
Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22

DOI reference number: 10.18293/JVLC2020N2-008 

Auto-Modularity Enforcement Framework 
Using Micro-service Architecture 
Hanzhong Zheng, Justin Kramer and Shi-Kuo Chang* 

Department of Computer Science, University of Pittsburgh, 6135 Sennott Square, 210 S Bouquet St., Pittsburgh, PA, USA, 15260-9161 
____________________________________________________________________________________________________________________ 

A R T I C L E I N F O
 

Article History: 
Submitted 10.22.2020 
Revised 11.15.2020 
Second Revision 12.2.2020 
Accepted 12.10.2020 

 

Keywords: 
Micro-service 
Automatic software development 
Service-oriented architecture  
Modularity enforcement 
Visual software development 

A B S T R A C T
 

The evolution of the software architecture has been progressively shifting to emphasize modularity, 
isolation, scalability, agility, and loose coupling. Service-oriented architecture (SOA) has started to 
gain popularity in this direction. Micro-services are a lightweight SOA that aim to largely scale 
applications while ensuring isolation and distribution. Modularity is sometimes left behind or difficult 
to achieve with fine-grained distribution of programmer responsibilities. In this paper, we propose an 
automatic modularity enforcement (AME) framework during the software development life cycle 
(SDLC) through intermediate representation. Our idea was inspired by automatic software 
development for building a scalable application. We implemented this framework to support visual 
software development using the Java Spring Boot Micro-service tool. 

 © 2020 KSI Research 

1. Introduction

Software architecture reflects the definition of all
interacting components in the system for satisfying 
customers’ requirements. Nowadays, analytic 
applications largely increase the criticality of the 
software quality and scalability. In the micro-service 
paradigm, scalability and isolation are improved 
through dividing a large application service into several 
sub-services, which are independently deployed and 
communicated through interfaces via standard data 
formats and protocols such as XML, HTTP, etc. [1]. 
Each sub-service implements the partial functionality of 
the entire system. 

The majority of a software system is divided into 
several modules during the design. However, 
modularization has always been one of the greatest 
challenges in software architecture design. Enforcing 
modularization can also be considered as an NP-hard 
problem for programmers [2]. Modularization separates 
the program’s functionality into several modules. Each 
module is independent and interacts with each other. 
Inadequate modularization can easily influence the 

distribution, persistence, isolation, and even the overall 
software quality. For programmers, modularization is a 
key but challenging principle. The complexity of 
modern software systems makes them much harder for 
programmers to understand and maintain, especially 
with respect to scalability. Modularization can allow for 
decomposition of the software system to reduce the 
complexity and improve the maintainability. 
Furthermore, modularity can make the application more 
tolerant of uncertainty. 

To ensure the continuous delivery of trustworthy and 
high-quality software systems while reducing the 
burdens on programmers, automation in software 
development has become important. Many efforts have 
been made in recent years in automation of the software 
development process under three categories: Rapid 
Application Development (RAD) [3] [4], Code 
generation [5], and Model-Driven Architecture (MDA) 
[6] [7]. In object-oriented programming, modularity
and encapsulation are closely tied to each other and play 
dominant roles. Enforcing modularity can limit the
propagation of program errors and establish software
maintainability. The mechanism of automatic module
enforcement (AME) allows the program modules to be
developed in a customized and organized way. AME
sets more constraints in order to keep consistency and
cohesion in the entire software system design. In this

Journal of Visual Language and Computing 

journal homepage: 

*Corresponding author 
Email address: schang@pitt.edu 
ORCID: 0000-0003-0426-4030 

17



Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22  
 
 

 
 
 
  
 

paper, we propose an automatic module enforcement 
framework that automatically generates and enforces 
the modularity in software development from the 
software system design. This framework is flexible and 
agile for adapting into other programming languages. 
The contributions of this paper are as follows: 

1. We developed a new time-critical application 
design system that specify different interaction 
patterns among components in the software system 
design.  

2. We proposed an automatic modularity 
enforcement (AME) framework using the concept of 
micro-service architecture to generate and reinforce 
the module’s functionality and cohesion.  

3. We implemented our framework on a well-
defined experimental system using the Java Spring 
Boot developing template.  

2. Related Work  

2.1 Service-Oriented Architecture (SOA) 
Enterprises have increased their demand for flexible, 

efficient and extendable architecture paradigms in the 
current highly competitive software market. SOA is a 
service-based architectural style that usually is viewed 
as a black box that may have many underlying services 
[8], but brings many significant benefits to Enterprises 
in the way of flexibility, agility and high degree of 
collaboration between business and IT. The flexibility 
of SOA demonstrates how legacy applications can 
easily integrate with new applications. SOA has the 
ability to quickly respond to ever-changing 
requirements and demands. The main goal of SOA is to 
support a business process that reflects their 
collaboration. 

The communications in a SOA commonly utilize 
WSDL (Web Service Description Language), UDDI 
(Universal Description Discovery and Integration), and 
SOAP (Simple Object Access Protocol) among Service 

Provider, Service Broker and Service 
Requestor/Consumer (Fig. 1). Service Provider offers a 

variety of different services that are ready to use. 
Service Requestor demands the services. Service 
Broker is a service registry for connecting the Service 
Provider and Service Requestor. 

The limitations of the SOA are also obvious. The 
communications between services mainly depend on 
message passing, which can easily become 
overwhelming when applications require heavy data 
exchange. The connections are exponentially increasing 
for a server due to transmission protocols, and SOA is 
costly in deployment and human resources. 

2.2 Monolithic vs. Micro-service 
Architecture 

The waterfall development model and associated 
technology are representations of traditional software 
development processes, which usually require a large 
team on a monolithic artifact. In the monolithic 
architecture, the main concept is “single”: A monolithic 
application is built from a single unit, which is self-
contained and independent from other applications. 
However, a great service design for a large application 
should be stateless and allow the application to scale 
vertically. Micro-services arrange an application to be a 
collection of loosely coupled, interconnected modular 
services where individual services communicate 
through REST APIs and lightweight messages. To 
achieve this isolation each service should be 
independent from other services. Fig. 2 illustrates an 
example of a micro-service architecture. 

Maintainability, scalability and reliability are the 
main drawbacks of the monolithic architecture, and 
issues concerning them are proliferated in the current 
enterprise market. Micro-services ensure the 
continuous delivery and deployment of a large and 
complex application associated with scalability, 
testability, flexibility and fault tolerance. Service failure 
is unpredictable but harmful. Isolation in micro-services 
ensure the application continue to operate even if there 
is a service failure. Enterprise applications have the 
essence to be complex and highly demanding of 

Figure 1: Communication structure of SOA 
 

Figure 2: An example of a micro-service architecture 
 

18



Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22  
 
 

 
 
 
  
 

scalability and responsiveness. The benefits of micro-
services seem to fulfill those requirements and attract 
business Enterprises transition from monolithic to 
micro-service architecture. As one of the biggest e-
commerce company in Europe, Otto Group started to 
build their system using micro-services, which 
vertically decomposes their system into four loosely 
coupled applications: Product, Order, Promotion and 
Search/Navigation [9]. Another example is the Netflix. 
Netflix is the top Internet television network in the 
world and spent over 7 years on the transition to the 
micro-service. The successful transition allows the 
video to be displayed on a variety of screen sizes and 
platforms [10]. Besides, micro-services can easily 
integrate with popular cloud platforms. Amazon web 
services and Microsoft Azure both deploy micro-
services on their cloud platforms. 

2.3 Software Development Automation 
(SDA) 

  Software development in general requires large 
amounts of human endeavor. The improvement of 
computer architectures and networks drives the size of 
computer software and their diverse platforms [13] 
exponentially, increasing in order to satisfy the 
increasing needs of providing more software features. 
Automation in software development refers to replacing 
repeatable processes and reducing manual intervention, 
which accelerates the delivery of high-quality software 
products [11]. Automation in the software space 
focuses on building both software and testing 
automation, which usually takes a significant amount of 
time. Application building involves many steps, like 
code updating, compiling, and deployment. Software 
testing intends to discover bugs, errors, or defects 
during the execution of programs or application.  

Software projects range from small scale personal 
projects to large scale industrial applications. This 
triggers the popularity of open software repositories 
such as Github, Sourceforge, and Bitbucket. However, 
well-maintained software development frameworks, 
like Sot, Wala, LLVM, all require a successful build 
process of the project repositories. Foyzul Hassan et al. 
present a feasible automatic software binding on Java 

projects on the state-of-the-art version control 
repository [12]. They found that 57% of build failures 
can automatically be resolved. Software testing is an 
intensive and costly task in the software development 
life cycle (SDLC). Automated software testing aims to 
reduce the workload through automated testing. Test 
automation largely impacts the quality, development 
time, and cost of the software to the market [16]. 
Automated software testing can be unit testing, 
functional testing, testing management tools, and so on. 

Modularity is an important concept in software 
applications. It enhances the reusability of the previous 
code. Modules usually are divided based on their 
functionality, but they work together for serving a 
specified business domain. Modularization is always 
the main issue in SDLC and the core task for 
programmers [17] [18] [19]. One of the benefits of 
micro-services is the enhancement of modularity in the 
project to achieve fine-grained distribution of sub-
services. For object-oriented programming, 
modularization is necessary for development teams. 
The high benefits of modularity certainly associate with 
the challenges in software design and implementation. 
We propose an automatic modularity enforcement 
framework from the software design to the software 
implementation process. The implementation of our 
framework utilizes micro-services to enforce isolation 
and reusability. We also demonstrate that flexibility by 
not only automatically creating Java modules, but also 
by automatically creating modules in other object-
oriented programming languages. The IC card can 
model the interaction patterns for designers to choose, 
illustrated in different colors and emoticons with 
associated names. Interaction patterns define how 
statuses are communicated with other IC cards. 

3. Time Critical Condition Design 

Our IC card management system (ICMS) is used for 
designing time critical applications. An IC card is a 
visual specification scheme for rapidly prototyping the 
entities of an application [20]. The ICMS is a visual tool 
that allows the creation, edition, visualization, and 
exporting of one or more IC cards. The connection of 

Figure 3: An IC card example of creating a functionality component for ‘Doctor_Examine’ 

19



Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22  
 
 

 
 
 
  
 

the ICMS and our auto-modularity enforcer utilizes 
XML specification. The ICMS automatically generates 
XML specifications. Fig. 3 is an example of the IC card 
example that can show the structure. There are 8 
interaction patterns: ‘quiet state’, ‘By myself no   
interaction’, ‘by Myself with interaction’, ‘By Others 
no interaction’, ‘By Others with interaction’, ‘FAN’ 
(fan-out), ‘App’, ‘Chain’, and ‘Mixed’. The ‘Quiet’ 
state indicates not working or in a restful state. 

 ‘FAN’ indicates the distributed fan-out of a larger 
task to a number of smaller tasks. ‘My task’ is the task 
assigned to this IC card. The content of the IC card 
provides the detailed descriptions of the task. For 
example for a brainwave sensor component IC card, 
“(1) if 𝑇𝑇𝑐𝑐 > threshold T; calculate two options states: 
attention and mediation states; otherwise, keep 
collecting the EEG. (2) if medication value > attention 
value, send the medication state and value to the 
database server; else: send the attention state and value 
to the database server.”  ‘Name of Other IC’ specifies 
the other IC cards that interact with each other. 
‘Messages to Other IC’ contains the message format 
and message content (e.g. “msg1: raw EEG data, msg2: 
user state, value”). After finishing filling out the fields 
of the IC card, the designer submits the IC card to the 
database, and the IC card database automatically 
generates the other designated number of IC cards with 
temporary information so that the designer can edit 
them at any time. In addition, the XML schema has also 
been automatically generated and can be downloaded 
for the next component to transform into java modules.  

4.  Experimental Tool 

For our experimental tool, we began with an analysis 
of the micro-service architecture. The micro-service 
paradigm focuses upon modularity in backend 
development by introducing componentization of the 
services it defines. These services are broadly defined 
within the framework, and the architecture behind these 
services varies vastly from one organization to another. 
With the growth of the micro-service architecture in 
recent years [9], the need for Rapid Application 
Development (RAD) [3] [4] in the space has expanded. 
Based upon this analysis, we developed a tool to 
enhance the reusability, cohesion, and distribution of 
micro-service development while reducing coupling. 
Our experimental tool is driven by an automatic 
modularity enforcement framework based upon the 
Java Spring Boot framework. Java Spring Boot 
supports the creation of a framework that utilizes fine-
grained distribution of sub-services while allowing for 
vast extensibility through Cloud, API, and serverless 
interfaces to services.  
   We employed Python to engineer a dynamic auto-
generation tool within our Java Spring Boot micro-

service architecture. The Python program allows for 
flexible micro-service generation based upon a standard 
XML input interface, connecting to our IC card 
management system that produces the XML files. With 
our Python program, users can specify constant factors 
to identify their central repository, the XML file to 
target, and the title of their template files. To allow for 
extensibility, the Python Auto-Generator provides a 
basic method-layer API to process user-defined micro-
services which fit into the templated IC card-based 
XML structure. This approach allows users to create 
micro-services through the framework of their choice if 
basic constraints on input and output are met.  

Through the development of the experimental 
micro-service Auto-Generator (Fig. 4), it is possible to 
automatically generate micro-service components 
within a structure that lends itself to extensibility, tight 
cohesion, loose coupling, and modularity. The XML 
specification, based on the IC card template, serves as 
an interface to the Auto-Generator. An XML-based 
communication structure informs the Auto-Generator 
which micro-services to create, as well as the database 
tables to establish for each micro-service. Also, the 
Auto-Generator establishes micro-service file 
components in a directory structure specified in the 
source project directory.  

 
 

 
 

 

As an example, the fan software structure is illustrated 
in Figure 5.  This is for the get user location  module of 
an app. At the top we have track_tracks_service and 
under that, as shown in Figure 6, we have two IC cards, 
close_closes, and distance_distances. The module (IC 
card) track_tracks_service has a database that stores the 
location, the latitude, and the longitude. The IC cards 
are shown in Figure 6. Once the IC cards are defined, 
the ICMS can output an XML specification as shown in 

Figure 4: modularity auto-enforcement framework           
using micro-service architecture 

 

20



Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22  
 
 

 
 
 
  
 

Figure 7.  
track_tracks_services 

 /        \ 
/             \ 

 distance_distances          close_closes 
             Figure 5. Fan software structure. 
 

 
    Figure 6. The IC cards for the fan software structure.  
<?xml version="1.0" encoding="UTF-8"?>   
<icCardList xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">   
    <icCardEntry icEntryId="2804" icEntryName="test">   
        <icCard icId="10279" icName="close_closes" 
icDescription="finds closest building" icIntPattern="FAN" 
icMyTask="finds closest      
         building" icTimeCriticalCondition="" icNumberCurrent="1" 
icNumberTotal="1">   
            <icOther icOtherName="" icOtherMessage="" 
icOtherTask="" otherId="-1" />   
        </icCard>   
        <icCard icId="10277" icName="track_tracks_service" 
icDescription="get user location" icIntPattern="FAN" 
icMyTask="collect users   
        currentlocation" icTimeCriticalCondition="&lt; 30 minutes and 
Begin_Table T_ LOCATION(name,lat,longatiude) End_Table"   
        icNumberCurrent="1" icNumberTotal="1">   
            <icOther icOtherName="send alerts" icOtherMessage="none 
" icOtherTask="none " otherId="4784" />   
        </icCard>   
        <icCard icId="10278" icName="distance_distances" 
icDescription="gets the distance to the nearest location" 
icIntPattern="FAN"   
            icMyTask="get distance" icTimeCriticalCondition="" 
icNumberCurrent="1" icNumberTotal="1">   
            <icOther icOtherName="none" icOtherMessage="none" 
icOtherTask="none" otherId="-1" />   
        </icCard>   
    </icCardEntry>   
</icCardList> 

Figure 7. The  XML specfication. 

Based upon the XML specification of the IC cards, 
the AutoGenerator can then create the output modules.  
A portion of a module is shown in Figure 8. 

 
package io.pivotal.Micro-services.patients; 
 
import java.io.Serializable; 
import java.math.BigDecimal; 
 
import javax.persistence.Column; 
import javax.persistence.Entity; 
import javax.persistence.Id; 
import javax.persistence.Table; 
 
/** 
 * Persistent patient entity with JPA markup. Patients are stored in 
an H2 
 * relational database. 
 *  
 * @author Paul Chapman 
 */ 
@Entity 
@Table(name = "T_PATIENT") 
public class Patient implements Serializable { 
 
 public static Long nextId = 0L; 
 
 @Id 
 protected Long id; 
 
 protected String number; 
 
 protected String name; 
 
 protected String address; 
 
 /** 
  * This is a very simple, and non-scalable solution to 
generating unique 
  * ids. Not recommended for a real application. Consider 
using the 
  * <tt>@GeneratedValue</tt> annotation and a sequence 
to generate ids. 
  *  
  * @return The next available id. 
  */ 
 protected static Long getNextId() { 
  synchronized (nextId) { 
   return nextId++; 
  } 
 } 
 
 /** 
  * Default constructor for JPA only. 
  */ 
 protected Patient() { 
 } 
 

Figure 8.  A generated module. 
 
The outputted modules, as demonstrated by the 

example module in Figure 8, provide two key functions. 
The first function is a set of class variables that define 
the database table for the service. The AutoGenerator 
establishes a table for the micro-service in the database 
for usage based on the template database. Furthermore, 
each module provides a method-level API that 

21



Z. Hanzhong et al. / Journal of Visual Language and Computing (2020) 17-22  
 
 

 
 
 
  
 

controller classes utilize to manipulate and combine the 
data of each service. The core class of the module is 
extensible, allowing for the development of ICs within 
each core class. The ICs inside of each core class define 
the service’s internal communication, logic, and 
functions. For example, an IC defined as RegisterUser 
may exist within the User Service. The User Service 
core class would contain the logic for registering a user, 
including CRUD (create, read, update, delete) calls to 
the User database. In addition, a Login Controller may 
act as a wrapper class around both the User Service and 
a hypothetical Authentication Service, which it utilizes 
to authenticate a potential user’s information before 
registration. Lastly, the outputted module 
communicates with an automatically generated 
registration server to establish itself as a distributed 
micro-service. Connections to the registration server are 
based upon a centralized location that is automatically 
provided within the creation of each new micro-service. 

5.  Conclusion 

This paper proposes the organization of the 
generated micro-service, with clear distinctions 
between Software Quality Assurance (SQA) testing, 
database creation, data seeding, registration, a web 
platform, and service methods. The combination of 
these resources is accessed by Java Spring Boot to 
compile the micro-service-based software. Based upon 
our experimental design, micro-services may be created 
in conjunction with the tenets of Rapid Application 
Development (RAD) [3] [4]. These micro-services 
register with a central server, utilize their independent 
databases, and provide APIs to controllers in the 
overlying software. Each micro-service interacts with 
the registration and web components through structured 
channels based upon naming schemas. Thus the 
experimental tool provides a basis for our studies 
pertaining to auto-modularity enforcement framework 
for micro-services. 

Our next research goal is to investigate the optimal 
organization of the generated micro-services according 
to some objective functions to minimize, for instance, 
the total development efforts. 

References 
[1] Dragoni, N., Lanese, I., Larsen, S., Mazzara, M., Mustafin, R., 

Safina,L., 2017. Microservices: How to make your application 
scale. 

[2] Prajapati, A., Chhabra, J., 2018.  Optimizing software 
modularitywith minimum possible variations. Journal of 
Intelligent Systems 29.  

[3] Beynon-Davies, P., Carne, C., Mackay, H., Tudhope, D., 1999. 
Rapidapplication development (rad): An empirical review. Eur. 
J. Inf. Syst. 8, 211–223. 

[4] Berger, H., Beynon-Davies, P., Cleary, P., 2004. The utility of 
a rapidapplication development (RAD) approach for a large 
complex information systems development.,  220–227. 

[5] Liao, H., Jiang, J., Zhang, Y., 2010. A study of automatic code 
generation, in: 2010 International Conference on Computational 
and Information Sciences, 689–691. 
doi:10.1109/ICCIS/2010.171. 

[6] Newman, M.E.J., Girvan, M., 2004. Finding and evaluating 
community structure in networks. Phys. Rev. E. 69, 026113. 

[7] Pastor, O., Molina, J.C., 2007. Model-Driven Architecture in 
Practice: A Software Production Environment Based on 
Conceptual Modeling. Springer-Verlag, Berlin, Heidelberg. 

[8] Cloutier, Robert. 2008. Model Driven Architecture for Systems 
Engineering. Presentation Slides), Stevens Institute of 
Technology, presented at INCOSE International Workshop.  

[9] Chapter 1: Service Oriented Architecture (SOA). 
msdn.microsoft.com. Archived from the original on February 6, 
2016. Retrieved September 21, 2016. 

[10] Hasselbring, W., Steinacker, G., 2017. Microservice 
architectures forscalability, agility and reliability in e-commerce, 
in: 2017 IEEE International Conference on Software 
Architecture Workshops (ICSAW), 243–246.  

[11] Vučković, J., 2020.  You Are Not Netflix. Springer International 
Publishing, Cham.   333–346. 

[12] Ohno, O., Furuhata, Y., Komuro, H., Imajo, T. and Komiya, S. 
2002. Automated software development based on composition 
of categorized reusable components—construction and 
sufficiency of skeletons for batch programs. Electron. Comm. 
Jpn. Pt. II, 85: 50-66. 

[13] Hassan, F., Mostafa, S., Lam, E.S.L., Wang, X., 2017. 
Automaticbuilding of java projects in software repositories: A 
study on feasibility and challenges, in: 2017 ACM/IEEE 
International Symposiumon Empirical Software Engineering 
and Measurement (ESEM), .38–47.  

[14] Moran, K., 2018. Automating software development for mobile 
computing platforms (doctoral symposium). ArXiv 
abs/1807.07171 

[15] Wedikian, Z., Ayari, K., Antoniol, G., 2009. Mc/dc automatic 
testinput data generation, in: Proceedings of the 11th Annual 
Conferenceon Genetic and Evolutionary Computation, 
Association for Comput-ing Machinery, New York, NY, USA.  
1657–1664. 

[16] Kumar, D., Mishra, K., 2016. The impacts of test automation on 
software’s cost, quality and time to market. Procedia Computer 
Science79, 8–15.  

[17] Garousi, V., Elberzhager, F., 2017. Test automation: Not just 
for testexecution. IEEE Software 34, 90–96. 
doi:10.1109/MS.2017.34 

[18] Serme, G., 2013. Modularization of security software 
engineering indistributed systems. (modularisation de la 
sécurité informatique dansles systèmes distribués). 

[19] Mitchell, B.S., Mancoridis, S., 2006.  On the automatic modu-
larization of software systems using the bunch tool.  IEEE 
Trans.Softw. Eng. 32, 193–208. 

[20] Hare, E., Kaplan, A., 2017.  Designing modular software: A 
casestudy in introductory statistics. Journal of Computational 
and Graphical Statistics 26.  

[21] Chang, S. K., Rajnovic, P., Zalar, M., 2007.   IC Card: Visual 
specification for rapid prototyping of time-critical applications.   
International Journal of Software Engineering and Knowledge 
Engineering 17,  557–573. 

 

22

https://msdn.microsoft.com/en-us/library/bb833022.aspx

	A B S T R A C T
	1. Introduction
	2. Related Work
	2.1 Service-Oriented Architecture (SOA)
	2.2 Monolithic vs. Micro-service Architecture
	2.3 Software Development Automation (SDA)

	3. Time Critical Condition Design
	4.  Experimental Tool
	5.  Conclusion
	This paper proposes the organization of the generated micro-service, with clear distinctions between Software Quality Assurance (SQA) testing, database creation, data seeding, registration, a web platform, and service methods. The combination of these...
	Our next research goal is to investigate the optimal organization of the generated micro-services according to some objective functions to minimize, for instance, the total development efforts.
	References



