De Rosa, and G. Costagliola. Novice and ex-
pert performance of keyscretch: A gesture-based text entry
method for touch-screens. IEEE Transactions on Human-
Machine Systems, 44(4):511–523, Aug 2014.

[15] V. Fuccella, P. Isokoski, and B. Martin. Gestures and wid-
gets: Performance in text editing on multi-touch capable
mobile devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 2013, pages
1–10, New York, NY, USA, 2013. ACM.

22

[16] T. Hammond and R. Davis. Ladder, a sketching language
for user interface developers. Computers & Graphics,
29(4):518 – 532, 2005.

[17] A. Lee and F. H. Lochovsky. Enhancing the usability of an
office information system through direct manipulation. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’83, pages 130–134, New York,
NY, USA, 1983. ACM.

[18] L. A. Leiva, V. Alabau, V. Romero, A. H. Toselli, and E. Vi-
dal. Context-aware gestures for mixed-initiative text editing
uis. Interacting with Computers, 27(6):675, 2015.

[19] I. S. MacKenzie and R. W. Soukoreff. Text entry for mo-
bile computing: Models and methods,theory and practice.
Human–Computer Interaction, 17(2-3):147–198, 2002.

[20] T. L. Roberts. Evaluation of computer text editors. PhD
thesis, Stanford University, Stanford, CA, USA, 1980.

[21] T. L. Roberts and T. P. Moran. The evaluation of text ed-
itors: Methodology and empirical results. Commun. ACM,
26(4):265–283, Apr. 1983.

[22] D. Rubine. Specifying gestures by example. SIGGRAPH
Comput. Graph., 25(4):329–337, July 1991.

[23] J.-B. Scheibel, C. Pierson, B. Martin, N. Godard, V. Fuc-
cella, and P. Isokoski. Virtual stick in caret positioning on
touch screens. In Proceedings of the 25th Conference on
L’Interaction Homme-Machine, IHM ’13, pages 107:107–
107:114, New York, NY, USA, 2013. ACM.

[24] C. G. Wolf and P. Morrel-Samuels. The use of hand-drawn
gestures for text editing. International Journal of Man-
Machine Studies, 27(1):91 – 102, 1987.

23

Improving MapReduce Performance by Using a New Partitioner in YARN

Wei Lu1,, Lei Chen1,∗, Haitao Yuan1, Weiwei Xing1, Liqiang Wang2, Yong Yang1

1 School of Software Engineering,Beijing Jiaotong University, Beijing, China
2 Department of Computer Science, University of Central Florida, Orlando, USA

Email: 1{luwei,13112084,htyuan,wwxing,12112088}@bjtu.edu.cn
2{lwang}@cs.ucf.edu

Abstract

Data skew, cluster heterogeneity, and network traffic are
three issues that significantly influence the performance of
MapReduce applications. However, the Hash-Partitioner
in native Hadoop does not consider them. This paper pro-
poses a new partitioner in Yarn (Hadoop 2.6.0), namely,
PIY, which adopts an innovative parallel sampling method
to achieve the distribution of the intermediate data. Based
on this, firstly, PIY mitigates data skew in MapReduce ap-
plications. Secondly, PIY considers the heterogeneity of the
computing resource to balance the load among Reducers.
Thirdly, PIY reduces the network traffic in shuffle phase by
trying to retain intermediate data on those nodes who act
as both mapper and reducer. Compared with the native
Hadoop and some other popular strategies, PIY can reduce
the execution time by 35.62% and 50.65% in homogeneous
and heterogeneous cluster, respectively. We also implement
PIY in parallel image processing. Compared with several
existing strategies, PIY can reduce the execution time by
11.2%

MapReduce; Hadoop; data skew; load balance; data
transmission amount; heterogeneousparallel image pro-
cessing

1 Introduction

MapReduce has been proven to be an effective tool
to process large data sets [10]. As a parallel computing
framework that supports MapReduce, Apache Hadoop [6]
is widely used in many different fields. MapReduce consists
of two main functions: the map function, which transforms
input data into intermediate data, namely <key,value>
pairs, and the reduce function, which is applied to list of
values that correspond to the same key. Partitioning[4] is
a critical feature of MapReduce because it determines the
reducer to which an intermediate data item will be sent

in shuffle phase. Hadoop 2.6.0 usually employ static hash
functions to partition the intermediate data, which is called
Hash-Partitioner and described as the formula (1). Al-
though MapReduce is currently gaining wide popularity in
parallel data processing, its Hash-Partitioner is still ineffi-
cient and has room for improvement.

Hash(Hashcode(Intermediate data)modReducerNum)
(1)

First, data skew [2] is one of the most serious impact
factors affecting the performance of Hadoop cluster. Data
skew refers to the imbalance in terms of data allocated to
each task or the imbalance in terms of work required to
process such data. When data skew occurs, the aforemen-
tioned Hash-Partitioner leads to the fact that most of nodes
have to remain idle after they complete their tasks and await
the stragglers. Finally this approach prolongs the execution
time and decreases the computing efficiency. Therefore,
balancing the hash partition size, which is defined as the
size of the key-value pairs with the same hash result, is an
important indicator for load balancing among the reducers.

Secondly, heterogeneity is neglected by the Hash-
Partitioner. The computing environments for MapReduce
in the real world always are heterogeneous [17]. Even if
data skew does not happens on intermediate data, the exe-
cution time of each node are diverse because their various
computing capacities, consequently, stragglers still exist in
clusters. Therefore, Hash-Partitioner can not work well in
heterogeneous Hadoop cluster.

Thirdly, with the increasing size of computing clusters,
it is common that many nodes act as both Mapper and
Reducer in real production environment. Obviously, the
more intermediate data stay in these nodes, the less network
traffic happen in shuffle phase[20]. However, the Hash-
Partitioner does not consider this fact.

Many studies have focused on the data skew mitigation.
Among the proposed solutions, some are specific to a partic-
ular type of applications [9][13], some require a pre-sample
of the input data [18][12][16], some identify the task with

DOI reference number: 10.18293/DMSVLSS2017-002

24

the greatest expected remaining processing time and repar-
titions the unresolved data in a way that fully utilizes the
nodes in the cluster [10]. There are lot of studies on the het-
erogeneous Hadoop cluster [19] to reduce network traffic in
shuffle phase [11]. However, all previous studies can not
well solve the three deficiencies mentioned above compre-
hensively.

This paper proposes a new partitioner for Yarn (Hadoop
2.6.0), namely, PIY, to solve the problems about data
skew and network traffic in shuffle phase in heterogeneous
Hadoop cluster. Compared with the previous studies, the
contributions of this paper can be summarized as follows:
(1) We propose a novel sampling method, named PRS. PRS
achieves a highly accurate approximation to the distribu-
tion of the intermediate data by parallelly sampling the input
data during the normal map processing, and it only causes
little overhead.
(2) We propose an algorithm, namely BASH, to tackle the
data skew problem.
(3) To avoid the degradation performance caused by hetero-
geneity, PIY allocates appropriate amount of intermediate
data to reducers according to their computing capacity.
(4) PIY optimizes the network traffic by decreasing the
amount of the transmitted data located on nodes acting as
both Mapper and Reducers.
(5) We conduct a performance evaluation with PIY in
YARN (Hadoop 2.6.0). Compared with some other popular
strategies, PIY can reduce the execution time by 35.62%
and 50.65% in homogeneous and heterogeneous Hadoop
cluster, respectively. We also implement PIY in parallel im-
age processing. Compared with several existing strategies,
PIY can reduce the execution time by 11.2%

The rest of this paper is organized as follows. Section
2 reviews related studies. Section 3 briefly introduces the
Approx Subset Sum algorithm, which is used by PIY.
Section 3 describes our PIY in detail. Section 5 describes
the performance evaluation of PIY. Finally, Section 6 con-
cludes this paper.

2 Related Work

To ascertain the distribution of the intermediate result be-
fore determining the partition in Hadoop, sampling meth-
ods are widely applied in previous studies. We classify
these methods into two categories. The first category is
to launch a pre-run extra job before whole normal jobs to
conduct data distribution statistics, and then decide an ap-
propriate partition [18]. The drawback of these methods
is that when the volume of data is large, sampling will cost
much time which results in prolonging the execution time of
whole job. The second category contains the methods that
integrate sampling into the map stage [2]. However, these
methods hardly achieve high sampling accuracy, and also

cause performance degradation because the parallel degree
is decreased between the map and the reduce stage.

Data skew has also been studied in the MapReduce en-
vironment during the past few years. In [6], Ibrahim et al.
proposed LEEN, which partitions all intermediate keys ac-
cording to their frequencies and the fairness of the expected
data distribution after the shuffle phase. However, LEEN
lacks preprocessing to estimate the data distribution effec-
tively and separates map and reduce tasks absolutely, and
therefore, it incurs significant time cost. Gufler et al. pro-
posed TopCluster [3], which can mitigate data skew among
reducers by estimating the cost of each intermediate parti-
tion. However, it increases the intermediate data transmis-
sion amount in shuffle because it ignores data locality in
reduce side.

Heterogeneous computing environment is a research
hotspot in recent years. LATE [19] calculates the progress
rate of tasks and selects the slow task with the longest re-
maining time to back up. The work in [17] presents a
system that adopts the virtualization technology to allocate
data center resources dynamically based on application de-
mands. Their common limitation is that they cannot solve
the data skew problem.

However, all the aforementioned approaches ignore the
fact that there are plenty of nodes that run map tasks and
Reduce tasks concurrently in large-scale computing cluster.
The network traffic in shuffle phase will be optimized obvi-
ously if the partitioner can reduce the transmission amount
of the intermediate data that stay on those nodes. Our ap-
proach, i.e., PIY, can comprehensively resolve all problems
mentioned in this section.

3 Approx-Subset-Sum Algorithm

Because our PIY algorithm is based on the Approx-
Subset-Sum algorithm[8], we introduce it in this section.
An instance of the subset-sum problem is a pair (L, t), where
L is a set x1, x2, ..., xn of n positive integers (in arbitrary
order) and t is a positive integer. This decision problem is
to find whether there exists a subset of L that adds up ex-
actly to the target value t. As we known, this problem is
NP-complete and traversing all subset of L will take expo-
nential time, and therefore, this is unacceptable when the
data being processed is extremely large. To reduce the time
complexity, the Approx-Subset-Sum algorithm trims list L
by selecting and remaining only one value Z to represent all
the values Y according to the formula (2) and finally get the
list L

′
. Here ε (0 < ε < 1) is a trimming parameter. We

assume there is a Z that represents y in the new list L
′
. Each

removed element y is represented by a remaining element z
that satisfies formula (2). Obviously, trimming can dramati-
cally decrease the number of elements kept while remaining
a close (and slightly smaller) representative value in the list

25

for each deleted element. Algorithm 1 describes the pro-
cedure of trimming list L that contains m elements in time
Θ(m). It is assumed that L is sorted in monotonically in-
creasing order. The output of the procedure is a trimmed
and sorted list.

Y

1 + ε
≤ Z ≤ Y (2)

Algorithm 1 Trim Algorithm

Input: L: a positive integer set contains m factors <
l0, ..., lm−1 >; ε: trimming parameter;

Output: L
′

1: m = L.length;
2: L

′
= 〈l0〉;

3: last = l0;
4: for i = 1 to m-1 do
5: if li > last ∗ (1 + ε) then
6: append i1 onto the end of L

′
;

7: last = li;
8: end if
9: end for

10: return L
′
;

Algorithm 2 Approx-Subset-Sum

Input: S: a positive integer set contains n elements <
S0, ..., Sn−1 >; L: a positive integer set; t: target value;
ε(0<ε<1): trimming parameter; Li: the generated list
after the Si is appended.

Output: z∗: the largest value in Ln

1: n = the length of L
2: L0 = < 0 >
3: for i=0 to n-1 do
4: Li = Merge-Lists(Li−1, Li−1 + Si)
5: Li = Trim(Li, ε/2n)
6: remove every element that is greater than t from Li.
7: end for
8: return z∗

The Approx-Subset-Sum algorithm is described as Al-
gorithm 2. It returns a value z∗ whose value is within a
1+ε factor of the optimal solution. Line 2 initializes the list
L0 to be the list containing just the element 0. For loop in
lines 3 - 6 computes Li as a sorted list containing a suitably
trimmed version of the set Li−1 , with all elements larger
than t removed. MERGE-LISTS(L, L

′
) in line 4 returns the

sorted list that is the merge of its two sorted input lists L
and L

′
with duplicate values removed. Li−1 + Si denotes

the list of integers derived from Li−1 by increasing each el-
ement of Li−1 by Si. For example, if Li−1 = 〈1, 2, 3, 5, 9〉,
then Li = Li−1 + 2 = 〈3, 4, 5, 7, 11〉. Trim(Li, ε/2n) in line
5 decreases the length of Li with the trimming parameter
ε/2n.

Figure 1: The Architecture of PIY

Here is an example to illustrate the execution of Approx-
Subset-Sum algorithm. It is assumed that the instance
S=〈104, 102, 201, 101〉, t=308 and ε=0.40. The trimming
parameter is ε/8 = 0.05. Approx Subset Sum computes
the following values in the indicated lines:
line 2: L0 = 〈0〉
line 4: L1 = 〈0, 104〉
line 5: L1 = 〈0, 104〉
line 6: L1 = 〈0, 104〉

line 4: L2 = 〈0, 102, 104, 206〉
line 5: L2 = 〈0, 102, 206〉
line 6: L2 = 〈0, 102, 206〉

line 4: L3 = 〈0, 102, 201, 206, 303, 407〉
line 5: L3 = 〈0, 102, 201, 303, 407〉
line 6: L3 = 〈0, 102, 201, 303〉

line 4: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
line 5: L4 = 〈0, 101, 201, 302, 404〉
line 6: L4 = 〈0, 101, 201, 302〉

The algorithm returns z∗ = 302 as its answer, which is
maintaining within 2% of the optimal answer 307 = 104 +
102 + 101. This shows that the Approx Subset Sum al-
gorithm can find an approx optimal solution in a fully poly-
nomial time, therefore, the overhead it causes is acceptable.

4 A New Partitioner in Yarn

4.1 System Overview

We designed a new partitioner in Yarn, named PIY,
based on Hadoop 2.6.0, and the architecture of PIY frame
is shown in Figure 1. In particular, each Parallel Reservoir
Sampler (PRS) samples the input data on each Mapper.

26

The Data Frequency Table (DFT) creates a table that
records the value of each key in each DataNode according
to the sampling statistics. The Capacity Monitor fetches
the computing capacity value of each DataNode. The
Global DFT (GDFT) summarizes all DFT data in each
DataNode. The CV records the computing capacity values
of all DataNodes. The BASH is the core unit in our PIY
that generates the final partitioning result. The workflow of
PIY consists of 3 steps:
(1) When split operation in map stage finishes, PRS applies
to Resource Manager for containers to conduct sampling.
All the sampled <key,value> pairs are summarized and
stored into a file. The detailed process of PRS is described
in the following Section 4.2. The DFT counts and records
the sampled <key,value> pairs in each DataNode and
generates a key frequency table. Here the key frequency
refers to the number of pairs corresponding to each key.
At the same time, the Capacity Monitor collects the
computing capacity of each DataNode, which is described
in Section 4.3. When all these processes are completed, the
information data, which consists of the key frequencies in
DFT and the computing capacity value of each DataNode
will be transmitted from the Application Master to the
Resource Manager through heartbeat messages.
(2) When the Resource Manager receives the information
data, it will transmit corresponding data to the GDFT
and CV, respectively. Then the GDFT summarizes all the
key frequencies in each DataNode into a total frequency
table. The CV records the computing capacity values of all
DataNodes by the data from the Capacity Monitor. These
are essential preparative works for the final partitioning
results generated by the unit BASH.
(3) Then the BASH generates the final partitioning result
using the algorithm described in Section 4.5. Finally, the
Resource Manager will transmit the results back to the
application Masters through the resource response message.

4.2 Parallel Reservoir Sampling Strategy

In PIY, we get the distribution of the intermediate re-
sult by running a novel sampling during the normal map
processing. Our sampling is performed by some map tasks
with higher priority. Therefore, when split operation in map
stage finishes, the map tasks conducting sampling are pro-
cessed preferentially. Obviously, there is tradeoff between
the sampling overhead and the accuracy of the result. In
our experiments, we find that by integrating sampling into
20% of map tasks, a sufficient accuracy approximation can
be achieved. Our sampling strategy, namely Parallel Reser-
voir Sampling, simply PRS for short, is based on reservoir
sampling algorithm[15]. PRS runs by invoking the class
org.apache.hadoop.mapreduce.lib.InputSampler and over-

(a)Sampling Job

(b)Normal MapReduce Job

Figure 2: The Process of Parallel Reservoir Sampling

loading the SplitSampler method.
The main idea of PRS is described as follows. PRS

builds one reservoir for each split and samples K elements
from it. All key/value pairs in each split are scanned and
the first K elements are stored in each reservoir. For a
key/value pair whose sequence number is larger than K, we
replace stored elements with it based on a certain probabil-
ity. This process is executed for each reservoir in parallel.
All the sampled key/value pairs are summarized together
and stored into a file by the reduce function. The process of
PRS is shown as Figure 2(a). When the sampling tasks of
some splits are finished, their corresponding normal user-
defined map function are executed successively. Thus, our
PRS is integrated into the normal map processing. As is
shown in Figure 2(b), when all samplers are complete, the
sampling result will be aggregated and transmitted to GDFT
model in the NameNode which decides the sampling par-
tition. In our system, Reducers begin to pull their input
data after the sampling partition is decided. This is later
than the default start time of reduce stage in native hadoop
because the decision of sampling partition introduces over-
head. However, this overhead is negligible based on our
experimental results shown in Section 5.

4.3 The Capacity Monitor

The Hadoop cluster is ofen heterogenous. To get the
computing capacity of each DataNode, we designed a spe-
cial model, namely, Capacity Monitor, in each DataNode.
To decrease the extra overhead dramatically, the Capac-
ity Monitor in each DataNode keeps monitoring the im-
plementation of the sampled input data when the sampling
function begins to run, and gets its consuming volume
V olume(con)id(1 ≤ id ≤ m) during a period of time ∆t,
here m denotes the number of DataNode in cluster. Then

27

we can calculate the capacity value of the idth DataNode,
CVid, by following formula (3). Capacity Monitors sends
the capacity values of the DataNode to the PIY in NameN-
ode through the heartbeat message.

CVid = V olume(cons)id/∆t (3)

4.4 Network Traffic in Shuffle Phrase

As the bandwidth is the scarce resource in networks,
the shuffle phase has become the bottleneck of MapReduce
due to its large amount of network traffic. As is known,
there are many Reducers in cluster, especially in Datacen-
ter Network (DCN). In addition, many DataNodes act as
both Mapper and Reducer[12]. If we can stay as many as
intermediate <key,value> pairs on these DataNodes by the
partition method in shuffle phase, it also furthest decrease
the network traffic[5]. It’s assumed that there are many
<key,value> pairs corresponding to a special key on those
DataNodes simultaneously. The BASH algorithm will find
the DataNode that contains the maximum amount of these
pairs, and then transmits all the pairs corresponding to the
key to this DataNode. Our experimental result proves this
method could decrease the network traffic in shuffle phase
by up to 19.11%.

4.5 BASH Algorithm

In this section, we describe our proposed algorithm
named BASH that comprehensively considers the load
BAlance among all Reducers, network traffic in Shuffle and
the Heterogeneity of Hadoop cluster. As shown in algo-
rithm 3, there are three steps in BASH. First, it minimizes
intermediate data transmission in shuffle phase. Second, it
gets the data volume that each reducer should process ac-
cording to their computing capacity. Finally, to balance the
load among Reducers, BASH partitions intermediate data to
each Reducer using Approx-Subset-Sum algorithm.

We assume that there are k distinct <key,value> pairs
corresponding to various keys, and r Reducers in clus-
ter. key desti records the serial number of the destina-
tion Reducer that will process the <key,value> pairs cor-
responding to keyi, and all key desti consist of the array
key dest[1,...,k]. Lines 1-3 initialize all key desti with -
1, which means all <key,value> have not been partitioned.
The array RS[1,...,r] records the volume of data that should
be processed by special Reducers. CV[1,...,r] records the
computing capacity of each Reducer, the value of CVi can
be obtained by formula (3). Sum CV records the total com-
puting capacity value of all Reducers. Lines 4-7 initialize
all RSi 1≤i≤r, and compute the Sum CV.

Lines 8-17 reduce the amount of network traffic in shuf-
fle phase. As described in section 4.4, we focus on the

Algorithm 3 BASH Algorithm

Input: k: the number of <key, value> pairs; r: the num-
ber of Reducer; key size[1,..,k] : the data volume of all
<key,value> pairs ; CV[1,...,r] : the computing capac-
ity value of every Reducer; Sum CV: the total capac-
ity value of all Reducers; ε : approximation parameter;
RS[1,..,r]: the volume of the data that have been deter-
mined to be processed in every Reducer; T[1,...,r]: the
remaining capacity of every Reducer; Total Size: the
total volume of all <key,value> pairs produced by all
Mappers.

Output: key dest[1,...,k]: A array indicating the desti-
nation Reducer of every key;

1: for i = 1 to k do
2: key desti = −1;
3: end for
4: for i = 1 to r do
5: RSi = 0;
6: Sum CV = Sum CV + CVj ;
7: end for
8: for each Reducer Rj(1 ≤ j ≤ r) do
9: if Rj is also a Mapper then

10: for every keyi on Rj do
11: if key desti == -1 then
12: key desti = MaxReducer(keyi);
13: RSkey desti = RSkey desti +key sizei;
14: end if
15: end for
16: end if
17: end for
18: for j = 1 to r do
19: Tj = Total Size ∗ (CVj/Sum CV)−RSj ;
20: end for
21: for j=1 to r do
22: Z∗ =Approx Subset Sum(key size[1, ..., k],Tj , ε);
23: Set key dest of the keys which composing Z∗ to

the sequence number of Reducerj ;
24: end for
25: for i = 1 to k do
26: if key desti == −1 then
27: key desti = the sequence number of the

strongest capacity Reducer;
28: end if
29: end for
30: return key dest[1, ..., k];

DataNodes who act as both Mapper and Reducer. For
each keyi (1 < i < k) on these Reducers, BASH first
checks whether its destination Reducer is determined. If
not, the function MaxReducer(keyi) in Line 12 will find
the Reducer on which the volume of the <key,value> pairs
corresponding to the keyi is the maximum, and then set

28

this Reducer as the destination Reducer of keyi. Line 13
updates the volume of the data that should be processed
on this Reducer. Here, the array key size[1,...,k] records
the data volume of all <key,value> pairs. Lines 18-20
get the remaining capacity of each Reducer, which is de-
noted as array T. Here remaining capacity means the ex-
tra data volume that one Reducer can process. The To-
tal Size denotes the total volume of experimental data set.
Total Size * (CVj /Sum CV) means the total data volume
that the Reducerj should process according to its comput-
ing capacity.

Using Approx Subset Sum algorithm, lines 21-29 bal-
ance the load among all Reducers by partitioning the in-
termediate data based on Reducer’s computing capacity.
In lines 21-24, BASH partitions intermediate data to each
Reducer and records the destination Reducer of each key
into the array key dest. We can get these value through
the GDFT in PIY. As we describe in Section 3, the Ap-
prox Subset Sum algorithm only gets an approximate result
that does not reach the target value. Therefore, the amount
of data that is partitioned to each Reducer could not reach its
capacity value. This generates some trivial datasets that are
not partitioned finally. In lines 25-29, BASH assigns these
trivial datasets to the Reducer with the strongest computing
capacity.

5 Evaluation

In this section, we describe the performance evaluation
of PIY by running two popular benchmarks with synthetic
and real-world data sets whose data skew rate are different,
our experiments are performed under both homogeneous
and heterogeneous environments. Specially, we evaluate
PIY to process large-sized imagine in parallel.

5.1 Experimental Environment

In our experiments, we set up two Hadoop clusters,
one is homogeneous, and the other is heterogeneous. Our
Hadoop homogeneous cluster consists of 60 physical ma-
chines installed with Ubuntu 12.04(KVM as the hypervi-
sor) with 16 core 2.53GHz Intel processors, 4G memory,
and the 60 nodes connected through a single switch, the net-
work bandwidth is 1Gbps. Our experiments are performed
in YARN (Hadoop 2.6.0). All nodes are used as both com-
puting and storage nodes. The HDFS block size is set to 64
MB and each node is configured to run at most 6 map tasks
and 2 reduce tasks concurrently. Our heterogeneous cluster
contains 60 physical machines with three types. The first
type contains 30 machines with 16 core 2.53GHz Intel pro-
cessors, 4G memory. The second type contains 20 machines
with 4 core 3.3GHz Intel processors, and 8G memory. The

Table 1: Jobs with Different Sampling Methods

Sampling Method Time(s) Sample File Size(MB) Accuappro
Random 2.8 1.2 307889

TopCluster 2.5 1.3 142728
PRS 2.6 5 97335

third type contains 10 machines with 2.4GHz Intel proces-
sors, and 2G memory. The other configurations are same in
the homogeneous cluster.

In this section, we evaluate PIY by running different type
of bench-marks in homogeneous and heterogenous Hadoop
cluster, respectively. In order to ensure accuracy, we per-
formed each group of experiments at least 10 times and took
the mean value as the final result so as to reduce the influ-
ence of the environment.

5.2 Accuracy of the Sampling Method

We compare our PRS with the other two sampling meth-
ods: the random sampler used in native Hadoop and Top-
Cluster [3]. We run three different samplers on a 10GB
real-word data sets from the full English Wikipedia archive,
which contains 50000 keys. We measure the sampling ap-
proximation by formula(4), where xapproi and xreali denote
the sampling and real frequency of tuple corresponding to
the key i, respectively. The smaller value of Approsampl,
the better. All three methods sample 20% of input splits
and 1000 keys from each split. Table 1 shows that the size
of sample file generated from PRS is larger than the others
meanwhile their execution time are approximately equal.
This is because PRS completes reservoir sampling on each
split in parallel and collects the sample result with larger
volume. The better accuracy can be realized if the sampling
result is larger.

From Table 1 we can see that the approximation of our
PRS is 97335, which is better than the other two sampling
methods. This is also visualized in Figure 3 for the top 1000
large keys in the data. Note that the sampling approximation
of TopCluster is fairly accurate on the large keys which are
at the beginning of the curve, representing their frequency
are relatively large, but terrible on the keys whose frequency
is lesse than 103. The reason is that TopCluster assumes
the distribution of small keys are in accord with the large
keys, and this assumption can be misleading when there are
a large number of small keys in the data.

Approsampl =

√∑n
i=1 (xapproi − xreali)2

n
(4)

29

Figure 3: Comparison of three sampling methods in Grep

5.3 Load Balance among Reducers When Run-
ning Sort Benchmark

One of majar motivations for PIY is to balance loads
among Reducers when data skew happens. Therefore, in
this section, we evaluate PIY by running Sort benchmark,
which represents reduce-input-heavy job, to process the in-
put data with various data skew degrees. In this paper, the
load balancing and data skew degree are measured by the
coefficient of variation, which is represented as COV. The
smaller COV, the better. Figure 4(a) and Figure 4(b) show
COV when running sort benchmark based on 10 GB of syn-
thetic data in homogeneous and heterogenous cluster re-
spectively. We generate a 10GB synthetic data set following
Zipf [1] distributions with varying δ parameters from 0.2 to
1.2 to control the degree of the skew.

As Figure 4(a) shows, the curves of Hadoop-Hash and
SkewTune keep rising when the data skew rate increases,
while the COV of PIY remains very low all the time. This
can be explained as PIY partitions the intermediate data to
all Reducers evenly in homogeneous cluster. The reason
why SkewTune performs worse than PIY is that SkewTune
can only repartition the input data of one straggler at a time,
it could not balance the loads on all Reducers when there
are more than one slow reduce tasks caused by serious skew
data. On account of the Hadoop-Hash partitions data by the
hash code of keys, it is easy to unbalance loads seriously
when data skew happens, which makes it the worst perfor-
mance in Figure 4 (a).

From Figure 4(b), we find the same results as in Fig-
ure 4(a).In addition, while the value of PIY are almost un-
change, the values of Hadoop-Hash and SkewTune at most
of data skew rates are higher than that in homogeneous clus-
ter, and this trend is more obvious when the data skew rate
increases. In other words, the optimization degree of PIY
in load balance in heterogeneous cluster is much more than
that in homogenous cluster. Beside the reasons we have de-
scribed in the prior paragraph, the consideration of hetero-

geneity of PIY made a greater contribution in load balance
among Reducers.

5.4 Execution Time of Sort Benchmark

Figure 4 also shows the execution time of the experi-
ments we have described in Section 5.3. The curves in
Figure 4(c) shows the results in the homogenous cluster.
We can see PIY is faster than Hadoop-Hash and SkewTune
when processing the data with high skew rate. On the con-
trary, when the data skew rate is lower than a certain thresh-
old, PIY does not perform satisfactorily. The reason is that
when the data skew degree is low, e.g. less than 0.28 in
our experiment, the Hadoop-Hash has the shortest execution
time in the homogeneous cluster because of its even parti-
tions of intermediate data without extra overhead. Skew-
Tune produces small overhead on moving unprocessed data
of the slower tasks because there are few stragglers in this
scenario, and this leads to its execution performance be-
hinds the Hadoop-Hash. Furthermore, PIY consumes the
longest execution time because of its extra overhead pro-
duced by sampling data and making partition decision in
map phase. However, as data skew degree increases, the
optimization, which is achieved through balancing load
among Reducers using approx sum subset algorithm, grad-
ually offsets the time spent by the extra overhead. There-
fore, PIY consumes the lowest execution time. Conse-
quently, compared with Hadoop-Hash and SkewTune, PIY
achieves the average improvements in execution time by
16.39% and 4.71%, respectively, and the maximum im-
provements reach 35.62% and 9.90%, respectively, when
the data skew rate is 1.2.

Figure 4(d) shows the fully adaption of PIY to hetero-
geneous cluster. PIY is also the fastest one in most cases.
The threshold, less than which the performance of PIY is
worse than the other two, is 0.17 and it less than 0.28 in Fig-
ure 4(c). On average, PIY can perform 29.4% and 14.84%
faster than Hadoop-Hash and SkewTune, respectively. Spe-
cially, when the data skew is set to 1.2, the improvement
is up to 50.65% and 24.54%, respectively. These values
demonstrate that the degree of improvements PIY makes is
more obvious in heterogeneous cluster than that in homoge-
neous cluster because it considers the computing capacity of
every node during partitioning.

5.5 Grep Benchmark Testing

To evaluate the performance of PIY when it deals with
the reduce-input-light applications, we run Grep, which is
a light job for reduce, in heterogeneous cluster. We im-
prove the Grep benchmark in Hadoop so that it outputs
the matched lines in a descending order based on how fre-
quently the searched expression occurs. The data set we use

30

0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Data Skew Rate

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Hadoop−Hash
Skew Tune
PIY

(a)COV of Running Sort in Homogeneous Cluster

0 0.2 0.4 0.6 0.8 1 1.2

200

300

400

500

600

700

800

Data Skew Rate

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Hadoop−Hash
Skew Tune
PIY

(c)Duration of Running Sort in Homogenous Cluster

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Query Percentage(%)

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Hadoop−Hash
Skew Tune
PIY

e)COV of Running Grep in Homogeneous Cluster

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Data Skew Rate

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Hadoop−Hash
Skew Tune
PIY

(b)COV of Running Sort in Heterogeneous Cluster

0 0.2 0.4 0.6 0.8 1 1.2

200

300

400

500

600

700

800

Data Skew Rate

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Hadoop−Hash
Skew Tune
PIY

(d)Duration of Running Sort in Heterogeneous Cluster

0 10 20 30 40 50 60 70 80 90 100
100

150

200

250

300

350

400

450

500

550

600

650

Query Percentage (%)

E
xe

cu
tio

n
T

im
e

(S
ec

on
d)

Hadoop−Hash
PIY
Skew Tune

(f)Duration of Running Grep in Heterogeneous Cluster

Figure 4: Evaluation of PIY running benchmarks In Hadoop Clusters

is the full English Wikipedia archive with a total data size
of 10 GB. Because the behaviour of Grep depends on how
frequently the search expression appears in the input files,
we tune the expression and make the input query percent-
ages vary from 10% to 100%. Figure 4(e) and (f) show that
PIY gets the best performance of COV and job execution
time at all time due to the accuracy of PRS and the con-
sideration of heterogeneity. Specially, in Figure 4(e), PIY
gets the best COV when the query percentage is lower. This
is because the PRS in PIY is good at searching unpopular
words in the archive and generates better sampling results.
As the query percentage increases, the distribution of the re-
sult data becomes increasingly uniform, so the performance
gap rapidly closes.

5.6 Optimization In Shuffle Phase

To verify that the BASH algorithm used by PIY can de-
crease the amount of data transmission in shuffle phase, we
record the execution of each phase in MapReduce of Sort
job in the heterogenous cluster. Without losing general-
ity, we illustrate the duration time when δ is 0.8 in Figure
5(a). The native Hadoop starts the shuffle tasks when 5%
map tasks finish, therefore, we divided MapReduce into 4
phases, which are represented as Map(Seperate), Concur-
rent Map and Shuffle, Shuffle(Separate), and Reduce. Con-
current Map and Shuffle denotes the overlap period in which
the shuffle tasks begin to run and map tasks have not to-
tally finished. Therefore, the duration of Map phase equals
the sum of Map(Separate) and ’Concurrent Map and Shuf-
fle’. Similarly, the duration of Shuffle phase, whose fill
patterns are red in Figure 5, equals to the sum of Shuf-

fle(Separate) and ”Concurrent Map and Shuffle”. Specially,
because PIY executes PRS in Map phase, its duration of
Map phase should contain additional time costed by PRS,
which is represented as Sampling in Figure 5. From Fig-
ure 5(a), we can see the duration in shuffle phase of PIY
is 105+7=112 seconds, which is less than the SkewTune
(107+19=126) and Hadoop-Hash (105+39=144), the im-
provement are 126−112

126 = 11.11% and 22.22%.

Through plenty of experiments, we can see that com-
pared with Hadoop-Hash and SkewTune, the improvement
degree PIY achieves in shuffle phase is in proportion to the
number of reducers until the degree reaches the peak value.
In our experiment, the peak improvement degree is achieved
when each node can run at 6 map tasks and 4 reduce tasks
concurrently. Compared with the original configuration (6
map tasks and 2 reduce tasks), this modification should in-
crease the number of Reducers because the native Hadoop
determines which nodes are Reducers according to the com-
puting resource (container in Yarn) in each reducer. The
results are shown in Figure 5(b). We can easily find the du-
ration in shuffle phase of PIY is 89+9=98 seconds, which is
much less than 119 seconds for SkewTune, 143 seconds for
Hadoop-Hash, the improvement is up to 119−98

119 = 17.65%
and 31.47%, which are larger than Figure 5(a). This can
be explained as with the number of Reducers increases, the
BASH algorithm finds much input data whose map and re-
duce tasks are able to be scheduled to the same DataNode.
This results in decreasing the amount of data transmission
in shuffle phase. However, when we configure each node
to run at most 6 map tasks and 6 reduce tasks concurrently,
compared with SkewTune and Hadoop-Hash, the improve-
ment caused by PIY are reduced to 12.35% and 19.11%,

31

(a)δ = 0.8, Reducer task number = 2

(b)δ = 0.8, Reduce task number = 4

Figure 5: The Execution Time Of Each Phase

respectively. How to find the optimal Reducer number is
a problem about the tradeoff between the computing par-
allelism degree and the network transmission amount, and
this is our future works on PIY.

5.7 PIY in parallel image processing

Table 2: the size of sample images

image name size(in bytes)
CARTOSAT-1 1342552576

CARTOSAT-2A 4259355002
CARTOSAT-2B 9204661322

With the need of processing large-sized images increases
rapidly, parallel image processing technologies, such as
MapReduce, are widely used to shorten the execution time.
In this section, we present the experiments conducted for
images with large sizes approximately from 1.3 Gigabytes
to 9.1 Gigabytes the Chinese Remote Sensing (IRS) satellite
series. The sample data sets are shown in Table 2.

We conduct histogram [7] operation on native Hadoop,
HIPI [14], which is a open-source Hadoop Image Process-
ing Interface, and PIY. Compared with native Hadoop, HIPI
processes image without requiring the additional coding be-
cause it implements Java Image Processing Library. His-

Figure 6: Execution Time Of Histogram

togram operation counts the frequency of the pixel intensity
in an entire image, which is similar to counting the words
in the file. In our implementation, the map function splits
the large-sized image into several pieces. One piece is pro-
cessed by one map task, which collects the count of the
pixel (gray) value. Reduce function completes the aggre-
gation of the collected numbers from the map functions. To
increase the amount of input data in reduce phase, we add
TeraSort operation in histogram and finally output the pixel
intensity result in descending order. We implement his-
togram operation in a 5-node heterogeneous cluster, which
is composed of the three types of physical computers de-
scribed in Section 5.1. Specifically, one first type node acts
as master, 2 nodes for each of other two types act as slaves.

As is shown in Figure 6, PIY gets the shortest execu-
tion time when processing all 3 different large-sized images.
The execution time is reduced by 11.2%. The reasons are
described as follows. First, the distribution of the frequency
of the pixel intensity in an large-sized image is not even in
general, i.e., the pixel intensity values are skew. Different
with native Hadoop and HIPI, PIY considers the data skew
by balancing the loads on Reducers. Second, the PRS sam-
pling method helps PIY to realize more accurate distribu-
tion of the pixel intensity than the other two frameworks.
Third, heterogeneity consideration helps PIY achieve the
fastest process speed.

6 Conclusion

This paper proposes PIY to mitigate data skew in
MapReduce system. Using the parallel reservoir sampling
method we proposed, PIY achieves the distribution of in-
termediate data accurately with negligible overhead. PIY
tries to reduce the network traffic in shuffle phase by de-
creasing the transmission amount of data on those nodes
acting as both Mapper and Reducer. PIY also considers
the heterogeneity of the computing resource when balanc-

32

ing load among Reducers. Performance evaluation in both
synthetic and real workloads demonstrates that the result-
ing performance improvement is significant. Compared
with some other popular strategies, the improvement PIY
achieved reaches 35.62% and 50.65% in homogeneous and
heterogeneous clusters, respectively. PIY can also be used
in parallel imagine processing to reduce the execution time.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China(No.61272353, No.61428201)
and China Postdoctoral Science Foundation(2016M
600912), Program for New Century Excellent Talents in
University (NCET-13-0659), Beijing Higher Education
Young Elite Teacher Project(YETP0583).

References

[1] L. A. Adamic and B. A. Huberman. Zipfs law and the inter-
net. Glottometrics, 3(1):143–150, 2002.

[2] Q. Chen, J. Yao, and Z. Xiao. Libra: Lightweight data skew
mitigation in mapreduce. IEEE Transactions on parallel and
distributed systems, 26(9):2520–2533, 2015.

[3] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load bal-
ancing in mapreduce based on scalable cardinality estimates.
In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 522–533. IEEE, 2012.

[4] H. H. Hong Zhang and L. Wang. MRapid: An efficient short
job optimizer on hadoop. In the 31st IEEE International
Parallel Distributed Processing Symposium (IPDPS). IEEE,
2017.

[5] H. Huang, L. Wang, B. C. Tak, L. Wang, and C. Tang. Cap3:
A cloud auto-provisioning framework for parallel process-
ing using on-demand and spot instances. In Cloud Comput-
ing (CLOUD), 2013 IEEE Sixth International Conference
on, pages 228–235. IEEE, 2013.

[6] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi. Leen:
Locality/fairness-aware key partitioning for mapreduce in
the cloud. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference
on, pages 17–24. IEEE, 2010.

[7] J. N. Kapur, P. K. Sahoo, and A. K. Wong. A new method for
gray-level picture thresholding using the entropy of the his-
togram. Computer vision, graphics, and image processing,
29(3):273–285, 1985.

[8] C. Kumar. Approximation algorithm project. arXiv preprint
arXiv:1401.2393, 2014.

[9] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-
resistant parallel processing of feature-extracting scientific
user-defined functions. In Proceedings of the 1st ACM sym-
posium on Cloud computing, pages 75–86. ACM, 2010.

[10] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-
tune: mitigating skew in mapreduce applications. In Pro-
ceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, pages 25–36. ACM, 2012.

[11] J. Liu, F. Liu, and N. Ansari. Monitoring and analyzing big
traffic data of a large-scale cellular network with hadoop.
IEEE Network, 28(4):32–39, 2014.

[12] V. Subramanian, H. Ma, L. Wang, E.-J. Lee, and P. Chen.
Rapid 3d seismic source inversion using windows azure
and amazon ec2. In Proceedings of the 2011 IEEE World
Congress on Services, SERVICES ’11, pages 602–606.
IEEE, 2011.

[13] V. Subramanian, L. Wang, E.-J. Lee, and P. Chen. Rapid
processing of synthetic seismograms using windows azure
cloud. In Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference on,
pages 193–200. IEEE, 2010.

[14] C. Sweeney, L. Liu, S. Arietta, and J. Lawrence. Hipi: a
hadoop image processing interface for image-based mapre-
duce tasks. Chris. University of Virginia, 2011.

[15] J. S. Vitter. Random sampling with a reservoir. ACM Trans-
actions on Mathematical Software (TOMS), 11(1):37–57,
1985.

[16] L. Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant, and
J. L. Ram. Atomicity and provenance support for pipelined
scientific workflows. Future Generation Computer Systems,
25(5):568–576, 2009.

[17] Z. Xiao, W. Song, and Q. Chen. Dynamic resource allo-
cation using virtual machines for cloud computing environ-
ment. IEEE transactions on parallel and distributed sys-
tems, 24(6):1107–1117, 2013.

[18] Y. Xu, W. Qu, Z. Li, Z. Liu, C. Ji, Y. Li, and H. Li. Balancing
reducer workload for skewed data using sampling-based par-
titioning. Computers & Electrical Engineering, 40(2):675–
687, 2014.

[19] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in heteroge-
neous environments. In Osdi, volume 8, page 7, 2008.

[20] H. Zhang, L. Wang, and H. Huang. Smarth: Enabling multi-
pipeline data transfer in hdfs. In Parallel Processing (ICPP),
2014 43rd International Conference on, pages 30–39. IEEE,
2014.

33

Interactive Visualization of Robustness Enhancement in Scale-free Networks
with Limited Edge Addition (RENEA)

Armita Abedijaberi1, Nathan Eloe2, and Jennifer Leopold1

1Department of Computer Science, Missouri University of Science and Technology, Rolla, MO USA
Email: {aan87, leopoldj}@mst.com

2School of Computer Science and Information Systems, Northwest Missouri State University,
Maryville, MO USA

Email: nathane@nwmissouri.edu

Abstract

Error tolerance and attack vulnerability of scale-free
networks are usually used to evaluate the robustness of
these networks. While new forms of attacks are developed
everyday to compromise infrastructures, service providers
are expected to develop strategies to mitigate the risk of
extreme failures. Recently, much work has been devoted
to design networks with optimal robustness, whereas little
attention has been paid to improve the robustness of existing
ones. Herein we present RENEA, a method to improve
the robustness of a scale-free network by adding a limited
number of edges. While adding an edge to a network
is an expensive task, our system, during each iteration,
allows the user to select the best option based on the cost,
amongst all proposed ones. The edge-addition interactions
are performed through a visual user interface while the
algorithm is running. RENEA is designed based on the
evolution of the network’s largest component during a
sequence of targeted attacks. Through experiments on
synthetic and real-life data sets, we conclude that applying
RENEA on a scale-free network while interacting with the
user can significantly improve its attack survivability at the
lowest cost.

1 Introduction

One of the most important features of large networks is
their degree distribution, P (k), or the probability that an

DOI reference number: 10.18293/DMSVLSS2017-015

arbitrary node is connected to exactly k other nodes. Many
real-life networks display a power-law degree distribution
with heavy-tailed statistics, which are called scale-free
networks. In a scale-free network the probability that a
node has k links follows P (k) ∼ k(−λ), where λ is
called the degree exponent and its value is typically in the
range between 2 < λ < 3 [1]. Scale-free networks are
created by preferential attachment [2], which means newly
introduced nodes prefer to connect to existing high-degree
nodes. Starting with a small number of nodes, when
a new node is added to the network, considering the
preferential linking, it will connect to other nodes with
the probability proportional to their degree. Coupled with
the expanding nature of many networks this explains the
occurrence of hubs, which hold a much higher number of
links than most of the nodes in the network. Scale-free
topology is widely observed in many communication and
transportation systems, such as the Internet, World Wide
Web, airline networks, wireless sensor networks, and power
supply networks, all of which are essential to modern
society. One of the most important properties in scale-free
networks is the fact that while these networks are strongly
tolerant against random failures, they are fragile under
intentional attacks on the hubs. Intuition tells us that
disabling a substantial number of nodes/edges will result
in an inevitable functional disintegration of a network
by breaking the network into tiny, non-communicating
islands of nodes. However, scale-free networks can be
amazingly resilient against accidental failures; even if 80%
of randomly selected nodes fail, the remaining 20% still
form a compact cluster with a path connecting any two
nodes [2]. In fact, the fragileness of scale-free networks

34

under intentional attack comes from their heavy-tailed
property, causing loss of a large number of links when a
hub node is crashed. Hence, the heavy loss of network
links quickly makes the network sparsely connected and
subsequently fragmented. However, random failures affect
mainly the numerous small degree nodes, the absence of
which doesn’t disrupt the network’s integrity.

Considering error tolerance and attack vulnerability,
which are two common and important properties of
scale-free networks, extensive research efforts have been
made to study the robustness of such networks which is
defined as the ability of the surviving nodes to remain, as
much as possible, interconnected. On that account it is
important to understand how to design networks which are
optimally robust against malicious attacks, with examples
of terrorist attacks on physical networks or attacks by
hackers on computer networks. However, it is not possible
to abandon the existing networks, which are the result of
years of evolution, and rebuild them from the beginning.
Hence, it is significantly important to study the optimizing
guidelines to enhance the robustness of existing networks in
an interactive environment and incorporate the user’s input
in order to acquire the optimal result at a lower cost.

In this paper, we study the problem of how to improve
the robustness of an existing scale-free network and show
that its attack survivability can be significantly improved
by adding a limited number of edges to it at the lowest
cost. This process is carried out by visualizing the process
and interacting with the user. There will be no impact on
the error tolerance, keeping the degree distribution of the
network as much as possible intact.

The organization of this paper is as follows; Section
II provides an overview of related work about robustness
enhancement in scale-free networks. In Section III we
discuss RENEA and its graphical user interface. An
example of running RENEA is presented in Section IV.
Section V focuses on experiments and results. Finally,
conclusions and our plans for future work are presented in
Section VI.

2 Related Work

The main approaches to improve robustness of scale-free
networks, through topology reconfiguration, can be
generally classified into two main categories. The first
category involves rewiring edges of the network and the
second category suggests addition of edges to the network.
Both approaches are carried out in order to obtain a
network structure with better robustness. In this section we
summarize existing works regarding these two approaches
as well as network visualization tools.

2.1 Reconfiguration with Edge Rewiring

In the method proposed in [3], edges are selected
randomly to be removed from the graph or to be added to the
graph. However, this reconfiguration will change the degree
distribution of the graph as well as its diameter, which
is not desirable for the network. Another edge rewiring
method is proposed in [4], in which two edges A-B and
C-D are selected. If A-C and B-D do not already exist
in the network, the rewiring operation replaces A-B and
C-D with A-C and B-D as long as such reconfiguration
does not generate a loop. This rewiring operation obviously
does not change any nodal degree since it converts a random
network into another one with the same degree distribution.
However, for real networks with economic constraints, the
nodal degree conservation is not enough due to the cost. In
fact, the total length of links cannot be exceedingly large
and the number of changes in the network should remain
small. In order to minimize the cost, any swap is accepted,
only if the increase of the robustness is greater than or equal
to a threshold. This procedure is repeated with another
randomly chosen pair of edges until no further substantial
improvement is achieved. This method results in a network
with an onion-like structure [5].

Even though swapping the edges can increase the
network robustness, there are some spatially limited
real-life networks where edges are hard to re-configure, e.g.
power grid networks and the Internet router network. On
the other hand, however, there exist the spatial unlimited
networks such as airline networks and the Internet switcher
network. For spatially unlimited networks whose edges can
be easily re-linked, in the Switch Link (SL) method [6],
the top Pc fraction of the large-degree nodes are defined
as hubs. For each hub, the SL finds two non-hub nodes
connecting it. The edge connected to the first non-hub node
is kept and the edge connecting the second non-hub node
to the first non-hub node is switched. This process will
be repeated until all the links connected to the hub nodes
are addressed. For the spatially limited networks, the SL
method is not economic and feasible since nodes are usually
far from each other. In this case, the split hub (SH) method
is proposed [6]. This method also starts with defining the
top Pc fraction of nodes as hubs and replaces them by a
3-clique which is a complete graph in which every two
distinct nodes are adjacent. Then it connects the non-hub
nodes, that were connected to the original hub node, to the
nodes of the clique randomly.

Edge reconfiguration can change community structure
of a network [7]. The community structure refers to the
functional modules in the network that play an important
role in regards to cascading failures. A network with
a strong community structure has few edges between its
communities. Hence, its structure is more fragile in terms

35

of attacks on those edges in comparison with networks
with a weak community structure. A method [7] is
proposed to improve the robustness of a network while
preserving its community structure. In this 3-step method,
the importance of nodes is calculated based on their degree.
Step 1 reconfigures each community to have an onion-like
structure [5]. Step 2 swaps edges in such a way that
important nodes only connect to the nodes within the same
community. Step 3 swaps edges to increase the number of
edges between communities. These 3 steps are recursively
applied on the network until its robustness hardly increases.

2.2 Reconfiguration with Edge Addition

The number of possible ways of adding an edge to a
graph with N nodes and L edges is equal to

(
N
2

)
− L. For

large real-life (sparse) networks, it is almost infeasible to
compare all these possibilities and find the optimal edges
to add. Some techniques have been introduced in literature
to add edges to an existing graph based on different criteria.
Three different enforcing strategies are practiced in [8]. The
first method randomly selects a pair of nodes in the network
and establishes a new edge between them. The second
method selects a pair of nodes with the lowest degree in the
network and establishes a new edge between them. Finally,
the last method selects a pair of nodes with the highest
degree in the network and establishes a new edge between
them. According to experiments, the method that prefers
low-degree nodes as candidates for adding edges reinforces
the attack survivability of the network with a lower cost in
comparison with the other methods.

It has been suggested [9] that assortative networks (i.e.,
high-degree nodes in the network that are more likely linked
with other high-degree nodes), are more robust than their
disassortative counterparts (i.e., high-degree nodes in the
network that are more likely linked with low-degree nodes).
Thereupon, a method is proposed [9] to enhance robustness
of a network by increasing its assortativity. In this method,
a layer index is assigned to each node based on the degree
of that node. Accordingly, the layer index for nodes with
the lowest degree is 0, for nodes with the second lowest
degree is 1, and so on. Then, the probability of adding
an edge between a random pair of nodes depends on their
layer index difference (i.e., nodes within the same layer are
connected with greater probabilities than nodes in different
layers); this leads to higher assortativity in the network.

The way that nodes are arranged in a graph is considered
as a key factor in overall robustness and efficiency of that
graph [10]. The star structure is efficient (the average
shortest path length is small), yet fragile in case of removal
of the central node. On the contrary, the circle structure
is robust with regard to removal of any single node, yet
inefficient (the average shortest path length is large). The

Node-protecting Cycle method [11] is proposed to combine
the properties of both circle and star structures to improve
robustness and efficiency of a network.

All of the aforementioned edge rewiring and edge
addition algorithms are proposed to improve the robustness
of an existing network. However, these works consider one
aspect in a network and neglect the others. When it comes to
a scale-free network, it is important to take every structural
aspect of the network into consideration. In addition,
feasibility of a proposed re-configuration of a network must
be considered. Having a method to improve the robustness
of a scale-free network against malicious attacks while
keeping its resilience in case of random failures without
disturbing its small-world property at a very low cost is
still an unsolved problem. In a scale-free network with
the small-world property, the distance between any pairs of
nodes is relatively small [12].

2.3 Network Visualization

A number of software tools have been developed to
model, analyze, and visualize data that can be represented
as a graph or a network. Typically, these tools allow the user
to annotate nodes and edges with metadata, and provide
utilities such as random graph generation, calculation of
analytical measures (e.g., centrality, network distances,
PageRank, etc.), and filtering (i.e., viewing only a portion
of the graph based on some criteria). Several of these
viewers were designed for a particular problem domain,
such as finding motifs in gene regulatory networks (e.g.,
GeneNetWeaver [13]). KDnuggets [14] provides a list of
what it considers to be the top 30 network visualization
tools that can be used for a wide variety of network
applications (e.g., in domains such as biology, finance,
and sociology). It is notable that many of these tools are
open-source and can be customized to provide additional
functionality. The software presented herein differs from
other available network visualization tools in the analysis
that it facilitates. To the best of our knowledge, there
are no other visual network analysis tools available for the
purpose of reinforcing robustness of a scale-free network in
an interactive environment.

3 Robustness Enhancement Algorithm

The problem setting we consider in this work is to
modify a given graph’s structure under a given budget to
improve its robustness. The budget is often defined in terms
of the maximum number of edges that can be added to
the network. In practice, the cost of establishing an edge
between a pair of nodes is not zero. For real networks,
with economical constraints, it is preferable to reduce the
overall cost of adding extra edges, keeping the total length

36

(geographically), as low as possible while still achieving the
same amount of robustness enhancement. The measure of
robustness employed in our algorithm and the edge-addition
strategy along with its graphical user interface are specified
in the following sections.

3.1 Robustness Metric

The definition of network robustness might change
according to a specific application. In this work,
the removal of a node from a network is called a
“node-knockout” or a “node-attack”, and the robustness
of a network is measured by the size of the Largest
Connected Component (LCC) in the network after a
node-attack [5]. To quantify this, we proceed with a series
of node-attacks and subsequently measure the robustness
after each node-removal. Hence, the robustnessR is defined
as:

R =
1

N

N∑
Q=1

S(Q)

where N is the number of nodes in the network and S(Q)
is the fraction of nodes in the LCC after removing Q
nodes. The normalization factor 1/N , makes robustness of
networks with different sizes comparable. The minimum
value ofR is equal to 1/N , where the network is a star graph
and the maximum value of R is equal to 0.5, where the
network is a complete graph. A robust network corresponds
to a large R value. This distinctive measure is not only
simple, but also practical, due to the calculation of the size
of the largest component during all possible system-wide
failures or intentional attacks.

In our targeted attack scenario, we implicitly admit that
the attacker perfectly knows the network's degree sequence
and thus can cause maximum damage. An intentional attack
is targeted to disrupt the network by removing the most
important nodes; here, we find the most connected node,
remove it along with all the edges incident with it, calculate
S(Q), update the degree sequence for the remaining nodes,
and find the new most connected node to repeat the process
until the network completely collapses. In case of two or
more nodes having the same degree, we simply pick one of
them randomly.

3.2 RENEA

Here we present an algorithm called RENEA to improve
the robustness of a scale-free network by adding a limited
number of edges to it, such that the optimized network,
compared to the initial one, has a significantly higher value
of robustness. We assume that the ‘defender’ knows about

the intention of the ‘attacker’ to cause maximum damage to
the network.

For scale-free graphs there is always a very large
component which is a connected subgraph that contains a
constant fraction of the entire graph's nodes. Resultantly,
one can randomly remove more than 80% of the nodes in
the graph without destroying that component. Hence, the
network will still possess large-scale connectivity [15]. On
the other hand, an attack that simultaneously eliminates
as few as 10–20% of the hubs can cause that component
to disappear suddenly and break the network into several
isolated components. The main idea in our method is to
increase the robustness of a network by adding a limited
number of edges to it, and therefore to increase the lifetime
of the largest component of the graph upon removing
high-degree nodes.

Depending upon the nature of a network, adding an
edge can be very costly and some networks can only afford
a limited number of them. Moreover, in order to keep
other structural properties of networks such as their degree
distribution as much intact as possible, it requires addition
of a limited number of edges to the network. Given that, a
threshold parameter is needed for the algorithm to constrain
the maximum number of edges that can be added to the
network. Furthermore, our iterative algorithm provides the
user with a number of edge-additional candidates during
each iteration and lets them choose the one that causes the
minimum cost in order to be added to the network.

The inputs to our iterative algorithm RENEA are an
undirected, unweighted scale-free network represented as a
graph G(V,E) with |V | = N nodes and |E| = L edges,
the budget δ (maximum number of edges that can be added
to G), and θ (the initial percentage of hubs to remove in
the attack simulation process). The output from RENEA
is a more robust graph G(V,E′) with the same number of
nodes yet more edges (L ≤ |E′| ≤ L+ δ). The steps of the
algorithm are as follows:

0) m = 0 // m is the number of edges added to G
1) Simulate a targeted attack and remove θ percent of hubs
from G.
2) listComps = Sorted list of disconnected components
based on their size, in non-increasing order.
3) comp1 = The largest component in listComps.
4) comp2 = The second largest component in listComps.
5) Select a node x ∈ comp1
6) Select a node y ∈ comp2
7) E′ = {x–y} ∪ E. // add edge x–y to G
8) comp = comp1 + comp2
9) Remove comp1 and comp2 from listComps.
10) Add comp to the beginning of listComps.
11) m = m+ 1
12) Repeat steps 3-11 until |listComps| == 1 or m == δ.

37

RENEA starts off with simulating an attack on graph
G (line 1). There are two common types of attacks that
can be carried out on a network known as serial-attack
and sudden-attack. In both of these attacks an initial θ
percent of highest-degree nodes are to be removed. In
the sudden-attack, θ percent of highest-degree hubs are
identified and removed at once, whereas in the serial-attack,
which is known to be more damaging, hub removal happens
a bit differently. In the serial-attack, first the highest-degree
hub is removed, then the degree of each remaining node is
recalculated and among them again the highest-degree hub
is removed until θ percent of hubs are discarded. In the
graphical user interface, a user can choose either of these
options to simulate an attack on the network.

Once G is fragmented, all disconnected components
are found, where the number of nodes in each component
determines the size of that component. In order to add the
least number of edges yet gain the highest improvement
in robustness, the single-node components will be ignored.
listComps contains a list of components sorted based on
their size in a descending order (line 2). The first and second
members of listComps, the largest and second largest
components, are called comp1 and comp2, respectively
(lines 3-4).

The algorithm adds an edge between node x in comp1
and node y in comp2. There exists a list of candidates
whose size is equal to |comp1| × |comp2|. Our user
interface allows the user to pick one edge that can impose
the least cost to the network (lines 5-7). Afterwards, comp1
and comp2 are combined into comp and both are removed
from listComps, and comp is added to the beginning of
listComps (to keep it sorted) (lines 8-10). Variable m
is used to keep track of the number of edges added to G
(line 11). At this point one edge is already added to G
(E′ = E ∪ {x–y}) and m=1. RENEA, as an iterative
algorithm, repeats steps 3-11 until listComps contains only
one component (at the end of each iteration, the size of
listComps decreases by one) or the desired number of
edges are added to G (|E′| = L+ δ) (line 12).

3.3 Edge Removal

Even though applying RENEA on a graph improves its
robustness remarkably, adding more edges to a network
comes with an extra cost. Hence, depending on the nature of
the network, some users may or may not decide to mitigate
the total cost by getting rid of some edges from the graph
yet still have a considerable overall enhancement in the
robustness of the network.

Upon request of the user, our algorithm nominates
some edges to get removed from the graph based on
the betweenness centrality value of them. The edge

betweenness centrality is defined as the number of the
shortest paths that pass through an edge of a network.
An edge with a high edge betweenness centrality score
represents a bridge-like connector between two parts of
a network and the removal of such edges may affect the
communication between many pairs of nodes through the
shortest path between them.

To implement the edge-removal part, first each edge
is associated with an edge centrality value. Then these
values are sorted in increasing order. The user can request
the maximum number of edges that s/he is willing to
remove from the network. Removing edges with high
betweenness, that occupy critical roles in the network, can
force many pairs of nodes to be re-routed on a longer
way in order to communicate with each other. It can
also degrade the overall efficiency of the network in terms
of communication. Hence, the algorithm starts removing
edges with the lowest betweenness value, as long as that
edge-removal does not make the network disconnected,
until the desired number of edges are removed.

3.4 The Graphical User Interface

RENEA is implemented using the Python programming
language using the powerful NetworkX [16] library to
perform graph operations. The Graphical User Interface
(GUI) uses elements of the networx viewer to easily enable
an interactive view of the graph that allows scrolling,
zooming, and moving nodes. The Graph Viewer element
is included in a Tkinter based GUI; Tkinter is the standard
GUI library in Python and is included in a variety of
distributions of the language. This helps to ensure that the
application is as cross platform as possible.

The RENEA user interface [Figure 1] consists of the
following controls: (i) a file chooser to allow the user to
select a file that contains a list of nodes and edges of the
graph, (ii) a text input field to specify the initial value of the
threshold (θ), (iii) a text input field to specify the maximum
number of edges to be added to the graph, (vi) a drop-down
menu to select the desired type of attack on the graph, (vi)
a control button to start the process of adding edges to
the graph to enhance robustness, (v) a text input field to
specify the maximum number of edges to be removed from
the graph, and (vi) a control button to start the process of
removing edges from the graph.

As shown in [Figure 2], a data set has been selected,
and all of its specifications are presented in the GUI such
as the number of nodes, edges, and initial robustness.
The important nodes in terms of their degree (hubs) are
presented using bigger circles. In this GUI the user can
drag and relocate each edge and node, and zoom in/out on
the graph for a closer look.

38

https://github.com/jsexauer/networkx_viewer/

Figure 1: RENEA GUI

4 A Running Example In RENEA

To demonstrate the basic concepts behind RENEA, here
we walk through a simple example. We start by uploading
a graph in the GUI with 20 nodes, 21 edges, and the initial
robustness of 0.1052. Once the graph is uploaded, all of
its specifications are presented in the GUI [Figure 3]. For
this particular graph, we set ’Threshold’ = 20%, ’Maximum
Edges to Add’ = 3, and ’Attack Method’ = Serial. Once the
user hits the ’Enhance Robustness’ button, the algorithm
runs and suggests a list of edge IDs to be added. The
user can accept or discard the proposed edges [Figure 4].
Once the user accepts these edges they will be added to
graph (they are displayed with thicker lines in blue) [Figure
5]. If the user chooses to delete 3 edges, once they hit
the ’Remove Edges’ button, the algorithm calculates the
betweenness of the edges and nominates a maximum of
three edges with the lowest betweenness whose removal
does not disconnect the graph. These edges are displayed
in red with thicker lines [Figure 6]. The GUI also shows
the amount of decrease in robustness due to edge removal.
Once the user accepts the changes those edges get removed
and the updated robustness along with the final graph is
displayed [Figure 7].

5 Experiments

5.1 Dataset

In this section, we experimentally examine the
performance of RENEA, and for performance evaluation
comparison, we have also implemented three other
edge-addition algorithms: one to add edges between
randomly selected pairs of nodes, one to add edges between
nodes with high degrees only, and finally one to add edges
between low-degree nodes. For the experiment, we used a
real-life American Airlines dataset which is an unweighted,
undirected, and connected scale-free graph. This dataset
contains 332 airports (nodes) and 2126 flights between
airports (edges) and contains no multi-edges (two or more
edges that are incident to the same two nodes) or self-loops
(an edge from a node to itself).

Figure 2: RENEA GUI after uploading a dataset containing USAir
network; all the specifications of this graph (e.g., number of nodes,
number of edges, and initial robustness) also are displayed.

5.2 Results

We tested RENEA and three other algorithms on the
American Airlines network. We ran each algorithm 10
times and took the average of improvement acquired by
each. For each experiment, we added 20, 30, 40, 50, and
60 edges to the original graph using different algorithms
and computed the obtained robustness. As shown in [Table
1], RENEA significantly outperforms the other algorithms,
accomplishing two times more improvement in comparison
with the other methods. Results show that by adding less
than 3% of edges to the graph, robustness improves up to
70%, whereas the random edge addition can only improve
the robustness up to 35%. [Figure 8] shows how the size of
the biggest component in the American Airlines network is
changing while removing q hubs from the original network.
The size of the largest component after applying RENEA
causes the graph to hold its integrity for a longer time as
opposed to using the other methods. [Figure 9] compares
the degree distribution of the US Air network before and
after adding 50 edges via applying RENEA. Because of
adding a limited number of edges to the graph, the shape
of its degree distribution remains almost the same. The
reason that a scale-free network is robust in terms of random
failure is because having a power-low degree distribution
and adding a limited number of edges to the graph does
not cause severe changes in it. The goal is to keep all the
unique properties of the graph the same while enhancing its
robustness against targeted attacks.

39

Figure 3: A graph with 20 nodes and 21 edges.

Figure 4: A list of suggested edges to add to enhance robustness.

Figure 5: Graph after adding 3 edges.

Figure 6: 3 edges are nominated to get removed.

Figure 7: After adding 3 edges and removing 3 edges, the overall
robustness improvement is 25%.

6 Conclusion and Future work

Real-life complex networks are known to be resilient in
terms of random failures yet fragile in the terms of targeted
attacks. To enhance their total robustness, one strategy
is to add more edges to the network and the other is to
rewire some qualified edges in the network. Based on the
type of the network either of these methods could be used.
Mostly these strategies accept a change only if it improves
the robustness of the network by a threshold. Hence,
it requires them to compute the robustness of the graph
before and after applying a change which could be very
time-consuming depending on the size of the graph. So they
are not considered efficient in terms of time. Additionally,

40

Table 1: The performance of RENEA vs. three other algorithms
Algo1, Algo2, and Algo3. Algo1 adds edges randomly, Algo2 adds
edges among low-degree nodes, and Algo3 adds edges among
high-degree nodes. The dataset is an American Airlines dataset
with 332 nodes, 2126 edges and initial robustness of 0.1079. We
added 20, 30, 40, 50, and 60 edges to the original graph and the
averages of total robustness improvement acquired after running
each algorithm are presented.

Initial R
0.1079

20
edges

30
edges

40
edges

50
edges

60
edges

RENEA 26.17% 38.16% 49.94% 55.25% 66.09%
Algo1 11.08% 18.19% 23.20% 30.44% 34.07%
Algo2 11.55% 13.17% 15.42% 21.80% 24.60%
Algo3 10.26% 12.14% 19.09% 21.51% 21.72%

none of these solutions take the nature of the network into
consideration. Thus, their proposed solution is not always a
practical one.

In this work, we presented RENEA, an iterative
algorithm that is designed to enhance the overall robustness
of a scale-free network against malicious attacks by adding
a limited number of edges to it. Adding new connections
to the nodes arbitrarily and without any constraint can
change the nodal degree of the graph and disturb other
structural properties of it. We also presented a user interface
for RENEA that allows the user to see the effect of the
changes to the network. In addition to the excellent
performance of RENEA, the fact that it does not compute
the robustness during each iteration, makes it work very
fast to communicate with the user. During each iteration,
RENEA suggests the best edges such that adding them
can best increase the robustness of a graph, and the user,
considering the cost, can accept or reject them. Finally, if
the user also wants to remove some edges from the graph
to mitigate the overall cost, RENEA nominates the ones
with low betweenness centrality value whose removal does
not make the graph disconnected. Our future work will
be focused on performing formal studies of the usefulness
and usability of the user interface as well as further
improvement in the performance of RENEA.

References

[1] Cohen, Reuven, and Shlomo Havlin. ”Scale-free
networks are ultrasmall.” Physical review letters 90.5
(2003): 058701.

[2] Barabsi, Albert-Lszl, and Rka Albert. ”Emergence of
scaling in random networks.” science 286.5439 (1999):
509-512.

Figure 8: X-axis represents the number of removed nodes and
Y-axis represents the size of LLC in the American Airlines network
before and after reconfiguration. The line in red shows the
performance of RENEA.

Figure 9: X-axis represents degrees of nodes and Y-axis represents
how many nodes share the same degree. After adding 50 edges
to the US Air network, its degree distribution remains almost the
same.

[3] Beygelzimer, Alina, et al. ”Improving network
robustness by edge modification.” Physica A: Statistical
Mechanics and its Applications 357.3 (2005): 593-612.

[4] Xiao, S., et al. ”Robustness of scale-free networks
under rewiring operations.” EPL (Europhysics Letters)
89.3 (2010): 38002.

[5] Schneider, Christian M., et al. ”Mitigation of malicious
attacks on networks.” Proceedings of the National
Academy of Sciences 108.10 (2011): 3838-3841.

[6] Ze-Hui, Qu, et al. ”Enhancement of scale-free network
attack tolerance.” Chinese Physics B 19.11 (2010):
110504.

41

[7]] Yang, Yang, et al. ”Improving the robustness
of complex networks with preserving community
structure.” PloS one 10.2 (2015): e0116551.

[8] Zhao, Jichang, and Ke Xu. ”Enhancing the robustness
of scale-free networks.” Journal of Physics A:
Mathematical and Theoretical 42.19 (2009): 195003.

[9] Wu, Zhi-Xi, and Petter Holme. ”Onion structure and
network robustness.” Physical Review E 84.2 (2011):
026106.

[10] Chan, Hau, Shuchu Han, and Leman Akoglu.
”Where graph topology matters: the robust subgraph
problem.” Proceedings of the 2015 SIAM International
Conference on Data Mining. Society for Industrial and
Applied Mathematics, 2015.

[11] Li, Li, et al. ”Enhancing the Robustness and Efficiency
of Scale-free Network with Limited Link Addition.”
TIIS 6.5 (2012): 1333-1353.

[12] Wang, Xiao Fan, and Guanrong Chen. ”Complex
networks: small-world, scale-free and beyond.” IEEE
circuits and systems magazine 3.1 (2003): 6-20.

[13] Schaffter, Thomas, Daniel Marbach, and Dario
Floreano. ”GeneNetWeaver: in silico benchmark
generation and performance profiling of network
inference methods.” Bioinformatics 27.16 (2011):
2263-2270.

[14] KDNuggets. Top 30 Social Network
Analysis and Visualization Tools, June 2015.
http://www.kdnuggets.com/2015/06/top-30-social-netw-
ork-analysis-visualization-tools.html. Accessed March
28, 2017.

[15] Callaway, Duncan S., et al. ”Network robustness
and fragility: Percolation on random graphs.” Physical
review letters 85.25 (2000): 5468.

[16] Schult, Daniel A., and P. Swart. ”Exploring network
structure, dynamics, and function using NetworkX.”
Proceedings of the 7th Python in Science Conferences
(SciPy 2008). Vol. 2008. 2008.

42

Effective Path Summary Visualization on Attributed Graphs

Duncan Yung and Shi-Kuo Chang
Department of Computer Science
University of Pittsburgh, PA, USA

{duncanyung,chang}@cs.pitt.edu

ABSTRACT
When a new dataset is modeled as an attributed graph or users are
not familiar with the data, users may not know what can be re-
trieved from the attributed graph. Sometimes, users may have some
intuition about the query, but how to exactly formulate queries (e.g.
what attribute constraints to use) is still unclear to users. In this
paper, we propose the idea of attributed path summary. In gen-
eral, attributed path summary is a grouping of vertices such that
vertices in each group contain paths from source to destination and
the entropy of attributed values within a group is low and biased
toward the intuition (i.e. preferred attribute values) given by users.
We propose a novel 3-phrase approach which stitches key vertices
together to form candidate paths and inflates those candidate paths
into path summary. An extensive case study and experimental eval-
uation using the real Facebook graph that visualizes the path sum-
mary demonstrates the usefulness of our proposed attributed path
summary as well as the superiority of our proposed techniques.

1. INTRODUCTION
Attributed graph is widely used for modeling a variety of

information networks [11, 15], such as the web, sensor networks,
biological networks, economic graphs, and social networks. When
a new dataset is modeled as an attributed graph or users are not
familiar with the data, users may not know what can be retrieved
from the attributed graph. Sometimes, users may have some
intuition about the query, but how to exactly formulate queries
(e.g. what attribute constraints to use) is still unclear to users.

In this paper, we propose the idea of visualizable attributed path
summary. In general, an attributed path summary is a grouping of
vertices such that vertices in each group contain a path from source
to destination and the entropy of attributed values within a group
is low and biased toward the intuition (i.e. attribute values) given
by users. In addition, we argue that a visualizable attributed path
summary can be easily visualized and understood by users.

1.1 Application Scenario

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
10.18293/DMSVLSS2017-019.

Social Network: For example, an FBI agent has a social net-
work, but he/she is not familiar with the attribute values and graph
structure of the social network. The agent wants to investigate the
relationship between Duncan and a terrorist leader using the social
network as the FBI believes that social network would contain a lot
of useful insight for investigation. The agent just got an intuition
that people between Duncan and the terrorist leader may live in
the country C1 and believe in religion R1,R2. The attributed path
summary query computes a summary of paths from Duncan to the
terrorist leader that are close to the offered attribute values (i.e.
C1,R1 or R2). The path summary offers insight for the agent to
formulate different path queries for investigation.

Metabolic Network: In metabolic networks, each vertex is a
compound, and an edge between two compounds indicates that
one compound can be transformed into another one through a
certain chemical reaction. Vertex attributes can be features of the
compound; edge attributes can be details of a chemical reaction
between two compounds. A reachability query on metabolic
networks discovers whether compound A can be transformed to
compound B under given path attribute constraints. A biologist
wants to study how to transform compound A to compound B. The
biologist only knows that cost-to-trigger-reaction has to be around
$10. The attributed path summary computes a summary of paths
from compound A to compound B that are close to the offered
attribute value (e.g. cost-to-trigger-reaction≈ $10). The path
summary offer insight for the biologist to formulate path queries
for the study.

1.2 Challenges
Nowadays, a big graph with a few million vertices is common,

and that results in an exponential number of paths between any
two vertices. A large number of possible paths between 2 vertices
makes computing path summary a challenging task.

Among a huge number of possible paths between 2 vertices,
which type of path the user prefers is unknown since even the
user is not familiar with the graph, and he/she may not know what
he/she can get from the graph. Therefore, our task is to compute a
path summary for the user.

Computing an effective summary for a user is non-trivial as no
user would prefer to read a lot of text to understand the summary.
Hence, an effective path summary is a summary that can be easily
visualized by users. Visualizing a large portion of the graph is
not feasible as that would overwhelm the user. On the contrary, if
the summary is too concise, the user may not get the information
he/she wants.

43

1.3 Our Contributions
Our first contribution is to introduce and define the attribute path

summary query on attributed graph problem. We define attributed
path summary to be groups of vertices that contain users’ intuition
as well as satisfy some path properties. The users’ intuition is
expressed as hints for computing the path summary. Users can
offer whatever attribute values that they consider as the hint. These
summaries offer insight to users about the attribute values and
connection between the given source and destination vertices.

Our second contribution is to propose an efficient and effective
approach for finding attributed path summary. Our proposed
approach consist of three phrases. The first phrase efficiently
finds all key vertices that have attribute values belonging to
the hint offered by the user. Including key vertices ensures the
summary would represent paths with attribute values that are close
to the intuition of users. Then, based on those key vertices, a
novel stitching algorithm is proposed to connect the source, the
destination, and key vertices together to form a relatively small
key vertex graph. The stitching algorithm finds paths with a small
variation in attribute values between key vertices so that users can
easily understand the attribute distribution between key vertices.
After that, high-quality candidate paths between the source and
the destination are found on that small key vertex graph efficiently.
Finally, candidate paths are inflated to vertex groups by greedily
including adjacent vertices. Including adjacent vertices would
offer more attribute values choices for users to formulate their
queries.

1.4 Paper Organization
Section 2 talks about related works. Section 3 presents def-

initions and problem statement. Section 4 gives details of our
approach for finding attributed path summary. Section 5 presents
an extensive experimental evaluation for the proposed approach.
We conduct case studies on the Facebook graph that visualize
our path summary results for illustrating the effectiveness of our
proposed path summary. We also conduct experiments to study the
change in entropy and execution time under different parameter
settings. Finally, Section 6 concludes this paper.

2. RELATED WORK
In this section, we present a summary of related works.

2.1 Attributed Graph Summarization
Graph summarization has been extensively studied [10, 13, 13,

17, 14, 16, 4, 7, 12, 3, 2], and various ways of summarizing
graphs have been proposed. Grouping-based summarization meth-
ods [10, 13, 13, 17, 14] takes into account both graph structure
and attribute distributions for aggregating vertices into supernode
and superedges; compression-based summarization methods [16,
4, 7] exploit the MDL principle to guide the grouping of vertices
or the discovery of frequent sub-graphs to form a graph summary;
influence-based summarization methods [12] leverage both graph
structure and vertex attribute value similarities in the problem for-
mualtion so as to summarize the influence process in a network;
pattern-mining-based summarization methods [3, 2] identify fre-
quent graph structural patterns for aggreagate into supernodes so
as to reduce the size of the input graph and as a result, improving

query efficiency. These techniques focus on computing summary
for the whole graph. On the other hand, our techniques focus on
computing visualizable path summary between two vertices that
users are interested in.

2.2 Attributed Graph Clustering
Zhou et al [18] proposed SACluster, which is an attributed

graph clustering algorithm based on both graph structural and
attribute similarities through a unified distance measure. Zhou et
al [18] proposed first to partition a large graph associated with
attributes into k clusters so that each cluster contains a densely
connected subgraph with homogeneous attribute values. Then,
an effective method is used to automatically learn the degree
of contributions of structural similarity and attribute similarity.
Zhou et al [19] further improve the efficiency and scalability of
SACluster [18] by proposing an efficient algorithm IncCluster
to incrementally update the random walk distances given the edge
weight increments.

One fundamental difference between summarization and cluster-
ing is that former finds coherent sets of vertices with similar con-
nectivity patterns to the rest of the graphs, while clustering aims
at discovering coherent densely-connected groups of vertices [8].
Similar to graph summary, graph clustering only computes a sum-
mary of the whole graph while our techniques focus on a summary
of paths between two vertices.

2.3 Graph Visualization
The size of the graph to view is a key issue in graph visu-

alization [6]. To deal with this, researchers proposed a lot of
techniques in graph drawing [6], such as H-tree layout, radial
view, balloon view, tree-map, spanning tree, cone tree, hyperbolic
view, as well as methods for reducing visual complexity [9], such
as clustering, sampling, filtering, partitioning. We argue that
simply applying those graph drawing technique cannot handle
big attributed graphs with million of vertices and edges as these
methods are too general. For existing visual complexity reduction
methods, how to effectively applying them to our problem needs
further investigation.

3. PRELIMINARIES

3.1 Problem Statement
DEFINITION 1. [Attributed Graph] An attributed graph [15]

G, is an undirected graph denoted as G = (V,E,Av), where
V is a set of vertices, E ⊆ V × V is a set of edges, and
Av = {A(v)} is a set of dv vertex-specific attributes, i.e. ∀v ∈
V , there is a multidimensional tuple A(v) denoted as A(v) =
(A1(v), A2(v), ..., Adv (v)).

DEFINITION 2. [Attribute HintH] is a set of distinct attribute
values.

H = {H1, H2, .., Hdv}

DEFINITION 3. [Contain Function φ(Pi, H)]

φ(Pi, H) =

|Pi|∑
j=1

contain(vj , H)

contain(vj , H) =

{
1, ∀k = 1..dv if ∃Ak(vj) ∈ Hk

0, otherwise

44

v2

v3

v5
v4

v10

v13

v12

v6

v14

v7 v8 v9

v11

v16
v17

v15

v1

v18

vID Country Job
v1 USA IT
v3 USA IT
v5 USA IT
v12 SG IT
v13 JAP FIN
v14 UK EDU
v18 USA FIN
..

Figure 1: Path Summary (P1-blue, P2-orange)

For example in Figure 1, given that H =
{{USA, SG, JAP}, ∅},P1 = {v1, v3, v13, v14, v18}, and
P2 = {v1, v5, v12, v18}, φ(P1, H) = 1+ 1+1+0+1 = 4 and
φ(P2, H) = 1 + 1 + 1 + 1 = 4.

DEFINITION 4. [Attributed Path Summary
PSum(G, s, t, l,H)] For an attributed graph G,
PSum(G, s, t, l,H) is a set of vertices {P1, P2, ..., Pk}
such that:

1. ∀ v ∈ Pi are connected,

2. ∃ v, v′ ∈ Pi, v is adjacent to s and v′ is adjacent to t,

3. ∀Pi, Pj ∈ G, i 6= j, Pi ∩ Pj = ∅,

4. ∀Pi, φ(Pi, H) ≥ l,

5. ∀v ∈ Pi, dist(s, v) + dist(v, t) ≤ l, and

6. @P ∈ G ∧ P /∈ PSum(G, s, t, l,H) satisfing condition 1
to 5.

where φ(Pi, H) is the quality of the summary and dist(v, v′) is the
shortest distance from v to v′.

Continuing the above example, in Figure 1, given that l = 4,
there are two paths P1, P2 in the attributed path summary. They are
P1 = {v1, v3, v13, v14, v18} and P2 = {v1, v5, v12, v18}. For
example, all vertices in P1 are connected, ∃ v3 and v14 adjacent to
s and t, P1

⋂
P2 = ∅, φ(P1, H) = φ(P2, H) = 4 = l, and for all

vi ∈ P1, P2, and dist(s, vi) + dist(vi, t) ≤ 4.

Problem Statement
[Attributed Path Summary Query qp] Given an attributed

graph G = (V,E,Av), source s, destination t, attribute hint H ,
and lower bound of number of vertices in every Pi that contains at
least one attribute value in attribute hint l, qp return an attributed
path summary PSum(G, s, t, l,H).

3.2 Quality of Path Summary
The quality of path summary is defined as the entropy in [18]

and is reformulated in definition 5.

DEFINITION 5. [Path Summary Quality]

entropy(Pj) =

dv∑
i=1

entropy(ai, Pj)

where

entropy(ai, Vj) = −
ni∑

n=1

pijnlog2pijn

and k is the number of Pi in PSum, pijn is the percentage of
vertices in Pj which have value an on attribute ai.

For example, entropy(Country, P1) = −(35 log2
3
5
+ 1

5
log2

1
5
+

1
5
log2

1
5
).

4. COMPUTING PATH SUMMARY
In this section, we introduce our path stitching approach for

computing attributed path summary effectively based on attribute
hint.

4.1 Algorithm Design
Our heuristic approach has the following steps and design prin-

ciples.

1. Firstly, we want to find all vertices - key vertices, that are
related to the given attribute hint. The search of key vertices
ensures that all vertices that match any attribute value in the
hint and fulfill the distance requirement (Condition 5, Defi-
nition 4) are used for computing a path summary.

2. Given those key vertices, we perform a concurrency graph
traversal that systematically stitches key vertices, the source,
and the destination. Using stitched key vertices, we find can-
didate paths that go from the source to the destination via
key vertices based on the entropy of attribute values on the
path. Key vertices are vertices that users care and want to
see in the visualized path summary. The stitching algorithm
can effectively connect key vertices so that attribute values
on the path between key vertices are consistent. That offers
a clear view for users to understand the attribute distribution
between key vertices.

3. Finally, given the candidate paths, we perform a candidate
path inflation for computing the path summary. Candidate
path inflation includes vertices close to vertices in candidate
paths into the candidate paths. That allows users to under-
stand attribute distributions around key vertices. When users
are considering what attribute constraint to use for their at-
tribute graph queries, they can consider attribute values on
candidate paths as well as attribute values close to the candi-
date path as an alternative.

Algorithm details are presented in below sections with concep-
tual examples.

4.2 Finding Key Vertices
We first introduce the concept of key vertex (Definition 6). Then,

we present two steps that exploit existing approach to efficiently
find all key vertices.

DEFINITION 6. [Key Vertex vk] is a vertex that has at least
one attribute value belonging to an attribute value in the attribute
hint H .

∀i = 1..dv∀j = 1..dv ∃Ai(v
k) ∈ Hj

where Hj ∈ H

The first step is to retrieve all key vertices. Traditional indexes
that support range query (e.g. B+ tree) can be used to index
each attribute. Given H , for each non-empty Sj ∈ H , we query
the corresponding index for a set of vertices that have attribute

45

values in Sj . Then, we do a union of all these vertices and get the
key vertex set Vk. After that, all vertices v that does not satisfy
dist(s, v) + dist(v, t) ≤ l are filtered out.

For example, in Figure 1, if the hint contains only
Country = USA, all vertices with attribute value
Country = USA (e.g. v1, v3, v5, v18) are retrieved from
the precomputed index (e.g. B+ tree).

4.3 Finding Candidate Path
After all key vertices are found, the second step is to find

candidate paths that satisfy constraints in Definition 4.

4.3.1 Stitching Algorithm
Since key vertices are essential (so as to satisfy condition 4 in

Definition 4) for paths in path summary, we do not want to find
candidate paths that do not contain any key vertex. The idea of the
stitching algorithm is to connect s − t and key vertices so as to
form candidate paths. During the graph traversal, entropy and hop
distance values are taken into account.

Algorithm 1 is the pseudo code of the stitching algorithm. The
stitching algorithm first puts s, t, and all key vertices (lines 7-13)
into the priority queue. Each node in the priority queue contains
the current vertex, a key vertex, parent of current vertex, the
distance from a key vertex to the current vertex, and the entropy
of path from a key vertex to the current vertex, where the entropy
value is used to determine the priority.

Then, the graph is traversed starting from each of the key
vertices. When the algorithm reaches a visited node cur.v (line
16), if key vertex of current node’s parent (key1) is not equal
to the key vertex of curent node (key2) (line 19), the path from
key1 to key2 is recovered and put into PathMap (line 21), edges
between vertice key1 and key2 are added in to KeyV ertexG
(lines 22-23), and the algorithm continue (line 22); when the
algorithm reaches a non-visited node (line 25), parent and key
vertex of current node is saved (line2 26-27) and current node
becomes visited (line 28).

After that, adjacent neighbors of cur.v that satisfy the upper
bound distance constraint (line 30) are put into the priority queue
(line 33), where the entropy of the path from the key vertex to
cur.v as well as the distance are taken into account. Finally, the
graph traversal continues until the priority queue becomes empty.

A conceptual example will be presented in Section 4.3.3.

4.3.2 Candidate Path Search
After executing the stitching algorithm, KeyV ertexG and

Path are found. The path search algorithm is used to find
paths from s to t via key vertices in the key vertex graph -
KeyV ertexG. The actual path are recovered using path after
s− t in KeyV ertexG are found. Both entropy and distance from
s are taken into account in the priority queue. We set priority as
entropy + current distance/l if current distance < l;
otherwise, we set priority as entropy + current distance, in
order to pennalize path in KeyV ertexG that are longer than l.

Algorithm 2 is the pseudo code of the path search algorithm.

Algorithm 1 Stitching Algorithm
1: procedure STITCHING(G,Vk, s, t, l)
2: Array < bool > visited
3: Array < int > parents
4: Array < Array < int >> KeyV ertexG
5: Array < int > keys
6: priorityqueue < node > qu . lower entropy first
7: node src(s, s, s, 0, 0) .

(vert., keyV ert, parent, dist, entropy)
8: qu.push(src)
9: node dest(t, t, t, 0, 0)

10: qu.push(dest)
11: for all vk ∈ Vk do
12: node n(vk, vk, vk, 0, 0)
13: qu.push(n)
14: while !qu.empty() do
15: cur ← q.pop()
16: if visited[cur.v] == true then
17: key1← keys[parents[cur.v]]
18: key2← cur.keyV ert
19: if key1 == key2 then . it is just a cycle but not

meeting of 2 traversals from diff KeyVertex
20: continue
21: PathMap← ComputePathBetween(key1, key2)
22: KeyV ertexG[key1].push(key2)
23: KeyV ertexG[key2].push(key1)
24: continue
25: else visited[cur.v] == false
26: parents[cur.v]← cur.parent
27: keys[cur.v]← cur.keyV ert
28: visited[cur.v]← true
29: for all v ∈ G[cur.v].adj do int v = topology[cur.v][i];
30: if dists[v] + distt[v] > l then
31: continue
32: en ← CompEntropy(cur.keyV ert, cur.v) +

(cur.dist+ 1)/l
33: node n(v, cur.keyV ert, cur.v, cur.dist+1, en)
34: qu.push(n)
35: return (KeyV ertexG, Path)

46

v2

v3

v4

v10

v13

v12
v5

v6

v14

v16
v17

v1

v18

v1

v18

v5

v16

Figure 2: Stitching Algorithm (left) and Candidate Path (right)

Algorithm 2 finds shortest path from s to t on KeyV ertexG
based on entropy value (line 5). After a path p is found, p is
removed from KeyV ertexG (line 7). The algorithm continues
until no more path can be found.

4.3.3 Conceptual Example
Figure 2 illustrates the concept of stitching algorithm and

candidate path search. Suppose v5 and v15 are key vertices
retrieved from the index and v1 and v18 are s and t respectively.
v5 expands to v1, and edges from v1 to v5 and v5 to v1 are put
into KeyV ertexG. v5 also expands to v12. v15 expands to
v17 and v12. When v15 expands to v12, v12 was occupied by v5
already. Hence, we can put edges v15 to v5 and v5 to v15 into
KeyV ertexG. After that, v15 expands to v18 , and edges from
v15 to v18 and v18 to v15 are put into KeyV ertexG. Given the
KeyV ertexG, candidate paths from s to t are found based on
entropy values, and those candidate paths will be used for path
inflation in the next phrase.

Algorithm 2 Path Search Algorithm
1: procedure PATHSEARCH(KeyV ertexG, s, t, l, α)
2: boolean PathFound← true
3: Array < Path > CandPath
4: while PathFound == true do
5: p← FindShortestPath(KeyV ertexG, s, t, l, α)
6: if p! = ∅ then
7: RemovePath(p,KeyV ertexG)
8: CandPath.push_back(p)
9: else

10: PathFound← false
11: return CandPath

4.4 Candidate Path Inflation
After all candidate paths, CandPath are found, the candidate

paths are used to form path summary. We developed the path
inflation algorithm which greedily includes vertices into path
vertex groups.

Algorithm 3 is the pseudo code of the path inflation algorithm.
Firstly, all vertices in the CandPath are put into a priority queue
which uses entropy as the priority (lines 4-8). Then, the vertex
cur in the candidate path with the lowest entropy are popped
from the priority queue (line 10). If cur was not visited before,
cur is included in the path group PathSummary[cur.PathID]
(line 14). After that, all adjacent vertices of cur that satisfy
dists[v] + distt[v] > l or (cur.dist + 1) ∗ 3 > dists[t] (line
19) are pushed into the priority queue with entropy(cur.P ∪ v)
as cost. (cur.dist + 1) ∗ 3 > dists[t] is included so as to prevent
vertices that are too far away from vertices in CandPath are

v2

v3

v4

v10

v13

v12
v5

v6

v14

v16
v17

v1

v18
v2

v3

v4

v10

v13

v12
v5

v6

v14

v16
v17

v1

v18

Figure 3: a Candidate Path (left) and a Vertex Group Pi (right)

included in the path summary. The algorithm terminates when the
priority queue becomes empty.

Figure 3 illustrates the concept of candidate path inflation. Given
that v1 → v5 → v12 → v16 → v17 → v18 is the candi-
date path. The path inflation algorithm first puts all vertices (i.e.
v5, v12, V16, v17) in the candidate path into the priority queue with
entropy of the candidate path as priority. Firstly, vertices that are
adjacent to v5, v12, V16, v17 are included into the candidate path.
Then, other vertices that are adjacent to vertices (e.g. v4, v6) in the
candidate path are gradually included in the candidate path until
the distance constraint. Finally, we will get a subgraph shown in
Figure 3 (right).

Algorithm 3 Path Inflation Algorithm
1: procedure PATHINFLATION(G,CandPath, s, t, l)
2: priorityqueue < node > qu
3: Array < bool > visited
4: for all p ∈ CandPath do
5: for all v ∈ p do
6: entropy ← ComputeEntropy(p)
7: node n(v, i, v, 0, l, entropy)
8: qu.push(n)
9: while !qu.empty() do

10: cur ← qu.pop()
11: if visited[cur.v] == true then
12: continue
13: visited[cur.v]← true
14: PathSummary[cur.pathID].push(cur.v) . assign

v into that path group
15: for all v ∈ G[cur.v].adj do
16: if dists[v] + distt[v] > l or (cur.dist+1) ∗ 3 >

dists[t] then
17: continue
18: en = ComputeEntropy(PathSummary[cur.pathID], v)

19: node n(v, cur.pathID, cur.dist +
1, cur.l, cur.keyV ertex, en)

20: qu.push(n)
21: return PathSummary . return Path Summary

5. EVALUATION
All experiments were performed under 64-bit Linux Ubuntu

14.04 on a machine with an Intel 4GHz CPU (4-core), 16 giga-
bytes of memory, and 1 terabyte solid state drive with 512k block
size. All our implementations are in C++ without parallelism.

We first introduce the graph dataset and attributes that we used
for the experiments. Then, we present the result of our case studies.
Finally, we look at the change of change of path summary quality
(i.e. change of entropy) along with the change in the expected num-
ber of key vertex l and the number of hints H .

47

Table 1: Dataset and Parameter
Real Graph Num of Vertex Num of Edge
fb-bfs1 [5] 1.18m 29.78m
Parameter Default Vary
Exp. Num of Key Vert. 6 3,6,9,12
Num of Hint 3 1,3,6,12

5.1 Datasets
We used a real social network dataset fb-bfs1 [5], which has

1.63m vertices and 15.14m edges, for our experiments. To control
the number of attributes and attribute domain sizes, we generate
attributes (Table 2) based on vertex attributes in facebook graph-
API [1].

Table 2: Attributes
Vertex Attribute Domain Size,Distribution (µ,σ)
AgeGroup 10, gau(5,2.5)
Education 5, gau(3,1.25)
Gender 2, uni.
HomeCountry 100, gau(50.25)
Interested in 3, uni.
Languages 50, gau(25,12.5)
Relationship Status 2, uni.
Religion 20, gau(10,5)
Work 50, uni.
Political 10, gau(5,2.5)

5.2 Case Study
Figure 4 and 5 are four case studies using the fb − bfs1 [5]

graph. Each of the figures contains a visualization of one of the
paths in the path summary. At the top of each figure, we can see
the key vertices (man icon) from source to destination. Below
each key vertex is the attribute value of the key vertex that matches
attribute value in the hint. Attribute value summaries of the
path between every two key vertices are shown above the edges
between every two key vertices. The pie chats below the path are
the summaries of attribute value found by the inflation algorithm.
This attribute value summary summarizes the attribute value near
to the key vertices.

Case 1: For the first case study in Figure 4(a), we set the expected
number of key vertex l = 6, the number of hint H = 3, and the
hint contains attribute Country = AUS, Religion = M , and
Work = Service. We can see there are 6 key vertices (including
source and destination), which match our expected number of key
vertices. Furthermore, the summaries of attribute values on the path
between every two key vertices are concise. That gives users a
clear idea of attribute values between key vertices. From the pie
charts, we can see that other (green) occupies a large portion of
the pie. That tells users that attribute values close to the path are
inconsistent and probably having large attribute value domain.
Case 2: For the first case study in Figure 4(b), we set the
expected number of key vertex l = 6, the number of hint
H = 3, and the hint contains attribute Education = Primary,
Interested In = Men, and Politic = B. We can see there are
6 key vertices (including source and destination), which matches
our expected number of key vertices. Furthermore, the summaries
of attribute values on the path between every two key vertices are
concise. That gives users a clear idea of attribute values between
key vertices. From the pie charts, we can see that the top-2 attribute
values (blue and red) in each attribute occupies a large portion of
the pie. That tells users that attribute values close to the path are
consistent and that helps users to efficiently construct their queries.

Country:USA,SG,JAP

Religion: A,B,C

Work: Fin,Eng.

Country:UK,SG,JAP

Religion: A,B,D

Work: Fin,Edu

Country:CHINA,FR,GER
Religion: A,D,E
Work: Fin,Edu,IT

Country:CHINA,FR,GER

Religion: A,D,E
Work: Fin,Edu,IT Country:CHINA,SG

Religion: A,B
Work: FIN,Eng,IT

Hint: Country: AUS, Religion: M, Work: Serv

Country: AUS

Country: AUS Religion: M

Work: Serv

(a) Case 1

Edu.:Pri.,M
as.

Int. In
: M

Politic
: C,F

Edu.:Sec.

Int. In: M

Politic: F,C

Edu.:Sec.
Int. In: M
Politic: C,D

Edu.:Sec.Int. In: M,WPolitic: B,D Edu:Sec.,PhD.
Int. In: WPolitic: B, F,I

Hint: Edu.: Pri., Int. In: M, Politic: B

Int. In: M

Edu.: Pri. Int. In: M

Int. In: M

(b) Case 2

Figure 4: Path Summary (Expected Num of Key Vertex=6,
Num of Hint=3)

Age: 50-60, 20-30

Hint: Age: 20-30

Age: 10-20, 20-30

Age: 20-30

(a) Case 3

Edu.: Pri., Mas.

Hint: Edu.: Mas.

Edu.: Pri., Mas.

Edu.: Mas.

(b) Case 4

Figure 5: Path Summary (Expected Num of Key Vertex=3,
Num of Hint=1)

After we study path summary with 6 key vertices and 3 hints,
we try to look at cases with less key vertices and hints.

Case 3: For the first case study in Figure 5(a), we set the expected
number of key vertex l = 3, the number of hint H = 1, and the
hint contains attribute Age = 20 − 30. We can see there are 3
key vertices (including source and destination), which matches our
expected number of key vertices. Furthermore, the summaries of
attribute values on the path between every two key vertices are also
concise. From the pie charts, we can see that the top-1 attribute
values (blue) in each attribute occupies a large portion of the pie.
On the contrary, the ”other” attribute value (green) only occupies
a small portion. That tells users that attribute values close to the
path are very consistent.
Case 4: For the first case study in Figure 5(b), we set the expected
number of key vertex l = 3, the number of hint H = 1, and the
hint contains attribute Education = Master. We found similar
result as in Figure 5(a).

5.3 Query Formulation Using Path Summary

48

 1

 10

 100

 3 4 5 6 7 8 9 10 11 12

E
n

tr
o

p
y

l

CandPath
PathSummary

(a)Vary l

 0.1

 1

 10

 100

 0 2 4 6 8 10 12

E
n

tr
o

p
y

Num of Hint

CandPath
PathSummary

(b)Vary Num of Hint

Figure 6: [fb-bfs1] Entropy

In order to connect source and destination via vertices that satisfy
attribute hint, we suggest users take into account major attribute
values and alternative attribute values when they are formulating
queries.
Major Attribute Values: Major attribute values are attribute val-
ues that appear on the path between key vertices. For example,
in Figure 4(b), "Edu.:Sec.,PhD., Int. In: W, Politic: B,F,I" are
major attribute values between destination and the last key ver-
tex. By putting these attribute values into the query, key vertices
can be connected. However, based on users preferences, they may
not always want to include these major attribute values. Continue
with the example in Figure 4(b), users may not want to include
"Edu.:Sec.,PhD" into the query. If that is the case, users can con-
sider the alternative attribute values.
Alternative Attribute Values: Alternative attribute values are at-
tribute values displayed in the pie charts. They are the distribution
of attribute values near to paths between key vertices. Continue
with the example in Figure 4(b), if users do not prefer to have
"Edu.:Sec.,PhD" in the query, they may consider to replace it by
"Edu.: Uni". Based on the "Education" pie chart, there are 33.3%
of vertices has attribute value "Edu.: Uni" near to the paths be-
tween key vertices. Therefore, conceptually, choosing "Edu.: Uni"
is similar to rerouting the path between the destination and the last
key vertex.

5.4 Change of Entropy
The default expected number of key vertex and number of hint

are 6 and 3 respectively. We randomly generate 200 pairs of source
and destination and measure the average entropy and execution
time.

Figure 6(a) shows the change of entropy along with l. We can
see that for both CandPath and PathSummary, the entropy
does not really increase with l. Although it seems that a longer path
would contain more vertices and is more likely to contain different
attribute values, this intuition is not supported by Figure 6(a).
Since large l offers more opportunity for the algorithm to search
for s − t paths with similar attribute values, the increase in path
length does not directly imply an increase in entropy.

Figure 6(b) shows the change of entropy along with H . We can
see that for both CandPath and PathSummary, the entropy in-
creases with H . That is contributed by the fact that more attribute
hints mean more attribute are involved, which makes the consis-
tency of attribute values lower.

6. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of computing effective path

summary for attributed graphs. We first define a meaningful defi-
nition for path summary on attribute graphs that takes into account

user’s intuition on attribute values as well as path structure prop-
erties. Then, we propose an effective 3-phrase algorithm that finds
key vertices, stitches key vertices, and searches for path summary.
Finally, case studies on the Facebook graph that visualize our path
summary results illustrated the effectiveness of our proposed path
summary. In the future, we plan to further reduce the number of
path in the path summary by proposing the approach that can effec-
tively merge similar paths together so as to further reduce the effort
that users need for understanding the path summary.

7. REFERENCES
[1] https://developers.facebook.com/docs/graph-api/reference/user.
[2] S. Cebiric, F. Goasdoué, and I. Manolescu. Query-oriented

summarization of RDF graphs. PVLDB, 8(12):2012–2015, 2015.
[3] C. Chen, C. X. Lin, M. Fredrikson, M. Christodorescu, X. Yan, and

J. Han. Mining graph patterns efficiently via randomized summaries.
PVLDB, 2(1):742–753, 2009.

[4] D. J. Cook and L. B. Holder. Substructure discovery using minimum
description length and background knowledge. J. Artif. Intell. Res.
(JAIR), 1:231–255, 1994.

[5] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in
Facebook: A Case Study of Unbiased Sampling of OSNs. In
Proceedings of IEEE INFOCOM ’10, San Diego, CA, March 2010.

[6] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization
and navigation in information visualization: A survey. IEEE Trans.
Vis. Comput. Graph., 6(1):24–43, 2000.

[7] K. Khan, W. Nawaz, and Y. Lee. Set-based approximate approach for
lossless graph summarization. Computing, 97(12):1185–1207, 2015.

[8] Y. Liu, A. Dighe, T. Safavi, and D. Koutra. A graph summarization:
A survey. CoRR, abs/1612.04883, 2016.

[9] R. Pienta, J. Abello, M. Kahng, and D. H. Chau. Scalable graph
exploration and visualization: Sensemaking challenges and
opportunities. In 2015 International Conference on Big Data and
Smart Computing, BIGCOMP 2015, Jeju, South Korea, February
9-11, 2015, pages 271–278, 2015.

[10] S. Raghavan and H. Garcia-Molina. Representing web graphs. In
Proceedings of the 19th International Conference on Data
Engineering, March 5-8, 2003, Bangalore, India, pages 405–416,
2003.

[11] S. Sakr, S. Elnikety, and Y. He. G-SPARQL: a hybrid engine for
querying large attributed graphs. In 21st ACM International
Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, pages 335–344,
2012.

[12] L. Shi, H. Tong, J. Tang, and C. Lin. VEGAS: visual influence graph
summarization on citation networks. IEEE Trans. Knowl. Data Eng.,
27(12):3417–3431, 2015.

[13] M. Shoaran, A. Thomo, and J. H. Weber-Jahnke. Zero-knowledge
private graph summarization. In Proceedings of the 2013 IEEE
International Conference on Big Data, 6-9 October 2013, Santa
Clara, CA, USA, pages 597–605, 2013.

[14] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for
graph summarization. In SIGMOD, pages 567–580, 2008.

[15] Z. Wang, Q. Fan, H. Wang, K. Tan, D. Agrawal, and A. El Abbadi.
Pagrol: Parallel graph olap over large-scale attributed graphs. In
IEEE 30th International Conference on Data Engineering, Chicago,
ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 496–507,
2014.

[16] Y. Wu, Z. Zhong, W. Xiong, and N. Jing. Graph summarization for
attributed graphs. In 2014 International Conference on Information
Science, Electronics and Electrical Engineering, volume 1, pages
503–507, April 2014.

[17] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph
summarization. In ICDE, pages 880–891, 2010.

[18] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on
structural/attribute similarities. PVLDB, 2(1):718–729, 2009.

[19] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs:
An efficient incremental approach. In ICDM 2010, The 10th IEEE
International Conference on Data Mining, Sydney, Australia, 14-17
December 2010, pages 689–698, 2010.

49

Crowd Behaviors Analysis And

Abnormal Detection In Structured Scene

Jiaqian Qi, Weibin Liu

Institute of Information Science

Beijing Jiaotong University

Beijing 100044, China

E-mail: wbliu@bjtu.edu.cn

Weiwei Xing

School of Software Engineering

Beijing Jiaotong University

Beijing 100044, China

Abstract—Recently, crowd behavior analysis and abnormal

trajectory detection have emerged as a significant research field in

the visual surveillance. In this paper, we propose a framework for

analyzing the crowd behavior and detecting abnormal trajectories

in a structured scene. We employ Fast LDA (latent Dirichlet

allocation) algorithm to clustering the trajectories. Our

framework is based on this method, and it achieves a faster and

more accurate clustering result. In order to obtain the crowd

motion pattern, we propose two categories of regions of interest,

optimal path and critical regions respectively. We use LOF (local

outlier factor) algorithm to detect whether the sample points

corresponding to the trajectories are abnormal or not, our

framework overcomes the problem whose trajectory length is not

uniform. Experimental results illustrate that the proposed

framework is effective in motion pattern learning and abnormal

trajectory detection.

Keywords-component; Crowd Behavior Analysis; Trajectory

clustering; Abnormal Detection; Fast LDA; LOF

I. INTRODUCTION

In recent years crowd behavior analysis and abnormal
detection become a challenging topic in the field of crowd
management, design of public space, virtual environment,
abnormal detection and intelligence environment. In fact, a large
number of surveillance devices have been installed in public,
such as in markets, subways, gymnasiums, which collect a great
deal of pedestrian trajectory data [1], these huge amounts of data
is rich in information, which worthy of further study.

Many methods are applied in unstructured scene previously,
the approach adopted in those research focuses on the motion
patterns learning and abnormal trajectories detection in
unstructured situations [2,3,4]. The analysis of crowd behaviors
covers different sub problems such as trajectory clustering and
trajectory modeling, for which the goal is to automatically
learning motion patterns in scene [5]. The task of trajectory
clustering is to assign the trajectories with similar measurements
to the same cluster. Trajectory modeling is use of parameterized

models to represent each trajectory cluster [6]. The task of
abnormal detection is to identify those motion behaviors that are
significantly different from other moving objects in the same
scene, or to distinguish those behaviors with the probability
lower than the motion patterns being found before. The task of
behavior prediction is to predict the next movement area or
semantic behavior patterns of the observed object based on a
priori knowledge and the motion patterns of moving objects.

This paper contribute to crowd behavior analysis and
abnormal trajectories detection in a structured scene, because of
the influence of the road setting and the obstacles in the
structured scene, it is difficult to analyze the motion pattern in
the structured scene than in the unstructured scene. The crowd
behavior analysis and abnormal trajectories detection in the
structured scene can be achieved in our framework. First of all,
we preprocess the original trajectory dataset, including trajectory
segmentation, calculate the motion parameters and encode sub-
trajectories respectively. Secondly, we apply Fast LDA (latent
Dirichlet allocation) algorithm [7] to cluster the trajectories. In
this way, the rough sub-trajectory clusters can be acquired.
Thirdly, in order to describe the crowd motion patterns, we
propose two categories of regions of interest. Eventually, the
LOF (local outlier factor) algorithm is adopt to judge whether
the sample points of the trajectories are abnormal, which
overcome the problem whose trajectory length is not uniform.
The framework is minutely described in Fig. 1.

DOI number: 10.18293/DMSVLSS2017-003
This research is partially supported by National Natural Science Foundation of

China (No. 61370127, No.61473031, No.61472030), Program for New

Century Excellent Talents in University (NCET-13-0659), Fundamental
Research Funds for the Central Universities (2014JBZ004), Beijing Higher

Education Young Elite Teacher Project (YETP0583). The opinions expressed

are solely those of the authors and not the sponsors.
{Corresponding author: Weibin Liu, wbliu@bjtu.edu.cn }

Figure 1. The framework of crowd analysis and abnormal detection.

50

The remainder of the paper is organized as follows: Section
2 presents the relate work. Section 3 reviews the detail of crowd
behavior analysis, which contain trajectory preprocessing, sub-
trajectory clustering and motion pattern learning respectively. In
section 4, we presents the detail of abnormal trajectories
detection. Experiments are presented in section 5.

II. RELATE WORK

Motion patterns learning devoted to build the regular to
expression the motion trajectories by the observed data. In [8],
Zou et al propose a new approach which constructed c Latent
Dirichlet Allocation (CLDA) model to do trajectory clustering.
In [9], Zou et al proposed a belief based correlated topic model
(BCTM) to do trajectory clustering. Hu et al. [6] clustered the
trajectories by using of Dirichlet process mixture model (DPMM)
clustering algorithm. Modeled the trajectories by use of a time-
sensitive Dirichlet process mixture model (tDPMM).

Abnormal trajectory detection is to identify those motion
behaviors that are significantly different from other moving
objects in the same scene, or to distinguish those behaviors with
the probability lower than the motion patterns being found
before. In [10], Claudio Rosito Jung et al proposed to 4-D
histogram to detect the abnormal trajectory. In [11], Serhan
Cosar proposed an integrated method that incorporates the
trajectory-based analysis and pixel-based analysis for abnormal
behavior inference.

Behavior prediction is to predict the next movement area or
semantic behavior patterns of the observed object based on a
priori knowledge and the motion patterns of moving objects. In
[12], Josh Jia-Ching Ying et al combined the geographic features
and the semantic features to detect the abnormal trajectory.

III. CROWED BEHAVIOR ANALYSIS

In the following, we first preprocess the trajectory dataset,
then cluster the sub-trajectory, finally we learn the crowd motion
patterns.

A. Preprocessing trajectory dataset

1) trajectory segmentation:
The preprocessing of trajectories mainly contains three steps

in our framework: trajectory segmentation, calculate the motion
parameters and encode sub-trajectory.

For charactering spatiotemporal information about the
trajectory, we use the sequence of flow vectors to represent the
trajectory, In order to stabilize the movement trend of trajectory,
a trajectory is segment into a series of sub-trajectory at the
turning point. In our case, motion direction can be divided into
eight directions: east (0), northeast (1/4π), north (1/2π),
northwest (3/4π), west (π), southwest (5/4π), south (3/2π),
southeast (7/4π). Then the motion direction of each sample point
are discretized to the approximate standard direction. If the
discretized motion direction of a sample point is different from
the previous, these points are regarded as a turning point of the
trajectory. Then the trajectories of moving objects are segmented
at the turning points.

 𝐹𝑛 = {𝐹1
′, 𝐹2

′, … , 𝐹𝑚
′ }

𝐹𝑖
′ = {𝑓1, 𝑓2, … , 𝑓𝑗} (1)

The mathematical expression of the sub-trajectory shown as
formula (1), where 𝐹𝑛 is nth trajectory in the trajectory database,
m is the number of sub-trajectories of trajectory𝐹𝑛 , j is the
number of sample points in the ith sub-trajectory, namely the
length of the sub-trajectory. The moving direction and motion
tendency of each sub-trajectory is relatively stable. The sub-
trajectories are easier to researched and analyzed than the whole
trajectories.

2) Obtain the motion parameters:
From the above discussion a sub-trajectory in dataset are

defined as a sequence of flow vector 𝐹𝑖
′ = {𝑓1, 𝑓2, … , 𝑓𝑗} ,

where, 𝑓𝑗 = {𝑥𝑡 , 𝑦𝑡 , 𝑣𝑡 , 𝜃𝑡} , original dataset contains only

location information 𝑥𝑡 , 𝑦𝑡 , so the value of velocity and
direction of 𝑓𝑗 at time t should be calculated. So the unknown

and useful motion parameters from the original dataset should
be extracted for further trajectory processing. The value of
velocity 𝑣𝑡 and value of direction 𝜃𝑡 of 𝑓𝑗 can be calculated

by use of formula (2) and (3).

𝑣𝑡 = √(∆𝑥)2 + (∆𝑦)2

Where

∆𝑥 = {
0 𝑡 = 1

𝑥𝑡 − 𝑥𝑡−1 𝑡 ≤ 𝑗

∆𝑦 = {
0 𝑡 = 1

𝑦𝑡 − 𝑦𝑡−1 𝑡 ≤ 𝑗

𝜃𝑡 =

{

𝑡𝑎𝑛−1(∆𝑦)

∆𝑥
, 𝑖𝑓 (∆𝑥) > 0

𝑡𝑎𝑛−1(∆𝑦)

∆𝑥
, 𝑖𝑓 (∆𝑥) < 0 𝑎𝑛𝑑 (∆𝑦) ≥ 0

𝑡𝑎𝑛−1(∆𝑦)

∆𝑥
, 𝑖𝑓 (∆𝑥) < 0 𝑎𝑛𝑑 (∆𝑦) < 0

𝜋

2
, 𝑖𝑓 (∆𝑥) = 0 𝑎𝑛𝑑 (∆𝑦) > 0

−
𝜋

2
, 𝑖𝑓 (∆𝑥) = 0 𝑎𝑛𝑑 (∆𝑦) < 0

0, 𝑖𝑓 (∆𝑥) = 0 𝑎𝑛𝑑 (∆𝑦) = 0

 (3)

3) Encode sub-trajectories:
LDA [13] usually used to cluster co-occuring words into one

topic, it can’t cluster trajectories directly, for further analysis by
Fast LDA, it necessary to encode the trajectories and map the
sequence of flow vector of trajectories into words in a codebook
[3]. We quantized the trajectories according to a codebook. First,
we define a codebook to encode the sub-trajectories, we divide
the scene image into cells of 10 × 10 pixels, so the space of the
scene uniformly quantized into small cells, and quantize the
moving direction of each trajectory point into 5 bins, asθ ∈
{0,1,2,3,4}. The resolution of the space of the scene is supposed
to beM(𝑝𝑖𝑥𝑒𝑙) × 𝑁(𝑝𝑖𝑥𝑒𝑙), for any sequence of trajectory 𝑥𝑡 ∈
{1,2, … ,𝑀} 𝑦𝑡 ∈ {1,2, … , 𝑁}. According to the codebook, the

scene are segmented into (M/(
M

10
)) × (N/(

N

10
)) rectangular

areas, the size of each rectangular is 10 × 10 pixels. Each
rectangle area is represented by the direction of trajectory, 0
indicates without trajectory. Then the directions can be
discretized into 5 bins by formula (4)

51

𝜃𝑑
𝑡 =

{

 1,

𝜋

4
< 𝜃𝑡 ≤

3𝜋

4

2,
−𝜋

4
< 𝜃𝑡 ≤

𝜋

4

3,
−3𝜋

4
< 𝜃𝑡 ≤

−𝜋

4

4,
3𝜋

4
< 𝜃𝑡 ≤ 𝜋 𝑜𝑟 − 𝜋 < 𝜃𝑡 ≤

−3𝜋

4

 (4)

Then the codebook can be defined as a set of code values:

codebook = {0,1,2,3,4}

B. Sub-trajectory Clustering

To make the paper independent, we first review the LDA

algorithm. In Fig. 2, (a) shows the graphical representation of
LDA [13]. In this basic model, shaded circles represent the
observed variables, unshaded circles represent latent variables.
The arrows indicate dependencies between two variables.
Rectangle represents repeated sampling, the number of
repetitions in the lower corner. θ is a vector of topic, which is
follow a Dirichlet distribution which parameter is α. Z
represented a topic, which is a latent variable. ω represents
words. In our case, M is number of clusters. N is the number of
trajectory. In Fig.2, (b) shows the varitional distributions for fast
model [7], (c) illustrate fast varitional inference of LDA. γ and
ϕ are the intermediate parameter. LDA has two model
parameters α and β: α is the parameter of Dirichlet distribution,
and β is the set of the discrete distribution parameters for each of
k components over V words, where k is the dimensionality of
the Dirichlet distribution is assumed known and fixed [13],
where V is the size of the dictionary. Fast LDA algorithm use
fast variational inference to estimate the parameters α and β, in
our experimental, we randomly initialized α and β.

After encoding, a sub-trajectory is represented by a
sequence of words in codebook, so all of sub-trajectory treated
as a document, each of the sub-trajectory treated as a word, we

use Fast LDA to find out the latent topics, assign the sub-
trajectories with similar measurements to the same topic.

C. Crowd pattern learning

In this paper, we propose two kinds of ROI (regions of
interest) as crowd motion pattern. The description is as follows:

1) Optimal path:
The optimal path of a trajectory clusters are these scene areas,

which contain many sample points of the clusters, corresponding
to the region where moving object through with high probability.
In our paper, we propose that the optimal path contributes to the
anomaly trajectory detection and propose some suggestions for
design of public space.

Assuming that the pixel of the scene picture is m × n, then
the scene can be divided into (m/m/10) × (n/n/10) small
regions, such as in Fig. 3 (b). If a region contains more than a
certain number of sample points it can be considered as optimal
path such as Fig. 3 (c). We set different thresholds to divide the
region of interest into several grades with different shades of
color by formula (6), the more sampling points in this area, the
more important the area is.

each block = {
𝑙 sample points < a

𝑚 𝑎 ≤ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 ≤ 𝑏
ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 > 𝑏

2) Critical regions of scene:
There has many obstacles and facility in the structured scene,

so the trajectories of moving objects will more easily changed
than unstructured scene. These regions are significant
meaningful to design of public space, public management and
public security, and can be called the critical regions of scene.
There are two types of critical regions in structured scene:

a) Motion trend change region:

The regions where moving objects change their motion
tendency in whole structured scene is named the motion trend
change region. Assume that 𝐹𝑛 is nth trajectory in the trajectory
database, then 𝐹𝑛 can be represents with a sequence 𝐹𝑛 =
{𝑓1, 𝑓2, … , 𝑓𝑚}, where m is the number of sample points in the
nth trajectory, 𝑓𝑚 = {𝑥𝑡 , 𝑦𝑡}. The turning point can be calculated
by formula (3) and (4). Then formula (6) are used to count the
number of sample points in each regions.

b) Densely region:

The regions where moving objects are often gathered are
called densely region. The scene is divided into 10 × 10 pixels
rectangle firstly, then number of sample points in each rectangle
and in whole scene can be calculated, the formula (7) are used to
judge whether the region is densely region. The formula is as

(a) (b)

(c)

Figure 2. Fast LDA . (a) Graphcial representation of LDA [13]; (b)

Varitional distributions for fast model[7]; (c) Fast varitional inference of
LDA.

(a) (b) (c)

Figure 3. The framework of crowd analysis and abnormal detection. (a)

A sub-trajectory cluster; (b) Scene block; (c)Optimal path.

52

follows, where, 𝑁𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 represent the number of sample

points in each rectangle, 𝑁𝑤ℎ𝑜𝑙𝑒 𝑠𝑐𝑒𝑛𝑒 represent the number of
sample points in whole scene, the D represent the ratio of the
two:

D =
𝑁𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒

𝑁𝑤ℎ𝑜𝑙𝑒 𝑠𝑐𝑒𝑛𝑒

IV. ABNORMAL TRAJECTORY DETECTION

A. Testing Trajectories Preprocessing

The testing trajectory dataset needs to be preprocessed
before the abnormal trajectory detection for reducing
computation. We segmented the original trajectories, calculated
the parameters of sub-trajectories and encoded sub-trajectories.
Only preprocessing is not enough, each testing sub-trajectory
should be assigned to the different cluster according to training
clusters. When detecting abnormal trajectories, each testing sub-
trajectory just need to compare with the most similar training
sub-trajectory cluster rather than the whole, experiments show
that it is rapid and effect.

B. Abnormal Trajectory Detecting

The outliers in LOF algorithm [14] are those objects that
abnormal in the local scope rather than in global perspective. In
traditional methods, objects are only two states: normal and
abnormal, so the traditional concept of outliers is simple rigid
property. However, LOF algorithm use local outlier factor to
describe the degree of the outlier of objects, so it is more
applicable to the related applications in real life. LOF algorithm
is to identify the abnormal objects by calculating the degree of
outlier of each point. The steps of LOF algorithm for abnormal
detection is as follows:

1) 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of an object p:
Assuming that k is a positive integer, p and o are sample

point on testing trajectory, the distance between p and object o
is defined as follows, it satisfies two requirements:

(I) at least k objects𝑜′ ∈ 𝐷{𝑝} , it conform that d(p, 𝑜′) ≤
d(p, o)

(II) at most k-1 objects 𝑜′ ∈ 𝐷{𝑝}, it conform that d(p, 𝑜′) <
d(p, o);

2) 𝑁𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of object p :
The k − distance of p has known, then calculate

𝑁𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of object p on the testing trajectory, the definition
of 𝑁𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is as follows:

𝑁𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝) = {𝑞|𝑑(𝑝, 𝑞) ≤ 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝)} (8)

3) Reachability distance of object p and o:
 Then we calculate the reachability distance of object p and o

on the testing trajectory. For any natural number k. The
reachability distance of object p and object o can be defined by
the following formula:

reach − 𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜) = max {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜), 𝑑(𝑝, 𝑜)} (9)

4) Local reachability density of an object p:
The local reachability density of an object p on the testing

trajectory should be calculated after obtained the value of

reachability distance. The definition of local reachability density
of p is as follows:

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) =
1

[
∑ 𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑀𝑖𝑛𝑃𝑡𝑠(𝑝,𝑜)𝑜∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
]

 (10)

5) Local outlier factor of an object p:
Finally, we calculate the local outlier factor of an object p on

the testing trajectory. The local outlier factor of the sample
object p can represent the local anomaly possibility of the sample
points, it described as follows:

𝐿𝑂𝐹𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) =
∑

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑜)

𝑙𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)
𝑜∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)

|𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|
 (11)

If the local outlier factor of an object p on the testing
trajectory is large than certain value, point P can be marked as
an abnormal sample point. And if most of the sample points of a
sub-trajectory are abnormal, this sub-trajectory can be regarded
as an abnormal sub-trajectory.

V. EXPERIMENT RESULTS

Experiments are conducted on the pedestrian trajectory
database collected from the Edinburgh University [15,16]. This
section will demonstrate the results of experiment based on the
previous work. The resolution of the space of the scene is 640 ×
480, according to the encoding sub-trajectory in section 3, the
codebook size is 32 × 24, so the feature dimensionality of sub-
trajectory is 768.

A. Trajectory processing

 The trajectories are segmented into several sub-trajectories at
their critical points, which show as Fig. 4, we selected two
trajectories randomly, where the yellow point represents the
critical point of the trajectory, which is the turning point of the
trajectory. Each sub-trajectory 𝐹𝑖

′ can be encoded just as Fig. 5,
the left figure show a sub-trajectory before encoding, the right
figure is corresponding coding results, and the different colors
of rectangular represent different directions of trajectory.

(a) (b)

Figure 4. Trajectory segmentation. (a) and (b) are two original

trajectory respectively.

(a) (b)

Figure 5. (a) A sub-trajectory before encode; (b) encode result.

53

B. Sub-trajectory clustering

 After trajectory preprocessing, a sub-trajectory training
dataset has been obtained. All the sub-trajectories are clustered
into several clusters by the Fast LDA clustering algorithm. Fig.6
illustrates the result of clustering by Fast LAD algorithm, then
36 sub-trajectory clusters in the structured scene can be obtained,
each of them represents a kind of crowd motion pattern in a
structured scene. Most of the sub-trajectory clusters go along the
prescribed path such as both sides of the road or zebra crossing,
such as a(1), a(2), a(4),b(1), c(2) and so on, the other sub-
trajectory clusters not belong to the prescribed path needs to be
study in intensive, such as a(5), b(6), e(4).

 Clustering validation has been considered an important
indicator for the success of clustering applications [17]. In

general, clustering validation consists two classes, external and
internal clustering validation [17]. In this paper, we use internal
clustering validation to judge the success of the clustering. SSE
(sum of the squared errors) and S_Dbw (summation density
between and within) [17] are internal clustering validity index
respectively, the minimum value of those two index indicates the
optimal cluster result. We compared the clustering trajectory
validation of our algorithm with those of two clustering
algorithms: K-means clustering [18], clustering algorithm based
on max-min distance [19]. In experiment, we selected the
appropriate parameters of the two comparison algorithms, in
order to make the clustering results as precisely as possible.

Table Ⅰ illustrates comparison of SSE from three approaches,
it can be seen that our approach can obtain the minimum value
of SSE. Table Ⅱ shows that comparison of S_Dbw from three
approaches, compared with the other two methods, our method

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2) (c3) (c4) (c5) (c6)

(d1) (d2) (d3) (d4) (d5) (d6)

(e1) (e2) (e3) (e4) (e5) (e6)

(f1) (f2) (f3) (f4) (f5) (f6)

Figure 6. Sub-trajectory clusters. (a1)-(a6), (b1)-(b6), (c1)-(c6), (d1)-(d6), (e1)-(e6), (f1)-(f6) are 36 sub-trajectory clusters.

54

can obtain the minimum value of S_Dbw. Therefore our method
has better clustering performance than the other two methods.

TABLE I. SSE (SUM OF THE SQUARED ERRORS)

Number of cluster:

 26 37 42 46 54 57

Fast LDA
clustering

7.58 7.09 6.04 6.80 6.91 6.96

K-means
clustering

17.14 12.29 18.60 19.97 20.96 24.53

max-min
distance

18.14 14.29 18.60 19.97 21.96 23.53

TABLE II. S_DBW (SUMMATION DENSITY BETWEEN AND WITHIN)

Number of cluster:

 26 37 42 46 54 57

Fast LDA
clustering

1.36 1.50 1.64 2.17 2.76 2.96

K-means
clustering

4.60 4.94 5.66 5.77 6.51 6.74

max-min
distance

5.60 5.94 6.66 6.77 6.91 7.34

C. Crowd motion behaviors analysis

The optimal path of each sub-trajectory cluster can describe
the areas in the structured scene where attractive most pedestrian
in this cluster, the optimal path can provide some suggestions for
the redesign of the scene. Just as show in Fig.7, many pedestrians
in (a) pass through the road not along original design in scene,
so the regions of interest will be useful when the scene need to
redesign, the designer can set pedestrian crosswalk at those
regions in (b). Even though the pedestrians in (c) move along the
original design, there are also some areas where trajectories too
intensive, more cameras should be set at the regions in (d).

In Fig.8, (a) represents a sub-trajectory cluster, and (b) is the
corresponding optimal path. The optimal path of each sub-
trajectory cluster is not only helpful to obtain the information of
the crowd motion behaviors and structure scene, but also can
make a refining to each sub-trajectory cluster. If a sub-trajectory
in a sub-trajectory cluster does not pass through the optimal path,
it means that the space feature distribution of this sub-trajectory
is low probability in its cluster and it can be removed.

Fig. 9 (a) shows the motion trend change regions. They often
locate at the road turning. Motion trend change regions illustrate
the turning point of trajectory, which can used in the design of
public space. Densely regions illustrate the regions whose
density is higher than the others. Just as in figure (b). The depths
of the color also show the degrees of the attention to the regions.
They often located at the building entrance and exit, more
cameras should be installed in this place.

D. Abnormal detection

 According to the motion behaviors information of the crowd
in a structured scene achieved before, the LOF algorithm is
apply to detect the abnormal sub-trajectories. We segmented the
testing trajectory dataset into sub-trajectory dataset and then
grouped them into several testing sub-trajectory clusters, which
can reduce calculation complexity. In Fig.10, we demonstrate
the part of the testing trajectory clusters.

(c) (d)

Figure 7. Optimal path of cluster. (a) Cluster34; (b) Optimal path of

cluster 34; (c) Cluster11; (d) Optimal path of cluster 11.

(a) (b) (c)

Figure 8. Refining sub-trajectory cluster by optimal path. (a) Cluster14;

(b) Optimal path of cluster14; (c) Result of refined.

(a) (b)

Figure 9. The critical regions of sence. (a) The motion trend change

regions; (b) The densely regions.

(a) (b) (c) (d)

Figure 10. Classifying the testing sub-trajectories. (a)-(d) are four
testing sub-trajectory.

(a) (b)

55

 In Fig. 11, we demonstrate the results of abnormal detection
of 6 clusters. The blue sub-trajectories are normal trajectory and
the white sub-trajectories are abnormal trajectory. Experimental
results show that LOF algorithm could detect abnormal
trajectory in testing trajectory dataset. It could find the objects
which away from most other moving objects in a certain period
of time. The white trajectory significantly deviate from the blue
trajectory. The trajectory of moving object like the white
trajectory need further observation and analyze, to ensure the
safe and effective of observation scene.

VI. CONCLUSION

In this paper, we proposed a framework to analyze the crowd
behaviors and detect abnormal trajectories in a structured scene.
Fast LDA algorithm is adopt to clustering sub-trajectory. All of
sub-trajectory treated as a document, each of the sub-trajectory
treated as a word, and the sub-trajectory clusters can be treated
as topics. The clustering result compared with two other
clustering algorithms, which proved that our method has good
performance. In order to describe the crowd motion patterns of
each trajectory clusters, we propose two categories of regions of
interest, optimal path and critical regions respectively, which can
propose some suggestions for design of public space. In the last
part, we use LOF algorithm to detect abnormal trajectory, which
overcome the problem that the trajectory length is not uniform.
Experimental results demonstrate the good performance of our
proposed framework. There are still some improvements in our
research, for example, the trajectory prediction, which is an
important research direction. In the future research, we will
focus on the trajectory prediction.

REFERENCES

[1] Peter Widhalm, Norbert, “Learning Major Pedestrian Flows in Crowed

Scenes,” Pattern Recognition, International Conference on, vol. 00, no. ,
pp. 4064-4067, 2010.

[2] Jing Cui, Weibin Liu, “Crowd behaviors analysis and abnormal detection
based on surveillance data,” Journal of Visual Languages and Computing,
v 25, n 6, 628-36, Dec. 2014.

[3] Xinyi Chong, Weibin Liu, “Hierarchical crowd analysis and anomaly
detection,” Journal of Visual Languages and Computing, v 25, n 4, 376-
93, Aug. 2014.

[4] Weibin Liu, Xinyi Chong, “Learning motion patterns in unstructured
scene based on latent structural information,” Journal of Visual
Languages and Computing, v 25, n 1, 43-53, Feb. 2014.

[5] Hajer FRADI, Bertrand LUVISON and Quoc Cuong PHAM, “Crowd
Behavior Analysis Using Local Mid-Level Visual Descriptors,” IEEE
Transactions on Circuits and Systems for Video Technology, PP(99):1-1
• October 2016.

[6] Weiming Hu, Xi Li and Guodong Tian, “An Incremental DPMM-Based
Method for Trajectory Clustering, Modeling, and Retrieval,” IEEE
transactions on pattern analysis and machine intelligence, VOL. 35, NO.
5, MAY 2013.

[7] Hanhuai Shan, Arindam Banerjee, “Mixed-membership naive Bayes
models” in Data Mining and Knowledge Discovery, Vol 23, 1-62,
(2011).

[8] Jialing Zhou, Yanting Cui and Fang Wan, “A cluster specific latent
Dirichlet allocation model for trajectory clustering in crowded videos,”
IEEE International Conference on Image Processing (ICIP), 2348-52,
2014.

[9] Jialing Zou, Qixiang Ye, Yanting Cui, “A Belief based Correlated Topic
Model for Trajectory Clustering in Crowded Video Scenes, ” IEEE
International Conference on Pattern Recognition (ICPR), 2543-8, Aug.
2014.

[10] C.R. Jung, L. Hennemann and S.R. Musse, “Event detection using
trajectory clustering and 4-D histograms,” IEEE Trans. Circuits Syst.
Video Technol. 18 (November) (2008) 1565–1575.

[11] Serhan Cosar, Giuseppe Donatiello and Vania Bogorny, “Toward
Abnormal Trajectory and Event Detection in Video Surveillance,” IEEE
transactions on circuits and syster for video technology, Vol. 27, NO. 3,
MAR 2017.

[12] J.J. Ying, W.C. Lee, T.C. Weng, V.S. Tseng, “Semantic trajectory mining
for location prediction,” ACM SIGSPATIAL GIS'11, Chicago, November
2011, pp. 34–43.

[13] David M. Blei, Andrew Y. Ng, “Latent Dirichlet Allocation,” Journal of
Machine Learning Research, Vol. 3, 993-1022 (2003).

[14] Markus M.Breuning, Hans-Peter Kriegel and Raymond T.Ng,
“LOF:Identifying density-based local outliers,” Proceedings of the ACM
SIGMOD International Conference on Management of Data, 93-104
(2000).

[15] B. Majecka, Statistical models of pedestrian behaviour in the
forum,School of Informatics, University of Edinburgh, 2009
(Master0sthesis).

[16] R. Fisher, Edinburgh Informatics Forum Pedestrian Database, 〈
http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/ 〉, 2010.

[17] Yanchi Liu, Zhongmou Li and Hui Xiong, “Understanding of Internal
Clustering Validation Measures,” IEEE International Conference on Data
Mining, 911-916 (2010).

[18] Xinmin Tang, Junwei Gu, Zhiyuan Shen, “ A Flight Profile Clustering
Method Combining Twed With K-Means Algorithm for 4D Trajectory
Prediction,” Integrated Communication, Navigation and Surveillance
Conference (ICNS), S3:1-9, 2015.

[19] Visalakshi, N. Karthikeyani and J. Suguna, “K-Means Clustering using
Max-min Distance Measure ,” Annual Conference of the North American
Fuzzy Information Processing Society (NAFIPS), June 14, 2009 - June 17,
2009.

(a) (b) (c)

(d) (e) (f)

Figure 11. Abnormal detection. (a)-(f) are 6 results of abnormal

detection

56

Assessing RDF Graph Databases for

Smart City Services

Pierfrancesco Bellini, Paolo Nesi

Distributed Systems and Internet Technology Lab, DISIT, http://www.disit.org

Department of Information Engineering, DINFO, University of Florence, Florence, Italy

pierfrancesco.bellini@unifi.it, paolo.nesi@unifi.it

Abstract — RDF stores may be used to set up knowledge bases

integrating heterogeneous information for web and mobile

applications to use the data for new advanced services to citizens

and city administrators, thus exploiting inferential capabilities,

temporal and spatial reasoning, and text indexing. In this paper,

the needs and constraints for RDF stores to be used for smart

cities services, together with the currently available RDF stores

are evaluated. The assessment model allows a full understanding

of whether they are suitable as a basis for Smart City modeling

and application. The comparison of the RDF stores addressed a

number of well-known RDF stores. The paper also reports the

adoption of the proposed Smart City RDF Benchmark on the basis

of Florence Smart City model, data sets and tools accessible as

Km4City http://www.km4city.org, and adopted in the European

Commission international smart city projects named

RESOLUTE H2020, REPLICATE H2020, and in Sii-Mobility

National Smart City project in Italy.

Keywords— smart city; RDF stores; graph databases; RDF

benchmark; linked data benchmark.

I. INTRODUCTION

Smart cities produce large amount of data having a large
variability, variety, velocity, and size; and thus complexity. The
variety and variability of data can be due to the presence of
several different formats, [1], [2] and to the interoperability
among semantics of the individual fields and of the several data
sets [3]. Static data are rarely updated, for instance once per
month/year, which is quite the opposite with dynamic data:
they can be updated from once a day up to every minute so as
to get real time data. The data velocity is related to the
frequency of data update for dynamic data such as position of
buses, people flow status, position of waste collectors, etc. The
size grows over time accumulating new data every day and
week. At architectural level, smart city solutions typically
adopt n-tier architectures [4].

The usage of RDF stores in the application domain of
Smart City is quite recent, since in most cases services are
vertically provided. For example the Intelligent Transport
System, ITS, in the city provides information regarding the
location of buses and their delay, without addressing the
location of city services, flow of people, real time events in the
city. Some city data integrators are well-known services such
as bike and car sharing, navigator system, tourism information,
hotel booking, etc. All these solutions have the need to
integrate geo-located information with real time data and
events continuously arriving from updated information such as:

events, votes, traffic flows, comments, etc. [2], [5]. As to these
applications, RDF stores may be a solution to allow addressing
the variability of data, so as to make reasoning on space, time,
and concepts [6]. The Resource Description Framework
specified by W3C allows the representation of facts using
“triples” of the form (subject, predicate, object) where URIs
are used to identify the entities and the predicates connecting
them. Thus a triple represents the arc of the graph connecting
two entities and the predicate describes the kind of relation
between the two entities. Moreover the object part of the triple
can also be a low level data type as string, dates, integers etc. to
describe not only the relations among entities but also specific
information about them (e.g. name, email, birth date). RDF
stores allow storing these triples and the SPARQL query
language allows querying them. Some RDF stores can also
manage set of triples as a single graph identified by an URI, in
this way information about this graph can be provided using
other triples (where the subject is the graph itself).

For the evaluation of RDF stores specific assessment
models and benchmarks have to be adopted. For example, the
LUBM benchmark [7] uses a synthetic dataset in the university
domain and covers only the SPARQL 1.0 specification. On the
contrary, the BSBM benchmark [8] generates a synthetic
dataset in the e-commerce domain and covers the SPARQL 1.1
business analytics queries. More recently, in the Linked Data
Benchmarks Council project1 two benchmarks were proposed
both generating a synthetic dataset, one from the semantic
publishing domain (LDBC-SP) and the other from the social
networks domain (LDBC-SN). The GeoSPARQL standard has
been developed by the Open Geospatial Consortium to cover
spatial searches, while not many solutions currently support
this specification. Regarding the benchmark of geo and spatial
RDF stores the Geographica benchmark [9] was proposed by
using both a synthetic generated dataset and a real dataset. It
analyses the support and performance for advanced spatial
relationships among complex spatial entities (e.g., polygons).
In [10], the real and synthetic benchmark datasets have been
compared showing that synthetic generated datasets are similar
to datasets generated for relational database benchmarks (TPC-
H) and strongly different from real-world datasets (e.g.,
dbPedia) being much less structured. In [11], with the
SPARQL Performance Benchmark (SP2Bench) a language-
specific benchmark framework designed for the most common
SPARQL constructs has been proposed.

1 http://ldbcouncil.org

DOI reference number : 10.18293/DMSVLSS2017-008

57

http://www.disit.org/
mailto:pierfrancesco.bellini@unifi.it
mailto:paolo.nesi@unifi.it
http://www.km4city.org/
http://ldbcouncil.org/

Recently SPARQL has been extended to query real-time
data coming from RDF data streams. There are some
implementations as C-SPARQL [12], SparqlStream [13],
CQELS and also specific benchmarks were defined as
SRBench [14] using data from weather sensors, LSBench [15]
using data from social networks and CityBench [16] using data
from smart city sensors. Those kinds of specific benchmark are
suitable for streaming data, with queries performing specific
requests with limited number of results. W3C also reviewed
RDF store benchmarks 2 highlighting their applicability in
assessing different aspects of the RDF stores, and their
application on different stores.

Despite this wide state of the art on RDF stores
benchmarks, none of the mentioned approaches is specifically
suitable for assessing the RDF stores against Smart City. Smart
City presents extremely particular and specific conditions
exploiting the latest and most challenging constructs of the
RDF stores as geo-spatial queries, text queries, time queries
and combinations of them. On this regard, in this paper, a
Smart City RDF Benchmark, SCIRB, has been.

This paper reports the formalization of the proposed Smart
City RDF Assessment Model and Benchmark and its adoption
in comparative assessment of a number of RDF stores. The
data and queries adopted for replicating the mentioned
assessment have been published on the following web page
http://www.disit.org/smartcityrdfbenchmark. The dataset is real
and is based on Florence Smart City which in turn is grounded
on Km4City ontology and model [3].

The paper is structured as follows. In Section II, the major
smart city requirements/demands in modeling and accessing
semantic knowledge are reported. The requirements can be
used as drivers for features based selection of RDF stores.
Section III presents the general evaluation methodology for
assessing and selecting the RDF stores for smart city
applications. In Section IV, the comparison of most relevant
state of the art RDF stores is reported on the basis of the model
identified in Section III.A. Section V reports the application of
the proposed smart city benchmark in assessing the most
featured RDF stores (i.e., Virtuoso, GraphDB, Oracle and
StarDog). The analysis has highlighted several interesting
aspects connected to the performance of RDF stores in: loading
and indexing triples, and in performing geographical and
textual queries, also during store updates. Conclusions are
drawn in Section VI.

II. SMART CITY REQUIREMENTS FOR RDF STORES

When providing services to citizens of a smart city, an
RDF/graph store should provide some features that allow the
support of specific functionalities. In particular, the following
features are reported according to their relevance and
classifying them. Therefore, smart city stores should provide
support for:

 spatial indexing (must have): providing information near
to a given geographical point: as a GPS location. For
example, all the services that are currently
closed/unavailable to a given point. It should also support

2 https://www.w3.org/wiki/RdfStoreBenchmarking

advanced geo-spatial functionalities as being able to
manage complex geometries (e.g., information along a
cycle path, all elements into a given polygonal area).

 high performance on spatial querying.

 full text indexing (must have): allowing the integration of
semantic queries with keyword based searches on text
which can be present into the attributes and class
elements, as triples. Subjects and objects of triples can
contains relevant text area such as descriptions, street
names, locations names, etc.

 high performance on full text querying.

 quadruples (not only triples) to associate dataset metadata
with the loaded triples (must have). Triples are produced
on the basis of data coming from many different sources.
Therefore, it is important to track the data source, with
metadata and associated licenses. This feature is
particularly useful to solve or process licenses during the
data usage from clients and via APIs.

 some kinds of inference (good to have) such as the basic
RDFS or the more advanced OWL2 profiles allowing the
inference of new facts from the available data. This may
be used to generalize/specialize about entities, to same-as,
equivalence, transitive, symmetrical, etc. The inference
may imply the materialization of triples in the phase of
indexing [Bellini et al., 2015].

 temporal indexing (good to have): many information and
features are changing over time in smart cities. For
example, the weather situation and its related forecast, the
traffic flow detected from traffic sensors, the position of
buses, and events occurring within the city. For this
reason, it is quite important that the RDF store should
support temporal search to allow the easy retrieval of
temporal data. Moreover, the storing of temporal data
(that may change in real time) is the main source for
increasing the database size, demanding big data solutions
for smart city for volume, velocity and variety, at least.

 high volume of queries (good to have). Dealing with
bigdata RDF store with many users querying the data is
quite challenging, for this reason a clustering solution is
needed. It could be a clustering (vertical scale or scale
up/down) when the same service is duplicated to allow
many concurrent queries and to provide also a fault
tolerance solution. It could be also a scale out clustering
(horizontal) when data are split among different servers,
as a single server cannot handle all the data.

A very relevant non-functional requirement is due to the
fact that when it comes to Smart City applications, they are
often exploited by Public Administrations. They ask for: (i)
standard solution to avoid the risk of vendor lock-in especially
for very new technologies like RDF stores are; (ii) open source
solutions to be compliant with typical national laws
encouraging open solutions with source code accessible and
shareable among several public administrations. Moreover,
there should be an active community handling and supporting
the product.

58

http://www.disit.org/smartcityrdfbenchmark
https://www.w3.org/wiki/RdfStoreBenchmarking

III. EVALUATION METHODOLOGY

The Smart City RDF Assessment Model and Benchmark
evaluation methodology is carried out within two phases.

In the first phase the Smart City RDF Assessment Model is
applied. It consists in an analysis of some general features
according to the requirements provided in Section II, and more
particularly to verify if the RDF/graph store provides support
for: SPARQL v.1.1, inference, triples or quadruples, etc.

In the second phase, the Smart City RDF Benchmark is
applied. It is based on performance tests grounded on a set of
SPARQL queries designed by considering all the aspects, and
including spatial and full text searches (in many cases the
SPARQL queries have been designed by adopting the specific
constructs related to the different stores). The execution of the
Benchmark consists in assessing the performance on the
identified queries on three datasets with growing size
expanding temporal horizon (1 month, 2 months and 3 months
of cumulated real-time data).

A. Smart City RDF Assessment Model

As to the Smart City RDF assessment model, the features
considered to analyse the RDF stores are the following:

 SPARQL version supported being 1.0 or 1.1;

 inference type supported as full materialization of triples
at load time or materialization at query time, and the
inference profiles supported (e.g., RDFS, RDFS+, OWL,
OWL2, OWL2-DL, …);

 If the store is a triple or quadruple store, check whether it
stores only the subject predicate object or it can have also
a context URI;

 How the triples/quadruples are physically stored, namely
by using a custom indexing or an RDBMS or other
external service (e.g., HBase, Cassandra);

 If the store supports Clustering where replicated nodes are
used for high availability and fault tolerant solution;

 If the store supports Scale Out Clustering where data are
allocated on multiple nodes, while no node contains all
the data (index sharing);

 If the store supports Spatial search at Basic level
(meaning that it is able to index and retrieve only
geolocated points) or at Advanced level (meaning that it is
able to index complex shapes, for example polylines);

 If the store supports full text search, providing the ability
to search using keywords;

 If the store allows the association of triple/quadruples
with a temporal validity contexts, thus allowing to easily
filter triples by means of temporal constraints;

 Size of stores managed as the largest number of
triples/quadruples reported to be managed by the RDF
store in the literature;

 License under which the RDF store is available, being
either open source or commercial;

 Development language (e.g., Java, C);

 If the project is still an active project, date of last activity,
date of last release;

Detailed performance testing should be performed on stores
that support minimum set of requirements and in particular
providing at least support for:

TABLE I. QUERIES OF SMART CITY RDF BENCHMARK: QUERY NAME,
DESCRIPTION AND IF THE QUERY EXPLOIT INFERENCE OR NOT.

Query Description
infer

ence

Geo-

spat.

Full-

text

Find-

address

given the latitude and longitude

position it retrieves the nearest address

within 100m.

No Yes No

Municipaliti

es-florence

It retrieves the list of municipalities

within the province of Florence.

No No No

Bus-lines It retrieves the list of bus lines.
No No No

Bus-stops-

of-line

given the bus line, it retrieves the

complete bus stop list of the line.

No No No

Lines-of-

bus-stop

given a bus stop, it retrieves the lines

going past that bus stop.

No No No

Bus-stop-

latlng

given a position and a radius, it finds

the bus stops that are within the radius.

No Yes No

Bus-stop-

florence

It retrieves all the bus stops in the

municipality of Florence.

No No No

Bus-stop-

forecast

given a bus stop, it finds the next

forecasts for the lines going past that

bus stop.

No No No

AVM-

distribution

It retrieves for each day the count of

the received AVM records.

No No No

Service-

florence

It retrieves all the services in the

municipality of Florence.

Yes No No

Service-Acc-

Clt-Trs-

W&F-

florence

It retrieves all the services in the

Accommodation, Cultural Activity,

TourismService and Wine&Food

classes within the municipality of

Florence.

Yes No No

Service-Htl-

B&B-

florence

It retrieves all the services in the Hotel

and Bed&Breakfast classes within the

municipality of Florence.

Yes No No

Service-

latlng

It retrieves the services within a radius

from a latitude, longitude position.

Yes Yes No

Service-Acc-

Clt-Trs-

W&F-latlng

It retrieves all the services in the

Accommodation, Cultural Activity,

TourismService and Wine&Food

classes within a radius from a position.

Yes Yes No

Service-Htl-

B&B-latlng

It retrieves all the services in the Hotel

and Bed&Breakfast classes within a

radius from a given position.

Yes Yes No

Full-text It retrieves anything matching a

keyword

No No Yes

Service-text-

florence

It retrieves all the services in the

municipality of Florence matching a

keyword.

Yes No Yes

Service-text-

latlng

It retrieves all the services matching a

keyword given a position and a radius.

Yes Yes Yes

Sensor-

florence

It retrieves all the sensors within the

municipality of Florence.

No No No

Sensor-

latlng

It retrieves all the sensors within a

radius from a position.

No Yes No

Sensor-

status

It retrieves the latest information

associated with a sensor.

No No No

Sensor-

distribution

It finds for each day the count of the

received sensor status updates.

No No No

Parking-

status

It retrieves the latest information

associated with a parking lot.

No No No

Parking-

distribution

It retrieves for each day the count of

the acquired parking status records.

No No No

Weather-

florence

It retrieves the latest forecast available

for the municipality of Florence.

No No No

Weather-

distribution

It retrieves for each day the count of

the acquired weather forecasts.

No No No

59

 SPARQL 1.1 as it provides aggregation functions (group
by, count) and other features that were missing in 1.0;

 RDFS inference at load time or query time;

 Quadruples, so that correct metadata can be associated
with datasets;

 basic spatial search to allow searching services via
position;

 full text search to be able to integrate keyword search
with semantic search;

 “Big stores” management in some how: that is the
capability of managing large data store with some
technique, scaling for instance.

If the RDF store supports additional features, they are
positively considered in the context.

B. Smart City RDF Benchmark

In this section, the queries at the basis of the Smart City
RDF Benchmark are presented. The queries performed over the
datasets are mainly the ones behind a real Smart City
application and the API adopted in Km4City and used in
http://servicemap.km4city.org. ServiceMap is an accessible
smart city web application for developers to develop
informative totems, while the Km4City API is a set of services
accessible from Smart City mobile app delivered on all the
available platforms: Apple Store, Google Play, and Windows
Market.

Noteworthy is that the SPARQL recommendation does not
cover the geo-spatial queries, nor the full-text queries.
Therefore, in order to support those features, RDF store
builders/vendors implemented these features by using their
own specific syntax. Due to this reason, for some queries there
is not a unique formulation and the query has to be adapted for
each RDF store under test (they can be accessed from the web
page of the proposed benchmark
http://www.disit.org/smartcityrdfbenchmark). In Table I, the
semantic queries at the basis of the Smart City RDF Benchmark
are described and what is highlighted is whether the single
query involves in its definition according to the ontology the
exploitation of: inference

3
, geo-spatial and/or full-text aspects.

For example, the query to retrieve the last weather forecast
for the municipality of Florence is the following:

PREFIX …

SELECT ?day ?desc ?minTemp ?maxTemp ?time ?wPred

WHERE {

 {

 SELECT DISTINCT ?wRep ?time WHERE {

 ?munic rdf:type km4c:Municipality;

 foaf:name "FIRENZE";

 km4c:hasWeatherReport ?wRep.

 ?wRep km4c:updateTime/schema:value ?time.

 } ORDER BY DESC(?time) LIMIT 1

 }

 ?wRep km4c:hasPrediction ?wPred.

 ?wPred dcterms:description ?desc;

 km4c:day ?day;

 km4c:hour "giorno"^^xsd:string.

3 https://www.w3.org/TandS/QL/QL98/pp/queryservice.html

 OPTIONAL { ?wPred km4c:minTemp ?minTemp.}

 OPTIONAL { ?wPred km4c:maxTemp ?maxTemp.}

}

It uses a sub-query to find the last report received related to
the municipality and from this the prediction associated is
selected and the associated information is returned.

A query using full text search and geospatial proximity
search (using the syntax of virtuoso) is:

PREFIX …

SELECT DISTINCT ?ser ?elong ?elat ?sTypeIta WHERE {

 ?ser ?p ?txt.

 ?txt bif:contains "casa".

 {

 ?ser km4c:hasAccess ?entry.

 ?entry geo:lat ?elat;

 geo:long ?elong;

 geo:geometry ?geo.

 filter(bif:st_intersects(?geo,

 bif:st_point(11.26193046,43.77072194), 0.5))

 }UNION{

 ?ser geo:lat ?elat;

 geo:long ?elong;

 geo:geometry ?geo.

 filter(bif:st_intersects(?geo,

 bif:st_point(11.26193046,43.77072194), 0.5))

 }

 ?ser a ?sType.

 FILTER(?sType!=km4c:RegularService &&

?sType!=km4c:Service)

 ?sType rdfs:label ?sTypeIta.

 FILTER(LANG(?sTypeIta)="it")

}

As it occurs with all the RDF benchmarks, the SPARQL
queries are specifically tuned for a model. In this case, queries
have been designed for the model described in the next section.
The complete formalization of the queries, as well as the
dataset dumps adopted in the tests reported hereafter, are
available at
http://www.disit.org/smartcityrdfbenchmark

TABLE II. DATASETS CHARACTERIZATION FOR SMART CITY

BENCHMARK.

Type

1 month 2 months 3 months

Triples % triples % triples %

AVM 8.4M 19% 18M 33% 28M 43.1%

Parking 413k 0.9% 976k 1.8% 1.4M 2.1%

Sensors 900k 2% 1.7M 3.1% 2.2M 3.3%

Weather forecast 15k 0% 23k 0% 23k 0%

Total dynamic 9.7M 22% 21M 38% 32.5M 48.5%

Road graph 33.5M 75% 33.5M 60.3% 33.5M 50%

Services 681k 1.5% 681k 1.2% 681k 1%

Other static 286k 0.6% 286k 0.5% 286k 0.4%

Total static 34.5M 78% 34.5M 62% 34.5M 51.4%

Total 44.2M 100% 55.6M 100% 67.5M 100%

60

http://servicemap.km4city.org/
http://www.disit.org/smartcityrdfbenchmark
https://www.w3.org/TandS/QL/QL98/pp/queryservice.html
http://www.disit.org/smartcityrdfbenchmark

C. Datasets of the Smart City RDF Benchmark

The data used for the evaluation are based on the KM4City
knowledge base [3]. Some of data are static (or quasi-static)
data such as (i) the road graph modelling the roads, the public
administrations; etc. (ii) the “services” available within the city
(e.g., restaurants, hotels, cycle paths, …) and associated with
the road graph and organized in an hierarchy; (iii) the bus
stops, bus lines of the local transportation, (iv) the road sensors
available on the roads. Moreover, the Km4City model provides
a number of hierarchies and structures, and huge data with
geolocations in which the inferential aspects of SPARQL
queries can be profitably tested. Three different datasets have
been adopted for the assessment. They share the same „static‟
information and only differ for the dynamic part, having one,
two or three months of historical dynamic data, respectively. In
Table II, the numbers of triples for the different parts of the
km4city knowledge base are reported. As you can see, the
dynamic parts grow from 22% to 48.5% mostly derived from
the AVM (automatic vehicle monitoring, of the ITS) that it is
generated out of the data coming for only three bus lines, while
the static part is mostly based on structural data like road graph
with 34.5M triples, in all the cases.

D. Real-time data set context description

Since in a real context the dynamic data change regularly
(e.g., weather status, AVM, sensors and parking), the behaviour

of the RDF stores should be analysed also under dynamic
conditions like queries, while other processes are performing
update/upload. Moreover, in order to test a more realistic case
the queries retrieving the last value of dynamic data (e.g.,
sensor last value) could be arranged by using a model including
triples stating which is the latest obtained value . In this case, a
SPARQL query should be used to remove the association with
the latest received value and insert the new triple associated
with the new reading of values.

To analyse performance on dynamic update conditions a
specific test case has been set up (e.g., traffic, IOT). In order to
establish replicable conditions, a tool has been used to regularly
generate the status of the 430 sensors using the NTriples format
(stored in a specific context) as standard SPARQL 1.1 Graph
Store HTTP Protocol. They are produced and singularly loaded
into the store, together with their association with the latest
value to the corresponding sensor. Each submission stores 19
triples for each sensor and thus 8056 new triples are stored
about every 30 seconds. In this case, the 3 months dataset of
Table II has been used. Together with the process of
upload/update, the server runs at the same time all the queries
of the benchmark to assess if updating the triples while
querying, either influences or not the query time.

TABLE III. RDF STORES‟ FEATURES COMPARISON
where: OS=Open Source, Cm=Commercial, H=Horizontal cluster, V=Vertical cluster

RDF Store

Features

S
P

A
R

Q
L

v.

In
fe

re
n

ce

3
/4

-u
p
le

S
p
a
ti

a
l

 s
ea

rc
h

F
u

ll
-t

ex
t

 s
ea

rc
h

S
to

ra
g
e

T
em

p
o
ra

l
 s

ea
rc

h

S
iz

e
(m

il
li

o
n

/b
il

li
o
n

tr

ip
le

s)

L
ic

en
se

D
ev

.
L

a
n

g
u

a
g
e

C
lu

st
er

 s
u

p
p
o
rt

A
ct

iv
e

p
ro

je
ct

Virtuoso 7.2.4 OS 1.1 RDFS+ 4 Adv Y RDBMS N 50BT OS C N Y

Virtuoso 7.2.4 Comm 1.1 RDFS+ 4 Adv Y RDBMS N 50BT Cm C H Y

Graph DB SE 7.0.1 1.1 OWL2RL 4 Bas Y custom N 10BT Cm Java H Y

Stardog 4 1.1 OWL2 4 Adv Y custom N 10BT Cm Java H Y

Oracle 12c 1.1
RDFS,
OWL2

4 Adv Y custom N 1TT Cm C/Java H Y

Apache Jena-Fuseki 1.1
RDFS

OWL-Lite
3 Bas Y custom (TDB) N 1.7BT OS Java N Y

Apache Jena-Fuseki 1.1 No 4 Bas Y custom (TDB) N 1.7BT OS Java N Y

Blazegraph 2.1.2 1.1 RDFS+ 3 Bas Y custom N 50BT OS Java V&H Y

Blazegraph 2.1.2 1.1 No 4 Bas Y custom N 50BT OS Java V&H Y

CumulusRDF 1.1 No 3 No N Cassandra 1.2 N 120MT OS Java V (Y)

Strabon 1.1 No 3 Adv N RDBMS Y 500MT OS Java N (Y)

4store 1.1 No 4 No N custom N 15BT OS C V N

h2rdf+ 1.0 No 3 No N HBase N 2.7BT OS Java H&V N

[1]

61

TABLE IV. RDF STORES PERFORMANCE OF DATA LOADING,
“NA” MEANS THAT THE INFORMATION IS NOT AVAILABLE (IMPOSSIBLE TO MEASURE)

 Triples load time Stated triples Stored triples Size (of which: full text index size, spatial index size)

GraphDB – 1 month 1h 8m 44,274,756 84,425,185 8.5GB (299MB, 66MB)

GraphDB – 2 months 1h 48m 55,617,333 104,041,312 10GB (379MB, 67MB)

GraphDB – 3 months 2h 10m 67,082,202 124,015,329 13GB (459MB, 70MB)

Virtuoso – 1 month 16m 44,274,820 46,259,439 2.2GB (NA, NA)

Virtuoso – 2 months 21m 55,619,789 57,669,629 2.8GB (NA, NA)

Virtuoso – 3 months 31m 67,084,661 69,200,459 3.5GB (NA,NA)

Stardog – 1 month 1h 19m 44,273,368 44,273,368 4.8GB (341MB, 131MB)

Stardog – 2 months 1h 24m 55,615,945 55,615,945 5GB (318MB, 129MB)

Stardog - 3 months 2h 58m 67,080,814 67,080,814 6.2GB (493MB, 138MB)

Oracle – 1 month 6h 18m 44,270,460 78,744,647 25GB (NA, NA)

IV. COMPARING RDF STORES WITH SMART CITY RDF

ASSESSMENT MODEL

In this section, the RDF stores under assessment are
compared according to the feature model which has been
identified and discussed in Section III.A. The comparison is
carried out with the aim of identifying the stores that are better
ranked to be used on smart city applications in terms of
provided features.

In Table III, the features supported by the different RDF
stores under evaluation are summarized and the values
considered as minimum requirements are highlighted. A
description of the RDF stores considered in the assessment and
reported in Table III is given below.

Virtuoso 7.2.4 [18], it is mostly known because it is the
RDF query engine behind dbpedia.org. It is a SPARQL 1.1
quadruple store developed in C available both via open source
and commercial license. The open source version mainly
misses the clustering feature. Inference is not materialized at
load/indexing time, while query rewrite is performed to support
RDFS+ inference. It is backed by the Virtuoso RDBMS and
thus SPARQL queries are translated to SQL for that RDBMS.
It supports advanced spatial indexing and supports full text
search. The community behind virtuoso is headed by OpenLink
Software ltd and it is quite active.

GraphDB SE 7.0.1 (former OWLIM store)
4

 is a
commercial solution providing a SPARQL 1.1 endpoint
supporting triple/quadruple stores with spatial indexing of
geographic coordinates and full text indexing based on Lucene,
Apache. It supports inference at load/indexing time with
different rule sets (RDFS, OWL2RL, etc.), and such rule sets
can be selected by the user. It has been told to support up to 10
billion of triples on a single node. The Enterprise edition allows
horizontal scaling with a master node forwarding the
insert/update/delete operations to slave nodes. The solution is
implemented in Java using OpenRDF Sesame. The project is
still active and it is managed by Ontotext.

4 http://ontotext.com/products/ontotext-graphdb/

Blazegraph (ex BigData)
5

 is an open source project,
providing also a commercial license. It supports triple and
quadruple stores. With RDFS+ inference (at load time) it is
available only on triple stores. It has a full-text indexing
support, and there is a basic geospatial indexing, too. It
provides both a horizontal and vertical scaling solution, thus
allowing an index to be shared on multiple nodes. A single
computer can manage up to 50 billion triples. The project is
managed by Systap and it is still active.

CumulusRDF [19] is an open source project based on
OpenRDF Sesame using Apache Cassandra 1.2 as NoSQL
storage layer. It does not support inference and can store only
triples. Since it is based on Cassandra, it supports vertical
scaling for storage of the indexes on the nodes in the cluster,
while only one node is used to perform queries.

Stardog 4.1.1
6

 is a commercial RDF quadruple store
developed by Clark&Parsia (developer of the well-known
OWL reasoner Pellet). It supports SPARQL 1.1 and OWL2
inference at query time, full-text indexing and search, and
spatial indexing and search. It allows horizontal scaling, and it
is a quite active project. Stardog may support 10 billion triples
store on single node while the community version manages up
to 25 million triples.

Strabon [20] is an open source SPARQL 1.1 store
developed to support both spatial and temporal search [Bereta
et al., 2013] . It is based on PostGIS extension of Postgres
RDBMS; it does not support inference, nor full-text search. It
only provides support for storing triples (the context URI
associated with the triple is used for temporal linking). No
clustering solution is available.

4store
7
 is an open source quad RDF store developed in C

supporting a clustering solution which stores the quads on
different nodes (max 32). It does not support any inference, any
full-text search, nor geospatial search. The activity seems to be
moved to 5store, which is a corresponding commercial version.

5 https://wiki.blazegraph.com
6 http://stardog.com/
7 http://4store.org/

62

http://ontotext.com/products/ontotext-graphdb/
https://wiki.blazegraph.com/
http://stardog.com/
http://4store.org/

h2rdf+ [21] is an open source triple store based on HBase
and Hadoop platform. It supports only the SPARQL 1.0
specification, and does not support any inference, any full-text
indexing, nor geo-spatial search. Being based on HBase and
Hadoop, it provides horizontal and vertical scaling.

Apache Jena-Fuseki 2.3.1
8
is an open source SPARQL 1.1

engine integrated within the java based Apache Jena
framework. Jena provides the quads RDF storage layer which
could be native on file system (TDB), based on a SQL DBMS
(SDB) or in memory. Jena provides also the inference support
(supporting RDFS, OWL-Lite or using custom rules) but it
works only on triple stores and not on quadruples stores,
moreover it supports full-text and basic spatial indexing based
on Lucene or Solr. No clustering solution has been reported.

Oracle Database 12c, the well-known Oracle database
solution provides support for RDF graphs, full-text & spatial
indexing/search but it does not support the standard SPARQL
HTTP query protocol, it can be integrated by using the open
source Jena framework with Fuseki or Joseki tools. Moreover

8 https://jena.apache.org

Oracle solution provides inference (RDFS, OWL2RL and
custom rules).

As a conclusion of this section, it is self-evident from Table
III, that the RDF store solutions supporting all the minimum
requirements are Virtuoso 7.2.4 open source and commercial
edition, GraphDB Standard Edition 7.2, Stardog 4 and Oracle
12c. Therefore, only these RDF stores have been assessed in
term of performance, as reported in Section V.

V. ASSESSING RDF STORES WITH SMART CITY RDF

BENCHMARK

The performance evaluation has been carried out by
considering: (i) the loading/indexing time for knowledge base
initialization, (ii) the execution time without any update for
spatial and non-spatial queries, and (iii) query execution time
while the sensors data were regularly updated. The
performance has been evaluated using a server Ubuntu 14.04
with 8GB RAM, CPU, Intel Xeon E5-2680@2.8GHz with 20
logical processors, HD at 15.000 RPM. Table IV reports the
results for the loading/indexing time concerning the different
previously discussed datasets, respectively. It should remarked
that Virtuoso is the fastest, GraphDB and Stardog perform

TABLE V. RDF STORES PERFORMANCE OF NON-SPATIAL QUERIES (BEST PERFORMANCES IN BOLD)

Query

GraphDB Virtuoso StarDog Oracle

N
u

m
b
er

 o
f

re
su

lt
s

1
 m

o
n

th
 (

m
s)

2
 m

o
n

th
s

(m
s)

3
 m

o
n

th
s

(m
s)

1
 m

o
n

th
 (

m
s)

2
 m

o
n

th
s

(m
s)

3
 m

o
n

th
s

(m
s)

1
 m

o
n

th
 (

m
s)

2
 m

o
n

th
s

(m
s)

3
 m

o
n

th
s

(m
s)

1
 m

o
n

th
 (

m
s)

Municipalities-florence 7 10 121 8 15 9 127 173 129 2,391 46

Bus-lines 17 18 91 6 7 6 125 156 141 2,325 85

Bus-stops-of-line 50 26 28 65 68 62 194 211 172 36661 135 (max)

Lines-of-bus-stop 7 12 18 21 23 20 210 235 210 6457 11 (max)

Bus-stop-florence 100 113 126 374 291 281 216 258 201 34071 1108

Bus-stop-forecast 96 413 444 632 2065 2008 2028 3072 5084 259577 15

AVM-distribution 914 1893 2767 26 58 70 1442 2417 3772 26844 89 (max)

Service-florence 7106 7841 10150 2170 2135 2158 3689 3667 3514 >10min 3259

Service-Acc-Clt-Trs-W&F-

florence
8,158 8274 8318 2386 2917 2930 4118 4110 6416 >10min 1179

Service-Htl-B&B-florence 3311 3296 4,035 537 845 766 3640 3782 3448 >10min 234

Full-text 314 750 618 64 96 67 166202 214344 215937 136243 1389 (max)

Service-text-florence 286842 295057 284573 1981 3621 5661 165860 202919 209364 126833 51 (max)

Sensor-florence 21 48 46 82 93 84 785 615 483 7349 62

Sensor-status 598 1101 1560 56 146 163 295 384 392 173612 1

Sensor-distribution 939 1867 2665 174 328 341 672 1060 1,346 178272 78 (max)

Parking-status 83 188 309 72 87 100 1,388 1339 1053 40823 1

Parking-distribution 455 1096 1628 61 131 203 223 373 451 30444 83 (max)

Weather-florence 9 19 93 46 60 71 181 182 149 5047 5

Weather-distribution 12 23 19 7 18 11 126 141 128 2342 38 (max)

63

https://jena.apache.org/

similarly (about 5 times slower than Virtuoso) and Oracle is the
slowest being about twenty three times slower than Virtuoso.
Due to the performance of Oracle 12c in loading, the decision
was to test only the 1 month data set case. On the other hand,
GraphDB and Oracle perform inference at load time while
Virtuoso and Stardog at query time, under user request. For this
reason, the number of triples indexed by GraphDB is typically
80% bigger than those of Virtuoso. As to Virtuoso, the slight
increment of triples stored/indexed with respect to the ones
provided to the RDF store (2.1M for the 3 months case) is due
the transformation of the geo:lat and geo:long triples in a
geo:geometry with POINT() to enable the geo-spatial indexing.
While in the same case, as to GraphDB, the increment of about
57M of triples is due to the materialization of triples via
inference at the indexing/loading time.

Tables V and VI focus on the results for the query
execution time concerning GraphDB, Virtuoso, Stardog and
Oracle and related to the different time horizons of one, two
and three months, respectively. Table V reports the
performances for non-spatial queries and Table VI for spatial
queries. The queries have been tested performing a pseudo-
random sequence of 1000 queries repeated two times with
some pseudo-random arguments in order to reduce the caching
effect. The sequence of performed queries has been the same
for each test execution, so as to test the same sequence on
different systems. The table reports the maximum number of
results obtained for each type of query, when the number of
results depends on the parameter randomly chosen (e.g., lines
of a bus stop) or from the different dataset used (e.g., the AVM,
sensor, parking and weather distribution queries). When
considering the poor performance by Oracle 12c in loading and
also in the query times, it was decided to test only the 1 month

TABLE VI. RDF STORES PERFORMANCE OF SPATIAL QUERIES (THE BEST PERFORMANCES IN BOLD)

Query

GraphDB Virtuoso (intersect) Virtuoso (distance) Stardog

Number of
results 1

 m
o

n
th

(m

s)

2
 m

o
n

th
s

(m
s)

3
m

o
n

th
s(

m
s)

1
 m

o
n

th
(m

s)

2
 m

o
n

th
s(

m
s)

3
m

o
n

th
s(

m
s)

1
 m

o
n

th
(m

s)

2
 m

o
n

th
s(

m
s)

3
m

o
n

th
s(

m
s)

1
 m

o
n

th
(m

s)

2
 m

o
n

th
s(

m
s)

3
m

o
n

th
s(

m
s)

Find-address 47 180 218 219 160 143 5762 5965 5776 2495 2848 2367 1

Bus-stop-latlng(100m) 8 8 9 33 63 63 28 31 28 2105 1791 1885 1 (max)

Bus-stop-latlng(500m) 33 52 48 147 182 166 34 41 33 1781 1853 1810 20

Bus-stop-latlng(1km) 82 135 155 76 -- 265 42 43 47 2095 2116 2334 93 (max)

Bus-stop-latlng(5km) 463 669 782 -- -- -- 201 201 205 2883 3245 2815 1003 (max)

Service-latlng(100m) 691 1111 324 2788 2117 915 582 761 754 3970 4581 5123 41 (max)

Service-latlng(500m) 1131 1256 1212 627 513 549 401 421 391 4110 4303 4467 784 (max)

Service-latlng(2km) 6087 6550 6548 1377 1688 -- 1062 1167 1079 5832 6929 6204 3718 (max)

Service-latlng(5km) 11192 13069 12712 3054 -- -- 1900 1996 1912 6585 7494 6551 6666 (max)

Service-Acc-Clt-Trs-W&F-
latlng(100m) 74 125 87 880 921 773 1260 1209 1073 5978 6076 4986 37 (max)

Service-Acc-Clt-Trs-W&F-
latlng(500m) 948 1091 1602 2159 1709 1698 1159 1187 1232 6130 6738 5933 650 (max)

Service-Acc-Clt-Trs-W&F-
latlng(2km) 4731 5644 7999 -- -- -- 1706 1807 1619 6451 8669 7353 2224 (max)

Service-Acc-Clt-Trs-W&F-
latlng(5km) 7983 9610 9974 -- -- -- 1785 1938 1813 8024 9669 7646 3102 (max)

Service-Htl-B&B-latlng(100m) 29 38 29 420 466 392 541 563 631 3843 3985 3886 7 (max)

Service-Htl-B&B-latlng(500m) 293 371 393 1119 724 1032 555 666 544 4055 4605 4424 151 (max)

Service-Htl-B&B-latlng(2km) 1390 1729 2020 -- -- -- 617 683 681 5664 6573 6278 488

Service-Htl-B&B-latlng(5km) 2421 3144 8281 -- -- -- 673 744 682 6516 7009 7053 611(max)

Service-text-latlng(500m) 204936 236937 256328 433 148 324 242 64 73 >7min >7min >7min 21 (max)

Sensor-latlng(100m) 10 12 13 -- -- 63 20 27 30 1842 1639 1604 0

Sensor-latlng(500m) 41 62 198 118 73 163 18 23 26 1788 2069 1923 4

Sensor-latlng(2km) 229 335 444 -- -- -- 22 29 29 2372 2798 2670 29

Sensor-latlng(5km) 514 721 888 -- -- -- 23 30 38 2961 2947 2837 56

64

case. Moreover, a bug in the Oracle plugin for Apache Jena did
not allow to perform spatial queries via the HTTP protocol and
this is the reason why Oracle 12c does not appear in Table VI.

If observing the query results (see Table V), when no
spatial and full text search and inference are involved, the
performances of Virtuoso and GraphDB are comparable, in
some cases GraphDB is even better ranked. When inference is
needed (e.g., in the test cases Service-florence, Service-Acc-Clt-
Trs-W&F-florence, Service-Htl-B&B-florence), as to Virtuoso
the inference had to be enabled on the single constraint
involving a general class (e.g., all services in the
Accommodation class). While if the inference is enabled,
generally on the query, the internal automated query rewrite
takes a longer time (may be related to the size of the exploited
ontology). For example, for query Service-Acc-Clt-Trs-W&F-
florence the time grows from an average of 2.9s to an average
of 19.6s (on the 3 months dataset). In those cases, the GraphDB
results are better ranked. Stardog generally is the slowest on all
the queries.

When considering the spatial indexing (see Table VI) in
Virtuoso, some mistakes have been detected using the
st_intersection function. In some cases, Virtuoso returned an
error, in other cases it provided a smaller number of results
than the correct number; Virtuoso could provide different
results for the same query for the three different datasets, even if

they do not differ for the part considered in the query. On the
other hand, in Virtuoso, if the st_distance function is used, all
the obtained results have been verified to be correct, apart from
few cases on the border (due to the numerical computation in
measuring distances). The usage of the distance function for
Virtuoso is a good solution in most cases, while the query
optimizer seems to avoid the exploitation of the spatial index.
This fact may be deduced out of a comparison among the
results of the formalization of query Find-address: in two cases
by using: (i) st_distance function it takes about 5.7s, while (ii)
with st_intersect function it takes about 0.14s.

TABLE VII. SENSOR DATA UPLOAD PERFORMANCE

 GraphDB Virtuoso Stardog

total mean time (ms) 4135.59 1290.05 42498.80

mean upload time (ms) 2105.06 893.52 41526.02

mean update time (ms) 2030.53 396.53 972.78

minimum total time (ms) 1810.00 480.00 6050.00

maximum total time (ms) 37294.00 20678.00 791083.00

std. dev of total time (ms) 2197.81 2082.30 76121.02

TABLE VIII. STORE PERFORMANCE IN PRESENCE AND ABSENCE OF UPDATES

DURING BENCHMARK

RDF

store

MNQPH

no updates during updates

Loss in

performance

GraphDB 2117.00 1799.93 14.97%

Virtuoso 4584.16 4362.21 4.84%

Stardog 1620.24 876.63 45.89%

TABLE IX. PERFORMANCE IN ACCESSING TO THE LAST VALUE OF SENSORS

RDF

store

Mean Time to Sensor Status access, Time in ms

Case 1

(no update)

Case 2

(no update)

Case 3

(update)

GraphDB 1561 31 334

Virtuoso 163 46 174

Stardog 393 208 554

Another aspect to be considered is the mixing of spatial

query with text search query (for example, in query Service-
text-latlng(500m)). With GraphDB and also with Stardog, we
obtained a higher execution time, hitting in some cases the
timeout. In this case where spatial and text are combined for
Virtuoso, the intersect function returned an error, while the
distance function performed very well.

 Regarding the analytic queries (for example: Weather-
distribution, AVM-distribution) which count the daily number
of records of the weather forecasts, bus, sensor data, parking
status for the three datasets, both solutions have provided
acceptable execution time (less than 5s). In this case, Virtuoso
is better ranked with less than 0.5s of execution time.
Moreover, Virtuoso presents a less growing factor with respect
to GraphDB.

A. Assessing query execution time under update/load

During the test, the time to upload/update new triples for all
the sensors and mark them as the „latest value’ has been
recorded and reported in Table VII. Therefore, the minimum,
maximum, average time and the standard deviation of the
upload and update time are reported for each RDF store. From
the results, it is clear that Virtuoso turned out to be the
smartest, since it performed the update of the 430 sensors
within 20s, while GraphDB did the same in 37s, and StarDog
had an average of 42s and with a maximum time in just one
case of 13 minutes to upload new triples for all the 430 sensors.
As to Oracle with Apache Jena-Fuseki it was not possible to
send the triples for the 430 sensors through Fuseki, since the
communication was hanging; while when sending the data for
only 10 sensors the average time was about 16s with a
maximum of 2.5 min.

In order to evaluate the impact of the update/upload action
on query performance, the mean number of query per hour
(MNQPH) has been computed for each RDF store in presence
or absence of ongoing upload/updates. MNQPH has been
computed as the ratio of total time needed to run a large
number of queries of the benchmark and the number of queries.
In particular, some of the queries such as: “Service-text-
latlng(500m)”, “Service-text-florence” and “Full-text” have
been removed because they typically generate on GraphDB and
StarDog many timeouts, that could create too noise on
assessing query performance during update/load activity.

The results are reported in Table VIII, where you can see
that the MNQPH is decreased in all the cases, shifting from the
value registered with RDF store under no updates up to the
value registered during the store updates. The decrease in
performance is due to the fact that the query has to wait for the

65

store unlock. Among the RDF stores considered, Virtuoso
presented the lower reduction in performance. Moreover, as
stated above, the benchmark occurred in some time outs with to
GraphDB and StarDog stores in the absence of updates;
typically 46 and 96 times for the whole benchmark. The
number of timeouts is more than twice in presence of updates.

Table IX reports the mean time to get access to the latest
value of a sensor series (the Sensor-status query) in three cases:
(1) using the order by clause and without concurrent updates,
(2) using the “latest value” triple without concurrent updates
and (3) using the latest value triple during concurrent updates.
For all the stores we can see that when avoiding the sort and
using the “latest value”, the time needed to access is reduced.
However, performing a concurrent update increases access time
of a significant amount (i.e., more than 10 times for GraphDB,
3.8 times for Virtuoso and 2.7 for StarDog). According to the
access mean time values, Virtuoso could perform better than
the others in all the cases.

VI. CONCLUSIONS

The usage of RDF stores to store smart city data is
becoming of wide interest for several applications. In this paper
we have proposed a Smart City RDF Assessment Model for a
comparative study about the state of the art on RDF stores
according to their main features and in particular on the
SPARQL aspects/features. In addition, the Smart City RDF
Benchmark has been proposed. The benchmark is based on (i)
some datasets of triples (that are grounded on Km4City
ontological model) accessible from
http://www.disit.org/smartcityrdfbenchmark, it can be used
only for benchmarking purpose; (ii) a set of SPARQL queries
declined for different SPARQL constructs. The benchmark has
been defined for smart city services to compare results which
can be obtained by using different RDF Stores.

The comparison addressed a number of well-known RDF
stores such as Virtuoso, GraphDB, StarDog, and Oracle for the
performance aspects. As a general consideration about
performance, it should be noted that Virtuoso performs better
in presence of less selective queries, thus providing a higher
number of results. On the contrary, GraphDB performs better
when specific results are searched, thus when a smaller number
of results are requested.

ACKNOWLEDGEMENT

The authors would like to say thanks to ONTOTEXT for
granting us the access to a trial version of their RDF store. This
works has been developed in the framework of Km4City
activity for RESOLUTE H2020, and for REPLICATE H2020
(both are European Commission funded International Projects)
and for Sii-Mobility Smart City National project
(http://www.sii-mobility.org).

REFERENCES

[1] Mulligan, C.E.A.; Olsson, M., "Architectural implications of smart city
business models: an evolutionary perspective," Com. Magazine, IEEE,
vol.51, no.6, pp.80,85, June 2013

[2] Welington M. da Silva, Alexandre Alvaro, Gustavo H. R. P. Tomas,
Ricardo A. Afonso, Kelvin L. Dias, and Vinicius C. Garcia. 2013. Smart
cities software architectures: a survey. In Proc. of the 28th Annual ACM

Symp.on Applied Computing (SAC '13). ACM, New York, NY, USA,
1722-1727.

[3] P. Bellini, M. Benigni, R. Billero, P. Nesi, N. Rauch, “Km4City
Ontology Bulding vs Data Harvesting and Cleaning for Smart-city
Services”, International Journal of Visual Language and Computing,
Elsevier, 2014

[4] Anthopoulos, L.; Fitsilis, P., "Exploring architectural and organizational
features in smart cities," in Advanced Com. Technology (ICACT), 16th
Int. Conf. on, vol., no., pp.190-195, 16-19 Feb. 2014.

[5] Zaheer Khan, Ashiq Anjum, and Saad Liaquat Kiani. 2013. Cloud Based
Big Data Analytics for Smart Future Cities. Proc. of the IEEE/ACM 6th
Int.Conf. on Utility and Cloud Computing (UCC '13). Washington, 381-
386.

[6] Zaheer Khan, Ashiq Anjum, and Saad Liaquat Kiani. 2013. Cloud Based
Big Data Analytics for Smart Future Cities. In Proceedings of the 2013
IEEE/ACM 6th International Conference on Utility and Cloud
Computing (UCC '13). IEEE Computer Society, Washington, DC, USA,
381-386.

[7] Y. Guo, Z. Pan, and J. Heflin. “Lubm: A benchmark for owl knowledge
base systems”. J. Web Semantics, 3(2-3):158–182, 2005.

[8] C. Bizer, A. Schultz. “The Berlin SPARQL Benchmark”. International
Journal on Semantic Web & Information Systems, Vol. 5, Issue 2, Pages
1-24, 2009

[9] G. Garbis, K. Kyzirakos, M. Koubarakis. “Geographica: A Benchmark
for Geospatial RDF Stores”. In the 12th Int. Semantic Web Conf.
(ISWC). Australia, Oct. 21-25, 2013

[10] S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. “Apples and
oranges: a comparison of RDF benchmarks and real RDF datasets”. In
Proc. of the 2011 ACM SIGMOD Int. Conf. on Manag. of data
(SIGMOD '11). ACM, New York, NY, USA, 145-156, 2011

[11] Schmidt, Michael, et al. "SP^ 2Bench: a SPARQL performance
benchmark." Data Engineering, 2009. ICDE'09. IEEE 25th International
Conference on. IEEE, 2009.

[12] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus.
“C-sparql: Sparql for continuous querying”. In Proc. of WWW, pages
1061–1062. ACM, 2009.

[13] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. “Enabling ontology-
based access to streaming data sources” In ISWC, pp. 96–111, 2010

[14] Y. Zhang, M.-D. Pham, O. Corcho and J.-P. Calbimonte. “SRBench: A
Streaming RDF/SPARQL Benchmark” In Proc. of the 11th International
Semantic Web Conference ISWC 2012. Boston, USA, Nov 2012.

[15] Le-Phuoc, D., Dao-Tran, M., Pham, M. “Linked Stream Data Processing
Engines: Facts and Figures” In International Semantic Web Conference
(ISWC 2012). Volume 1380, Boston, USA, Springer (2012) 300–312

[16] Muhammad Intizar Ali, Feng Gao, Alessandra Mileo, “CityBench: A
Configurable Benchmark to Evaluate RSP Engines Using Smart City
Datasets”, 14th Int. Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, LNCS, 2015

[17] P. Bellini, I. Bruno, P. Nesi, N. Rauch, "Graph Databases Methodology
and Tool Supporting Index/Store Versioning", publication on JVLC,
Journal of Visual Languages and Computing, Elsevier, 2015.

[18] O. Erling and I. Mikhailov. “Virtuoso: RDF Support in a Native
RDBMS”. In Semantic Web Information Management, pages 501-519.
Springer, 2009.

[19] G. Ladwig, A. Harth, "CumulusRDF: Linked data management on
nested key-value stores", 7th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), 2011.

[20] K. Kyzirakos, M. Karpathiotakis and M. Koubarakis. “Strabon: A
Semantic Geospatial DBMS”. In the 11th International Semantic Web
Conference (ISWC 2012), Boston, USA, 11-15 November 2012.

[21] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, N. Koziris,
“H2RDF+: High-performance distributed joins over large-scale RDF
graphs”, Big Data, 2013 IEEE International Conference on , pp.255,263,
6-9 Oct. 2013

66

http://www.disit.org/smartcityrdfbenchmark
http://www.sii-mobility.org/

Context Awareness for e-Tourism: an Adaptive

Mobile Application

Francesco Colace

DIIn

University of Salerno

Via Giovanni Paolo II, 132, Fisciano (SA), Italy

fcolace@unisa.it

Saverio Lemma, Marco Lombardi

SIMASLab

University of Salerno

Via Giovanni Paolo II, 132, Fisciano (SA), Italy

{slemma, malombardi}@unisa.it

Abstract—The Italian towns have a cultural heritage
that often do not succeed in being completely enhanced.
The natural, artistic and cultural resources present in the
Italian towns, above all the smallest ones, many times
remain hidden and are not enjoyed by the tourists. In
this paper, it is introduced an Adaptive Context Aware
app able to support a tourist inside a town. The system
can guide the tourist in the discovery of a town
proposing him/her resources and services mainly
interesting for the user according to his/her interests and
the position where he/she is. The objective is reached
through the use of a system of description of the context
through a graphical formalism named Context Dimension
Tree. The App collects information also from social
environments adapting the proposed itinerary taking into
account the communities and the interests of the user.
The entire approach has been tested inside the town of
Salerno with very interesting results.

Keywords-Context Awareress, Mobile Application,

Pervasive Computing.

I. INTRODUCTION

The Italian towns have a cultural heritage that often

do not succeed in being completely enhanced. The

natural, artistic and cultural resources present in the

Italian towns, above all the smallest ones, many times

remain hidden and are not enjoyed by the tourists. This

problem typology becomes even more important when

the tourist has few hours to visit a town: think, for

instance, about some passengers of a cruise who in few

hours have to visit an unknown place. The problem

arises also for those people who, for work, live an

experience in a town that they can visit in little time.

Where eating? What seeing? How moving? These are

the typical questions that such a user makes when

he/she is in a station, an airport or a harbor. If in the big

towns there are pre-constituted itineraries that can be easily

made by the tourists, this is not always true in towns of

little or medium dimension that, even if they have a

sure interesting cultural heritage, often risk of not

enhancing it completely.

On second thoughts, information necessary for the

enhancement of the resources of a town are, in many

cases, already present on the web: the social networks

have much information about the resources present in a

town. On the other hand, also the public institutions,

usually, develop some contents in support of the

cultural resources present in the territory, but not

present in places not easily reachable by the tourists,

above all the foreign ones. Moreover, often, there are also

services that can be useful for a tourist who unlikely

knows where finding them. Therefore, it is necessary to

create a framework that can integrate contents and

services to support a user inside a certain territorial

context.

The adoption of Future Internet (FI) technology and

of its most challenging components like the Internet of

Things (IoT) and the Internet of Services (IoS), can

constitute the basic building blocks to progress towards a

unified ICT platform for a variety of applications within

the large framework of smart cities projects [1]. In

addition, recent issues on participatory sensing, where

every day mobile devices like cellular phones form

interactive, participatory sensor networks enabling public

and professional users to gather, analyze and share local

knowledge [2], seem to fit the smartness requirements of

a city in which also people have to play an active role.

Eventually, the cloud computing technologies provides

a natural infrastructure to support smart services [7].

As previously said, one of the fields that can take

great advantages from such technologies is Tourism

[3]. In this scenario, persons (citizens, tourists, etc.)

and objects (cars, buildings, rooms, sculptures, etc.)

equipped with appropriate devices (GPS, smart-phone,

video cameras, temperature/humidity sensors, etc.)

constitute a particular social network in which all the

mentioned entities can communicate [4].

Exchanged and produced data can be exploited by a

set of applications in order to make the system “smart”.

From a more general point of view, the social network

can be seen as composed of a set of Single Smart

Spaces (S3) (indoor museums, archaeological sites, old

town centers, etc.), each needing particular ICT

infrastructure and service that transforms the physical

spaces into useful smart environments. Here, one of the

most challenging and interesting research problem is to

model context-awareness in a S3 and design context

aware applications able to provide useful data and

services depending on the current context occurrences

[8][9].

Context is not just a simple profile that describes

the surroundings of data. Rather, context is better

described as any piece of information that can be used

to characterize the situation of an entity such as a

person, a place, or any other relevant object/aspect in

the interaction between a user and an application. In

DOI reference number: 10.18293/DMSVLSS2017-010

67

mailto:malombardi%7d@unisa.it

this paper, we try to give an answer to the problem of the

context representation using the Context Dimension

Tree formalism [5][6][10].

On the basis of what has been previously described,

this work will be organized in this way: in the following

paragraph, we will describe the concept of context and

how it can be declined in a modern way thanks to the use

of new technologies. Then, we will introduce a context-

based approach able to give, inside a little town, services

and contents useful for the user. Some experimental

results will be presented in the last part of the paper.

II. MOTIVATING EXAMPLE

In this section, we describe a typical application in

the Tourist domain in order to better understand the

main features of the proposed system. In particular,

we consider a tourist that during her/his vacation in

Campania desires to visit Salerno, a beautiful town

located in the South of Italy. To be considered smart,

the environment related to the town of Salerno should

provide a set of smart services for:

a. suggesting the visit of the most important

cultural places in Salerno

b. having information about the restaurants

in Salerno

c. accessing to proper multimedia guides

describing the main artworks that are in

Salerno

d. recommending special visit paths

(trekking paths, bicycle tours, …)

e. monitoring the weather condition

f. showing the timetable of the transport

services located in Salerno

g. saving the visit in a multimedia album
h. accessing to information about public

services in Salerno (Post Office,

Pharmacy, …)

For improving their effectiveness, these services and

contents have to be furnished to the user in the right

context and at the right timing. Therefore, it is important

the context awareness of the framework and the

opportunity to use it by mobile devices [11]. Another

important feature of the system is the ability to suggest

resources that usually are not considered as mainstream.

In order to give the most suitable contents to the

users, in this paper we introduce a context aware

system able to tailor data and services depending on the

context and the users’ needs. For example, if the user

declared as preference the use of the transportation

when he/she is close to a bus stop the timetable will be

automatically downloaded on his/her smartphone. The

same will happen when the user is close to restaurants: if

he/she loves food based on fish, only this kind of

restaurant or menu will be proposed. Data about

resources and services are collected from a knowledge

base built by a group of experts and collecting

information from the various social networks.

In the next paragraphs, more details about the

system architecture and the application of the

proposed approach in real context will be furnished.

III. CONTEXT AWARENESS AND ICT

The human being has always used the concept of

context, which belongs to that kind of concepts known

by the majority of people, but that are difficult to

describe with words. In [17], there is the first attempt

to describe the relation between the context and the

context-awareness in the field of information

technologies. The three main aspects of the context are:

‘where you are’, ‘who you are with’ and ‘what

resources are nearby’. If we put together the three just

mentioned sentences, we realize that they can be seen as

a first definition of context based on some observable

characteristics. Another definition of context has been

proposed in [16] where the context is defined as a

series of environmental features (environment), such

as, for example, the place, the temperature and the

considered user’s identity. The definition of context

that usually is taken into account is that proposed by

[15]: ‘Context is any information that can be used to

characterize the situation of an entity. An entity is a

person, place, or object that is considered relevant to

the interaction between a user and an application,

including the user and applications themselves.’ Directly

linked to the definition of context, there is that of

context-awareness applications: applications that in

some way are aware of the context where the user is

and the capability to detect and react to the changes

in the environment where it is located [14]. Again in

[15], there is a definition of the context-aware system:

‘A system is context-aware if it uses context to

provide relevant information and/or services to the

user, where relevancy depends on the user’s task.’ In

practice, a system can be defined context aware when it

takes advantage of the context to give important

information and/or services to the user, where the

importance depends on the user’s request and features.

If we wanted to classify the context-aware applications,

we could consider that presented in [17]:

1. Proximate Selection, which literally means

‘selection of proximity’, is an interfacing technique

that considers that the user gets close to a particular

place to receive some relevant information and/or to

make elaborations, both on request and automatically.

2. Automatic contextual reconfiguration is the

process of addition of new components, removal of

already existing components or alteration of the

connection among the components of a system. In

actual fact, there is the change of the system

according to the context. Typically, the components

can include: driver modules directly downloadable

by the user, modules of programs.

3. Contextual information and commands: often

the operations that people make can be predicted. In

fact, usually, there are some recurring operations made

in particular places (e.g. universities, libraries, offices,

etc.). The applications that use this kind of

‘contextual information’ are made to accomplish

certain orders (contextual commands) in place of the

user according to the context.

4. Context-triggered actions are those applications

that automatically carry out an operation when there is a

particular condition (trigger) in the context.

68

Although as time goes by new classifications have

been introduced, the previous ones are still valid. It is

important to precise that a context-aware application

has not to necessarily belong to one of the listed

categories, but it is possible to have some ‘hybrid’

applications that have features belonging to more

categories.

What are the context-aware applications for? For

some years, more and more often we hear talking about

smart environments aimed to the improvement of the

quality of life, both in domestic environment (domotics)

and in city environment. In particular, there is an

expression that recurs a lot in the several mass media:

‘smart city’.

The smart cities are the so-called intelligent cities.

This subject is interdisciplinary and encompasses all the

fields: from the energy saving, to the improvement of

life and the fastest and more natural access to

information. It is exactly in these two latest fields that

the context- aware applications insert themselves. In

fact, in the future cities, there will be more and more

smart spaces (domestic and not), which will take care

of the users making easier and more immediate their

access to information and, under determined conditions,

will be able to foresee the user’s desires and therefore

to anticipate some operations on behalf of the user. As

an example of smart environment, we can think of a

room that has the capability of automatically regulating

the temperature of the environment according to the

user’s preferences, or, through a centralized stereo

system, can change music according to the user’s tastes.

And moreover, we could think to a public park where

people, by tagging, can leave their own messages on a

virtual wall, so that in the future the users of this same

park can take advantage of the advices of who has been

previously in that place.

A further example could be that of a smart

shopping center, where when a user enters in a shop

directly receive information about the products on sale

that he/she could be interested in. This processing can

be made on the basis of the previous purchases and/or

of a series of indications given by the same user (for

example, through an electronic questionnaire made

available by the shopping center).

This kind of applications can become very

important also in the field of the improvement of

disabled people’s life. In fact, it is possible to study some

areas that change according to the specific need. For

example, let us consider a blind person that enters a

smart public building, this environment, after having

received context information about the user, has to be

able to guide him/her towards his/her destination using

audio messages.

In the following paragraph, we will present an

approach to the management of the context and its

associated services to make the previously introduced

approachesconcrete.

IV. A CONTEXT DIMENSION TREE BASED APPROACH

A key element in the design of a contextual

application and a Context Aware System is the

representation and management of the context itself. To

better understand formal concepts, it has been carried

out in the paper an example based on a simplified

citizen domain, on which it is now being developed

a Context Aware System that assists residents and

tourists in their activities.

The goal is to provide a mechanism of dynamic

and automatic invocation of services considering the

context through the Context Dimension Tree [18].

CDT is a tree composed of a triad <r; N; A>

where r indicates its root, N is the set of nodes of

which it is made of and A is the set of arcs joining these

nodes.

CDT is used to be able to represent, in a graphic

form, all possible contexts that you may have within

an application.

Nodes present within CDT are divided into two

categories, namely dimension nodes and concept

nodes. A dimension node, which is graphically

represented by the color black, is a node that

describes a possible dimension of the application

domain; a concept node, on the other hand, is depicted

by the color white and represents one of the possible

values that a dimension may assume. Each node is

identified through its type and a label.

The children of the root node r are all dimension

nodes, they are called top dimension and for each of

them there may be a sub-tree. Leaf nodes, instead,

must be concept nodes. A dimension node can have, as

children, only concept nodes and, similarly, a

concept node can have, as children, only dimension

nodes.

In addition to nodes, you can use other

elements: the parameters, which may arise both from

a dimension node (graphically represented by a white

square) and from a concept node (white triangle),

submitting them to particular constraints. In fact, a

concept node can have more than one parameter, while

a dimension node can have only a parameter and

only in case it has not already children nodes. The

introduction of parameters is due to their usefulness

in shaping the characteristics that can have an infinite or

very high number of attributes. For example, a node

representing Cost dimension risks having a high

number of values that should be specified by as

many concept children nodes. In a similar case, it is

therefore preferred to use only one parameter, whose

value will be specified in each case. Leaf nodes, in

addition to concept nodes, can also be parameters.

In general, each node has a parameter

corresponding to a domain, dom(nP). For parameter

nodes connected to concept nodes, the domain can be a set

of key values from a relational database, while in case of

parameter nodes connected to dimension nodes, the

domain is a set of possible concept nodes ofdimension.

In figure 1, it is shown a general designed CDT,

called Meta CDT, which is the starting point for the

design of a specific CDT that can be exploited in

contextualapplications.

You may note six top dimensions, which

correspond to the questions of the 5W1H method:

Location (WHERE), Role (WHO), Time (WHEN),

Situation (HOW), Interests (WHAT) and Utilization

69

(WHY).

In particular, there are two types of users and

eleven categories of interests.

A context element is defined as an assignment

d_namei = value, where d_namei indicates a possible

size or undersize of CDT (it is the label of a

dimension node), while value may represent the label of

one of the concept nodes that are children of the

considered dimension node or the value of a

parameter referring to one of these concept nodes or the

value of a parameter referring to the considered

dimension node.

For example, these assignments are possible context

elements:

Interest = tourism, Location = LocationID (ID = 3),

Role = user, Utilization = holiday.

A context is specified as: ˄ (d_namei = value).

It is defined as an “and” among different context

elements.

Several context elements, combined with each

other by means of an “and”, damage, therefore, the

origin of a context.

For example, a possible framework that can be

obtained from the previously seen CDT, through the

context element that we have listed, is:
C = (Location = locationID (ID=3)) ˄ (Role= user (ID=15))

˄ (Time = now) ˄ (Situation = routine) ˄ (Interest =tourism) ˄
(Utilization = holiday)

The context is defined as a user, interested in

tourism, who uses the contextual app on vacation, in

a called place.

Therefore, through the Context Dimension Tree,

it is possible, after analyzing the domain of

application, to express the size characteristics and

values they can take in a graphical way by,

respectively, dimension nodes and concept nodes or

parameters.

The assignment to a dimension of one of its

possible values is a context element. The context

element can be considered the main feature of the

application, by which a context can be decomposed.

The moment you make the formulation of the context,

you must specify all the context elements that are part

of it and that enable its creation.

Any context is expressible by an “and”

combination of the context elements to which they are

peculiar.

By definition, you can begin to understand how

you will create views based on data relating to each

context; in fact, they will be built starting from the

portions of the database and then from the partial

views, associated to the context element that takes

part into context information.

Figure 1. Meta CDT for contextual applications

70

A. Methodologies and phase to obtain contextual

service

The methodology, shown in figure 2, has been realized

in order to manage the database and to carry out

reductions of their content based on the context.

The purpose is to help the designer in the definition

of all contexts relevant to the considered application

and, later, in the association to each context of the

portion of the database containing the relevant data

about the context.

The methodology consists of three main phases,

which we will see in detail later: design phase of the

Context Dimension Tree (CDT), definition phase of

partial views and composition phase of global views.

1. Design phase of the Context Tree: in this phase, the

Context Dimension Tree is designed to identify

significant context elements for the considered

application. In fact, it focuses on the definition of

contexts and on the elements that compose them.

These contexts must be identified and shaped,

indicating particular elements that characterize each

of them. As it has been said, it is available a

special tool called Context Dimension Tree (CDT)

to make context design.

Three CDT were made for specific environments

in order to represent and manage a multitude of

different contexts and in order to identify,

represent, preserve and make available cultural

points for each type of user.

2. Definition phase of partial views: after the

definition of all the contexts and their context

elements, in this step a different portion of the

database is associated to each context element,

containing the relevant data for it.

In practice, the goal is to find the appropriate

value for a given dimension, in order to obtain,

by means of the values of all the dimensions, a

valid query and specific to the context in which the

user is located.

A partial view could be related to dimension

“Role”: once logged in, the application is able to

recognize the user and to know more precisely

whether he/she is, for example in tourist areas, a

resident or a tourist. Thus, the value “tourist” of

dimension “Role” is a partial view for the

current context: using this knowledge, you can

exclude certain services, not suitable or useful to

the tourist role.

Figure 2. General System Workflow

71

3. Composition phase of global views: this is the

phase where you have the automatic generation of

views associated with each context, which is made

starting from partial views associated with context

elements. After the creation of the global views of

the contexts, the answers to questions that will be

asked to the system will be developed from these

views and, in particular, from the view associated

with the context in which you are located when the

query is performed.

In particular, once defined the values for each

dimension, you can use all the information obtained in

order to identify the right context and offer data and

services customized for the user. It is assumed the

example of a tourist who is walking near a beach who

gets initially a notification of his/her proximity. Later,

he/she needs to deepen such notification. Therefore, it

will propose him/her services that they might be

interested in, such as the site of the nearest beach,

where he/she can get the price list.

B. System Architecture

We have made a Context Aware System, whose

architecture is shown in figure 3, able to adapt

useful data and services to users based on the context.

Context awareness of interaction is particularly

important in ubiquitous systems and mobile

applications for groups of users. In fact, given the

ever-increasing variety of interaction devices (fixed

and mobile) and application use contexts, it becomes

increasingly necessary to develop Context Aware

systems that manage information that makes unique

and distinguish each human-machine interaction.

The architecture of our model is composed of: the

Context Aware Module (CAM), which is the main

engine and considers the context in reference to the

obtained data (contextual information), in particular

position (GPS location), interests and role (obtained

during registration) of each user; the Knowledge Base

Module, a special type of database for the

management of knowledge and information: in

particular “Users”, representing all users of the

application, “Services”, which describes all the

services of every possible application context,

“Resources”, which forms all the points of interest and

“Events”, which describes all events; and finally the

Management Module (MM), used both by the

administrators of the app and the users themselves.

This module deals with some important issues,

including: POIs management, where the insertion can

be done directly from map, manually or by search of

interests, interacting in the last two cases with Google

Maps; services, comments and events management,

interacting with TripAdvisor and Facebook/Twitter

API.

In figure 4, for a greater immediacy, it is shown a

deepening of the architecture realized: the set of user

profile, such as preferences and interests, of user

context, such as his/her GPS location, of CDT, which

provides the rules and allows the representation of the

specific context in which he/she is located, of data,

including the points of interest and services, allows

obtaining the contextual resources tailored for the user,

through the use of a contextual application.

On this subject, for the different environments

described, we have realized hybrid mobile

applications, both in Android and iOS, with many

features, some of which are shown in figures 6 and 7:

contents, including descriptions, images and services,

tailored to interests, profile and location users,

planning a route based on user’s interests and his/her

preferences of travel, exploration of the surroundings

from the current position, custom QR Code reader,

weather and news on the site, search and insertion of

events, the comments section, display position and

points of interest on the map, with integration of the

navigator on the smartphone to reach specific ones.

Figure 3. System Architecture.

72

Figure 4. Contextual resources as final result of App.

V. SMARTAPP SALERNO: A CONTEXT AWARE FOR E-

TOURISM

In this section, we will present SmartApp Salerno, a

contextual app designed and implemented according to

what was described previously. In particular, we have

thought to apply the approach to the context of the town

of Salerno, a municipality in Campania (Italy) of

about 135.261 inhabitants and with an extension of

59,85 square km. Along with the Municipality of

Salerno, a reference CDT has been designed. In this

phase, we have collected the potentially useful services

and contents for the citizens and situated them on the

map defining the activation zones (fig. 5).

Figure 5. Definition of the activation areas of services and contents.

Moreover, we have defined the different typologies of

citizens (elementary school’s students, users with kids at

school, university students, …) associating them to a

previously established set of services and contents.

Having the town a series of artistic contents, we have

developed services and contents in support of them too.

A series of services and contents considered transversal,

such as the opening hours of the City Hall, the Library,

the Cemetery, the pharmacies, have been made

available to all the typologies of users.

All information about places of worship and shops

has been uploaded, for any building or area of potential.

The App has been developed with hybrid

technologies (Cordova and PhoneGap) to allow an

easier publication both in Android and Apple

environment.

The App has been presented to various tourists in

December 2015 and January 2016 during 30 workshops.

The occasion has been given by a Christmas event,

called Luci di Artista (Artist’s Lights), that every year is

held in Salerno and that involves hundreds of thousands

of tourists. They have been involved overall about 3000

tourists between 18 and 50 years old. During each

workshop, the app has been installed on the mobile

devices of the tourists. For each of them the system has

started to supply personalized itineraries (figure 6).

Figure 6. Screenshots with some features of contextual application.

After a week the system has given a
questionnaire of five sections to each tourist. To every
question present in the section, five possible answers
have been associated: I totally agree – I agree –
Undecided – I disagree- I totally disagree. The
questionnaire in detail is the following:

Section A: SmartApp Salerno – Context

 A1. SmartApp gives the user tailor- made

contents and services

 A2. SmartApp allows the user to know several points
of interest of the Old Town Center of Salerno

 A3. SmartApp supplies contents and services in the

right place

 A4. SmartApp supplies services according to the

interests selected in the user profile

Section B: SmartApp Salerno – Usability

 B1. SmartApp is immediate to understand and use

 B2. The registration is quick to do and non- invasive

Section C: SmartApp Salerno – Further aspects

 C1. Information about each point of interest is very

useful

 C2. I do not know other applications like SmartApp

 C3. The contents, such as descriptions and images,

are of high quality and represent one of the strong

points of SmartApp

 C4. The services associated to the points of interest

allow a higher immediacy than a classic research on

the Internet

Section D: SmartApp Salerno – Functionality

 D1. The map is very useful and well curated

 D2. The plan itinerary service allows easily

realizing an itinerary in the Old Town Center of

Salerno according to the user’s preferences

 D3. The explore surroundings service is very

useful to know what there is nearby and eventually

reach them

 D4. The functionality of research of points of

interest by category of interest is intuitive and

practical

 D5. It is useful to know if a certain point of interest

is open or closed

 D6. The functionality of QR code in inner

environments can be well used

 D7. The tutorial effectively allows learning the main

characteristics of SmartApp

73

 D8. The weather forecast and the news are two very

useful services

Section E: SmartApp Salerno – Future developments

 E1. It would be interesting to have a higher

integration with the main social networks

 E2. It would be interesting to insert the available

time in the plan itinerary service

As can noticed from the figure 7, users show great

appreciation for the app. In general, they appreciated

the proposed contents and services.

VI. CONCLUSIONS

In this paper, we have presented an app able to

offer services and contents personalized for the needs

of the user according to the context where he/she is.

The app bases its ‘contextual’ functioning on the

adoption of the CDT that is able to shape the context

and the actions to implement. The app has been

developed for the needs of a little Italian town and the

first results have been satisfying. The following

activities have as purpose the application of the

proposed methodology to more complex

environments, for dimension and number of potential

points of interest to manage.

ACKNOWLEDGEMENTS

The research reported in this paper has been

supported by the Project Cultural Heritage

Information System (CHIS) PON03PE_00099_1 CUP

E66J140000 70007 – D46J1400000 0007

and the Databenc District.

REFERENCES

[1] L. Atzori, A. Iera, Morabito, “The internet of things: A survey,”
Computer Networks, 54(15), 2010, pp. 2787–
2805.

[2] J. M. Hernandez-Munoz, et al., “Smart cities at the forefront of
the future internet,” Future Internet Assembly, LNCS, 6656,
2011, pp. 447–462,.

[3] H. Schaffers et al., “Smart cities and the future internet: Towards
cooperation frameworks for open innovation,” Future Internet
Assembly, LNCS, 6656, 2011, pp. 431–446.

[4] N. Komninos, H. Schaffers, M. Pallot, “Developing a policy

roadmap for smart cities and the future internet.” In
eChallenges e-2011 Conference Proceedings, 2011, pp. 286-
306.

[5] C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber,
L. Tanca, “Context information for knowledge reshaping,” Int.
J. Web Eng. Technol. 5(1), 2009, pp. 88-103.

[6] C. Bolchini, C. Curino, F. A. Schreiber, L. Tanca, “Context
integration for mobile data tailoring,” SEBD 2006, 2006, pp.
48-55.

[7] F. Colace, L. Greco, S. Lemma, M. Lombardi, Duncan Yung, Shi-
Kuo Chang, “An Adaptive Contextual Recommender System:
a Slow Intelligence Perspective”, SEKE 2015: 64-71

[8] Francesco Colace, Massimo De Santo, Luca Greco, Vincenzo
Moscato, Antonio Picariello: A collaborative user-centered
framework for recommending items in Online Social
Networks. Computers in Human Behavior 51: 694-704 (2015)

[9] Francesco Colace, Massimo De Santo, Luca Greco: An adaptive
product configurator based on slow intelligence approach.
IJMSO 9(2): 128-137 (2014)

[10] F Colace, V Moscato, E Quintarelli, E Rabosio, L Tanca,
Context awareness in pervasive information management, Data
Management in Pervasive Systems, 235-256 3, 2015

[11] F Colace, M De Santo, V Moscato, A Picariello, FA
Schreiber, L Tanca, PATCH: A Portable Context- Aware
ATlas for Browsing Cultural Heritage Data Management in
Pervasive Systems, 345-361, 2015.

[12] Bitner, M.J., Faranda, W.T., Hubbert, A.R., Zeithaml, V.A.,
1997. Customer Contributions and Roles in Service
Delivery. International Journal of Service Industry Management,
Vol.8, No.3, pp. 193-205.

[13] Ciasullo M.V., Troisi O., 2013. Sustainable value cration in

SMEs: A case study. The TQM Journal, Vol.25, No.1, pp. 44-61.

[14] Colace, F., Greco, L., Lemma, S., Lombardi, M., Amato, F.,

Moscato, V., Picariello, A., 2015f. Contextual Aware Computing

and Tourism: A Case Study. The Eleventh International
Conference on Signal- Image Technology & Internet-Based

Systems (SITIS), pp. 804-808.

[15] Dey, A.K., Abowd, G.D., 1999. Towards a Better
Understanding of Context and Context-Awareness. HUC '99

Proceedings of the 1st international symposium on Handheld
and Ubiquitous Computing, pp. 304-307.

[16] Ryan, N., Pascoe, J., Morse, D., 1997. Enhanced Reality

Fieldwork: the Context Aware Archaeological Assistant.
Computer Applications and Quantitative Methods in Archaeology.

Proceedings of the 25th Anniversary Conference, Archaeopress,

Oxford, pp. 269-274.

[17] Schilit, B., Adams, N., Want, R., 1994. Context- Aware

Computing Applications. Proceedings Of The Workshop On
Mobile Computing Systems And Applications, pp. 85-90.

[18] Tanca, L., Bolchini, C., Curino, C., Schreiber, F.A., 2006.
Context integration for mobile data tailoring. Italian Symposium

on Database Systems (SEBD), pp. 48-55.

Figure 7. Analysis of Questionnaires (TA I totally Agree – A Agree – U Undecided – D I disagree – TD I totally disagree).

90,00%

80,00%

70,00%

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00%

A1 A2 A3 A4 B1 B2 C1 C2 C3 C4 D1 D2 D3 D4 D5 D6 D7 D8 E1 E2

TD

74

 75

A Mobile TDR System for Smart Phones

Shi-Kuo Chang, Wei Guo, Duncan Yung, ZiNan Zhang, HaoRan Zhang and WenBin You
Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15238, USA
{schang, weg21, kay35, haz64, ziz22}@pitt.edu and youwenbin@nuc.edu.cn

Abstract—In our previous work a multi-level slow
intelligence system with multiple sensors, called the TDR
system, was developed [1]. It consists of interacting super-
components each with different computation cycles
specified by an abstract machine model. The TDR system
has three major super-components: Tian (Heaven), Di
(Earth) and Ren (Human), which are the essential
ingredients of a human-centric psycho-physical system
following the Chinese philosophy. Each super-component
further consists of interacting components supported by an
SIS server. In this paper we further developed a mobile
TDR system for smart phones, intended for practicing
health exercises such as conducting meditation. The initial
experimental results and further research topics are
discussed.

Keywords—slow intelligence system, component-based
software engineering, sensor networks, mobile TDR system.

1. Introduction

Our goal is to develop a mobile TDR system for smart phones
so that the user can carry this mobile TDR system anywhere.
This experimental TDR system thus provides a platform for
exploring and integrating different applications in personal
health care, emergency management and social networks.

Figure 1. A brain wave headset.

DOI reference number: 10.18293/DMSVLSS2017-016

To develop this experimental mobile TDR system, we need to
port the TDR system to a smart phone. This mobile TDR
system empowers the user so that he or she can have
continuous access to the sensory devices and apps offered by
the mobile TDR system. An example of such a sensory device
is the brain wave headset. As shown in Figure 1, the user can
wear the headset with sixteen OpenBCI brain wave sensors so
that the time signals detected by the sensors can be
continuously sent to the TDR system. The displayed time
signals (left), positions of the sensors (upper right) and power
spectrum (lower right) are illustrated in Figure 2.

Figure 2. Time signals from OpenBCI brain wave sensors.

In addition to brain wave sensors, a smart phone has built-in
sensors such as its camera, which can be used to analyze the
gaze of the user (see Figure 3) to obtain certain measurements.
The smart phone also has audio output. Thus the mobile TDK
system provides multiple sensory input/output devices to
continuously monitor user’s state of health. In our initial
experiment, the objective is to monitor user’s meditation state.

Figure 3. Gaze analysis.

 76

We need to answer two basic questions: (1) Can a mobile
TDR system for smart phone be developed? (2) Can the
information from various sensors of the mobile TDR system
be analyzed and combined to monitor user’s meditation state?

The paper is organized as follows. To answer the first question,
Section 2 presents the system architecture and development
environment. The basic scenarios of the mobile TDR system
are described in Section 3.

To answer the second question, the identification of
meditation state from brain wave sensors is described in
Section 4. Gaze analysis for the detection of meditation state is
described in Section 5. Experimental results show the two
approaches are consistent in detecting the meditation state.

The related work is reviewed in Section 6. Section 7 discusses
further research topics.

2. System Architecture

To facilitate the design of complex slow intelligence systems
such as human-centric psycho-physical systems, we
introduced the concept of super-components [1]. A complex
slow intelligence system basically consists of interacting
super-components, which further consist of many interacting
components supported by an SIS server. Communications are
through the SIS server, and the messages are layered, i.e., each
message type has its hierarchical scope. A super-component
can be viewed as a collection of components interacting by
messages within the same scope. From an architectural
viewpoint the result is a multi-level slow intelligence system
as illustrated by Figure 4.

Figure 4. A multi-level slow intelligence system.

The TDR System is such a multi-level slow intelligence
system. Figure 5 shows the structure of the TDR System. The
seven components are the graphical user interface PrjRemote,
Audio output, Gaze analyzer, internet Uploader, OpenBCI
brain wave input processor, and data Filter. These
components communicate with each other via the Server.

These seven components all reside in the smart phone so that
the mobile TDR system can quickly respond to sensory input.
For this reason a high-end smart phone, ASUS ZenFone 3
ZS570KL with 64GB storage, 6 GB RAM, micro-SDXC
Memory Card Slot, USB Type-C and Android 6.0 was
acquired.

Server

Open BCI

Filter

Uploader

Audio

Gaze

PrjRemote

Figure 5. The structure of the mobile TDR system.

The development environment is illustrated by the UML
development diagram shown in Figure 6. The Android
components are first developed in Android Studio on a PC and
then uploaded to the smart phone. The OpenBCI brain wave
headset is the external device connected to the smart phone via
Blue Tooth and a USB port. As shown in Figure 6 the headset
can also be augmented for audio output such as rhythmic
music (see Section 7).

Figure 6. TDR Development environment.

\

3. Basic Scenarios of Mobile TDR System

The mobile TDR system initially provides the following apps:
(1) The Audio app plays rhythmic music to help calm down
the user. (2) The Gaze app analyzes a user’s gaze to decide
whether he/she is in meditation state. (3) The BrainWave app
analyzes the brain wave signals from the brain wave headset if
the user is wearing, and uploads data to Internet for further
processing. (4) The Comparator compares the decisions made
by the Gaze analyzer and the Brain wave app in predicting
meditation state.

The first three apps are in the smart phone, and the
Comparator may either be in the smart phone or runs on the

 77

Internet. The latter option allows the continuous improvement
of the analyzer so that it can learn and improve its
performance following slow intelligence principles.

3.1. The Audio App

This app requires three components: PrjRemote, Server and
Audio. The Audio component can play a small piece of
rhythmic music (e.g. raining) again and again at a certain
frequency, helping user to relax. There are several pieces of
music pre-stored in the Audio component. User can select or
change the music by sending an ID number from PrjRemote.
PrjRemote will send the ID number to the Server, Server will
forward the ID number to Audio and finally Audio will play
the music that user selected, as shown in Figure 7.

AudioPrjRemote
number

Figure 7. Information flow for Audio App.

For example, user wants to listen to the second piece of music.
User types “2” in the PrjRemote and clicks the button “send”
(Figure 8 (a)). Then, user hears the Audio component playing
the number “2” music and Audio component displays the
received message on its interface (Figure 8 (b)).

Figure 8(a). Audio_type “2” is selected.

3.2. The Gaze App

This app requires three components: PrjRemote, Server and
Gaze Analyzer, as shown in Figure 9. The Gaze Analyzer
component evaluates whether the user is relaxed or not by
analyzing user’s gaze. After the analysis, Gaze will generate a
parameter to reflect the degree of the user’s relaxation. When
the Gaze component is activated, it will open the front camera
of the smart phone and record a video clip of the user’s face.
The duration of the recording is set by the user by sending a
number from PrjRemote to Gaze.

Figure8(b). Audio component received “2”.

GazePrjRemote
number

parameter

Figure 9. Information flow for the Gaze sub-system.

In Gaze Duration Setting view of PrjRemote user can choose
standard setting or customized setting. For example, user
wants to set the Gaze duration to be 10 seconds. He clicks the
button “send” on the first line of Standard Setting (Figure 10
(a)).

When the Gaze component receives the message, it changes
the duration time and displays the message on the bottom
(Figure 10 (b)).

Next, user activates the Gaze component by clicking the ”Start
Mental State Tracking” button. After the recording and the
gaze analysis. the result parameter “0.75” is displayed on the
bottom of the PrjRemote interface (Figure 10 (c)).

 78

Figure 10(a). Gaze_duration “10” is selected.

Figure 10(b). Received message is displayed.

Figure 10(c). Gaze parameter “0.75” is displayed.

3.3. The Brain Wave App

This app requires five components: Filter, Open-BCI,
Uploader, PrjRemote and Server. The Open-BCI input
processor component receives the input data from a wearable
brain wave headset. User can set the frequency and duration of
the input data collected from the wearable headset by setting
these two parameters.

Open BCI Filter Uploader

PrjRemote

data data

parameter

Figure 11. Information flow for Brain Wave App.

Suppose the user wants to collect the data every 5 seconds,
and the total time period for collecting data is 20 seconds. He
enters “5” on the first line of Customized Setting and enters
“20” on the second line, and then clicks the “send” button
(Figure 12(a)).

 79

Figure 12(a). Frequency and time period are selected.

When the filter component receives the frequency and time
period from PrjRemote, it displays them on its interface
(Figure 12 (b)). Open-BCI input processor receives data that
are filtered according to the parameters set by the user (Figure
12(c)).

Figure 12(b). Filter is activated.

Figure 12(c). Data is received and filtered.

The OpenBCI input processor can process and plot the input
Alpha brain wave data as shown in Figure 12(d). When the
user is concentrating, the curve tends to move upward and the
alert probability increases. In Figure 12(d) the alert
probability is 0.8 (80%). When the user is not concentrating,
the curves tends to move download and the alert probability
decreases. Finally the uploader can upload the data to the
Internet and store it in a database.

Figure 12(d). Alpha Brain Wave data is plotted.

3.4. The Comparator App

After the gaze data and brainwave data have been uploaded to
the database in the Internet, they can be further analyzed to
decide whether the analyses made by the Gaze Analyzer and

 80

the Brain Wave App are consistent. The results are illustrated
in Figure 16, where the horizontal axis can be the time line.
The green color prediction is when both EEG and eye-tracking
predictions are consistent and correct. Blue colors are brain
wave predictions that are inconsistent with eye-tracking
predictions. The red colors are eye-tracking predictions that
are incorrectly predicted. 1 is meditation state, -1 is high
cognitive workload.

Figure 13. Comparison of meditation state predictions.

4. Meditation State Detection

Meditation, according to [2], is used to describe “practices that
self-regulate the body and mind, thereby affecting mental
events by engaging a specific attention set.” In the Western
tradition, meditation can be classified into mindfulness
meditation and concentrative meditation [2]. Mindfulness
meditation emphasizes the rise of all possible feelings in
awareness, whereas concentrative meditation requires
concentrating on a specific object or activity.

In our initial experiment we regard meditation as concentrative
meditation. Our concentrative meditation system includes
three major components: 1) State-Meditating: detecting
concentrative meditation state via brainwave signals; 2) State-
Meditating: detecting concentrative meditation state via eye
tracking signals; 3) Trait-reading: detecting concentrative
meditation traits via eye movement patterns.

State-Meditating: Brainwave

According to [2], the meditation state is the state when the
user is more relaxed as exhibited by the brain wave patterns
with little or no activity. Given the strong relationship reported
between EEG signal and meditation state, we developed a
technique to detect the meditation state, or more precisely, to
predict the probability of the meditation state, from input brain
wave data.

The alert probability described in the previous section can be
regarded as a measurement of the meditation state probability
from AlphaWave provided by OpenBCI software.
In our approach, The OpenBCI Monitor component makes

such prediction based on pre-trained prediction model, and
decides whether it is necessary to upload data into the database
for further analysis.
For training the prediction model, a software tool called
“Weka” is used. Weka provides a lot of flexible well-
programmed machine learning algorithms. With its help, the
module can train a prediction model easily using different
machine learning algorithms. In addition, Weka is a package
implemented in Java, so it is easy to integrate the package into
the TDR system as a component.

After the 16 channel brain wave data is appropriately cleaned,
4 consecutive records of brain wave data, plus the mean,
variance and standard deviation of these records, are used to
train the predication model. Weka provides a lot of machine
learning algorithms, from KNN or linear regression, to other
high level machine learning algorithms, such as SVM. With
the help of the package, the system can train any model by
different classifiers. We implemented the program that, user
can easily to change the classifier they need. To select a proper
algorithm, we did a few experiments using different classifiers,
such as Linear Regression, Logistic Regression, Bagging, Ada
Boost, Naïve Bayes, J48, Random Forest, and SMV. We used
10-folds cross validate to select a better model. In our initial
experiment, the two subjects are both experts in meditation,
therefore no matter what classifier was used, the prediction
accuracy is always 100%. Therefore we chose to use SMV as
the model.

To summarize our initial experiment, we can train, test a
model, and save the model into a file so that the BCI Monitor
can load the model easily and make prediction dynamically in
a live demo. We did a pilot study to test the workability of our
system. In the pilot study, we recruited a concentrative
meditating master, to meditate (s1) and stay calm (s2). The
experimental results are shown in Figure 14.

Figure 14. Experimental results of meditation state prediction.

We can see the predication accuracy is always 100%. Such
results are of course too good to be true. We are curious
whether the mastery of meditation induces the huge difference
in the two states. Therefore we design another pilot study to
evaluate it, which will be described in later section.

State-Meditating: Eye-Tracking

When a user is walking or exercising, it is inconvenient to
wear a brain wave headset with many electrodes. Therefore,

 81

we would like to explore whether the meditation state can be
detected through gaze analysis. If it can be done, then the user
only needs his smart phone and nothing else.
We propose to use face-tracking and eye-tracking technique to
monitor meditating on smart phone based on two hypothesis: 1)
when a user is meditating, there is a potential that the mental
and conscious change might affect the user’s facial emotions
slightly; 2) When a user is meditating, the conscious change
might affect his eye-movements even if the eyes are closed.
We are investigating the potential to observe meditating state
via appearance changes. Our State-Meditating function is
designed to be an application connected with SIS-server. We
used a Google Nexus 5x smart phone running Android 6.0 to
launch the SIS system applications. After the user settled the
duration parameter on SIS-GUI, SIS-GUI will redirect the user
to Gaze-component. The meditating state tracking will be
started after user clicked the start button. During state tracking,
each frame captured by the front facing camera will go
through 2 steps: 1) Face landmarks tracking: we track the
important landmarks of a face (e.g. left, right, and center point
of eyebrows). In table 1, we listed the detail face landmarks
being tracked; 3) Eye gaze estimation: we rely on the location
of the pupil relative to the rest of the eye to estimate the
direction of eye gaze. In our Gaze-Component, the Qualcomm
Snapdragon SDK is being used to accelerate the tracking
process. On 808 CPU in Nexus 5x, the per-frame image
processing time is 17 ms.

Region Landmarks Detail

 leftEyeBrowsPointTop

 leftEyeBrowsPointBot

 leftEyeBrowsPointLeft

 leftEyeBrowsPointRight

 rightEyeBrowsPointTop

 rightEyeBrowsPointBot

 rightEyeBrowsPointLeft

Brows

 rightEyeBrowsPointRight

 leftEarPointTop

 leftEarPointBottom

 rightEarPointTop
Ear

 rightEarPointBottom

 leftEyeBot

 leftEyeTop

 leftEyeCenter

 leftEyeLeft

 leftEyeRight

 rightEyeBot

 rightEyeTop

 rightEyeCenter

Eye

 rightEyeLeft

 rightEyeRight

 mouthULipBot

 mouthULipTop

 mouthLLipBot

 mouthLLipTop

 mouthLeft

Mouth

 mouthRight

 noseBridgePoint

 noseCenterPoint

 noseLLeft

 noseLRight

 noseMLeft

 noseMRight

 noseTipPoint

 noseULeft

Nose

 noseURight

Table 1. Details of face tracking landmarks.

Pilot study

We design another pilot study to 1) evaluate the accuracy of
state prediction, 2) test whether our system is applicable to
non-professional users (which are our targeted users), 3)
compare the signals of brainwave and eye tracking in state
prediction.

In this pilot study, we recruited a local college master student
(male, age 24) to test the meditation state prediction accuracy.
The subject performed 3 different state in front of a mobile
phone front facing camera with EEG sensors on:
concentrative meditation (s1), stay calm (s2) and high
cognitive workload (s3). In s1, we followed concentrative
meditation instruction to train the user to focus on his nose and
try to arise any feeling on nose. In s2, the subject simply
stayed calm and avoided thinking anything. In s3, we ask the
subject to thinking a math problem (a four digit number plus a
four digit number) to induce the cognitive workload.

(a) (b) (c)
Figure 15. Eye gaze heat map on different state: (a) s1,
meditation state; (b) s2, staying calm state; (c) s3, high
cognitive workload state. We observe a clear difference
among different state, where s1 is the most concentrative state
and s3 is the sparsest state.

 82

We use OpenBCI to collect EEG data, and smart phone front
facing camera to collect eye-tracking signals. We parallelize
the two groups of data, and separate both EEG data and eye-
tracking data into 2 parts: first 70% as training and later 30%
as testing.

To train the EEG model, we followed the previous pilot study
and used Weka in java, and SVM for creating the model. The
features we extracted are 16 channel brain wave data and the
mean, variance and standard deviation of these records within
4 step sliding window.

From the raw gaze data, we can observe a clear difference
among different state, where s1 is the most concentrative state
and s3 is the sparsest state (Figure 15). To quantify the
difference, we also trained the eye-tracking model. We kept
consistent with EEG model, using Weka in java to perform
SVM, with gaze x and gaze y coordinate at each timestamp
and the corresponding mean, variance and standard deviation
within 2s sliding window.

When comparing concentrative meditation (s1) with calm state
(s2), the EEG model for predicting meditation state is 100%
accuracy and eye-tracking model is 82.86% accuracy. The
corresponding parallel result is shown in Figure 16 (which is
the same as Figure 13).

Figure 16. Meditation prediction from staying calm states. The
green color prediction is when both EEG and eye-tracking
predictions are consistent and correct. Other than green, blue
colors are EEG predictions that are inconsistent with eye-
tracking predictions. The red colors are eye-tracking
predictions that are incorrectly predicted. 1 is meditation state,
-1 is staying calm state.

When comparing concentrative meditation (s1) with high
cognitive workload state (s3), the EEG model for predicting
meditation state is 100% accuracy and eye-tracking model is
97.06% accuracy. The corresponding parallel result is shown
in Figure 17.

Figure 17. Meditation prediction from high cognitive
workload states. The green color prediction is when both EEG
and eye-tracking predictions are consistent and correct. Other
than green, blue colors are EEG predictions that are
inconsistent with eye-tracking predictions. The red colors are
eye-tracking predictions that are incorrectly predicted. 1 is
meditation state, -1 is high cognitive workload.

5. Detecting Reading Patterns by Gaze Analysis

In this section, we first explain how to apply gaze analysis to
find out user’s reading patterns. This will give some empirical
justification that such technique may be applicable to track
user’s reading patterns to determine users’ meditation trait.
For initial design, we use the instruction manual to practice
Chi as the reading material, and track users’ gaze pattern to
see whether the user understands the instruction. We believe
the time a user takes to read and the user’s gaze pattern reflect
his (her) meditating trait.

To process the data in SIS database and visualize the
processing workflow, we write our code in PHP, and the
visualization can be easily observed on SIS GUI webpage.
The visual object consists of two levels. Using visual object
definition, the two levels are:

Top level:
Ym is: Binary Trait State (Have trait of meditation or not) 
Yi is: Different color on ‘Reading’ Tag (Red: don’t have trait,
Green: have trait)
Bottom Level:
Xm is: User’s Gaze data within 1 second time period 
Xi is: Gaze coordinates (points) and corresponding time 
Our system controlled by two directions: bottom-up and top-
down. The top down direction is on scope of TDR system in
the whole.
In bottom up direction:
Hi represents the covariance value for each individual segment
Xm calculated by function:

 83

We set a fuzzy number (fuzz) R ranging from 0 to 1 with 5
levels. If Hi = 0-0.2, then the fuzzy number R=1, the level
indicates the user has a strong trait; If Hi = 0.2-0.4, then the
fuzzy number R=0.8, the level indicates the user has a trait; If
Hi = 0.4-0.6, then the fuzzy number R=0.6, the level is
medium; If Hi = 0.6-0.8, then the fuzzy number R=0.4, the
level indicates the user might not have a trait; Otherwise Hi =
0.8-1, and the fuzzy number R=0.2, the level indicates the user
don’t have trait. The pseudo code for the algorithm is
presented below:

In GUI, we display a ReadingBehaviorObservation table with
each row as a segment (Figure 18). The background color
shows the trait level when user is reading within this one-
second segment.

Figure 18. Reading Behavior Observation Table.

Besides fuzzy number, we also include uncertainty number in
our System to indicate the capability of our prediction. The
uncertainty number for random guess is 0.5. We initially set it
as 0.75 for our system. This uncertainty number will be
updated based on future user study prediction accuracy.

We include a HeatMap, which is a saliency map of user’s
attention, as an overview (Figure 19).

Figure 19. HeatMap of Reading Indicating High Meditation

Trait in user’s reading of CHI manual.

6. Related Work

Mindfulness meditation along with relaxation and biofeedback
are major self-regulatory strategies that are wildly explored in
clinical used therapy [3]. Mindfulness meditation has been
proven to have positive effects on social skills, feeling of
compassion, self-management, somatic awareness [7] and
mental flexibility [8]. Besides that, studies has been work on
usage of mindfulness meditation in treatment of anxiety
disorders, stress reduction [3], [5], chronic pain and persistent
pain [5], [9], depression [5], autism spectrum disorders [5],
traumatic experiences [10], acquired brain injury [11], and
even disordered eating, psoriasis and substance abuse [12], [13]
and so on. Concentrative meditation, based on its unlimited
physical form, is being taught broadly for stress reduction.
However, the traditional researches on mindfulness as well as
concentrative meditation mostly relied on self-report and
verbal comprehension as measurements [3], [4], [5].

Transcendental meditation is a technique that turns “the
attention inwards towards the subtler levels of a thought until
the mind transcends the experience of the subtlest state of the
thought and arrives at the source of the thought” [15], which
can be classified as concentrative meditation [2]. Because of
the easiness and enjoyableness, large subject number,
repetition of mantra [2], and immediately experience
beneficial physiological changes [16], TM becomes a popular
meditation technique that being measured via physiological
signals [[2], [6], [14]. Metric of meditation measurement via
physiological signals consists of two major parts: state and
trait. State is “altered sensory, cognitive, and self-referential

$lastTime = 0;
while($data!=null)
{
 $d = $data[0];
 $data = $data[1:end];
 if($d[‘time’]==lastTime){
 $Xm = $Xm+$d;//put current data into Xm

}
else{//current Xm is full and the new data should be add to a

new Xm
 $lastTime = %d[‘time’];

 $uncert = 0.75;
 $assessScore = covariance of ($Xm)
if($assessScore>=0.8){//Fuzz level 5
 Table-background-color:Red;
 }

else if($assessScore>=0.6){//Fuzz level 4
 Table-background-color:Orange;
 }

else if($assessScore>=0.4){//Fuzz level 3
 Table-background-color:Yellow;
 }

else if($assessScore>=0.2){//Fuzz level 2
 Table-background-color:Green;
 }

else{//Fuzz level 1
 Table-background-color:Blue;
 }
 $Xm = $newXm;

}
}

 84

awareness that can arise during meditation practice” and trait
is “the lasting changes in these dimensions that persist in the
meditator irrespective of being actively engaged in
meditation” [2].

Among all physiological signals being used to measure TM,
brain signals via electroencephalography (EEG) have more
than 60 years history and are most commonly used [2]. Hans
Berger first recorded EEG signals in the 1920s [20]. After
about 90 years development, EEG now can be divided into 6
bands by frequency: alpha, beta, gamma, theta, delta, and mu.
Alpha and theta bands are highly related to meditation state
[18], [21], [22], [23], [24], [25]. Although many researchers
[21], [22], [23] found that alpha power increases during
meditating, different results have been reported based on
different location of EEG sensors (i.e. frontal, parietal,
temporal, or occipital) [18]. Besides EEG, physiological
signals of ERP [2], GSR [6], Oxygen consumption [6], HRV
[6] and neuroimaging [2] have been applied to monitoring
meditation.

Our TDR-CHI Gaze component was inspired by [17], which
tracks the gaze duration of a subject in meditation, and
control-subjects on different emotional face stimuli and found
that meditators spent less time on angry and fear faces than
control subjects. TDR-CHI Gaze component has two functions:
1) State-Meditating: measuring state during meditating via
face-tracking and eye-tracking technique, 2) Trait-Reading:
evaluating trait during reading. Gaze component is different
from previous works in three aspects: A. We creatively use
face tracking and eye tracking technique to monitor meditation
state (State-Meditating). To our knowledge, we are the first
one that attempts to use face tracking and eye-tracking
technique to track appearance changes in order to understand
the internal changes in meditating. B. We track users reading
patterns to determine users’ binary meditation trait. We are
changing the simple stimuli task to complicated reading task.
C. The state and trait are monitored via smart phone, without
dedicated wearable sensors and eye tracking sensors.

7. Discussion

We proposed in Section 7 to determine medication state by
analyzing gaze obtained from the smart phone’s camera. The
initial experimental results indicate the approach might be
viable. More experiments are to be performed.

If the brain wave headset is to be used, we would like to use
the least amount of data to train a model, so that users do not
need to get a device to monitor 16 channels. A smaller and
cheaper device that only monitor a few channels may be good
enough for meditation status prediction. To select few
channels, we used information gain for feature selection. Since
the records are mostly plain data from each channel, thus, by
using feature selection technique, it can select channels that
can differentiate data most efficiently.

Another solution is through Principal Component Analysis
(PCA). With help of PCA, the system can find out which
feature (channel) contributes most to the data. Then we may
use one or more most contributes channels to be our final
channels. This will lead to the most efficient (fewest channel)
headset.

Our long-term goal is to expand the TDR system for the
estimation of Chi. The Chi super-component can be regarded
as the super-component at the highest level. It has attributes
including both objective measurements and subjective
evaluations. Some researchers propose to employ electrical
measurements to estimate Chi [26]. Other researchers propose
to combine objective measurements with subjective evaluation
into an evaluation matrix to estimate Chi [27]. This makes the
Chi super-component both pro-active and adaptive at multiple
levels.

Finally we also want to add audio output so that a person’s
health exercise can be further enhanced. Our grand hypothesis
is the mobile TDR system with multiple sensors will facilitate
the estimation of Chi, so that a person equipped with the
mobile TDR system can practice meditation and continue to
enhance his/her health. Further experimental research will
hopefully confirm at least a portion of this grand hypothesis.

Acknowledgement

ZhenJiang Fan contributed to the implementation of mobile
TDR system.

References

[1] Shi-Kuo Chang, JunHui Chen, Wei Guo and Qui Zhang,
"TDR System - A Multi-Level Slow Intelligence System for
Personal Health Care", Proceedings of 2016 International
Conference on Software Engineering and Knowledge
Engineering (SEKE2016), Hotel Sofitel, Redwood City, San
Francisco Bay, California, USA, July 1-3, 2016, 183-190.
[2] Cahn, B. Rael, and John Polich. "Meditation states
and traits: EEG, ERP, and neuroimaging
studies." Psychological bulletin 132.2 (2006): 180.
[3] Peterson, Linda Gay, and Lori Pbert. "Effectiveness
of a meditation-based stress reduction program in the
reatment of anxiety disorders." Am J Psychiatry 149.7 (1992):
936-943.
[4] Kabat-Zinn, Jon, Leslie Lipworth, and Robert Burney.
"The clinical use of mindfulness meditation for the self-
regulation of chronic pain." Journal of behavioral medicine 8.2
(1985): 163-190.
[5] Spek, Annelies A., Nadia C. Van Ham, and Ivan
Nyklíček. "Mindfulness-based therapy in adults with an
autism spectrum disorder: a randomized controlled
trial." Research in developmental disabilities 34.1 (2013): 246-
253.

 85

[6] Wallace, Robert Keith. "Physiological effects of
transcendental meditation." Science 167.3926 (1970): 1751-
1754.
[7] Reid, Denise T. "Teaching mindfulness to
occupational therapy students: Pilot evaluation of an online
curriculum." Canadian journal of occupational therapy 80.1
(2013): 42-48.
[8] Thompson, Barbara. "Mindfulness-based stress
reduction for people with chronic conditions." The British
Journal of Occupational Therapy 72.9 (2009): 405-410.
[9] Stroh-Gingrich, Bethany. "Occupational therapy and
mindfulness meditation: An intervention for persistent
pain." Occupational Therapy Now 14.5 (2012): 21-22.
[10] Ruff, Kelley McCabe, and Elizabeth R. Mackenzie.
"The role of mindfulness in healthcare reform: a policy
paper." Explore: The Journal of Science and Healing 5.6
(2009): 313-323.
[11] MFKF, Michel Bedard Dwight Mazmanian, Carrie
Gibbons Gary Mack, and Rupert Klein. "A Mindfulness-Based
Intervention to Improve Quality of Life Among Individuals
Who Sustained Traumatic Brain Injuries: One-Year Follow-
Up." The Journal of Cognitive Rehabilitation (2005).
[12] Kabat-Zinn, Jon, and Thich Nhat Hanh. Full
catastrophe living: Using the wisdom of your body and mind
to face stress, pain, and illness. Delta, 2009.
[13] Smalley, Susan L., and Diana Winston. Fully present:
The science, art, and practice of mindfulness. Da Capo Press,
2010.
[14] Elliott, Nina. "Exploring mindfulness meditation in
occupational therapy: An introduction to basic
practice." Occupational Therapy Now 17.1 (2015): 6-8.
[15] Mahesh Yogi, Maharishi. Maharishi Mahesh Yogi on
the Bhagavad-Gita: A new translation and commentary with
Sanskrit text, Chapters 1 to 6. Harmondsworth: Penguin Books,
1969.
[16] Yogi, Mahesh. "The science of being and art of
living." (1963).
[17] Pavlov, S. V., et al. "Effects of long-term meditation
practice on attentional biases towards emotional faces: An
eye-tracking study." Cognition and Emotion 29.5 (2015): 807-
815.
[18] Jian-Zhou, Zhang, Li Jing-Zhen, and He Qing-Nian.
"Statistical brain topographic mapping analysis for EEGs
recorded during Qi Gong state." International Journal of
Neuroscience 38.3-4 (1988): 415-425.
[19] Fernando Lopes da Silva. “EEG: Origin and
Measurement. ” URL=
http://webcache.googleusercontent.com/search?q=cache:Cx4x
XMFDePsJ:www.springer.com/cda/content/document/cda_do
wnloaddocument/9783540879183-c1.pdf%3FSGWID%3D0-
0-45-883705-p173899505+&cd=3&hl=en&ct=clnk&gl=us
[20] Berger, Hans. "Über das elektrenkephalogramm des
menschen." European Archives of Psychiatry and Clinical
Neuroscience 87.1 (1929): 527-570.
[21] Aftanas, L. I., and S. A. Golocheikine. "Human
anterior and frontal midline theta and lower alpha reflect
emotionally positive state and internalized attention: high-

resolution EEG investigation of meditation." Neuroscience
letters 310.1 (2001): 57-60.
[22] Echenhofer, F. G., M. M. Coombs, and L. Samten.
"EEG and P300 differences during meditation and rest in
advanced Tibetan Buddhist and beginning
meditators." meeting of the Society for Psychophysical
Research, San Diego, CA. 1992.
[23] Wallace, Robert Keith. "Physiological effects of
transcendental meditation." Science 167.3926 (1970): 1751-
1754.
[24] Fenwick, P. B. C., et al. "Metabolic and EEG changes
during transcendental meditation: an explanation." Biological
Psychology 5.2 (1977): 101-118.
[25] Travis, Fred, et al. "Patterns of EEG coherence,
power, and contingent negative variation characterize the
integration of transcendental and waking states." Biological
psychology 61.3 (2002): 293-319.

[26] Ming-Feng Chen, Hsi-Ming Yu, Shu-Fang Li and Ta-
Jung You, “A Complementary Method for Detecting Qi
Vacuity”, BMC complementary and alternative medicine, Vol.
9, No. 12, 2009.

[27] Ke-Feng Huang, Effects of Energy Absorption on
Meridian System (能量攝取對經絡系統影響之效應),
Doctoral Dissertation (in Chinese), Institute of Biomedical
Engineering, National Yang-Ming University, Taiwan, June
2011.

10.18293/DMSVLSS2017-018

Car2Car framework based on DDGP3

Walter Balzano, Vinicio Barbieri, Giovanni Riccardi
Dip. Ing. Elettrica e Tecnologie dell’Informazione

Università di Napoli, Federico II
Napoli, Italy

e-mail: wbalzano@unina.it, vinicio.barbieri@gmail.com, ing.giovanni.riccardi@gmail.com

Abstract— The purpose of this paper is to provide an algorithm
for the detection of free parking stalls within a multilevel garage.
Obviously, we are in the condition where the parking is very
busy. Using devices of the cars On Board Units (OBU) and Road
Side Units (RSU) is possible to determine, with a certain error,
the matrix of distances between all sensors. The way of
information exchange between cars is the VANETs. Starting
from the known position of the RSU and the mutual distance
between all adjacent cars OBU is possible to obtain the position
of all cars applying a Distance Geometry Problem (DGP)
algorithm schema. Unfortunately, the complexity of these
algorithms is NP-hard. Under some conditions, the DGP
algorithm can switch from continuous to discrete and it can be
solved with a sort of branch and pruning algorithm. We are
interested in a DDGP3 that is a Discretizable Distance Geometry
Problem in R3 variant to be used as a starting point for our work.
The resolution of the algorithm is equivalent to the resolution of a
problem of intersection between three spheres. This problem is
non-linear and, in some conditions, it is possible to obtain an
approximate solution with linear techniques.

Keywords – DGP; DDGP; V2V; WiFi positioning; car parking.

I. INTRODUCTION

The DGP consists in seeking the coordinates of a set of
points (vertices) in three-dimensional space starting from the
distances between them.

Let us denote by),,(dEVG a weighted graph, where
each vertex in V content corresponds to a point in space and
there is an edge between two vertices if and only if the distance
between them is known. The graph G represents a DGP type
problem, which in turn is the problem of finding a function

3: RVx (1)

such that for each arc belonging to E (and thus for every pair of
vertices u, v connected by an arch) it is true that

 uvdvxux (2)

In its basic form this is a "constraint satisfaction problem"
the solution of which can be represented as follows:

 VvxX v : (3)

II. RELATED WORKS

The different approach used in [2] and [3] for the solution
of this problem is to treat it as a problem of continuous global
optimization in which the set of constraints is replaced by an
error function Largest Distance Error (LDE) that measures the
difference between the calculated distance and the one known:

},{

21

1
,...,,

vu uv

uvvu
n d

dxx

m
xxxLDE (4)

where m is the number of known distances.

The DGP solution can be obtained by minimizing this
function, which is not convex and contains many local minima.
One of the approaches used to solve the problem is to
approximate the function using a sequence of uniformly
convergent functions; therefore a collection X is a solution if
and only if the LDE error function is 0.

The DGP is applied for the solution of problems of location
in wireless networks in which you know the distance between
sensors (in our case OBU), but do not know their location,
except that for some fixed named anchor (in our case RSU),
then used to solve the problem.

One area in which the DGP is heavily used is Biology
"Molecular Distance Geometry Problem" (MDGP).

The DGP can be treated as discrete as long as certain
conditions are respected, and in particular, given a graph

),,(dEVG and a Total Order of all vertices, we must
consider the following two axioms:

1. We assume that V3,2,1 , they must be a "clique"

(fully reachable graph) and 3: iVi must occur

that these 3 arcs Eiiiiii ,1,,2,,3

2. 2: iVi It must apply strictly the triangle

inequality iiiiii ddd ,11,2,2

If these conditions are verified then the cosine of the angle
of torsion of each quadruple of consecutive vertices can be
calculated

86

10.18293/DMSVLSS2017-018

Figure 1: Angles of torsion of quadruple of consecutive vertices

(through the intersection of two plans)

A position can be calculated for each one of two corners.

If these assumptions are verified the two possible positions
can be calculated as the intersection of three spheres

Figure 2: The intersection of the three spheres with center i-3, 1-2, i-1

 1S is the sphere with center in 1ix and radius iid ,1

 2S is the sphere with center in 2ix and radius iid ,2

 3S is the sphere with center in 3ix and radius iid ,3

The intersection of the three spheres can be:

1. one point

2. two points

3. a circle

4. empty

The first hypothesis has probability 0, the third hypothesis
is impossible (because of the strict triangular inequalities) and
the fourth hypothesis is impossible (because the parking is very
busy).

The only possibility, therefore, would be the second.

When these two assumptions are verified the LDE error
function can be reduced to a discrete set and solved by the
algorithm BP.

Figure 3: The algorithm BP branch and pruning

To switch from continuous to discrete domain this
algorithm must be based on a real instance and these conditions
must be verified:

 All distances required for the discretization (Axiom 1) are
obtained from the OBU and RSU, so they are independent
from the instance and stored in the VANETs;

 Distances between pairs (i, i + 1) and (i, i + 2) are know;

 Distances between pairs (i, i + 3) may be represented by
intervals:

1. 3, iid is 0: it means that this is a duplicated car

position, there is no branching because it can
only take the same position of its previous copy;

2. 3, iid is exact: the standard discretization

process is applied, and hence two possible
positions for the current car position are
computed;

3. 3, iid is represented by an interval: D sample

distances are taken from the interval and the
discretization process is applied for any chosen
sample distance; 2×D car positions are
generated.

III. C2C FRAMEWORK

Our goal is to provide a complete procedure to find out a
map highlighting the free stalls in a congested multilevel
parking.

Figure 4: Parking Scheme with RSU and OBU

87

10.18293/DMSVLSS2017-018

 To achieve it we make the following assumptions:

1) All vehicles are equipped with a sensor (OBU);
2) Since each point of observation there are at least 3

fixed sensors (RSU), whose coordinates are known;
3) It is known the structure of the car park and are known

the coordinates of all the parking stalls.

The following flow chart shows the procedures used to
obtain the map of free stalls. At each step the main input data
are passed and the processing results constitute the input for the
next step.

First of all, the algorithm load the map of parking and the
position of Road Side Units (RSU), after that the set of vehicles
registered on VANETs are loaded on memory.

All the information related to the mutual distance between
the car are shared, but the On Board Units (OBU) load just the
nearest.

Figure 5: Workflow to search free stalls

A. Filling Distance Matrix by Radio Signal Strength of OBU
and RSU

The model proposed in [1] allows proper accurate
positioning where there are several vehicles in a small area,
using a smart combination of RSS values transformed in a
distance matrix provided by the V2V/V2I system.

To achieve the goal, we decide to use an external cloud[19]
where to collect the distance vectors calculated by each vehicle.
Such information is collected, and then these constitute the
matrix of the distances which, by exploiting the cloud[20]
computing capacity allows obtaining with a DGP algorithm
map of the parking lot of vacancies.

Our proposal is not to use a cloud, but only assume a
memory buffer on board each RSU able to accommodate
distance carriers sent from the vehicles within a certain
distance. Of course, knowing the structure of the parking lot
and the location of the MSW is easy sizing the required
memory.

Contrary to what was proposed in [1] we haven’t the entire
matrix of distances but only a part of it in each RSU.

When a vehicle enters the car park, in addition to
calculating its distance vector, it requires RSU neighbours of
distance carriers known to them and the map of the park,
including the RSU coordinates and those of each parking stall.

The vehicle asks regularly update the data until it finds a
parking stall and stops the vehicle. The map of the parking,
being static information, once is transferred, as well as vectors
of distances that do not change between a request and the next.

In this way, each vehicle has, at a certain instant, the partial
matrix of the distances, the coordinates of the MSW and the
parking map.

All this information will be processed by a DDGP
algorithm to obtain the map of the parking lot with a list of free
and occupied stalls.

B. Building Ordered graph

The Distance Geometry Problem (DGP) consists in finding

the coordinates of a given set of points nxxx ,...,, 21 in a

three-dimensional space when some of the distances between
pairs of such points are known. Our DGP instance is the set of
vectors of distances received from neighboring RSU.

A vector of distances is considered significant if it contains
more than three distances, sensors having less than three
neighboring sensor could be initially removed from the
network, and the localization problem may be solved for a sub-
network (however, if a sensor has at least three sensors next it
is likely that parking in that area is not congested and you do
not need an algorithm to find a free place).

The graph to which we refer is G = (V, E, d), a weighted
undirected graph associated to an instance of the DGP.

V = set of vertices, where each vertex in V corresponds to
an ci, in our case position of the vehicles and the RSU

E = set of arcs between vertices, there is an edge between
two vertices only if it is known the distance between them (the
weight associated to the edge)

d = set of distances between two vertices

We want to solve our problem by using a variant DDGP3
proposed in [3], this algorithm, depending on orders vertex and
edge density.

To apply the DDGP3 algorithm it is necessary that the
following condition is verified.

 (The three anchor sensors) {1, 2, 3} included in V are a
"clique" (graph fully accessible), and for each parking
stall occupied xi belonging to V with rank i > 3, there
are 3 vertices j, k , h such that:

o j < i, k < i, h < i,
o (j, i), (k, i), (h, i)∈E
o djh < djk + dkh.

To check the validity of this condition [3] suggests the
following sorting algorithm:

88

10.18293/DMSVLSS2017-018

High-level algorithm: Reordering Graph Vertices

Input: Vu: Unordered vertices
Output: Vo: Ordered vertices

 1: while(a valid ordering is not found) do
 2: find a 3-clique C in G(Vu, E, d)
 3: place the vertices of C at beginning of new

 order: G(Vo, E, d) = C;
 4: while(Vu - Vo ≠ Ø) do
 5: find the vertex v in Vu - Vo with the largest number
 of adjacent vertices in Vo;
 6: if (l < 3) then
 7: break the while loop: there are no possible

 ordering for this choice of C;
 8: end if
 9: Vo = Vo +{v};
10: end while
13: end while
14: return Vo

If the sorting algorithm found out a solution then we can move
to the next step. We verified that the algorithm can find
solutions if parking is congested (there are few free stalls).

C. Discrete DGP using Branching & pruning

Only after the sort, if the conditions are met, you can apply
the DDGP3 algorithm. However, in order to avoid considering
equivalent solutions that can be obtained from a given solution
by translations or rotations, the first three points can be fixed.
So that the final binary tree has 2n-3 positions. The first three
positions are those of the RSUs closest to the viewer. At this
point, we proceed to the calculation of the position and to the
examination of the solution.

High-level algorithm: B&P
Input: k, n, d.
Output: Position of all vertices.
 1: for (i=1, 2) do

 2: compute the ith position for the vertex k:)(i
kx ;

 3: check the feasibility of the position)(i
kx :

 4: if (the position)(i
kx is feasible) then

 5: if (k=n) then one solution is found;
 7: else
 8: It calls itself with these parameters (k+1, n, d)

 9: end if
 10: else the current branch is pruned
 12: end if
 13: end for
 14: return Position of all vertices

The key points of the algorithm are two: the calculation of
the intersection between the three spheres and check the
feasibility of the 2 solutions found.

For the calculation of intersection points we are considering
whether to use the algorithm proposed by [2] MD-jeep, or the
more general technique proposed by [4]. Both approaches
provide solution within a reasonable elaboration time.

What really makes a difference to the convergence of
branch and prune algorithm is the feasibility check.

The idea is to exploit the condition 3), in fact, knowing the
coordinates of the "center" of each stall, we can say that a point
(intersection of three spheres) is acceptable if its coordinates
fall in turn within a of spheres of radius R (R-value to be
defined) which has the center coordinates (a priori known) of
the stalls.

Assuming C = {(Xc1, Yc1, Zc1) .. (Xcn, Ycn, Zcn)} the set of
coordinates of all “stall’s center”, the check to apply to each
(Xx, Yx, Zx) coordinate is:

d ((Xx, Yx, Zx), (Xci, Yci, Zci)) < R for a (Xci, Yci, Zci) in C

where:
d (A,B): distance from the points A and B
R: radius of the sphere to be fixed (i.e. 0.5 meters)

We chose the sphere only for simplicity of calculation, you
can also think of a box (more realistic).

In addition we suggest eliminating the solutions that
certainly do not make sense, such as those having the Z
coordinate unacceptable. Only the points for which the z
coordinate (height) is compatible with the heights of the
various parking levels are acceptable.

Assuming H = {h1 .. hn} the set of heights of the parking
floors, the check to apply to each Zx coordinate is:

(hi + hmin) < Zx < (hi + hmax) for a hi in H

where:
hmin : minimum height of a vehicle (i.e. 0.2 meters)
hmax : maximum height of a vehicle (i.e. 2 meters)

Knowing the map and the coordinate of each individual

stall, the algorithm replaces the calculated value of coordinates
with the nearest known one.

In this way, the result is much more precise and the
application is more suitable.

IV. EXPERIMENTAL RESULTS

In order to facilitate the implementation of the simulation
procedure, used to test the algorithm, we have used a
mathematical model [21; 22] under the following simplifying
hypotheses:

89

10.18293/DMSVLSS2017-018

1. We are considering uniform configurations of
parking stalls on similar floors in order to simplify
the simulation. Multi-level car park with 4 floors
with 250 stalls per floor and.

2. In the real case the sensors are at a distance from
the floor of the parking variable from a few
centimeters up to a little more than one meter. In
the simulations we assume to have all sensors
exactly at the level of the membership plan.

3. A further simplification we did say we have the
sensors in the center of each occupied stall.

4. The distance measurement even if in reality will
be affected by the error simulations we considered
accurate.

We have implemented the procedure in java and performed
tests on a notebook with i5 processor and 8 GB of RAM and
Ubuntu 17.04 operating system.

The problem consists in verifying if a stall is free or is
occupied by a sensor (vehicle).

The procedure takes as input a matrix of distances which
we assume it has been acquired by the sensors, also knowing
the map and the coordinates of each single stall we have the
possibility of replacing the calculated value of the stall
coordinates with the known coordinates of the nearest stall
(within a radius R) to improve the approximation of the
calculated position up to reduce to zero the error

Below is a table summarizing the results obtained in four
test. As will be noted, in the table we do not report the error
columns because, at each step of problem resolution of the
intersection of three spheres (on which is based the whole
algorithm) we obtain the coordinates of two points and choose
the one feasible with respect to the parking structure.

The algorithm identifies a point feasible substitute its
coordinates with coordinates known a priori.

The tests are all performed in cases of high congestion of
the parking lot, and as you can see the convergence of the times
are quite stable and low, in fact, are between 0.11 and 0.19
seconds. These times are encouraging for us and make us think
of a future implementation on mobile devices.

TABLE I. RESULTS OF CAR2CAR ALGORITHM

Tests
Boundary Conditions

Number
of stalls

Number of OBU per
floor (occupied stalls)

Duration

80% occupied stalls
evenly on all floors

1000 200 - 200 - 200 - 200 0.11 sec

80% occupied stalls
with higher density on
the lower floors

1000 244 - 222 - 195 - 139 0.12 sec

90% occupied stalls
evenly on all floors

1000 225 - 225 - 225 - 225 0.15 sec

90% stalls occupied
with higher density on
the lower floors

1000 249 - 242 - 226 - 183 0.19 sec

V. CONCLUSIONS AND FUTURE WORKS

We started from a real problem, the search for a free place
within a multi-level parking lot congested. Taking advantage of
the sensors of the RSUs fixed and mobile units OBUs we
calculated the distances between them, resulting in a matrix of
the partial distances that we used as DGP instance. Placing
particular conditions we solved the problem by using a DDGP3
algorithm. Finally we used a feasibility check that allowed us
to have a rapid convergence of the algorithm.

The network model is a wireless network and each node of
type OBU is able to communicate directly with any other node
of same type and with one of RSU type.

The elaborations are made directly on the OBU in-car, and
then the results are putted in a shared area memory through the
VANETs.

In the future, we will try to improve both the calculation of
the distances and the DGP algorithm. Our goal is to make the
entire procedure usable with the sensors and the ability of
calculation of smart phones.

REFERENCES

[1] Walter Balzano, Fabio Vitale. "DiG-Park: a smart parking availability
searching method using V2V/V2I and DGP-class problem." 31st
International Conference on Advanced Information Networking and
Applications Workshops 2017 - DOI 10.1109/WAINA.2017.104

[2] Mucherino, Antonio, Leo Liberti, and Carlile Lavor. "MD-jeep: an
implementation of a branch and prune algorithm for distance geometry
problems." International Congress on Mathematical Software. Springer
Berlin Heidelberg, 2010.

[3] Mucherino, Antonio, Carlile Lavor, and Leo Liberti. "The discretizable
distance geometry problem." Optimization Letters (2012): 1-16

[4] Coope, I. D. "Reliable computation of the points of intersection of n
spheres in n." ANZIAM Journal 42 (2000): 461-477.

[5] Balzano, Walter, Maria Rosaria Del Sorbo, and Silvia Stranieri. "A logic
framework for c2c network management." Advanced Information
Networking and Applications Workshops (WAINA), 2016 30th
International Conference on. IEEE, 2016.

[6] Lavor, Carlile, et al. "Discretization orders for distance geometry
problems." Optimization Letters 6.4 (2012): 783-796.

[7] Balzano, Walter, et al. "A Logic-based Clustering Approach for
Cooperative Traffic Control Systems." International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing. Springer International
Publishing, 2016.

[8] Balzano, Walter, Aniello Murano, and Fabio Vitale. "V2V-EN–Vehicle-
2-Vehicle Elastic Network." Procedia Computer Science 98 (2016): 497-
502.

[9] Lavor, Carlile, et al. "On a discretizable subclass of instances of the
molecular distance geometry problem." Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 2009.

[10] Abdelhamid, Sherin, Hossam S. Hassanein, and Glen Takahara.
"Vehicle as a mobile sensor." Procedia Computer Science 34 (2014):
286-295.

[11] Sładkowski, Aleksander, and Wiesław Pamuła, eds. Intelligent
Transportation Systems–Problems and Perspectives. Vol. 32. Springer,
2015.

[12] Balzano, Walter, Maria Rosaria Del Sorbo, and Domenico Del Prete.
"SoCar: a Social car2car framework to refine routes information based
on road events and GPS." Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic
and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.
IEEE, 2015.

90

10.18293/DMSVLSS2017-018

[13] Y. Allouche, M. Segal, “Cluster-based beaconing process for VANET”,
Vehicular Communications Volume 2, Issue 2, April 2015, Pages 80–94.

[14] Allouche, Yair, and Michael Segal. "Cluster-based beaconing process
for VANET." Vehicular Communications 2.2 (2015): 80-94.

[15] Huang, Chi-Fu, Yuan-Feng Chan, and Ren-Hung Hwang. "A
Comprehensive Real-Time Traffic Map for Geographic Routing in
VANETs." Applied Sciences 7.2 (2017): 129.

[16] Sanguesa, Julio A., et al. "RTAD: A real-time adaptive dissemination
system for VANETs." Computer Communications 60 (2015): 53-70.

[17] Milojevic, Milos, and Veselin Rakocevic. "Distributed road traffic
congestion quantification using cooperative VANETs." Ad Hoc
Networking Workshop (MED-HOC-NET), 2014 13th Annual
Mediterranean. IEEE, 2014.

[18] Monteil, Julien, et al. "Distributed and centralized approaches for
cooperative road traffic dynamics." Procedia-Social and Behavioral
Sciences 48 (2012): 3198-3208.

[19] Amato, F., Moscato, F. Exploiting Cloud and Workflow Patterns for the
Analysis of Composite Cloud Services (2017) Future Generation
Computer Systems, 67, pp. 255-265. DOI: 10.1016/j.future.2016.06.035

[20] Amato, F., Moscato, F. Pattern-based orchestration and automatic
verification of composite cloud services (2016) Computers and
Electrical Engineering, 56, pp. 842-853. DOI:
10.1016/j.compeleceng.2016.08.006

[21] Amato, F., Moscato, F. Model transformations of MapReduce Design
Patterns for automatic development and verification (2016) Journal of
Parallel and Distributed Computing. DOI: 10.1016/j.jpdc.2016.12.017

[22] Amato, F., Moscato, F. A model driven approach to data privacy
verification in e-health systems (2015) Transactions on Data Privacy, 8
(3), pp. 273-296.

[23] Oka, Hiroaki, and Hiroaki Higaki. "Multihop data message transmission
with inter-vehicle communication and store-carry-forward in sparse
vehicle Ad-hoc networks (VANET)." New Technologies, Mobility and
Security, 2008. NTMS'08.. IEEE, 2008.

[24] Smith, David J. Reliability, maintainability and risk: Practical methods
for engineers including reliability centred maintenance and safety-related
systems. Elsevier, 2011.

[25] Li, Wenfeng, et al. "On reliability requirement for BSM broadcast for
safety applications in DSRC system." Intelligent Vehicles Symposium
Proceedings, 2014 IEEE. IEEE, 2014.

[26] Monteil, Julien, et al. "Distributed and centralized approaches for
cooperative road traffic dynamics." Procedia-Social and Behavioral
Sciences 48 (2012): 3198-3208.

[27] Sanguesa, Julio A., et al. "RTAD: A real-time adaptive dissemination
system for VANETs." Computer Communications 60 (2015): 53-70.

91

Sentiment Analysis on Yelp social network

Flora Amato, Giovanni Cozzolino, Antonino Mazzeo and Antonio Pizzata
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione DIETI

University of Naples ”Federico II”, ITALY
Email: {flora.amato, giovanni.cozzolino, mazzeo, antonio.pizzata}@unina.it

Abstract

Social networks analysis is an emerging trend among
scholars and researchers in the last years. A great number
of companies are interested in social networks data min-
ing. Data gathered from Facebook, Twitter or other social
networks result to be very attractive in many application
fields, like economics analysis, sentiment analysis, and pol-
itics analysis and so on. In our work, we focused on the
analysis of the content of textual information obtained from
the social media. Our investigation is finalized to extract
hot topics in social network. We considered, as case study,
reviews obtained from the social network Yelp.

1 Introduction

Nowadays, social network information are precious for
many application fields. For example information gathered
from social network are used by so-called ”social media
marketing” to organize an advertising campaign: compa-
nies can reach a bigger number of stakeholders and create
a more modern concept of advertising, quicker, immediate
and sometimes matched with catchy hashtags.

Important information that analyst are interested in, re-
garding how people feel about an event occurred in their
lives or around them. It has been proved [21] that the use
of emoticon or hashtags can identify the sentiments people
feel: the use of these forms of communications are the eas-
iest way to share them on the net. This led researchers and
scholars to extend the study of sentiment analysis[14, 15]
to the digital world, mining information through forums,
blogs, social media, in order to understand how the people
react to and event (i.e. a new law, terrorist attack and so on).

In literature, there are many tools and projects designed
to perform different kind of analysis[4].

In our work, we focused on the analysis of the content of
textual information obtained from the social media: through
our investigation, it is possible to extract hot topics in social
network. We considered, as case study, reviews obtained

from the social network Yelp.

1.1 Text Mining Procedures

Effective and efficient access to domain relevant infor-
mation requires the ability to automatic process and or-
ganize the information especially if these are contained
in huge repositories of data [7, 6]. The most used ap-
proaches in Big Data processing are based on the graph
algorithms, parallel and distributed architecture.Some Big
Data infrastructures deal with Apache Hadoop [26] soft-
ware for data-intensive distributed applications, based in
the MapReduce programming model and a Distributed File
System (Hadoop). MapReduce job splits the input dataset
into independent subsets that are dealt with map tasks in
parallel. This step of mapping is then followed by a step
of reducing tasks. These reduce tasks use the output of the
maps to compute the result of the job. Some open source
tools for Big Graph mining are proposed, as Pegasus, a big
graph mining system built on top of MapReduce.

It allows to find patterns and anomalies in massive real-
world graphs. Another Big Data Mining initiative is Apache
a scalable machine learning and data mining open source
software based mainly on Hadoop and a collection of hard-
ware, software and design patterns for managing very fast
large-scale data at very low cost and using BIDMat an in-
teractive matrix library that integrates CPU and GPU accel-
eration.

For what concerns the text analysis, Morphosemantic ap-
proaches similar to the one proposed here have been al-
ready proposed for many languages and applied to the med-
ical domain. Works that deserve to be mentioned are Pratt
on the identification and on the transformation of terminal
morphemes in the English medical dictionary; Wolff on the
classification of the medical lexicon based on formative el-
ements of Latin and Greek origin; Pacak et al. on the dis-
eases words ending in -itis; Norton e Pacak on the surgi-
cal operation words ending in -ectomy or -stomy; Dujols et
al.on the suffix -osis. Between the nineties and the 2000,
many studies have been published on the automatic popula-

DOI reference number: 10.18293/DMSVLSS2017-004

92

tion of thesauri, we recollect among others Lovis et al.,that
derives the meaning of the words from the morphemes that
compose them; Lovis et al. that identifies ICD codes in di-
agnoses written in different languages; Hahn et al.that seg-
ments the subwords in order to recognise and extract med-
ical documents; and Grabar e Zweigenbaumthat uses ma-
chine learning methods on the morphological data of the
thesaurus SNOMED (French, Russian, English). Several
works focused the problem to the definition and the imple-
mentation of a comprehensive architecture for information
structuring, while the work is dedicated to resolve the issue
of ensuring semantic interoperability of different entities by
mapping the content of different corpora on a set of shared
concepts.

For what concerns the decision support system in lit-
erature they are usually categorized in two typologies,
Knowledge-based and non-Knowledge-based [13], [25].
The firsts are accurately described in [22]. AAPHelp, cre-
ated in 1972, was an early attempt to implement auto-
mated reasoning under uncertainty. Other systems are As-
bru, EON and PRODIGY [32]; PROforma, SAGE [31];
and the Clinical Reminder System [20]. The last one is
based on the [29] Evidence-based medicine and provides
evidence-based clinical guidelines. A more detailed and
systematic overview on many other CDSS is described in
[19]. Recently, many studies focused on medical informa-
tion extraction from structured or unstructured texts. Fette
[18] presents a IE systems that integrates medical unstruc-
tured information into a clinical data warehouse to trans-
form into a structured format the information inserted by
physicians in a clinical information system. Rink [28] pro-
poses a method for the automatic extraction of medical con-
cepts and relations from electronic medical reports. Medi-
cal concepts are extracted with supervised machine learn-
ing algorithms. Several knowledge sources are used for
feature extraction: a semantic role labeller, a POS tagger,
a phrase chunk parser, WordNet, Wikipedia and the Gen-
eral Inquirer lexicon. Doan [17] introduced an automated
system to extract medications and related information from
discharge summaries. The researchers developed an inte-
grated system adapting some existing NLP tools. In order
to proper model data, several approach have been proposed
[23, 24, 5]. Moreover, to efficiently process huge amount of
data, several approach regarding hardware implementation
of data processing tools are developed[2, 3]. In particular,
in[11] and [10] authors proposed an hardware implemen-
tation of a Decision Tree based multi-classification system
traffic analyzer . The system is able to deal with a huge
amount of data and tight constraints, such as power con-
sumption and hardware resources. In[9] a traffic analysis
hardware accelerator, based on the Decision Tree model, is
presented through an infrastructure which collects data from
mobile devices and provide them update versions of the an-

alyzer by exploit new traffic information[8]. Moreover, in
the field of data protection, in [12] authors proposed a se-
cure infrastructure to protect intellectual property installed
on the FPGA by means of partial dynamic configuration.

2 A Social Network Analysis Methodology

The predominant approach to analyze social network is
the graph theory, even though it is largely debated. This
theory derives from the studies of Euler and provides us a
way for studying Networks of any kind. In social networks
the single user or groups of users are represented as a point
and their relation are represented as lines. The data ob-
tained from these graphs are then recorded in matrix form,
in this way we can study directly the data without drawing
the graph, that helps a lot when we are facing large social
network data sets. To the lines connecting points in the dia-
gram we can assign a direction in order to determine which
point influence the other and to that influence we can also
assign a value to represent the strength of that relation.

2.1 Text Analysis Tools

2.1.1 TaLTac

TaLTaC (Trattamento automatico Lessicale e Testuale per
lanalisi del Contenuto di un Corpus, Lexical and Tex-
tual automatic processing for analyzing the Content of a
Corpus)[30] is a software able to perform on documents
and data written in natural language operations like: Text
Analysis, Text Mining and Corpus Analysis. It has been de-
veloped in Italy from the conjunction of the University of
Salerno and University La Sapienza of Rome. The first task
to do in our environment is creating a Work Session, which
is the file that is going to contain all our information, then
we build the Corpus, our main object, which will be ana-
lyzed with various instruments and operations. The Corpus
is then divided in two parts: fragment and section. The first
is identified by four asterisks (****) a name and some vari-
ables, if needed, identified themselves with an asterisk, a
name and a value. The latter is defined with four plus signs
(++++) and a name. Every Corpus can contain more frag-
ments and sections. One of the main functions of TaLTaC
is the extraction of significant information from the Corpus
(Text Mining), such task uses endogenous and exogenous
resources: the former is composed of the number of frag-
ments and the categorical variables which can be associated
to the text in order to identify fraction of the corpus logically
related. Thanks to this kind of resource TaLTaC is able to
perform a Specificity Analysis. The exogenous resources
are lists which contain the frequency of a term or lexical
unit, thanks to these lists the software is able to identify pe-
culiar language of the text.

93

2.1.2 Gate

GATE (General Architecture for Text Engineering) [27] is
a open source free software which excels at Text Analysis.
The first version was written in the mid-1990s and it has
reached currently version 8. The main resource of this pro-
gram is ANNIE (A Nearly New Information Extraction Sys-
tem), which provides a lot of information extraction tech-
niques such as the English Tokeniser which splits the text
into annotations of type Token or the POS Tagger that as-
signs to every token an annotation that describes its char-
acteristic (i.e NNP for Proper Noun in singular form) and
more. The Gate software is a family made up of:

• an IDE, Gate Developer

• a web app, Gate Teamware

• a framework, Gate Embedded

2.2 The Methodology

In order to achieve a fine analysis of our data we applied
different types of operations.

2.2.1 Text Pre-treatment

This is the first process to be applied on text, in order to ob-
tain a clear analysis in the successive processes. It is made
up of the following phases. Normalization: This phase
allows to remove any data duplication and it normalizes the
writings of names, acronyms and other entities. In order to
achieve these goals we have to execute various tasks:

• Change apostrophes into stresses (for the words that is
needed), in order to determinate the right word;

• Label words/sequence of words so that they can as-
sume the right meaning and are not mistook with oth-
ers expressions (i.e. a name can be mistaken for a
noun, Rose or rose);

• Change of capital letters into lowercase for the words
that are not labeled, if one is labeled we need to ana-
lyze what the label says: if it is a name (of person, of
a city or a general proper name) then it will keep the
capital letter, in other cases it will not.

Correcting Spelling Errors: This phase consists of
comparing a misspelled word with the system dictionary in
order to correct and analyze it in the right way.

2.2.2 Lexical Analysis

Lexical analysis analyzes the segments of the Corpus (a
segment is a sequence of graphic forms separated by a
strong divider). A segment can be easily be defined by

choosing a set of dividers (i.e. punctuation such as .,;)
and then separating the sentences between these elements.
Once we obtained our segments we can estimate various
analysis parameter such as the IS index: this measures the
level of absorption of the segment regard the single ele-
ments which it is made of. Other important operations in
this part of the analysis are the Tagging, which links to
every word a description of the grammatical or semantic
characteristics[16, 1], and the Lexation which identifies the
sequence of words defined during the pretreatment as one
unique entity. Last we define the Corpus key words by
studying the repetition rates , the ones that have a notice-
able standard deviation (considering only the integers) can
be assumed being meaningful.

2.2.3 Textual Analysis

The first step in this analysis is the study of the Concor-
dances in which we can examine the context where every
word or segment we choose is. Then we calculate the TF-
IDF rate which sorts the researchs results according to the
frequency and distribution of the search keyword in the doc-
uments provided. The TF-IDF is equal tf-idf = tf · log N

n
where tf is number of occurrences of an element, and the
remaining part is the logarithm of the ratio between the
number of documents building the Corpus (N) and the num-
ber of documents which present that element (n). Another
import part of Textual Analysis is the co-occurrences identi-
fication, where with co-occurrences we identify those cou-
ple of near elements that repeat in the text. This identifi-
cation is useful to define the primary concepts contained in
the Corpus.

3 Experimental Campaign

Our experimentation aims to analyze online social net-
works data sets in order to derive as much information
as possible. The data set analyzed comes from the social
network Yelp, founded in 2004, which publishes crowd-
sourced reviews about local businesses[33] and it is made
up of 50 tuples structured this way:

• anonymized user name

• anonymized reviewed place

• date of the review

• review

3.1 TaLTac Analysis

Prior starting the analysis we pass through the Text Pre-
treatment, and so after the parsing of the Corpus we normal-
ize (Figure 1) it and compute the sub-occurrences.

94

Figure 1. Text Normalization window

The next phase is the Textual Analysis, here we start
with the identification of the segments, these are saved in
two file: the former is Lista dei Segmenti (con indice IS)
which contains the segments with their relative number of
occurrences, number of elements forming the segment and
the IS index; the latter, named Lista dei segmenti Significa-
tivi is a list of the significant segments. Then we analyze
the specificity of our Corpus together with the computation
of the TFIDF index, these data are saved in the same loca-
tion under the name of: Vocabolario and Lessico. The last
operation of our study is the Textual Analysis with the con-
cordances and co-occurrences computation (Figure 2), the
latter can be found in the file Cooccorrenze e collocazioni
significative.

The results of these operations show that the system
without knowing anything of the data submitted can re-
trieve meaningful information, such as the TFIDF index that
shows how much a word is important in the document, or
the co-occurrences which show the main concepts of the
text thanks to the couple of words that recur all the time.
Unfortunately TaLTac can not perform all the analysis on

Figure 2. Co-occurences window

our data set due to the fact that it is in English and so our
work is not totally complete. Even though our results are
few, they are very significative.

3.2 GATE Analysis

Our first operation with this software is the initialization
of ANNIE with Defaults, once all the Processing Resources
are loaded we run ANNIE and start in sequence:

• Document Reset PR The document reset resource en-
ables the document to be reset to its original state, by
removing all the annotation sets and their contents;

• ANNIE English Tokeniser The tokeniser splits the text
into very simple tokens such as numbers, punctuation
and words of different types;

• ANNIE Gazetteer The role of the gazetteer is to iden-
tify entity names in the text based on lists;

• ANNIE Sentence Splitter The sentence splitter is a cas-
cade of finite-state transducers which segments the text
into sentences;

95

Figure 3. Annie Pipeline

• ANNIE POS Tagger The tagger produces a part-of-
speech tag as an annotation on each word or symbol;

• ANNIE NE Transducer

• ANNIE OrthoMatcher The Orthomatcher module adds
identity relations between named entities found by the
semantic tagger, in order to perform coreference.

Thanks to these operations we can overcome TaLTac lim-
its and run a Grammatical Tag on our data set. It must be
said that our original data have been modified, indeed we
are going to analyze only the review section due to the fact
that in GATE the other information are meaningless.

4 Experimental Results

From our initial data set, made up of more than 5000
tuples, we extracted, as said, our 50 samples from which
we obtained these results:

4.1 TaLTac results

Thanks to TaLTac functions we can say that our pecu-
liar lexicon, shown in Figure 4, is composed by words with
highest occurrences and TFIDF like: games, beer, good,
great, food, place so it is reasonable to assume that the re-
views analyzed talk about a place to eat food, drink beer or

Figure 4. Peculiar lexicon by occurences

play some games and that the main audience thinks that it is
a good place. Other meaningful data are the co-occurrences
which are reported in Figure 2, these elements strengthen
our thoughts about the place reviewed with expressions as:
the bar, a good, a place, beer selection, the games. Last we
took a meaningful word, food, and studied its concordances
through all the Corpus (Figure 5), in order to understand the
context of the lemma.

4.2 GATE results

Thanks to the Tokeniser we can distinguish spaces from
words, and thanks to the Gazetteer and POS Tagger every
word in our data set has a description. At the end of our
analysis with this software we can assert the grammatical
features of our data and we can give even more meaning to
the analysis described in section 4.1.

5 Conclusions

Social networks analysis is an emerging trend among
scholars and researchers in the last years. In literature, there
are various instruments and project to achieve different kind
of analysis, yet in our work, we focused on the analysis
of the content of the text obtained from the social media.
Through our investigation it was possible extracting the hot
topics for the different information sources, as, in our case,
the reviews analyzed. This study can be the starting point of
further analysis on the domain of cybersecurity, through the
detection of text containing dangerous messages, viral mar-
ket advertising, thanks to an analysis of the feedback from
the users or costumers, or information crawling.

96

Figure 5. Concordances of the word “food”

References

[1] M. Albanese, A. D’acierno, V. Moscato, F. Persia, and
A. Picariello. Modeling recommendation as a social
choice problem. pages 329–332, 2010.

[2] F. Amato, M. Barbareschi, V. Casola, and A. Mazzeo.
An fpga-based smart classifier for decision support
systems. Studies in Computational Intelligence,
511:289–299, 2014.

[3] F. Amato, M. Barbareschi, V. Casola, A. Mazzeo, and
S. Romano. Towards automatic generation of hard-
ware classifiers. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 8286
LNCS(PART 2):125–132, 2013.

[4] Flora Amato, Antonino Mazzeo, Vincenzo Moscato,
and Antonio Picariello. A framework for seman-
tic interoperability over the cloud. In Advanced In-
formation Networking and Applications Workshops
(WAINA), 2013 27th International Conference on,
pages 1259–1264. IEEE, 2013.

[5] R. Aversa, B. Di Martino, and F. Moscato. Criti-
cal systems verification in metamorp(h)osy. Lecture
Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 8696 LNCS:119–129, 2014.

[6] Walter Balzano and Maria Rosaria Del Sorbo. Co-
tracks: A new lossy compression schema for tracking
logs data based on multiparametric segmentation. In
Data Compression, Communications and Processing
(CCP), 2011 First International Conference on, pages
168–171. IEEE, 2011.

[7] Walter Balzano and Maria Rosaria Del Sorbo. Se-
tra: A smart framework for gps trajectories’ segmen-
tation. In Intelligent Networking and Collaborative

Systems (INCoS), 2014 International Conference on,
pages 362–368. IEEE, 2014.

[8] Walter Balzano and Fabio Vitale. Dig-park: a smart
parking availability searching method using v2v/v2i
and dgp-class problem. In 31st International Confer-
ence on Advanced Information Networking and Appli-
cations Workshops 2017 Computer Science, 2017.

[9] Mario Barbareschi, Alessandra De Benedictis, An-
tonino Mazzeo, and Antonino Vespoli. Providing mo-
bile traffic analysis as-a-service: Design of a service-
based infrastructure to offer high-accuracy traffic clas-
sifiers based on hardware accelerators. Journal of Dig-
ital Information Management, 13(4):257, 2015.

[10] Mario Barbareschi, Salvatore Del Prete, Francesco
Gargiulo, Antonino Mazzeo, and Carlo Sansone. De-
cision tree-based multiple classifier systems: An fpga
perspective. In International Workshop on Multiple
Classifier Systems, pages 194–205. Springer, 2015.

[11] Mario Barbareschi, Antonino Mazzeo, and Antonino
Vespoli. Malicious traffic analysis on mobile devices:
a hardware solution. International Journal of Big Data
Intelligence, 2(2):117–126, 2015.

[12] Alessandro Cilardo, Mario Barbareschi, and Antonino
Mazzeo. Secure distribution infrastructure for hard-
ware digital contents. IET Computers & Digital Tech-
niques, 8(6):300–310, 2014.

[13] Enrico Coiera. Guide to health informatics. CRC
press, 2015.

[14] Francesco Colace, Massimo De Santo, and Luca
Greco. A probabilistic approach to tweets’ sentiment
classification. In Affective computing and intelligent
interaction (ACII), 2013 humaine association confer-
ence on, pages 37–42. IEEE, 2013.

97

[15] Francesco Colace, Massimo De Santo, Luca Greco,
Vincenzo Moscato, and Antonio Picariello. A col-
laborative user-centered framework for recommend-
ing items in online social networks. Computers in Hu-
man Behavior, 51:694–704, 2015.

[16] A. D’Acierno, V. Moscato, F. Persia, A. Picariello, and
A. Penta. iwin: A summarizer system based on a se-
mantic analysis of web documents. pages 162–169,
2012.

[17] Son Doan, Lisa Bastarache, Sergio Klimkowski,
Joshua C Denny, and Hua Xu. Integrating existing nat-
ural language processing tools for medication extrac-
tion from discharge summaries. Journal of the Ameri-
can Medical Informatics Association, 17(5):528–531,
2010.

[18] Georg Fette, Maximilian Ertl, Anja Wörner, Peter
Kluegl, Stefan Störk, and Frank Puppe. Informa-
tion extraction from unstructured electronic health
records and integration into a data warehouse. In GI-
Jahrestagung, pages 1237–1251, 2012.

[19] Amit X Garg, Neill KJ Adhikari, Heather McDon-
ald, M Patricia Rosas-Arellano, PJ Devereaux, Joseph
Beyene, Justina Sam, and R Brian Haynes. Effects
of computerized clinical decision support systems on
practitioner performance and patient outcomes: a sys-
tematic review. Jama, 293(10):1223–1238, 2005.

[20] U Kang, Duen Horng Chau, and Christos Faloutsos.
Pegasus: Mining billion-scale graphs in the cloud. In
Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on, pages 5341–
5344. IEEE, 2012.

[21] Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. Twitter sentiment analysis: The good
the bad and the omg! Icwsm, 11(538-541):164, 2011.

[22] Randolph A Miller. Medical diagnostic decision sup-
port systemspast, present, and future. Journal of the
American Medical Informatics Association, 1(1):8–
27, 1994.

[23] F. Moscato. Model driven engineering and verification
of composite cloud services in metamorp(h)osy. pages
635–640, 2014.

[24] F. Moscato. Exploiting model profiles in requirements
verification of cloud systems. International Jour-
nal of High Performance Computing and Networking,
8(3):259–274, 2015.

[25] Mark A Musen, Blackford Middleton, and Robert A
Greenes. Clinical decision-support systems. In

Biomedical informatics, pages 643–674. Springer,
2014.

[26] The Apache Hadoop project. Apache hadoop.

[27] The GATE project team. Gate.

[28] Bryan Rink, Sanda Harabagiu, and Kirk Roberts. Au-
tomatic extraction of relations between medical con-
cepts in clinical texts. Journal of the American Medi-
cal Informatics Association, 18(5):594–600, 2011.

[29] David L Sackett, William MC Rosenberg, JA Muir
Gray, R Brian Haynes, and W Scott Richardson. Ev-
idence based medicine: what it is and what it isn’t,
1996.

[30] Adolfo Morrone Sergio Bolasco, Francesco Baiocchi.
Taltac.

[31] Samson W Tu, James R Campbell, Julie Glasgow,
Mark A Nyman, Robert McClure, James McClay,
Craig Parker, Karen M Hrabak, David Berg, Tony
Weida, et al. The sage guideline model: achievements
and overview. Journal of the American Medical Infor-
matics Association, 14(5):589–598, 2007.

[32] Manuela Veloso, Jaime Carbonell, Alicia Perez,
Daniel Borrajo, Eugene Fink, and Jim Blythe. Inte-
grating planning and learning: The prodigy architec-
ture. Journal of Experimental & Theoretical Artificial
Intelligence, 7(1):81–120, 1995.

[33] The Free Encyclopedia Wikipedia. Yelp.

98

Sentiment Analysis on Yelp social network

Flora Amato∗, Francesco Colace+, Giovanni Cozzolino∗, Vincenzo Moscato∗,
Antonio Picariello∗, and Giancarlo Sperli∗

∗Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione DIETI.
University of Naples ”Federico II”, ITALY

Email: {flora.amato,giovanni.cozzolino, vmoscato,picus, giancarlo.sperli}@unina.it
+ Dipartimento di Ingegneria Industriale. DIIN. University of Salerno, ITALY

Email: fcolace@unisa.it

Abstract

In this paper, we propose a novel data model for Mul-
timedia Social Networks, i.e. particular social media net-
works that combine information on users belonging to one
or more social communities together with the content that
is generated and used within the related environments. The
proposed model relies on the hypergraph data structure to
capture and represent in a simple way all the different kinds
of relationships that are typical of social media networks,
and in particular among users and multimedia content. We
also introduce some user and multimedia ranking functions
to enable different applications. Finally, some experiments
concerning effectiveness of the approach for supporting rel-
evant information retrieval activities are reported and dis-
cussed.

1 Introduction

Social media networks provide users an interactive plat-
form to create and share multimedia content such as text,
image, video, audio, and so on. Just as an example, each
minute thousands of tweets are sent on Twitter, several hun-
dreds of hours of videos are uploaded to YouTube, and a
huge quantity of photos are shared on Instagram or up-
loaded to Flickr.

Within these “interest-based” networks, each user inter-
acts with the others through a multimedia content and such
interactions create “social links” that well characterize the
behaviors of involved users in the networks. Here, multime-
dia data seems to play a “key-role” especially if we consider
the Social Network Analysis (SNA) perspective: represent-
ing and understanding user-multimedia interaction mecha-
nisms can be useful to predict user behavior, to model the
evolution of multimedia content and social graphs, to design

human-centric multimedia applications and services and so
on. In particular, several research questions have to be ad-
dressed:

• It possible to exploit multimedia features and the no-
tion of similarity to discover more useful links?

• Can all the different types of user annotations (e.g. tag,
comment, review, etc.) and interactions with multime-
dia objects provide a further support for an advanced
network analysis?

• Is it possible to integrate and efficiently manage in a
unique network the information coming from different
social media networks (for example, a Twitter user has
usually an account also on Instagram or Flickr)?

• How can we deal with a very large volume of data?

• In this context, how is possible to model all the various
relationships among users and multimedia objects[1]?
Are the “graph-based” strategies still the most suitable
solutions?

To capture the described issues, we adopt the term Mul-
timedia Social Networks (MSNs) to indicate “integrated so-
cial media networks that combine the information on users,
belonging to one or more social communities, together with
all the multimedia contents that can be generated and used
within the related environments”.

Actually, the term MSN have been used over the last
years in the literature together with Social Multimedia Net-
work or Social Media Network to indicate information net-
works that leverage multimedia data in a social environ-
ment for several purposes: distributed resource allocation
for multimedia content sharing in cloud-based systems [2],
generation of personalized multimedia information recom-
mendations in response to specific targets of interests [3],

DOI reference number: 10.18293/DMSVLSS2017-014

99

evaluation of the trust relationship among users [4], high di-
mensional video data distribution in social multimedia ap-
plications [5], characterization of user behavior and infor-
mation propagation on the base of multimedia sharing ac-
tivities [6], representation of a social collaboration network
of archeologists for cultural heritage applications [7], just to
cite some of the most recent proposals.

In this paper, inspired by hypergraph based approaches,
we propose a novel data model[8, 9] for Multimedia Social
Networks. Our model provides a solution for representing
MSNs sufficiently general with respect to: i) a particular
social information network, ii) the different kinds of enti-
ties, iii) the different types of relationships, iv) the different
applications[10, 11]. Exploiting hypergraphs, the model al-
lows us to represent in a simple way all the different kinds
of relationships that are typical of a MSN (among multi-
media contents, among users and multimedia content and
among users themselves) and to enable several kinds of ana-
lytics and applications by means[12, 13] of the introduction
of some user and multimedia (global and “topic sensitive”)
ranking functions.

We exploit functionalities of a well know framework for
NLP processing, GATE [14] in order to extract relevant in-
formation from the famous online social network Yelp.

The paper is organized as in the following. Section 2
describes in details and using different examples our model
with its properties and foundations. Section 3 shows the
obtained experimental results using a standard Yelp dataset,
while Section 4 reports conclusions and the future work.

2 The MSN data model

2.1 Basic Concepts

In our vision, a MSN is basically composed by three dif-
ferent entities:

• Users - the set of persons and organizations constitut-
ing the particular social community[15, 16]. Several
information concerning their profile, interests, prefer-
ences, etc. can be exploited by our model.

• Multimedia Objects - the set of multimedia resources
(i.e. images, video, audio, etc.) that can be shared
within a MSN community. High level (metadata) and
low level information (features) can be properly used
in our model.

• Annotation Assests - the most significant terms or
named entities - whose definition can be retrieved from
dictionaries, ontologies and so on - of a given domain,
or topics, exploited by users to annotate multimedia
data and derived from the analysis of textual informa-
tion such as keywords, labels, tags, comments etc.

Several types of relationships can be established among
the described entities: for example, a user can annotate an
image with a particular tag, two friends can comment the
same post, a user can tag another user in a photo, a user can
share some videos within a group and so on.

Due to the variety and complexity of these relationships,
we decided to leverage the hypergraph formalism to model
a MSN. In particular, our model relies on several concepts,
Multimedia Social Network (seen as particular a weighted
hypergraph) and social paths (i.e. hyperpaths), which basic
definitions are provided in the following.

Definition 2.1 (MSN) A Multimedia Social Network
MSN is a triple (V ;He = {ei : i ∈ I};ω), V being
a finite set of vertices, He a set of hyperedges with a
finite set of indexes I and ω : He → [0, 1] a weight
function. The set of vertices is defined as V = U ∪M ∪A,
U being the set of MSN users, M the set of multimedia
objects and A the set of annotation assets. Each hy-
peredge ei ∈ He is in turn defined by a ordered pair
ei = (e+i = (V +

ei , i); e
−
i = (i, V −

ei)). The element e+i is
called the tail of the hyperarc ei whereas e−i is its head,
V +
ei ⊆ V being the set of vertices of e+i , V −

ei ⊆ V the set of
vertices of e−i and Vei = V +

ei ∪ V
−
ei the subset of vertices

constituting the whole hyperedge.

Actually, vertices and hyperedges are abstract data types
with a set of properties (attributes and methods) that permit
to support several applications. We use the “dot notation” to
identify the attributes of a given vertex or hyperedge: as an
example, ei.id, ei.name, ei.time and ei.type represent the id,
name, timestamp and type of the hyperedge ei, respectively.

In addition, the weight function can be used to define the
confidence or uncertainty of a given relationship in terms of
probability, fuzzy membership, etc.

Definition 2.2 (Social path) A social path between vertices
vs1 and vsk of a MSN is a sequence of distinct ver-
tices and hyperedges vs1 , es1 , vs2 , ..., esk−1

, vsk such that
{vsi , vsi+1

} ⊆ Vesi for 1≤ i ≤ k − 1. The length of

the hyperpath is α ·
∑k−1
i=1 ·

1
ω(esi)

, α being a normalizing
factor. We say that a social path contains a vertex vh if
∃esi : vh ∈ esi .

Social paths between two nodes leverage the different
kinds of relationships (see Section 3.2): a given path can
“directly” connect two users because they are “friends” or
members of the same group, or “indirectly”, as they have
shared the same picture or commented the same video.

2.2 Relationships

Analyzing the different types of relationships that can
be established in the main social media networks, we have
identified three categories:

100

• User to User relationships, describing user actions to-
wards other users;

• Similarity relationships, describing a relatedness be-
tween two multimedia objects, users or annotation as-
sets;

• User to Multimedia relationships, describing user
actions on multimedia objects, eventually involving
some annotation assets or other users.

Definition 2.3 (User to User relationship) Let Û ⊆ U a
subset of users in a MSN, we define user to user relationship
a hyperedge ei with the following properties:

1. V +
ei = uk such that uk ∈ Û ,

2. V −
ei = Û − uk.

The weight function for such relationship returns as value
Ĥkj

Hk
, Ĥkj being the average number of distinct user to user

social paths between uk and uj for each uj ∈ Û − uk, and
Hk the number of user to user paths having as initial vertex
uk

1.

Examples of “user to user” relationships are represented
by friendship, following or membership in On-line Social
Networks[17]. To better explain this type of relationships,
we provide in Figure 1 an example of friendship relation-
ship.

Figure 1. Friendship relationship

Definition 2.4 (Similarity relationship) Let vk, vj ∈ V
(k 6= j) two vertices of the same type of a MSN, we de-
fine similarity relationship a hyperedge ei with the following
properties:

1. V +
ei = vk,

2. V −
ei = vj .

The weight function for this relationship returns similarity
value between the two vertices.

1In this case ω represents the strengthness of the relationship between
two users with respect to the other users.

The similarity relationships are defined on the top of a
similarity function fsim : V × V → R. It is possible to
compute a similarity value:

• between two users by considering different types of
features (interests, profile information, preferences,
etc.);

• between two multimedia objects using the well-known
(high and low level) features and metrics proposed in
the literature;

• between two annotation assets exploiting the related
topics and the well-known metrics on vocabularies or
ontologies.

In our model, a similarity hyperedge is effectively gen-
erated if ω(~ei) ≥ γ, γ being a given threshold. To better
explain this type of relationships, we provide in Figure 2 an
example of multimedia similarity relationship.

Figure 2. Multimedia similarity relationship

Definition 2.5 (User to Multimedia relationship) Let
Û ⊆ U a set of users in a MSN and M̂ ⊆M a set of multi-
media objects, we define user to multimedia relationship an
hyperedge ei with the following properties:

1. V +
ei = uk such that uk ∈ Û ,

2. V −
ei ⊇ M̂ .

The weight function for such relationship reurns as value
Ĥkj

Hk
, Ĥkj being the average number of distinct user to mul-

timedia social paths between uk and mj for each mj ∈ M̂ ,
and Hk the number of user to multimedia paths having as
initial vertex uk2.

Examples of “user to multimedia” relationships are rep-
resented, as an example, by publishing, reaction, annotation
(in this case the set V −

ei also contains one or more annota-
tion assets) or user tagging (involving also one ore more
users) activities. To better explain this type of relationships,
we provide in Figure 3 an example of multimedia tagging
relationship.

2In this case ω represents the strengthness of the relationship between
a user and a given multimedia object with respect to the other objects.

101

Figure 3. Multimedia tagging

2.3 Ranking functions

Ranking functions can be profitably used to “rank” users
and multimedia objects in a MSN in an absolute way or with
respect to a given topic of interest. Let us first introduce
some preliminary definitions.

Definition 2.6 (Distances) We define minimum distance
(dmin(vi, vj)), maximum distance (dmax(vi, vj)) and aver-
age distance (davg(vi, vj)) between two vertices of a MSN
the length of the shortest hyperpath, the length of the longest
hyperpath and the average length of the hyperpaths between
vi and vj , respectively. In a similar manner, we define the
minimum distance (dmin(vi, vj |vk)), maximum distance
(dmax(vi, vj |vk)) and average distance (davg(vi, vj |vk))
between two vertices vi and vj , for which there exists a hy-
perpath containing vk.

In the computation of distances, we apply a penalty if the
considered hyperpaths contain some users: all the distances
can be computed as d̃(vi, vj) = d(vi, vj) + log(β · N), N
being the number of user vertices in the hyperpath between
vi and vj and β a scaling factor3.

Definition 2.7 (λ-Nearest Neighbors Set) Given a vertex
vi ∈ V of a MSN, we define the λ-Nearest Neighbors Set
of vi the subset of vertices NNλ

i such that ∀vj ∈ NNλ
i

we have d̃min(vi, vj) ≤ λ with vj ∈ U . Considering only
the constrained hyperpaths containing a vertex vk, we de-
note with NNλ

ik the set of nearest neighbors of vi such that
∀vj ∈ NNλ

ik we have d̃min(vi, vj |vk) ≤ λ.

If we consider as neighbors only vertices belonging to
user type, the NNλ set is called λ-Nearest Users Set and
denoted as NNUλ, similarly in case of multimedia objects
we define the λ-Nearest Objects Set as NNOλ . On the
top of such definitions, we are able to introduce the ranking
functions.

3Such strategy is necessary in the ranking to penalize lurkers, i.e.users
of a MSN that are quite inactive and not directly interact with multimedia
content but through user to user relationships.

Definition 2.8 (User Ranking function) Given a user
ui ∈ U and a subset of users Û ⊆ U(ui /∈ Û) of a MSN, a
user ranking function is a particular function ρ : U → [0, 1]
able to associate a specific rank to the user ui with respect
to the community Û that is computed as in the following:

ρui

(
Û
)
=

∣∣∣NNUλui
∩ Û

∣∣∣∣∣∣Û ∣∣∣ (1)

NNUλi being the λ-Nearest Users Set of ui.

Definition 2.9 (Multimedia Ranking function) Given a
multimedia object mi ∈ M and a subset of users Û ⊆ U
of a MSN, a multimedia ranking function is a particular
function ρ : M → [0, 1] able to associate a specific rank
to the object mi with respect to the community Û that is
computed as in the following:

ρmi

(
Û
)
=

∣∣∣NNUλmi
∩ Û

∣∣∣∣∣∣Û ∣∣∣ (2)

NNUλmi
being the λ-Nearest Users Set of mi.

In a similar manner, considering only hyperpaths con-
taining a given topic aj we can define the topic sensitive

user (ρajui

(
Û
)

) and multimedia (ρajmi

(
Û
)

) ranking func-
tions.

Definition 2.10 (Topic User Ranking function) Given a
user ui ∈ U and a subset of users Û ⊆ U(ui /∈ Û) of a
MSN, a topic user ranking function is a particular function
ρau : U ×A→ [0, 1] able to associate a specific rank to the
user ui with respect to the community Û given the topic aj
that is computed as in the following:

ρajui

(
Û
)
=

∣∣∣NNλ
ij ∩ Û

∣∣∣∣∣∣Û ∣∣∣ (3)

NNλ
uij

being the λ-Nearest Users Set of ui given aj .

Definition 2.11 (Topic Multimedia Ranking function)
Given a multimedia object mi ∈ M and a subset of users
Û ⊆ U of a MSN, a multimedia ranking function is a par-
ticular function ρam : M × A → [0, 1] able to associate a
specific rank to the object mi with respect to the community
Û given the topic aj that is computed as in the following:

ρajmi

(
Û
)
=

∣∣∣NNλ
kj ∩ Û

∣∣∣∣∣∣Û ∣∣∣ (4)

NNλ
mij

being the λ-Nearest Users Set of mi given aj .

102

Figure 4. Proposed prototype

In our model the concept of rank of a given node is re-
lated to the concept of influence, and in our vision it can be
measured by the number of user nodes that are “reachable”
within a certain number of steps using social paths.

By similarity relationships paths can be “implicitly” in-
stantiated: two users (that are not friend, do not belong to
any group and do not share any multimedia object) have an-
notated two images that are very similar, or they have com-
mented two different posts which concern similar topics.

3 Methodology to extract information by So-
cial Network

In order to apply our ranking evaluation we have to ex-
tract information about the posts of the customers of an On-
line Social Network. In this section, we describe our analy-
ses performed on Yelp social network.
The Dataset used for the experimentation is given by Yelp
website, it is is composed by: 4.1 millions of reviews, 947
thousands of tips posted by 1 million users for 144 thou-
sands of businesses.

In order to obtain information about each review, we
used Gate NLP Tool developed by University of Sheffield
(https://gate.ac.uk).

Gate is an open source software able to solve many text-
processing problems. This tool is plugin-based so is pos-
sible to customize the processing steps adding or removing
modules, in order to obtain different results.
Gate components are specialized types of Java Bean and are
of three type:

• Language resources (LRs): entities such as lexicons,
corpora or ontologies.

• Processing resources (PRs): entities such as parsers,
generators or ngram modellers.

• Visual resources (VRs): visualization and editing com-
ponents

Gate’s CORE, for its structure, is named CREOLE: Col-
lection of Reusable Objects for Language Engineering.

Because Yelp reviews are encoded as a set of JSON tu-
ples, a semi-structured data type, we needed to store this
dataset into a NoSQL Database. We chose CouchDB, a
Document-Oriented Database by Apache Foundation.

CouchDB is a schemaless database with an intuitive
HTTP/JSON API. It speaks JSON natively so it is what we
needed. To perform analysis on each review, we used an Of-
ficial plugin of the GATE framework, developed for Twitter.

The pipeline used in this plug-in is composed by:

• Document reset:for resetting the default annotation set;

• TwitIE: a pipeline specialized to analyze tweets.

• Gate Morphological Analyzer: taking as input a to-
kenized GATE document. Considering one token
and its part of speech tag, one at a time, it identi-
fies its lemma. LanguageProcessingGaz: an ANNIE
Gazetteer. The role of the gazetteer is to identify entity
names in the text based on lists.

103

Figure 5. Review Analysis Pipeline

Figure 6. TwitIE Pipeline

• Verb Lists Extended Gazetteer: an extended version of
the Gate Default List Gazetteer.

• Noun Phrase Chunker: The NP Chunker application
is a Java implementation of the Ramshaw and Mar-
cus BaseNP chunker which attempts to insert brackets
marking noun phrases in text which have been marked
with POS tags

• ANNIE VP Chunker: The rule-based verb chunker,
based on a number of English grammars.

• Entity Conversion, ANNIE NE Transducer: a seman-
tic tagger. It contains rules, which act on annotations
assigned in earlier phases, in order to produce outputs
of annotated entities.

• Opinion Grammar, ANNIE NE Transducer.

• TwitIE is a specialized pipeline that is composed by
many components.

The core of this application is TextCat Language Identifi-
cation and a huge set of gazetteers customized to recognize
hashtags and emojis.
TextCat Language Identification is necessary because our
dataset is composed by reviews written in English, French
and Deutsch natural language. TwitIE is the lexical and se-
mantic analyzer in our pipeline and its results allow to per-
form deeper text analysis.

We use the described GATE functionalities in order to
analyze the set of reviews. We have to set the documents
parameters.

We create a Corpus from the input Documents.
We launch the system functionalities by selecting the

Application English-OM and set the corpus to analyze.
After the computation ended, we to check the results
Double-click on Document, click on Annotation Sets and
Annotation List to view tags.
Each sentence that have a sentiment[18], will be tagged as
SentenceSentiment with a set of Features[19], that are cus-
tomizable using a JAPE Grammar: a set of phases, each of
which consists of a set of pattern/action rules. The phases
run sequentially and constitute a cascade of finite state
transducers over annotations. The left-hand-side (LHS) of
the rules consist of an annotation pattern description. The
right-hand-side (RHS) consists of annotation manipulation
statements.

In order to manage the 4.1 millions of reviews compos-
ing the dataset, we created a batch java program that up-
loaded the reviews as Document on CouchDB. After that,
our program perform a HTTP GET request to database to
obtain, for each single file, the text of the review, executing
Gate on it, load Sentiment parameters and perform the Sen-
timent Analysis. The last step is to update the Document on
CouchDB, performing an HTTP PUT request. The obtained

Figure 7. Corpus Selection

104

Figure 8. Document Annotations View

Figure 9. Information about reviews

Figure 10. Obtained Output

information are structured in two fields:
Score, representing the sentiment of the entire review. It

is the mean value of the single sentences score. Sentences,
which is an array of sentences that generated Score.

4 Conclusions and Future Work

In this paper we described a data model for Multime-
dia Social Networks, extracting and modelling information
about users. Inspired by hypergraph based approaches,
our model provides a solution for representing MSNs suf-
ficiently general with respect to: i) a particular social in-
formation network, ii) the different kinds of entities, iii)
the different types of relationships, iv) the different appli-
cations.

We developed a methodology using a combination of
modules applications provided by GATE NLP toolkit, that
allows the extraction of relevant information from post re-
lated to the online social network Yelp.

As future work, we are planning to exploit the introduced
ranking functions to support multimedia recommendation
and influence analysis applications, in order to perform an
experimental evaluation of the proposed model.

References

[1] F. Moscato, “Exploiting model profiles in require-
ments verification of cloud systems,” International
Journal of High Performance Computing and Net-
working, vol. 8, no. 3, pp. 259–274, 2015.

[2] G. Nan, C. Zang, R. Dou, and M. Li, “Pricing
and resource allocation for multimedia social network
in cloud environments,” Knowledge-Based Systems,
vol. 88, pp. 1 – 11, 2015.

[3] D. Liu, G. Ye, C.-T. Chen, S. Yan, and S.-F. Chang,
“Hybrid social media network,” in Proceedings of the
20th ACM international conference on Multimedia.
ACM, 2012, pp. 659–668.

[4] Z. Zhang and K. Wang, “A trust model for multimedia
social networks,” Social Network Analysis and Min-
ing, vol. 3, no. 4, pp. 969–979, 2013.

[5] X. Ji, Q. Wang, B.-W. Chen, S. Rho, C. J. Kuo, and
Q. Dai, “Online distribution and interaction of video
data in social multimedia network,” Multimedia Tools
and Applications, pp. 1–14, 2014.

[6] F. T. O’Donovan, C. Fournelle, S. Gaffigan,
O. Brdiczka, J. Shen, J. Liu, and K. E. Moore, “Char-
acterizing user behavior and information propagation
on a social multimedia network,” in Multimedia and

105

Expo Workshops (ICMEW), 2013 IEEE International
Conference on. IEEE, 2013, pp. 1–6.

[7] V. Moscato, A. Picariello, and V. Subrahmanian,
“Multimedia social networks for cultural heritage ap-
plications: the givas project,” in Data Management in
Pervasive Systems. Springer, 2015, pp. 169–182.

[8] B. Di Martino and F. Moscato, “An ontology based
methodology for automated algorithms recognition in
source code,” 2010, pp. 1111–1116.

[9] F. Moscato, “Model driven engineering and verifica-
tion of composite cloud services in metamorp(h)osy,”
2014, pp. 635–640.

[10] F. Amato, A. Mazzeo, V. Moscato, and A. Picariello,
“A framework for semantic interoperability over the
cloud,” in Advanced Information Networking and Ap-
plications Workshops (WAINA), 2013 27th Interna-
tional Conference on. IEEE, 2013, pp. 1259–1264.

[11] F. Amato, M. Barbareschi, V. Casola, and A. Mazzeo,
“An fpga-based smart classifier for decision support
systems,” in Intelligent Distributed Computing VII.
Springer, 2014, pp. 289–299.

[12] M. Albanese, A. d’Acierno, V. Moscato, F. Persia, and
A. Picariello, “A multimedia recommender system,”
ACM Transactions on Internet Technology (TOIT),
vol. 13, no. 1, p. 3, 2013.

[13] V. Moscato, A. Picariello, and A. M. Rinaldi, “To-
wards a user based recommendation strategy for dig-
ital ecosystems,” Knowledge-Based Systems, vol. 37,
pp. 165–175, 2013.

[14] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan, “A framework and graphical development
environment for robust nlp tools and applications.” in
ACL, 2002, pp. 168–175.

[15] W. Balzano, M. R. Del Sorbo, and S. Stranieri, “A
logic framework for c2c network management,” in
Advanced Information Networking and Applications
Workshops (WAINA), 2016 30th International Confer-
ence on. IEEE, 2016, pp. 52–57.

[16] W. Balzano, M. R. Del Sorbo, A. Murano, and
S. Stranieri, “A logic-based clustering approach for
cooperative traffic control systems,” in International
Conference on P2P, Parallel, Grid, Cloud and Inter-
net Computing. Springer, 2016, pp. 737–746.

[17] W. Balzano, A. Murano, and F. Vitale, “V2v-en–
vehicle-2-vehicle elastic network,” Procedia Com-
puter Science, vol. 98, pp. 497–502, 2016.

[18] F. Colace, M. De Santo, and L. Greco, “A probabilis-
tic approach to tweets’ sentiment classification,” in Af-
fective computing and intelligent interaction (ACII),
2013 humaine association conference on. IEEE,
2013, pp. 37–42.

[19] F. Colace, M. De Santo, L. Greco, V. Moscato, and
A. Picariello, “A collaborative user-centered frame-
work for recommending items in online social net-
works,” Computers in Human Behavior, vol. 51, pp.
694–704, 2015.

106

Ergodic Hidden Markov Models

for Workload Characterization Problems

Alfredo Cuzzocrea
DIA Dept., University of Trieste and ICAR-CNR, Italy

alfredo.cuzzocrea@dia.units.it

Enzo Mumolo
DIA Dept., University of Trieste, Italy

mumolo@units.it

Gianni Vercelli
DIBRIS Dept., University of Genova, Italy

gianni.vercelli@unige.it

June 3, 2017

Abstract

We present a novel approach for accurate character-
ization of workloads. Workloads are generally de-
scribed with statistical models and are based on the
analysis of resource requests measurements of a run-
ning program. In this paper we propose to con-
sider the sequence of virtual memory references gen-
erated from a program during its execution as a tem-
poral series, and to use spectral analysis principles
to process the sequence. However, the sequence is
time-varying, so we employed processing approaches
based on Ergodic Continuous Hidden Markov Mod-
els (ECHMMs) which extend conventional stationary
spectral analysis approaches to the analysis of time-
varying sequences.

In this work, we describe two applications of the
proposed approach: the on-line classification of a run-
ning process and the generation of synthetic traces of
a given workload. The first step was to show that
ECHMMs accurately describe virtual memory se-
quences; to this goal a different ECHMM was trained
for each sequence and the related run-time average
process classification accuracy, evaluated using trace
driven simulations over a wide range of traces of
SPEC2000, was about 82%. Then, a single ECHMM
was trained using all the sequences obtained from a

given running application; again, the classification
accuracy has been evaluated using the same traces
and it resulted about 76%. As regards the synthetic
trace generation, a single ECHMM characterizing a
given application has been used as a stochastic gen-
erator to produce benchmarks for spanning a large
application space.

1 Introduction

Performance evaluation of computer systems requires
to test different alternatives under identical condi-
tions. However, a real computing environment is
generally not repeatable, and for this reason it is nec-
essary to characterize the workload by developing a
workload model that can be used repeatedly. Once a
workload model is available, changes in the workload
and in the system can be studied under controlled
conditions.

As pointed out in [1], workload characterization us-
ing a model plays a fundamental role in many areas,
namely to understand the key resource usage of appli-
cations, to tune computer architectures, to validate
trace reduction mechanisms, to guide the selection of
programs for obtaining benchmark sets, to generate
synthetic traces to span application spaces, and to
create abstract program behavior models for perfor-

DOI reference number: 10.18293/DMSVLSS2017-020

107

mance studies of computer systems.
Workloads are typically modeled as stochastic pro-

cesses and analyzed with statistical techniques [3] [4].
This is because different benchmarks are obtained
from a single application for different inputs, and
the only way to describe all the potential application
space is through the extraction from the running ap-
plication of suitable parameters which describes the
main features of the workload.

A running application thus produces a huge
amount of data; the only way to analyze such data
is by means of statistical techniques. In this paper
we propose to use ergodic Hidden Markov Models
as statistical models of workloads. Our approach is
based on the idea to treat the sequences of memory
page references produced by a running application
as time-varying discrete-time series of data and to
analyze them with statistical techniques using spec-
tral parameters. The proposed methodology operates
as follows: the page references sequences obtained
from a running application is divided into segments
of some hundreds of page numbers, and each piece is
then described with a vector of spectral parameters.
Chunks of references are formed by some hundreds
of such vectors; the chunks are then used to estimate
the parameters of a Hidden Markov Model. Repeat-
ing this operation for each running application, we
compute a HMM model of the application. The ac-
curacy of such models has been estimated as quite
good.

By considering a number of workloads obtained
from the same type of application, and re-estimating
the parameters of a single Hidden Markov Model, a
statistical model of that type of application can be
computed. In this way, we have obtained models for
several application types, as described in 1.1. In this
paper, models have been used in two ways: to de-
termine to which application type belongs a running
application and to generate synthetic traces. Both
these points are very important from a computer ar-
chitecture perspective. As regards the benchmark
classification, it is important to note that using our
approach the classification is possible in run-time, i.e.
during the application execution, since the computa-
tional complexity is quite low. As regards the syn-
thetic traces generation, HMMs can indeed be viewed

as generators of observations, in our case allowing to
cover a large application space for computer architec-
ture studies and designs [5].

Virtual time

P
a
g
e

r
e
f
e
r
e
n
c
e
s

n
u
m
b
e
r

Figure 1: Graphical view of a portion of a sequence
of page references.

1.1 Methodology

We used traces-driven simulations to test the pro-
posed approach. The traces were a subset of the
SPEC2000 benchmark suite [2], as reported in Tab. 1.

Total number of
Benchmark Category page references

Bzip2 compression 519960950
Crafty chess game 322625985
Eon ray traces 526065045
Gcc C compiler 646344471
Gzip compression 477528457
Perl Perl interpreter 351047065
Twolf place and route simulator 5246007019
Vpr FPGA placement and routing 2240811177

Table 1: The traces used in this work.

CPU address traces have been obtained by run-
ning the applications of Tab. 1 with different input
data; several executions of each application have been

108

considered. The applications of Tab. 1 run on a Pen-
tium 2 processor at 450 MHz under Windows NT
operating system. The benchmarks were downloaded
from www.byu.com. In Fig. 1 a part of a page refer-
ences trace (16000 virtual time instants) is shown.
This figure illustrates the time-varying characteristic
of the trace.

The rest of this paper is organized as follows. In
Section 2 the properties of HMMs are described to-
gether with the considered workload parameters. In
Section 3 the workload classification methodologies
based on HMM are described while in Section 4 the
generation of synthetic traces with HMMs is briefly
reported. Finally, in Section 5 some final remarks are
reported.

2 Hidden Markov Models for
Workload Classification

2.1 Parameters

The page references are produced at a CPU instruc-
tion clock rate, because each virtual memory address
is translated to a virtual page reference. This infor-
mation rate is too high to make reasonable workload
evaluations, and consequently the number of page ref-
erences is too large. Therefore, some feature extrac-
tion must be performed for getting rid of the redun-
dant information and for reducing the data rate. Ac-
cording to the idea of considering the page references
sequence as a signal, we use a spectral description
of the page references sequences. Characteristics in
the sequences, such as for examples loops or sequen-
tial program behaviors, are indeed described in the
spectrum. For instance, loops introduce peaks in the
spectrum while a sequential address sequence pro-
duces a DC component. For example, representing
the sequence of Fig. 1 in the log spectral domain, we
obtain the data shown in Fig. 2.

Since the page references sequence is time vary-
ing, as suggested in Fig. 1, the result of Fig. 2 is
obtained with short-time spectral analysis. In par-
ticular, the sequence of virtual memory pages is di-
vided into short sections – 120 references long – and
analyzed by means of a discrete Fourier transform.

Frequency

Time

lo
g

A
m

pl
itu

de

Figure 2: Log-spectral data of the portion of the page
references sequence shown in Fig. 1.

It is worth noting that Fig. 2 reports a log-spectral
view of the page references trace shown in Fig. 1. In
Fig. 2 it is possible to see how the change of behav-
ior in the trace of Fig. 1 at about 5000 virtual time
instants reflects in the spectral domain. As in the
proposed approach a fundamental issue is related to
the comparison between log-spectral data, it is im-
portant to define a log-spectral distance between two
spectra. To show how to define the log-spectral dis-
tance, let us start with the Euclidean distance defi-
nition between the log spectra of two sequences, xn
and yn:

e(ω) = log |X(ω)|2 − log |Y (ω)|2 =

= 2(log |X(ω)| − log |Y (ω)|) =

= 2Re [log (X(ω))− log (Y (ω))]

where X(ω) =
∑+∞
n=−∞ xne

jωn is the spectrum of
the xn sequence. On the other hand, log(X(ω)) =∑+∞
n=−∞ cne

jωn where cn is the cepstrum sequence [7]
which is obtained applying an inverse Fourier trans-
form to the log spectrum of the input page references
sequence. Hence, calling cxn and cyn the cepstrum of
the xn and yn sequences respectively,

e(ω) = 2Re

[
+∞∑

n=−∞
(cxn − cyn) ejωn

]
=

+∞∑
n=−∞

(cxn − cyn) ejωn

109

because the cn sequences are symmetrical since the
input reference page sequence is real. Finally, the
spectral distance between two sequences xn and yn is

d(X,Y) =
1

2π

∫ π

−π
e2(ω)dω =

+∞∑
n=−∞

(cxn − cyn)
2
.

In conclusion, the spectral distance between the log
spectra is simply the Euclidean distance between the
cepstal sequences.

On the basis of this consideration, we described the
page references sequences with cepstral coefficients.
In Fig. 3 the cepstral representation of the page ref-
erences sequence of Fig. 1 is reported. As shown in

Quefrency

Time

C
ep

st
ru

m
 A

m
pl

itu
de

Figure 3: Cepstral description of the portion of the
page references sequence shown in Fig. 1.

Fig. 2 the change of trace behavior at about 5000
time instants is reflected in the cepstral domain. In
fact, the slow spectral characteristics are seen in the
part around zero in the cepstral domain, in Fig. 3 we
can see that the initial part of the cepstrum is more
spiky around zero reflecting in this way the change of
trace behavior seen in Fig. 1. On the basis of that,
it is useless to consider all the cepstral coefficient to
represent traces; for this reason we used only the first
10 cepstral coefficients.

2.2 Hidden Markov Modeling

Markov models are stochastic interpretations of time
series. The basic Markov model is the Markov
chain, which is represented with a graph composed
by a set of N states; the graph describes the fact
that the probability of the next event depends on
the previous event. The current state is tempo-
rally linked to k states in the past via a set of Nk

transition probabilities. Let us denote the generic
state of the system with St, St ∈ {1, 2, ..., N} and
by a(St|St−1, St−2, . . . , St−k) the probability that the
system is currently in state St given the previously
sequence of states St−1, St−2, . . . , St−k; a() is called
the transition probability for a model of order k. In
homogeneous Markov chains, the transition probabil-
ity depend on the previous state only; in such case the
transition probabilities can be represented by a tran-
sition matrix. If the Markov chain is fully connected,
or ergodic, each state of the model can be reached
from every other state in a single virtual time step.
As regards the macroscopic capabilities of such mod-
els, we can say that the self loops describe a locality
in the process.

Other types of HMMs could better describe the
statistical properties of the observed process. For
example, the left-to-right models have the property
that, as virtual time increases, the state index also
increases; they can therefore model sequences whose
properties change over time in a successive manner.

In general, an homogeneous Markov chain has the
following properties:

1. limited horizon: Prob(St+1|St, St−1, . . . , S1) =
Prob(St+1|St);

2. stationarity: Prob(St+1|St) = Prob(S2|S1).

A Markov chain is therefore described by the transi-
tion matrix A whose elements are ai,j = Prob(St+1 =
j|St = i) and the initial probability vector πi, πi =

Prob(S1 = i),
∑N
i=1 πi = 1. However, in many cases,

Markov models are too simple to describe complex
real systems and signals [8]. In Hidden Markov Mod-
els (HMMs), the output for each state corresponds
to an output probability distribution instead of a de-
terministic event. That is, if the observations are

110

sequences of discrete symbols chosen from a finite al-
phabet, then for each state there is a corresponding
discrete probability distribution which describes the
stochastic process to be modeled. In HMMs, the state
sequence is hidden and can only be observed through
another set of observable stochastic processes. Thus,
the state sequence can only be recovered with a suit-
able algorithm, on the basis of optimization criteria.
It is important to note that the observation proba-
bilities has been so far assumed discrete. In many
cases, however, the observations are continuous fea-
tures vectors. It is possible to convert the continuous
observations into discrete ones using vector quanti-
zation, but in general some performance degradation
due to the quantization process is observed. Hence,
it is important, from a performance point of view,
to use an overall continuous formulation of the algo-
rithms.

Generally speaking, HMMs lead to the three basic
problems:

1. the estimation problem: given the observed
sequence O=O1, O2, . . . , OT , how the model
parameters λ can be adjusted to maximize
Prob(O|λ)? This problem concerns the estima-
tion of the model parameters. This estimation
process is performed by iteratively maximize the
likelihood Prob(O|λ) using an Expectation Max-
imization (EM) approach [9]. The differences
between discrete and continuous HMMs lead to
different re-estimation algorithms for the model
parameters.

2. the evaluation problem: given the observed se-
quence O, the problem is to compute the prob-
ability that the observed sequence whose pro-
duced by the model. This problem can be also
stated as follows: given several HMMs and a se-
quence of observations, how do we choose the
model which best matches the observations?

3. the decoding problem: given the observation se-
quence O, what is the most likely state sequence
S = S1, S2, . . . , ST ? The decoding is usually per-
formed using the Viterbi algorithm.

3 Workload Classification

For dynamic characterization of processes, the ad-
dress field of the BYU traces has been extracted. In
this way we have obtained a sequence of virtual ad-
dresses generated by the processor during the exe-
cution of the processes. For converting the trace of
addresses into trace of virtual pages, the sequence of
addresses has been divided by the page dimension,
which we set to 4096 bytes.

Once the sequence of virtual pages has been ob-
tained from every BYU trace and thus for every pro-
cess, we have tried to use discrete HMMs for their
classification. Even if the sequence of pages is a dis-
crete sequence, it can not be used for processes clas-
sification using discrete HMMs, as it contains a too
high number of symbols.

In order to face this problem, the sequence of vir-
tual pages has been turned into a sequence of few
symbols, without loosing meaningful data. The se-
quence of virtual pages has been turned into sequence
of cepstral coefficients by the short time analysis pro-
cess described in Sec. 2.1.

3.1 Single Trace Classification

The sequences of cepstral coefficients are real number
sequences. For analyzing cepstral sequences using a
discrete HMM, vector quantization is needed. In this
process some degradation is introduced and the train-
ing lacks its efficiency.

A continuous HMM can use an input sequences of
10-dimensional cepstral vectors and vector quantiza-
tion is not needed. The results obtained in this way
usually perform better than using the discrete model.

The multivariate Gaussian density is used for
describing the cepstral observation. The 10-
dimensional cepstral vector is described using a mul-
tivariate density having 10 dimensions, and it is
specified by means of the mean and covariance ma-
trixes. Using this approach it is supposed that the
10-cepstral coefficients are uncorrelated and so the
covariance matrix is diagonal.

In order to choose the number of states and the
topology of the HMMs, several tests have been per-
formed. The number of states needed is lower than

111

in the discrete HMM. Considering topology, ergodic
models score better results.

In Fig. 4 a graphical representation of the mean
classification of all the traces over the number of
states for ergodic and left-right models is depicted.

Left-right CHMM (50 observations)

Left-right CHMM (20 observations)

Ergodic CHMM (100 observations)

Figure 4: Average recognition rate for all the traces
over the number of states of ergodic and left-right
models.

As the models using 4 states provides better re-
sults using a lower number of observation, we have re-
peated experiments using this configuration increas-
ing the number of observations.

Using 100 observations for every model, in the er-
godic case the recognition mean of single traces is
about 82%, in the left-right case this mean is 65%.
In Fig. 5 and in Fig. 6 these results are depicted,
gathering the traces per workload and computing for
every traces group the mean recognition rate.

The ergodic continuous HMMs have been trained
using 100 observations for every model. The recogni-
tion rate varying the number of states and using all
the traces is reported in Fig. 6.

The results obtained using such statistical models
demonstrated the effectiveness of this dynamic pro-
cesses modeling approach. Cepstral coefficient ob-
tained from the virtual pages sequences are a good
parameter for describing traces of programs during
execution.

bzip2 crafty eon gcc gzip perl twolf vpr
0

10

20

30

40

50

60

70

80

90

100

Figure 5: Average classification rate for all the traces
using 16-state ergodic discrete HMMs.

bzip2 crafty eon gcc gzip perl twolf vpr
0

10

20

30

40

50

60

70

80

90

100

Figure 6: Average classification rate for all the traces
with 4-state ergodic continuous HMMs.

bzip2 crafty eon gcc gzip perl twolf vpr
0

10

20

30

40

50

60

70

80

90

100

Figure 7: Average classification rate for all the traces
with 4-state left-right continuous HMMs.

112

3.2 Program Behavior Modeling

Dynamic classification of BYU traces, taking as pa-
rameter the virtual pages, has obtained satisfactory
results. As seen in 3.1, the traces of a single applica-
tion have been obtained processing such application
with different inputs, or processing different functions
of the same program.

Then, we have classified the workloads, gather-
ing the traces of the same workload using a single
HMM trained with several traces representing the
same workload.

Using several traces of the same workload for clas-
sifying program behavior using ergodic discrete and
continuous HMM, we have obtained the results re-
ported in Fig. 8 and in Fig. 9.

bzip2 eon gcc gzip perl vpr
0

10

20

30

40

50

60

70

80

90

100

Figure 8: Workload classification using ergodic dis-
crete HMM.

Bzip2 Eon Gcc Gzip Perl Vpr
0

10

20

30

40

50

60

70

80

90

100

75%

65%

50%

85%

80%

100%

Figure 9: Workload classification using ergodic con-
tinuous HMM.

The mean results obtained in the case of ergodic
discrete and ergodic continuous HMMs are reported
in Tab. 2: ergodic continuous models obtain better
classification accuracy than the discrete ones.

Ergodic Ergodic
Discrete HMM Continuous HMM

Cepstral 65% 76%

Table 2: Workloads classification.

4 Synthetic Trace Generation

A Hidden Markov Model can be used as a generator of
a stochastic process. The procedure is the following:

1. Choose an initial state i according to the initial
distribution π.

2. Set t = 1.

3. Generate a N -dimensional random variable ac-
cording to the characteristic of the multivariate
Gaussian distribution in state i.

4. Perform a state transition according to the tran-
sition probabilities ai,j .

5. Set t = t+ 1. If t < T go to 3, else terminate.

The random variable generated in step 3 is a vector
of cepstral coefficients. This vector must be inverted
to obtain a set of page references.

A result is reported in Fig. 10, where the log-
spectral data of a synthetic trace produced with the
above procedure and the HMM trained with the trace
of Fig. 1 is reported. Fig. 10 should be compared with
Fig. 2.

5 Conclusions and Future
Work

In this paper we describe an approach for workload
characterization using ergodic hidden Markov mod-

113

Frequency

Time

lo
g

A
m

pl
itu

de

Figure 10: Example of synthetic trace generated us-
ing a continuous ergodic HMM represented in the
spectral domain.

els. The page references sequences produced by a
running application are divided into short virtual
time segments and used to train a HMM which mod-
els the sequence and is then used for run-time clas-
sification of the application type and for synthetic
traces generation. The main contribution of our ap-
proach are on one hand that a run-time classification
of the running application type can be performed and
on the other hand that the applications behavior are
modeled in such a way that synthetic benchmarks
can be generated. Using trace-driven simulation with
SPEC2000 benchmarks, the mean classification rate
is about 82% for each traces and about 76% using
a single HMM to model a single application type.
Many future developments of our approach are possi-
ble since what we propose in this paper – to use time-
varying non-linear processing techniques to treat se-
quences produced by programs during execution – is
a novel approach in computer architecture studies. In
addition to this, we believe that another interesting
line of research is represented by the adaption of the
proposed framework to novel big data trends (e.g.,
[10, 11, 12]).

References

[1] L.K. John, P. Vasudevan, J. Sabarinathan, Work-
load characterization: motivation, goals and method-
ology. Workload Characterization: Methodology and
Case Studies, 1998 29 Nov. 1998 Page(s):3 - 14

[2] C. Niki, J. Thornock, K. Flanagan, Using the BACH
Trace Collection Mechanism to Characterize the
SPEC2000 Integer Benchmarks. Proceedings of the
Third IEEE Annual Workshop on Workload Char-
acterization, 2000.

[3] M. Calzarossa, G. Serazzi, Workload Characteriza-
tion: A Survey. Proceedings of the IEEE, vol. 81(8),
1993.

[4] K.J. McDonell, Benchmark Frameworks and Tools
for Modelling the Workload Profile. Performance
evaluation 22, 1995.

[5] J.P. Singh, H.S. Stone, D.F. Thiebaut, A Model
of Workloads and Its Use in Miss-Rate Prediction
for Fully Associative Caches. IEEE Transactions on
Computer, vol.41(7), 1992.

[6] L.R. Rabiner, A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition.
Proceedings of the IEEE, vol.77(2), 1989.

[7] L.R. Rabiner, B.H. Juang, Foundamentals of Speech
Recognition. Prentice Hall Signal Processing Series,
1993.

[8] Y. Bengio, Markovian Models for Sequential Data.
Neural Computing Surveys 2, 1999.

[9] J.A. Bilmes, A Gentle Tutorial of the EM Algo-
rithm and its Application to Parameter Estimation
for Gaussian Mixture and Hidden Markov Models.
Technical Report, TR-97-021, 1997.

[10] A. Cuzzocrea, Privacy and Security of Big Data:
Current Challenges and Future Research Perspec-
tives. ACM PSBD 2014 Proceedings, 2014.

[11] A. Cuzzocrea, U. Matrangolo, Analytical Synopses
for Approximate Query Answering in OLAP Envi-
ronments. DEXA 2004 Proceedings, 2004.

[12] A. Cuzzocrea, G. Fortino, O.F. Rana, Managing
Data and Processes in Cloud-Enabled Large-Scale
Sensor Networks: State-of-the-Art and Future Re-
search Directions. CCGRID 2013 Proceedings, 2013.

114

Work in Progress:
Identifying and Analyzing Original Projects in an
Open-Ended Blocks Programming Environment

Franklyn Turbak, Eni Mustafaraj, and Maja Svanberg
Computer Science Department, Wellesley College

Wellesley, Massachusetts, USA
Email: {fturbak,emustafa,msvanber}@wellesley.edu

Michael Dawson
Independent Researcher

Waltham MA, 02451, USA
Email: mijoda@gmail.com

Abstract—Tens of millions of people have used online blocks
programming environments like App Inventor to learn how
to program and build personally meaningful programs and
apps. We want to improve blocks programming environments
and pedagogies by using learning analytics to identify common
problems and then address them. For most users, there is no
information about which projects are original (built from scratch
by individuals or groups based on their own ideas and current
programming skills) vs. unoriginal (based on tutorials, class
exercises, etc.). To understand what App Inventor users are
learning and what misconceptions they have, we need to filter
out unoriginal projects and focus on original ones.

Here we describe two key aspects of our work in progress
towards this goal. First, we have developed feature-vector rep-
resentations of App Inventor projects that formalize a notion of
structural similarity between them. This representation facilitates
filtering out unoriginal work like tutorials and can be used
within a group of learners to distinguish classroom activities from
original projects. Second, we have developed a graph clustering
technique based on project creation timestamps to discover
groups of App Inventor users that appear to be taking a course
together — essential information for distinguishing original vs.
unoriginal work that is not explicitly represented in our datasets.

I. INTRODUCTION

In blocks programming environments, programs are as-
sembled out of fragments shaped like jigsaw puzzle pieces.
Because they lower barriers to programming [1], these en-
vironments, which include App Inventor, Scratch, Snap!,
Blockly, Pencil Code, and Alice, have become popular ways
for beginners to learn programming concepts and for casual
programmers like scientists and hobbyists to write programs.

For example, MIT App Inventor democratizes mobile app
creation by empowering those without previous programming
or app-building experience to build their own apps [2]. In App
Inventor, an Android mobile app can be created in two stages
in an online browser-based visual programming environment.
First, the user interface components (e.g., buttons, labels, text
boxes, images, canvases) and functional components (e.g.,
camera, sound recorder, GPS location sensor, speech-to-text
converter, speech recognizer) of the app can be configured

DOI reference number: 10.18293/DMSVLSS2017-021

using a drag-and-drop editor. Second, the behavior of the
app is specified by connecting visual blocks that correspond
to abstract syntax tree nodes in a traditional programming
language. Some blocks represent events, conditions, or actions
for a particular app component (e.g., the button has been
pressed, take a picture with the camera) while others represent
standard programming concepts (variable getters and setters,
conditionals, loops, procedures, lists, etc.) Nearly 5 million
registered App Inventor users have created over 19 million
apps, and there are over 350 thousand active monthly users.

Since 2009, the first two authors have used App Inventor in
numerous introductory courses, faculty workshops, and other
activities. In our experience, App Inventor does lower barriers
to making mobile apps. But users often have trouble making
their apps work as desired. Some problems are rooted in
computational thinking bugs. For example, the state variables
of a loop are often improperly initialized in a way that allows it
to behave correctly the first time it is run but not on subsequent
runs. Working aspects of an app can be implemented in overly
complex and roundabout ways. App Inventor programmers
often make multiple copies of existing blocks and screens in
situations where abstraction mechanisms like procedures and
screen templates filled by data would avoid such duplication.

Our long-term goal is to use learning analytics to iden-
tify difficulties encountered by blocks programmers and to
alleviate these difficulties by improving the programming
environments and their associated pedagogies. Towards this
goal, we are currently analyzing two datasets of App Inventor
users collected in the 27 months between Dec. 2013 and Feb.
2016: all projects of 10 thousand randomly chosen users, and
all projects of the 46,320 so-called prolific users, who have
created 20 or more projects.

The open-ended nature of App Inventor and lack of in-
formation about its users presents many challenges for our
research. App Inventor collects no demographic data on users
other than what is provided in an optional survey completed
by only a small percentage of users. For most users, we
have no information on their gender, age, geographic location,
programming background, etc. App Inventor accounts and
projects normally have an email address, but these have been

115

removed from our two large datasets as part of deidentifying
them. Importantly, there is no information associated with
users or projects that explicitly indicates whether a user took
an App Inventor course or whether a project was created as
part of a course or other coordinated activity.

In order to understand conceptual difficulties with App
Inventor, we want to distinguish original projects, in which
users create a project from scratch or significantly enhance
an existing project based on their own ideas and current
programming skills, from unoriginal projects, in which users
create a project by following the steps of an online tutorial
or a guided classroom exercise. We make this distinction for
two reasons: (1) filtering out the unoriginal projects of users
lets us focus on their skill progression and the misconceptions
they have when building original projects; and (2) we can
see whether constrained activities like tutorials and classroom
exercises involving a particular concept help users with that
concept in subsequent open-ended activities.

II. FEATURE VECTORS FOR APP INVENTOR PROJECTS

When applying a learning analytics lens to how users learn
and use App Inventor, it is helpful to formalize a notion
of structural similarity between their mobile app projects.
This notion facilitates filtering out unoriginal work like tuto-
rials when analyzing projects for computational thinking and
promises to be more effective than attempts (e.g., in [3]) based
on project names.

One way to determine structural similarity between two App
Inventor programs is to focus on their abstract syntax trees, and
measure (1) which nodes appear in both trees and (2) which
parent-child relationships appear in both trees. This is the
basis of the particle analysis method developed by Sherman
for determining how far away a student’s project is from
a known desired solution [4]. However, comparing parent-
child relationships between two trees is expensive, leading
to structural comparisons that are likely to be too slow for
analyzing datasets involving millions of programs.

Instead, we represent App Inventor projects as feature
vectors, where features include the types of components and
blocks used in the program. (App Inventor has dozens of
components and over a thousand types of blocks, though a
typical program uses only a small subset of these.) Using
feature vectors has the advantage that we can leverage standard
Python data analysis libraries to determine similarity between
projects by calculating distances between vectors. We are still
experimenting with various dimensions of this feature vector
representation to find the one that best suits our needs. For
example: should the features include both component and
block types or just block types (since the blocks themselves
sometimes contain component information)? Do we simply
care whether a feature is present or not, or do we want
frequency counts for each feature? Should we give less weight
to more common features (known as term frequency–inverse
document frequency (TF-IDF) in the information retrieval
literature)? What is the best way to measure distances between
feature vectors in n-dimensional space? So far our experiments

indicate that the generalized Jaccard metric (which divides the
intersection of feature frequencies by their union) is better than
the Euclidean and Manhattan distance metrics.

We have used the feature vector representation of App
Inventor projects as the basis for hierarchically clustering the
902 projects created by 16 students in an App Inventor CS0
course at our institution [5]. These clusters provide a way
to automatically distinguish original from unoriginal projects
in a class setting. When projects done by many students
are clustered closely together, we consider these projects
to be unoriginal classroom activities. Projects dissimilar to
other projects are considered original, as are projects of a
single student or pairs of students that are clustered closely
together (because they are likely to be different versions of
original individual or pair projects). The automatic original vs.
unoriginal categorization of projects by our algorithm closely
matched the manual labelings we had given them.

III. DISCOVERING COURSES OF APP INVENTOR USERS

The hierarchical clustering technique described above for
distinguishing unoriginal classroom activities from original
projects requires knowing which users were taking a course
together. But in our App Inventor user datasets, there is no
explicit information about which users might be associated
with a course. Nevertheless, projects do carry a timestamp
indicating when they were created. We have developed a
graph clustering technique for co-occurring temporal events
that leverages these timestamps to discover groups of users
who appear to be taking the same course.

The key assumption underlying our technique is that stu-
dents in a course are physically co-located in a classroom,
receiving instruction from an instructor, who often guides
students in creating a project within a relatively short time
interval. If two users create a project around the same time,
this is evidence that they might be in the same course, but it is
not conclusive since this can happen by chance. But because
courses are typically taught over many weeks or months,
there are many opportunities for classmates to create programs
around the same time, and two users who share many project
creation times are likely to be taking a course together.

In one test of our technique, we selected the subset of the
prolific users who created their first project between Aug 15
and Sep 15, 2015. This Fall15 group contained 6012 users.
To find co-occurring events, pairs of project timestamps and
users were created and stored into a single list that was
sorted by the temporal information. Then time windows of
plus/minus five minutes were pivoted on every list item to
find the co-occurring projects in the interval. This information
was used to create graphs in which the nodes are users,
edges indicate that two users created at least one co-occurrent
project, and edge weights represent the frequency of co-
occurrences. After experimenting with raw frequencies, we
decided to use proportional frequencies that take into account
the total number of projects created by a user. The Fall15
graph was large (2,005,796 edges) even though we left out
users who were using the system but were not part of the

116

Fig. 1. Eleven clusters, all with 18 members, discovered for the Fall15 data.
The cluster colored in red corresponds to the user accounts for all students
in a course taught by the first author.

Fall15 group. After several experiments, we decided to filter
out edges with five or less co-occurrences, given that students
in our courses had 15 to 25 co-occurrences in a semester.

After the filtering process, we use the MCL graph clustering
algorithm [6] on the Fall15 graph. This found 462 clusters,
which varied in size from 1 to 84 nodes. Figure 1 depicts
eleven of these clusters, all of size 18. We show these
particular clusters, because one of them belongs to a course
taught by the first author. This cluster (in red, top most-left)
correctly contains all 16 registered students in the class, the
one auditor sitting in on the class, and a previously unknown-
to-us private account used by one of the students (the lonely
node trailing the cluster).

IV. CURRENT STATUS AND FUTURE WORK

We are fine-tuning the choices for project feature vectors
and similarity metric in the context of identifying projects
in our datasets that appear to be created by following online
tutorials. We plan to manually label several hundred projects
by their tutorial status, and determine choices that maximize
the correct identification. We will then identify tutorials in
both our random and prolific datasets and compare some basic
statistics between them. E.g., does one group have a higher
percentage of tutorial projects than another? Are some tutorials
more popular in one dataset than another?

We are also investigating extending our Fall15 course dis-
covery experiment to our entire prolific dataset, and developing
ways to verify that the clusters correspond to users taking
a course together. A preliminary analysis shows that co-
occurring projects within a cluster tend to occur at regular
weekly times, bolstering the conclusion that they were created
in a course held at these times. We also plan to measure the
similarity of the co-occurring projects.

Once we have discovered courses for our prolific dataset,
we will use hierarchical clustering to categorize projects that
appear to be classroom activities. After filtering out tutorials
and classroom exercises, we will be left with original projects
that will form the basis of our learning analytics work. One

form of unoriginality we do not know how to handle is
determining whether any user projects are based on projects
from the App Inventor Gallery, a collection of projects shared
by members of the user community.

In our analysis of original projects, we plan to build upon
the work of Xie and Abelson [7] to study the skill progres-
sion of users in their App Inventor projects. We also plan
to investigate misconceptions and poor programming style,
and see whether these improve over time or are affected
by previously completed tutorials and classroom activities.
In particular, we will study the usage of App Inventor’s
abstraction mechanisms (procedures, lists, loops, and generic
components), which preliminary observations indicate are used
surprisingly infrequently, even among prolific users.

As part of our work, we will develop algorithms to de-
tect common bugs and lack of abstraction in App Inventor
programs. We later plan to integrate such detection algorithms
within the App Inventor environment itself to provide feedback
directly to users about ways to improve their programs. Such
detection algorithms could also be used within a teacher
dashboard for App Inventor (such as the one sketched in [4])
to highlight students who need help with their code.

We have seen that prolific users may have several similar
original projects that appear to be different versions of the
same project. We suspect these projects are manual backups
of a single project made by users who fear losing their work.
We can use hierarchical clustering on a user’s original projects
to find such versions and see how common this “manual
versioning” is in practice. Currently, no history is recorded
for App Inventor projects indicating how they evolve over
time (though Sherman has developed a fine-grained recording
mechanism that may be integrated into App Inventor in the
future [4]). So a sequence of versions could provide a useful
coarse-grained window on the history of certain projects.

ACKNOWLEDGMENTS

This work was supported by Wellesley College Faculty
Grants and by the National Science Foundation under grant
DUE-1226216.

REFERENCES

[1] D. Bau, J. Gray, C. Kelleher, J. S. Sheldon, and F. Turbak, “Learnable
programming: Blocks and beyond,” Communications of the ACM, 2017,
to appear.

[2] D. Wolber, H. Abelson, and M. Friedman, “Democratizing computing
with App Inventor,” GetMobile: Mobile Computing and Communications,
vol. 18, no. 4, pp. 53–58, Jan. 2015.

[3] B. Xie, I. Shabir, and H. Abelson, “Measuring the usability and capability
of App Inventor to create mobile applications,” in 3rd International
Workshop on Programming for Mobile and Touch, 2015, pp. 1–8.

[4] M. Sherman, “Detecting student progress during program activities by
analyzing edit operations on their blocks-based programs,” Ph.D. disser-
tation, University of Massachusetts Lowell, Apr. 2017.

[5] E. Mustafaraj, F. Turbak, and M. Svanberg, “Identifying original projects
in App Inventor,” in Proceedings of the 30th International FLAIRS
Conference, May 2017.

[6] S. van Dongen, “Graph clustering by flow simulation,” Ph.D. dissertation,
University of Utrecht, May 2000.

[7] B. Xie and H. Abelson, “Skill progression in MIT App Inventor,” in IEEE
Symposium on Visual Languages and Human-Centric Computing, 2016,
pp. 213–217.

117

DMSVLSS2017 Authors’ Index

Authors’ Index

Abedijaberi, Armita 34
Amato, Flora 87, 94

Balzano, Walter 86
Barbieri, Vinicio 86
Bellini, Pierfrancesco 57

Chang, Shi-Kuo 43
Chang, Shikuo 75
Chen, Lei 24
Colace, Francesco 67
Costagliola, Gennaro 14
Cozzolino, Giovanni 87, 94
Cuzzocrea, Alfredo 102

Dawson, Michael 110
De Rosa, Mattia 14

Eloe, Nathan 1, 34

Fawcett, James W. 8
Fuccella, Vittorio 14

Guo, Wei 75

Lemma, Saverio 67
Leopold, Jennifer 34
Liu, Weibin 50
Lombardi, Marco 67
Lu, Wei 24

Mazzeo, Antonino 87
Mohammed, Mubarek 8
Moscato, Vincenzo 94
Mumolo, Enzo 102
Mustafaraj, Eni 110

Nesi, Paolo 57

Picariello, Antonio 94
Pizzata, Antonio 87

Qi, Jiaqian 50

A-1

DMSVLSS2017 Authors’ Index

Riccardi, Giovanni 86

Sperl̀ı, Giancarlo 94
Svanberg, Maja 110

Turbak, Franklyn 110

Vercelli, Gianni 102

Wang, Liqiang 24

Xing, Weiwei 24, 50

Yang, Yong 24
You, WenBin 75
Yuan, Haitao 24
Yung, Duncan 43, 75

Zhang, HaoRan 75
Zhang, ZiNan 75

A-2

DMSVLSS2017 Program Committee Reviewers’ Index

Program Committee Reviewers’ Index

Flora Amato University of Naples
Danilo Avola Sapienza University of Rome
Arvind Bansal Kent State University
Paolo Bottoni Sapienza University of Rome
Loredana Caruccio University of Salerno
Shayok Chakraborty Arizona State University
Maiga Chang Athabasca University
Shikuo Chang Uinversity of Pittsburgh
Peter Chapman Edinburgh Napier University
Mauro Coccoli DIBRIS - University of Genoa, Italy
Francesco Colace Università degli studi di Salerno
Kendra Cooper Independent
Gennaro Costagliola Dipartimento di Informatica, Università di Salerno
Gennaro Costagliola University of Salerno
Alfredo Cuzzocrea ICAR-CNR and University of Calabria
Sergiu Dascalu University of Nevada, Reno
Andrea De Lucia Department of Management & Information Technology - Uni-

versity of Salerno
Aidan Delaney University of Brighton
Vincenzo Deufemia Department of Computer Science, University of Salerno
Tiansi Dong Bonn-Aachen International Center for Information Technol-

ogy B-IT
Henry Duh Latrobe University
Nathan Eloe Northwest Missouri State University
Martin Erwig Oregon State University
Filomena Ferrucci Università di Salerno
Andrew Fish University of Brighton
Vittorio Fuccella Dipartimento di Matematica e Informatica - Università di

Salerno
Kaori Fujinami Tokyo University of Agriculture and Technology
David Fuschi Bridging Consulting Ltd
Ombretta Gaggi Dept of Mathematics, University of Padua
Angelo Gargantini University of Bergamo
Angela Guercio Kent State University at Stark

Carlos A. Iglesias Universidad PolitÃcnica de Madrid
Pedro Isaias Universidade Aberta
Kamen Kanev Shizuoka University
Jun Kong North Dakota State University
Yau-Hwang Kuo National Cheng Kung University
Robert Laurini INSA Lyon
Jennifer Leopold Missouri University of Science & Technology
Fuhua Lin Athabasca University
Hong Lin University of Houston-Downtown
Alan Liu National Chung Cheng University
Paolo Maresca Università di Napoli Federico II
Luana Micallef Helsinki Institute for Information Technology HIIT

A-3

DMSVLSS2017 Program Committee Reviewers’ Index

Mark Minas Universität der Bundeswehr München
Paolo Nesi University of Florence, DISIT Lab
Max North Southern Polytechnic State University
Joseph Pfeiffer New Mexico State University
Antonio Piccinno University of Bari
Yong Qin Beijing JiaoTung University
Elvinia Riccobene Computer Science Dept., University of Milan
Michele Risi University of Salerno
Peter Rodgers University of Kent
Veronica Rossano Depatment of Computer Science - University of Bari
Chaman Sabharwal Missouri University of Science and Technology
Giuseppe Santucci University of Rome
Gem Stapleton University of Brighton
Franklyn Turbak Wellesley College
Giuliana Vitiello Dipartimento di Matematica e Informatica- Università di

Salerno
Atsuo Yoshitaka Japan Advanced Institute of Science and Technology
Tomas Zeman Czech Technical University in Prague
Kang Zhang University of Dallas, Texas
Zhigao Zheng Central China Normal University

A-4

DMSVLSS2017 External Reviewers’ Index

External Reviewers’ Index

Case, Denise M.
Eloe, Nathan
Fu, Yanjie

A-5

